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Abstract  Biomedical informatics encompasses a set of disciplines focused on 
developing, implementing, and perfecting the use of informatics and computational 
tools in biomedical research and clinical care. In this volume, we focus on a number 
of areas crucial to the establishment of state-of-the-art informatics methods and 
systems to support cancer research. We provide motivation for undertaking such 
developments and deployments, a quick overview of the field, and hopes for the 
impact on cancer treatment and survival in this introduction.

1.1 � The Goals of Biomedical Informatics for Cancer Research

Biomedical informatics is a field that focuses on the leveraging of computational 
and informatics resources for improving medical care and research. The increasing 
use of computers for biological research, for instance through the analysis of sequence 
similarity between genes and proteins or annotation of high-throughput data, led to the 
development of the field of bioinformatics. This followed the earlier emergence of 
medical informatics, which has resulted in the development of ontologies for 
disease and treatment, standards for medical and pharmacological data exchange, 
and techniques in effectiveness analysis for medical decision making. In addition, 
ontologies and terminologies have been developed to codify areas of knowledge, 
permitting searching of the vast medical literature. These fields form the basis of 
biomedical informatics.

M.F. Ochs (*) 
Division of Oncology Biostatistics and Bioinformatics, Johns Hopkins University,  
550 North Broadway, Suite 1103, Baltimore, MD 21205, USA 
e-mail: mfo@jhu.edu

Chapter 1
Biomedical Informatics for Cancer  
Research: Introduction

Michael F. Ochs, John T. Casagrande, and Ramana V. Davuluri
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1.1.1 � The Burden of Cancer

Cancer is a depressingly prevalent disease, with 40% of all individuals expected 
to develop cancer during their lifetimes (SEER statistics 2004–2006, NCI, 
Bethesda, MD). In addition, in contrast to the equally prevalent heart disease and 
diabetes, treatments have not succeeded in significantly reducing morbidity. 
This reflects the complexity of the disease, with cancer showing great hetero-
geneity at the molecular level. However, all cancers share the traits of uncon-
trolled growth, leading to a single set of cells spreading throughout the body and 
absorbing all resources or putting pressure on normal organs until death occurs. 
Early detection of some cancers can lead to effective lifetime cures; however, 
many cancers are detected only at late stages or can recur regardless of early 
treatment.

Despite the complexity of treating cancer, at an individual patient level there 
have been some hopeful signs for the future. New targeted therapies, for example, 
imatinib mesylate, have completely changed the prognosis in specific cancers 
like chronic myelogenous leukemia (Druker 2001). This success has led to an 
explosion in the development of molecularly targeted therapeutics, including 
sorafenib and sunitinib, which have added significantly to progression-free 
survival in renal cell carcinoma (Favaro and George 2005). However, such progress 
remains far short of a cure, with improved survival measured in months or years, 
not decades. Our goal must be vastly different from our accomplishments to 
date, with a focus on making cancer a treatable if not curable disease. Biomedical 
informatics coupled to computational modeling and statistical analysis promises 
to accelerate the achievement of this goal through the codification of knowledge 
from the clinic and the bench (ontologies), the development of models (compu-
tational biology), and the testing of emerging hypotheses (statistics). In support 
of this goal, biomedical researchers are developing a substantial infrastructure to 
capture data, mine and analyze it, and present results in meaningful ways to 
clinical and bench researchers in order to have a significant impact on the 
disease process.

1.1.2 � Treating the Individual Cancer:  
The Role of Informatics

The revolution in molecular biology has led to a much deeper understanding of the 
etiology of cancer in the last two decades. Importantly, the large investment in cancer 
research led to the clarification of the role of genetic mutation (Cho and Vogelstein 
1992) and the identification of specific molecular processes (Hanahan and Weinberg 
2000) as the fundamental drivers of cancer. With these discoveries, we finally under-
stood the deep heterogeneity in cancer, with phenotypically identical behavior in 
patients arising from different molecular aberrations. Recent studies validated this 
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view, showing that multiple molecular pathways must be affected for cancer to 
develop, but with different specific proteins in each pathway mutated or differentially 
expressed in a given tumor (The Cancer Genome Atlas Research Network 2008; 
Parsons et al. 2008). Different studies demonstrated that while widespread mutations 
exist in cancer, not all mutations drive cancer development (Lin et al. 2007). This 
suggests a need to target only a deleterious subset of aberrant proteins, since any treat-
ment must aim to improve health to justify its potential side effects.

Treatment for cancer must become highly individualized, focusing on the 
specific aberrant driver proteins in an individual. This drives a need for informatics 
in cancer far beyond the need in other diseases. For instance, routine treatment with 
statins has become widespread for minimizing heart disease, with most patients 
responding to standard doses (Wilt et al. 2004). In contrast, standard treatment for 
cancer must become tailored to the molecular phenotype of an individual tumor, 
with each patient receiving a different combination of therapeutics aimed at the 
specific aberrant proteins driving the cancer. Tracking the aberrations that drive 
cancers, identifying biomarkers unique to each individual for molecular-level diag-
nosis and treatment response, monitoring adverse events and complex dosing 
schedules, and providing annotated molecular data for ongoing research to improve 
treatments comprise a major biomedical informatics need.

Each individual also has a specific genetic background and environmental insults, 
which encourages a unique path in the development of each cancer leading to the 
diverse molecular phenotypes. There are examples where this is not the case, primarily 
in pediatric cancers that often have single driving aberrations or in specific types of 
cancer that follow a certain sequence of aberrations in many cases (Cho and 
Vogelstein 1992). However, even in these cases there exist many exceptions, far in 
excess of the fraction that fall outside standard treatment in heart disease or 
diabetes.

The role of genetics suggests a need for knowledge of family histories in cancer. 
Such histories are already very valuable for counseling and decision making in 
cases where a strong genetic basis for a significant portion of the population risk 
exists (Parmigiani et al. 1998; Berry et al. 2002). In addition, genotyping coupled 
to modeling of cancer risk will improve our ability to advise patients. However, 
successful use of this knowledge will require appropriate integration into the infor-
matics framework, both to gather and provide information to the patient and to 
protect privacy.

1.1.3 � Evidence-Based Medicine

For the above knowledge to be beneficial to the patient, it will also be necessary to 
make it available to practicing oncologists and other cancer care givers so they can 
tailor an appropriate treatment plan based on all the available information. 
As defined by Sackett et al. (1996), evidence-based medicine (EBM) is the “integra-
tion of individual clinical expertise with the best available external clinical evidence 
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from systematic research.” The definition of systematic research will likely need to 
be broadened from randomized clinical trials or observational studies to accommo-
date the newly obtained personal profiles. In addition, the obstacle of disseminating 
or “diffusing” EBM in a timely and efficient manner to all providers, as discussed 
by Shojania and Grimshaw (2005), will need to be overcome before it can evolve 
into evidence-based management (Shortell et al. 2007).

1.1.4 � Electronic Records

There is a long history of utilizing computers in cancer research. In the late 1960s into 
the 1970s, they were used to perform computational analyses and enumeration and 
management of cancer incidence and mortality statistics for population-based cancer 
registries. There was also a growing interest in utilizing computers to track and record 
information in the hospital and clinic settings. Many of these early systems were 
event based, since these systems were largely intended for billing or accounting 
activities in a hospital. In one early approach of designing a computerized medical 
record, Hammond et  al. determined that if they captured all relevant activities, 
services, or resources that an outpatient received during a visit and associated these 
with the patient rather than a “department,” a more beneficial “electronic record” 
system could be developed (Hammond et al. 1980). One of the editors (JTC) imple-
mented the TMR system in 1983 in a Comprehensive Cancer Center and it served as 
the operational system of the Center for over 20 years before it was replaced.

The term “electronic records” now has several different connotations as noted in 
Chap. 2. The fundamental advantage to a researcher having access to such a system 
is that first, it can serve as a subject selection repository for investigations and 
second, it can also be a source of rudimentary information on the study population 
(discussed in detail in Chap. 2). Despite these advantages, there are also some who 
would argue that the cost and uniformity of the information gathered in the care 
setting is not sufficient for research purposes and that they rely on redundant or 
duplicative data collection systems for each research study. As mentioned in 
Chap. 2, the best approach is probably a mixed approach of centralized records and 
specialized additions.

1.2 � The Components of Biomedical Informatics  
and Their Allies

1.2.1 � The Electronic Medical Record and Data Warehouse

In the early 1970s, there was an emerging interest in using computers to assist in 
the management and care of patients (Collen 1991). Several of these early sys-
tems were targeted to the specific needs of oncology and were unique in that 
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they were patient focused rather than event- or transaction-focused. The most 
notable was the Oncology Clinical Information System developed at Johns 
Hopkins University by Blum, Lenhard, and others and summarized by Enterline 
et  al. (1994). To some extent, these early systems were a victim of their time. 
Computer technology was rapidly changing, and with the advent of the micro-
computer and the more sophisticated man–machine interfaces, these early 
systems became difficult to sustain due to user dissatisfaction or the cost of 
adapting to more modern technologies. In addition, many of these early systems 
had originated as research endeavors and were difficult to justify in the developing 
managed care environment. Another shortcoming of these early systems was their 
architecture, which was a “monolithic” approach attempting to encompass all the 
functionality needed in a single or modular system from a single vendor on a 
single hardware platform. This approach did not prove successful due to the 
amount of functionality needed and the time needed to complete development 
and implementation. In addition, the variability of scope and functionality across 
the modules from each vendor complicated the selection process. Rada and 
Finley (2004) provide an organizational evaluation of an aging oncology system 
and enumerate a number of the issues an institution must face when considering 
the replacement of a legacy information system.

In the early 1980s, a new approach emerged. The intent of this approach was to 
allow an organization to purchase the individual departmental systems that suit 
their business needs and then utilize a common “health bus” providing network and 
data standards to allow for data interchange and interaction between these “best of 
breed” systems (Collen 1991). This approach allowed for facile data interchange 
between various departmental subsystems, but it provided little in the way of coor-
dinated system functionality. If the underlying message content could act as the 
“trigger” to fire off the required processes in the receiving system, coordinated 
functionality could be regained. A secondary problem was the flexibility in the HL7 
standards, which provided the “health bus,” that resulted in the unintended result 
that vendors were still able to introduce variability in their interface implementa-
tions based on their interpretation or preferences.

With “best of breed” approaches, it became necessary to aggregate and merge 
the distributed data into one database to ease analysis. Although there was no tech-
nological need to coalesce all organization’s data assets into a single database or 
data warehouse, this greatly reduced the security concerns and performance issues 
that could occur if all the distributed databases were available to those needing to 
do cross-departmental searches. More recently, Ambite et  al. (2001) has taken a 
more distributed approach to this problem that removes the requirement for all data 
to be merged into a single database. The current architectural approach to designing 
an HIS is based on object-oriented principles and a component- or services-oriented 
approach (Geissbuhler 2003). In this approach, the individual units, components, or 
services that are needed for the system are built separately but adhere to specific 
interfaces and context dependencies that can be deployed independently of each 
other (Szyperski 1997). Similar techniques are the basis of caGrid and of the caBIG® 
infrastructure (see Chaps. 4 and 9).
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1.2.2 � The Computational Grid and Access to It

The computational requirements both for data management and for computation 
will be substantial. In addition, much of the data that will be useful for an analysis 
will not be local in any sense, as it will comprise the knowledge codified in 
national data resources, such as those maintained by NCBI and NLM (Maglott 
et al. 2007), and the data gathered by the field as a whole (e.g., Edgar et al. 2002; 
Thorisson and Stein 2003; Parkinson et al. 2005). While a data warehouse could 
gather this data, this may not provide a scalable approach, as the data volume 
continues to increase exponentially in many molecular domains (sequence, transcripts, 
proteins, metabolites, etc.).

The use of data federation and its computational counterpart, a computational 
grid, provide another approach to the problem of the analysis of large integrated 
data sets. This approach, which is used by the caBIG® consortium (see Chap. 9), 
relies on bringing data sets together as needed from multiple sources, applying 
analytical tools to the data using resources on the grid (see Chap. 4), and returning 
results to the requesting party. This approach requires substantial informatics infra-
structure both in terms of interoperability through a shared interface (syntax) and 
integratability of the data in a meaningful way (semantics). The issues involved are 
discussed in Chaps. 4 and 6.

Once resources are presented for use on the Internet, security becomes a major 
issue, especially as public and private health information will be involved. As such, 
grid technologies rely heavily on distributed authentication and authorization tools, 
which identify an individual as having access to the grid and detail those resources 
that the individual may access. The issues involved in such systems are discussed 
in detail in Chap. 5 and an example system is presented in Chap. 16.

1.2.3 � Making Sense of Large Data Sets

The volume of data now being generated in even routine biological experiments 
exceeds that seen in traditional studies. The development of microarrays introduced 
biological and medical researchers to complex, dynamic high-dimensional data for 
the first time, and the result was the rediscovery of the need for statistical reasoning. 
This was most obvious in the poor quality of initial analyses of data from the new 
technology, which was followed by development of statistically validated methods 
for normalization of the arrays (Irizarry et al. 2003), identification of differential 
expression (Kerr et al. 2002), and discovery of patterns (Lukashin and Fuchs 2001; 
Moloshok et al. 2002).

The technologies now in routine use, including SNPchips, MS–MS proteomic 
analysis, next generation sequencing, and those under development, including 
metabolic profiling, miRNA arrays, and protein arrays, will provide unparalleled 
massive amounts of data. Analysis of this data will require the infrastructure of grid 



91  Biomedical Informatics for Cancer Research: Introduction

computing and data warehousing, but it depends critically on the development of 
novel statistical approaches for analysis. The computational infrastructure for 
implementation of the methods is discussed in Chap. 6.

1.2.4 � Modeling the Disease

Statistics can only reach so far in the determination of the causes of cancer and the 
identification of potential treatments. The strong nonlinearity and dynamic nature 
of the cancer system makes a mathematical description essential for a deep under-
standing of an individual cancer. While statistical analysis can identify potential 
drivers of carcinogenesis (Carter et al. 2009), the response to therapeutic treatment 
of the multiple changes or mutations that must have occurred for cancer develop-
ment (Hanahan and Weinberg 2000) and an understanding of the interactions of the 
cancer cell with the external environment require a mathematical model due to the 
nonlinearity of the processes (Strogatz 2001).

Modeling cancer initiation and progression in mathematical models that repli-
cate the transformation of normal cells to tumor cells can provide deep insight into 
molecular mechanisms that could provide targets for therapeutic development. 
Although mathematical modeling has dramatically impacted some areas of bio-
medical research (e.g., cardiac function and prosthetic design), major efforts in 
developing predictive mathematical models to guide experiment have not kept pace 
with analytical and statistical developments in cancer research. However, mathe-
matical modeling combined with tailored experiments could lead to improved 
cancer treatment, as discussed for the targeting of aberrant signaling (Ventura et al. 
2009). Issues in the mathematical modeling of cancer are discussed in Chap. 7.

1.2.5 � The Goal of Reproducibility

The foundation of scientific research is the ability to reproduce previous results of 
experiments in multiple laboratories or previous treatment successes among different 
institutions. Remarkably, the development of high-throughput measurements in 
biology led to not only a failure in this regard, but also a reluctance to even provide 
adequate access to data and statistical code to allow fellow researchers to demon-
strate reproducibility. While this is a result of the demands placed on modern 
researchers to produce progress in the form of publications and grant funding, it 
nevertheless reduces the validity of the overall scientific effort and draws this 
effort into question in a society that is often already suspicious of claims of medical 
advances. Advances in cancer treatment can reduce morbidity and mortality, but 
only if the patient population trusts that the novel treatments have a sound scientific 
basis.
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The failure of so many high-profile, high-throughput studies in terms of 
reproducibility (Baggerly et  al. 2004, 2005; Coombes et  al. 2007) has led to a 
demand for reproducibility in analysis. In an era of highly computational analysis, 
this requires sharing of the data and code that led to a discovery. Such sharing can 
be done with blinded data, as demonstrated by patient-based data in national reposi-
tories (Edgar et al. 2002), and with code that both produces a textual description of 
the methodology and permits reanalysis of the data (see Chap. 8).

1.2.6 � Reaching the Oncologist and the Patient

The framework for biomedical informatics outlined in this chapter and in this 
volume provides a technical and cultural solution, albeit with substantial financial 
and institutional demands, for cancer researchers. However, advances in treatments 
must reach the community physicians who care for the vast majority of cancer 
patients and the patients themselves. While computerized medical records (see 
Chap. 2) are becoming a reality in many areas, these alone will not keep physicians 
up-to-date on the latest treatment and biomarker developments.

Standards-based organizations will play a critical role in the improvement in 
community care through EBM. Fortunately for cancer treatment, the National 
Comprehensive Cancer Network (NCCN) has already established the basis for dis-
semination of guidelines for treatment (Miller 2000). If such guidelines can be 
automatically integrated into EMRs through workflows and order sets, and these 
guidelines updated to handle the demands of personalized tumor treatments, this 
could provide a major improvement in patient care.

1.3 � National Efforts

1.3.1 � National Centers for Biomedical Computing

The National Centers for Biomedical Computing (NCBCs) were established under 
the NIH Roadmap initiative, and the first centers were established in 2004. 
The goal of the NCBCs is to establish the national infrastructure for biomedical 
computing. Present NCBCs focus on Computational Biology, Informatics for 
Integration of Basic Research and Clinical Research, Medical Imaging, Biological 
Structure Simulation, Biomedical Ontologies, Integrative Informatics, and 
Multiscale Network Analysis. The centers support cooperative research with indi-
viduals outside the NCBC host institution, providing infrastructure and tools to 
accelerate research.

The tools developed in the NCBCs provide infrastructure and test-beds for many 
areas useful for cancer research. To provide just one example, the National Center 
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for Biomedical Ontology maintains numerous ontologies suitable for encoding data 
on model organisms, genes and proteins, experimental protocols, and biological 
structures. Such ontologies will play a crucial role in data integration and analysis, 
and this is discussed in Chap. 6.

1.3.2 � The Cancer Biomedical Informatics Grid

The Cancer Biomedical Informatics Grid (caBIG®) is a further national informatics 
initiative. The National Cancer Institute (NCI) initiated caBIG® in 2003 with visits 
to the NCI-supported cancer centers. The focus of caBIG® is on an informatics 
infrastructure tailored to the needs of cancer research, which makes it an obvious 
source for biomedical informatics infrastructure for cancer researchers. A major 
focus of the initial efforts was the establishment of vocabulary and interoperability 
standards, similar to the NCBC centers focused on ontologies and integrative and 
bench to clinic informatics. In addition, the initiative identified early needs among 
cancer centers, allowing identification of a first round of tools to be built upon the 
emerging infrastructure. Because of the strong connection to cancer research, we 
include Chap. 9, devoted to the caBIG® project, and Chaps. 10, 14, and 16 on avail-
able caBIG® tools and infrastructure.

Successful creation of the needed biomedical informatics solutions for a cancer 
research center will rely on the purchase, development, implementation, and main-
tenance of a number of systems, combined with the training and culture-modification 
necessary to transform the enterprise and leverage the new infrastructure. 
The NCBCs and caBIG® project will provide some tools; however, they can also 
provide insight into successful methods of attacking informatics problems and 
expertise in deploying informatics systems for cancer research.

1.4 � The Payoff

The investment to develop a biomedical informatics infrastructure that can sup-
port cancer research at a level necessary for the development of personalized 
medicine will be substantial. Spending within the caBIG® program alone in the 
3-year pilot phase was $60 million, and this focused mostly on establishing an 
initial grid and vocabulary infrastructure with a few modifiable open-source 
tools. Integrating the EMR, establishing searchable data repositories with molec-
ular and clinical data, and developing analytical and modeling tools will require 
substantial local and national investments. However, the result should be a vast 
improvement in outcomes as individuals are treated for the specific molecular 
aberrations driving their cancers.
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1.4.1 � Cancer as a Treatable Disease

The key to improving survival and quality of life for cancer patients lies in 
identifying the root cause of the disease. This root cause will be different at the 
level of individual molecular driving aberrations in each cancer, while retaining 
commonality at the level of overall cellular phenotypes and potentially path-
ways. The tracking of potential molecular triggers will be done at the population 
level and therefore will require the creation of shared national resources, such as 
maintained presently at the National Center for Biotechnology Information 
(NCBI) and the National Library of Medicine (NLM). These resources will need 
to be searchable both by individual researchers and by computational algorithms 
and therefore require the use of ontologies and vocabularies for data encoding. 
Much of this effort is already underway (Humphreys and Lindberg 1993; Rubin 
et al. 2006).

The population level data will provide a framework for understanding cancer. 
The measurements made on an individual tumor will then need to be integrated into 
this framework, requiring the integration of the clinical and laboratory records with 
population-based data. Vocabularies and ontologies will be essential for this inte-
gration. The data will need to be analyzed with new statistical methods capable of 
taking point measurements on individuals and interpreting them within the distribu-
tions from a population (e.g., Katz et  al. 2006). This will require computational 
modeling of cancer, since the complexity of the interactions in biological systems 
makes them highly nonlinear, thus requiring modeling to determine robust and 
sensitive components prior to treatment.

Once the drivers of the individual cancer are identified and sensitive points for 
disruption of aberrant processes found, treatment must be designed. The hope is 
that future treatment will not involve broad cytotoxic regimens, such as standard 
platin-based chemotherapy or radiation, which damage all cells with substantial 
adverse side effects. Instead, each individual cancer will be modeled, the aberrant 
proteins that drive that cancer will be identified, the weak points where the tumor 
cell can be driven to cell death will be found, and the application of multiple-
targeted therapeutics will be planned. Treatment will still result in adverse events 
and side effects; however, these should be minimal while disruption of tumor 
processes is maximized. Ideally, this could result in a cure; however, cancer is a 
robust system once established, and it may succeed in recovering from even such 
a targeted treatment. Thus, this process of analysis, modeling, and treatment may 
be ongoing, especially for advanced cancers.

Naturally this must all take place with an understanding that cancer is one aspect 
of the system – that the individual must be treated, not the tumor. In the end, the 
tools we build will enable treatment, but the doctor–patient relationship will still 
play the central role. Each patient will face hard choices, just as today, and patients 
and physicians will need to discuss options concerning the patient as a whole. 
Knowledge must guide the choices to maximize benefit, so methods to present the 
results of the complex interactions of data and analysis will be needed.
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1.4.2 � Building the Research Community

The vision of cancer research and treatment presented here requires a much greater 
integration of researchers and clinicians than we have today. Physicians will always 
remain the prime point for patient care; however, they will need a vast array of col-
laborators to bring the vision of personalized cancer care to fruition. The gathering 
and annotating of data, both clinical and biological, require close cooperation of 
informaticists and scientists. The maintenance of the data resources requires tradi-
tional information technology specialists. Analysis requires computational scien-
tists and statisticians working closely with biologists to properly model the data and 
systems. The results must be presented in a meaningful way, relying on visualiza-
tion techniques developed by computer scientists. The underlying infrastructure 
must be robust, which requires computer systems analysts and networking special-
ists. Applications must be built, which will require application programmers and 
collaborations with commercial vendors.

However, biomedical research in general and cancer research in particular have 
been slow to adopt the methodologies and technologies developed outside medi-
cine, and this may reflect the difficulties of bringing together expertise from 
diverse fields. An example of successful integration of cultures is provided by 
high-energy physics, where theorists, experimentalists, computer scientists, statis-
ticians, and engineers must all work together to accomplish the discovery and vali-
dation of a new subatomic particle. A prerequisite for this is a mutual respect for 
the contributions and difficulties faced in each subfield and the expertise devel-
oped by leaders in those fields. Unfortunately, many computational scientists of 
significant renown feel that mutual respect is not yet the norm in biomedical 
research, and this may well slow discoveries of fundamental significance given the 
overwhelming amounts of data now being generated. Addressing the cultural 
issues impeding collaboration may in the end be more important than addressing 
technical issues.

1.5 � Conclusion

We are on the verge of major leaps forward in our understanding of cancer and 
its treatment. The discoveries derived from molecular biology and early targeted 
therapeutics promise a fundamental shift in treatment, away from general cyto-
toxic approaches to the targeting of the cancer cells. However, this vision brings 
with it a need for mathematical and computational resources in excess of any 
past experience of clinical and biological researchers. A substantial investment 
will be needed for cancer medicine and research to match the leaps forward in 
other areas of society, like banking and communications. In addition, an appre-
ciation for the talents of all individuals involved in the process will be essential 
for progress.



14 M.F. Ochs et al.

References

Ambite JL, Knoblock CA, Muslea I, Philpot A (2001) Compiling source descriptions for efficient 
and flexible information integration. J Intell Inf Syst 16(2):149–187

Baggerly KA, Morris JS, Coombes KR (2004) Reproducibility of SELDI-TOF protein patterns in 
serum: comparing datasets from different experiments. Bioinformatics 20:777–785

Baggerly KA, Morris JS, Edmonson SR et al (2005) Signal in noise: evaluating reported reproduc-
ibility of serum proteomic tests for ovarian cancer. J Natl Cancer Inst 97:307–309

Berry DA, Iversen ES Jr, Gudbjartsson DF et  al (2002) BRCAPRO validation, sensitivity of 
genetic testing of brca1/brca2, and prevalence of other breast cancer susceptibility genes. 
J Clin Oncol 20:2701–2712

Carter H, Chen S, Isik L et al (2009) Cancer-specific high-throughput annotation of somatic muta-
tions: Computational prediction of driver missense mutations. Cancer Res 69:6660

Cho KR, Vogelstein B (1992) Genetic alterations in the adenoma–carcinoma sequence. Cancer 
70:1727–1731

Collen MF (1991) A brief historical overview of hospital information system (HIS) evolution in 
the United States. Int J Biomed Comput 29:169–189

Coombes KR, Wang J, Baggerly KA (2007) Microarrays: retracing steps. Nat Med 13:1276–1277
Druker B (2001) Signal transduction inhibition: results from phase I clinical trials in chronic 

myeloid leukemia. Semin Hematol 38:9–14
Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and 

hybridization array data repository. Nucleic Acids Res 30:207–210
Enterline JP, Lenhard RE, Blum BI et al (1994) OCIS: 15 years experience with patient-centered 

computing. MD Comput 11:83–91
Favaro JP, George DJ (2005) Targeted therapy in renal cell carcinoma. Expert Opin Invest Drugs 

14:1251–1258
Geissbuhler A (2003) Building man-man-machine synergies. Experiences from the Vanderbilt and 

Geneva clinical information systems. Int J Med Informatics 69:127–133
Hammond WE, Stead WW et al (1980) Functional characterisitics of a omputerized medical 

record. Methods Inf Med 19:157–162
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70
Humphreys BL, Lindberg DA (1993) The UMLS project: making the conceptual connection 

between users and the information they need. Bull Med Libr Assoc 81:170–177
Irizarry RA, Bolstad BM, Collin F et  al (2003) Summaries of affymetrix genechip probe level 

data. Nucleic Acids Res 31:e15
Katz S, Irizarry RA, Lin X et al (2006) A summarization approach for affymetrix genechip data 

using a reference training set from a large, biologically diverse database. BMC Bioinformatics 
7:464

Kerr MK, Afshari CA, Bennett L et al (2002) Statistical analysis of a gene expression microarray 
experiment with replication. Stat Sin 12:203–218

Lin J, Gan CM, Zhang X et al (2007) A multidimensional analysis of genes mutated in breast and 
colorectal cancers. Genome Res 17:1304–1318

Lukashin AV, Fuchs R (2001) Analysis of temporal gene expression profiles: clustering by simu-
lated annealing and determining the optimal number of clusters. Bioinformatics 17:405–414

Maglott D, Ostell J, Pruitt KD et  al (2007) Entrez gene: gene-centered information at NCBI. 
Nucleic Acids Res 35:D26–D31

Miller SJ (2000) The national comprehensive cancer network (NCCN) guidelines of care for 
nonmelanoma skin cancers. Dermatol Surg 26:289–292

Moloshok TD, Klevecz RR, Grant JD et  al (2002) Application of Bayesian decomposition for 
analysing microarray data. Bioinformatics 18:566–575

Parkinson H, Sarkans U, Shojatalab M et al (2005) Arrayexpress – a public repository for microar-
ray gene expression data at the EBI. Nucleic Acids Res 33:D553–D555



151  Biomedical Informatics for Cancer Research: Introduction

Parmigiani G, Berry D, Aguilar O (1998) Determining carrier probabilities for breast cancer-
susceptibility genes BRCA1 and BRCA2. Am J Hum Genet 62:145–158

Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblas-
toma multiforme. Science 321:1807–1812

Rada R, Finley S (2004) The aging of a clinical information system. J Biomed Informatics 37: 
319–324

Rubin DL, Lewis SE, Mungall CJ et al (2006) National center for biomedical ontology: advancing 
biomedicine through structured organization of scientific knowledge. OMICS 10:185–198

Sackett DL, Rosenberg WMC et al (1996) Evidence based medicine: what it is and what it isn’t. 
BMJ 312:71–72

Shojania KJ and Grimshaw JM (2005) Evidence-Based Quality Improvement: The State of the 
Science. Health Affairs 24(1):138–150

Shortell SM, Rundall TG et al (2007) Improving Patient Care by Linking Evidence-Based 
Medicine and Evidence-Based Management. JAMA 298(6):673–676

Strogatz SH (2001) Exploring complex networks. Nature 410:268–276
Szyperski C (1997) Component Software, 1st Edition. ACM, New York
The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization 

defines human glioblastoma genes and core pathways. Nature 455:1061–1068
Thorisson GA, Stein LD (2003) The SNP consortium website: past, present and future. Nucleic 

Acids Res 31:124–127
Ventura AC, Jackson TL, Merajver SD (2009) On the role of cell signaling models in cancer 

research. Cancer Res 69:400–402
Wilt TJ, Bloomfield HE, Macdonald R et al (2004) Effectiveness of statin therapy in adults with 

coronary heart disease. Arch Intern Med 164:1427–1436



17

Abstract  Integration of the Electronic Medical Records (EMR) with clinical 
research systems has the potential to greatly enhance the efficiency, speed, and 
safety of cancer research. New hypotheses could be generated through mining of 
EMR data, observational studies may be conducted more rapidly, and clinical trial 
recruitment and conduct could be greatly facilitated. Such enhancements will be 
accomplished through secondary use of EMR data for research and the develop-
ment of automated decision support systems that rely on EMR data. In this chap-
ter, we define the various types of EMR and clinical research data systems in use 
and describe the goals and rationale for integrating these two types of systems to 
enhance research as well as quality of care. The various approaches and benefits to 
integrating EMR and clinical research systems are discussed. While major benefits 
are conferred by such system integration, many challenges exist as well, such as 
the need for stringent data quality assurance, appropriate granularity, metadata and 
person index management, and extremely careful handling of data access and secu-
rity issues. Furthermore, the movement toward the EMR within the USA has been 
slow to date, hampering these data integration efforts. However, recent legislation 
to incentivize the adoption of EMRs will make the feasibility and utility of EMR 
data integration to support clinical research more promising in the near future.

2.1 � Introduction

It is critical that the efficiency, speed, and safety of cancer research be continually 
enhanced to make more rapid inroads and progress in battling this devastating dis-
ease. One approach to achieving these goals is to ensure that when conducting 
clinical research, full advantage is taken of the emerging role of electronic medical 
records (EMRs) in the field of cancer care. Yet an aspect of EMRs that has received 
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little attention to date is the potential benefit of these systems to clinical research 
(Powell and Buchan 2005).

The integration of EMRs with clinical research systems enables two key forms 
of functionality: secondary use of data and automated decision support. Through 
the former, integration of these two types of data systems can facilitate the effi-
ciency and speed with which cancer clinical research can be conducted. Through 
the latter, such integration can greatly improve patient safety, as well as efficiency, 
as clinical research is being conducted. The synergistic nature of these systems and 
the goals of each are depicted in Fig.  2.1. In this chapter, we will discuss the 
approaches, benefits, and challenges of integrating clinical research systems with 
medical care systems. First we introduce and define the terms and processes that 
will frame our discussion.

2.2 � Electronic Systems to be Integrated

2.2.1 � Clinical Research Data Systems

Clinical research data systems take on several different forms and functions. One 
of the most frequently deployed clinical research systems can be defined as a 
Clinical Data Management System (CDMS) which is used in clinical research to 

Fig. 2.1  Synergies between clinical research and medical data systems

Healthcare
Data Systems 

Clinical Research 
Data Systems Data Integration

Secondary Use of Data Automated Decision Support 

I. Speed - Identification of subjects for trial  - Algorithms to cull out ineligible subjects  

- Import of pre-existing data into e-forms - Metadata-driven mouseover information 

 II. Efficiency - Hypothesis generation via data mining - Pattern dectection rules applied to data 

- Prevalence data for study planning - Graphical contour plots of prevalence 

III. Safety - Import of data to identify toxicities - Automatic grading of adverse events 

- Use of data to develop care guidelines - Rule-based guideline adherence data
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manage the data of a clinical trial (i.e., an experimental interventional study 
conducted with human subjects), as well as other forms of clinical research such as 
observational, outcomes, or epidemiological trials (Summerhayes 2002; Tai and 
Seldrup 2000; Greenes et al. 1969; Clinical Data Management System Wikipedia 
2009). The data to be stored in the CDMS may be gathered on paper forms, such 
as Case Report Forms (CRFs) in the case of a clinical trial, or on survey forms, 
questionnaires, and other data capture forms for observational research studies.

Another form of clinical research system more specific to the area of interven-
tional clinical trials is known as a Clinical Trial Management System (CTMS). 
A CTMS consists of a customizable software system to manage large amounts of 
data involved with the operation of a clinical trial (Choi et al. 2005; Payne et al. 
2003; see Chaps. 10–12). Such a system not only provides a data capture interface 
and data storage, but also provides additional functionality, such as maintaining and 
managing the clinical trial planning, preparation, performance; tracking deadlines, 
data expectations, and milestones; and reporting of clinical trials for regu-
latory and analysis purposes. Modules for handling trial budgeting and patient 
study calendars may be included in the CTMS as well. Compatibility with other 
data management systems is a highly desirable feature of any CTMS or related 
study management software tool.

Clinical research data collected during the investigation of a new drug or medi-
cal device is collected by physicians, nurses, and research study coordinators in 
medical settings (offices, hospitals, and universities) throughout the world. 
Historically, this information was collected on paper forms, which were then sent 
to the research sponsor (e.g., a pharmaceutical company) for entry into a database 
and subsequent statistical analysis. However, this process has a number of short-
comings, including that data are copied multiple times, producing errors that may 
not be caught until weeks later. To alleviate such issues, another type of clinical 
research system that has evolved within biomedical research is known as a Remote 
Data Entry (RDE) system (Electronic Data Capture Wikipedia 2009).

RDE systems allow research staff to enter data directly at the medical setting, 
particularly useful when a multicentered study is being conducted with many insti-
tutions participating. By moving data entry directly into the clinic or other facility, 
data checks can be implemented during data entry, preventing some errors alto-
gether and immediately prompting for resolution of suspicious entries. Early RDE 
systems often used “thick-client” software installed on a laptop computer, such that 
the system needed to be deployed, installed, and supported locally at every partici-
pating site. This process becomes quite expensive for the study sponsor and com-
plicated for the research staff. For Cancer Centers that typically participate in many 
research studies simultaneously, this deployment model for RDE results in a prolif-
eration of different systems being installed, leading to complexity for the users 
along with space constraints.

In recent times, the user interface for RDE has shifted to Web-based deploy-
ments, for entry of data by the research team member directly into the system. EDC 
systems do not require local installation initially or with each software upgrade, but 
rather can be deployed centrally by the study sponsor for immediate and seamless 
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access by users. Although these systems are better than thick-client approaches, 
there are still cross-browser dependencies that need to be dealt with to make these 
Web-based systems truly universal. Typically an EDC system will include not only 
the graphical user interface (GUI) component for data entry, but also imbedded 
validation algorithms to rapidly check data for errors or suspicious entries and a 
reporting tool for synthesis and display of the collected data (Electronic Data 
Capture Wikipedia 2009). Such functionality formerly would be made available as 
separate software solutions within the CDMS or CTMS; however, integrated end-
to-end solutions are evolving more recently. While EDC systems are primarily 
designed for the collection of data for clinical trials, there is no prohibition for this 
type of system to become equally popular and useful for observational research 
studies as well.

The term “electronic data capture” also may encompass several types of technology, 
beyond an electronic replacement for the CRFs that are completed at the enrolling 
site (Handleman 2005). EDC systems can include data capture technologies such 
as interactive voice response (IVR) systems, for example, to allow patients to report 
information over the phone (e.g., “press a key from 1 to 5 to describe your current 
pain level, with 5 being the highest”). Patient-reported outcomes collected via elec-
tronic diaries, for example using a Personal Digital Assistant (PDA) such as a Palm 
Pilot or similar device to record information best captured at home, also may be 
considered a form of EDC (Handleman 2005).

For simplicity, within this chapter we will use the more global term of “CDMS” 
to encompass any form of electronic clinical research data system to be integrated 
with medical systems.

2.2.2 � Electronic Healthcare Data Systems

There are many limitations of paper medical records, including unavailability at the 
point-of-care (a given medical record cannot be in multiple places at once), incon-
sistent legibility, duplication of information, poor indexing of information, and 
inconsistency of information (Winkelman and Leonard 2004). To help alleviate 
such deficiencies, electronic healthcare data systems have been evolving. The 
National Cancer Institute (2009) defines an Electronic Medical Record (EMR) as 
“a collection of a patient’s medical information in a digital (electronic) form that 
can be viewed on a computer and easily shared by people taking care of the 
patient.” Though often used interchangeably, the terms EMR and Electronic Health 
Record (EHR) have different meanings in medical informatics. An EHR is defined 
as a “a longitudinal electronic record of patient health information generated by one 
or more encounters in any care delivery setting; including information on patient 
demographics, progress notes, problems, medications, vital signs, past medical his-
tory, immunizations, laboratory data, and radiology reports” by the Health 
Information and Management System (Electronic Health Record Wikipedia 2009). 
While increasing familiarity with the term “EHR” is being engendered by the 2009 
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Health Information Technology for Economic and Clinical Health (HITECH) Act 
(see below), we will use more technical informatics term of EMR for purposes of 
this chapter.

A related but distinct form of electronic system for the capture, management, 
and reporting of health information is the Personalized Health Record (PHR), 
defined as an electronic system to allow individuals to enter and manage their own 
private health information. Because the data come directly from the person him/
herself, the advantages are that the information may be more completely and accu-
rately captured from a personal view point. However, a disadvantage is that lay 
persons may not fully comprehend or enter data that is fully correct medically. 
Generally the term Health Information System (HIS) is reserved for electronic 
systems that go beyond even the EMR/EHR functionality to include features such 
as automated decision support (see below), alerting, and/or lifetime cumulative 
records. Another term that may be encountered is The Medical Record (TMR), 
designed to be a truly comprehensive personal health record, including a birth-to-
death, time-oriented database of all parameters related to a person’s well-being. 
Integrating data from all points of delivery and from all medical specialties, the 
TMR is envisioned to create a historical view of the health-related course of events 
in a person’s life (Hammond et al. 1997).

Again for simplicity within this chapter, we will use the term “EMR” to encom-
pass the several types of electronic healthcare systems defined above that could 
potentially be integrated with clinical research data systems.

To be considered a “full” EMR, typically a minimum of three functional com-
ponents must be included in the system: computerized physician order entry 
(CPOE), both for computerized prescription orders and orders for tests; reporting 
of test results; and capture of caregiver notes (Electronic Health Record Wikipedia 
2009). One of the largest national EMR projects has been implemented by the 
United Kingdom’s National Health Service (NHS) that will include 60,000,000 
patients within a centralized EMR by 2010 (Electronic Health Record Wikipedia 
2009). As another example, Alberta Province in Canada has deployed Alberta 
Netcare, a large-scale operational EMR system (Electronic Health Record 
Wikipedia 2009). The United States (US) Department of Veterans Affairs has 
deployed the largest enterprise-wide health information system that includes an 
EMR, the Veterans Health Information Systems and Technology Architecture 
(VistA) (Electronic Health Record Wikipedia 2009). This system allows healthcare 
providers to review and update a patient’s EMR at any of the more than 1,000 VA 
facilities around the country. The New York City Health and Hospitals Corporation, 
serving over 1.3 million patients in the largest urban US healthcare agency, is 
another positive example of a successfully implemented EMR (Electronic Health 
Record Wikipedia 2009).

The National Center for Health Statistics (2006) has indicated that the overall 
adoption of EMRs has been slow within the USA, in spite of a study showing rev-
enue gains after implementation of a new billing technology. US healthcare indus-
try spends only 2% of gross revenues on information technology compared to 
upwards of 10% within other information intensive industries such as finance (CDC 
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National Center for Health Statistics 2006). If all medical payment transactions 
were handled electronically, it has been estimated that America could save $11 bil-
lion annually (Medicare Part B Imaging Services 2008). Yet, the vast majority of 
healthcare transactions in the USA still take place on paper. Data from the 2005 
National Ambulatory Medical Care Survey indicated that only about 25% of office-
based physicians reported using EMRs. While this represented a 31% increase from 
the 18% reporting use of such systems in 2001, only 9.3% of the responding physi-
cians reported having a “complete” EMR in place as of 2005 (CDC National Center 
for Health Statistics 2006).

Beginning in 2005, a private nonprofit branch of the US Department of Health and 
Human Services, the Certification Commission for Healthcare Information Technology 
(CCHIT), was established and charged with developing a set of EMR standards, in 
order to certify vendors who are able to meet these standards. Hopefully such product 
certification will provide US physicians and hospitals with the mandate and justifica-
tion needed to make the significant investment of EMR implementation. By July 
2006, CCHIT had released its first list of 22 certified ambulatory EMR products, and 
starting in early 2007, EMR vendors began utilizing these certification criteria in 
building their systems (Certification Commission for Health Information Technology 
2009; Certification Commission for Healthcare Information Technology Wikipedia 
2009). Additional barriers to adopting an EMR, beyond the daunting cost, include the 
complexity of such systems and the necessary change management and training to 
allow widespread adoption. Furthermore, the lack of a national standard for interoper-
ability among competing software options is a major hindrance to widespread adop-
tion of such tools (National Archives and Records Administration 2008).

In 2009, President Obama signed into law an economic stimulus package known 
as the “HITECH Act”: Medicare and Medicaid Health Information Technology; 
Title IV of the American Recovery and Reinvestment Act. One aim of this legisla-
tion is to incentivize more medical practices to implement EMRs, by providing a 
financial subsidy for physicians who adopt and meaningfully use certified systems. 
Using a “carrot and stick” approach, the bill also progressively reduces Medicare 
reimbursement to any physicians who have not implemented an EMR by 2015 
(Health Information Technology for Economic and Clinical Health Act 2009; 
Center for Medicare and Medicaid Services Fact Sheet 2009).

2.3 � Goals to be Achieved Through CDMS-EMR System 
Integration

2.3.1 � Secondary Use of Data

A major goal in integrating clinical research systems with electronic healthcare 
data systems is to achieve “secondary data use.” Safran et  al. (2007) docu-
mented that secondary use of data can be defined as “non-direct care use of 
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personal health information (PHI), including but not limited to use of such data 
for analysis, research, quality/safety measurement, public health, payment, 
provider certification or accreditation, and marketing and other business includ-
ing strictly commercial activities” (Safran et al. 2007). The first few uses listed 
above touch on this important intersection of clinical care and biomedical 
research. Individuals and organizations involved in cancer research that may 
benefit from secondary data use from medical records include health services 
researchers and clinical investigators, disease registries, health data organiza-
tions, healthcare technology developers, and research or policy centers 
(Anonymous 1993).

The Institute of Medicine also has identified that two types of patient records 
exist, emphasizing that all users should not have access to all parts of patient records, 
so that patient confidentiality can be maintained (Institute of Medicine 1991):

(a)  Primary records are those used by healthcare professionals while providing 
patient care services to review previously recorded data or to document their 
own observations, actions, or instructions.

(b)  Secondary records are derived from primary records and contain data elements 
to aid nonclinical users in supporting, evaluating, or advancing patient care.

Such secondary record usage includes biomedical research to advance the evalu-
ation and discovery of new treatments, better methods of diagnosis and detection, 
and prevention of symptoms and recurrences. Cancer clinical trial research can 
be enhanced and informed by some of the data collected during the practice of 
care, such as comorbid conditions, staging and diagnosis, treatments received, 
recurrence of cancer, and vital status and cause of death. Analytic observational 
studies may involve the use of valuable standard of care data available in the 
EMR from the routine practice of medicine. Quality/safety measures can be 
gleaned from the EMR in support of outcomes and comparative effectiveness 
research to determine whether new clinical trial findings are being adopted into 
the community of all cancer patients, what the most effective strategies are in the 
general cancer population, identify population groups, and conduct epidemiological 
studies.

Secondary data on health-related subjects extends beyond only clinical medical 
information and may also include administrative records; statistical reports of 
governments and other agencies; political/legal documents such as voting records, 
wills, contracts, laws, and statutes; organizational minutes; proceedings and 
reports; poll returns; survey data; commercial, industrial, and institutional records; 
historical documents; personal documents such as letters; and communications in 
the mass media (Brown and Semradek 1992). While several of these data types can 
be instrumental in supporting various forms of research (e.g., epidemiological 
investigations into disease etiology, case–control studies with neighborhood con-
trols matched on socioeconomic factors), for the purposes of this chapter we will 
restrict our discussion of research uses of data to the clinical information arising 
within EMR systems.
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2.3.2 � Automated Decision Support Systems

Another potential benefit to clinical cancer research that can be conferred by 
integrating the CDMS with the EMR is automated decision support to enhance 
patient safety and study conduct efficiency. Automated Decision Support System 
(ADSS) can be defined as a rule-based system that is able to automatically provide 
solutions to repetitive management problems (Turban et al. 1997). Software com-
ponents of an ADSS include rules engines, mathematical and statistical algorithms, 
and workflow applications. While the ADSS is frequently found in business set-
tings, such systems can play a crucial role in the continual struggle to improve the 
quality and efficiency of patient care. A healthcare ADSS is based on rules or algo-
rithms that trigger an automatic decision; however, unlike in business informatics, 
such rules typically are not automatically acted upon without final review and 
acceptance by the medical caregiver to provide the human interaction, adjudication, 
and expert knowledge layer needed for safety reasons.

An ADSS is most useful in situations that require solutions to repetitive prob-
lems that mostly involve electronically available information (Automated Decision 
Support System Wikipedia 2009). For the ADSS to be useful, the problem situation 
at hand must be clear and well understood, and the required knowledge and relevant 
decision criteria must be very clearly defined and structured, requirements that are 
particularly challenging to achieve in the medical field. Particularly in the conduct 
of interventional clinical trials, and to some extent within observational research, 
the healthcare ADSS can be important for improving the safety and efficiency of 
clinical research.

2.4 � Rationale for Integrating the CDMS with the EMR

An ideal solution for leveraging the EMR to support clinical cancer research would 
be to extract patient data directly from the EMRs, as opposed to collecting the data 
in a separate data collection software application (Electronic Medical Record 
Wikipedia 2009). The convergence between patient care EMR systems within the 
broader healthcare ecosystem is expected to continue and perhaps could one day 
reach the point where separate CDMS and EMR systems would not be needed. 
However, in today’s world this combined usage of a single electronic system to 
fully serve both patient care and clinical research needs is not yet tenable and would 
be extremely challenging on several levels.

First, both EMRs and CDMSs represent “transactional” database systems, built 
to support a specific business process and set of use cases. Medical records are 
structured primarily for the clinicians and administrators (Electronic Medical 
Record Wikipedia 2009). An EMR is a dynamic entity, affording greater efficiency 
and quality control to the work processes of clinicians by providing data entry at 
the point of care, logistical information access capabilities, efficient information 
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retrieval, user friendliness, reliability, information security, and a capability for 
expansion as needs arise (Electronic Medical Record Wikipedia 2009).

Patient care systems can streamline the many daily interactions with thousands 
of patients to avoid slowing the healthcare process while using an EMR. Because 
they resemble paper-based formats, these highly structured data formats encourage 
a greater standardization of data entry, thus, promoting collaborative and goal-
directed treatment planning (Stam and van Ginneken 1995). Within EMR systems, 
structured entries (e.g., codes, classifications, and nomenclatures) are more fre-
quently used over paper-based records (Thiru et al. 2003). However, much of the 
patient care information still is not entered using close-ended standardized coding 
schemas, as is needed for research and data analytic purposes.

In addition, the transactional data records of an EMR are indexed by patient and 
often by account/visit numbers, unlike the need to index by protocol and subject 
within research data systems. Further, the large research data queries that need to 
be conducted could greatly impede the daily performance of the EMR and interfere 
with patient care, if performed directly within these healthcare-driven systems.

Therefore, given the current state of EMRs, the varied complexity of patient 
care vs. clinical research, and the different nature of the transactional databases 
that support the two processes, this convergence into a single shared-purpose elec-
tronic data system is not yet on the horizon. Instead at this juncture, the goals of 
secondary use of EMR data and automated decision support for clinical cancer 
research can best be achieved through the integration of EMR and CDMS data 
systems. The potential approaches to patient care–clinical research data integra-
tion, along with the many benefits conferred and challenges faced, are discussed 
in the following sections.

2.5 � Approaches to Integrating CDMS and EMR Systems

2.5.1 � Point-to-Point Data System Integration

One technical approach to integrating an EMR with the CDMS in order to support 
clinical research would be a “point-to-point” data integration solution. In this 
instance, the exported data from the EMR would be directly imported into the 
CDMS, most often as a scheduled “batch” file update, for example, nightly. First, 
a detailed systems analysis needs to be conducted to determine what data elements 
exist within the EMR that would be useful for research purposes and that exist in 
an appropriate form. Ideally, the data would be in coded or numeric format (e.g., 
M = Male, F = Female, numeric laboratory data results, etc.) and at an appropriate 
level of granularity or specificity to suit the research purpose at hand. While open-
ended text-based data could be imported into the CDMS as well, this form of 
unstructured data requires substantial manual curation on the clinical research side 
before it could be readily used for research purposes. An intermediate level of data 
between coded and open text would be structured text, for example, arising from 
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physicians conducting dictations using formatted standardized templates, so that 
consistent information is obtained with each dictation, in a predictable order.

When only two systems are involved, a single EMR and single CDMS, the 
point-to-point data technical integration approach would be quite reasonable. 
However, more frequently there are several source systems that could provide data 
to support research, for example, financial systems for cost–benefit analyses, ancil-
lary healthcare systems not linked into the EMR, etc. When more than the two 
systems are involved, point-to-point data integration solutions quickly begin to 
break down, and it becomes intractable to manage the numerous interfaces and 
synchronization of data across all systems. Integrated biomedical data not only 
enhances clinical research, but could also benefit hospital quality assurance, accred-
itation reporting, caseload and volume analyses, as well as genotype–phenotype 
correlative research if the “omics” forms of data are integrated as well. Therefore, 
a much more flexible scalable technical approach to this data integration problem 
is the data warehouse, as described in Sect. 2.5.2.

2.5.2 � Data Warehousing

As shown in Fig.  2.2, the data warehousing approach to data integration, while 
challenging, provides a highly extensible, large dimension data integration solution 
(see Chap. 3). In this approach, there can be many “feeder” data systems that pro-
vide valuable source data to be exported to and stored in the data warehouse. These 
systems could include ancillary care systems (laboratory, pathology, etc.) that may 
pass through the EMR itself to the warehouse or may represent stand-alone data 
systems that pass data into the warehouse.

Additional source systems could consist of the observational and/or clinical trial 
data systems into which data are collected specific to research, that are not available 
through the patient care systems. Such data might include graded adverse events, 
best response to treatment according to the protocol definition, and outside medical 
care records pertinent to the research project, but existing only on paper and not 
coded in the internal EMR system. In addition, the “omics” data arising from 
genomics and/or proteomics experiments, and stored in systems such as those 
described in Chaps. 13 and 14, could be synthesized and imported into the ware-
house in an aggregated reduced-dimensionality format, to be merged with the treat-
ment and biological “phenomic” data on the patients. As with the point-to-point 
solution above, a detailed systems analysis and data dictionary (i.e., metadata, data 
defining data) development is a critical prerequisite to a successful data integration 
project such as data warehousing.

The process of extracting the specific subset of data from the source systems into 
the data warehouse is called the “Extract-Transform-Load” or ETL process 
(Adelman and Moss 2000). Via an automated, scheduled routine, the required data 
elements are exported from the feeder systems, typically nightly or weekly, transformed 
to meet the data model of the warehouse, and loaded into the data warehouse data 
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structure. The underlying data model is usually specified as a “star schema” in order 
to provide the most efficient storage mode for data integration across the sources and 
subsequent abstraction for data mining purposes (Gray and Watson 1998).

As also shown in the Fig. 2.2, regardless of the technical integration solution, 
data quality assurance and validation are critical, as is metadata management, as 
described below. Once data are populated and integrated through a data warehous-
ing approach, several types of “data marts” or subsets can be spun off from the main 
data store to meet different analytic and reporting purposes. These might include 
hospital quality assurance reports, evaluating whether complications of care and 
comorbidities are within acceptable ranges or case volume analyses to determine 
trends and plan for hospital beds and staffing. On the research side, clinical trials 
and observational research can be greatly facilitated through the integrated data, 
and genomic–phenomic correlative research facilitated through this highly valuable 
integrated data store.

2.5.3 � Utilization of Standards

Regardless of which technical approach to data integration is utilized, it is crucial 
to follow existing and emerging data standards to ensure high-quality results and 
the ability to integrate across institutions, organizations, pathways, and diseases. 
Only through such standards will clinical research be advanced in a rapid highly 
organized manner, along with multicenter studies that are required to make more 
rapid biomedical discoveries.

Although few standards exist today for EMR systems as a whole, a number of 
standards exist relating to specific aspects of the EMR (Electronic Medical Record 
Wikipedia 2009). Adoption of several of these standards would greatly enhance the 
ability to conduct research on a global multidisciplinary scale when integrating data 
from the EMR for research. For example, the American Society for Testing and 
Materials (ASTM) International Continuity of Care Record (CCR) is a patient 
health summary standard based upon XML. The CCR can be created, read, and 
interpreted by various EMR systems, allowing easy interoperability between other-
wise disparate entities (Electronic Medical Record Wikipedia 2009).

Standards for billing and financial purposes are available to potentially enhance 
data compatibility for research purposes, particularly because of their mandatory 
nature. The ANSI ASC X12 (EDI), a set of transaction protocols used for transmit-
ting virtually any aspect of patient data, is in use in the USA for transmitting billing 
information, particularly as several of the transactions are required by the Health 
Insurance Portability and Accountability Act (HIPAA) (American National Standards 
Institute Accredited Standards Committee X12 Wikipedia 2009; Accredited 
Standards Committee X12 2009; Health Information Privacy 2009; Health 
Insurance Portability and Accountability Act 2009). Digital Imaging and 
Communications in Medicine (DICOM) standards are in widespread use for repre-
senting and communicating radiology images and reporting (Digital Imaging and 
Communications in Medicine Wikipedia 2009).
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Interoperability can be defined as the ability of different information technology 
systems and software applications to communicate, to exchange data accurately, 
effectively, and consistently, and to use the information that has been exchanged 
(Electronic Medical Record Wikipedia 2009). The Health Level 7 (HL7) messaging 
standard is in use for interoperability among data from hospital, physician, EMR, and 
practice management systems (Health Level Seven 2009; Health Level 7 Wikipedia 
2009). HL7 Version 2 has conveyed “syntactic” interoperability among these vendor-
based systems, such that data can be physically imported from one HL7 compliant 
system to another. The next advance, HL7 Version 3, not only provides syntactic 
interoperability, but also provides, very importantly for research usage, “semantic” 
interoperability. Although adoption of this HL7 version has been relatively slow by 
vendors and others, once in place it will allow for meaningful standardized under-
standing and interpretation of the data being exchanged across data systems.

Additionally standard information models for clinical data and research are 
being developed at this time as well. The Clinical Data Interchange Standards 
Consortium (CDISC) is a voluntary initiative to develop standards for clinical data 
across the Food and Drug Administration (FDA), pharmaceutical companies, and 
research institutions, ideally worldwide (Clinical Data Interchange Standards 
Consortium 2009; Clinical Data Interchange Standards Consortium Wikipedia 
2009). The Biomedical Research Integrated Group (BRIDG) model is collaboration 
among HL7, CDISC, and the National Cancer Institute (NCI) to provide a common 
integrated data model for clinical research (Biomedical Research Integrated 
Domain Group 2009). These standard-setting initiatives, some of which are 
described in Chap. 9, will greatly enhance and support the ability to integrate EMR 
and CDMS data for research in the future.

2.6 � Benefits of Integrating CDMS and EMR Systems

The integration of electronic records arising from the EMR and the CDMS could facili-
tate new interfaces between care and research environments, leading to great improve-
ments in the scope and efficiency of research (Powell and Buchan 2005). Clinical 
narrative information, captured electronically as structured data or as transcribed “free 
text,” when combined with other existing data, can dramatically increase the breadth 
and depth of information available for nonclinical applications (Safran et al. 2007).

Clinical trials, outcomes research, survival analyses, survey studies, and epide-
miological research in cancer could all benefit from secondary use of EMR data for 
research purposes. Secondary uses of health data can expand knowledge about 
cancer diagnoses and treatments, strengthen understanding of healthcare systems’ 
effectiveness and efficiency, support public health and security goals, and aid busi-
nesses in meeting customers’ needs (Safran et al. 2007). Possible research benefits 
range from systematically generating hypotheses for research to eventually under-
taking entire studies based only on electronic record data. Information for planning 
studies, such as prevalence and variance of conditions in local contexts, could be 
collected with relative ease (Powell and Buchan 2005).
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Researchers can utilize secondary data to supplement their own data, to expand 
on or check the findings of the original studies, to test hypotheses or analyze rela-
tionships quite different from those analyzed and reported in the original study 
(Brown and Semradek 1992). Using longitudinal patient care data, they may dis-
cover or identify trends in relation to changes in the social and physical environ-
ment (Brown and Semradek 1992). Another evolving use of patient records data is 
to support clinical practice for the development of guidelines for clinical practice 
(Anonymous 1993). Such usage of EMR data also facilitates outcomes research, in 
which guideline performance and success of patient care can be evaluated and cor-
related, much as is being carried out within the National Comprehensive Cancer 
Network (NCCN) outcomes research project (Niland 1998).

Vital statistics are essential for determining the health needs of the population and 
for program planning and evaluation. Disease-specific mortality rates help pinpoint 
the major health problems of the population and target at-risk groups for interven-
tions, and natality and infant mortality data help in planning maternal and child 
health programs (Brown and Semradek 1992). The crucial survival analyses required 
for such research can be greatly facilitated through the mortality data available 
through the EMR. In addition to utilizing information available through the EMR, 
national registers of diseases and treatments could be established more easily and 
economically with a coherent approach to security across agencies (Robertson 
2003). This process could accelerate and expand epidemiological research, via dis-
ease registries encompassing well-characterized populations (Robertson 2003).

In the course of providing cancer care, practitioners with access to an EMR rely 
on this system to monitor patient progress, provide continuity of care, maintain 
patient care standards, and monitor quality of care. Another major benefit of sec-
ondary usage of clinical care data within research is that automated decision sup-
port could be incorporated into the conduct of interventional research studies to 
help ensure the safety of patients as they are being treated with highly experimental 
drugs. As an example, City of Hope Cancer Center has developed and incorporated 
into their monitoring of cancer clinical trials a system called the Cancer Automated 
Lab-based Adverse Event Grading Service (CALAEGS). The CALAEGS is fed 
laboratory results and normal ranges for clinical trial patients from the City of Hope 
EMR to provide automated grading of lab-based adverse events (AEs). The 
CALAEGS system has been proven to greatly improve the accuracy and complete-
ness of AE reporting for the many thousands of lab tests that must be assessed for 
a given trial, compared with the former manual method (Niland et al. 2007).

2.7 � Challenges of Integrating CDMS and EMR Systems

Rapidly evolving nationwide efforts for more widespread health information 
exchange must include work to address pressing issues of secondary health data 
usage (Safran et  al. 2007). However, there are many challenges associated with 
achieving this complex and difficult goal. Secondary use of health data poses technical, 
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strategic, policy, process, and economic concerns related to the ability to collect, 
store, aggregate, link, and transmit health data broadly and repeatedly for legitimate 
purposes (Safran et al. 2007). The current lack of coherent policies and standard 
“good practices” for secondary use of health data impedes efforts to transform the 
US healthcare system (Safran et al. 2007). As new record systems are designed, 
records and record-keeping habits need to be studied to improve our processes and 
to identify redundancies that can be eliminated in the future (Institutes of Medicine 
1991). Extreme care must be taken and failsafe processes put in place to ensure that 
the appropriate record linkage is occurring both across the various EMR systems 
that may contain data on the same patient and between the EMR data and the clini-
cal research data. Some of the critical factors for meeting the challenges of EMR-
clinical research system integration are described here.

2.7.1 � Metadata Management

Metadata or “data about the data” are critical to successfully document, interpret, 
and analyze patient care or clinical research data. Two general forms of metadata 
exist, the “technical metadata” utilized by the programming staff and database 
architects to define the structure of the database, including the field types, lengths, 
table storage locations, etc. The technical metadata generally arise from the cre-
ation of the database itself and are therefore readily available and accessible from 
the database management system.

The other form is the “business metadata,” including the data definitions, direc-
tives for collection, allowable code lists, creation date, sunset date, etc. The busi-
ness metadata is critical from the data user’s perspective, but is not so readily 
available, as it takes a major human manual curation effort to diligently create and 
maintain the business metadata for any given electronic data system. Tools for busi-
ness metadata management are not widely accepted and standardized, and it is 
tempting and all too easy to create a database system and fail to document this criti-
cal information in a timely manner or at all. Best practices would dictate that the 
database elements cannot be created, changed, or deleted without requiring the 
attendant business metadata to be documented. Only through such documented 
information can the integrated EMR and CDMS information be valid or meaningful 
as it is analyzed and reported.

2.7.2 � Data Quality Assurance

Whether data are entered into an EMR or CDMS, or integrated via a data ware-
house, data quality checking is a mandatory process to ensure valid, accurate, 
complete data, particularly as in most cases the data entered into these systems are 
several steps removed from the original source of the information. In the case of 
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interventional research such as clinical trials, the original source of the data 
includes the caregiver generating the observations on patients, or the laboratory, 
blood bank, or other healthcare application that processes a patient’s sample results, 
or at times the patients themselves, for example, via completion of home diaries. 
In observational research, the data may be provided directly by the patient, for 
example, surveys, but still could contain inaccuracies or be incomplete due to recall 
issues, or misunderstanding of his/her medical condition. The data also could arise 
from a secondary source once removed from the primary subject, such as a family 
member or caregiver, who may not have full accurate knowledge of the desired 
information. While billing and financial information may be quite useful for 
research purposes, the quantitative data of administrative records often are imprecise 
and unreliable (Brown and Semradek 1992).

Data quality assurance is a laborious and imperfect process. When data entry is 
involved in capturing the data within a CDMS, a traditional but time-consuming 
method to decrease data entry errors is the process of double data entry. This pro-
cess may be carried out by the same person who initially keyed in the data or prefer-
ably by a second independent party. Once data have been screened for typographical 
errors, the entries can be further validated to check for logical errors, such as mis-
takenly entering the patient’s year of birth as the current year. In addition, process 
errors may be detected, for example through a check of the subject’s age to ensure 
that they are within the inclusion criteria for the study. These instances are flagged 
for review to determine if there is an error in the data, an incorrect process has 
occurred within the study conduct, or further medical clarification from the inves-
tigator or caregiver is required.

2.7.3 � Data Completeness

To achieve linkages and the ability to aggregate data, several conditions must be 
met. A set of core data elements will need to be defined and recorded for all patient 
records, ideally including problem lists with current status and clinical rationale, as  
well as standard data within future patient records that can be drawn upon for 
research (Institute of Medicine 1991).

One investigation found that many items of information that a researcher might 
desire frequently are not available. For example, while sex and age were routinely 
noted in over 90% of cases, other basic demographic information was less fre-
quently available: marital status in 79% of cases, race 40%, occupation 40%, reli-
gion 36%, and education 35% (Brown and Semradek 1992). The absence of such 
core data elements clearly will handicap certain research, such as efforts to relate 
illness to environmental factors. Clinicians have recognized that data collection is 
more accurate and complete when accomplished while the patient is still in the 
hospital, rather than through retrospective chart review, as missing elements could 
be obtained from physicians and definitions could be more consistently applied 
(Robertson 2003). Because data can be reviewed on a daily basis, omissions or 
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errors can be identified and corrected while the patient and their records are still 
immediately available (Robertson 2003).

Those who elect to use secondary data, whether researchers, practitioners, edu-
cators, administrators, or policy makers, have the obligation to evaluate the data 
they employ and to demand high quality and completeness. Otherwise, based on 
unsound data, research will be compromised and end, if not in failure, in less than 
optimal success (Brown and Semradek 1992).

2.7.4 � Data Coding and Granularity

Coding of data is a critical process for the capability of generating analyzable infor-
mation (Rangachari 2007). Two key areas that are not widely available in coded 
manner in the EMR, but are required within the CDMS are adverse event terms and 
medication names. In cancer the Common Terminology Criteria for Adverse Events 
(CTCAE) is the most common grading scale, and standard dictionaries of these 
terms can be loaded into the CDMS. Then the data items containing the adverse 
event terms or medication names can be linked to one of these dictionaries. 
An emerging standardized coding system for drugs is the RxNorm system (NLM 
2009). Some systems allow for the storage of synonyms to allow the system to 
match common abbreviations and map them to the correct term. As an example, 
ASA could be mapped to Aspirin, a common notation.

Because every medical practice has distinct requirements, EMR systems usually 
need to be custom tailored (Electronic Medical Record Wikipedia 2009). The 
majority of EMR systems are based on templates that are initially general in scope. 
These templates can then be customized in cooperation with the system developer 
to better fit data entry based on a medical specialty, environment, or other specified 
needs. These templates tend to be customized individually by each organization, 
with few reusable standards in place. There are also EMR systems available that do 
not use templates for data entry and therefore can be easily personalized by each 
individual user. While this is advantageous in terms of flexibility for individualized 
patient care, the process leads to silos of information and lack of standardized 
information that can be shared across data systems and integrated with the CDMS. 
Further, secondary data often are aggregated to a less granular level, and this fact, 
or the unit by which data are aggregated, may render the information unusable for 
research purposes (Brown and Semradek 1992).

Risk adjustment is required not only to account for differences in patient char-
acteristics across hospitals to enable comparison of hospitals’ outcomes (such as 
mortality rates or the complication rates), but also to adjust risks within research 
analyses (Iezzoni 1997). Hospital coding accuracy is critical for ensuring accurate 
risk adjustment and, correspondingly, reliable comparative quality ratings 
(Rangachari 2007). Existing studies on hospital coding accuracy have viewed cod-
ing from a purely reimbursement perspective rather than a quality-measurement 
perspective or for research purposes (Rangachari 2007).
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2.7.5 � Data Access and Security

Secure management of electronic records from either the CDMS or EMR is a major 
concern to protect the confidentiality of the individuals involved. Such concerns are 
magnified further with regard to the potential privacy risk additionally posed by 
integrating information across the CDMS and the EMR. There is a potential lack of 
protection of PHI when used by entities not explicitly covered by HIPAA legisla-
tion or regulations (Safran et al. 2007). While providing a reasonable solution to 
this problem is not difficult, providing a perfect solution to the problem currently 
is impossible (Hammond et al. 1997). Patients must be reassured that no personally 
identifiable information will be used for research without the consent of the indi-
vidual (Robertson 2003). Establishing role-based security can help achieve protec-
tion of the information by restricting access to particular types of information 
within the system based on the individual’s need to access the data and then provid-
ing access only to the necessary types of data (Niland et al. 2006).

2.8 � Conclusions

It can be seen that there are many advantages to secondary use of healthcare data 
for the purposes of clinical and translational research. Many different forms of 
cancer research can benefit from the integration of the EMR with the CDMS 
(Niland and Rouse 2006). Observational studies and case series may be conducted 
more rapidly, and new hypotheses generated through data mining. In epidemiologi-
cal research, previously undetected patterns of response or toxicity could be 
detected more readily if a core set of uniform high-quality data were available for 
all patients. Clinical trials could be greatly expedited by using the EMR data to 
screen for potentially eligible subjects and to document their presenting character-
istics if they enter into the trial. During the trial conduct, test results could be 
imported electronically from the EMR, so that automated decision support could 
help guard the safety on patients receiving highly experimental treatment. Outcomes 
research analyses could be facilitated by the availability of coded data on subjects’ 
past history, comorbidity, treatments, and long-term outcomes.

However, there are also many challenges to achieving the full benefits of inte-
grated data across the CDMS and the EMR. Quality, consistency, and standardized 
coding of the EMR data must be in place both within an institution and among 
institutions. Care must be taken to fully safeguard the integrated data, as computer-
ized databases of personally identifiable information may be accessed, changed, or 
deleted more easily and by more people than with paper-based records. Metadata 
that carefully documents the definitions, conditions under which data arise, coding 
schemas available, etc. must be complete and readily available to the users of the 
integrated information.
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Yet there is no doubt that the emerging EMR holds great promise for speeding 
biomedical discoveries through integration with the CDMS data. It is hoped that 
EMR adoption and standardization will proceed rapidly throughout the USA, and 
other countries worldwide, so that this promise can be realized.
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Abstract  This chapter provides a discussion on data management, databases, and 
data warehousing with particular reference to their utilization in cancer research. 
The section on data management describes the special requirements of data for 
research purposes. It discusses policies, ethics, and protocols involved in data 
collection, standardization, confidentiality, data entry and preparation, storage, quality 
assurance, and security. We have focused on the unique issues pertaining to 
data uniformity and consistency facilitating multi-institutional data sharing, data 
transfer, and collaboration. The section on Databases elaborates on the architecture 
and components of database systems. It also discusses various types of database 
systems with emphasis on the more commonly employed relational model of data-
bases, database functions, and properties. In Data Warehousing the concept of data 
warehouses, along with warehouse architecture, technology, tools, and applica-
tions are discussed. A section on existing data resource systems has been detailed 
focusing on systems currently employed at the University of Pittsburgh to facilitate 
translational cancer research. There is a brief discussion on issues and approaches 
related to both databases and warehouses, which emphasizes their individual 
strengths and attributes.

3.1 � Data Management

Data management can be defined as the development, execution, and supervision 
of plans, policies, programs, and practices that control, protect, deliver, and enhance 
the value of data and information assets.
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3.1.1 � Data Requirements in Cancer Research

Cancer research is an ever growing and advancing field in which there has been considerable 
investment of time and resources on institutional, national, and international data 
sharing. The demand for high quality, accurate, and comprehensive data to support 
genomic, proteomic, biobanking, clinical, and translational research is increasing. The data 
requirements in this field present novel challenges, which are summarized below:

The data must first be acquired in accordance with legal and ethical (human •	
subjects research) policies.
The data must be acquired from sources that are ethically consented.•	
The data must be accurate and verified.•	
The data must be comprehensive and pertinent to the needs of the resource, •	
biorepository, trial, or research that it is being collected for.
This data must be standardized, consistent, and uniform to facilitate transfer, shar-•	
ing, and interoperability across multiple institutes to enhance the pace of research.
The data must be made secure and the highest level of importance has to be •	
placed on the confidentiality of patient health information.
This data must be quality assured and maintained.•	
Data ownership issues need to be addressed.•	
Data access, transfer, availability, and update processes must be adequately managed.•	

These issues are discussed in greater detail in the following sections.

3.1.2 � Policies and Ethical Issues

For management of any kind of research data, clear and definite parameters should be 
defined regarding who is to be involved in providing and granting access as well as 
whom will be able to receive the data and to what extent access to the data will be 
provided. This is the domain of the Institutional Review Board (IRB). The IRB defines 
the institutes and individuals involved in data collection, handling, and utilization. 
It also approves the design and purpose of the intended research. No one is authorized 
to deal with the data unless preapproved by the IRB; also the data cannot be utilized 
for any purpose other than that explicitly presented in the research proposal and 
approved by the IRB. All sources of data including patients should be properly 
consented before participating in data collection. The IRB also takes into consideration 
all ethical matters related to cancer research before laying out its boundaries.

3.1.3 � Sources

Data can be collected by authorized and trained personnel including research 
nurses, research associates, investigators, cancer registrars, and physicians, etc. 
Integrating data collection into the routine workflow of the hospital or research 
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facility streamlines the process and helps make it self-sustaining. The sources 
include patient interviews, questionnaires, patient health records and treatment 
charts, existing databases, consultation with referring physicians, archived data, 
and pathology reports. Data can also be acquired through automated electronic 
import from standardized sources such as synoptic (standardized) clinical records 
(see Chap. 2), Anatomic Pathology Laboratory Information System (AP-LIS), Clinical 
Pathology Laboratory Information System (CP-LIS), and other databases.

3.1.4 � Levels of Data Collection

Data pertaining to various types of information can be collected. These include:

Molecular level data•	
Genomic level data•	
Cell and tissue level data•	
Pathology block level data•	
Demographic data•	
Patient clinical data•	
Patient treatment data•	
Biochemical data•	
Outcome and follow up data•	

Other types of data collection can also be considered by the researchers’ commu-
nity, to fulfill the requirements of individuals, as well as in anticipation of the ever 
increasing needs in the field of cancer research.

3.1.5 � Data Element Development

In order to ensure that collected data is comprehensive and easy to understand, 
facilitating sharing across multiple institutions, it must be uniform and standard-
ized. To serve this purpose, data is collected in the form of structured (common) 
data elements. These structured data elements help in the integration of data from 
various clinical, pathological, and molecular resources into one design, supporting 
basic science and clinical as well as translational research. The coordinated use of 
such data elements can provide semantic and syntactic interoperability across mul-
tiple institutions and hospital data resources.

For translational cancer research standards such as the North American 
Association of Central Cancer Registry (NAACCR) (North American Association 
of Central Cancer Registries), Association of Directors of Anatomic and Surgical 
Pathology (ADASP) (Association of Directors of Anatomic and Surgical Pathology 
2007), American Joint Committee on Cancer (AJCC) (Greene et  al. 2002) and 
College of American Pathologists (CAP) (College of American Pathologists 2009) 
should be considered as starting points. These data elements are developed by a 
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committee from mutual consensus between all parties with a stake in data element 
development and data collection. This includes oncologists, research specialists, 
informaticians, surgeons, pathologists, molecular pathologists, microbiologists, 
genomics core directors, epidemiologists, occupational health specialists, biobank-
ers, and experts from all fields involved in specific cancer research. This committee 
designs the structured data elements to fulfill the current needs of the research com-
munity as well as the projected needs of the data resource in the future.

Semantic interoperability can be achieved by describing the content, quality, con-
dition, and other characteristics of structured data elements in the form of metadata 
or data descriptors and by using controlled vocabulary and ontology, making the 
data understandable and sharable for end users and flexible for the system. Each data 
element is associated with an object or concept, attribute, and valid value(s). 
For example, “patient age at diagnosis” is a data element that is made up of “patient” 
(object), “age at diagnosis” (property), and the representation (value domain) in 
“years.” Specifically for each of the approved data elements, the data collectors need 
to know (1) the fundamental definition of the data element (i.e., date of diagnosis), 
(2) how that data element will be collected (e.g., 11/2003 vs. Nov. 2003 vs. 11/03, 
etc.), (3) what are the consensus acceptable values or codes for the data element (e.g., 
precise date of birth, not calculated from clinical records where the “patient appears 
to be a well developed 75-year-old”), and (4) what the acceptable data format is for 
inclusion into the database (e.g., dates as integers not character strings). Although the 
concept of formalized metadata is fairly straightforward, it has rarely been incorpo-
rated by clinical and research groups building databases (Mohanty et al. 2008).

The structured data elements developed can be ISO/IEC 11179 compliant, which 
helps to define the structure and format of the metadata. This defines a number of 
fields and relationships for metadata registries including a detailed metamodel for 
defining and registering items, of which the primary component is a data element 
(Patel et al. 2005; Mohanty et al. 2008).

3.1.6 � Data Confidentiality

Before entry the data is primed to protect patient privacy and confidentiality 
according to IRB regulations and Health Insurance Portability and Accountability 
Act (HIPPA) approved protocols. The database should disclose only deidentified 
patient information and display no links to patient identifiers (name, date of birth, 
procedure date, therapy date, etc.). The only linkage should be kept within the 
institution/resource and the database should generate deidentified datasets upon 
query by the end users (the so-called safe harbor approach to HIPPA-compliance). 
The “safe harbor” approach involves exclusion of all identifiers itemized according 
to the HIPPA protocols. Thus, for example, a participant’s age is presented as age 
range, rather than the date of birth, and therapy dates are provided in months from 
first positive tissue diagnosis to therapy start date rather than presenting a precise 
calendar date. These are some of the measures adopted to protect the identity of 
patients while still providing sufficient information for research purposes.
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The deidentification process is performed by an honest broker that acts as a filter 
between completely identified confidential clinical patient information and the 
completely deidentified data made available to the research community. An honest 
broker is an individual, organization, or system acting on behalf of the covered 
entity to collect and provide health information to the investigators in such a man-
ner whereby it would not be reasonably possible for the investigators or others to 
identify the corresponding patients–subjects directly or indirectly. The honest bro-
ker cannot be one of the investigators or researchers. A researcher may use an hon-
est broker service to obtain the Protected Health Information in a deidentified 
manner. The honest broker service will deidentify medical record information by 
automated or manual methods. All honest broker services are approved in advance 
by both the IRB and research committee. The honest brokers may even be individu-
als who have clinical responsibilities, such as tissue bankers, postdoctoral fellows 
who manage the pathology data, or cancer registry specialists. Based on their clini-
cal job duties, their educational backgrounds and experience may vary. Depending 
on the nature of the projects, these honest brokers can work autonomously or 
collaboratively to meet data needs (Dhir et al. 2008).

3.1.7 � Data Entry and Data Preparation

Once the data has been extracted from the various sources it undergoes a process 
of cleansing (quality control measures) before it can be entered into the database. 
Cleansing operations classically include correction of typographical mistakes, other 
data entry errors, completing missing values, making sure the data is standardized 
etc. Any data that is obviously erroneous is excluded from entry into the database. 
When data from different sources is being merged, it undergoes a process of 
consolidation; relationships between the data from different sources are defined 
and data is synchronized. The data is then loaded into the system and undergoes 
consistency checking and integrity checks (Berry and Linoff 1997; Date 2000).

Data entry is the responsibility of data managers or authorized data entry personnel. 
Sometimes Web-based entry applications are utilized allowing data managers from 
different sites or collaborating institutions to enter data independently. When this strat-
egy is used for data entry, secure protocols such as https: should be employed, so clear 
text data is not exposed on the network.

3.1.8 � Data Storage

Data can be stored in a variety of manners depending on the requirements of the 
organization, resource, or institute involved. Data may be stored in relational, object-
oriented, or other types of databases or in a data warehouse allowing for easier sharing 
and automated electronic data transfers and accruals. Back up copies of the data are 
maintained as both local electronic versions online, remote online, and tape backups 
stored in disaster recovery locations depending upon the institute/resource.
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3.1.9 � Data Quality Assurance

Once the data has been loaded into the database and the database is active, it must 
undergo repeated quality checks to maintain accuracy and validity. Data quality 
maintenance is the responsibility of a data manager. After importing the multimodal 
data into the database, accuracy is assessed by trained and certified personnel, using 
policies, variable constraints, and logical tests established by the resource. The evalu-
ation of the collected data can be done using the following approach.

The first step is to evaluate discrepancies between the database quality check 
curators, such as the data managers and entry personnel. The primary focus of data 
accuracy assessment is on tumor record, staging, histology, diagnosis, treatment, 
recurrence, and risk factor exposure data. The error rate for each case is calculated 
from the number of discrepant entries and the number of fields evaluated for a case. 
Evaluated numbers of fields and numbers of discrepant entries for selected cases 
are used to find the error rate for each discrete priority level data field.

The second step evaluates the accuracy of database entries by comparing them 
to the electronic data source from which data is collected. The number of deviations 
from the entry per total number of fields assessed will yield an estimate of the error 
rate. Initially, 1% of the subjects are evaluated. If discrepancies are within error rate 
guidelines for fields, a further 5% of subjects will be randomly selected using the 
same strategy, and estimated database error rates will be calculated. If the error rate 
guidelines are not met for the 1% initial evaluation, a careful analysis of the differ-
ences will be performed and discrepancies identified. A quality check of all data-
base subjects will be performed, focusing on discrepant fields. After the quality 
check has been completed, a second sampling of 1% of subjects will be performed. 
This sampling will exclude subjects sampled in the prior evaluations. Error rates 
will be determined, and if error rate guidelines are met, a further 5% of subjects will 
be evaluated using the same criteria.

The third step involves comparing the data in the database to that in primary 
sources such as clinical charts and pathology reports. Subject sampling will be 
performed and data field error rates will be calculated as above (Patel et al. 2005; 
Mohanty et al. 2008).

3.1.10 � Data Security

Data security means protecting the data against unauthorized utilization, disclo-
sure, or damage. This can be enforced by Discretionary Control or Mandatory 
Control. Discretionary control employs levels of privileges or access rights for 
the authorized users: a user can set the access permissions on resources that they 
own, modifying the groups or users permitted to access the data, together with 
the level of access allowed. In mandatory control, every unit of data itself is 
tagged with a specific classification for which a certain clearance level is manda-
tory to allow access. Discretionary control provides a much more flexible 
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environment, but mandatory control is a much more secure access system. 
However, mandatory control also imposes a high system management overhead, 
so the needs of the system and the advantages of each method must be evaluated 
carefully to select the one most appropriate for a given situation (Bell and Padula 
1974). Also the actual data should be maintained in an encrypted form, so that 
it remains secure even in case of security bypasses. The original data is known 
as plaintext. This plaintext is encrypted by processing it through an encryption 
algorithm with an encryption key; the algorithm produces the cipher text, which 
is the encrypted data. This encryption is only as secure as the encryption key, 
access to which must be limited to designated personnel. The cipher text will be 
incomprehensible to anyone who does not possess the encryption key (Denning 
1982; Date 2000).

There are other general considerations that are paramount in maintaining the 
security of data. These include:

Deciding who should have access to the data and to what extent.•	
Physical controls such as the security of the computer terminal and hardware, •	
for instance security of the room containing the computer terminal or database 
server.
Frequency of changing passwords, and maintaining secrecy of the passwords.•	
Complexity and length.•	
Security features built into the hardware such as storage protection keys or •	
protected operation modes.
Security features built into the operating systems, such as automatic deletion of •	
disk files and temporary storage at completion of task (Bell and Padula 1974).

Another concept is data integrity. This refers to the accuracy and validity of the 
stored data. This is maintained by removal of erroneous data and regular quality 
checks. Database systems also have intrinsic integrity constraints to maintain the 
accuracy of data at every data transfer and upload.

3.2 � Databases

A database is a computerized system that is designed to store information and permits 
a user to obtain and update the stored information on demand. This “on demand” 
nature of retrieving and modifying data assists greatly in the routine operating process 
of an individual or organization.

3.2.1 � Architecture

Database architecture is based on the multiple levels that are described as follows 
(Fig. 3.1).
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3.2.1.1 � External Level

This level is also called the individual user level. The user can be a programmer 
involved in application development, an end user, or a database administrator. 
Each user approaches the application with a specific language, either traditional 
program languages like JAVA and C++, or specialized languages for end users 
such as query language, special purpose language or forms, or menu driven lan-
guage developed to user requirement and handled by online applications. The 
languages for end users include the data sublanguage, which is a subset of the 
entire language dealing with particular database objects and operations. The data 
sublanguage is closely knitted to the parallel host language that deals with a vari-
ety of nondatabase utilities like computational operations, branching logic, local 
variables, etc. One particular data sublanguage that is compatible with most data-
base systems is Structured Query Language (SQL). Theoretically, a data sublan-
gauge is a combination of data definition language (DDL) that maintains definition 
of database objects and data manipulation language (DML) that supports handling 
and processing of data objects.

Fig. 3.1  Presents three different layers of database architecture and mapping for data integration 
among them
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The external level provides an external view, a distinct view of some portion of 
the data that is physically stored in the database. Each external view is defined in 
an external schema, which basically consists of descriptions of each of the various 
types of external record in that external view (Date 2000).

3.2.1.2 � Conceptual Level

This is also called the community logical level and it is an abstract representation 
of the total information content of the database independent of how the data is 
physically stored. The conceptual view is designed to present the real data to the 
users overcoming the limitations on their data visualization imposed by hardware 
or software restrictions. This view consists of multiple episodes of many types of 
conceptual records, defined in the conceptual schema, which is written in concep-
tual DDL. These records are not necessarily similar to external records or stored 
data. In order to achieve physical data independence, the conceptual DDL defini-
tions should be limited to definitions of information content and must not involve 
physical structure or access techniques. In addition, the conceptual schema must 
not hold any reference to stored field representation, stored record sequence, 
indexes, hashing schema, pointers or any other storage, or access information. In 
this manner the conceptual schema is developed independent of the data and the 
external level is described in reference to the conceptual schema.

In essence, the conceptual view is a visualization of the database in its entirety, 
and the conceptual schema is a description of this conceptual view. The aim of the 
conceptual schema is to detail the entire project, for instance the flow, utilization, 
and regulation, etc., of data, and not just elaborate the data individually (van 
Griethuysen 1982).

3.2.1.3 � Internal Level

This is also called the physical layer because it exists close to physical data storage 
and deals with how data is actually stored. This deepest level of a database holds 
repetitive stored records. The internal view is described by the internal schema, 
which defines a variety of accumulated record types, indices, the representation of 
stored fields, and the physical sequence that records are stored in. The internal 
schema is written in internal DDL (Tsatalos et al. 1994).

3.2.1.4 � Mapping

In addition to the three levels of architecture, specific mappings are required 
among these levels. The conceptual/internal mapping describes the communication 
between the conceptual and internal data storage levels, and the representation of 
conceptual records and fields in the internal level. The conceptual/internal mapping 
changes according to any structured data change in the internal level allowing 
the conceptual schema to stay unchanged. The modifications are kept below the 
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conceptual level, which is vital to maintaining physical data independence. The external/
conceptual mapping communicates between the external and conceptual levels. 
Through this mapping, fields and record titles can be changed and many concep-
tual fields can be aggregated into a sole external view. It also provides many external 
views that can be present at the same time to any number of users. Changes in the 
conceptual level are reflected in this mapping, with the external schema unmodified, 
achieving logical data independence (Date 2000).

3.2.2 � Components of Database Systems

There are four essential components of database system, which are briefly discussed 
below.

Data:  The data in database system is considered to be both integrated and shared, 
offering a huge advantage in large environments where multiple users are utilizing 
the data. Integrated refers to the fact that the database is an amalgamation of numerous 
discrete files, and redundancy between these files is somewhat removed. Shared 
means data in a database is shared among various users who have access to identical 
parts of the dataset but are utilizing it for different purposes.

Hardware:  This component of the system consists of secondary data storage mainly 
in magnetic disks that are employed to hold the stored data in association with 
Input/Output devices, device controllers, Input/Output channels, etc. The hardware 
processor and connected main memory are employed to maintain the implementation 
of the database system software.

Software:  The Database management system (DBMS) is a layer of software that lies 
between physical data storage and the users of the system. It may also be referred to as 
a data manager or database server. The DBMS manages all interactions with the data-
base, such as adding, removing, or editing records and tables, and retrieving or updating 
data. This protects users from the specific physical details that these processes involve.

Users:  There are three wide categories of users. The first is programmers who 
are responsible for database application programming using a variety of program-
ming languages like VB, SQL, C++, and Java, etc. The second is end users 
who interact with the system from online work stations, and lastly there are data-
base administrators who are responsible for the entire database system at a technical 
level.

3.2.3 � Database Models

3.2.3.1 � Relational Database Model

A relational database is a database that is apparent to the user in the form of a 
collection of relation variables known as relvars or tables. A relational system is 
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a system that sustains relational databases and processes executed on these databases. 
Most databases in use today are based on the relational model of data; this is a 
groundwork or theory that deals with data from the following three aspects:

Structural Aspect:  This means that the data is perceived by the user in the form of 
tables only. The essences of these tables are meant to be self-evident.

Integrity Aspect:  The data available in these tables must be an accurate represen-
tation of the reality that it represents. These tables must fulfill certain integrity 
constraints.

Manipulative Aspects: The user can maneuver and manage these tables utilizing 
operators that develop tables from tables. The three most important operators are 
“restrict,” “project,” and “join.” The restrict task selects particular rows from within 
a table. The project task mines particular columns from the table and the join task 
links two tables with each other according to shared values in a common table.

A relational database has five components:

1.	 An unrestricted assortment of scalar or discrete, single types. (Types are clusters 
of objects that we can talk about.)

2.	 A relation type generator and a proposed explanation for such generated relation 
types. (Relations are sets of things we say about types.)

3.	 Provisions for describing relation variables of above-mentioned generated rela-
tion types. (Relation variables play the important role of representing the persis-
tent database values.)

4.	 A relational assignment function for conveying relation values to such relational 
variables.

5.	 An unlimited collection of standard relational operators for obtaining relation 
values from other relation values (Date and Warden 1990).

For the management of a relational database system it is imperative to have a 
detailed, comprehensive, and efficient catalog or dictionary function. This catalog 
maintains in depth and meticulous descriptor information also known as metadata 
(discussed elsewhere in greater detail) concerning a range of items, relvars, indexes, 
users, integrity constraints, and security constraints and so on. Metadata is abso-
lutely essential to the proper functioning of the system (Date and Warden 1990). In 
most relational DBMS’s this metadata is stored internally in system tables.

Database operations support logical units of work known as “Transactions.” 
In relational databases, these transactions follow a principle that they are implemented 
completely as a whole or they do not execute at all. These transactions are also durable, 
meaning that once successfully executed they will definitely be applied to the system 
even if the system fails at any point after their implementation. These transactions are 
also independent of each other. Once successfully implemented synchronized transactions 
become serialized, which means that they are guaranteed to produce the same result 
even if reexecuted in an unstipulated order (Date and Warden 1990).

One of the main advantages of a relational database is the property known as 
automatic navigation. The function of navigating around the stored data in response 
to a request by the user is performed automatically by the system. This is in contrast 
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to nonrelational systems where navigation is the user’s responsibility. The relational 
database is also very beneficial with regards to maintenance of data integrity and 
support of ad hoc queries (Date and Warden 1990; Date 2000).

3.2.3.2 � Object Database Model

Object database systems have originated from attempts to apply concepts from 
object-oriented programming languages, like C++ and Smalltalk, to databases; 
this is in contrast to relational databases that are based on relational algebra. 
Interest in object-oriented databases has been increasing over the past few years 
although in the fields of cancer research most databases are predominantly rela-
tional in nature. The main theory behind their development is to assist the user so 
that they do not have to deal with machine-oriented assemblies such as bits and 
bytes but rather work with objects and tasks and operations involving these objects 
that are more familiar on a human level and more similar to their equivalents in 
reality (Cox 1986).

These systems have proven to be effective for application programs, where 
they are designed with the purpose of performing a specific task. In this field they 
are rapidly gaining popularity. However, databases may be called upon to per-
form tasks that are not anticipated at the time of development, in this case 
object-oriented databases may simplify some tasks but may also make other 
functions difficult to fulfill. Object-based databases require entrenching a large 
degree of “intelligence” into the database and this also makes it difficult to 
ensure data integrity and security. Early object-based databases did not support 
ad hoc query functions. The newer systems have included this feature but have 
also placed limitations on the type and nature of query performed thereby reducing 
their usefulness (Date 2000).

3.2.3.3 � Object/Relational Database Model

A recent development is the production of Object/Relational databases also known 
as “Universal Servers.” Their development is strongly based on the foundation of 
the relational model with incorporation of the beneficial features of object databases. 
Such systems are in actuality just relational systems that support the relational 
domain concept (i.e., types), which allows users to characterize their own types 
(Date 2000).

3.2.4 � Database Types

In this section, we will describe various specialized types of database implementa-
tions relevant to cancer research.
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3.2.4.1 � Distributed Databases

A distributed database is a sole application that works transparently on data that 
is dispersed across a number of databases managed by different database man-
agement systems operating on separate machines at sites connected by a com-
municating network. Each site has its own autonomy; however, with mutual 
agreement users at any site can access data that reside anywhere on the network 
in the same manner that they access data stored locally. In other words, a distrib-
uted database is a virtual database whose data is stored in different databases 
located at physically different sites. In addition, they can also access the data at 
their own site exactly as if the user database did not participate in the distributed 
system. The distributed database functions as a kind of affiliation among the 
individual DBMS at the local sites. Historically speaking, distributed databases 
have been employed in multiple sites in the same building through Local Area 
Network (LAN). With the rapid development of national and international col-
laboration in cancer research, multiple sites in geographically distant locations 
are participating in distributed database utilization with the implementation of 
Wide Area Networks (WANs).

In this day and age, deployment of distributed databases is obviously desirable. 
Corporations, institutes, and research collaborations are distributed not only logi-
cally into departments and divisions, but also on a geographical scale into multiple 
sites. Therefore, this distributed layout of a database facilitates not only fast and 
easy accessibility but also updating and processing of data. The disadvantage to this 
system is that WANs are usually slow, putting a limit on the number of and volume 
of messages deployed through the system, and thereby minimizing its utilization. 
Other issues of concern are quality assurance of data replication and update pro-
cesses (Date 2000).

The data is protected during transmission through a process that stores and 
transfers sensitive information in an encrypted format. Plaintext (original data) is 
encrypted through an algorithm using an encryption key, which converts the origi-
nal data into ciphertext. The encryption key is kept secret and encryption algo-
rithm is made public. The ciphertext is not understandable to anyone who does not 
possess the encryption key. During the encryption process plaintext is formatted 
into a string, after which the encryption key is applied. The plaintext is broken 
down into blocks of the same length as the encryption key string. The characters 
of plaintext and encryption key are replaced by integers, and then the integers of 
both the plaintext and encryption key are added together to obtain a sum. Each 
integer in the sum is further replaced by its character equivalent, completing the 
encryption process. The decryption is then fairly simple for any authorized person 
holding the encryption key. This is a substitution type encryption process, which 
can be made further secure by incorporating a process of permutation in which the 
original plaintext characters are rearranged in a different sequence. Such an 
Encryption algorithm is the basis for the Data Encryption Standard that was origi-
nally developed by IBM and adopted as the United States Federal Standard in 
1977 (1997 January 15; Date 2000).
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A relatively newer concept is Public Key encryption that is deemed to be more 
secure in the face of very fast highly parallel processors. It is based on the presence 
of two distinct encryption and decryption keys with corresponding signatures that 
cannot be forged (Date 2000).

3.2.4.2 � Temporal Databases

A temporal database is a database that contains historical data as well as current 
data. In some of these databases data is only inserted, it is not deleted or 
updated; in such a case the database will sustain historic data only. The coun-
terpart of such a historic database is a snapshot database that houses only cur-
rent data that is updated or deleted as facts change. The information in temporal 
databases is an encoded version of time stamped facts; hence all of the data is 
temporal (Date 2000).

3.2.4.3 � Statistical Databases

A statistical database is a database that supports statistical queries, such as those 
that obtain cumulative information like sums, averages, percentages etc. The issues 
that such databases face are those of security. The risk is of deduction of confiden-
tial information by inference, this means that sensitive data may be reconstructed 
by administering a sufficiently large number of queries (Date and Warden 1990).

3.3 � Data Warehousing

W. H. Inmon defined a data warehouse as “A subject oriented, time variant, non-
volatile collection of data in support of management decisions” (Inmon 1992). This 
has also been described more broadly as joining two or more software tools to pull 
out derived datasets from any data structure.

Essentially, a data warehouse is a database developed for data analysis from 
multiple data source applications to facilitate a large number of users with tempo-
rally extended interactions. It maintains recent and archived data to offer a past 
perspective of collected information.

Data warehouses offer a method of isolating operational vs. informational data 
processing. One rationale for this is that operational systems are optimized for 
recording data and preserving its integrity: only a small amount of data is affected 
with each transaction. A data warehouse, on the other hand, is optimized for speed 
of data retrieval from the application perspective and ease of designing queries 
from the user perspective. Separating the two allows the efficient retrieval of data 
without slowing down operational systems. Data collected from the operational 
environment resides in the warehouse as a unilateral flow from the source database 
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(see Chaps. 2 and 10–14 for examples of source systems). The warehouse processes 
the raw data from the operational database and provides procedures that collect, 
reconcile, and summarize data to make it applicable and useful for end users. It 
holds subsets of the entire data that an organization possesses, providing a common 
model for data originating from a variety of primary sources such as operational 
databases. Data warehouses function in a multidimensional integrated manner, 
therefore reducing errors in data structure, semantics, and utility across multiple 
operational databases. They can collect vast amounts of information from opera-
tional databases and provide an efficient way to navigate across it. The collected 
data is mapped to the appropriate application within the warehouse and is used for 
decision-making processes. In addition, they facilitate automated data mining, data 
refreshing, data consolidation, and replication of data for remote sites. They can 
also sustain the data replication process to make certain that remote sites are coordi-
nated with the events at the central sites (Berson and Smith 1997).

3.3.1 � Data Warehouse Architecture

Data warehouse architecture is designed on a relational database management sys-
tem (RDMS) that operates as a midlevel source for informational data. The archi-
tecture is designed to be completely separate from operational data and processing. 
Data flows into the data warehouse from operational applications and is converted 
into a common structure and layout. The data transfer process involves data conver-
sion, summarization, condensation, and filtering. A data warehouse is expected to 
be able to accommodate and manage huge volumes of archived data in addition to 
tracking and recording changes in a database over a period of time. The different 
components of a data warehouse are described in Fig. 3.2.

Fig. 3.2  Presents a data warehouse system that comprises of data transfer tools, user access tools 
and central data warehouse architecture component
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3.3.1.1 � Software Tools for Data Sourcing, Acquisition, Clean-up,  
and Transformation

An important step in data warehouse development is the transfer of data from 
operational systems and converting it into the appropriate structure for informa-
tional applications. This job is carried out by the data sourcing, acquisition, clean-
up, and transformation tools, also known as extract/transform/load (ETL) tools, that 
eliminate redundant data, translate data into common data names/definitions, com-
pute summaries, set up defaults for missing data, house alterations to source data 
definitions, and convert discrete data into a suitable format that can be incorporated 
into decision support tools. These tools can conserve a substantial amount of time 
and effort. The major vendors in this field are Prism Solution, Evolutionary 
Technology Incorporation, Vality, Praxis, and Carleton. There are also open source 
tools available, such as Kettle, Octopus, and Clover ETL. Finally, although a pre-
packaged solution is best if it can be adapted to the specific situation, most of these 
assume a certain degree of integrity in the source data that is often not present. If 
the source data is too disorganized, it may be easier to write a program for this task 
(Berson and Smith 1997).

3.3.1.2 � Metadata

Metadata can be defined as data about data. In a data warehouse, it is required for 
managing, maintaining, building, and using the system and can be categorized into 
technical and business metadata. The technical metadata documents hold informa-
tion about data sources, transformation descriptions, data definitions, data quality 
assurance, data mapping operation, etc., and this is utilized by the developers and 
administrators to perform warehouse development and management tasks. The 
business metadata documents help users to understand data stored in the ware-
house. They describe subject areas and information object types (queries, report, 
images, etc.), as well as warehouse operational information, Internet Web sites, and 
information on handling warehouse components (subscription, scheduling, busi-
ness query objects, etc.).

3.3.1.3 � Data Warehouse Technology

The central database in a data warehouse is traditionally developed using a RDMS. 
This is limited by the lack of key data warehouse features such as ad hoc query 
processing and requirement for development of flexible user views, as well as being 
less suited to very large databases. There are a variety of technological measures 
that address these issues, such as parallel relational database design, which requires 
a parallel computing platform utilizing symmetric multiprocessors (SMPs), mas-
sively paralleling processors (MPPs), or groups of uni-processor or multiprocessor 
technologies.
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Another measure is the development of multidimensional databases (MDDBs), 
which remove many of the restrictions set on data warehouses by the relational data 
model. These are combined with online analytical processing (OLAP) tools that are 
classified as data query, reporting, analysis, and mining tools and architecturally fit 
into “data mart” component of data warehouse (Berson and Smith 1997).

3.3.1.4 � Front End Tools (Access Tools)

The fundamental aim of the data warehouse is to provide information for strategic 
decision making to an end user who interacts with the warehouse through access tools. 
This highly efficient system supports analyses that can be predefined or dynamic. 
Joins, précis, and regular updates are examples of predefined outcomes, which are 
made readily available to the end user. The main analyses performed in a warehouse 
are carried out by the ad hoc query, regular reports, and custom applications. The 
majority of development efforts in data warehouses are in the area of exception reporting 
also known as “alerts” that inform the user when a particular event occurs in the ware-
house. This functionality provides a great advantage to the user when it is harmonized 
with business objectives. The access tools use metadata definitions to gain access to 
captured data in the data warehouse; some of them use additional or mediator data 
stores, for example MDDBs. These supplementary data stores either act as specialized 
data stores for a particular end user tool or a subset of the data warehouse encompassing 
a particular subject area, such as a data mart. These access tools can be categorized as 
follows: Data query and reporting, Application development, Executive information 
system, Online analytical processing, and Data mining.

Query and Reporting Tools:  These tools can be broadly classified into two types: 
Reporting tools and Managed query tools. Reporting tools allow the organization 
to conduct high-volume group jobs including calculations and printing paperwork, 
etc., facilitating the production of day-to-day task reports. A specific type of reporting 
tool known as a “report writer” is a simpler desktop tool for end users. Managed 
query tools act as a user friendly interface between the intricacies of the SQL 
software and the users. The managed query tools support point and click function-
ality, generate query results, and facilitate user navigation.

OLAP:  Online analytical tools utilize the multidimensional data model to quickly 
answer analytical queries. OLAP tools can support the sophisticated analysis of 
data and provide detailed, multidimensional, and compound views.

Applications:  Applications are additional tools that support the integral query and 
reporting tools to sustain increasing user requirements. These applications can be 
developed internally using graphical data access milieu. These application development 
platforms incorporate well with OLAP tools and can be integrated with major data-
base systems.

Data Mining:  Data mining can be defined as the process of utilizing artificial 
intelligence, statistical and mathematical methods to discern meaningful new 
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associations, patterns, and trends by exploring and analyzing large amounts of data 
stored in warehouses. The main benefit of data mining is the capacity to analyze on 
a predictive level rather than just retrospective analysis. Data mining allows the 
resource and its users to discover sequestered patterns, associations, and interac-
tions from the stored data. Data mining also allows the data to be visualized and 
displayed in different and comprehensive manners, making very large amounts of data 
easily understandable. Previously overlooked errors and discrepancies in the 
data are also brought to notice and easily corrected during the data mining process 
(Berson and Smith 1997).

3.3.1.5 � Data Marts

A data mart implies different things to different people. Most commonly, it is a data 
store that is supplementary to a data warehouse. It is also presented as a low-cost 
substitute for data warehouse, or a way to start a data warehousing project that can 
deliver results relatively quickly. In this scenario, it is very important to keep in 
mind the overall design and requirements for metadata consistency in the final data 
warehouse system. Otherwise, as additional data marts are added, it is very easy to 
end up with an unintegratable series of data silos that replicate various processes 
and contain redundant information. A data mart presents a subset of data that is 
designed to answer specific questions for particular users and might be a set of 
denormalized, summarized, or cumulative data. In most instances, the physical data 
is stored in a separate location, although occasionally it may reside on the data 
warehouse server (Berson and Smith 1997).

3.3.1.6 � Administration and Management

Data warehouses can be up to several fold larger than linked operational data-
bases depending on the amount of archived information that is stored. The data 
warehouse is not synchronized in real time with the operational database, so the 
data must be updated periodically according to the requirements of the 
application.

Most products use gateways to transparently access multiple data sources to obvi-
ate the need for redundant applications to interpret and utilize the data. In a heteroge-
neous data warehouse environment, there is an additional requirement for networking 
technologies to address the various databases in place on disparate systems.
In summary, the following efforts are required to manage a data warehouse:

Data security and priority management•	
Monitoring data/metadata updates and quality checks from different data •	
sources
Auditing and reporting on data warehouse utilization and status•	
Reproducing, removing, dividing, distributing, and purging data•	
Storage management and back-up and recovery protocols•	
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3.3.1.7 � Information Delivery Component

This allows the process of subscribing to data warehouse information and delivering to 
more than one user based on a user-specified scheduling algorithm. In other words, this 
system exports data and information objects from one data warehouse to other data 
warehouses as well as local databases and applications such as excel spreadsheets. 
The logic behind the data warehouse information delivery system is that once the data 
warehouse is established and functional, the end user should be able to generate reports 
and see analytic views of data at particular times based on significant events without 
knowing the location and maintenance issues of the data warehouse. The development 
of Internet/intranet and the World Wide Web delivery system has enabled vast number 
of users to browse data warehouse information (Berson and Smith 1997).

3.4 � Existing Systems

The increasing demand of cross-institutional translational research and advance-
ment in the development of tissue banking informatics tools has increased the need 
of the research community for high quality and well-annotated biospecimens. To 
fulfill this need the Department of Biomedical Informatics (DBMI) at University of 
Pittsburgh (http://www.dbmi.pitt.edu/index.cfm) has established and integrated 
various organ specific and federated tissue banking query tools. These systems are 
constructed on an underlying architecture of common data elements (CDEs) for 
characterization of tissue samples and clinical follow-up data, supported by an 
essential quality assurance process. In addition to the development and implemen-
tation of tissue banking databases, various Web-based query tools have been 
designed to help investigators query the annotated biospecimens (Table 3.1).

3.4.1 � Tissue Banking Informatics Models

3.4.1.1 � Organ Specific Database

The informatics model used in the Cooperative Prostate Cancer Tissue Resource 
(http://www.cpctr.info), Pennsylvania Cancer Alliance for Bioinformatics 
Consortium (http://www.pcabc.upmc.edu/main.cfm), Early Detection Research 
Network (EDRN), Colon and Pancreatic Neoplasm Virtual Biorepository (http://
www.cancer.gov/prevention/cbrg/edrn), Shared Pathology Informatics Network 
(SPIN), and Specialized Program of Research Excellence (SPORE) Head and Neck 
Neoplasm Virtual Biorepository (http://spores.nci.nih.gov/) is a relational database 
built on multitiered Oracle Database Server 10.2.0.2 and Oracle Application Server 
10.1.0.2, with both the database server and the application server configured as 
virtual hosts on IBM Power6 Series 570 hardware. The hardware and system soft-
ware are centrally supported for backup and routine maintenance.

http://www.dbmi.pitt.edu/index.cfm
http://www.cpctr.info
http://www.pcabc.upmc.edu/main.cfm
http://www.cancer.gov/prevention/cbrg/edrn
http://www.cancer.gov/prevention/cbrg/edrn
http://spores.nci.nih.gov/
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The Organ Specific Database (OSD) model consists of the following integrated 
application layers that maintain data query/entry, data deidentification, and the user 
management module (Melamed et al. 2004; Patel et al. 2006, 2007a) (Fig. 3.3).

Presentation Layer:  This contains the following components: metadata curation 
is used by data administrators and data element curators for registering new data 
elements or editing definitions of existing data elements. The administrator secu-
rity system is used by the application administrators to grant, revoke, or limit 
privileges to new and existing users. Manual annotation is used by honest bro-
kers or domain experts for collecting information regarding patients registered 
for the study. Data query is used by the honest brokers and research community 
to run criteria-based queries. The query results show identified and deidentified 
outputs depending on the individual roles and privileges granted by application 
administrators. This tool provides two levels of access to researchers. The first 
level of access is the honest broker view of the consented patients for their own 
study and second is a deidentified view on all the patients for other studies for 
which they do not have access but want to study and analyze overall trends. The 
data import/export component provides users an option to electronically import 
preformatted data from existing systems or export data for analysis on their own 
computers.

Metadata Engine:  The Metadata Engine is based on the development of Common 
Data Elements that are used to hold application data structure for data elements/
fields as defined by the research project working group. The HELP builder is used 
for each data element/field with its detailed definition of business rules and usage. 
The business rules engine constitutes business rules for how multiple elements can 
be combined with simple numerical and algorithmic techniques to report complex 
values for decision support and statistical time sensitive outputs. The mapping 
engine maps logical and physical layers of design that facilitate data retrieval and 
storage.

Security Engine:  The security engine secures the application at three levels: the 
first is registration of new user accounts and requesting application roles. Second 
is authentication by adding/editing user information, and lastly, authorization is 
granting or revoking user roles and privileges.

Physical Data:  The physical database tables are presented in the data warehouse in 
a three-step fashion. First is the application database that holds case data contents 
in a metadata coded format. Second is the metadata database, which holds metadata 
definitions and descriptions for all the attributes and values in the system. The 
third one is a security database that drives the security and authorizations defini-
tions and assignments.

The data administrator can provide a user name and password for approved 
researchers or nursing coordinators to access the tool. The query tool access to the 
central database is through a highly structured “click and point” interface that 
allows queries on approved data elements and also is based on the researcher’s IRB 
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approval. The specificity of the data returned depends on the user’s profile. 
There are three user profiles:

Approved Investigator Query Tool is a password-protected application, which is 
distributed to those research investigators who have approved research protocols. It 
allows users to refine and compile case lists for their application and also to mine 
and modify the datasets on the cases where they have received biospecimens. The 
query tool provides search capability on all the annotated data associated with each 
subject through multiple predefined standard views of the dataset and also allows 
users to customize their own views and save them under their account.

Data Administrator Query Tool is a password-protected tool available only for 
the internal data administrators. It is meant to be used by data administrators to 
address quality assurance issues regarding the data. The main difference between 
this and the approved investigator tool is that this tool allows the user to search by 
“all Subjects” or “limited Subjects” based on consent for a particular study.

Public Query Tool is available to the general public and accessible through the 
main home page. The output display of a public query will be the accrued number 
of cases, specimens in the database that meet the criteria of the query and general 
statistics on a limited number of data elements. It is designed to allow interested 
investigators to see if the resource will be applicable to their research needs 
(Melamed et al. 2004; Patel et al. 2006).

3.4.1.2 � Federated Model Database

The National Cancer Institute (NCI) (http://www.cancer.gov/) launched the caBIG® 
(Cancer Bioinformatics Grid) (https://cabig.nci.nih.gov/) initiative in February 
2004, under the leadership of the NCI Center for Bioinformatics, with the goal to 
create a “World Wide Web” of cancer research (see Chap. 9). Systems developed 
for caBIG® are interoperable both in the methods by which data is transmitted 
(syntactic interoperability) and in the meaning of the data itself (semantic interoper-
ability). caBIG® is organizing itself to engage a broad spectrum of the oncology 
research community to ensure that its products are widely adopted.

The functionality and implementation of the Tissue Banking and Pathology 
Tools (TBPT) Workspace will be discussed in the following subsections. The goal 
of the TBPT suite (https://cabig.nci.nih.gov/workspaces/TBPT) is to standardize 
biospecimen-associated information by utilizing novel pathology informatics tools, 
so that individual collections of biospecimens can be shared across the cancer cen-
ters. The ultimate strategic vision is to enable automated systems interfaced to 
disparate clinical cancer informatics environments to communicate with each other. 
A successful outcome will result in a single point of entrance to federated tissue 
banks and pathology systems across the institutions, allowing for a more effective 
mechanism for researchers to locate and analyze biospecimens for use in cancer 
research based on anatomic pathology, laboratory medicine, patient data, and experi-
mental results. The Tissue Banks and Pathology Tools Workspace is focused on the 
development of a well-designed and adequately formatted set of caBIG®-compliant 

http://www.cancer.gov/
https://cabig.nci.nih.gov/
https://cabig.nci.nih.gov/workspaces/TBPT
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tissue banking tools (https://cabig.nci.nih.gov/workspaces/TBPT/TBPT_Software/). 
Three primary components that significantly strengthen translational research on 
the caBIG® are caTISSUE Core (http://ncicb.nci.nih.gov/NCICB/infrastructure), 
Cancer Text Information Extraction System (caTIES) (http://caties.cabig.upmc.
edu), and Cancer Tissue Clinical Annotation Engine caTISSUE CAE (https://
cabig-stage.nci.nih.gov/tools/cae) (Fig. 3.4).

�caTISSUE CAE

�Informatics Architecture

The various components of CAE include Web tier, business tier, data tier, and inte-
gration tier. The Web tier serves up static HTML, images, style sheets, and dynami-
cally generated Web pages via a standard JSP/Servlet engine. Dynamic requests 
will be managed through a Model-View-Controller (MVC) mechanism. This 
mechanism manages the processing of individual requests and the flow between 
requests. The Spring Framework is being evaluated for this purpose. The controller 
object makes requests to the business tier that results in the return of model objects 
that represent the information that must be presented back to the user. Based upon 
the result of the controller actions, the model objects are forwarded to an appropriate 
view (JSP) that renders them into a displayable page.

The business tier consists of a set of functional components, an Object-Relational 
(O/R) mapping mechanism, a metadata interrogation mechanism, a caCORE-
compliant Application Programming Interface (API) (http://cabio.nci.nih.gov/
NCICB/infrastructure/cacore_overview) and a set of shared services. These components 
act together to implement the principal functionality of the system. The functional 
components consist of a series of service objects that provide a consistent interface 

Fig. 3.4  Presents data import, integration, and query interface in a Web-based environment of 
federated model architecture of caBIG tools

https://cabig.nci.nih.gov/workspaces/TBPT/TBPT_Software/
http://ncicb.nci.nih.gov/NCICB/infrastructure
http://caties.cabig.upmc.edu
http://caties.cabig.upmc.edu
https://cabig-stage.nci.nih.gov/tools/cae
https://cabig-stage.nci.nih.gov/tools/cae
http://cabio.nci.nih.gov/NCICB/infrastructure/cacore_overview
http://cabio.nci.nih.gov/NCICB/infrastructure/cacore_overview


633  Data Management, Databases, and Warehousing

to Web tier controllers. There are three primary functions such as “Query,” “Manual 
Annotation,” and “Import Management.” The object layer of the business tier 
consists of services required for managing domain objects. The principal functions 
of this layer are to provide O/R mapping capabilities via caCORE Software 
Development Kit (SDK) generated and custom code (http://ncicb.nci.nih.gov/
NCICB/infrastructure/cacoresdk). The resulting objects present a unified model-
based interface of the domain to the functional components so that they need not be 
concerned with the physical database implementation. In addition to the O/R 
mapping capabilities, the object layer also provides an API into the domain objects 
as required by the caBIG® silver-level compliance specification. This API is generated 
using the caCORE SDK. Metadata interrogation capabilities can also be accessed 
from the object layer. The required metadata are available from the Cancer Data 
Standard Repository (caDSR). However, there may be some additional metadata 
necessary for the rendering of user interface components that is application-specific. 
This tier also provides shared services for logging and audit capabilities, authentication, 
and authorization services via the NCI Common Security Module (CSM) and 
caDSR access via the NCI Clinical Infrastructure Application Framework (CIAF) 
module. The services will be implemented generically so as to potentially be reus-
able by other caBIG® components (Piwowar et al. 2008; Niland et al. 2007).

The data tier consists of a domain database that houses the clinical annotations 
data, the security data (users, groups, roles, protected elements, etc.), and a staging 
area for import data. The database is in Oracle with a MySQL implementation.

The integration tier combines other systems with caTISSUE CAE in one of the 
following two ways:

Data Import:  Anatomic Pathology Lab Information Systems, Cancer Registries, 
and caTIES that hold tissue-related data can add cases or annotation data to the 
system by exporting their data into a published, XML-based format. The data can 
then be imported into the annotations database using the Web-based import 
management capabilities provided by the CAE system.

Application Programming Interface (API):  The CAE system also provides a 
caBIG®-compliant API for accessing domain-object data, which can be utilized by 
caTISSUE Core and other future caBIG®-compliant systems to directly access and 
perform searches on annotations data.

Utility

caTISSUE CAE is an efficient data annotation system devised to address the 
following objectives:

Manual annotation of biospecimens with pathology, tumor marker, staging, •	
grading, and clinical outcome data using a Web-based user interface.
HIPAA compliant de-identification, secure sharing, and high quality annotation •	
of specimens to facilitate researcher query of collected materials for transla-
tional research.
Data managers and other knowledgeable users can map their local data model by a •	
user interface to the caBIG® standard metadata, represented in the CAE as CDEs.

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk
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An administrator’s interface to support the import of structured data from clinical •	
information systems such as AP-LIS, CP-LIS, and other specimen registries, 
which may be employed in the life cycle of clinical trials or clinical research.
Integration of annotations from multiple sources within the translational research •	
center. As data from multiple clinical systems and from manual annotation is 
added to CAE, the application will record the source of each data value. Using 
algorithms tested during system development, CAE will identify data that origi-
nates in different systems but pertains to the same patient, so that users can 
retrieve a more complete picture of a patient’s disease.
The clinical annotations may be attached either to a participant/patient, a pathol-•	
ogy accession, or to a specimen (part) or subspecimen (block) in the latest ver-
sion of CAE. Altogether these entities form a hierarchy or backbone that 
encapsulates the entire datasets of annotation for a case. Annotations can be 
entered manually using the provided user interface or imported electronically.

National Mesothelioma Virtual Bank: The NMVB Web-based query tool (www.
mesotissue.org) is based on the caTISSUE CAE application. The NMVB database 
allows researches to search clinically annotated Mesothelioma biospecimens via a 
Web interface in real time. The database is made available through a publicly 
available Web site. The database facilitates standardized clinical annotation 
structure and incorporates a variety of datasets from different data sources (Amin 
et al. 2008).

caTIES

The caTIES project deals with the information extraction from free text and tissue 
accessions in biospecimen resources. It is a general purpose text information 
extraction tool to automate the process of converting free text surgical pathology 
reports (SPRs) into structured data, storing those data in a federated capacity, and 
to facilitate retrieval, advanced query, and further analysis of the pathology infor-
mation. The data extracted from these reports can directly populate caBIG® data 
structures. It is an extension of the SPINties application, developed through the 
SPIN. caTIES builds on the SPINties foundation by expanding the pathology 
vocabularies drawn from Enterprise Vocabulary Services (EVS) instead of the 
Unified Medical Language System (UMLS) (Drake et al. 2007; Patel et al. 2007b). 
Additionally, caTIES structures data based on ISO 11179 compliant CDEs, which 
can be accessed from NCI’s cancer Data Standards Repository (caDSR) (Tobias 
et al. 2006). The information models for prostate, breast, and melanoma are available 
through the caBIG® Web site.

Informatics Architecture

Within the single logical data model, caTIES houses all its data using three primary 
data stores. The private data store maintains the original data derived from the clinical 
systems, such as the AP-LIS, containing identified free text, dates, patient medical 

http://www.mesotissue.org
http://www.mesotissue.org
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record numbers, and specimen accession numbers. The private data store is only 
available for access by Honest Brokers within the hosting institution. Typically, the 
research data store resides on a separate machine and houses the deidentified 
reports along with unrestricted information (gender, age if less than 90), which are 
targeted by the Natural Language Processing (NLP) Pipeline Service to create and 
store conceptual annotations. The Collaborative Tissue Resource Manager (CTRM) 
is the third data store, which manages the collaborative construction and manipula-
tion of tissue studies so that researchers can build tissue order sets by electronically 
interacting with honest brokers at their respective organizations.

The data preparation phase functions as a succession of operating system-based 
services that convert data from SPRs stored in an AP-LIS setting to concept-annotated 
deidentified documents stored in the research data store. The corresponding 
services perform in the following order: acquisition, deidentification, concept-
coding, and indexing. The initial transfer of data from AP-LIS to the private data 
store is executed through an assortment of acquisition services, which may consist 
of existing tools, provided by vendors, or internally developed transfer mechanisms 
targeting the caTIES logical schema. For compliance with HIPAA regulations, the 
deidentification service removes the required 18 identifiers, replacing dates with an 
offset to preserve temporal relationships and names with symbols consistently 
throughout the document to preserve nominal relationships. The caTIES coding 
pipeline service constructs conceptual annotations on free text documents using a 
sequence of modular processing resources preconfigured with the NCI 
MetaThesaurus whose use is a condition of participation in caBIG®. For fast entry 
to the documents based on the characteristics of the text and conceptual codes, the 
caTIES indexing service makes use of a text search engine library.

The NCI MetaThesaurus is the central reference terminology within the NCI 
EVS integrated suite of resources and services designed to meet the controlled 
terminology needs of the NCI and its partners, as well as within the caBIG®/
caCORE bioinformatics architecture (Fragoso et al. 2004; Sioutos et al. 2007). It 
possesses a key role in the design of the project along with its integration with other 
resources as part of the caGrid architecture (see Chap. 4). Using description logic 
to enforce logical consistency, this concept-based terminology system provides a 
formal model with computationally tractable semantics (Hartel et al. 2005). Each 
concept represents a single specific meaning, and includes multiple terms, codes, 
text definitions, and other properties that reflect that meaning. Also, a concept can 
be defined by formal description criteria that logically make it a subtype of its par-
ent concept(s), and distinguish it from sibling concepts with the same parents. 
Concepts are arranged in disjointed subsumption hierarchies under 18 root nodes, 
such as Activity and Gene, with each step down from parent to child concept repre-
senting some added specialization of meaning.

Three Role-Based Perspectives Comprise the caTIES User Interface (UI): 
Researcher, honest broker, and administrator. If a user is registered with more than 
one role within the system, he or she can switch between views. The researcher 
perspective supports query construction and execution, and order management for 
the distribution protocol. The user can query in caTIES by text (entering text strings 
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which the system will search for within the documents), or by concept (entering 
strings that are mapped to candidate vocabulary concepts). Temporal searches 
allow researchers to seek specific characteristics in a given patient’s diagnosis 
timeline based upon the timing of diagnostic reports. The administrator perspective 
is used by both honest brokers and system administrators to perform administrative 
functions, such as user account creation, registration of new IRB-approved studies 
or a new institution as a provider, or addition of honest brokers from the administra-
tor’s local organization. Administrators also contribute to quality assurance of 
deidentification and concept-coding. The honest broker perspective enables impar-
tial individuals, such as cancer registrars and tissue bankers, to fulfill requests for 
tissue and clinical data. Brokers are only able to view information from the private 
data store from their own institution.

�Utility

The principal objectives for caTIES include the extraction of concept-coded infor-
mation from free text SPRs using controlled terminologies to populate caBIG®-
compliant data structures, and the overall pioneering of research for distributed text 
information abstraction within the context of caBIG®. An additional goal would 
provide researchers with the ability to query, browse, and create orders for anno-
tated tissue data and physical material across a network of federated sources. As a 
result through caTIES, the SPR acts as a locator to tissue resources.

�caTISSUE Core

The caTISSUE Core suite (https://cabig.nci.nih.gov/tools/catissuecore) is devel-
oped by the Siteman Cancer Center (Washington University School of Medicine, 
St. Louis, MO) to manage data related to biospecimen inventory, tracking, quality 
assurance, basic annotation, annotation and regulatory issues. This permits users to 
track the collection, storage, quality assurance, and distribution of specimens as 
well as the derivation and aliquoting of new specimens from existing ones (e.g., for 
DNA analysis). It also allows users to browse and request specimens that may then 
be used in correlative molecular studies.

Informatics Architecture

The overall workflow of caTISSUE Core is described below:

This is based on open source architecture, controlled vocabularies, and CDEs in •	
keeping with caBIG® principles.
Initial development at “Silver” level caBIG•	 ®-compliance, with eventual evolu-
tion to “Gold” level compliance concurrent with grid development.
Object model design is derived from use cases generated from review of current •	
specimen banking systems.
Modular architecture to allow future developers to expand functionality without •	
system redesign.

https://cabig.nci.nih.gov/tools/catissuecore
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Rapid deployment and testing at several institutions with significant needs for •	
enhanced biospecimen informatics.
Contingencies for mapping objects and data elements from existing legacy •	
systems.

Utility

caTISSUE Core is a foundation data system for biospecimen inventory, tracking, 
and basic annotation that may be used by biospecimen resource facilities, regardless 
of the nature of biospecimen transactions that occur or the type of biospecimens 
involved in the transaction. Key features of the caTISSUE Core system include:

caTISSUE Core captures data related to clinical studies collecting biospecimens, •	
research studies that utilize biospecimens, locations for biospecimen collection, 
storage and utilization, and system user information.
Participant, Accession, Specimen, Segment, and Sample objects and their •	
corresponding basic attributes are represented.
Tracking of individual biospecimens from accession to storage with a flexible •	
inventory configuration are incorporated into the system.
Both simplified and complex queries for biospecimens based on any attribute are •	
possible using an intuitive interface.
Semiautomated requests for distribution based on queries.•	
Every user action is tracked by the system and information stored for future audit.•	

3.5 � Issues and Approaches

3.5.1 � Database

Data Sharing:  Data can be shared by multiple applications accessing the same 
database. In addition, new applications can be developed to function parallel to 
these, utilizing existing data. In many cases, the database can fulfill the data 
requirements of new applications without importing new data.

Redundancy Control:  In a nondatabase environment, each application carries its own 
data files: this leads to data redundancy and wastage of storage space. In databases, 
different files can be integrated and issues of redundancy can be controlled by the data 
administrator evaluating the data requirements of various applications. Redundancy 
can also be controlled if the files need to be maintained in separate applications. 
This can be achieved by ensuring that when one file is updated the other identical file 
is updated at the same time; this is the concept of propagating updates.

Consistency Control:  The presence of inconsistencies in a database is to some extent 
the direct result of the presence of redundant information. If one data item is updated 
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and the other identical item existing in a separate file or application is not updated at 
the same time, two conflicting results to the same query will be generated regarding 
that data item. This means that the database has lost its consistency. This issue can be 
overcome by controlling redundancy and ensuring propagating updates.

Transaction Support:  It is imperative to ensure secure and complete transactions 
because usually one transaction is in actuality a series of more than one transaction which 
need to be processed in their entirety to be successful. Databases possess the quality of 
transaction atomicity, which guarantees that either all components of a transaction are 
executed or none of them are, even in the face of system failure during the process.

Data Integrity:  It is necessary to ensure that the data in the database is exact and valid. 
Centralized control of a database can facilitate maintenance of data integrity by establishing 
integrity constraints to be applied whenever data is uploaded, transferred, or updated. Data 
integrity is vital to database systems because data is shared. If one user enters inaccurate 
data into the system it can corrupt the queries of other users by producing bad data.

Data Security:  This is a necessary component of databases and has been discussed 
in greater detail in Sect. 3.1.10. Security can be enforced by ensuring that all access 
to the data is through proper and authorized channels, and security constraints 
should be employed whenever there is a need to access sensitive data.

Requirement Management:  It is important to cater to all the needs and require-
ments of different users especially because some needs may be conflicting in 
nature. This is balanced by offering a holistic service that is in the best interest of 
the organization as a whole.

Standard Preservation:  In a centralized model of database system, it is important 
to maintain all the applicable standards for data entry, storage, transactions, utilization, 
and data representation; especially since more than one site is involved in data sharing 
and interchange. The preservation of all these standards is the responsibility of the 
database administrator (Date 2000).

3.5.2 � Data Warehouse

Advantages and disadvantages of data warehouses as compared to relational data-
bases are discussed below.

As previously described, operational databases are designed and optimized for 
recording data and preserving its integrity. Because a data warehouse is optimized 
to respond to analysis questions, separating the two allows users to retrieve and 
analyze data without slowing down operational systems.

Data warehouses provide a platform to perform complete analysis of transac-
tions and processes and have the ability to integrate data from all over the organiza-
tion. This supports decision making on the basis of information of the entire 
organization in contrast to crude approximations from individual data. In addition, 
they offer the capability to concurrently comprehend and handle both the macro 
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and microworkings of the resource/organization, which can easily be extended into 
strategic decision making, yielding very useful and significant results.

There is a high cost associated with maintaining the hardware, software, and 
storage capacity for data warehouses, which can become very large. However, with 
the rapid development in technology they are becoming more cost-effective.

User Satisfaction:  It is important to adequately address the issues of the users and 
identify their needs, trends, and patterns of data utilization. Information regarding 
these requirements and trends is used to improve the data warehouse system and its 
utilization.

Metadata Issues:  An issue pertaining to metadata is that the ability of many data 
extraction tools to accrue metadata is still developing; they are not very effective. 
This results in a necessity to develop a metadata interface for the users. This can be 
achieved fairly easily with some effort required for the duplication process.

Web-Enabled Information Delivery:  To maximize the benefit of data warehousing 
it is important to enable the individuals who require the data with access to the data 
irrespective of their geographical location and time constraints. This is especially 
challenging when individuals are at distant sites from the data warehouse location. 
The efficiency of the data warehouse depends on the reliability of Web-enabled 
information delivery systems; these systems support the collective decision making 
and critical data analysis on a global level.

Data Integration:  Data integration is an issue that arises in data mart applications. Initial 
data marts quickly acquire data and grow rapidly in multiple dimensions. This problem is 
overcome by developing an overall scalable data warehouse structural design and recog-
nizing and employing the common dimensions. Focus should be given to system scal-
ability, data reliability, uniformity, and ease of management (Berson and Smith 1997).

3.6 � Conclusions

Databases and data warehouses are a cornerstone of modern advances in the area of 
translational research. They have facilitated and simplified data collection, data manage-
ment, and data sharing, while removing redundant processes and ensuring consistency, 
transaction support, data integrity, data security, and the preservation of standards. With 
appropriate informatics support they allow user friendly and secure data retrieval while 
ensuring its confidentiality. Data can be uploaded, managed, quality assured, retrieved, 
and analyzed, from anywhere around the globe, while maintaining stringent security 
protocols. The philosophy of data sharing that is realized in these systems is essential to 
the growth and development of translational research: the sharing and dissemination of 
knowledge does not diminish its value, but creates new synergies and applications by 
increasing its utilization. By making it possible to provide high quality, comprehensive, 
and pertinent data in a secure and confidential manner, databases open up multiple ave-
nues of data analysis and research, accelerating the rate of advances in that field.
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Abstract  As our ability to capture and generate large biomedical datasets 
improves, researchers increasingly need to synthesize information using a variety 
of data types, data systems, and analysis tools. The need for informatics support to 
facilitate coordinated and federated access to disparate data and analysis resources 
is more pronounced in collaborative basic, clinical, and translational research stud-
ies spanning multiple institutions. This chapter presents a high-level overview of 
several middleware architecture frameworks and technologies and discusses how 
these approaches can be employed to address the informatics requirements of large-
scale and collaborative cancer research.

4.1 � Introduction

The nature of cancer research has been transformed in the past decade thanks to the 
increasing availability of high-throughput and high-resolution instruments. These 
instruments enable investigators to capture imagery at cellular, organ, and tissue 
levels, measure genes and proteins expressed in cells and tissues, and map molecular 
interactions under a variety of experimental and disease conditions. As a result, 
basic, translational, and clinical cancer studies are increasingly driven by analysis 
and integration of information from a wide range of data sources and data types. 
Integrative cancer research studies, for example, investigate complex interrelation-
ships among different biological entities and across multiple biological scales in 
order to understand the function and structure of biological phenomena in normal 
and disease states. Datasets in these studies may be captured from high-throughput 
molecular analyzers (such as data from microarray analysis, mass spectroscopy 
measurements, and measurements from real-time PCR platforms), from high-resolution 
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imaging of tissues and organs (using high-power light and confocal microscopy 
scanners, high-resolution MR and PET scanners), and from phenotypic observa-
tions. Translational research studies, on the other hand, apply knowledge obtained 
from basic research in order to develop new approaches for diagnosing, treating, and 
preventing cancer as well as to create best community practices. These studies test 
many different kinds of hypotheses and carry out a wide range of experiments. Data 
types captured and referenced in translational research studies include clinical infor-
mation on patients in clinical trials, outcome data, radiology and pathology reports, 
data from laboratory tests, molecular data, and imaging data.

There are, however, a number of factors that limit researchers from taking full 
advantage of these advances and integrating them in research studies optimally. 
A major challenge is that a researcher has to access and analyze large volumes of 
semantically complex datasets to synthesize biologically meaningful information. 
This problem is compounded by the fact that complementary datasets are often 
captured and managed in different systems. The process of manually browsing indi-
vidual data systems and downloading the data is inefficient and labor intensive: the 
researcher has to figure out how to access each data source/system; he/she has to 
implement tools for translating the format of each data source to formats used by dif-
ferent analysis methods; and he/she needs to deploy systems to store and index the 
downloaded datasets so that they can be managed and integrated efficiently. In col-
laborative studies spanning multiple institutions, the issues of data discovery, access, 
analysis, and integration become more challenging. Such studies require access to 
geographically disparate, heterogeneous data and analytical resources. Access to 
resources goes across multiple administrative security domains, further complicating 
the utilization of the resources. All of these factors limit the impact of research studies, 
in particular that of collaborative research projects, as well as the extent to which the 
research can be carried out on a national and international scale.

In this work, we look at a number of distributed middleware architecture frameworks 
and technologies developed by the information technology community and discuss how 
these approaches can be employed to address the informatics requirements of 
large-scale and collaborative cancer research. In Sect. 4.2, we identify and illustrate 
some of the common informatics needs of cancer research studies using example 
research pattern templates (Saltz et al., 2008a, b, c). Section 4.3 describes the architec-
ture frameworks and middleware technologies in the context of these requirements. We 
use caGrid(Saltz et al. 2006; Oster et al. 2008) and the cancer Biomedical Informatics 
Grid (caBIG®) (cabig 2009) as well as examples from other biomedical informatics 
efforts to show the application of these frameworks. We conclude in Sect. 4.4.

4.2 � Informatics Requirements of Cancer Research Studies

The particular approach employed by a specific cancer study, the set of experiments 
carried out, the datasets captured, and how the datasets are analyzed are largely 
determined by the specific research questions targeted by the study. Nevertheless, 
a common set of principles and processes are employed by studies investigating 
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similar problems. We refer these principles, processes, requirements, and con-
straints on families of research studies as research pattern templates (Saltz et al., 
2008a, b, c). In this section, we present example pattern templates for integrative 
cancer research and translational research studies in order to identify and illustrate 
the common informatics requirements of cancer research studies. We should note 
that a specific study may involve elements of multiple research pattern templates 
depending on the scope of the scientific questions and the scale of the study.

4.2.1 � Multiscale Deep Integrative Investigation

Studies represented by the multiscale deep integrative investigation pattern template 
aim to measure and quantify biomedical phenomena at multiple biological scales (e.g., 
molecular, cellular, macroanatomic scales). Datasets in these studies are obtained from 
experimental measurements and, in some cases, from simulations. The work being 
carried out by the newly initiated In Silico Center for Translational Neuro-oncology 
Informatics (In Silico Brain Tumor Research Center; ISBTRC) provides an excellent 
example of a multiscale integrative investigation. This research leverages complemen-
tary molecular, pathology and radiology brain tumor data obtained in The Cancer 
Genome Atlas (TCGA),1 Rembrandt,2 and Vasari3 studies. These studies involve 
collection and generation of radiology; full-slide digital pathology; high-throughput 
genetic, genomic, and epigenetic analyses for patient populations accrued at a large 
number of clinical sites. The ISBTRC also plans to generate additional data by carrying 
out image-analysis-based laser-captured microdissection on institutional tissue speci-
mens followed by targeted high-throughput genetic and genomic studies.

The research work at the center will initially explore the relationship between 
tumor genetics, gene expression necrosis, and degree and type of vascular hyper-
plasia. The degree and pattern of necrosis/vascular hyperplasia are variable with a 
given tumor, so molecular analyses should be interpreted in the context of histopa-
thology. Glioblastoma Multiforme (GBM), for instance, is characterized by necro-
sis and vascular hyperplasia, which are tightly correlated with the presence of 
hypoxia. There is large variation in gene expression patterns between regions of 
severe hypoxia and normoxic regions. Thus, categorization of GBM gene expression 
patterns should take into account the tumor microenvironment to ensure that the 
clustering of GMBs within gene expression families is not altered on computer-assisted 
algorithms. One of the efforts undertaken by the ISBTRC is investigating whether 
the presence and degree of necrosis within the frozen section slides correlates with 

1 TCGA is a large-scale community resource project co-funded by the NCI and the National 
Human Genome Research Institute, http://cancergenome.nih.gov
2 Rembrandt is a community resource that hosts and integrates clinical and functional genomics 
data from clinical trials involving patients suffering from gliomas, http://caintegrator-info.nci.nih.
gov/rembrandt
3 Vasari datasets consist of the Rembrandt data collection with the addition of characterized MR 
images, https://wiki.nci.nih.gov/display/Imaging/VASARI

http://cancergenome.nih.gov
http://caintegrator-info.nci.nih.gov/rembrandt
http://caintegrator-info.nci.nih.gov/rembrandt
https://wiki.nci.nih.gov/display/Imaging/VASARI
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specific gene expression patterns. This effort requires the use of both human experts 
and image analysis algorithms to identify, markup, and quantify the size, shape, and 
distribution of necrotic regions. Another effort involves linking nuclear shape and 
texture brain tumor biological and clinical behavior by posing and answering ques-
tions about (1) relationship between nuclear shape and texture to gene expression 
category defined by clustering analysis of Rembrandt data sets and (2) relationship 
between nuclear morphometry and gene expression to neuroimaging features. 
Answering these questions involves correlation of imaging characteristics defined 
by feature sets (such as the Vasari feature set) with pathologic grade, vascular mor-
phology, and underlying gene expression profiles. Figure 4.1 illustrates the high-level 

Fig. 4.1  High-level analysis, query, and data integration workflow for the in silico studies. Datasets 
come from TCGA, Rembrandt, and Vasari studies as well as data generated from tissue specimens 
at collaborating institutions. Data types include molecular data, radiology and pathology images, and 
anonymized clinical information. Images are analyzed and image features are classified and anno-
tated. Image analysis workflows may involve simple and complex operations such as normalization, 
feature segmentation, and feature classification. Molecular data is analyzed via a series of bioinfor-
matics analysis methods and programs. Bioinformatics analysis results, image features, and classifi-
cations are stored in databases for correlative analyses involving queries on shape, texture, and gene 
expression categories as well as integration with clinical information. The results of these queries 
and analyses may suggest refinement of image and molecular analyses
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Fig. 4.2  An example of data submission, review, and analysis in radiation oncology clinical trials

workflows in these efforts. These workflows involve execution of networks of 
bioinformatics and image analysis operations and creation and query of semantically 
complex datasets representing analysis results (molecular analyses and image anno-
tations). Moreover, analysis programs, primary datasets, and results of various 
analyses may be hosted at multiple collaborating institutions requiring queries and 
workflow executions to take place in a distributed environment.

4.2.2 � Prospective Clinical Research

This template involves studies in which a group of patients are systematically 
followed over a period of time. Prospective studies are designed to understand risk 
factors for development or progression of disease and to perform quality control in 
disease classification and assess treatment effectiveness. Clinical studies that rely 
on biomedical imaging as both an indicator of disease progression and an assessment 
of treatments are examples of this pattern template. Cooperative groups conducting 
prospective studies collect imaging and clinical data as well as treatment reports 
and outcomes data from patients at multiple institutions. Interpretation of radiol-
ogy, treatment, and pathology information are crucial factors for reproducible dis-
ease classification and assessment of treatment response. In radiation oncology, for 
example, digital imagery plays an important role in defining the tumor volume and 
outlining areas that receive radiation and in excluding the portions of healthy tissue 
that must be spared. There is, however, a high interobserver variability among 
reviewers of image data. One strategy that is increasingly used to reduce this 
variability and improve protocol compliance is a central review of imaging objects. 
In central review, multiple expert radiologists at different institutions review image 
and clinical data, and an independent adjudicator incorporates their reviews into a 
consensus review. Figure 4.2 illustrates an example of data submission, review, and 
analysis in radiation oncology trials. Expert reviewers at different institutions 
access a remote database of images and may use different workstations to view and 
annotate the images. Image annotations are then stored in a results database, which 
is secured to enforce access control.
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4.2.3 � Informatics Architecture Requirements

Successful implementation in a multi-institutional setting of the example pattern 
templates is impacted by (1) how effectively investigators can discover information 
that is available and relevant to the research project and (2) how efficiently they can 
query, analyze, and integrate large volume of information from different, potentially 
distributed, resources. One obstacle is the fact that distributed data sources are 
fragmented and oftentimes are not interoperable. Datasets vary in size, type, and 
format and are managed by different types of database systems. Naming schemes, 
taxonomies, and metadata used to represent the structure and content of the data are 
heterogeneous and managed in isolation. Two databases may employ completely 
different data structures, naming schemes, and metadata in order to represent the 
same information. Informatics architectures supporting the types of studies pre-
sented in this work should enable interoperability among multiple systems, facili-
tate coordinated and secure access to remote resources, and support integration of 
information from multiple data types and data sources.

The pattern templates provide motivating requirements for the development of 
support for deep semantic integration of complementary types of information. 
Genetic expression, protein expression, and cellular structure need to be interpreted, 
represented, and modeled as highly interrelated phenomena in multiscale integrative 
studies. The prospective pattern template also has a huge semantic scope. There is 
a vast span of possible diseases, treatments, symptoms, and radiology and pathology 
findings in imaging-based studies.

The prospective template provides motivation for architecture support for 
semantic interoperability and interfacing with existing institutional systems. It is 
very expensive to develop a purpose built information system for a particular 
prospective study. From the point of view of economics, logistics, and quality 
control, it is more efficient to share a core information architecture for many 
prospective trials. Prospective template information architectures need to inter-
operate with existing institutional systems in order to better support prospective 
trial workflow, and to avoid double entering of data and manual copying of files 
arising from Radiology and Pathology. Subsystems that need to be interacted 
with may be commercial or open-source systems that adhere to varying degrees 
to a broad collection of distinct but overlapping standards. Data in these systems 
are represented, exchanged, and accessed through a set of architectures and 
standards, such as HL7 (HL7 2009), IHE (Ihe 2009), DICOM (DICOM 2009), 
developed by different communities. A software system developed on top of a 
particular standard will not be able to readily interoperate with systems devel-
oped on top of other standards.

The main objective of gathering data in a scientific study is to better understand 
the problem being studied and to be able to predict, explain, and extrapolate poten-
tial solutions and possible outcomes. This process requires complex problem-
solving environments that integrate on-demand data access and processing of very 
large databases. Studies in the example templates involve querying and assimilating 
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information associated with multiple groups of subjects from multiple data sources, 
comparing and correlating the information about the subject under study with this 
information, and classifying the analysis results. Information systems to support 
these studies should enable federated queries across potentially heterogeneous 
datasets and systems. Analysis workflow requirements also arise from the example 
templates. Multiscale template information systems, for example, should be able to 
support analysis of data by a series of simple and complex image analysis opera-
tions expressed as a data analysis workflow.

Support is needed for workflows comprised of data and analytic services that 
will allow investigators to iteratively refine complex multidisciplinary analyses as 
well as to make the in silico research results and processes publicly available to the 
research community. Analysis results may further be integrated with other data 
types for additional analyses; for example, genetic and cellular information can be 
integrated with biological pathway information to study how genetic, epigenetic, 
and cellular changes may impact major pathways.

Protection of sensitive data and intellectual property is an important compo-
nent in many design templates. The prospective template in particular has 
strong requirements for authentication and controlled access to data because of 
the fact that prospective clinical research studies capture, reference, and manage 
patient-related information. While security concerns are less stringent in the 
other pattern template, protection of intellectual property and proprietary 
resources is important.

4.3 � Middleware Architectures for Collaborative  
Cancer Research

The computer science community and the information technology industry have 
developed architecture frameworks to address the informatics requirements of 
loosely coupled, heterogeneous, and (geographically) distributed applications in 
science, engineering, and business. In this section, we look at several architecture 
approaches and discuss how they can address the requirements of collaborative 
cancer research studies. We should note that these architecture frameworks share 
characteristics and overlapping sets of principles and requirements. We present 
implementation examples from biomedical informatics efforts.

4.3.1 � Grid Computing

Grid computing broadly refers to the notion of accessing and using resources 
hosted at multiple institutions to support distributed applications in science and 
engineering (Foster and Kesselman 1999; Foster et al. 2001; Berman et al. 2003). 
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The concept of Grid computing was originally motivated by large-scale applications 
in Physics, Astronomy, Earth Systems Sciences, and Engineering that required 
access to supercomputers at multiple supercomputing centers. Earlier Grid tools 
and infrastructures, thus, focused on supporting execution of applications on stor-
age and computing systems across multiple security domains. Through commu-
nity efforts such as the Open Grid Forum (formerly known as the Global Grid 
Forum) (OGF 2009), Grid computing has evolved into an architecture framework 
for sharing and federating data and analytical resources as well as computation 
and storage systems.

Grid computing provides the foundational architecture framework to address 
several of the core requirements imposed by multi-institutional studies in the 
example pattern templates. A Grid computing system enables (1) Remote and 
coordinated access to decentralized resources. Collaborative studies in the 
example templates draw information from multiple systems – for example, health 
information records, lab information management systems, picture archival and 
communication systems (PACS), as well as genetic, genomic, epigenetic, micros-
copy databases – potentially hosted at different institutions. It can be expensive 
or infeasible, because of security and ownership concerns, to copy data to a sin-
gle, centralized database management system. Moreover, centralized database 
solutions are not flexible and scalable. A group of research studies may involve 
access to the same or overlapping sets of resources; however, each study may 
make use of different functions provided by these resources or access different 
subsets of data. Thus, a centralized solution designed for a specific study will not 
likely address the requirements of other studies. Grid computing, on the other 
hand, allows the owner of a resource to manage the resource locally. It enables 
remote access to the resource via open, standard, general-purpose information and 
data exchange protocols. The resource owner has to make his/her resource 
available to the environment through these protocols, but he/she does not need 
to relinquish the ownership of the resource or port it to a centralized system. 
Different research studies can coordinate access to resources using these protocols 
and associated tools and create “virtually centralized” solutions for their needs. 
(2) Secure and controlled access to resources across administrative boundaries. 
Protection of sensitive data and intellectual property is an important component in 
many design templates. The prospective template in particular has strong require-
ments for authentication and controlled access to data because of the fact that 
prospective clinical research studies capture, reference, and manage patient-
related information. These issues become more challenging in a distributed envi-
ronment, because requests to access resources will have to travel across 
institutional administrative boundaries (see Chaps. 5 and 16). It is not likely that 
all institutions in a multi-institutional study will have the same type of security 
infrastructure; it will also be expensive and in some cases infeasible to dynamically 
create and manage accounts for researchers in multi-institutional projects at every 
institution participating in the projects. Grid technologies provide the infrastruc-
ture for the core security requirements: privacy (i.e., information exchanged 
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between two entities can only be read by the two entities), integrity (i.e., when 
information is sent from one entity to another, the information received by the 
receiving entity is the same as the information sent by the sending entity), and 
authentication (i.e., being able to verify that an entity involved in information 
exchange is who he/she claims to be) (Foster et  al. 1998; Welch et  al. 2003; 
Langella et al. 2008). Using the core infrastructure support, higher level functions 
for account management and provisioning, authorization and access control, and 
secure information sharing can be implemented (Langella et al. 2008).

In cancer research, one of the most prominent efforts is the NCI-funded can-
cer Biomedical Informatics Grid (caBIG®) program (caBIG 2009) (see Chap. 
9). The objective of this program is to develop enabling informatics technologies 
for collaborative, multi-institutional biomedical research and to create a volun-
tary network of cancer centers and research laboratories with the overarching 
goal of accelerating translational cancer research. caGrid is the core Grid archi-
tecture of this program (Saltz et  al. 2006; Oster et  al. 2007, 2008). caGrid is 
designed to provide the core infrastructure to support federated access to data 
and analytical resources and applications deployed at different institutions and 
to enable researchers to both query, integrate, and synthesize information from 
distributed resources. caGrid leverages Grid computing technologies and tools, 
including the Globus Toolkit (Foster and Kesselman 1997; Foster 2006) and 
Mobius (Hastings et  al. 2004), to create a biomedical research Grid environ-
ment. The caGrid infrastructure provides a common runtime environment and 
Grid-enabled tools to support the deployment, discovery, and invocation of data 
and analytical resources, metadata management, management of Grid-wide 
security, federated query across multiple data sources, and composition of 
resources into analysis workflows.

Requirements associated with the need to access geographically dispersed 
resources have been a key motivation behind several other large scientific projects. 
The Biomedical Informatics Research Network (BIRN), funded by NIH, provides 
shared access to medical data in a Grid environment (Santini and Gupta 2003; 
Grethe et al. 2005). The BIRN initiative focuses on data and analysis tools devel-
oped in neuroscience research studies. The CardioVascular Research Grid (CVRG)
(CVRG 2009) project creates a Grid environment and resources to facilitate 
research efforts that span multiple research groups and institutions. The CVRG 
employs Grid computing as the underlying core architecture framework to provide 
an open-source, extensible software infrastructure enabling discovery, federation, 
and sharing of cardiovascular data and tools. MammoGrid is a multi-institutional 
project funded by the European Union (EU) (Amendolia et al. 2003; Solomonides 
et al. 2003). The objective of this project is to apply Grid middleware and tools 
to build a distributed database of mammograms and to investigate how it can be 
used to facilitate collaboration between researchers and clinicians across the EU. 
eDiamond targets deployment of Grid infrastructure to manage, share, and 
analyze annotated mammograms captured and stored at multiple sites (Brady 
et al. 2003; Solomonides et al. 2003).
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4.3.2 � Service-Oriented Architecture

Grid computing provides an architectural platform for coordinated and secure 
access to remote resources. In order to facilitate more effective federation and inte-
gration of information across multiple resources, informatics systems should also 
enable syntactic and semantic interoperability. Syntactic interoperability enables a 
consumer (e.g., a client program) to programmatically access the components and 
functionality of a resource (e.g., a service). It deals with the heterogeneity of the 
programming and messaging interface syntax. Semantic interoperability, on the 
other hand, is concerned with the use of a resource – that is, semantically correct, 
unambiguous interpretation, and consumption of a resource. We will elaborate on 
semantic interoperability in greater detail in Sect. 4.3.3. In this section, we describe 
an architecture approach, service-oriented architecture (SOA), to facilitate syntactic 
interoperability.

SOA is an architectural framework in which the functionality of a software 
component is exposed to the environment as a service via well-defined and 
published programming interfaces; these programming interfaces are referred 
to here as service interfaces. A service-oriented architecture environment con-
sists of software components (e.g., applications, tools, and databases) that are 
loosely coupled to each other and exchange information by invoking service 
interfaces. For example, a gene expression database, stored in a relational data-
base system, may be wrapped as a service with two interfaces: query and insert. 
The query interface allows a client program to issue queries for the gene data. 
The insert interface can be used to insert data into the database. With the 
service-oriented interface, the client program does not directly interact with the 
relational database system.

The caGrid infrastructure is an SOA. It builds on the Web Services Resource 
Framework (WSRF) standards (Foster et al. 2005; Humphrey and Wasson 2005). 
The WSRF draws from the Web services standards (Graham et  al. 2002), but 
extends them with such concepts as stateful services, service lifetime, service con-
text, etc. These extensions enable more efficient and richer services to be imple-
mented for scientific application scenarios. For example, a query to a large image 
dataset may take long time to execute and may return many images to the client. In 
a simple request–response implementation supported by Web services, the client 
would be blocked waiting for the image data service to finish executing the query 
and return all of the results at once. A stateful service implementation, on the other 
hand, could instantiate a resource, which would process the query and maintain the 
results and return a resource handle to the client. The client could then interact with 
the resource to check for query completion and retrieve the query results (in mul-
tiple images at a time). In caGrid, databases are exposed to the Grid environment 
as caGrid data services with well-defined interfaces. Similarly, analysis methods 
and programs are accessible as caGrid analytical services. To simplify service 
development and deployment, caGrid provides a graphical development environ-
ment called the Introduce toolkit (Hastings et al. 2007).
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A basic characteristic of the SOA is the notion of request–response. That is, the 
consumer of a resource interacts with the functionality of the resource by submitting 
requests via well-defined and published service interfaces and receiving responses to 
these requests from the resource. The request–response pattern defines the interaction 
between a pair of entities (i.e., the resource and the consumer). However, as we dis-
cussed in Sect. 4.2.1, the process of synthesizing information from complex datasets 
requires researchers to compose and execute analysis workflows involving multiple 
data and analytical services. These workflows require coordination and execution of 
interactions (requests and responses) between multiple pairs of services and flow of 
data and control information between groups of services. Thus, systems building on 
the SOA should implement support for execution of distributed workflows. caGrid 
provides a workflow management service that supports the execution and monitoring 
of workflows expressed in the Business Process Execution Language (BPEL) 
(Kloppmann et al. 2004; Sarang et al. 2006). The use of BPEL in caGrid facilitates 
easier sharing and exchange of workflows. There are other workflow systems that are 
employed in SOA implementations. WEEP (Janciak et al. 2008; WEEP 2009), for 
example, provides high-level API and runtime support for management and execution 
of workflows. The Taverna Workflow Management System implements support for 
composition of service components, shims to mediate between incompatible services, 
and a graphical workflow development GUI (Hull et al. 2006). The myExperiment 
site provides a forum for sharing Taverna workflows (De Roure et al. 2009).

An aspect of the request–response pattern is that it is a pull-based model. That 
is, information is transferred from a resource to a consumer upon a request from 
the consumer. Studies in the prospective template can benefit from messaging and 
event-driven systems in which information can be pushed to one or more consumers. 
Prospective template studies follow groups of patients in clinical trials. The process 
of managing clinical trials and data collection requires interaction with a range of 
systems and instruments, which may interact with each other via exchange of 
messages. In addition, information about any major events (e.g., adverse events) 
should be sent to the respective clinical trials management systems for timely 
handling of events to protect the safety of patients. Data in these systems are 
represented, exchanged, and accessed through a set of standards, such as HL7 and 
IHE. Architecture support is needed to facilitate efficient exchange of messages 
among heterogeneous sets of producers and consumers as well as enable efficient 
mappings between different messaging standards and data structures. The 
Enterprise Service Bus (ESB) has recently gained popularity as a software archi-
tecture and system integration framework. The ESB provides fundamental func-
tionality and services to implement complex, loosely coupled systems using 
event-driven and standards-based message middleware. An example of a software 
system that makes use of the ESB framework is the Clinical Data Exchange (caX-
change) tool in the caBIG® program (caXchange 2009). caXchange provides a 
configurable service and messaging hub built on open-source ESB technologies. 
An application of the caXchange tool is the mapping of nonstandard laboratory 
data from clinical care systems into standard formats and delivery of this data 
via messages to clinical trial databases.
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4.3.3 � Model-Driven Architecture

The model-driven architecture (MDA) paradigm has gained popularity in recent 
years as an architecture approach for development of semantically interoperable 
software systems. As we described in Sect. 4.3.2, the SOA framework provides a 
platform for syntactic interoperability of disparate systems. Web services standards 
address the interoperability problem by specifying language-independent access to 
distributed resources. Research studies that involve information integration and 
analysis using heterogeneous data and analytical resources have to tackle several 
additional problems. One problem is that resources may have different data repre-
sentations. Each resource may define the same conceptual data type using a differ-
ent data structure and database schema than other resources. Another problem is 
that the meaning of a resource and the attributes of data structures representing the 
content of the resource can be named and described differently by different groups. 
Two data elements representing the same entity might have been defined using dif-
ferent terms; more importantly, two data elements representing different concepts 
may have the same attributes and attribute names. To address these issues, the con-
tents and meaning of a resource need to be explicitly defined using terms from a 
vocabulary, which is agreed upon by the community (resource providers and 
resource consumers). Thus, in addition to the standards imposed and employed by 
SOAs, controlled vocabularies, common data elements (CDEs), and published 
information models are necessary to enable interoperability among resources.

In MDA, the information structure and interface specifications of a software 
component are expressed as models, generally using the Unified Modeling 
Language (UML). These models can then be mapped to specific architecture or 
technology platform realizations. The MDA promotes the use of object-oriented 
design practices and rich metadata in order to facilitate implementation of interoperable 
systems.

caGrid adopts an MDA approach to enable interoperability through object-ori-
ented abstractions, CDEs, and controlled vocabularies. That is, client and service 
APIs in caGrid are object oriented. These objects, in turn, are defined using CDEs 
and controlled vocabularies registered on the Grid. For example, the names of an 
object’s fields are terms from the controlled vocabularies. In addition, the type of a 
field (Integer, String, etc.) matches the type specified in a CDE. The benefit of this 
approach is that resources are defined in one location (the vocabulary or CDE) and 
used to generate all Grid artifacts, preventing any issues with remodeling (the 
same) data at each Grid layer. A caGrid data service abstracts data as objects. 
Similarly, an analytical resource (e.g., an analysis program) implemented as a 
caGrid analytical service provides methods that input objects and return objects. 
caGrid leverages existing data modeling infrastructure to manage, curate, and 
employ domain models. Specifically, a Grid developer creates UML class diagrams 
to model data that will be shared on the Grid. Using UML tools and NCI data mod-
eling infrastructure, the domain models are converted into CDEs in the form of 
ISO/IEC 11179 administered components and registered in the Cancer Data 
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Standards Repository (caDSR) (Covitz et al. 2003; Phillips et al. 2006). These data 
elements are annotated by terms and concepts drawn from vocabulary registered in 
the Enterprise Vocabulary Services (EVS) (Covitz et al. 2003; Phillips et al. 2006). 
In the Grid environment, clients and services communicate using messages encoded 
in XML. When an object is transferred between clients and services, it is serialized 
into a XML document that adheres to a registered XML schema. The requirement 
for use of registered data models and XML schemas is to ensure syntactic and 
semantic interoperability between two end-points exchanging information. With a 
published model and schema, the receiving end-point can parse the data structure 
and interpret the information correctly. XML schemas corresponding to CDEs and 
object classes are registered in the Global Model Exchange (GME) service 
(Hastings et al. 2004). In summary, the caDSR and EVS define the properties and 
semantics of caBIG® data types, and the GME defines the syntax of their XML 
materialization.

4.3.4 � Semantic Web Technologies

Semantic Web technologies aim to provide a framework and supporting infrastruc-
ture that allows management, query, sharing, and integration of information via 
machine interpretable semantic representations. Along with enabling tools and 
middleware infrastructures, standards for representation and storage of semantic 
information have been developed over the years, including the Resource Description 
Framework (RDF) (RDF 2009), RDF Schema (RDFS) (RDFS 2009), and the Web 
Ontology Language (OWL) (OWL 2009). RDFS and OWL are ontology languages, 
which enable greater functionality for expressing domain knowledge in machine 
interpretable form.

Domain knowledge and semantic information are critical components in all of 
the example templates. Multiscale integrative studies, for example, aim to model 
genomic expression, protein interactions, cellular structure, and other phenotypic 
observations as interrelated functions of biological systems. It is desirable to 
express data collected and referenced in such studies using ontologies that repre-
sent the domain knowledge. As we stated earlier, the prospective pattern template 
also has a huge semantic scope; there is a vast span of possible diseases, treat-
ments, symptoms, and radiology and pathology findings in imaging-based studies. 
Semantic Web technologies can be employed to express, manage, and integrate 
information using ontologies so that the interrelationships can be captured and 
represented in a biologically meaningful framework. In addition to facilitating 
semantic exploration of data, semantic Web technologies can enable semantic 
interoperability of heterogeneous resources as well as more efficient discovery of 
resources in a distributed environment. In caGrid, for instance, services register 
metadata about themselves to the environment (using the caGrid Indexing Service). 
This metadata can contain terms from controlled vocabularies. The caGrid 
discovery application programming interfaces allow searches on these terms, 
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enabling semantic discovery of services – a client may search for services that 
manage “Gene” data, for example. The Neuroscience Information Framework 
project makes use of semantic Web technologies to support representation and 
discovery of neuroscience research resources, including data sources and tools, 
hosted at different institutions (Gardner et al. 2008; Gupta et al. 2008). The myGrid 
project (Stevens et  al. 2003, 2004) implements a suite of tools and middleware 
components, based on semantic Web technologies, that allow researchers to 
discover bioinformatics services and compose them into bioinformatics analysis 
workflows.

A possible implementation of the multiscale integrative investigation template 
example (see Sect. 4.2.1) using the architecture approaches described in this section 
is illustrated in Fig.  4.3. In this example, caGrid is employed as an example of 
software infrastructure based on Grid computing, SOA, MDA, and Semantic Web 
technologies. Grid computing technologies enable access to remote resources 
across multiple administrative domains (Institutions A, B, and C). The implementa-
tion employs an SOA approach: TCGA, Rembrandt, and Vasari datasets are acces-
sible as data services with well-defined service interfaces; similarly, datasets 
generated locally at each institution, databases of analysis results (bioinformatics 
results and image annotations), as well as bioinformatics and image analysis methods 
at collaborating institutions (Institutions A, B, and C) are all exposed to the envi-
ronment as services. In order to ensure interoperability among these services, the 
data models used by the services are harmonized and registered in the MDA 
components such as caDSR, EVS, and GME. Each service advertises itself to the 
environment by registering service metadata, which includes information about 
where the service is hosted, the contact information about the service provider, 
which data models the service exposes, etc. Since the metadata can contain terms 
from controlled vocabularies, the discovery of services can be done using this 
semantic information. Grid security services can be used by a service provider to 
enforce authentication and access control policies to restrict access to a service (see 
Chap. 5). Grid-enabled clients can discover services and submit federated queries 
across multiple services or execute workflows involving multiple data and analyti-
cal services.

4.4 � Conclusions

A critical factor in the advancement of cancer research is the efficiency with which 
clinical, imaging, molecular, and tissue data can be integrated, disseminated, and 
analyzed both within and across functional domains. Informatics systems supporting 
cancer research studies need to address several challenging issues arising from 
common requirements of research patterns. Systems integration architectures 
developed by the information technology community have potential to facilitate 
better interoperability of heterogeneous resources and enable more effective and 
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efficient utilization of disparate data and analytical resources. Shared domain 
semantics manifested as published information models, common/controlled termi-
nologies, and standards for data type bindings are clearly at the heart of interoper-
ability. Harmonization of security and policies is another important element in 
resource sharing and federation. Moreover, tools and services are needed to enable 
efficient mappings between different messaging standards, controlled vocabularies, 
and data types associated with many communities and between different messaging 
and resource invocation protocols. We believe that additional research and develop-
ment in these and other areas such as interoperability between systems building on 
standards developed by different communities will further promote and facilitate a 
wider use of information technologies in science, biomedicine, and engineering.
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Abstract  Federated Authentication and Authorization is an emerging technology 
with the potential to facilitate seamless access to information from a variety of 
providers. Within this chapter we summarize the key concepts, technologies, protocols, 
and national and even international structures that are being developed to support 
federated security. We start with the environmental drivers that are stimulating this 
technology to develop. We then discuss two major approaches to federated security: 
those based on assertion-based identity and assurance and those based on public 
key infrastructure. In the second part of the chapter, we discuss the three major 
components required for development of federated authentication systems: the repre-
sentation of identity in cyberspace, the manner in which credentials or identity tokens 
are made available to users, and the required governance processes supporting these 
concepts. The chapter concludes with a brief overview of the emerging national-scale 
infrastructure in the form of identity federations, and we present a brief background 
on these initiatives and the tools and local infrastructure required for joining them.

5.1 � Introduction

The topic explored in this chapter is federated authentication, which we define as 
the ability of a person or entity to rely on, at a particular level of trust, the identity and 
associated identity metadata asserted by a second entity. The situation is not limited 
to two-party arrangements; identity federations can be quite large, incorporating 
millions of individuals from hundreds of different companies and institutions. 
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Although this chapter treats a topic in computer security, note that it is neither a 
general treatise on information security, nor is it intended as a primer for com-
puter or network security in general.

There are a variety of reasons to use common, well-defined legal and technical 
architecture strategies to allow authentication and authorization practices and tech-
nology within and between academic medical center settings. Current models of 
authentication and authorization have been developed for specific use cases or nar-
row areas of focus that, almost exclusively, have been concerned with the security 
needs internal to one organization or corporate structure. While these mechanisms 
have been reasonably effective within the domains in which they have been devel-
oped, to date a comprehensive consideration of an optimal security model to sup-
port collaboration across the broad academic medical community has not been 
done. Such an effort involves consideration of the scientific and clinical workflows 
that routinely occur between institutions and the development of structures – technical, 
legal, and procedural – to support these exchanges in a repeatable, scalable, and 
secure fashion.

Development of a multi-institutional common model of authentication and 
authorization structures would allow teams of clinicians and scientists working 
either between or within institutions to exchange data and research results easily 
and effectively in a secure and well-controlled fashion, with the potential to meet 
the needs of the research, patient, bench science, regulatory, and adminis-
trative communities (see Chap. 9 for a discussion of the caBIG® initiative as an 
example). It would enable the development of workflows that cross institutional 
boundaries, resulting in increased laboratory throughput, particularly for team-
based science initiatives such as those emerging from the NIH Clinical Translational 
Science Awards (CTSA) community. Development of a well-defined common 
model agreed upon by the academic medical community and one which is 
congruent with similar trends in broader academia and government will facilitate 
the use of national and even international scale shared resources, such as the 
TeraGrid [http://www.teragrid.org], at the local, state, and national scale. Taken 
together, these factors would facilitate clinical and basic research by providing an 
agreed infrastructure for securing clinical data exchanges with the research 
community.

Two use cases serve to illustrate these points and the type of research and 
complex informatics environment we find ourselves in today.

Use Case #1: A cancer center has developed a partnership with a major pharmaceutical 
company to share tumor tissue and clinical data associated with each tumor. To achieve 
the numbers of tumors required by the project, the cancer center is partnering with several 
other sites to collect tumors and the corresponding clinical data. An Institutional Review 
Board (IRB) has approved the protocol to allow for dates (patient visit date, treatment 
date, drug release from pharmacy date, lab test dates, perhaps gathered in an electronic 
medical record as described in Chap. 2) to be released as part of the clinical data to the 
pharmaceutical company. The cancer center is acting as a clearinghouse for the data transfer 
between the tumor collection site partners and the pharmaceutical company. Additionally, 
the pharmaceutical company is performing genomics testing on each tumor sample and 
research data is being transferred to the cancer center for data distribution to local and 

http://www.teragrid.org


935  Federated Authentication

partner researchers (the data warehouse, see Chap. 3). The data warehouse will distribute 
data based on the number of tumors that each tumor collection site has contributed to the 
project while the pharmaceutical company will have access to the entire deidentified data 
(that will include dates) and the cancer center will be able to access the entire dataset.

Use Case #2: A researcher wants to collect all microarray data available from all collabo-
rating centers involved with a particular project from patients with bladder or ovarian 
cancer that were part of any clinical trial protocol using cisplatin within the past 5 years 
(which could be stored in laboratory information management systems as described in 
Chaps. 13 and 14). In addition, the researcher wants to know all available tissue samples, 
cancerous and noncancerous (normal) tissue localized within 10 mm of tumor site from 
this patient group such that she/he can perform Affymetrix gene expression studies to 
include with previously performed studies that were identified by the query. Finally, the 
researcher needs all the data for any severe adverse events for the group of patients identi-
fied that had a severity rating of 3–4 and are likely linked to cisplatin administration (see 
Chap. 2). The query would be one or a series of federated queries across multiple institu-
tions, clinical and research databases, or data warehouses (potentially using grid technol-
ogy as described in Chap. 4). All data needs to be deidentified and the results would be sent 
back to the researcher as an aggregated report that contained the information needed to 
request expression data, tissues samples, and clinical data. Data would then be analyzed 
using statistical techniques, potentially using a pipeline (see Chap. 6).

Both of these examples highlight the difficulty of securely transferring data 
between teams of scientists, clinicians, and other individuals working across 
institutional boundaries. For information and materials to be reliably and 
securely transferred between the different parties, a number of key facts about 
the actors involved must be established. Such an analysis shows that there are 
more actors involved in each of these use cases than is originally apparent. 
Consider what is needed to uniquely identify a given investigator who is part of 
the project, say a “John Smith,” and for the moment, remove technology from 
the picture and consider just a paper-based world. Even in this simple world, to 
grant a request for information using the protocol outlined in use case 1, above, 
we would need to know the following facts; that Dr. Smith is in fact who he says 
he is (the binding of real, physical individual with a name), that he works where he 
says he does (assume he works at one of the partner sites of the cancer center), 
and that one or more IRB’s have approved the protocols under which he is 
requesting.

As can be seen from the above, the two related processes of authentication and 
authorization involve the retrieval and analysis of information documenting the 
occurrence of a series of prior mandatory manual steps. These steps include the 
establishment of trust via common policies, procedures, and contractual agree-
ments between the various parties; definitions of the level of trust needed between 
the parties; appropriate mechanisms for vetting or otherwise establishing the physical 
identity of the subjects in question; and well-defined and unambiguous definitions 
of the criteria needed to allow a given subject access to a given resource. 
Specifically, when an organization allows access to a system based upon a database 
entry in their database that says person (or possibly, system) X satisfies criteria Y, 
this works because they trust the manual steps necessary to get that entry into the 
database. It is not the information in the database that matters for this trust, but the 
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assurance that the manual process for putting it there is correct and is accurately 
executed. If one fails to recognize that, then one is likely to make the mistake that 
equivalent information from a different database will be (or should be) adequate for 
granting automatic access – it will not be, and never will be, unless there is equal 
knowledge of, and trust in, the associated manual processes.

All these highlight the need to reach consensus on a variety of topics, both 
technical and nontechnical, before such an infrastructure can be effectively 
employed. Elements of this infrastructure include development of a common trust 
fabric,1 the development of common naming conventions for institutions involved, 
common definitions of roles, titles, and practice credentials (such as RN, LPN, 
CCRP, etc.), and the legal, policy, financial, and governance structures to support 
the effort.

Later sections of this document discuss aspects of the governance, legal, and 
technical implications of choosing such a course of action. We also review the 
existing efforts in developing common models of authentication and authorization 
practices for use in the academic community.

5.2 � Cross-institutional Authentication and Authorization

Increasingly, collaborative tools and other “shared” information resources located 
at specific institutions require user authentication and authorization for access. 
However, since many collaborators wishing to utilize these restricted resources 
may not be affiliated with the hosting institutions, the question arises as to how 
these external potential collaborators should be identified, authenticated, and 
authorized to use these resources. This is problematic because few individuals 
have authentication credentials and other digital identities that can be recognized, 
evaluated, and trusted by information systems hosted by multiple organizations. 
This results in the implementation of a variety of chaotic and duplicative identity-
management work-arounds that are frustrating for users, are inefficient to manage, 
and are often insecure.

In the physical, or non-cyber world, we authenticate the physical identity of 
another person we meet by using our five senses – usually by sight and sound. 
When someone we never met comes into the range of our senses, we mentally 
register his or her physical appearance. Depending on how soon and/or often we 
subsequently see the person, we may develop a mental image of the individual and 
hence are able to recognize that person with considerable confidence upon seeing 
him or her again. This process, however, is not infallible. We could fail to recognize 
someone because the individual might grow a beard, dye her hair, lose weight, get 

1 Or perhaps agreed upon mechanisms to allow such fabrics to be negotiated in real time, as this 
is an emerging area of research.
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older, or we might have memory loss regarding previous encounter(s). Or, we might 
falsely “recognize” the identical twin of the intended person.

We now need to extend our physical beings into the cyber world such that each 
of us has one or more virtual existences that can be at least as easily recognized 
(i.e., authenticated) and trusted in cyberspace as our physical appearance is in the 
face-to-face world. This virtual existence must be readily recognizable and trusted 
at defined levels of assurance by both humans and digital information systems. This 
can be accomplished by establishing an identity management infrastructure (IdM) 
that spans across institutions. This infrastructure provides individuals with authen-
tication credentials and digital identity profiles that dynamically permit the forma-
tion of trusted relationships not only among people, but also between people and 
digital information systems and among digital information systems themselves.

Currently, no generally accepted identity management infrastructure exists to sup-
port large-scale, cross-institutional collaboration where various aspects of each col-
laborator’s identity and documented attributes must be known and trusted, although 
attempts are being made to develop such infrastructure in the caBIG® project 
(Langella et al. 2007 and Chap. 16). Such a common infrastructure is indispensable 
when authentication, authorization, utilization of digital signatures, information 
integrity, and individual accountability must dynamically occur across institutional 
boundaries and among large numbers of relying parties. Operationally, electronic 
transactions requiring knowledge of personal identities must be appropriately secure 
and protect privacy, but be virtually as easy to use as public Web pages. However, 
since most individuals have not experienced such an environment, many have trouble 
appreciating why this is required and envisioning the resulting benefits.

5.2.1 � Identity in Cyberspace

There are two necessary and distinct aspects of a person’s identity in cyberspace:

1.	 Physical identity. Each participating human being must be vetted, assigned a 
globally unique, persistent identifier, and credentialed by a credentialing author-
ity (CA). The authentication credential issued to a vetted physical person must 
be designed such that it can only be activated by that individual.

2.	 Personal identity attributes. It must be possible to verify certain key attributes of 
each authenticated physical person, so that attribute-dependent authorization can occur. 
These attributes often change over time and so must be capable of real-time veri-
fication from sources that are trusted to be both accurate and current. Validated 
data are verified by one or more sources of authority (SOAs), maintained in sys-
tems of record (SORs), and often distributed by trusted attribute authorities 
(AAs) to approved requestors.

Within institutions, the management of verified identity and verified attributes is often 
handled through similar or identical processes in the HR or security department. 
Because these are so effectively conflated within institutions, people often have great 
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difficulty conceptually separating the process of authenticating a person as a physical 
entity vs. determining the personal attributes of that person needed for authorizing 
specific privilege(s). Yet such a separation is required in a federated environment.

1.	 Authentication of physical identity is a process whereby every time relying par-
ties receive the same authentication credential, the relying parties can trust at a 
defined level of assurance (LOA) that the certified physical person is actually the 
individual presenting the credential.

2.	 Authorization is the process whereby a relying party determines if an authenti-
cated physical person has the appropriate attributes to be qualified to conduct 
specific activities, to qualify for access to specific resource(s), etc.

5.2.2 � Federated Authentication and Authentication Credentials

The concept of an “authentication credential” as used above is crucial to authenti-
cating a claimant’s physical identity across organizations. An “authentication 
credential” must minimally provide the following functions and information:

1.	 It can only be activated by the certified person to whom it was issued
2.	 It positively identifies the certifying authority (CA) – that is, the credentialing 

authority
3.	 It positively identifies the physical claimant – that is, physical identity is vetted 

by the CA
4.	 It provides a certified globally unique identifier issued to the vetted individual 

and registered with the CA
5.	 It asserts a defined LOA that the credential is presentable only by the physical 

person it authenticates

Authentication credentials must be issued by trusted credentialing providers (CPs), 
also referred to as certifying authorities (CAs) or credential services providers 
(CSPs). These credentialing authorities must follow well-defined and mutually 
agreed upon policies and procedures.

Figure 5.1 illustrates the basic process that a credential provider must follow to 
identity, register, and credential a person.

1.	 A person presents him/herself, either virtually or physically depending on the 
LOA to be asserted, before a credential provider (CP).

2.	 The CP vets the person’s physical identity according to explicitly defined levels 
of assurance (LOA) polices and procedures. (Note that at low levels of LOA, 
“physical identity” may be inferred from online and “out-of band” exchanges of 
“private” information between a CP and the person being vetted and not explic-
itly confirmed by direct physical contact between the CP and the claimant.)

3.	 The CP validates any required personal attributes (e.g., date of birth, legal name, 
etc.) required by policy, assigns an ever-lasting CA-specific identifier, and 
records this information in a person registry.
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4.	 The CA, according to explicitly defined policies and procedures, issues to the 
person a strongly bound authentication credential that has a specific LOA.

5.	 The CA must have well-defined policies and procedures for revoking an issued 
credential.

6.	 The CA must have well-defined policies and procedures for credential renewal.
7.	 The CA must provide an online process for checking the status of a credential, 

for example, whether the credential is valid, revoked, or expired.

The exact details of these steps that must be followed by all CAs vary from federa-
tion to federation, but they are spelled out in the policy and procedure documents 
and in general will follow the above outline.

5.2.3 � Significance of Federated Authentication Credentials

It is important to realize that a digital authentication credential has far more 
functionality than the traditional application-specific username/passwords issued to 
individuals. A person having a federated authentication credential can use that 
credential to initiate de novo interactions with relying parties – both people and machines. 
In the new collaborative milieu within cyberspace, millions of intertwined people 
and digital systems must safely “introduce” themselves to each other when they 
need to meet and appropriately interact – not all that unlike face-to-face meetings 
in the non-cyber world. Widely trusted authentication credentials enable these just-
in-time introductions.

Functionally, in a federated collaborative context, the following can occur:

1.	 Every physical person has a single, certified authentication credential with a 
permanent personal digital identifier issued by a credentialing authority. (The 
requirement that every physical person have a single, permanent personal digital 

Fig. 5.1  Certifying/credentialing authorities
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identifier argues strongly in favor of third-party-issued credentials and strongly 
against employer-issued credentials. If credentials are issued by employers, then 
whenever a person changes employment he/she must obtain a new credential, 
thereby violating the requirement of a single, permanent identifier.)

2.	 All relying parties, both persons and digital information systems, trust the certi-
fied credentials issued by the credentialing authorities

3.	 Relying parties “know” a physical person by the certified authentication identifier.
4.	 Every person can authenticate their physical identity to any relying party willing 

to “trust” a credential. (Remember that authentication does not itself generally 
grant access, and an authentication credential likely provides few if any personal 
attributes other than the assigned personal identifier.)

5.	 A relying party, if permitted, obtains specific required personal attributes of an 
authenticated person from certified SOAs.

6.	 If the obtained personal attributes meet conditions specified by a relying party, 
the authenticated person is trusted and privileged.

7.	 To protect individual privacy, personal attributes of an identified physical person 
can only be released to specific relying parties if approved by the authenticated 
person and/or by legal agreement.

Figure 5.2 illustrates a situation where an individual affiliated with Institution A 
must access a restricted service provider (SP) at Institution B. The requestor has 
never attempted to access the resource before. Since both institutions are members 
of the same identity federation, the following can occur:

1.	 The requestor presents her federated authentication credential issued by institu-
tion A to the service provider (SP) hosted at institution B.

2.	 The SP authenticates the requestor using her credential and accepts the person’s 
certified identifier – that is, the SP now recognizes the physical identity of the 
claimant.

Fig. 5.2  Access across institutional boundaries
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3.	 The SP follows a defined authorization process to determine if the authenticated 
and identified individual has the proper personal attributes to be granted appro-
priate access to the system.

4.	 Access is authorized for specific privileges only after the SP has somehow deter-
mined that the authenticated physical person has the required personal attributes.

5.2.4 � Federated Credential Providers

Academic institutions must decide how they will provide federated authentication 
credentials to their faculty, staff, students, and possibly other affiliates such that 
they can be authenticated by relying parties at other institutions. Since there is 
not a single, centralized authentication credential provider (CP), institutions are 
currently faced with the following choices:

1.	 Implement one or more credential providers at each institution
2.	 Use an external, possibly commercial, credential provider to issue authentication 

credentials
3.	 Utilize some combination of the preceding two choices

Most institutions today have implemented an internal identity management (IdM) 
infrastructure that allows physical and attribute identity to be managed. This in turn 
may support single sign-on (SSO) authentication within an institution so that each 
user has a single authenticator such as a password or a one-time password device. 
Once used, the authenticator grants access to multiple restricted information 
resources until the user signs off. These IdM infrastructures in most cases were not 
designed to provide users with authentication credentials that could be used to 
authenticate their physical identity across organizational boundaries. However, 
these infrastructures may be refined to adhere to specific federated policies and 
procedures and to implement technologies that support management and use of 
authentication credentials across institutions. Some institutions may decide that 
they do not have the resources to become credential providers and instead chose 
to use authentication credentials issued to individuals by an external credential 
provider (CP).

In order for relying parties to “trust” authentication credentials issued by 
multiple credential providers, the credential providers must adhere to well-defined 
policies and procedures that are known to and verifiable by the relying party. 
To accomplish this goal, identity management federations comprised of member 
organizations are forming in which the membership defines and agrees to follow 
specific policies and procedures. Section  5.5, entitled Emerging National 
Infrastructure to Support Federated Identity and Anticipated Impact on Research 
Organizations, examines the current state of supporting policy and assessment 
frameworks currently being used and built upon by the United States Federal 
Government and several large-scale identity federations.
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Figure 5.3 depicts three institutions, a commercial service provider, a commercial 
credential provider, and three credentialed persons. The institutions and the two com-
mercial entities are all members of a single identity management federation. 
Institutions A and B implemented institutional credential providers, whereas Institution 
C does not have an institutional CP. Instead, institution C requires its personnel to 
have authentication credentials issued by the commercial credential provider. 
The three institutions and the commercial service provider (SP) all host restricted 
information resources that accept federated authentication credentials issued by the 
three CPs. The directed lines denote that the three individuals have presented their 
authentication credentials to various resources, all of which in turn have authenticated 
the individuals and identified their physical identities, that is, they have accepted their 
certified unique identifiers. However, the figure does not indicate if the successfully 
authenticated individuals have in fact been authorized for access.

Systematic use of federated identities is still in its infancy. Therefore, there is 
still some discussion about whether it is best for institutions to implement internal 
credential service providers and issue their own authentication credentials or to 
utilize credentials issued by external, commercial providers. However, as noted 
above, the use of employer-provided credentials must, over time, result in a violation 

Fig. 5.3  Hybrid local and commercial credentials
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of the goal of every person having one and only one permanent digital identifier to 
be used in the federated environment.

Despite the stability advantage of third-party credentials, the initial trend is for 
many universities to establish their own CPs, since this more closely matches their 
traditional methods. Clearly, the technical, policy, and procedural aspects of operat-
ing an institutional CP are resource intensive. Thus, several institutions, particularly 
smaller organizations are considering utilizing commercial CPs. Because of this, 
some IdM federations are considering accepting commercial CPs as federation 
members.

A quick examination of Fig.  5.3 illustrates the problems associated with 
employer-issued credentials. For example, if the person credentialed by Institution 
A moved to Institution C, then he would lose his Institution A credential and be 
issued a new authentication credential from the Commercial CP. That physical 
person would no longer be recognized by the IRB Protocol Management System 
hosted by institution A, nor the Pre-grant Award System hosted by the commercial 
SP or the LMS Application hosted by Institution B, because he now has a different 
authentication credential and associated unique identifier. Also, the credential pre-
viously issued by institution A is no longer guaranteed to be currently associated 
with an appropriately vetted individual. This loss of association could lead some 
institutions to reuse the now released identifier, creating even more problems in the 
federated environment.

5.2.5 � Authorization

Service providers (SPs), as noted in Fig.  5.2, can implement authorization (i.e., 
privilege management) in multiple ways. Some SP applications may have an inter-
nal role-based system with an associated administrative interface that administra-
tors use to manually assign roles/privileges to physically recognized persons. These 
administrators must determine from “trusted” SOA if authenticated physical per-
sons have the appropriate personal attributes to be authorized for specific access 
privileges. In order to accomplish this, an administrator must somehow know an 
individual having a certified unique identifier is the same person for which one or 
more SOAs are providing personal attribute information.

Other SP applications may implement automated authorization by interfacing 
with attribute authority (AA) systems and/or other “trusted” systems of record (SOA). 
This allows the SP application to query an approved SOA if an authenticated indi
vidual has the appropriate personal attributes required to be granted specific 
privileges. In some case, an SP may need to query attribute authorities at multiple 
institutions. Note that without permanent, globally unique digital identifiers for 
individuals, obtaining trustworthy attribute information from third-party sources 
will be extremely difficult, if not impossible.

Figure 5.4 illustrates autoprovisioning of a learning management system (LMS). 
In this case, successful authentication of a physical person leads to automated 
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authorization resulting in the claimant being granted access with appropriate 
privileges. The following context applies:

1.	 Claimant requesting access is credentialed by a commercial credential provider.
2.	 The LMS is hosted by Institution B.
3.	 The personal attribute source of authority and attribute authority is hosted by 

Institution C.
4.	 Claimant presents his authentication credential to the LMS.
5.	 LMS authenticates the claimant and obtains the certified unique ID from the 

credential.
6.	 LMS sends an attribute request to the AA to determine if the claimant has enti-

tlements for roles and hence access to the LMS.
7.	 The AA sends an entitlement attribute for the claimant indicating, for example, 

a coordinator role for a specific collaborative working group.
8.	 The claimant is granted access with the coordinator role.

This example clearly indicates the importance of a permanent, unique identifier 
obtained from an authentication credential in the authorization process. If the source 
of authority (SOA) “knows” the physical identity of the claimant by an identifier 
different from that in the authentication credential, the automated authorization and 

Fig. 5.4  Autoprovisioning of identity into applications
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subsequent granting of access cannot occur. Thus, it is critical that authorization 
polices and procedures ensure that personal attribute profiles maintained by SOA for 
a specific physical person are truly the profiles belonging to the authenticated person. 
Otherwise, the wrong personal attributes will be sent from attribute authorities to 
relying parties. It is equally critical that the digital personal identifiers used as “keys” 
to retrieve the personal attributes be permanent and globally unique.

Privacy protection demands that personal attributes of an identified individual be 
sent to requesting applications and other relying parties only if the identified person 
has formally consented to the release of those specific attributes or if legal require-
ments specifically permit or require their release. When appropriate, applications 
and workflows can be created that enable an authenticated person to be asked 
to electronically sign a consent statement for the release of specific attributes to 
specific relying parties.

5.3 � Emerging Authentication and Authorization Technologies

Up to this point, the discussion of identity, identity management, authentication, and 
authorization has focused on high-level functional requirements for a cross-institutional 
IdM infrastructure. The National Institute of Standards and Technology published 
NIST Special Publication 800-63 version 1.02 entitled Electronic Authentication 
Guideline (Burr et al. 2006), which provides specific technical requirements for the 
issuance, management, and use of authentication credentials. This and other related 
documents are covered in the later sections of this chapter. As a result of these docu-
ments, authentication credentials are progressively being viewed as falling into four 
levels of assurance – Levels 1–4, proportional to the consequences of the authentica-
tion errors and misuse of credentials. As the consequences of an authentication error 
becomes more serious, the required LOA increases.

5.3.1 � SAML

Authentication credentials having levels of assurance (LOA) 1 and 2 are assertion-
based credentials that use network transmitted passwords (i.e., password tokens) as 
authenticators. One emerging standard for transmitting such assertions is the Security 
Assertion Markup Language (SAML) created by the Organization for the Advancement 
of Structured Information Standards (OASIS). SAML 2.0 [http://saml.xml.org/saml-
specifications] is an XML standard used to exchange authentication credentials and 
authorization attributes between an identity provider (IdP) (i.e., a producer of asser-
tions) and a service provider (i.e., a consumer of assertions).

A credential provider, wishing to assert Level 1 and/or Level 2 authentication 
credentials and/or specific personal attributes for persons it certifies, implements an 
identity provider (IdP) that uses SAML. At the request of a credentialed individual, 
the IdP sends SAML identity assertions to a service provider. The service provider 
then uses the information received to make access decisions.

http://saml.xml.org/saml-specifications
http://saml.xml.org/saml-specifications
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5.3.2 � Shibboleth

Shibboleth [http://shibboleth.internet2.edu/] is a SAML-based, open-source imple-
mentation of an infrastructure for federated identity-based authentication and 
authorization that was developed as part of the Internet2 Middleware Initiative. It 
provides both identity provider (IdP) and service provider (SP) components.

The basic Shibboleth components are illustrated in Fig.  5.5. In this example, 
Institution A is an authentication credential provider and issues authentication cre-
dentials to its affiliated personnel. It uses a Shibboleth IdP to assert both the authen-
tication credential and specific personal attributes for an authenticated user to an LMS 
hosted at Institution B. The following are the basic functional steps in this process:

1.	 The credentialed user contacts the Shibboleth protected LMS.
2.	 The Shibboleth SP redirects the user to the Shibboleth discovery service.
3.	 From a menu provided by the discovery service, the user selects his institutional IdP.
4.	 The IdP prompts the user for a username/password, authenticates the user, and 

sends his authentication credential to the Shibboleth SP.
5.	 The SP sends an attribute request to the IdP, which in turn returns the specific 

personal attributes to the SP.
6.	 The user is then granted access to the LMS with appropriate use privileges.

Fig. 5.5  Shibboleth

http://shibboleth.internet2.edu/


1055  Federated Authentication

Current Shibboleth implementations do not permit an SP to request and receive 
personal attributes from IdPs other than the IdP which asserted the authentication 
credential. Thus, an SP cannot aggregate personal attributes belonging to an 
authenticated physical person from other sources of authorities using the Shibboleth 
infrastructure. If additional personal attributes are required, they must be manually 
entered in the protected application or automatically obtained via a non-Shibboleth 
data exchange.

Shibboleth is the most widely used authentication/authorization infrastructure 
currently employed by academic institutions worldwide for cross-institutional 
collaboration.

Authentication credentials having Level 3 and Level 4 assurance levels (LOAs) 
cannot use network transmitted passwords as token, but instead must use crypto-
graphic tokens – for example, certified private/public key pairs with X.509 
certificates.

5.3.3 � Grid Authentication/Authorization Infrastructures

While not directly discussed in this chapter, grid computing in the sciences is 
becoming an important topic in many e-Science projects (see Chap. 4). Projects 
such as Enabling Grids for E-Science in Europe (EGEE) [http://www.eu-egee.org/] 
and the Cancer Bioinformatics Grid (caBIG®) [https://cabig.nci.nih.gov/] (see 
Chap. 9) in the USA, make use of grid computing frameworks such as the Globus 
Toolkit (Foster 2006). The Globus toolkit contains a variety of components to 
enable identity sharing across institutional boundaries. Further, the grid community 
in general has established a framework, the International Grid Trust Federation 
[http://www.igtf.net/], consisting of four member Policy Management Authorities 
representing various geographic regions. These organizations serve to coordinate grid 
certificates and access to allow interoperation between various grid projects worldwide. 
In addition, the caBIG® project has developed specific infrastructure to coordinate 
trust and multiple levels of authority across a data and computation grid (see 
Chap. 16).

5.3.4 � Authorization Across Institutional Boundaries

Authorization involves establishing that currently valid information about a per-
son’s membership (university employee), role (clinical faculty), attributes (MD), 
credentials (Board certified in Pathology), or other significant qualifications 
(currently NIH-funded) meet predefined criteria for access to an information system. 
Systems serving dozens of users have successfully relied on manual authorization 
procedures. But as a resource becomes open to hundreds or thousands of users, it 
can become advantageous to automate the authorization step.

http://www.eu-egee.org/
https://cabig.nci.nih.gov/
http://www.igtf.net/
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Automating authorization is straightforward when one database holds all the 
necessary information about all people who can possibly use that resource. Systems 
operating strictly within the scope of one organization, for example, employee 
electronic time sheets, might only need to consult one database, HR/Payroll, 
to determine whether an authenticated individual needs to track his or her 
work hours.

A system intended for access by employees at any one of the several organiza-
tions might need to consult databases at those or other organizations to validate that 
an authenticated person’s qualifications meet stipulated criteria. An example of this 
might be a clinical research database. Prospective users must demonstrate employ-
ment in a clinical department at an accredited medical school, hold an MD degree, 
be board-certified in pathology, and be the PI on an active NCI grant before receiving 
access to this resource. Several databases located at independent SOAs (university, 
board certification registry, NIH, etc.) may have to be consulted before these criteria 
could be automatically verified.

Many formal and ad hoc research collaborations will be created in coming years. 
If there is any hope for interoperability among them, it will be necessary to estab-
lish standards and governance processes to define which attributes a particular SOA 
will be trusted to provide, to identify the timeliness of these data, and to provide a 
process for resolving inconsistent information between SOAs. This will be necessary 
before decisions can be made about which SOA to contact for which personal attri-
butes. In so far as governmental SOAs such as NIH are involved in providing 
personal attributes, certain practices can flow from existing interagency and inter-
governmental initiatives (e.g., US Federal Government e-Authentication initiative). 
Other practices now in use by federations of organizations (e.g., InCommon) 
should also provide a shared blueprint for the standards and governance process 
within and between research federations. The governance concept must extend 
beyond sharing identity and attribute information. Scientific data, physical samples, 
and personnel must flow between organizations and federations to achieve greater 
benefits. Because no single governance committee can have sufficient expertise to 
address each of these areas, we expect that subcommittees will evolve for each of 
them and well as others as needs arise.

Ease of maintenance and speed of provisioning services are important properties 
for research systems. Automating authentication and authorization will make 
significant improvements in both. Having met automatically verifiable objective 
criteria such as the one illustrated above, there could be other attributes that cannot 
be inferred from data available from traditional SOAs. Is the person who seeks 
access a research colleague of a previously authorized system user? Is that person 
a recognized expert in their field? If system access is a scarce resource, did the 
person demonstrate sufficiently great scientific need for it? Are they under a sanc-
tion for previous scientific misconduct? Even though such additional attributes may 
be crucial, existing SOA databases may not be capable of representing these facts 
with sufficient detail or currency to meet every need.

Even though manual authorization steps may not be completely eliminated by 
middleware infrastructure, the number of those steps could be substantially reduced 
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by incorporating SOAs into design and operation of research systems that require 
authentication and authorization.

5.4 � Policies, Procedures, and Standards to Ensure the Integrity 
of Research Data and Networks

Careful research requires tracking data from its collection, through its initial pub-
lication and for the duration of its future uses. As the size and lifespan of research 
data sets grow beyond an investigator’s capacity to manage them, the biomedical 
research community looks to central information technology organizations for 
help. Building systems that assure data integrity, availability, and interoperability 
is challenging not only technically but also from a policy perspective as well. 
Several of these issues concerning the use of collaborative tools and authentication/
authorization were raised previously but policy concerns were not specifically 
addressed. Here, we consider some policy issues that are especially relevant in a 
federated environment.

Systems are composed of technology, processes, and people. Technology 
encompasses the computers, storage devices, and databases linked through a data 
network. To achieve interoperability, each piece of technology must support widely 
adopted standards so that it can easily and unambiguously exchange information 
with other information systems. Process includes the methods used to acquire and 
accumulate research data, the application software that analyzes them, and the 
metadata that allows the data to be indexed, saved, and readily retrieved. Technicians 
who operate the technology as well as investigators who create, use, or reuse this 
information are the people who determine the goals and define the utility of an infor-
mation system. Just as technical standards can assure that data can be transferred 
seamlessly among devices and locations, so policies permit processes and people to 
share information in ways that promote its reuse.

The Data Sharing and Intellectual Capital (DSIC) workgroup of caBIG® estab-
lished policy guidelines for working with cancer research data. They recommend 
assessing four characteristics of a data set to classify its sensitivity: Economic/
Proprietary/IP Value, Privacy/Confidentiality/Security Considerations, IRB or 
Institutional Restrictions, and Sponsor Restrictions. Though crafted with patient 
data in mind, these considerations are a useful model for deciding whether to share 
a data set and in determining the strength of safeguards that protect it. The presump-
tion is that data believed to be less sensitive or valuable will have fewer protections 
and can be made more widely accessible.

DSIC’s guidelines do not address whether others must provide protection to the 
data set once it has been shared. The guidelines are also silent on controlling future 
uses and attribution of any data shared. These are important matters to negotiate 
when deciding why, when, and with whom to share research data. Matters become 
more complex for a research consortium in which researchers from many organiza-
tions contribute to a common data warehouse. If it becomes necessary to negotiate 
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hundreds of data protection and use agreements among a two dozen consortium 
partners, absence of a single commonly adopted agreement will impede research 
progress considerably.

Using the DSIC’s three-tiered classification scheme, a Low level of control 
would require an agreement not to redistribute the data set and to give attribution 
of the original data source; a Medium level would add a nonuse period to prevent 
competing publication or patent claims; a High level might permit data sharing only 
with named colleagues and only for the scope of a joint research project.

We recommend broadening DSIC’s guidelines to address standardizing security 
for data that is shared outside an organization. A common data protection agreement 
might simply stipulate that once transferred, a shared data set must receive a compa-
rable level of physical and technical security. For society to reap the greatest benefits 
from research data sharing, organizations must avoid imposing excessive restrictions 
on data reuse. Too many restrictions could prevent researchers and organizations that 
have limited resources from contributing effectively to team discoveries.

IRBs have the responsibility of protecting the rights and safety of human 
research subjects. They must also assure that investigators take appropriate steps to 
maintain confidentiality of patient information. IRBs can supplement their own 
expertise with that of information technology specialists to assess the adequacy of 
proposed data protections.

A well-accepted way to address privacy concerns when working with patients 
and human subjects is to use deidentified data exclusively. Other forms of research 
data can be highly sensitive if it contains proprietary information, harbors trade 
secrets, or has significant intellectual property value. There may be no way to 
desensitize such data. Therefore, strong data security protections must be afforded 
under a variety of circumstances.

Barriers to automated authentication and authorization were previously dis-
cussed in this chapter. In addition to establishing a process for who may access 
research data collections, investigators and organizations must reach consensus on 
permitted uses of those data. Interinstitutional agreements might deny external 
investigators’ access to a particular set of research data until it is published by its 
creator or until a patent is applied for. Policy decisions like these become more 
complex when they involve a database to which investigators from many organiza-
tions contribute. Questions regarding information ownership and stewardship must 
be resolved for research data sharing to realize its full potential.

People participate in various capacities when creating biomedical research data. 
A laboratory technician or graduate student may execute experimental procedures, 
make measurements, and document observations. A statistician may analyze the 
data and test hypotheses constructed by the investigator. A team of collaborators 
may integrate these data with those from their laboratories prior to submitting it for 
publication. Presumably, all contributors to this project will work with the data to 
produce a high-quality data set. Metadata containing a record of who contributed 
what should be made a lasting part of the data set for two reasons. It can establish 
a pedigree for the data fostering trust in and credibility of it. Professional creden-
tials of personnel relevant to the project can be logged. Metadata will also help 



1095  Federated Authentication

assure proper attribution when the data are reused by someone not part of the 
original team (see Chap. 8 for an introduction to reproducible research methods).

Research data may have economic value separate from its scientific merit. Loshin 
(2002) lists several parties for whom research data has value and urges their inter-
ests to be considered when making decisions about protecting it. Fishbein (1991) 
encourages institutions to state their policies on this value proposition clearly and 
offers useful guidelines for those policies.

Technology, process, and people thus share data ownership, stewardship, and 
management responsibilities that are necessary to make research collaborations 
function well. None by itself can do everything that is required. The three must 
mesh to create the framework that yields a hospitable environment where research 
collaborations can flourish. Until recently, these matters were addressed ad hoc 
within a university or between a few handfuls of organizational partners. As the 
volume of research data, the number of investigators, and the diversity of organiza-
tions rises, one-to-one agreements become unwieldy to execute and enforce. There 
is a need and an opportunity to forge a consensus for common expectations around 
research data sharing.

We recommend organizations build on their existing policies and standards 
and extend them as necessary to address new collaboration challenges. Reconcile 
policies and practices to achieve a broad consensus whenever possible. A lack of 
consensus will slow data sharing, research collaboration, discovery, and the benefits 
that society expects to reap from them.

5.5 � Emerging National Infrastructure to Support Federated 
Identity and Anticipated Impact on Research 
Organizations

We earlier noted that authentication credential providers must adhere to clear, well-
defined policies and procedures when issuing and managing identity credentials. 
Organizations and individuals will only trust credentials from a provider when the 
provider explicitly demonstrates it has adhered to commonly agreed upon standards. 
Even then, additional legal requirements such as liability assumption and indemni-
fication may be required before full trust is extended. Since there is not a “universal” 
single credential provider, as is the case in some countries, identity management 
federations are forming. Within such federations, members agree to adhere to 
specified open standards and/or openly published frameworks.

In December 2003, the Office of Management and Budget published OMB 
Memorandum M-04-04 entitled “E-Authentication Guidance for Federal 
Agencies.” This document defines four levels of assurance, Levels 1 through 4, 
proportional to the consequences of the authentication errors and misuse of cre-
dentials. As the consequences of an authentication error becomes more serious, 
the required LOA increases. Thus, for example, Level 1 requires no identity vet-
ting, whereas Levels 2 through 4 require progressively stronger vetting of identity, 
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stronger credential binding to the identified individual, as well as progressively 
stronger authentication tokens.

In April 2006, the National Institute of Standards and Technology published 
NIST Special Publication 800-63 version 1.02 entitled Electronic Authentication 
Guideline (Burr et  al. 2006). This document provides specific technical require-
ments for tokens (typically a cryptographic key or password) for proving identity; 
identity proofing, registration, and delivery of credentials which bind an identity to 
a token; remote authentication mechanisms, that is the combination of credential, 
tokens, and authentication protocols used to establish that a claimant is in fact the 
subscriber he or she claims to be; and assertion mechanisms used to communicate 
the results of a remote authentication to other parties. Subsequently, the US 
Authentication Identity Federation provided an Authentication Credential Assessment 
Suite [http://www.idmanagement.gov/eauthentication/drilldown_ea.cfm?action=ea_
credsuite] to be used in assessing compliance of a Credential Service Provider 
(CSP) and their Credential Services (CS) to E-Authentication Levels of Assurance. 
This suite consists of the Guide to Preparing for a Credential Assessment; Certificate 
Credential Assessment Profile, v2.0.0; Password Credential Assessment Profile, 
v2.0.0; Credential Assessment Framework, v2.0.0 and the Entropy Spreadsheet, 
v2.0.0.

The Password Credential Assessment Profile evaluates Level 1 and Level 2 
authentication credentials, whereas the Certificate Credential Assessment Profile 
evaluates Level 3 and Level 4 credentials. The reason for the two profiles is that 
assurance Levels 1 and 2 apply to assertion-based credentials that use password 
tokens, for example, Shibboleth SAML assertions, whereas Levels 3 and 4 require 
cryptographic tokens.

In academic medicine, there is a movement toward adopting these federal stan-
dards. The development of the Shibboleth Authentication and Authorization infra-
structure by the Interent2 Middleware Initiative makes the implementation of 
Level 1 and Level 2 authentication credentials relatively easy. The InCommon 
[http://www.incommonfederation.org/] identity management federation is the first 
nationwide US federation for higher education. It utilizes the Shibboleth infra-
structure and it is attempting to adhere to the Level 1 and Level 2 assurance levels. 
The University of Texas System Identity Management Federation is an example, 
where multiple organizations have taken a common approach with success.

The National Institutes of Health announced on August 14, 2007 a Memorandum 
of Agreement (MOA) for interfederation with the US Higher Education’s 
InCommon Identity Management Federation (InCommon). This announcement 
noted NIH’s “goal is for researchers to use their institutional identity credentials 
to authenticate to NIH online applications and services. All NIH online [computer] 
applications have been assessed and assigned one of the four Federal Level of 
Assurance (LOA) identity requirements for authentication.” Subsequently, both the 
NIH Cancer Biomedical Information Grid (caBIG®) and the NIH Clinical 
Translation Science Award (CTSA) Consortium have announced plans to comply 
with the same requirements.

We believe that the embracing of the InCommon Federation by the major scien-
tific funding agencies in the USA, as well as a number of major science awards will 

http://www.idmanagement.gov/eauthentication/drilldown_ea.cfm?action=ea_credsuite
http://www.idmanagement.gov/eauthentication/drilldown_ea.cfm?action=ea_credsuite
http://www.incommonfederation.org/
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have a major impact on research organizations. These organizations will, over the 
next several years, find it convenient, if not necessary, to join the InCommon 
Federation. For this reason, we recommend that research organizations consider 
establishing a Shibboleth Identity Provider (IdP) to assert Level 1 and Level 2 
authentication credentials for at least some of their workforce. In addition, they 
should consider enabling various information resources as Shibboleth-enabled 
Services Providers (SPs) that can accept Level 1 or Level 2 authentication creden-
tials. It should also be noted that a number of institutions are requiring providers of 
commercial software applications to Shibboleth-enable their products. The most 
difficult task for an organization will be implementing an institutional IdP that 
meets the federal assurance standards for Levels 1 and 2. Joining an existing Identity 
Management Federation whose members are collectively working to meet the 
assurance requirements is likely to be easier than doing it all on one’s own. As with 
any auditable process, it will be crucial to have all security-related policies and 
procedures documented. Creating or adopting a complete set of Standard Operating 
Procedures is a critical step in this process.

The NIH MOA with InCommon recognizes InCommon’s Bronze Profile as a 
Level 1 LOA. InCommon’s Silver Profile is designed to meet Level 2 requirements; 
however, not all policies and procedures have been agreed upon for the member-
ship. Institutions that already have a solid institutional Identity Management 
System in place should be able to easily implement and integrate a Shibboleth into 
that infrastructure. If local resources do not permit a locally hosted IdM infrastruc-
ture, consider using a commercial Shibboleth credential service provider. This 
approach can also be used to credential individuals who are not institutional personnel. 
Some IdM federations are considering accepting commercial IdPs as federation 
members in recognition of these needs.

These recommendations notwithstanding, we again note the long-term advan-
tages that accrue when third-party credentials are used. Despite the momentum that 
is growing for InCommon and other federations based on employer-issued creden-
tials, we note that there may yet be a shift toward third-party credentials. If that 
happens, institutions that have made significant investments in federated systems 
that depend upon employer-provided credentials, and which cannot easily be 
retooled to support third-party credentials, may be faced with the need to rebuild 
their security infrastructure. For this reason, we suggest that, whenever possible, 
institutional systems be designed to evolve gracefully in the face of technical and 
social changes in the remote credentialing process.

5.6 � Conclusion

We believe that we have presented a cogent argument for why application designers, 
particularly those building systems to support multi-institutional partnerships, 
should consider the developing or joining existing identity federations. Below we 
present a series of recommendations to assist individuals in developing a strategy 
relevant to their organizations.
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5.6.1 � Prepare for Cross-Institutional Workflow  
and Transactional Data Exchanges

Necessary steps to prepare for this process include developing a strategy for iden-
tity management that recognizes the growing importance of federations and 
extrainstitutional sources of authentication and authorization as part of the process. 
This strategy should closely examine the US Federal Government e-Authentication 
initiative and NIST standards. A central consideration is if the use of digital signa-
tures is required, such as for medical records applications. Digital signatures 
require digital credentials that are based on a public key infrastructure and some 
form of cryptographic key management systems. These measures will likely 
become necessary for maintaining the security and privacy of medical records, 
clinical trials, or other documents. This will evolve from traditional username/
password approaches that are commonly in use.

5.6.2 � Build Directory-Aware Systems

From a technical roadmap standpoint, consider developing a list of core business 
and scientific applications that are “aware” of directory services (such as LDAP or 
Active-Directory). Develop a single point authentication service – at a minimum do 
this for all Web-based applications. New applications that are acquired should be 
required to be aware of directory services, and this should be treated as a high-
priority functional requirement – that is, it should be in the deal-stopper category 
for systems acquisition. Examine existing applications to determine which key 
applications are the important SOA for key information involved in authentication, 
such as employee status. Many campuses have found that there is often more than 
one system involved in such decisions for different groups of individuals, such as 
employees, students, contractors, pool nurses, etc. Developing a list of these key 
applications and documenting the processes involved in provisioning systems with 
this information will allow these systems to be both better controlled and interfaced 
to control and provision the directory services in a more efficient manner.

5.6.3 � Become Familiar with Shibboleth and InCommon

Incorporate Shibboleth capability into the campus identity management infrastruc-
ture. Nearly all emerging federations, including the InCommon Federation, the 
United Kingdom’s JISC, NCI’s caBIG® effort, and a number of European grid 
computing projects have Shibboleth technology at their core. Shibboleth is open-
source software that emerged from the NSF Cyberinfrastructure project and has 
been developed by the Internet2 as part of that effort. Additional components 
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(Grouper, Signet) of that infrastructure project support management of authentication 
and authorization. A number of open-source collaboration platforms are well inte-
grated with this software. Some of these are discussed in the first section of this 
report and are available at the Internet2 Web site. A growing number of enterprise 
software and other application systems are becoming Shibboleth aware as well, as 
the 117 InCommon member campuses (as of September 2009), six research agen-
cies and laboratories (including the NIH), and 42 sponsored participants continue 
to promote adoption of this technology with major providers of commercial soft-
ware to higher education.

Similarly, the underlying protocols for security are based on the use of SAML 
version 2.0. We advise system selection teams to use this as criteria when specifying 
and evaluating technology.

5.6.4 � Adopt Standard Forms for Personal Attributes

Examples of attributes are employee status, date of hire, functional role, or any 
other piece of data deemed important in inter- or intrainstitutional authentication or 
authorization decisions. These and other attributes have been agreed on by InCommon 
and other organizations. They are defined in the InetOrgPerson and EduPerson 
schemas.

5.6.5 � Issues of Incorporation and Governance

We suggest that institutions consider integrating with the Internet2 InCommon 
effort. InCommon is currently working with the NIH, the NSF, and a large number 
of university systems in the USA. Consequently it is evolving into a large identity 
federation geared toward academia. By joining an existing identity federation, 
institutions will enjoy the benefits of a common incorporation framework, common 
policies, common procedures, and common auditing standards. Many of the existing 
identity federations are cross-certifying with the Federal Bridge Certificate 
Authority, which will ultimately allow members of each federation to cross-certify 
with other federations at specific levels of assurance.

A related issue involves how individuals with legitimate need could gain access 
to a federation’s resources if they are not already affiliated with one of its members. 
Some individuals may have valid identity credentials available for use from govern-
ment or other sources acceptable to the federation. InCommon, SAFE-BioPharma, 
and others already have agreements and infrastructure in place to allow this. The 
more difficult issue is how to issue identity credentials to individuals unaffiliated 
with institutions. One approach may be to contract with an outside provider of 
identity credentials.
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A further, more detailed treatment of the topic of governance in federations 
involving academic medical centers can be found in Manion et  al. (2009) and 
Weems et al. (2007).

5.6.6 � Identification of Missing Technical and Infrastructure 
Components Required to Support Academic Medicine  
and Research

Current authentication and authorization efforts, whether conducted locally or between 
institutions, have yet to develop all facets of academic medicine. Chadwick (2006) has 
shown in clinical contexts that authorization decisions may require a computerized 
application to consult multiple SOAs. Some of those SOAs do not yet exist or have no 
standardized form for such information. Further research on these topics and leader-
ship to develop these components through national infrastructure efforts are needed.

Other areas that require effort will be the development of a variety of taxonomies 
and ontologies, which include:

Common forms for institutional names, including their constituent parts.•	
The development of a full spectrum of high-level use cases, analysis to common •	
abstractions, and development of specific role definitions (or attributes) needed for 
nonclinical uses. Note that Health Level 7 (HL7) and the American Society for 
Testing and Materials (ASTM) have already done substantive work on this topic 
in the clinical area that could be extended into the translational and basic science 
research domains.
The development of object class definitions incorporating the roles and attri-•	
butes suitable for use by directory services and interfederations.

The development of these areas is outside the scope of what a single institu-
tion can accomplish. There remains an ongoing need for concerted, sustained 
effort by standards organizations, government, and other stakeholders in this area. 
A further, detailed treatment of the technical implications of governance and infra-
structure needs can be found in Robbins et al. (2007).

5.6.7 � Plan for Change

The development of federated authentication and authorizations systems is a 
dynamic, rapidly evolving area. As we have pointed out above, much current work 
has been based upon extensions to institutional security systems, including the use 
of employer-provided credentials. However, the strong technical and theoretical 
advantages to third-party credentials may yet lead to significant changes in the tech-
nology of federated authentication and authorization. When making investments in 
these technologies, institutions are advised to develop systems that will be forgiving 
if significant changes occur in the underlying technologies and processes.
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Abstract  Data size and flow are rapidly increasing in cancer research, as high-
throughput technologies are developed for each molecular type present in the cell, 
from DNA sequences through metabolite levels. In order to maximize the value of 
this data, it must be analyzed in a consistent, reproducible manner, which requires 
the processing of terabytes of data through preprocessing (normalization, registra-
tion, QC/QA), annotation (pathways, linking of data across molecular domains), 
and analysis (statistical tests, computational learning techniques). The demands 
on data processing are, therefore, enormous in terms of computational power, data 
storage, and data flow. In this chapter, we address some of the issues faced when 
developing a data analysis pipeline for this high-dimensional, high-volume data. 
We focus on a number of best practices important for the implementation of the 
pipeline, including use of software design patterns, tiered storage architectures, 
ontologies, and links to metadata in national repositories.

6.1 � Introduction

With the introduction of GenBank in the 1980s (Burks et al. 1985), the age of large 
data sets began in biological research. The development of automated sequencing 
technologies (Hood et  al. 1987) and the initiation of the Human Genome Project 
(Watson 1990) led to exponential growth in the number and length of sequences 
stored in GenBank, a trend which continues to this day. The data volume quickly 
overwhelmed traditional analysis techniques, leading to the development of a heu-
ristic algorithm capable of identifying similarities in sequences within large data sets 
(Altschul et al. 1990). The combination of large data resources and analysis tools 
capable of identifying patterns in those data revolutionized biological research.
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A similar process in functional genomics began in the 1990s with the emergence 
of microarrays (Schena et al. 1995; Lockhart et al. 1996). The development of this 
technology relied on sequencing, as thousands of genes could be probed for expres-
sion, because their sequences were known and stored in GenBank. With the 
completion of the human genome project, arrays could be refined to match consensus 
sequences and not just expressed sequence tags (ESTs), and specific sequences 
could be designed to probe expression of each gene to minimize cross-hybridization 
with sequences from other genes. This has been followed by the development of 
exon-level arrays designed to determine alternative splicing in expressed genes as 
well.

The list of genome-wide, high-throughput data types continues to grow. Routine 
measurements are now made on single nucleotide polymorphisms (SNPs), methy-
lation states of the DNA, miRNA levels, protein levels, and metabolite levels. 
While protein and metabolite levels remain limited to thousands of species, SNP-
chips are now available that measure a million SNPs on a single chip.

Unfortunately, the analysis required to recover useful knowledge from func-
tional data, such as from microarrays and proteomic measurements, and from SNP 
data is more complicated than for sequencing data. Not only is there the well-
known “curse of dimensionality” due to millions of variables being measured on 
only thousands of individuals, but there are also issues that arise due to the need to 
preprocess the data to remove artifacts.

This chapter looks at the computational issues that arise in running analyses of 
new and emerging high-throughput molecular data. Such data will require the 
development of pipelines linking many algorithms that take raw measurements and 
produce meaningful information useful to clinicians and biologists. We focus on six 
issues: data volume, emerging data types, evolving algorithms, computational 
throughput, summarization and visualization, and interactive analysis. These issues 
drive the requirements for a data pipeline, which we describe in detail and then 
summarize in the conclusion.

This chapter is focused on the overall architectural issues and approaches for a 
data analysis pipeline. It does not address best practices in software development, 
but these should not be overlooked. It is critical that development of the pipeline 
include the standard testing and user feedback, so that the final pipeline fits the 
needs of the users, cancer researchers. It is equally essential that the design incor-
porate best practices of software design as well, since a useable system that does 
not match the computational, statistical, and maintenance needs is equally useless 
to a system that cannot be navigated by researchers and, potentially, more damag-
ing to the overall cancer research effort.

The final pipeline will form part of the overall information systems for a cancer 
research center. As discussed in a recent review and summarized in Fig. 6.1, repro-
duced from that paper (Ochs and Casagrande 2008), a computational pipeline 
interacts with data systems that handle clinical trial information, medical records, 
high-throughput data systems, and potentially an internal data warehouse. In addi-
tion, it must interact with external data and annotation repositories and provide 
access to users, potentially through multiple technologies.
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6.2 � Data Volume

6.2.1 � The Importance of Context

The first issue that arises with the new high-throughput biological data is that the 
volume of data far exceeds that seen even in the sequence databases. While the 
genome sequence is considered stable, even though in cancer this is true only for the 
germ line, the new data types are all strongly context dependent. The methylation 
status, mRNA transcript abundance, miRNA abundance, protein levels and states, 
and metabolite concentrations vary by cell type, time of measurement, environment, 
and other contexts even in perfectly healthy individuals. As such, the database must 
track context, and data for different contexts must be captured and stored, together 
with appropriate metadata. While this raises important issues on annotation (Ball 
and Brazma 2006; Whetzel et  al. 2006), in this section we focus on the problem 
merely in data volume and corresponding data transfer for analysis.
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Fig. 6.1  One potential approach to implementing a data analysis pipeline within a research infor-
mation system is shown, reproduced from (Ochs and Casagrande 2008). The pipeline would 
obtain data from a data warehouse or directly from research systems, it would obtain annotations 
and potentially other data from national resources, and it would analyze this data within a cluster. 
In this vision, visualization is handled by separate specialized computational resources, while in 
the text we assume closer integration in a pipeline. Both approaches have advantages
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There are different approaches for bringing together the data for analysis. 
A traditional data warehouse (see Chap. 3) can be created that brings together a 
subset of the total worldwide available data. Alternatively, data federation can be 
used to bring together data as needed for analysis, as in a grid architecture (see 
Chap. 4). In either case, a large database of either permanent or temporary nature 
must be established to gather the data and metadata. This database needs to be 
accessible by the data pipeline.

The need to bring together large data sets and to transfer this data to systems for 
analysis drives a need for very large data pipes. The connections to both internal 
systems and external systems must support high-speed and high-volume data trans-
port, as even in cases of data warehouses, large amounts of information on annota-
tions for the data will need to be routinely retrieved from national and international 
repositories. For data federation schemes, the data will need to flow consistently 
from remote systems into the analysis pipeline.

6.2.2 � Data Standards

In order to bring the data into a single set for analysis, standards need to be utilized 
to allow search, retrieval, and integration of the data. Searches will require identi-
fication of the appropriate data sets that are associated with the topic under study 
and retrieval of the specific data elements in the sets that can be integrated together 
for the analysis. Identification of data sets will require ontologies and controlled 
vocabularies related to the phenotypes studied in the original experiment, including 
but certainly not limited to disease states, cell types, therapeutics, and protocols. 
Bringing together the different types of data will require establishing relationships 
between DNA locations (SNPs, methylation), RNA transcripts (microarrays, exon 
arrays, miRNA arrays), proteins and their isoforms (protein levels, proteins from 
alternatively spliced mRNAs, post-translationally modified proteins), metabolites 
(products of protein-driven enzymatic reactions), and therapeutics (small molecule 
therapeutics targeted at specific proteins, antibodies, etc.). The list of needed rela-
tions between data types continues to grow as well, and this will become signifi-
cantly greater with modeling efforts.

Fortunately a number of efforts are underway to establish standards for both data 
elements and metadata. For clinical, diagnostic, phenotypic, and anatomic data, the 
Unified Medical Language System (UMLS) provides a single point of integration 
for numerous vocabularies that are now in use worldwide (Humphreys and Lindberg 
1993). Work continues in development of text mining methods that can extract data 
structured with UMLS terminologies from the large medical literature, so the volume 
of annotated data continues to grow. Importantly, the UMLS also provides map-
pings between the vocabularies, so that data encoded with one vocabulary can be 
integrated with data encoded using a different vocabulary.

For molecular data, the ontologies are less mature but are being developed 
rapidly. The Open Biomedical Ontology (OBO) repository hosts well over a hundred 
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ontologies focused on molecular entities, cell types, model organism anatomy, 
pathways, phenotypes, and experimental protocols, to name but a few (Rubin et al. 
2006). Among the most widely used is the Gene Ontology, which provides gene-
based annotations for molecular function, biological process, and cellular location 
(Ashburner et al. 2000). This ontology has been widely used in predicting functions 
for unknown genes and for interpreting the results of high-throughput biological 
experiments. We discuss the encoding of data using ontologies in Sect. 6.3.3.

6.2.3 � Pipeline Data Storage

Overall, the data volume is driven by both the primary data and the metadata 
describing it. Without this metadata, it is impossible to construct a meaningful 
analysis, making a data pipeline useless. The pipeline must be capable of connecting 
the data across these different data types in a meaningful and scalable way. The 
pipeline must handle the data volume flowing into it, perform analyses on this data 
based on the metadata, and present results to the user. Because most data requires 
extensive preprocessing to remove artifacts, it is also useful to include infrastruc-
ture to capture intermediate stages in the analysis, since the intermediate stage data 
are often reused in different analyses. This is an exchange of increased storage 
requirements against reduced computation time. Long-term storage of intermediate 
processed results may also be advantageous for publication and presentation of data 
to the community (see, for example, Chap. 8 on Reproducible Research).

The data storage needs for the analysis pipeline itself should, therefore, be com-
prised of large volume, short-term, maximum speed storage for data actively being 
processed; smaller volume, medium-term, fast storage for intermediate results that 
may need to be accessed for a new analysis or retrieved for archival storage; and 
potentially large, slower storage for results that users wish to retain indefinitely. 
This suggests a tiered architecture, with fiber-channel or similar drives connected 
to the pipeline computational core, RAID disks for medium-term storage, and 
archival disks or tapes for long-term storage. These tiered storage systems can be 
built in-house or purchased with associated retrieval and archiving software simpli-
fying development of analysis tools.

6.3 � Emerging Data Types

6.3.1 � Data Modeling

The rapid advances in technologies for measuring molecular components of the 
cells have led to the explosion in data noted in Sect. 6.2. However, another conse-
quence of this growth has been a rapid rate of change in the types of data that must 
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be captured, annotated, integrated, and stored. This has a direct impact on the 
development of statistical and data mining tools (see Sect. 6.4) and also on the data 
schema and metadata requirements for data management (see Chaps. 2 and 3). The 
traditional approach to data modeling, where all the data elements are identified, a 
schema constructed for a database to house these elements, and that schema nor-
malized to improve stability and efficiency, faces a major difficulty when the data 
types change rapidly and when such changes cannot be predicted.

The rapid change in data types directly impacts the construction of data pipe-
lines as well. A logical first step for any pipeline is data retrieval, typically by an 
SQL query of a database and population of data structures for analysis. However, 
the schema of the database will potentially be atypical, as it will need to be designed 
to address rapid changes in data types. The analysis steps built into the pipeline will 
face similar difficulties, as new data types will require both modification of variable 
structures in the code and development of novel algorithms. This places a require-
ment on the pipeline for great flexibility in the interface to the databases and in the 
establishment of the infrastructure to handle ongoing modifications of core code 
components. If a system is not designed initially with an understanding of this 
issue, maintenance can become overwhelming and the pipeline will quickly become 
either obsolete or highly costly to maintain. This raises a concern with the typical 
academic approach to data analysis tools, which aim to rapidly provide a simple 
tool to the community and then add to it. A spiral design approach such as this 
generally does not produce a tool that can be maintained in a cost-effective manner. 
However, the requirement in grant funding of an established user base encourages 
rapid deployment at the cost of careful design.

6.3.2 � Object Oriented Design and Problems of Encapsulation

The constant need to update data types to reflect technical developments creates a 
significant problem for traditional object oriented design (OOD). An ideal OOD 
encapsulates the data together with the operations (i.e., methods) applied to this 
data. For example, one could imagine a microarray class that had matrix variables 
of mean values and error estimates on those values of the transcript levels of all 
genes across a series of measurements. Operations could include clustering of the 
data, statistical analysis, and output routines. This class might be inherited by 
classes for specific array technologies, such as Agilent, Illumina, and Affymetrix, 
to provide platform-dependent preprocessing of probe level data and conversion to 
gene level data. However, if we now add a data type that has emerged and affects 
gene expression, such as methylation, we may wish to define a gene as including 
upstream methylation status, since this could be needed by some microarray analysis 
algorithms. Thus, every class that requires this data must now include the new gene 
definition and data, requiring modification of many classes with the development 
of each new measurement technology. For microarrays, methylation and SNP data 
extend the “gene” beyond the transcript already.
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One approach to handling this issue is to use design patterns that have been 
developed to address specific issues that arise repeatedly in software design 
(Gamma et al. 1995). One pattern, the Visitor pattern, is particularly applicable in 
this case, and it functions by splitting a typical OOD class into multiple classes, one 
comprising the data and the others comprising methods. The data is passed to the 
method classes by having a data class that contains only a single method (accept-
Visitor), which passes the full data object to the Visitor (i.e., a class defining a 
specific method). Armed with the full data class, the Visitor is then able to use the 
necessary elements and update the class, including writing to a history file stored 
within the class. Updating classes with new data types now has no impact on the 
method classes, which are able to retrieve the data they need. This also simplifies 
addition of methods, which we discuss in Sect. 6.4.

Coupling the Visitor pattern to other features of OOD is particularly powerful. 
A single container class can be populated with many different data types through 
composition (inclusion of a class within another class). These data classes can all 
inherit from the root abstract data class, and thus guarantee implementation of the 
acceptVisitor() method. In addition, each data class can implement the same inter-
face, which handles linking of different molecular types through annotations, pro-
viding a single point that defines all data integration. The container class is passed 
to the Visitor, and a method class can make use of any and all the data types as well 
as know how to integrate them. This structure was the basis of the Functional 
Genomics Data Pipeline prototype (Grant et al. 2004), and a portion of the class 
structure is shown in Fig. 6.2. Here, we expand on the class of proteomics, initially 
focusing only on mass spectrometry. The other classes in the first proposed version 
of the pipeline are also shown at the top right. The microarray data classes were 
fully implemented.

6.3.3 � Ontologies and Controlled Vocabularies

One danger with this data structure is the possibility of “siloed data,” with the silos 
here being data types instead of an individual research data system. The initial 
development of a pipeline may involve a single data type (e.g., microarrays), and 
all tools for analysis and visualization may assume a data structure useful for 
microarrays. Since it is very easy for a programmer working against a deadline to 
hardcode assumptions into the core of a system, it is important to design the struc-
tures early and enforce best practices against the design.

One best practice that can be implemented early and virtually eliminates the 
danger of data silos is the use of ontologies and controlled vocabularies for data 
elements. As noted in Sect. 6.2.2, ontologies provide a series of defined terms for 
describing data elements and relationships between these terms (Rubin et al. 2006). 
Inclusion of ontologies is an expensive prospect, but it has enormous rewards in 
terms of the ability to integrate large data sets and an ability to maintain the value 
of data in the future. Realistically there is a trade-off that is not supported well by 
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the present grant and rewards system, as use of an ontology does not generally 
improve the success of a small focused study, but it does add to its cost. In a scien-
tific version of the “problem of the commons,” there is little incentive for an indi-
vidual researcher to make the effort to use ontologies or controlled vocabularies as 

Fig.  6.2  Example class structures using object oriented programming and design patterns to 
introduce flexiblity into a data pipeline. Here a proteomics class is shown, which inherits from an 
abstract data class that insures implementation of the Visitor design pattern. An interface, 
FGDPLink (not shown), would be implemented by all data classes and would provide a single 
point for annotations and methods for integrating data during analysis. Examples of data integration 
approaches coded in the interface might include simple referencing back to a genomic location to 
combine SNP, transcriptomic, and proteomic data, or complex models linking cell signaling, gene 
expression, and metabolic flux
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it benefits the whole research community (and likely also society) but also introduces 
added costs to the individual.

Assuming that the cost can be addressed, ontologies, or even merely controlled 
vocabularies, can enter the design process early and guide the architect by high-
lighting what data types are generally captured, how they relate to each other, and 
often what community is likely to generate the data types. This can aid in under-
standing and modeling the system dependencies during the design process, leading 
to improved efficiency and an improved likelihood that the system will avoid a 
costly redesign as the project moves forward.

6.4 � Evolving Algorithms

6.4.1 � Data Driving Algorithm Development

While data types being added create one issue, methods are created even more 
frequently. This is most obvious presently in microarray data analysis, where there 
are numerous clustering methods, statistical methods, and data mining methods 
already developed and others still being reported monthly (see Chap. 15 for a desk-
top tool that incorporates numerous methods). It is clear that there is great interest 
in improving analysis and that methods will continue to be developed, some of 
which are likely to be of interest to the users of a specific data analysis pipeline.

In addition, as new data types emerge with evolving technology, many algo-
rithms for preprocessing and analyzing these data will be developed in the statistics 
and data mining communities. As these communities develop deeper understanding 
of issues such as correlated noise and biological complexity that underlie the data, 
the methods will improve and evolve. With a desire to analyze this data more glob-
ally, additional methods with potentially dramatic computational requirements are 
beginning to be developed.

6.4.2 � Application Programming Interfaces

Even with a live system capable of accepting new analysis modules, the modules 
themselves must be carefully constructed for interchangeability. This is tradition-
ally done through the use of well-defined application programming interfaces 
(APIs), which define the inputs and outputs of a method. This is a critical issue in 
software design. The need to reformat data to utilize a new method cannot be main-
tained with any scale, and it is often overlooked within the field of bioinformatics, 
where researchers routinely publish new methods that do not conform to any stan-
dards. One reason for the immense success of the R/Bioconductor system is the 
standardization of data structures and interfaces that permit thousands of separate 
programmers to create interoperable statistical tools (Gentleman et al. 2004).
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As an example, consider again the analysis of microarray data that has now been 
preprocessed into matrices of mean values and error estimates on those values. 
An analysis module would accept the two matrices as inputs and return the results of 
the analysis, such as groups of genes that behave similarly based on their transcript 
levels across conditions in the experiment. Many such algorithms exist, and each 
would then be coded within a module. These modules would then be interchangeable 
within the analysis as desired by the user, if the inputs and outputs were forced to 
match (i.e., to have a standard API). This also makes clear why retaining intermediate 
steps in the analysis (such as data preprocessing) is so valuable, as without retention 
of this data the preprocessing would need to be redone whenever the researcher 
desires to repeat an analysis of the two matrices with a different algorithm.

In object oriented systems, inheritance can be used to establish relationships 
between analysis techniques and enforce a standard API. For instance, a parent, 
abstract clustering class could be created with a method “cluster” that takes as input 
the two matrices and returns a list of sets of genes. Each clustering method would 
then be coded in a concrete class whose parent is this abstract class. In addition, OOD 
allows for an additional feature through polymorphism, in that the method “cluster” 
could have two forms, one taking a single matrix for methods where no error mea-
surements are used, and one taking two matrices for those where error measurements 
add value. The system can then handle both cases seamlessly at run-time.

6.4.3 � Updating Live Analysis Pipelines

The rapid rate of development of new analysis programs raises an additional prob-
lem for maintaining a data pipeline. It is often desirable to add methods to a live 
system, since analyses could be ongoing for considerable lengths of time and initi-
ated by different researchers with different schedules. Often a useful algorithm will 
be needed that is not yet implemented in a system, and taking the system off-line to 
add this may be impractical. One approach that has proven useful is to rely on reflec-
tion mechanisms, such as in Java and C#, where classes can be queried for their 
variables and methods at run-time. This allows a running pipeline to discover new 
method classes and deduce their proper place in the pipeline from their inheritance 
structure and methods. When properly implemented, new analysis choices can be 
presented to the user immediately following their inclusion in the pipeline. One 
example of this is the use of a Web interface with dynamically created menus.

Adding methods to traditional OOD approaches is easier than modifying data 
types, however using the Visitor pattern can simplify this further. A Visitor class 
serves as an abstract class defining the “doOperation” method, which is called 
automatically after a data class calls “acceptVisitor.” The concrete Visitor is created 
for each method, and it implements the algorithm, retrieving the necessary data 
from the class, integrating it based on the interface that ideally has encoded the 
ontologies allowing complex relationships and controlled vocabularies to be used, 
and returns the results by modifying the data class appropriately.
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6.4.4 � Alternative Approaches

While this section and the last describe one potential approach to the creation and 
maintenance of a data analysis pipeline given the rapid data and algorithm 
changes, other approaches for solving these same problems are in use. The best 
known is a Web service or service-oriented architecture (Komatsoulis et  al. 
2007), which can be implemented within a workflow approach, such as Taverna 
(Oinn et al. 2004). In this case, each analysis can be hosted by a different system 
but with well-defined APIs. Servers publish their availability to perform analysis 
functions, and analysis pipelines interact with these servers, passing them the 
data and receiving the results, in order to complete a workflow. This reduces the 
need for computational throughput within the system hosting the analysis pipe-
line itself, but it increases the potential requirements on data flow, since data must 
move repeatedly to different systems. This approach underlies grid (and cloud) 
computing (see Chap. 4).

6.5 � Computational Throughput

6.5.1 � Computational Complexity

The integration in terms of phenotypic behaviors of the vast, diverse sets of molecu-
lar data emerging in cancer research promises to allow deeper questions to be asked 
about cancer etiology and focused treatment. However, since the data emerge from 
complex biological behaviors involving cellular systems, cell–cell interactions, 
responses to distal signals such as hormones, and complex interactions with treat-
ment regimens, including chemotherapy and radiation, significant issues arise for 
both statistical models and computational modeling (see Chap. 7). The result is a 
high computational cost for many algorithms that seek to uncover meaningful rela-
tionships within the data that can provide answers to questions posed by prospec-
tive studies (e.g., treatment effectiveness, response of biological subsystems, etc.) 
and generate new hypotheses in discovery studies.

A data analysis pipeline must include a design that optimizes computational 
efficiency given a desire to both apply a series of algorithms in a linear fashion and 
permit parallel application of algorithms to explore the data by multiple methods. 
Some of these algorithms may be individually computationally expensive, so that 
the system must be designed to allow asynchronous operation and to potentially 
provide researchers with intermediate results while operations are still ongoing. 
The pipeline must handle both large data flows with associated algorithms and 
highly computational algorithms potentially running for many days on relatively 
small data sets. These diverse requirements suggest a need for different types and 
designs of systems that nevertheless work together to process data.
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6.5.2 � Beowulf Clusters and Grids

One of the standard approaches to such problems is a computer cluster that potentially 
has nodes devoted to different types of operations. Some of these nodes may be 
specialized to high-speed data transfer through optical connect backplanes and 
include large core memories to minimize the need to move data in and out of 
memory. Other nodes may include lower cost backplanes and smaller core memory, 
while maximizing processor speed and internal threading of code for multicore 
processors. Naturally, there will be a strong overlap in the capabilities and software 
design between these different nodes, and the choice reflects cost-benefit as much 
as hardware design. The traditional Beowulf Linux cluster, named for the ability of 
the eponymous hero of the Old English poem to slay the huge monster Grendel 
(i.e., mainframe computers), links a virtually unlimited number of computational 
nodes together. These nodes require some specialized coding to maximize their 
ability to work together for most problems, as the nodes must communicate status 
and exchange information for calculations. However, for data analysis pipelines, 
the code can sometimes be “embarrassingly” parallel, with the most obvious 
example being applying two clustering algorithms separately to a single data set. 
This process clearly can be run on separate nodes without any special coding. 
However, this is not typical, and coding will need to be specialized for parallel 
processing in many cases.

Embarrassingly parallel computing does open another approach to computa-
tional throughput, as the computers need not be colocated; so Web services or grid 
computing can be used. Perhaps the developers of the grid missed an opportunity 
not naming their new approach Dragon, after the noneponymous slayer of Beowulf. 
The grid approach divides the computational tasks into a sequence of steps with 
parallel branches, and sends the data to the registered computational engines for 
analysis. This permits highly specialized hardware tuned to the specific analytical 
approach, and this could be more efficient than general purpose nodes. This 
approach is not uncommon in physics and astronomy, where specialized hardware 
has long been designed to complete a single computationally expensive task 
(Rogers et al. 1983).

6.5.3 � Data Persistence

The need to spread computations between different nodes and potentially different, 
geographically dispersed computers raises issues for data persistence. With many 
different processing steps being applied by the analysis pipeline to the data, inter-
mediate processed results must not be discarded prior to their final use. Some 
intermediate steps, such as a fully preprocessed microarray data set, may be stored 
indefinitely, but others, such as the normalized values on a single array, may instead 
be recalculated later from the stored history of operations and their parameters. 
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Nevertheless, it may be necessary to retain these values for a relatively long time 
compared to typical computational time. Although this is not presently dealt with 
in most systems, it will become critical as data sizes and computational processing 
times increase. As with other issues of design, the failure to address this issue initially 
could lead to costly redevelopment needs later.

The approaches that could be used to address data persistence differ depending 
on the architecture of the pipeline. If the pipeline is maintained within a single 
computer cluster, then a local solution is the easiest to implement. In fact, with a 
tiered storage architecture, the persistence could be handled with a set of rules on 
data aging. For example, results from intermediate processing steps could be tagged 
as to whether they should be archived or not. Nonarchived data would have persis-
tence rules guaranteeing its availability through the completion of an analysis, 
while archived data would persist indefinitely. For grid computing approaches or 
Web services, a number of approaches could be used. The simplest would be to 
require the pipeline to handle all data persistence requirements, accepting results 
from computational engines and tagging them appropriately. Obviously, a tiered 
architecture here would mirror that used for a cluster approach. However, an inter-
esting alternative is to use a geographically distributed storage system that poten-
tially could optimize the location of data storage based on the expected future use 
of the data. Intermediate results could then be piped to a storage server near the 
computational engine for the next operations, or even mirrored to be near systems 
for multiple next steps. A distributed storage system, TRANCHE, is already in use 
for proteomics data (Falkner et al. 2006).

6.6 � Summarization and Visualization

6.6.1 � Data Complexity

Upon completion of a pipeline run, the data would have been processed through a 
number of algorithms with the goal of providing insight into the biological and 
clinical behaviors of the cancer. However, unlike a well-proven clinical test, in 
which the results can be simply presented as a single number lying either within or 
outside a range of normal variation, the results of an analysis of high-throughput 
data is itself complex. It is generally not true that a single plot or set of values can 
summarize the information content of an analysis. Instead, a series of algorithms 
for summarization and visualization will be needed, and these may form part of the 
pipeline itself. At a minimum, the pipeline will need to be aware of the needs of 
these algorithms, so that the results can be presented with appropriate values.

The complexity of the data reflects both the unprecedented breadth in terms of 
measuring the molecular components of cells and the underlying complexity of the 
system giving rise to the data. The breadth is reflected in the overwhelming numbers 
of measurements, such as the ability to provide transcript levels for over 20,000 genes. 
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Obviously, just presenting 20,000 rows of data, be it as a figure such as a heatmap 
or as a table, overwhelms our standard methods of presentation. However, perhaps 
more difficult to handle is the fact that all measurements of the system are highly 
and complexly correlated. This reflects the fact that the biological processes under-
lying the data involve interactions between genes, proteins, metabolites, and all 
their derivatives. Our typical efficient statistical methods are almost always based 
on the concept of independence of measurement, and the graphical presentations of 
the data often derive from these methods. This impacts a data pipeline in two ways. 
First, the computational complexity increases as methods that can handle complex 
covariance are implemented. Second, the summarization and visualization modules 
must maintain the same flexibility as the rest of the pipeline, since methods are 
under active development for visualization.

6.6.2 � Summary Statistics and Plots

The simplest presentation of results from the pipeline is likely to come in the form 
of standard statistical summaries. Five number summaries provide a quick descrip-
tion of the distribution of the data, the include the maximum, the minimum, the first 
(lower) quartile upper-bound, the third quartile upper-bound, and the median. Such 
numbers are particularly useful for looking at collections of raw data. For instance, 
the problems with microarray overall intensity varying strongly between different 
arrays independent of transcript levels is easily seen in five number summaries of 
replicated measurements. Other useful summary statistics can include mean and 
standard deviations from data, variance and covariance measures, and additional 
statistics that highlight unexpected correlations within the data, which can indicate 
artifacts (e.g., batch effects).

Simple statistical measures can be exploited for plots to visually verify normaliza-
tion and other relatively simple procedures. These can be produced using open-
source software as in Fig. 6.3, where R routines for boxplots are used to generate 
pre- and post-normalization graphs of the five number summaries on arrays for an 
Affymetrix experiment. The advantages of specialized graphical routines linked into 
the pipeline algorithms is that they can provide excellent feedback showing successful 
operation or helping to identify problems. Here it is clear that the arrays are not on 
the same scale prior to normalization, while following normalization using gcRMA 
(Irizarry et al. 2003) they now have the same medians and quartile ranges. Presenting 
such graphics provides a way to quickly summarize the results of pipeline operations 
and to allow the user to confirm that intermediate or final steps functioned as 
expected. An example of the power of these graphical summaries can be seen in the 
RReportGenerator application (Raffelsberger et  al. 2008), which provides a simple 
interface to the R/Sweave reproducible research package (see Chap. 8).

The issue for pipeline construction is how to best integrate summaries and 
graphics within the pipeline. This will depend to a great extent on the architecture 
used for implementing the pipeline and providing a user interface. In this section 
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we focus on non-interactive reports and graphics, while in Sect. 6.7 we will address 
interactive graphics.

The typical user interface now has either a graphical user interface (GUI) such as 
provided by desktop software on Windows, Macintosh, or Linux (i.e., KDE). In a 
client-server environment this may be replaced by X, however the overall presenta-
tion is the same, with multiple windows presented to the user, some of which contain 
text and others which contain graphics. The windows are presented within a “desktop,” 
which may have links to programs and data resources in it as well. The pipeline 
could then present results through text and graphics within these windows.

Presently most biological researchers obtain the results of numerically intensive 
computing through a Web interface. While a Web interface makes maintaining 
software easier, since upgrades occur only on a Web server and do not require 
upgrading all desktops, it can complicate the presentation of results to the user. Web 
interfaces remain more limited than desktop interfaces, and presentation must be 
done carefully to avoid problems with unexpected text sizes or browser window 
size. Results will generally be presented as text within a tabular format, or as image 
files (usually in JPEG format) displayed in the browser window. While program-
mers have exquisite control over a desktop window, its size, its shape, and its fonts, 
there is only limited control through a Web interface. The result can be poorly pre-
sented tables or graphics. Since browsers are typically geared to lower resolution 
tasks, it is also useful for the pipeline to be able to produce graphics for both Web 
presentation and publication. This minimizes data transfer requirements when 
presenting results in a browser at 72 or 100 dots per inch (dpi), while still supporting 
600 or higher dpi graphics for publications. Typically, the high-resolution graphics 
would not be routinely produced, but would be created on demand when needed for 
publication.

Fig.  6.3  A simple visualization that a pipeline could easily provide to give rapid feedback to 
investigators. In the example, microarray data is shown for a few Affymetrix GeneChips™ before 
and after normalization. Boxplots show both that no array showed outlandish variation before 
normalization and that all arrays have the same distribution following normalization. Such simple 
visualizations are easy to implement and provide valuable information to researchers
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6.6.3 � Biologically Motivated Visualization

The difficulty of visualizing the overwhelming complexity of the data can be 
reduced by overlaying the data on biologically motivated images. For instance, 
changes in protein activity levels determined in an immunoblotting experiment can 
be visualized in terms of biological pathways, such as signaling pathways curated 
in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al. 2002). 
In Fig. 6.4, constructed using the online KEGG-based visualization tool (Arakawa 
2005), the BCR-ABL fusion protein, STAT5, and MYC are shown with higher 
activity (green on screen and shown with up arrows), while p53 is shown with 
decreased activity (red on screen and shown with a down arrow). This is a descrip-
tive version of gene set analysis, which attempts to perform similar analyses 
through calculation of a statistical measure (Subramanian et al. 2005).

This simple approach will need to be expanded significantly within any pipeline 
that handles multiple data types, since the visualization should make clear the 
source (i.e., type of molecule) of the information. For instance, it is now clear that 
different types of molecular changes within signaling pathways can lead to similar 
cancer phenotypes (Parsons et al. 2008), and these differences should be reflected 
in the graphics. In addition, figures such as shown in Fig. 6.4 do not reflect biological 
structure nor standard modifications. The state of a protein in terms of post-trans-
lational modifications can play a crucial role, while its location (e.g., membrane-
bound, nuclear, cytosolic) can change its function. Even for DNA, there can be 
multiple types of epigenetic modifications that could need to be visualized beyond 
simple methylation status. It should be clear that visualization of data is a complex 
problem, and it exists both as its own discipline and as a subfield within many areas. 
Cancer research has been slow to address this problem outside of medical 
imaging.

Fig. 6.4  A model based visualization such as provided by utilizing the Kyoto Encyclopedia of 
Genes and Genomes. The results of an analysis are visualized using color (here shown as arrows), 
with highly active proteins in green (up arrow), and highly repressed proteins in red (down arrow), 
as an example
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Visualization of complex data has a significant history, both in terms of information 
transfer (Tufte 1991) and statistical analysis (Cleveland 1994). Many lessons criti-
cally important to cancer research and patient treatment have been learned. In a 
dramatic example of data presentation, a simple plot of the O-ring failure rate 
against temperature would clearly have led to a reassessment of the decision to 
launch the space shuttle Challenger. However, the data was not presented in a manner 
that highlighted the pattern prior to launch. It is often the case that extremely 
complex systems, whether space vehicles or cancer, have “directions” in the data 
that provide novel insight. Finding these directions is the purview of statistics, but 
presenting them to the researcher in a suitable form should be part of the pipeline.

The most logical approach for building visualization into a data pipeline is to 
leverage statistical insight into the important directions in the data and visualization 
research on how to present information. Realistically, it is hard to present more than 
three spatial dimensions graphically, with the potential for a fourth dimension, usually 
used for time, through animation. The results of analyses, even when looking across 
samples instead of genes, are not limited to so few dimensions. As such, methods are 
usually applied to either pick a few dimensions for visualization or to reduce dimen-
sionality. Identifying the logical ‘directions’ for visualization is effectively a statistical 
problem in dimensionality reduction. While standard methods exist, this will likely 
require new methods for the complex data in cancer research, so the pipeline visualization 
routines will need to be as modular as the other elements.

An important point in the design of the visualization components is to insure 
decoupling between the analysis methods and the visualization methods. Although 
this is standard best practice in software design, it is extremely tempting to tie a 
specific visualization to an analysis approach arguing that visualization is closely 
tied to the statistical methodology. However, it is generally the case that a useful 
visualization will find new applications (e.g., boxplots, heatmaps), and, critically, 
making the code interdependent hinders code re-use. Code re-use is even more 
dramatically reduced if the code for the analysis and visualization routines is actu-
ally interspersed during coding. As with other best practices, there is a price in 
terms of initial development, so trade-offs exist.

6.7 � Interactive Analysis

6.7.1 � Exploratory Biological Research

The design of a data analysis pipeline as described above can support data retrieval, 
analysis of multiple parallel paths through a data set, combination of results of analysis, 
visualization of these results, and presentation to the researcher, including both 
on-screen plots and high-resolution figures. Coupled with tools developed for 
reproducible research (see Chap. 8), the pipeline can even produce associated text 
suitable for methods sections in publications. However, a much more difficult prob-
lem is to enable researchers to interact with their data.
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Traditional biological research involves dynamically probing results, modifying 
protocols, and testing hypotheses. Researchers trained in this way often wish to 
modify visualizations and even underlying data filtering during analysis. While this 
can raise serious statistical issues due to hidden multiple testing of high-dimension-
ality data, it will be highly desirable for a data pipeline to provide interactive capa-
bilities to encourage its adoption. Simple examples may include researchers who 
wish to explore standard pathways with components reduced or removed by experi-
mental design, who wish to remove subsets of genes during clustering, or who wish 
to remove subsets of the overall data that they suspect is of low quality. One advan-
tage of integrating such abilities in a pipeline is that the data classes can at least 
track how many potential significant modifications were made to the data and alert 
the researcher in final reports.

6.7.2 � Interacting with Data

For researchers to interact closely with their data during analysis is straightforward for 
a desktop system. The complete control the developer has over all aspects of windows 
and their contents makes it relatively easy to allow researchers to rotate views, choose 
subsets of data, and perform operations on these subsets. While the overall develop-
ment effort may be substantial, requiring careful work with users to guarantee proper 
interface implementation, there are no technical barriers to such a system.

However, realistic pipelines will not run interactively within a desktop system. 
Within client–server systems, the similarities between X and desktop systems will 
permit similar interactions. While X windows are somewhat more limited than 
desktop windows, they provide most of the needed functionality for interaction. 
The main additional requirement will be to maintain adequate network bandwidth 
and response to permit users to interactively modify their data. There will remain 
issues for the analysis of any modified data within the pipeline, and this is discussed 
in Sect. 6.7.3.

The major problem for interactive analysis arises with Web-based interfaces to 
pipelines. One workaround is to allow more demanding users access through a 
client–server system, with the bulk of users having no interactive data analysis 
capabilities. Alternatively, interactive Web technologies, such as Java WebStart and 
Microsoft .Net, can be used to provide limited functionality. These technologies 
allow applications to run on the client machine, but ease maintenance of the code 
by pushing updated versions to the desktop client on demand. These technologies 
also integrate the desktop environment with the server, either through Java or 
through Windows. One advantage to WebStart is that it will run on all widely used 
computer platforms, while .Net is limited to Windows. On the other hand, .Net is 
considered easier from a developer perspective.

Barring these technologies, Web-based interfaces to data analysis pipelines are 
very limited. There is some minor ability to isolate data, however it remains very 
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rudimentary. There is also a problem in communication of choices back to the 
pipeline, as the pipeline is essentially asynchronously linked to the Web browser 
and communication needs to be established with each update. Certain design pat-
terns, such as Façade patterns, can simplify the communication aspects by enabling 
the browser to generate a single network link and provide all changes. Nevertheless, 
most users are likely to find browser-based interaction with the present Web 
technology overly limited.

6.7.3 � Data Modifications and Pipeline Branching

Interacting with the data creates a problem for a pipeline that is not reflected in 
desktop systems – how to handle modifications to the data that affect the analysis. 
For example, should a user decide to eliminate a subset of the data, this will change 
the results of application of a clustering algorithm. On a desktop system, this is 
simply handled by generating an event to trigger a recalculation. With a pipeline 
however, there could be ongoing analyses using results involving the original data, 
which the user may wish to continue even while filtering the data to test other 
approaches. This presents two problems. First, new analyses must be launched and 
feedback presented back to the user. Second, care must be taken to maintain 
detailed histories within the results that inform the user of the specific steps taken 
and data used for the results being presented.

The introduction of new real-time computations that provide feedback to the 
user could be addressed by reserving portions of the pipeline hardware for interac-
tive analysis, while the bulk of the pipeline remains focused on less interactive 
analyses. This could be accomplished equally well by giving such jobs higher priority 
within the full cluster. In either case, it may be desirable to enforce some balance 
between highly interactive use and more batch-like operations. Alternatively, using 
WebStart or .Net, certain operations that permitted interaction could initially be 
done on the desktop, limiting the interactive portions to algorithms of low compu-
tational complexity. This is probably realistic, as interactively changing data in 
computationally expensive algorithms is unlikely to be feasible in any case.

For tracking the data that is actually used as the input to an algorithm and the 
preprocessing and filtering of the data that was used is best done through the emerging 
use of tools from reproducible research efforts (see Chaps 8, 17, and 20). Since the 
potential exists for many edited versions of the data to be processed simultaneously, 
one useful approach is to rely on cloning of the data object at branch points, as with 
the Java clone() method. This will create a copy that includes the history of the 
object, so that a history of all manipulations prior to cloning are retained, and the 
two versions of the object can continue through the pipeline independently. 
However, if data sizes are intractable, it may be more feasible to maintain a history 
of operations in a way that permits the analysis to be exactly duplicated later. 
Sweave has indeed been used for this in a microarray pipeline (Rainer et al. 2006). 
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As this would involve only analyses that provided successful insight, it may not be 
overly burdensome to repeat them.

6.8 � Conclusions

We have presented a summary of major issues that must be addressed by any future 
data pipeline for the analysis of genomic data. Overall, this entails handling data 
persistence, annotation, analysis, summarization, and visualization in an environ-
ment of emerging data types and novel algorithms. Numerous approaches have 
been developed within the computer science community to deal with these issues 
from different perspectives, including databases, software design, and workflow 
analysis. The statistical and computational learning communities continue to 
address problems arising from the noisy data and complex biological interactions 
underlying it during analysis. The developments in these fields lay the foundation 
for successful creation and maintenance of a high-throughput data pipeline.
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Abstract  Cancer is a complex, dynamical system that includes continuous inter­
actions between evolving cancer cells and their spatially and temporally heteroge­
neous microenvironment. Despite intense research for decades, a comprehensive 
model of the cancer system remains elusive. Furthermore, failure to organize the 
vast extant data on cancer into a comprehensive theoretical framework has undoub­
tedly contributed to the steady mortality for cancer in the past 50 years compared 
to the marked decline observed in, for example, cardiovascular disease.

7.1 � Introduction

In the latter half of the sixteenth century, Tyco Brahe laboriously documented the 
movement of the known planets in the solar system. His observations were remark­
ably accurate particularly since the telescope had not yet been invented. The move­
ments of the planets, however, were difficult to understand as they often stopped 
their normal orbital motion and even seemed to briefly move backward as they 
traversed the night sky.

Astronomers of the era had two theoretical views of the universe. The ancient 
Ptolemaic model in which the earth stood at the center of the universe and planets 
revolved around it and the new Copernican theory in which the sun was at the center 
and the planets revolved around it in perfectly spherical orbits (Thoren 1990).
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Brahe recognized that the stationary earth model did not fit his data. But, since 
theological considerations “required” a stationary earth, he proposed a compro­
mise solution in which the planets orbited the sun and, in turn, revolved around 
the earth at a central point. However, Brahe also recognized he was in need of a 
mathematical assistant and, in 1599, hired Johannes Kepler. For 17 years, Kepler 
studied this vast data set to find patterns and connections. His arithmetic calcula­
tions involving just the orbit of Mars filled nearly 1,000 sheets of paper (Tiner 
1977). The remarkable intensity of the effort is apparent in his description of the 
moment of insight:

…and if you want the exact moment in time, it was conceived mentally on 8th March in 
this year one thousand six hundred and eighteen, but submitted to calculation in an unlucky 
way, and therefore rejected as false, and finally returning on the 15th of May and adopting 
a new line of attack, stormed the darkness of my mind. So strong was the support from the 
combination of my labor of seventeen years on the observations of Brahe and the present 
study, which conspired together, that at first I believed I was dreaming, and assuming my 
conclusion among my basic premises. But it is absolutely certain and exact that the propor­
tion between the periodic times of any two planets is precisely the sesquialterate proportion 
of their mean distances… (Kepler 1619).

About 70 years later, Isaac Newton recognized the existence of gravity:

… all matter attracts all other matter with a force proportional to the product of their masses 
and inversely proportional to the square of the distance between them. (Newton 1846)

Through the new mathematics of calculus, Newton derived Kepler’s laws from 
interaction of gravitational and centripetal forces. The model of planetary motion 
derived from these fundamental principles both reproduced extant data and pro­
vided a deep understanding of the forces that govern the system. Furthermore, the 
modeling results led to predictions. For example, perturbation in the orbit of Uranus 
led to the conclusion that another massive object must be nearby. This, in turn, 
motivated new directed observations that led to discovery of Neptune.

In many ways, Kepler and Newton demonstrate the differences between bioin­
formatics and mathematical modeling. The former analyzed extant data using the 
most sophisticated computing tools available (his brain plus pen and paper) to find 
patterns and connections. The latter approached the problem of planetary motion 
by identifying first principles, modeling the system dynamics, and then demonstrat­
ing that these results matched experimental observations.

Since the time of Newton, the physical sciences have thrived on a research para­
digm that deeply integrates mathematical modeling and empirical data. Richard 
Feynman expressed the relationship as follows:

Mathematics is a deep way of describing nature, and any attempt to express nature in philo­
sophical principles, or in seat-of-the-pants mechanical feelings, is not an efficient way. 
(Feynman 1965)

Despite centuries of successful experience in the use of mathematical models to 
understand complex systems in the physical sciences, this paradigm has been 
extended into cancer research only recently.
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7.2 � Mathematical Models in Cancer

The societal burden of cancer has stimulated decades of intense scientific effort that 
has resulted in many important new insights and therapies. Yet, despite these 
advances, the improvement in mortality rates for cancer patients still lags behind 
that of the other major causes of death such as cardiovascular and cerebrovascular 
diseases (Mortality data 1950 and 2001). Research in cancer biology has been 
greatly accelerated by new experimental technologies and the revolution in genom­
ics and bioinformatics that have generated overwhelming amounts of biomolecular 
data. Lacking, however, are the conceptual frameworks necessary to organize these 
data in ways that guide more significant advances in understanding of the disease 
(Gatenby and Maini 2002, 2003). This state of affairs clearly suggests the need for 
interdisciplinary research that synthesizes experimental results with mathematical 
analysis and modeling to provide new insights into the underlying dynamics gover­
ning the disease and to help organize new experimental and treatment strategies.

Such an idea is not new. As noted above, since the days of Newton, the natural 
philosopher has used the tools of mathematics to quantify, with consistent success, 
the physical world around us – fully justifying the statement widely attributed to 
Galileo that “The book of Nature is written in the language of Mathematics.” In 
contrast, the biological world, perhaps by virtue of its remarkable diversity, has 
been dominated by a tradition of observation, description, and classification. The 
potential role of mathematics in biological research has long been acknowledged. 
D’Arcy Thompson’s monumental treatise “On Growth and Form” (Thompson 
1992) opens with a number of quotations that includes one from Karl Pearson: “I 
believe the day must come when the biologist will – without being a mathemati­
cian – not hesitate to use mathematical analysis when he requires it.” Over 100 
years later an article in the Economist stated “If cancer is ever to be understood 
properly, mathematical models such as these will surely play a prominent role” 
(Thompson 2004).

However, for a scientific community steeped in the Aristotelian culture of 
empiricism, the introduction of mathematical methods is immensely challenging. 
Indeed, despite occasional bursts of enthusiasm, the role of mathematical and 
physical reasoning in the life sciences remains relatively limited. An occasional 
investigator such as Schrödinger in the lecture/book “What is Life” has used the 
principles (but not the mathematics) of physical sciences to generate insights into 
key biological questions (Schrödinger 1944).

The explosion of data generated by molecular biology has necessitated a wide­
spread interest in the set of complex data mining tools and techniques generally 
described as bioinformatics. However, there remains little utilization of mathemati­
cal modeling in tumor biology and oncology to frame hypothesis, provide contex­
tual frameworks for organizing data, and generate testable predictions. Modeling of 
this type in biological systems is very challenging, and the genuine successes of 
mathematics in biology, such as the Hodgkin–Huxley model in neurobiology and 
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knot theory in DNA conformations, are relatively rare. In part, this reflects the 
daunting intellectual demands of working, either collaboratively or individually, in 
such profoundly different disciplines. Biological and clinical investigators typically 
have little or no training in the applied mathematics necessary to write and analyze 
mathematical models. Similarly, applied mathematicians usually have little back­
ground in the complex, multiscalar (molecular, cellular, tissue, and populations) 
dynamics in the life sciences. As a result, their models are often of little relevance 
or interest to real biological or clinical problems.

Nevertheless, in a Nature article in 2003, Gatenby and Maini (2003) proposed 
that future advances in cancer biology and treatment demand development of a field 
of study they termed mathematical oncology. They pointed out that cancer is a 
complex, multiscalar disease dominated by nonlinear dynamics. Such systems, 
while difficult to model using a wide range of mathematical methods, are impos­
sible to understand through the intuitive, “seat of the pants” approach that is cur­
rently employed by virtually the entire field tumor biology and oncology. They 
conclude that “In the absence of consistent application of rigorous mathematical 
models, theoretical medicine will largely remain empirical, phenomenological, and 
anecdotal, successful only in linear systems that can be defined by a single experi­
ment or a few experiments.”

Achievement of an integrative cancer research paradigm combining modeling 
and empirical research, such as that of the physical sciences, will need to overcome 
many historical, philosophical, and methodological barriers. The core component 
of cancer research must always remain biomolecular research including in vitro and 
in vivo laboratory and clinical observations. Clearly, mathematical models without 
data are useless. At the same time, tumor biology must recognize that data are not 
science. Hypothesis-driven, biologically informed mathematical models are neces­
sary to provide theoretical frameworks to organize and understand data and to 
guide new experiments.

Critical to development of realistic mathematical models is the integration of 
the statistical methods used to analyze the torrent of data generated by modern 
molecular methods (see Chap. 6) – an approach described as “integrative math­
ematical oncology” (Anderson and Quaranta 2008). Although the dialog between 
bioinformatics and biomolecular experimentation is often systematic, it is not 
always strategic. In particular, these methodologies often provide only limited 
insight into tumor dynamics. That is, molecular biology typically requires tissue 
removal and homogenization, so that it generates large amounts of “average 
data” but limited information on spatial and temporal heterogeneity – critical 
properties in understanding the dynamics of cancer progression and treatment. 
Thus, continuous interactions of evolving phenotypes and chaotic microenviron­
ment of the biological processes at the molecular, cellular, and tissue levels in 
cancer demand appropriate, dynamical mathematical models that can transform 
extensive, and occasionally haphazard, experimental programs into an inte­
grated conceptual approach.

Thus, it seems reasonable to propose that a crucial missing methodological 
component in cancer research is mathematical modeling (Gatenby and Maini 
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2003; Thompson 1992), which provides a conceptual framework for and predic­
tive value to the informatics data. The process of formulating a model invites the 
development and incorporation of first principles, clarifies assumptions, demands 
rigorous statement of hypotheses, and identifies key variables and parameters. 
Analyzing the failure of a model can often be as valuable as developing a success­
ful one. By virtue of its predictive power, a good model can help plan experiments 
by identifying parameter regimes of interesting behavior – regimes that might 
otherwise be time consuming and costly to discover by systematic experimenta­
tion. Furthermore, a model can also be used to estimate important parameters by 
fitting data. In these ways, mathematical modeling completes the circle of discov­
ery: experiments provide data that, in turn, informs the construction of new experi­
mental designs.

7.3 � An Example

The potential value of modeling is apparent in a sequence of studies investigating 
carcinogenesis. This stepwise transition of normal cells to the cancer phenotype 
through a number of premalignant intermediates is often described as “somatic 
evolution.” The classic conceptual model depicted this evolutionary process as a 
series of genetic mutations typically in oncogenes and tumor suppressor genes 
(Fearon and Vogelstein 1990). Gatenby and Vincent (Gatenby and Vincent 2003; 
Vincent and Gatenby 2008) subjected this concept to rigorous analysis by apply­
ing evolutionary game theory. The results of the models demonstrated that muta­
tions in oncogenes and tumor suppressor genes alone did not result in formation 
of a malignant cancer. In fact, these changes led only to self-limited growth 
because as the tumor population increased in size, proliferation was limited by 
substrate limitation (Fig. 7.1).

Thus, as a result of the modeling studies, the authors concluded that there is 
a previously unknown era of carcinogenesis in which environmental selection 
forces are dominated by competition for limited substrate (Gatenby and Vincent 
2003).

These results demanded a reexamination of the adaptive landscape of somatic 
evolution and recognition of the critical role of the anatomy and physiology of 
epithelial surfaces (Gatenby and Gillies 2004). As shown in Fig. 7.2, evolving in 
situ cancer cells proliferate on the surface of the basement membrane that maintains 
a separation from the epithelial cells and the underlying stroma including blood 
vessels. As the tumor cells proliferate into the lumen, their distance from the blood 
vessels increases and the resulting diffusion reaction kinetics results in regional 
hypoxia, low glucose concentrations, and acidosis.

The authors developed a theoretical model (Gatenby and Gillies 2004) (Fig. 7.3) 
of carcinogenesis proposing that, due to this anatomy and physiology of tumor 
growth on epithelial surfaces, some regions of in situ cancer cells will be subject to 
cyclical hypoxia. This will promote adaptation by upregulating glycolysis. 
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However, due to the resulting increased production of lactic acid, this adaptive 
landscape is then replaced by one that is dominated by the toxic effects of acidosis. 
This requires a second evolutionary step that allows the tumor cells to adapt to 
unusually acidic environments. The final outcome of this sequence produces a cel­
lular phenotype with a profound proliferative advantage because it can produce an 
acidic environment (through upregulated glycolysis) that is toxic to its competitors 
but not to itself. As a result of this study, it was hypothesized that adaptation to 
regional hypoxia and acidosis was a critical component in late carcinogenesis that 
promoted transition from in situ to invasive growth.

This theoretical result was examined (Gatenby et al. 2007) using in vitro experi­
mental methods with tumor spheroids and clinical observations. As shown in 
Fig. 7.4, this work confirmed the presence of adaptation to hypoxia in the central 

Fig. 7.1  Simulations of tumor progression from evolutionary mathematical models of carcino­
genesis following a series of mutations in oncogenes and tumor suppressor genes. As shown in the 
top row, these genetic changes resulted in only self-limited tumor growth and not formation of an 
invasive cancer. The reason is shown in the lower panel which demonstrates that as the tumor 
population increased, local resource concentrations decreased to the point that additional growth 
could not be supported. This result led to the proposal of a previously unknown stage of carcino­
genesis dominated by competition for substrate (from Gatenby and Vincent 2003)
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Fig. 7.2  A micrograph of ductal carcinoma in situ. Following the prediction of a substrate-limited 
era of tumor growth, it was recognized that the tumor cell growth into the lumen and away from 
the basement membrane will result in increasing diffusion distance from the blood vessels (which 
remain on the opposite side of the basement membrane) and development of regional hypoxia and 
acidosis (from Gatenby and Gillies 2004)

regions of DCIS and close association of upregulated glycolysis with regions of 
transition from in situ to invasive tumor growth.

7.4 � Conclusion

Developing mathematical models of the complex, nonlinear dynamics of cancer 
biology is difficult. However, understanding these dynamics through intuitive rea­
soning is impossible. This will require development of a cadre of investigators 
conversant in both tumor biology and mathematical methods to develop quantita­
tive theoretical models that provide conceptual frameworks to organize extant data, 
integrate new information, and guide future experiments. Accomplishing this will 
require surmounting many intellectual, social, and philosophical barriers. However, 
it seems likely that future progress in understanding and controlling cancer will 
depend upon it.
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Fig.  7.3  (a) Theoretical model of carcinogenesis incorporating the diffusion-reaction kinetics 
associated with tumor growth on an epithelial surface. Note that the intact basement membrane 
enforces separation of the tumor cells from the blood supply. As a result, growth factors, substrate, 
and metabolites must diffuse over increasing distances to travel from the blood vessels to the 
proliferating layer of cells as the tumor grows into the lumen. (b) demonstrates the calculated 
variations in oxygen, glucose, and H+ as a function of cell diameters from the basement membrane. 
Note that oxygen concentrations rapidly decline and H+ concentrations rapidly increase with 4 or 5 
cell layers from the basement membrane. This results in regional variations in adaptive parameters 
that govern local phenotypic evolution from Gatenby and Gilles (2004)
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Fig.  7.4  Immunohistochemical stain of DCIS for glucose transporter 1 (GLUT-1). GLUT-1 
upregulation serves as a biomarker for increased glycolysis. Note that GLUT-1 is upregulated in 
the central region of the DCIS presumably as a result of hypoxia. However, it is also upregulated 
in a population of cells that invades into the normoxic region of the DCIS and breeches the base­
ment membrane forming a microinvasive cancer (from Gatenby et al. 2007)
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Abstract  “Reproducible research” refers to a publishing discipline, originating in 
the geosciences, in which journal articles are accompanied by publication of data 
resources and software sufficient to allow independent reproduction of all tables and 
figures presented in articles. This paper reviews concepts of reproducible research 
in connection with cancer bioinformatics. The importance of reproducible discipline 
in the face of analytic complexity of microarray studies is documented with two 
case studies, and the role of portable self-documenting data and software archives 
in securing reproducibility is described. Legal protections for those engaged in 
reproducible research are discussed in the context of current US copyright law; 
a reproducible research standard that formalizes rights and obligations of those 
engaged in reproducible research is detailed. There is every indication that repro-
ducible discipline is feasible for microarray studies, and reliability of inferences in 
cancer bioinformatics will be enhanced if commitments to concrete reproducibility 
are broadly accepted in the research community.

8.1 � Introduction

A scientific publishing discipline called “reproducible research” originated in the 
geosciences in the 1980s and has since garnered attention in a number of fields. 
Important references include Donoho et  al. (2009) in computational harmonic 
analysis, Vandewalle et al. (2009) in digital signal processing, Peng et al. (2006) in 
epidemiology, Laine et al. (2007) in internal medicine, Gentleman (2005) in cancer 
bioinformatics, and Gentleman and Lang (2004) in general statistical computing. 
The paper of Donoho et al. is among the first to treat questions concerning costs of 
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implementing the discipline of reproducible research and the effects of data and 
software publication on competitiveness. Tradeoffs exist and these issues will not 
be considered here. This paper will focus on reproducibility issues for cancer 
bioinformatics.

To date, the primary approaches to genome-scale investigation in cancer bioinfor-
matics involve transcript profiling using DNA microarrays. In a recent multiteam 
contribution to Nature Genetics Ioannidis and colleagues (2009) commented:

Microarray-based research is a prolific scientific field where extensive data are generated 
and published. The field has been sensitized to the need for transparent design and public 
data deposition and public databases have been designed for this purpose. Issues surround-
ing the ability to reproduce published results with publicly available data have drawn atten-
tion in microarray-related research and beyond. The reproducibility of scientific results has 
been a concern of the scientific community for decades and in every scientific discipline. 
(p. 149)

Ioannidis’ paper should be consulted for detailed references and illustrations for 
their survey of the reproducibility of 18 recently published microarray studies.

The primary concerns of this paper are to describe why reproducible research 
discipline is important for cancer bioinformatics and to show how the discipline can 
be implemented to improve reliability of work in the field. Two aspects of imple-
mentation are considered. First, there is discussion and illustration of relevant pro-
gramming and data archiving techniques. Second, details are provided on protection 
of intellectual property through licensing of reproducible research products.

8.2 � Case Studies

8.2.1 � Case Study 1: Baggerly, Coombes, and Neeley,  
J Clin Oncol (2008)

In this section, we consider the direct criticism of reproducibility of a primary 
manuscript in oncology. The main objectives of this section are to state concisely 
the offerings of the primary manuscript, to describe the shortcomings identified by 
Baggerly et al. in their letter (Baggerly et al. 2008), and to analyze the rebuttal of 
the original authors in the context of some independent computations.

8.2.1.1 � Context

Dressman et al. (2007) presents an integrative analysis of 119 microarrays of ovarian 
cancer tumors. Tumors are classified as responsive or nonresponsive to platinum treat-
ment. Affymetrix U133A chips are used to profile expression patterns on all tumors. 
These chips are preprocessed using RMA (Irizarry et al. 2003) and then further cor-
rected using a procedure called sparse factor regression (Carvalho et al. 2008).
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A procedure called shotgun stochastic search (Hans et al. 2007) is used to identify 
a set of genes (probe sets) predictive of platinum responsiveness and to quantify 
probability of platinum responsiveness on the basis of gene expression values. 
Pathway activation scores for tumors were computed from experiments based on 
cell lines (HMECs) created by Bild et al. (2006) and modified to exhibit pathway 
deregulation. Dysregulation of Src and E2F3 pathways was independently found to 
be significantly associated with differences in survival distributions among plati-
num nonresponsive patients. A supplementary Web site provided clinical informa-
tion on samples, CEL files, and sparse factor regression-corrected RMA 
quantifications of expression for all samples. The latter file of quantifications is 
provided in an Excel spread sheet, so we will refer to this resource as XLSQ.

8.2.1.2 � Three Challenges: Nonreconstructibility and a Failed Sanity Check

In their letter to J Clin Oncol (2008), Baggerly et al. indicate a number of problems 
arising in their attempt to reconcile results in the published paper with the informa-
tion in the online archive.

•	 Problem 1. Samples in XLSQ were incorrectly labeled. Proper labeling could be 
established for 116 of 119 samples through comparisons with pure RMA quantifi-
cations obtained using the CEL files. (Note added September 2009: The file of 
expression quantifications posted at the Duke Web site was revised in August 2009 
to establish the correct sample labeling. Analyses in this chapter used the proper 
labeling established through comparison with CEL images. Assertions of this chap-
ter are not affected by the authors’ relabeling of the quantifications on the Web.)

•	 Problem 2. Using gene-specific t tests, no evidence of differential expression 
between platinum-responsive and nonresponsive tumors could be found for 
genes in the published signature.

•	 Problem 3. Upon creation of pathway activation scoring coefficients on the basis 
of singular value decompositions to expression data matrices derived from 
Bild’s cell line array archive, asserted associations between E2F3 activation and 
survival among platinum-nonresponsive patients (Figs. 2C and 2E of the 2007 
Dressman paper) could not be reconstructed.

Problems 1 and 3 will be referred to as conditions of nonreconstructibility. Data 
resources putatively employed in developing the results of the paper cannot be used 
by independent researchers to reconstruct the results.

Problem 1 seems to be purely clerical in nature – somehow sample labels were 
scrambled. Problem 3 is more intricate and will be discussed in more detail later.

Problem 2 does not directly concern reconstructibility, and its mention in 
Baggerly’s letter led to a heated rebuttal. Baggerly et al. used two-sample t tests 
to assess the performance of the asserted signature for platinum responsiveness. 
Dressman et al. used stochastic shotgun search to identify the signature. It is an 
open question whether genes, all of whose expression distributions in samples 
of platinum-responsive and nonresponsive tumors have mean expression levels 
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that are indistinguishable using the t test, might nevertheless still be associated 
with different probabilities of responsiveness as identified by stochastic shotgun 
search. Had Baggerly et  al. employed stochastic shotgun search and failed to 
generate the signature gene list published in Dressman et al. (2007), a nonrecon-
structibility problem would be present. It could be useful to have a concise term 
for the conflict between Baggerly’s analysis and the published result. We call 
this a “failed sanity check.” Sanity checks of scientific assertions involve simple 
computations that have readily predicted outcomes if the assertions are correct 
and are correctly understood. The individual t tests of differential expression of 
genes in a putative signature constitute a sanity check of the complex multivariate 
analysis conducted with stochastic shotgun search. The t tests are a weak sanity 
check; we will consider a different multivariate sanity check below 
(Sect. 8.3.1).

8.2.1.3 � Rebuttals to the Basic Challenges

In their reply to Baggerly et al., Dressman, Potti, and Nevins apologize for the 
identifier scrambling noted in Problem 1 and indicate that it arose only in the 
preparation of the online archive. Thus, the paper is deemed to be unaffected by 
the scrambling, but any attempt to reconstruct the paper will be doomed if it 
takes literally the labeling of array quantifications for association with the clini-
cal status table.

Problems 2 and 3 are addressed by Dressman et al. in very severe terms. The 
response is worthy of full quotation. After making four enumerated points in 
response to findings of clerical error and batch effects, they continue,

(5) [Baggerly et al.] conclude that the genes identified in our model do not provide separation 
with respect to clinical response. Unfortunately, this is based on their methods, not ours, 
and reflects a serious flaw in the nature of this commentary – it is wholly inappropriate to 
make claims that a given method does not work if the precise methods used in the study 
being criticized were not followed. The failure of their methods to categorize clinical 
response only says that their methods do not work; it says neither anything about the 
procedure we utilized nor the reproducibility of the results we reported in JCO.

(6) Using their own methods of analysis, Baggerly et  al. conclude that batch effects 
confound our prediction of pathway activation in the ovarian tumor data set. This is one 
further example of a conclusion without basis, since it is clear they did not use our methods 
of analysis in either the development of the pathway signatures or the application of pathway 
signatures to tumor samples.

Response (5) indicates that Dressman et al. are not in favor of sanity checks based 
on t tests. Response (6) has the same tenor, but involves a much more complicated 
concern. The rhetoric – that an investigation of reproducibility must employ “the 
precise methods used in the study being criticized” – is strong and introduces 
important obligations for primary authors. Specifically, if checks on reproducibility 
are to be scientifically feasible, authors must make it possible for independent sci-
entists to somehow execute “the precise methods used” to generate the primary 
conclusions.
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This condition is partly met for signature identification based on the stochastic 
shotgun search method, which is distributed at Duke University. The supplemen-
tary Web site for the Dressman paper does include a “parameter file” indicating 
use with 119 samples and 6,088 genes. But because the 119 samples in the 
archive are mislabeled, and the identities of the 6,088 genes in use are not pro-
vided (gene filtering involved unstated criteria of “trivial variation” and “low 
median expression levels”), no independent scientist is in a position to meet 
Dressman’s criteria for reproducing the signature of the primary paper. 
Undoubtedly the required information could be obtained on request from the 
authors, so reproducibility of the signature could be independently checked. This 
has not yet occurred.

We will now return to Problem 3 and some elaborations of it. Problem 3 is not 
directly addressed in Dressman et al.’s rebuttal. Problem 3 involves reconstructibil-
ity of the analysis relating pathway activation to survival time in subgroups defined 
by clinical definition of platinum responsiveness. Problem 3 asserts that the pub-
lished curves cannot be reconstructed on their own terms, but response (6) dis-
cusses confounding and the definition of pathway signatures. We will show in 
Sect. 8.2.1.4 that Baggerly et al. did meet Dressman et al.’s conditions for checking 
reproducibility and discovered failures of reconstructibility and a deeper and scien-
tifically more complex challenge to reproducibility.

8.2.1.4 � More Challenges: Batches, Confounding, and Lifetime Data

•	 Problem 4. Through inspection of CEL file headers, Baggerly et al. obtained the 
dates of hybridization for all arrays used in Dressman’s paper. They show that 
survival rates and expression values for many genes vary systematically with run 
date.

•	 Problem 5. By elaborating models for the relationship between pathway activa-
tion and survival time to include adjustments for batch effects, Baggerly et al. 
show that the asserted relationship between Src pathway activation and survival 
among platinum nonresponsive patients is confounded. The association’s esti-
mated magnitude and degree of significance are both substantially affected by 
adjusting for run date, and in fact, conventional statistical significance is lost.

•	 Problem 6. By comparing the clinical data on lifetimes published in the 
Dressman supplementary archive with other clinical data published on the same 
arrays in other papers, Baggerly et al. find that declarations of event status in the 
Dressman supplemental archive are unreliable. The clinical data archive was 
revised after Baggerly’s letter was published, but it is not clear whether the most 
reliable survival status indicators were used in the published analyses.

Figure 8.1 provides concrete illustrations of Problems 3, 4, and 5. Evidence of 
confounding of batch, survival, and expression is provided in panels (a) and (b). In 
panel (a), the x-axis is calendar date of hybridization, and the y-axis measures 
expression of RPS11, a member of the Src pathway signature. The expression measures 
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are as posted on the supplementary Web site and thus result from RMA preprocessing 
followed by sparse factor regression corrections to remove artifacts. There is 
evident variation in mean RPS11 expression by date. Panel (b) consists of two 
Kaplan–Meier estimates of survival functions for platinum-nonresponsive subject. 
The blue curve gives survival for individuals whose tumor samples were hybridized 
up to and including 6/26/2003 (N = 54) and yellow for those hybridized after this 
date (N = 62). There is clear potential for confounding of the inferences of interest, 
and there is no reason, a priori or otherwise, to expect sparse factor regression to 
have removed all extrabiologic variation related to technical processing. Dressman 
et al. clearly do not appreciate this, remarking that “batch variations are not an issue 
at all in the interpretation of our results since our method of analysis, which 
Baggerly chose not to use, corrects for differences due to batch.”

Confounding is a well-recognized problem in conventional epidemiological 
research, but has been less commonly addressed in microarray studies. Effective 
corrections for batch effects are a target of methodological research (e.g., Johnson 
et al. 2007), but the problem has to be recognized as a very challenging one, as it 
is possible for batch-related variation to have different manifestations in different 
genes. Caution and humility are called for when analyzing microarray data from 
multiple batches.

Before we conclude this case study, let us return to Problem 3. This is never 
directly rebutted by Dressman, Potti, and Nevins. Evidently the problem of total 
nonreconstructibility of Dressman’s figures 2C and 2E has been submerged in the 
vehemence of denial of batch effects and outrage at criticism that does not employ 
“exact method of analysis” of the primary document. Figure 8.1c–e is the basis for 
our final arguments.

Figure 8.1c is a very close approximation to Dressman’s original figure 2B. This 
is another sanity check. To construct Fig. 8.1c, we need only survival times and 
event indicators, stratification of samples into platinum responsive and nonrespon-
sive states, and stratification of samples into those that exhibit Src pathway activa-
tion or quiescence. All this information is provided on the supplementary Web site, 
with the exception of the pathway activation classification. In their supplementary 
archive document ovca06.pdf, Baggerly et al. show how Bild’s cell line arrays can 
be analyzed using singular value decomposition to create pathway activation scor-
ing coefficients. This leads to stratification and survival contrasts highly consistent 
with Dressman’s figure 2B. This seems to be a “passed” sanity check. The patterns 
seen in Fig.  8.1d, e, however, are completely inconsistent with Dressman’s fig-
ures  2C and 2E. Figures  2C and 2E and the associated inferences are therefore 
nonreconstructible on the basis of the supplementary archive for Dressman’s origi-
nal paper. These findings are obtained in a way that is almost completely consistent 
with Dressman, Potti, and Nevins’ strictures on acceptable criticisms of reproduc-
ibility. The original data and methods of analysis are used when available; pathway 
scoring coefficients were not made available, but the data used to estimate them was 
identical to that used by Dressman in the original study, and the methods seem to 
work in that they allow reconstruction of Fig. 2B. Nonreconstructibility of Figs. 2C 
and 2E require explanation on the part of the original authors.
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To conclude this review of the reproducibility of Dressman et  al. (2007), we 
summarize as follows:

Several basic findings are demonstrably •	 nonreconstructible, using the same 
methods and data employed by Dressman et al.
The basic inferences may suffer from incompletely controlled confounding. If this •	
is so, the inferences are likely nonreproducible, in that an experiment identical to 
the one published, but possessing a different structure of relationships between 
array batch and sample survival time, would likely yield different inferences.

The distinction between nonreconstructible and nonreproducible findings is 
worth making. Reconstructibility of an analysis is a condition that can be checked 
computationally, concerning data resources and availability of algorithms, tuning 
parameter settings, random number generator states, and suitable computing envi-
ronments. Reproducibility of an analysis is a more complex and scientifically more 
compelling condition that is only met when scientific assertions derived from the 
analysis are found to be at least approximately correct when checked under inde-
pendently established conditions.

8.2.2 � Case Study 2: Michiels et al. and Reassessment  
of Predictive Accuracy in Cancer Transcriptomics

In this section, we investigate a methods paper (Michiels et al. 2005) that criticizes 
common practices in microarray studies in cancer. The main objectives of this sec-
tion are to describe Michiels’ arguments and findings and to discuss conceptual and 
computational issues surrounding the reproducibility of these findings.

8.2.2.1 � Michiels’ Gloss on Standard Approaches

Michiels et  al. examined seven papers using microarrays to define prognostic 
molecular signatures in cancers of various types. They begin with a sketch of com-
mon approaches in applications.

The standard strategy is to identify a molecular signature (i.e., the subset of genes most 
differentially expressed in patients with different outcomes) in a training set of patients and 
to estimate the proportion of misclassifications with this signature on an independent 
validation set of patients.

This characterization of standard strategy is probably not completely accurate, 
because considerations outside of differential expression often factor into the defi-
nition of microarray-based gene signatures in practice. Nevertheless, the “standard 
strategy” does get implemented in some rough sense in many papers, and it is worth 
understanding its advantages and disadvantages.

Formally, the process is equivalent to sample splitting (Picard and Berk 1990), 
even though in practice training and test sets may be acquired separately. In sample 
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splitting, N observations are on hand, all providing measurements on the same 
G » N features. A set s of predictive features is identified through the use of aggressive 
data analysis techniques such as machine learning on T < N training samples and 
then the predictive utility of feature set s is estimated using the N–T remaining test 
samples. An advantage of this approach is that the estimate of predictive utility has 
intuitive appeal – it employs data not used to build the predictive model and thus 
constitutes a direct estimate of generalizability of the predictive procedure based on 
(a) the sampling procedure that yielded the N samples and (b) the signature s. 
Disadvantages of this approach include the fact that neither s nor the prediction 
procedure is uniquely defined (both depend on the specific partition of the N sam-
ples into training and test set), and the fact that the power of the prediction proce-
dure is compromised by sacrifice of N–T test samples, which might have been used 
in a complete model-building process.

8.2.2.2 � A “Random Validation” Procedure and its Results

Michiels and colleagues define a procedure for randomly validating proposed 
signatures. For a given study, the dataset of size N is divided into a training set 
of size T with equal numbers of patients with favorable and unfavorable out-
comes. Values of T range from 10 to a maximum number for which the valida-
tion set has representation of individuals of each outcome type. Five hundred 
such divisions were created for various choices of T for each study under analysis. 
The molecular signature for each training set is defined as the 50 genes with 
expression pattern most highly correlated with outcome as measured by 
Pearson’s correlation. For any validation set, patients are classified to the nearest 
centroid (coordinatewise multivariate mean) of favorable or unfavorable signa-
tures in the training set.

Michiels and colleagues deployed this procedure against datasets obtained in 
connection with seven major microarray studies. There were no supplementary 
data files described in the paper, so any reconstruction of the work would depend 
on independent acquisition of the underlying data resources. We accomplished 
this for three of the seven studies used by Michiels et al.: van ’t Veer et al. (2002), 
97 breast cancer samples classified by metastasis status; Yeoh et al. (2002), 233 
pediatric leukemia samples classified by remission status; and Pomeroy et  al. 
(2002), 60 medulloblastoma samples classified by survival after treatment. 
Key assertions of Michiels and colleagues resulting from this analysis are as 
follows:

Signature identity is unstable and depends on specific composition of the train-•	
ing set.
Predictive accuracy of signatures depends on training set size.•	
“Five of the seven largest studies in microarray-based cancer prognosis did not •	
classify patients better than chance” (abstract of Michiels’ paper).

The publication of Michiels and colleagues indicates that cancer bioinfor-
matics has made progress toward goals of reproducible research discipline. 
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Data were available for reanalysis through authors’ Web sites or institutional 
distribution. The algorithms by which signatures were defined and predictions 
made in the original studies are not of specific interest to Michiels et al.; only 
the product of each paper, the prognostic signature, needed to be identified for 
their work to proceed. In all cases, this signature was available, at least as a list 
of gene symbols.

8.2.2.3 � A Concrete Framework for Signature Assessment

In a simple formalism for modeling microarray study data, there are G genomic 
reporters on an array platform applied as uniformly as possible to N samples. Each 
sample is characterized through evaluation of R features, often constituting infor-
mation on phenotype or experimental condition. The expression measures are pre-
processed and normalized into a G × N matrix of expression values with elements 
x

gi
, with g enumerating reporters and i enumerating samples. An N × R array of 

sample condition values has elements p
ij
, with j enumerating conditions assessed 

and i enumerating samples.
A transcriptomic signature for phenotype P can be defined as any subset S of 

{1,…, G} for which the joint distribution of x
si
, s ∈ S depends on whether or not 

samples i have phenotype P. Preferences among signatures can arise from consid-
erations of predictive accuracy, parsimony (keeping S as small as possible), or 
biological interpretability.

We will use the R programming language to express the prediction procedure 
underlying Michiels et  al.’s random validation method. Text formatted in mono-
space font can be regarded as valid programming content for R. Assume that the 
expression data are available in a matrix X and that the index vector S indexes the 
elements of the array platform belonging to a putative signature of interest. Finally, 
suppose P1 is an index vector identifying only samples with dichotomous pheno-
type P

1
. Then the centroids of the cohorts with and without phenotype P

1
 are 

obtained, respectively, as

C1 = apply(X[S,P1],1,mean) and C2 = apply(X[S,-P1],1,mean).

For any array x obtained from an individual whose phenotype is unknown, 
Michiels (p. 489) proposes predicting phenotype P

1
 if and only if cor(x[P,1],C1) 

> cor(x[P,1],C2).
We now provide an excerpt of runnable code implementing the procedure (sup-

pressing details of call and return interfaces). XCA and XCO are submatrices of the 
G × N normalized and filtered expression data matrix corresponding to cases and 
controls, respectively. s( ) is a function returning a signature (gene list) on the basis 
of T training columns from expression data matrix X and the associated values from 
the dichotomous phenotype class vector P taking values “+”, “−”. p() is a function 
predicting a response vector of N–T “+” and “−” on the basis of an expression 
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matrix representing N–T test (or validation) samples. Tseq is a sequence of training 
set sizes T, assumed increasing from a minimum value of 10. NRUN is the number 
of signatures to be obtained through randomly sampling the training set for each 
value of T.

For s(), Michiels et al. propose selecting the 50 genes possessing high Pearson 
correlations with the phenotype vector over all training samples. For p(), Michiels 
et  al. propose the centroid correlation comparison procedure noted above. The 
quantities S, XTR and PTR can be used to construct the phenotype-specific cen-
troids for comparison with test signature values.

Michiels’ assertion about instability of signature identity arises through tabulat-
ing frequencies of genes selected among the top 50 differentially expressed in each 
of the 500 iterations of the loop given above (i.e., by inspecting the frequency table 
of the contents of ALLS). The assertion about the dependence of misclassification 
rate on training set size arises through inspection of the trajectory of the mean of 
MC in neighborhoods defined by ALLT. The assertion that a signature does not 
classify patients better than chance arises through comparison of the trajectory of 
MC and the line MC = 0.5.

Some aspects of the procedure seem arbitrary (number of genes in signature and 
criterion for selection), and Michiels et al. remarked:

We did a sensitivity study using other strategies to identify signature genes: selection of the 
20 or 100 most discriminating genes (instead of 50) or selection of all genes with a signifi-
cant correlation (p < 0.01) between expression and outcome.

These variations in analytic strategy were asserted to have no qualitative impact.
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8.2.2.4 � Reconstructing Michiels’ Results

Michiels et al. do not employ explicitly reproducible research methods. Reconstruction 
involves three main efforts as follows.

•	 Data acquisition. Institutional distribution allowed recovery of data underlying 
van’t Veer (http://www.rii.com) and Pomeroy (Broad Institute). Previous work on 
packaging Yeoh’s dataset can be obtained from an R package at http://packages.
sgdi.org (Carey et al. 2008).

•	 Algorithm implementation. The michPack R package includes source code and data 
images relevant to this part of this paper. This package will become an element of 
the experimental data archive distributed at http://www.Bioconductor.org.

•	 Representation of previous results to support comparison. Their primary quan-
titative results of Michiels et  al. are presented graphically. To compare our 
reconstruction with the published results, graphs were extracted from a PDF 
rendering of Fig. 2 of Michiels’ original paper to TIFF using MacOSX grab and 
imported to R using Bioconductor’s EBImage. Manual landmarking was con-
ducted to map from the image space to data space.

Figure  8.2 gives the results of our attempt to reconstruct the results of 
Michiels et al. The top left panel confirms the instability assertion for the van’t 
Veer data. Only a fraction of genes in the 70 gene signature are persistently pres-
ent in the random validation strategy signatures. The top right panel depicts 
reproducibility for the van’t Veer analysis. The Fig.  2 panel from Michiels’ 
original paper is overlaid with data generated in the reconstruction based in part 
on the code given above. Michiels’ estimated relationship between misclassifi-
cation rate and training set size is plotted as an orange curve; the lowess scat-
terplot smooth for the reconstruction data tracks Michiels’ result nicely. Similar 
reconstruction holds for the Yeoh data set (bottom left panel), but not for the 
Pomeroy data set (bottom right panel).

8.2.2.5 � Summary of Reproducibility of Michiels et al.

Reconstruction of Michiels’ procedure from the prose description is not too diffi-
cult and appears to have been successful on the basis of the van’t Veer and Yeoh 
results. Failure to reproduce with Pomeroy is significant, as that dataset was one of 
the studies that Michiels et al. regard as providing a signature that does not classify 
patients “better than chance.”

Since we now have reasonably well-designed software implementing this pro-
cedure, we can explore its implications and limitations. For example, we can 
compare its performance in simulation to more common approaches such as 
V-fold cross-validation. We can substitute alternate classification algorithms. 
Ideally, we could use the data resources and algorithms assembled in the research 
to make constructive proposals about signature identification and reliability. This 
will be explored below.
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8.3 � Illustrations of Reproducible Research Discipline

In this section, we describe specific implementations and impacts of reproducible 
research discipline in application to the case studies. We focus on data and algo-
rithm availability. This section is somewhat technical and assumes familiarity with 
the R programming language. Readers who are interested primarily in substantive 
and procedural issues related to reproducibility can skip to Sect. 8.4, where a stan-
dard for reproducible research and its legal underpinnings are described.

Fig.  8.2  Upper left: Top 25 frequencies of probes appearing in 800 signatures (8 training set 
sizes, 100 signatures per size) in Michiels’ random validation strategy applied to van’t Veer’s data. 
Bars colored green are probes appearing in the 70 gene signatures published by van’t Veer. Upper 
right: Michiels’ misclassification trajectory display overlaid with data generated in this reproduc-
ibility exercise. y-axis is estimated misclassification rate with dashed line at 50%; x-axis is training 
set size T. The black curve is R’s default lowess scatterplot smooth estimate of MC(T). Lower left: 
misclassification trajectory display for Yeoh’s 2002 leukemia study. Lower right: display for 
Pomeroy’s 2002 medulloblastoma dataset. The solid line is the estimate of MC(T) for randomly 
trained signature size 50; the dashed line is the estimate for randomly trained signature size 8
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8.3.1 � Reproducible Discipline for Primary Research Papers

An R package is an attractive alternative to a “supplemental Web site” for promoting 
reconstruction and exploration of primary research. In connection with Dressman’s 
paper, we have created the dressCheck package that provides concrete and self-
describing representations of the key elements for analysis. When we issue the 
command data (package=”dressCheck”), we see

These objects, whose names are completely arbitrary, encode the following compo-
nents of the study.

1.	 The primary and secondary quantitative data. In this case, we use the 
Bioconductor ExpressionSet container, that binds together expression array 
results, sample level information, and experiment level metadata (Gentleman et al. 
2004). The name corrp116 is used to indicate which image of the ovarian 
cancer data we are working with among the many possible in this particular 
instance. Bild’s array data on HMEC lines that have been perturbed to induce 
pathway activation are also contained here in ExpressionSet pwLines. In the 
following, we use a stylized formatting approach to distinguish commands 
entered to R (slant monospace font, preceded by >) and information 
returned by the R interpreter (normal monospace font). Here is how we get 
access to the corrected expression data:
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2.	 Identities of signature elements. The study involved discovery or knowledge of 
signatures of platinum responsiveness (platsigprobes) or pathway activation (e.g., 
Src.probes). These can be specified unambiguously as character vectors; if more 
metadata is desired, the GSEABase GeneSet container could be employed.

3.	 Coefficients for sample scoring. Named numeric vectors can store in a self-
describing fashion the coefficients (e.g., e2f3Wts) used to determine whether 
or not a sample has evidence of pathway activation. This facility could also be 
provided in the form of a function.

To illustrate the benefit of such an integrated container, we show the code to 
qualitatively compare sample discrimination using transcriptomic signatures in 
two contexts: Dressman’s ovarian cancer application and van’t Veer’s breast can-
cer application. These constitute multivariate “sanity checks” of the concept.

First we acquire the necessary resources. We will load data images for 
Dressman’s samples as corrp116 and for van’t Veer’s as vv97. Concise reports 
on these data structures are obtained upon mentioning them to the R interpreter.
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We will use the principal components re-expression of the expression data for 
the predictive signatures published by each of these authors. The signatures are 
saved in different objects in each package:

We can use the X[G,S] idiom of Bioconductor to subset the basic containers 
to probe sets in the signatures. In the case of Dressman’s quantifications, not all 
signature elements are available.

The van’t Veer data includes missing values. We will assume that these corre-
spond to unit ratios (log value 0):

Finally we will get vectors of colors for sample states:

We compute the principal components analyses:

Figure 8.3 shows the results. In the scatterplot of the first two principal compo-
nents, the separation of sample states for van’t Veer’s data is not perfect, but clear 
regions of predominance by sample type are apparent. The configuration is much 
more complicated for Dressman’s data, for which we display the first three principal 
components.
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8.3.2 � Reproducible Discipline for Methods and Criticism

As Baggerly, Coombes, and Neeley have illustrated, careful criticism of complex 
analyses is itself a highly complex undertaking and risks of misinterpretation of primary 
work must be minimized. In fact, undertaking a reproducible investigation of an appar-
ently nonreproducible primary work may involve more effort than the original study.

For Michiels’ analysis of Pomeroy’s data, it would be helpful to have direct 
access to the data used by Michiels. We have created packages to manage Michiels’ 
algorithm components (michPack) and Pomeroy’s published data (pomeroy).

As we have seen some discrepancy between our reconstructive work and the 
results of Michiels on the Pomeroy data, let us push further on this dataset. We load 
the packages and check the basic assertion of Pomeroy et al. that a misclassification 
rate of 13/60 was achieved with an eight-gene signature using leave-one-out (LOO) 
cross-validation with k-nearest neighbors (NN) classification. In their “Supervised 
learning” methods section, Pomeroy et  al. indicate that they use k = 5 with a 

Fig.  8.3  Multivariate sanity check of transcriptomic signatures. Left: Principal components 
orientation of 116 ovarian tumor samples employing 246 genes constituting Dressman’s platinum 
responsiveness signature. Right: Principal components orientation of 97 breast tumor samples 
employing genes constituting van’t Veer’s metastasis signature. Green dots are favorable outcomes, 
red unfavorable
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weighted nearest-neighbor algorithm. We do not have access to this weighted 
procedure, so use the unweighted one provided in R’s class package.

We see 15/60 misclassifications, probably close enough given the unweighted 
approach. This is likely an underestimate of the true misclassification rate because 
the role of the given data in driving the choice of the signature is not factored in.

There are three features of Michiels’ algorithm, which attempts explicitly to 
address the uncertainty connected with data-driven signature selection, that depart 
from the analysis just shown. First, Michiels uses centroid correlation as opposed 
to k-nearest neighbors. Second, Michiels forces a signature size of 50 genes. Third, 
Michiels requires that the training set be balanced on classes to be predicted and 
that the test set include at least one element of each class. These constraints are 
incompatible with leave-one-out cross-validation.

It is easy to show that centroid correlation combined with LOO cross-validation yields 
a misclassification rate for the eight-gene signature that is considerably below 50%:

Thus the discrepancy between classifier types used by Michiels and Pomeroy is 
probably not very important. The dashed line in the lower right panel of Fig. 8.2 
shows the impact of reducing the signature size of Michiels’ procedure to 8 from 50. 



1678  Reproducible Research Concepts and Tools for Cancer Bioinformatics

When employed with a signature of size 50, Michiels’ procedure seems to force 
overfitting in the Pomeroy application, and the sensitivity analysis described in 
Sect. 8.2.2.3 was inadequate to expose this.

In summary, Michiels’ results on Pomeroy are not reconstructible, and we cannot 
explain why, because neither the data nor the software used to generate the figure is 
available. The suggestion that a valid estimate of the misclassification rate of 
Pomeroy’s signature is close to 50% seems to be a misrepresentation. When repro-
ducible discipline is followed so that data and algorithms are available for dissection 
and reinterpretation of unusual results, it becomes harder for such misrepresenta-
tions to remain in the literature without correction. Note that Michiels paper has, as 
of April 29, 2009, been cited 270 times (ISI Web of Science), with citations repeating 
concerns about “well-documented” signature instability, divergent results, and, in 
one case, indicating that microarray-based findings are “not robust to the mildest of 
perturbations” (Ramasamy et al. 2008).

8.3.3 � Summary of Illustrations

We have focused on the value of employing R packages of various types of data and 
software for the implementation of reproducible research discipline.

In the case of primary bioinformatic research in cancer, investment of time 
in the assembly of one or a small family of R packages or their equivalents 
nicely localizes resources that are processed into statements, tables, and 
graphs for publication. When a question arises about a given finding, the 
resources for reconstruction are ready at hand. The actual path to computa-
tional reconstruction can take various forms – a script that may also be stored 
in the package or an integrated document that includes narration, code, and 
graphics. The use of Bioconductor containers helps ensure that interrogation 
and filtering processes have conventional implementations and allows use of 
established interfaces for generic processes like linear modeling or machine 
learning. These containers are also designed to minimize the risk of sample 
label scrambling or class confusion that were established or appear to be present 
in the Dressman analyses.

For methodologic research in cancer bioinformatics, adoption of reproducible 
discipline is also quite valuable. Questions about properties of procedures that 
have been established through simulation or applications to published data should 
have definite answers. For this to be the case, the actual data (or simulated data 
streams) need to be available, and the specific software tools employed need to be 
identified precisely.

Reproducible research discipline methods noted here address explicitly the 
problems of fallibility and necessity for revision that constantly crop up in 
applied science. Nontrivial experiments are subject to performance errors. 
Nontrivial software contains bugs. When these are found, results need to be 
regenerated with the revised resources. When the underlying resources are properly 
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stamped with version numbers, the evolutionary state of a research project can be 
identified and managed.

8.4 � Legal Frameworks for Promoting Reproducible Research

In this section, we shift the focus away from motivations for reproducible research 
discipline and technical details of implementation. Our focus now is exploration 
of how researchers’ control over use of scientific research results can be managed 
in the context of reproducible research discipline. Serious concerns can arise 
regarding loss of authorship accreditation and competitiveness through redistribu-
tion and reuse of data and software that have been made available through repro-
ducible discipline. Copyright and licensing procedures are now reviewed to 
address these concerns.

Under US law, original expressions of ideas are accorded copyright protection 
by default. As discussed subsequently, the protection that copyright provides is not 
suitable for scientific research, and there are steps that scientists can take not only 
to realign the legal protection of their work with scientific norms, but also to extend 
attribution protection to their work.

8.4.1 � What Protection Falls on Scholarship by Default?

Copyright is designed to protect original expressions of ideas and “follows the 
author’s pen across the page” (von Hippel 2006). There is no action that an author 
must take to secure copyright over his or her work. It is possible to view US copy-
right law as a barrier to the sharing of scientific scholarship since it establishes 
exclusive rights for creators over their work, thereby limiting the ability of others 
to copy, use, build upon, or alter the research. This is precisely opposite to prevail-
ing scientific norms, which provide both that results be replicated before accepted 
as knowledge and that scientific understanding be built upon previous discoveries 
for which authorship recognition is given. Copyright protection is essentially 
indefinite, lasting the length of the author’s lifetime plus 70 years. As Larry Lessig 
states with respect to sharing creative works, “[t]he essence of copyright law is a 
simple default: No. For many creators, the essence of the creativity is: Of course.” 
(Lessig 2008, p. 277.)

There are some exceptions to the rights ascribed to creators under copyright. In 
an academic setting, the most important one is the doctrine of “fair use.” Fair use is 
a safety valve that permits use of copyrighted material in certain settings when 
previous permission has not been obtained from the copyright holder. In the statute 
fair use, claims can be made “for purposes such as criticism, comment, news report-
ing, teaching (including multiple copies for classroom use), scholarship, or 
research” and are not infringements of copyright (17 U.S.C. §107). At first glance, 
this seems an ideal workaround for the sharing of academic research, but in fact 
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what comprises “fair use” is not at all clear a priori. Courts must determine whether 
the use is fair on a case-by-case basis, driven by the facts in each case. There is not 
a clear application of the doctrine to scholarship and it is difficult for users to know 
when their use of a work would be called fair by the courts.

Lessig founded Creative Commons in 2001 to give creators of artistic works the 
ability to allow others to freely use and reuse their creation under terms they set. 
Creative Commons provides a suite of licenses that give terms of use for work that 
differ from, and are usually more permissive than, the default copyright. The 
licenses express the relevant freedoms in three separate layers: A “commons deed” 
that describes the associated freedoms in a form easily understood by people; 
“Legal Code” that forms the actual copyright license; and the meta-data that sur-
rounds the content to express the freedoms contained in the copyright license in a 
machine readable way.

To bring clarity to the terms of use of scientific work, a similar idea can be applied.

8.4.2 � The Reproducible Research Standard

The Reproducible Research Standard (RRS) is a licensing framework that allows 
scientists to communicate terms under which their scholarship can be used and to 
do so in a uniform way that reflects our common scientific norms (Stodden 2009). 
The RRS releases all aspects of scholarship, with the exception of raw facts, so that 
they can be copied, verified, and built upon when attribution is given. Building on 
the ideas behind Creative Commons, and using existing open-source licenses for 
code, if work satisfies the following four conditions, it can be marked as reproduc-
ible, under the RRS.

1.	 The full compendium is available on the Internet
2.	 The media components, possibly including any original selection and arrange-

ment of the data, are licensed under the Creative Commons attribution license 
(CC BY; http://creativecommons.org/licenses/by/3.0/) or released to the public 
domain under Creative Commons CC0 standard (http://creativecommons.org/
license/zero/)

3.	 The code components are licensed under one of Apache 2.0, the MIT License, or 
the Modified BSD license, or released to the public domain under CC0.

4.	 The data have been released into the public domain according to the CC0 license.

In joint work with Science Commons, one of the authors (Stodden) is develop-
ing a mechanism that would allow scientists to assert their compliance with these 
conditions, and publicly certify their work as reproducible. Since it may not be 
feasible for a scientist to satisfy all these conditions because of reasons beyond 
his or her control (such as privacy considerations for data), we propose different 
levels of compliance. If the work is publicly released and capable of being reproduced, 
it is marked as Verifiable. If the work has been verified by someone working 
independently, it can be marked as Verified. When the full compendium is only 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/license/zero/
http://creativecommons.org/license/zero/
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partially released, the work can be marked as Semi-Verifiable, and if the code has 
been verified or the results are achieved in a different dataset (depending on which 
components were not released), the work is marked as Semi-Verified.

The RRS provides a way for scientists to signal the ability of others to legally 
download their work, copy it, rerun code, and manipulate data, with the require-
ment that attribution is given in any publication that depends on the original work. 
Without such a licensing structure, a scientist wishing to build on an author’s work 
would need to obtain permission because of the default attachment of copyright 
protection to the work.

8.4.2.1 � Data Under the RRS

Copyright law in the USA does not permit the copyrighting of raw facts but original 
products derived from those facts do fall under copyright, qualifying as original 
expression. In the US Supreme Court case Feist Publications, Inc. v. Rural 
Telephone Service, the Court found that the white pages from telephone directories 
are not themselves directly copyrightable, since copyrightable works must have 
creative originality, but “original selection and arrangement” of the data does fall 
under copyright automatically [499 U.S. 340 (1991)]. Attaching an attribution 
license, such as the Creative Commons BY license, to the original “selection and 
arrangement” of a database can encourage scientists to release the datasets they 
have created by providing a legal framework for attribution and reuse of the original 
selection and arrangement aspect of their work. Since the raw facts themselves are 
not copyrightable, it does not make sense to apply such a license to the data them-
selves. The selection and arrangement may be implemented in code or described in 
a text file accompanying the dataset, either of which can be appropriately licensed 
as suggested for code in the RRS. The RRS recommends that raw facts be released 
to the public domain using the Creative Commons CC0 certification. For details on 
the CC0 protocol, see http://creativecommons.org/press-releases/entry/7919.

8.4.3 � RRS and Cancer Bioinformatics Research

In Sect. 8.2.2 above, we reviewed Michiels et al.’s reanalysis of seven microarray 
studies. Michiels chose the seven studies for inclusion in his work because of the 
public availability of the data. Michiels is not trying to reproduce results in the 
seven selected papers, but trying to establish a benchmark procedure to verify 
results obtained in correlation-based microarray studies. If the previous seven stud-
ies had used one of the licenses recommended by the Reproducible Research 
Standard for their code, Michiels could have used this to verify their results directly. 
The Michiels paper itself could be more readily subject to scrutiny if he had 
released the code used in the approach to testing the robustness of microarray findings 
in a compendium adherent to the RRS.

http://creativecommons.org/press-releases/entry/7919
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This example also illustrates ways in which the RRS affects interactions between 
publishers and scientists. Michiels published this paper in Lancet, and presumably 
the paper is under copyright (it is only accessible via subscription). If a copyright 
agreement has been signed with a publisher, this makes it impossible to apply a CC 
BY license to the final paper unless Lancet, the presumptive copyright holder, 
chooses to do so. In contrast, the code used by Michiels can be released under the 
RRS and so can any original selection and arrangement of the data. Microarray 
studies are poised to be on the forefront of reproducible research because of the 
established standards for data release upon publication. As Michiels notes, 
“Leading scientific journals require investigators of DNA microarray research to 
deposit their data in an appropriate international database, following a set of guide-
lines (Minimum Information About a Microarray Experiment).” With the release of 
code associated with published papers, the field could become the first truly repro-
ducible discipline.

8.4.3.1 � Benefits of the RRS

The RRS gives scholarship a consistent licensing structure while providing legal 
protection to scientists who wish to build upon others’ code, text, and original selec-
tions and arrangements of data. The RRS communicates to other researchers not only 
that they are free to use the work, but also that they must attribute the work if they use 
it. But it also communicates something deeper: that the reproducible researcher 
ascribes to the scientific norms of sharing and to the replicability of results.

Reproducibility is essential for the verification of computational results, particu-
larly as computation becomes a pervasive way to conduct scientific research. 
Inspection of code can communicate details of analysis and data processing that 
might not be readily expressed in a published paper and can allow an interested 
reader to vary parameter settings and explore the research more deeply. Without 
reproducibility, the credibility of results and of research in the field is jeopardized 
(Donoho et al. 2009).

The immediate benefits for the individual scientist from applying the legal 
framework of the RRS to scientific work are threefold. First, attribution is explicitly 
stated as a condition of use. Openly released work is apt to be cited more frequently 
than work that is not released, and affirming this scientific norm can help an author 
gain citation for their work. Attribution for data use can be communicated through 
the RRS, since an attribution license can be applied to the original selection and 
arrangement of the data. As will be discussed in more detail in Sect. 8.4.3.2, attribu-
tion can become machine readable and hopefully provide not only a further incen-
tive to attribute correctly, but also create a mechanism to track scientific 
contributions more accurately. Collaboration in dataset creation, for example, can 
be tracked more accurately.

Second, the RRS can offset costs to full releasing of scholarship by making it 
public that your work ascribes to the principle of reproducible research. Using a 
logo, a scientist will be able to mark his or her work as reproducible and signal 
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adherence to this way of doing research. Consistent licensing practices also permit 
the mixing of code from different sources, obviating possible clashes in licensing 
terms that can arise from the use of licenses not specified by the RRS.

Third, working reproducibly encourages better science from the inception of the 
project. In the words of one proponent, he committed to principles of reproducibility 
because he “didn’t trust himself to turn out good work unless his results were subject 
to the open criticism of other researchers” (Donoho et al. 2009). Being able to recre-
ate your own results creates a check on quality of work being carried out. Open code 
and data also serve to promote your work to potential coauthors and collaborators, 
future employers and graduate students, and anonymous referees and make it easier 
for postdoctoral fellows to hit the ground running in a new lab environment.

8.4.3.2 � Costs of the RRS

The RRS requires action on the part of the scientist to provide terms of use other 
than automatically assigned by copyright. The scientist needs to certify his or her 
work as reproducible.

The licensing structure of the RRS enforces attribution in a legal sense, as 
required by the licenses chosen. For the media component, it appears possible that 
this is substitutable with academic citation, but the code licenses typically require 
listing contributors in a file accompanying the work. Attribution tracking through 
this file, or through tags on the .html files where the code is located, does create 
extra work for the scientist working within the RRS framework.

Recent research has indicated that the more a scientist shares his or her work, 
the more citations the work garners. This is an indirect way to recoup the costs of 
working reproducibly. With wider use of the RRS, a framework is created for the 
discussion of reproducible research as an entity deserving of academic reward in 
itself. Although it requires extra work to be reproducible, promotion and hiring 
committees can discern work that was released in accordance with the standard of 
the RRS and through a machine-readable attribution system, those determining 
academic reward can search to discover the contributions a particular scientist has 
made, not only through publication but also through code and data and adherence 
to norms of replicability.

8.5 � Conclusions

When concrete reproducibility of research results is established, questions of 
validity or robustness of research claims can be investigated immediately. 
Scientific curiosity regarding limitations and possible extensions of published 
results can also be addressed rapidly. This is because all primary data and software 
that are used to interpret the data are all published and documented in the repro-
ducible research discipline.
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In the case of Dressman et  al. (2007), questions of validity were carefully 
addressed with a very thorough and extensive collection of datasets and documents as 
described in the letter of Baggerly et al. (2008). A more compact and self-describing 
approach to investigation is feasible in the form of the dressCheck R package 
described in Sect. 8.3.1. Had Dressman et al. published a comparable archive of 
quantifications, portable algorithms, and scripts yielding their primary findings, 
much effort could have been saved and validity of the main findings could be 
straightforwardly checked.

In the case of Michiels et  al. (2005), several claims seem reproducible in the 
absence of adoption of concrete reproducible discipline by these authors. However, 
one strong claim about bias in estimation of the misclassification rate of the 
medulloblastoma signature of Pomeroy et al. is not reproducible.

These observations indicate that current approaches to “supplemental documen-
tation” of complex research undertakings in conventional publication are insuffi-
cient to ensure reliability and extensibility of published results. Probably the 
strongest incentive to adoption of concrete reproducibility of quantitative research 
lies with the authors of primary investigations (such as Dressman or Pomeroy and 
colleagues) who naturally want to minimize the risk that their analyses will be 
found to be erroneous. When concrete reproducibility is secured by the primary 
authors, independent auditors can readily verify results prior to publication, and 
both the authors and the reading public benefit from such verification. Secondary 
researchers also benefit because the effort of “retooling” a complex data archive to 
facilitate reproduction of known findings can be reduced to finding and rerunning 
software that was known to yield the findings.

Scientists who work in areas requiring reproducible discipline must be alert to 
two challenges related to intellectual property control. First, reuse of published 
results may fall afoul of restrictions on republication engendered by copyright law. 
Second, adoption of reproducible research discipline may allow other investigators 
to benefit from reanalysis of primary data without attribution to the original creator. 
The emerging reproducible research standard described above gives scientists 
guidance and clarity concerning rights and obligations of those participating in 
reproducible research.
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Abstract  This chapter describes the Cancer Biomedical Informatics Grid (caBIG®) 
project, a collaboration among the National Cancer Institute (NCI) and numerous 
discovery organizations, mostly NCI-designated cancer centers. The rationale for 
the caBIG® project opens the review, followed by description and analysis of the 
pilot phase (2004–2007). Changes in caBIG® as it transitions to an enterprise phase 
are evaluated. The chapter concludes with a review of important papers that either 
describe caBIG® components or are based on the initiative.

9.1 � Introduction

Biomedical research, in particular cancer research, has exploded in the past half 
century, since the tenure of James Shannon as director of the National Institutes of 
Health. By any metric the breadth and depth of scientific information has expanded 
beyond any individual’s ability to monitor. Valiant and largely successful attempts 
to cope with the information explosion have arisen in parallel. The Index Medicus, 
a comprehensive index of the published medical literature begun in 1879 by John 
Shaw Billings of the Surgeon General’s Office, was automated as a time-sharing 
service in the 1960s as MEDLINE. The print Index Medicus ceased publication in 
2004, as the PubMed search engine for MEDLINE and other online resources had 
rendered it obsolete.

Today the published biomedical literature is but the tip of an iceberg of usable data 
and information. Gene sequences, proteomic signatures, available clinical trials, and 
social networks are but a few of the information resources that are both more immediate 
and more difficult to navigate than the journals. Researchers, clinicians, and patients 
have recognized this knowledge explosion as both a boon and a bane to progress 
against disease in the twenty-first century. In cancer research, high-throughput 
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technologies and systems biology have characterized “cancer” as a collection of 
complex diseases and syndromes with distinctive genetics and molecular signatures. 
While the challenges in controlling cancer are therefore increased, so too are the 
opportunities for targeted, individualized diagnostics and therapeutics.

In 2003 the Director of the United States’ National Cancer Institute (NCI), 
Andrew von Eschenbach, recognized the challenges associated with linking the 
cancer research community to promote interaction and collaboration necessary to 
continued progress in the field. In boldly envisioning a world without suffering and 
death due to cancer, he proposed an initiative to support collaborative research 
through informatics: a Cancer Biomedical Informatics Grid (caBIG®) built upon 
modern computational architectures and utilizing the talents of developers and 
scientists both within the NCI and throughout the academic research community 
(Kaiser 2004; Buetow 2005). The caBIG initiative, which quickly expanded to 
include industry, nonacademic cancer centers and the patient advocacy community, 
launched in early 2004. This chapter reviews caBIG®’s onset, pilot phase, and 
current enterprise implementations from the institutional perspective.

9.2 � caBIG Prelaunch: 2003

In July 2003 the NCI announced its intention to create a cancer-based biomedical 
informatics network. The stated goal of this effort was to build a biomedical infor-
matics network that would connect cancer research related elements of data, tools, 
individuals, and organizations, and that would leverage multiple foci of expertise. 
The overarching vision was that caBIG® would help redefine how research is con-
ducted, care is provided, and patients and participants interact with the biomedical 
research enterprise. Thus from the outset of the initiative, caBIG® exhibited a com-
mitment to patient care as well as research, and also embraced the cancer advocacy 
community.

The caBIG® leadership, vested in the Center for Bioinformatics at the NCI, 
envisioned the initiative as a sequence of phases. An initial pilot phase would 
enable the feasibility of the grid to be tested in a small scale before the caBIG® 
initiative would be made available to all members of the Cancer Center community. 
Conceptually it provided an opportunity to monitor the performance of the compu-
tational architecture and redirect efforts as required to ensure the needs of Cancer 
Centers were met and funds invested appropriately. The specific goals of the pilot 
phase, presented to NCI-designated Cancer Centers in August 2003, were to:

Illustrate that a spectrum of Cancer Centers with varying needs and capabilities •	
can be joined in a common grid of shared data, applications, and technologies
Demonstrate that Cancer Centers, in collaboration with NCI, can develop new •	
enabling tools and systems that could support multiple Cancer Centers
Demonstrate that Cancer Centers will actively use the grid and realize greater •	
value in their cancer research endeavors by using the grid
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Create an extensible infrastructure that will continue to be expanded and •	
extended to members of the cancer research community

These goals were amended as the pilot phase took shape (see below).
The caBIG® pilot project was initiated by engaging the NCI-designated Cancer 

Center community in a dialog to establish a pilot network of potential participants. 
In July and August of 2003, the NCI Center for Bioinformatics (NCICB), with help 
from the NCI Cancer Centers Program, hosted informational seminars for NCI-
designated Cancer Centers in Bethesda, MD and in San Francisco, CA. The objectives 
of the seminars were twofold: (1) to engage and update the Cancer Centers on the 
progress being made toward developing an integrated bioinformatics infrastructure 
platform supporting caBIG®, and (2) to provide a forum for disseminating information 
regarding the next steps for testing the feasibility of joining cancer center expertise and 
infrastructures into a common web of communications, data, and applications.

Following the informational seminars, onsite Cooperative Development Meetings 
were scheduled with Cancer Centers that volunteered to discuss their informatics-
based strengths, needs, and potential contributions to the caBIG® pilot. From July 
to September 2003, caBIG® Project teams composed of scientific and information 
technology professionals from the NCI and a master contractor (Booz Allen 
Hamilton, BAH) met with key scientific and informatics personnel from 49 Cancer 
Centers. Each of the institutions submitted a pilot project summary outlining proj-
ects that they were potentially interested in pursuing in collaboration with NCICB 
to test the capabilities of the grid. Additionally, each institution prepared a list of 
capabilities not locally present that it would find valuable to obtain from the 
caBIG® project. The needs and possible projects were discussed at the Cooperative 
Development Meetings, which naturally took on the character of a project site visit 
from the NCI. The atmosphere at these meetings was intensified by the vagueness 
of the overall project plan, and by the initial information emanating from NCICB 
that approximately ten institutions would be selected as a pilot caBIG® develop-
ment and adoption community.

Once all pilot project summaries were submitted, an intensive review process 
commenced to select a set of pilot projects and Cancer Center participants. During 
the process of selecting the pilot participants, a revised approach for the pilot structure 
arose. The initial vision for a Center-based approach incorporating only participants 
from ten Centers was replaced with an approach that “maximized Center participation 
and capitalized on synergies between Centers.” Under this approach, common projects 
would be grouped together as areas called “Workspaces.” Each Workspace repre-
sented an area of critical biomedical informatics need as identified by the Cancer 
Center Community involved in the earlier caBIG® meetings. It was envisaged that 
these Centers and their individual projects would become the primary mechanisms 
for testing the feasibility and capability of the data grid under development.

Figure  9.1 depicts the perceived needs of the Cancer Centers. All 49 visited 
Cancer Centers submitted pilot project summaries describing the potential projects that 
they wished to pursue in collaboration with NCICB. The majority of the projects 
submitted fell under the following categories:
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1.	 Clinical Data Management. Example areas included:

•	 Adverse events
•	 Patient recruitment
•	 Patient management
•	 Quality-of-life tools
•	 Study protocol design
•	 Study monitoring
•	 Internal review board management

2.	 Microarray and Expression Tools. Example areas included:

•	 Array statistical analyses tools
•	 Microarray quality tools
•	 Microarray comparison tools

3.	 Translational Research Tools. Example areas included:

•	 Middleware for basic/clinical/genomic data integration
•	 Clinical data profiling and integration

4.	 Vocabularies and Ontologies. Example areas included:

•	 Ontology-based free-text data extraction
•	 Distributed ontology extraction

Visualization & Front-End Tools
Remote/Bandwidth

Proteomics
Microarray & Gene Expression Tools

Meeting
LIMS

Licensing Issues
Pathways

High Performance Computing
Integration

Imaging Tools & Databases
Database & Datasets

Clinical Trial 
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& Pathology
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Clinical Data Management Tools
Staff Resources

Distributed Data Sharing/Analysis Tools
Translational Research Tools

Access to Data
Tissue & Pathology Tools

Center Integration & Management
Common Data Elements & Architecture

Meta-Project
Vocabulary & Ontology Tools & Databases

Statistical Data Analysis Tools

Number of Cancer Centers Reporting Needs

Integrative 
Cancer 
Research

Fig. 9.1  Informatics Needs Reported by Cancer Centers, 2003. Highlighted bars indicate tools or 
solutions referent to Clinical Trials, Integrated Cancer Research, and Tissue/Biospecimen 
Banking
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5.	 Distributed and General Data Sharing and Analysis. Example areas included:

•	 Middleware to create security layers around data for export
•	 Web-based tools for sharing translational research data

6.	 Tissue Banks and Pathology Tools. Example areas included:

•	 Open-source tissue database systems
•	 Specimen tracking systems
•	 Virtual specimen database-federating tools
•	 Virtual tissue repositories

Cancer Center directors, who stressed the value to all of the cancer research enterprise 
by establishing a larger caBIG® community at the outset, successfully challenged the 
idea of only ten pilot sites. The directors also expressed concern that the project focus 
on critical needs (such as clinical trials management) over advanced informatics 
development. As the pilot selection process progressed, a revised approach for the 
pilot structure emerged driven by the idea of key project or topic areas rather than 
individual Centers. Under this revised approach, Centers were grouped together as 
part of “Workspaces” encompassing common areas of project activities. These 
Workspaces would drive the 3-year Pilot Phase from 2004 through early 2007.

9.3 � The caBIG‚ Pilot Phase: 2004–2007

The caBIG® initiative was formally launched in February 2004, with the 49 Cancer 
Centers, NCICB, and BAH as the community. Quickly the community grew to 
incorporate patient advocates from NCI’s Consumer Advocates in Research and 
Related Activities program, and over the course of the pilot additional Cancer 
Centers, research organizations and corporations joined the project. The pilot phase 
was characterized by Workspaces, Special Interest Groups, and Working Groups. 
From the perspective of the Strategic Planning Working Group, organized to assist 
NCICB and BAH with overall direction, the activities consisted of planning, tool 
development, and demonstration projects.

9.3.1 � caBIG‚ Vision, Mission, and Principles

The vision of caBIG® is to be the information network that enables all constituen-
cies in the cancer community to collaborate in the generation and application of 
new biomedical knowledge to cancer research, diagnosis, treatment, and preven-
tion. Never envisioned as an overarching organization, caBIG® was seen as a com-
munity of communities, each contributing to a self-organizing web of knowledge, 
data, and people. In the pilot phase this required guidance, but overall the caBIG® 
initiative launched with a light administrative overhead.

The mission of the caBIG® project is to provide infrastructure for creating, sharing, 
and using biomedical informatics tools, data, and results. This mission is to be 
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accomplished using a computational network, caGrid, which exhibits aspects of a 
data grid and a community grid. The two components of this mission reflect its 
technological underpinnings: connection should be via a sharable, interoperable 
infrastructure, and a common language and toolset should be developed to facilitate 
information sharing.

At its first strategic planning meeting, the community endorsed four fundamental 
principles that would underlie caBIG®’s operations and decisions:

Open Access: caBIG•	 ®’s products, its grid and community are open to all inter-
ested persons and groups. This never meant that the data would be open; rules 
of privacy and security would apply to biomedical and patient information, but 
the tools and resources would be available.
Open Development: Software projects are assigned to teams (often from more •	
than one institution), but regular interaction with Special Interest Groups (SIGs) 
and iterative opportunities for review and comment ensure that the projects are 
owned by the entire caBIG® community. Planning, validation, testing, and 
deployment materials similarly are open.
Open Source: Software code developed with support from the NCI under the •	
caBIG® project is available to developers for use and modification. The soft-
ware is provided through nonviral open-source licenses to promote efficient and 
reusable code. Industrial partners can modify and commercialize derivative 
products.
Federation: caBIG•	 ® software and standards enable Cancer Centers and other 
data producers to share resources with each other and the larger community. 
While data resides locally, aggregation to create multi-institutional virtual infor-
mation sets is permissible within the frameworks of data sharing established by 
the caBIG® community. This requires a sophisticated authentication and autho-
rization system residing on caGrid (see Chaps. 4 and 5).

9.3.2 � Workspaces and Working Groups

Figure 9.2, taken from caBIG presentations from 2006 and 2007, illustrates the 
structure of the pilot phase. Initially three Domain Workspaces were established, 
based on the feedback from the Cancer Centers depicted in Fig. 9.1. Clinical Trials 
Management Systems (CTMS) was established to inventory Cancer Center needs 
for integrated clinical trials support, and originally was tasked to develop an open-
source solution for this problem identified by over 60% of the Centers. Integrative 
Cancer Research was constituted to develop and adopt bioinformatics tools for 
translational cancer investigation. Tissue Banks and Pathology Tools were tasked 
to develop an open-source biobanking system. In 2004, NCI’s imaging groups 
elected to join the caBIG community, and a fourth In Vivo Imaging Workspace 
was created to develop archives and a caGrid-compatible image distribution and 
analysis system.
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Two Cross-Cutting Workspaces were established during the pilot, to address two 
components of the caBIG® Mission. An Architecture Workspace took responsibility 
for the computational infrastructure and the development of caGrid and for devel-
oping a set of guidelines and standards for developing and modifying biomedical 
informatics applications to be caGrid compliant. A Vocabularies and Common Data 
Elements (VCDE) Workspace provided for the development of the underlying data 
elements and vocabularies used by the project, and developed common mecha-
nisms used throughout the caBIG® community via mentoring, white papers, and a 
structured software review process.

Early on these workspaces promulgated two desiderata. To bring systems online 
quickly, caBIG® committed to a “bias for action.” This implies a commitment to 
making decisions and moving forward, even if perfection cannot be achieved. To 
allow long-term evolution and improvement of architectural design, caBIG® is 
committed to “designing for change.” To turn these thoughts into action, the 
community also adopted a two-pronged practical approach: If requirements are 
well understood and good solutions are available, caBIG® initiates developmental 
activities within the architectural workspace. If requirements are less clear or if 
solutions are not yet available, caBIG commissioned analysis and assessment 
activities, followed by prototyping.

Fig.  9.2  Organization of the caBIG® Pilot Phase into Workspaces and Working Groups. This 
figure from 2005 shows four domain Workspaces, the two cross-cutting infrastructure Workspaces, 
and strategic working groups
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Three strategic level working groups supported these activities. The Strategic 
Planning Working Group supported NCICB and BAH in providing overall direc-
tion for the project, and developed a strategic plan which was presented in 2005 at 
the second caBIG® Annual Meeting. A Data Sharing and Intellectual Capital 
(DSIC) Working Group was organized to solicit, collect, and catalog specific 
examples (use cases) from each Domain Workspace that presented challenges to 
the caBIG® community with respect to study participant consent, Institutional 
Review Board issues, authorization, confidentiality, de-identification, data sharing, 
software licensing, biospecimen resources, and intellectual property. This was fol-
lowed with white papers oriented toward making caGrid a usable resource for 
multi-institutional and clinical research. The Training Working Group created a 
Developer Boot Camp and published first editions of print and electronic training 
resources for the broader cancer and biomedical research community.

Also shown in Fig. 9.2 are the roles of the Cancer Centers and their representa-
tives. Three roles were envisioned within the workspaces. Member Developers, 
comprising 20% of the Centers, were institutions that committed to software devel-
opment, either of fundamental infrastructure or informatics tools. Member 
Adopters, another 20%, were institutions that agreed to test and adopt prerelease 
versions of tools, and provide feedback to the Workspaces and Developer groups. 
Individuals from the remaining 60% of the participating Cancer Centers could be 
members of strategic workspaces or Special Interest Groups, which were consti-
tuted to review workspace progress or recommend projects in specific areas within 
a Workspace.

9.3.3 � Activities During the Pilot Phase

The kickoff Annual Meeting in February 2004 described the overall goals of the 
caBIG® project and provided opportunities for each workspace to begin to define 
their activities and for participants to meet each other. Existing projects at the 
Cancer Centers were presented, and the discussion centered on how a broad array 
of research and development might be integrated into the caBIG program. 
Information on the Pilot Phase of caBIG® is well summarized in the Pilot Phase 
Report (2007).

Within the first year several organizing principles emerged that guided the pilot 
phase. Foremost among them was the sense of community: informatics profession-
als and domain experts from the Cancer Centers were meeting each other, often for 
the first time. While some centers received more funding than others based on the 
maturity of their information technology (IT) platform and their role as developers, 
everyone started out with less resources for caBIG® activities than had been envi-
sioned when the idea of 10–12 pilot institutions was conceived in 2003. There had, 
of course, been opportunities for Cancer Center informatics leaders to work together 
before. The American Association of Cancer Institutes had an informatics initiative 
early in the decade. The Pennsylvania Cancer Alliance Bioinformatics Consortium 
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had united the six NCI-designated cancer centers in that state to develop a virtual 
tissue bank system. A volunteer organization, the Biomedical Research Institutions 
Information Technology Exchange (or BRIITE) had been meeting for several years 
to discuss mutual areas of collaboration and knowledge sharing around research 
informatics. In fact, the membership of the Strategic Planning Working Group was 
drawn from these and other preexisting activities.

Most Cancer Centers had some degree of biomedical informatics technology at 
the time of caBIG® launch, and one of the early issues was whether caBIG® was 
envisioning a wholesale rewrite or planned to incorporate existing systems. The 
project recognized that there would need to be many paths to caBIG® adoption, and 
thus emphasized interoperability and interfacing working technology with the 
emerging caBIG® infrastructure. Interoperability would need to be syntactical and 
semantic. One of the early deliverables of the Architecture and VCDE Workspaces 
was a caBIG® Compatibility Guidelines document. This paper established four 
levels of caBIG® compatibility:

Legacy: Existing systems without data models and rudimentary ability to inter-•	
face with caBIG® component systems
Bronze: Systems that included information models, controlled vocabularies and •	
programmatic access to data
Silver: Systems with a functioning Application Programming Interface, and •	
information models and vocabularies vetted by the VCDE Workspace
Gold: Silver systems that were fully compatible with caGrid•	

Syntactic interoperability was characterized by degree of maturity of programming 
and messaging interfaces. Semantic interoperability included components of ontol-
ogy, information model, structured vocabularies, and data elements. A chart depict-
ing specifics of the maturity model based on interoperability features is shown as 
Fig. 9.3.

Project management in caBIG® was diverse, complex, and a source of constant 
comment. An effort was made to balance top-down guidance from NCICB and 
innovation arising from the Cancer Center community. Regular SIG and Workspace 
teleconferences attempted to broker this dynamic tension. Software development 
was vested in the academic institutions in order to keep the tools close to the user 
base; however, the projects were funded as contracts rather than grants. The objec-
tive here was to establish timelines and specific deliverables, and it was based on 
an expectation that the development teams at the Cancer Centers could develop 
polished software tools.

A final principle was leveraging. Having multi-institutional development teams 
with existing academic and commercial software suggested that reinvention and 
redevelopment could be kept to a minimum. This principle assumed that the 
caBIG® projects would focus on connection to the grid, and that modularity and 
interoperability would arise as a matter of course.

During the second and third years of the Pilot Phase, efforts centered on generating 
results from the workspaces. SIGs took responsibility for shepherding development 
projects and met with regular teleconferences. Workspaces and some SIGs had face 
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to face meetings where progress was reviewed and projects modified to keep pace 
with the ever-changing biomedical research and informatics landscape. In 2004 
nearly 200 teleconferences were held; this increased to nearly 500 in each of the 
second and third years. By the third year 0.5 versions and 1.0 versions of software 
tools were emerging from all of the domain workspaces, although the overall progress 
of the caBIG® community seemed less than had been envisioned at the outset.

9.3.4 � Deliverables from the Pilot Phase

As summarized in the caBIG® Pilot Phase Report, deliverables included cultural, 
technical, managerial, and operational components. Figure  9.4 illustrates atten-
dance at the caBIG® Annual Meeting from 2004–2008; this reflects the establish-
ment of an ongoing caBIG® community. At the end of the pilot phase 54 Cancer 
Centers and over 900 people were working on the project. The cross-cutting workspaces 
had delivered standard data models, common data elements, and preliminary ver-
sions of caGrid. Over 80 services had been registered on the grid, although nearly 
all were intra-institutional test implementations.

By early 2007 approximately 40 tools had been released under the caBIG 
program. These are listed in Appendix. Some of these were de novo development; 
most were interoperable adaptations of software that was either released or in 
development during the period. By mid-2007 12 tools were certified as caBIG® 
Silver compliant, which required adherence to architectural and vocabulary 
standards. The lack of Gold compliance was more a reflection of the progress on 
caGrid; the vision of data and interoperable tools flowing across a computational 
and data grid had not yet materialized.

Fig. 9.4  Attendance at the caBIG® Annual Meeting, by year
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However, the sheer size of caBIG® meant that it could not be dismissed as a 
force within an exploding biomedical informatics environment in cancer research. 
Several NCI initiatives, notably The Cancer Genome Atlas project, adopted tools 
and infrastructure from caBIG®. Reaching out to the Specialized Programs of 
Research Excellence (SPOREs), caBIG® provided the informatics platform for 
multi-institutional research in prostate and breast cancer. The NCI adopted caBIG® 
compatibility essentially wholesale in evaluating center grants and information 
intensive project proposals arising from 2005. The US Food and Drug Administration 
(FDA) partnered with the NCI on a Regulatory Data Exchange project based in part 
on caBIG® technologies. Very important for the future of clinical trials research, a 
consortium of the NCI, the FDA, the Clinical Data Interchange Standards 
Consortium (a standards group from the biopharmaceutical industry) and Health 
Level Seven (the health-care informatics standards organization) established the 
Biomedical Research Integrated Domain Group (BRIDG). This spurred develop-
ment of the BRIDG Model, a comprehensive standard data model that captures 
metadata about clinical and preclinical trials.

9.3.5 � Critical Evaluation of the Pilot Phase

As the Pilot Phase drew to a close, an internal and external evaluation of the caBIG® 
project identified several problems that would guide the evolution of the initiative. 
Although a large community had been engaged and stayed engaged, and a number 
of deliverables achieved, a number of common issues kept being advanced. The 
decision to involve over 50 Cancer Centers led to management and control difficul-
ties, and all but ensured that progress, while broad, would not be as swift as with a 
focused group of pilot centers. Also, with so many institutions involved for rela-
tively little participation level or financial incentive, the communication devolved 
onto the informatics professionals to a great extent. Although this community grew 
and became close over the pilot period, end users and cancer center directors felt 
largely out of the loop. A constant tension arose between the need to develop working 
tools that would satisfy users and directors, while maintaining progress on the 
strategic objective of caBIG®: developing a grid architecture, vocabularies, and 
standards that would support long-term development of interoperable tools and 
systems. This was particularly true in the CTMS Workspace, where the original 
idea to build an open-source interoperable clinical trials management system in 
3 years was somewhat overambitious.

With such a large community working on the deliverables, the Firm Fixed Price 
contracting mechanism used in the Pilot Phase proved unworkable. Cancer centers 
had to assume that funds would eventually flow as work was completed; stringent 
task orders led to short time frames and limited dollars to complete major tasks. 
Almost all developer institutions used internal resources to augment caBIG® funds, 
leading to increased scrutiny of the project’s value for the dollar.
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The quality of caBIG® tools was uneven, in part due to the reliance on the aca-
demic community as developers. In hindsight one might have recommended com-
mercial partnerships for development from the beginning, but in 2003 it was 
unclear how that could have worked. The major IT corporations stayed on the 
sidelines during the first few years of the project, and smaller tool-building firms 
participated in SIGs. The state of the art in bioinformatics tools was relatively 
primitive at the outset of the caBIG® initiative. Again, concentration on a few 
institutions with a few partners might have accelerated progress in a more limited 
scope project.

As the caBIG® Pilot Phase concluded most participating institutions acknowl-
edged that the role of biomedical informatics had evolved and become more impor-
tant. Connectivity and interoperability were valued, and the community was worth 
maintaining. However, software tool adoption at individual centers was problem-
atic, and a number of centers were wondering if their commitment to caBIG® prin-
ciples was sustainable. For the program to continue to develop, a new model 
embracing public and private components would need to supplant the communitarian 
approach of the pilot phase.

9.4 � The caBIG‚ Enterprise Phase: 2007

In the spring of 2007 the NCI announced the goals of the postpilot, Enterprise 
Phase of the caBIG® Project. Three areas were stressed:

A disciplined, systematic delivery of caBIG•	 ® infrastructure, tools and concepts 
to NCI-designated Cancer Centers
Replacing the developer–adopter–participant model of the Pilot Phase largely •	
with an Enterprise Support Network of institutions and firms vetted to provide 
assistance with caBIG® deliverables
Expansion of the community to include government, academic, and especially •	
private sector entities

9.4.1 � caBIG‚ Adoption Program

The Cancer Center initiative is known as the caBIG® Adoption Program. In 2007, 
each institution was given the opportunity to perform a limited self-assessment and 
propose a staff member (who could possibly be a “to be named”) as its deployment 
lead. Upon acceptance by the NCICB (which was in the process of changing its title 
to the Center for Bioinformatics and Information Technology-CBIIT), half salary 
of the lead worker was added as a supplement to the institution’s Cancer Center 
Support Grant. This mechanism is still in place as of mid-2009.
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Cancer Centers that opt in to the Adoption Program are required to explore the 
feasibility of working in four areas. First, they are expected to activate a caGrid 
node. For caBIG® tools there are three “bundles” or related sets of products and 
services that are to be evaluated and deployed if possible. These include

Clinical Trials Compatibility Framework – components that support human •	
clinical trials and clinical research. These are to be evaluated individually, and 
adopted into the institution’s clinical trial management system architecture as 
appropriate.
Life Sciences Distribution – a set of tools and applications that support various •	
aspects of basic and translational research. These tools are evaluated individu-
ally, and added to the suite of products available at an institution.
Data Sharing and Security Framework – a bundle of policies, standard operating •	
procedures, and model documents that assist a Cancer Center in utilizing the 
Grid for collaborative research.

In the 2008 caBIG® Annual Report 50 Cancer Centers are identified as participating 
in the Adopter Program. Highlights of tool adoption include:

Over 30 Cancer Centers deploying parts of the Clinical Trials Suite, the retitled •	
Clinical Trials Compatibility Framework.
Over 20 institutions deploying caTissue, the principal product of the Tissue •	
Banking and Pathology Tools Workspace, and among the most mature new 
products developed during the Pilot Phase. Several institutions are conducting 
joint research using caTissue on the Grid.
Nearly 20 institutions adopting caArray, a solid product for collection and •	
management of microarray data. caArray is fully (Gold) caGrid compliant.
About 40 organizations, including seven Cancer Centers, using some or all of •	
the tools developed in the Imaging Workspace.

As this formal process evolved to provide tools and resources to the Cancer Centers, 
the Workspaces reduced in size and focused their scope. A number of SIGs are still 
communicating regularly, and applied research and development continues within 
the Workspaces. A review of the well-constructed caBIG® website’s Integrative 
Cancer Research landing page indicates that one SIG (Population Science, which 
tried to become its own workspace but funding was unavailable), three workgroups, 
and over 20 supported tools form the bulk of the Workspace’s operations (https://
cabig.nci.nih.gov/workspaces/ICR).

9.4.2 � The Enterprise Support Network

Figure 9.5, from the caBIG® website, depicts the Customer Support Map. In addition 
to a growing set of web-based resources and the Workspaces, the NCI offers two 
other services itself. Product Representatives are CBIIT staffers who offer initial 
guidance about specific tools and services. Six Knowledge Centers have been 

https://cabig.nci.nih.gov/workspaces/ICR
https://cabig.nci.nih.gov/workspaces/ICR
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established through contracts with institutions that provide web-based support for 
education and outreach, domain expertise with the tools and the biomedical infor-
matics problems they address, and a centralized resource for information about the 
products and services. The six Knowledge Centers as of mid-2009 are:

Clinical Trials Management Systems, led by the Duke and Northwestern cancer •	
centers, Cancer and Leukemia Group B (an NCI-supported cooperative clinical 
trials group), and SemanticBits, LLC, a commercial software engineering firm 
oriented toward the health sciences.
Molecular Analysis Tools, led by the Columbia cancer center and the Broad •	
Institute of MIT and Harvard.
Tissue/Biospecimen Banking and Technology Tools, led by the Washington •	
University cancer center.
caGrid, led by the Ohio State University Medical Center.•	
Data Sharing and Intellectual Capital, led by the University of Michigan.•	
Vocabulary, led by the Mayo Clinic.•	

The direction of the Enterprise Support Network, however, is toward Support 
Service Providers, commercial firms (and one university group to date) who have 
been vetted through the caBIG® mechanism to provide help desk support, adapta-
tion, and enhancement of caBIG® tools to individual environments, deployment 
support, and/or documentation/training materials and services. Fifteen organiza-
tions have qualified as Support Service Providers by mid-2009.

caBIG® Customer Support Map

Exploration

Institutional 
Adoption

Selection and Use of Tools, Infrastructure, 
Standards, Policy and/or Guidelines

caBIG®Website
Getting Connected
caBIG® Essentials

Tools
Inventory
Training

PHASE:

NCI Web 
Resources:

Knowledge Center

Workspace

NCICB
Application 

Support

Product 
Representative

Support Service 
Providers

Customer/Provider 
Agreement:

NCI-Supported:

Fig. 9.5  The caBIG® Customer Support Map. Web resources are shown in blue, NCI support in 
pink, and commercial service providers in green
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The NCI made good use of feedback and criticism arising from the caBIG Pilot 
Phase. With any biomedical informatics initiative the principal challenge is sustain-
ability – how to support tools as the field matures, how to deal with the underlying 
architecture as it undergoes revision, and how to balance the users’ need for systems 
that work today with the developers’ and researchers’ desire to advance the architecture 
and position for the future. By maintaining focused development in the Workspaces, 
utilizing Cancer Centers as Knowledge Centers to bridge development and implemen-
tation, and contracting out the deployment and support (and enhancement) of caBIG® 
tools, CBIIT has maximized the likelihood that the caBIG® project is sustainable.

9.4.3 � caBIG‚ in the Literature

Beginning in 2004, 46 articles have appeared in PubMed through mid-2009. 
A review of these papers indicates that infrastructure, applications, and the 
community all have been reported. Hanash (2004), in a perspective, summarized 
the state of the art in integrating bioinformatics tools for cancer research. Hanash 
identified caBIG® as an emerging collaboration to accelerate this process, and 
pointed to similar activities underway at the United Kingdom’s National Cancer 
Research Institute. The next 18  months saw several more introductory articles 
appear on the promise of caBIG®.

caBIG® tools began to appear in the peer-reviewed literature in 2006. Phillips and 
colleagues from NCICB described the rationale for a standard set of tools and mod-
ules to promote interoperability of caBIG® solutions (Phillips et al. 2006). In the same 
year the caGrid team published the core architecture paper (Saltz et  al. 2006).  
As shown in Fig. 9.6, a widespread collection of services and resources was envisioned 
from the beginning. Investigator-maintained data sources were enclosed in caGrid Data 
Service interfaces; analytical applications were exposed to remote users through the 
caGrid Analytical Service. Brief reports of caBIG® applications also began to appear 
in 2006 (Tchuvatkina et al. 2006; Tobias et al. 2006; Zhu et al. 2006).

As the caBIG® Project transitioned to its Enterprise Phase, the number and vari-
ety of reports emanating from the community increased. A summary of the initiative 
appeared at an international biomedical informatics congress (Beck and Bondy, 
2007). The Imaging Workspace released GridIMAGE (Gurcan et al. 2007) and an 
eXtensible Imaging Platform (XIP), an open-source application development envi-
ronment for imaging projects (Prior et al. 2007). Image-based clinical trials are sup-
ported using these tools as a basis for a specific ontology-based application (Channin 
et  al. 2009). The caGrid team introduced Grid Authentication and Authorization 
with Reliably Distributed Services, or GAARDS. GAARDS, based on the Dorian 
server model (Fig. 9.7), allows user identification, recognition, and service authori-
zation to be fully distributed on caGrid (Langella et al. 2007 and Chap. 16).

VCDE, which had begun to certify applications and tools for level of compatibility 
with the caBIG® architecture, accelerated its processes. A compatibility evaluation 
system developed under the auspices of the Vocabulary Knowledge Center was 
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Fig. 9.6  A high level view of caGrid. A central cloud of grid services allows research groups and 
institutions to connect to a network that includes federal resources

Fig.  9.7  Authentication and Authorization Scheme for GAARDS. Dorian servers manage the 
process internally, permitting institutions to establish their own approaches to identification
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presented by Freimuth et al. (2008). This system standardizes the review process 
but also provides for some automated checking against core components such as 
the cancer Data Standards Repository (caDSR).

caBIG® tools such as the Cancer Common Ontologic Representation Environment 
(caCORE) Software Development Kit began to show results during the Enterprise 
phase. A group from Emory University reported on a Silver level compliant data-
base for lymphomas, and demonstrated the ability to build caBIG® compliant data 
systems that can draw information from disparate sources (Huang et al. 2009). The 
Cancer Translational Research Integration Platform (caTRIP) was presented in 
2008 as a sophisticated novel caBIG® tool for aggregating clinical and molecular 
data (McConnell et al. 2008). Designed originally to satisfy the needs of transla-
tional research groups at Duke, it represents an integration tool that has potential 
for use at any institution that is deploying caGrid-compliant software.

The private sector began to develop and publish tools and concepts during the 
Enterprise Phase. semCDI is a Small Business Innovation Research-funded query 
formulation for semantic data integration over multiple applications and multiple 
data sources (Shironoshita et al. 2008).

Informatics research based on caBIG® is also underway. Kunz et  al. (2009) 
reported on metadata mapping and reuse, applied to the Common Data Elements in 
caBIG®. They demonstrated a similarity measure that could be used to find appro-
priate CDE’s rapidly in support of new tools and datasets.

9.4.3.1 � Collaboration

In 2008, examples of collaborative research based on caBIG® tools and architecture 
began to emerge. The products of the Tissue Banking and Pathology Tools pilot 
workspace were among the most mature examples of new development. The Clinical 
Annotation Engine was used to develop a National Mesothelioma Virtual Bank 
(NMVB), a collaboration with three contributing and four participating institutions 
(Amin et al. 2008). Not a caBIG® project per se, the NMVB is funded by the Centers 
for Disease Control and Prevention and the National Institute of Occupational Safety 
and Health. Other examples of collaboration that either uses caBIG® tools now or 
will do so in the near future include The Cancer Genome Atlas and the Repository 
of Molecular Brain Neoplasia Data (REMBRANDT) (Madhaven et al. 2009).

9.4.3.2 � Continuing Community Papers

White papers and community development documents continue to appear when they 
add substantive information to the biomedical literature. The VCDE Workspace has 
developed a caBIG® terminology review process; Cimino and associates reported on the 
application of this process to four standard terminologies (Cimino et al. 2009). BRIDG 
released a technical report in 2008 (Fridsma et al. 2008). Clinical trials applications 
seem to have a long incubation period; one particular strength of BRIDG is that it keeps 
all of the relevant communities together while advances in software tools progress.
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The security workgroup of the DSIC pilot workgroup conducted an interview-
based study of representatives from a sample of US cancer centers, in order to 
determine how challenging it would be to comply with the Health Insurance 
Portability and Accountability Act (HIPAA) and Code of Federal Regulations 
privacy and security standards (Manion et  al. 2009). Responders included 
Institutional Review Board directors, research administrators, counsel, and security 
officers. They identified nine specific criteria that must be fulfilled in order to place 
data on the Grid that would be regulated by HIPAA and 21CFR11. Although the 
operations of caBIG® are moving increasingly into the private sector, these 
community documents maintain an important role for the academic community in 
advancing the concepts that underlie caBIG® as well as its tools and applications.

9.5 � Conclusion

The definition of usable information for biomedical research and treatment contin-
ues to expand beyond the literature to include databases, sequences, and metadata. 
Achieving the goals of a personalized approach to mid-twenty-first century cancer 
care will require interoperable information systems that ultimately collate data 
from worldwide sources. Information models, technology, services and policies 
arising from the caBIG® Program already enable collaborative research and clinical 
trials registration. Scholarship and applications continue to arise in the Enterprise 
phase of the project, and the community has broadened to include over 1,000 active 
participants. As a Big Science initiative caBIG® has had its issues to overcome, and 
progress in some application areas may not have been as significant as originally 
envisioned. In particular, the clinical trials applications have been challenged by 
marketplace solutions. However, the underlying architecture of caGrid and the 
development tools and resources are strong and generating useful results by an 
ever-expanding user base (Buetow 2009). A comprehensive website and clear 
avenues to support enhance the dozen or so currently valuable applications; 
researchers can experiment with nearly 50 tools and systems under development. 
Institutions interested in integrative and collaborative cancer research will need to 
stay abreast of the results likely to arise from caBIG® in its second 5 years.

9.6 � Appendix: caBIG‚ Tools and Technologies at the End  
of the Pilot Phase

9.6.1 � Clinical Trials Management

Cancer Central Clinical Database (C3D): a clinical trials data management •	
system based on Oracle Clinical, including protocol building, remote data 
capture, and review.
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Cancer Central Clinical Participant Registry (C3PR): a web-based application •	
for patient trial registry.
Clinical Data Exchange/Lab Integration Hub (caXchange): an open-source software •	
tool used to manage laboratory data during a clinical trial.
Clinical Trials Object Data System (CTODS): a virtual data warehouse for •	
clinical trials data that can capture trial information and deliver it 
de-identified.
Clinical Data System (CDS): a stand-alone data submission infrastructure for •	
NCI-supported clinical trials.
Patient Study Calendar (PSC): an open-source application that can create and •	
edit study calendar templates and manage them during a study.
Cancer Adverse Event Reporting System (caAERS): an open-source software •	
tool that is used to collect process and report adverse events that occur during 
clinical trials.
caTRIP: a meta-system that allows users to query across a number of caBIG data •	
services, based on Common Data Elements (CDEs) and integrate results for 
viewing and further analysis.
Federal Investigator Registry of Biomedical Information Research Data •	
(FIREBIRD): a system that automates the Form 1572 registration process for 
clinical trials investigators.

9.6.2 � Biospecimen Banking

caTissue Core: a tissue bank repository tool for biospecimen inventory, tracking, •	
and basic annotation.
Cancer Text Information Extraction System (caTIES): a system to extract coded •	
cancer information from free-text surgical pathology reports.
caTissue Clinical Annotation Engine (CAE): a web-based user interface for •	
standards-based manual annotation of biospecimens.

9.6.3 � Image Analysis

National Cancer Imaging Archive (NCIA): a searchable national repository of •	
cancer images, integrated with clinical and genomic data.

9.6.4 � Data Mapping

caAdapter: an open-source tool set that facilitates data mapping, validation, and •	
transformation among various data sources and standard formats.
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9.6.5 � General Research Tools

Electronic Laboratory Management Information Resource (caELMIR): a •	
Laboratory Information Management System (LIMS) for recording experimental 
data.
geWorkbench: an open-source software platform for genomic data integration.•	
GenePattern: another software platform for genomic data integration.•	
caIntegrator: a translational informatics platform that can integrate clinical and •	
molecular information across patients and trials.
caBench-to-Bedside (caB2B): a caGrid client that permits users to search caGrid •	
data services.
caArray: an open-source microarray data management system, that supports •	
other caBIG® tools like geWorkbench and GenePattern.
Protein Information Resource (gridPIR): a data resource for genomic and pro-•	
teomic resource that connects to relevant PIR databases.
Cancer Models Database (caMOD): a resource for animal models for human •	
cancer, involving submission and search capabilities.
Bioconductor: an established open-source collection of software packages for •	
high-throughput genome analysis.

9.6.6 � Genome Analysis

SEED: a tool for making and sharing genomic annotations, and for access and •	
analysis of annotations.
Transcript Annotation Prioritization and Screening System (TRAPSS): an ana-•	
lytical tool for screening gene sequences for mutations, including notable ones.
Function Express (caFE): a tool for annotation of probes on microarrays.•	
GoMiner: a tool for biological interpretation using the Gene Ontology.•	
GeneConnect: a caBIG•	 ® mapping service that interlinks various genomic identifiers.

9.6.7 � Protein Analysis

RProteomics: a package for analyzing mass spectrometry proteomics data.•	
Q5: a classification tool for expression-dependent proteomic data.•	
Proteomics Laboratory Information Management System (protLIMS): a prototype •	
LIMS for proteomics.
Cancer Molecular Pages (CMP): an automated annotation system for cancer-•	
related proteins.
Computational Proteomics Analysis System (CPAS): an open-source tool for •	
peptide scoring based on the Trans Proteomics Pipeline.
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9.6.8 � Pathway Analysis

Quantitative Pathway Analysis in Cancer (QPACA): a tool that provides a set of •	
routines for analysis of microarray data in the context of genetic pathways.
Reactome: a service that establishes the Reactome system as a caGrid service.•	
Pathway Interaction Database: a curated database of information about known •	
biomolecular interactions and cellular signaling processes.
Pathway Tools: a suite of tools that interact on an open-source pathway •	
database.

9.6.9 � Statistical Analysis

Visual Statistical Data Analyzer (VISDA): an analytical tool for cluster modeling •	
and visualization.
Distance Weighted Discrimination (DWD): a tool that corrects microarray •	
analyses by reducing systematic bias.

9.6.10 � Core Infrastructure

caGrid: the underlying network architecture, based on the Globus toolkit, that •	
balances local access control and central services.
BRIDG Model: a collaborative data model for clinical research.•	
caCORE: an open source group of software products developed by NCICB that •	
provide the tools for open source, interoperable applications that are caGrid 
compliant.
Cancer Bioinformatic Infrastructure Objects (caBIO): a set of software objects •	
that provide a programming interface to caCORE.
NCI Enterprise Vocabulary Server (EVS): a service that produces metathesaurus •	
entities to support standard controlled vocabularies for caBIG® projects and 
products.
caDSR: a metadata registry in caCORE that stores and manages CDEs devel-•	
oped by participants and NCI-supported organizations.
caCORE Software Development Kit (caCORE SDK): a set of tools designed to •	
aid in a caBIG® compliant, semantically integrated system.

9.6.11 � Vocabularies

LexBIG: a set of software and services to load, publish, and access caBIG•	 ® 
compliant vocabulary.
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Mouse–Human Anatomy Mapping Ontology (MHAP): a mapping and harmo-•	
nization of murine and human anatomical descriptors.
Cancer Nutrition Ontology: a unified set of Nutrition vocabularies and •	
mappings.
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Abstract  As part of its Cancer Biomedical Informatics Grid (caBIG®) program 
and its overall commitment to drive the reengineering of the clinical research 
enterprise, the National Cancer Institute has developed the caBIG® Clinical Trials 
Suite. The Suite is a free, stable, supported collection of open-source software tools 
for clinical trials management, developed in response to the expressed need of the 
biomedical research community and deployable either as one or more standalone 
components or as an integrated Suite. It is also a reference implementation of the caBIG® 
enterprise architecture paradigm of modular, interoperable software components. 
This chapter gives an overview of the context within which the Suite was envisaged 
and developed, describes the functionality and availability of the Suite and gives an 
overview of the enterprise architecture of which the Suite is intended to serve as a 
reference implementation.

10.1 � Background: Characteristics of, and Trends  
in, Information Handling in Clinical Research

Since the mid-1980s, biomedical science has undergone revolution after revolution. 
The advent of molecular medicine has ushered in the paradigms of translational 
research and personalized medicine, both marked by the growing role of biology in 
the clinical process. This dynamic environment is in marked contrast to the devel-
opment process of therapies through clinical trials. The introduction in the 1950s of 
the controlled, randomized clinical trial, and its widespread acceptance as a best 
practice by investigators, sponsors, and regulatory bodies, marked a sea change in 
the data management process framework for the conduct of clinical research. 
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Arguably, there have been no such changes of comparable magnitude in the clinical 
trials process since then.

Beginning in the mid–late 1990s, this dissonance, manifested specifically in the 
“pipeline problem” – a slowdown, instead of an expected acceleration, in the num-
ber of innovative therapies being made available to patients – was noted in multiple 
reports and articles analyzing the issue. The US Food and Drug Administration 
(FDA) noted in 2005 that “the applied sciences needed for medical product devel-
opment have not kept pace with the tremendous advances in the basic sciences.” In 
July 2005, the founder of Intel Corporation, Andrew S. Grove, Ph.D., wrote a 
widely cited editorial contrasting the rapid pace of innovation in microchip devel-
opment with its slow pace in the development of new therapies for disease.

Nowhere has this dissonance between the pace of discovery and that of develop-
ment been more keenly felt than in oncology. The National Cancer Institute’s (NCI) 
1997 report of the Clinical Trials Program Review Group noted that the complexity 
of the clinical trials infrastructure had “eroded the ability of the system to generate 
new ideas to reduce the cancer burden.” This was followed in 2005 by the report 
of the Clinical Trials Working Group to the National Cancer Advisory Board, 
which again identified the need for a new clinical trials infrastructure that could 
enhance coordination and communication, scientific quality and prioritization, 
standardization of tools and procedures and operational efficiency. Studies of the 
clinical trials process, such as those by Dilts and Sandler (2005), point to the unnec-
essary complexity and interorganizational variance of the clinical trials process as 
a key impediment to speeding new therapies to patients.

The development of specialized information technology to handle clinical 
research data began in earnest in the 1980s and 1990s. Increasing study volume, 
and increasing reporting burden from sponsors and regulatory bodies, began to 
drive study sponsors, both commercial and governmental, and major academic 
medical centers to automate their clinical research processes. Clinical research 
information systems tend to share characteristics with clinical care information 
systems, and more broadly with information systems in industrial and business 
environments characterized by near-real-time, transactional data processing where 
information is durable and the process must be highly regulated and standardized. 
These characteristics are distinct from those typically found within the field of 
bioinformatics, where the science is moving rapidly and information tends to be 
short lived, so the desire is merely to share the information as quickly and usefully 
as possible. In bioinformatics, post hoc data tend typically to be integrated into 
analysis workflows, which are constantly updated by the investigator according to 
the results of a previous “run.”

Several large academic centers have spent many years developing tailored 
inhouse systems intended to support local clinical workflows which, as already 
indicated above, vary significantly between organizations. The most successful of 
these clinical research information systems are very highly tailored, effectively 
hand-crafted boutique systems that integrate tightly with the organization’s clinical 
systems, workflows, and processes. This facilitates rapid acceptance within the 
organization but also makes the systems inherently ingrained, sclerotic, and resistant 
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to change – in short, legacy systems. Their operations and interfaces are brittle, i.e., 
almost any change in process or to another system that interacts with them will 
cause them to break down and require code modification to fix. Large amounts of 
staff time are required simply to maintain systems and their interfaces and to man-
age the enterprise-wide change control process, leaving software development staff 
struggling to keep up with demands for enhancements and changes to functionality. 
Architectural considerations and refactoring are at the bottom of the priority list, 
ensuring the system is further consigned to legacy status.

A second, related challenge stems from the monolithic nature of these systems. 
Building all the required functionality into one big system eliminates the need to 
standardize or coordinate interprocess communication. The downside is that this 
condemns the system’s development team to be the sole source of new functional-
ity or new interconnections, even if the requisite code is available, sometimes free 
of charge, elsewhere. Similar functionality and interconnections are developed 
over and over throughout the biomedical research enterprise, effectively reinvent-
ing the wheel again and again, with the attendant waste and possibility of error. 
This becomes more of a challenge as the importance of biological markers in clini-
cal research grows. Clinical investigators and their teams are faced with a tsunami 
of new data from new sources, especially laboratory information management 
systems (LIMS). Data from LIMS and other sources must be rapidly integrated 
into clinical trials, in the transactional, near-real-time modus operandi of clinical 
systems, if the promise of translational medicine is to be realized. For instance, 
clinical trials increasingly assume the availability of molecular expression data for 
use in determining criteria for eligibility of potential study participants and for 
their randomization to study arms, and for imaging data as determinants of 
response to treatment. Human rekeying, always the bane of clinical trials data 
management, is especially undesirable in the case of these data. Rekeying of existing 
data from existing source systems is not only wasteful of effort but is also the 
cause of unacceptable delays and errors, doubly so if the data were “born digital,” 
i.e., the measurements that generated them were performed by machines and 
instantly rendered digitally without any human intervention beyond the calibration 
and operation of the machines. Better than rekeying, but still labor-intensive and 
error-prone, is the development of complex semimanual ad hoc data synchroniza-
tion procedures involving interim steps (e.g., export files in comma-delimited or 
spreadsheet format). In these cases, the investigators and their scientific teams 
typically act as data integration specialists and software engineers, at once limiting 
their own time for scientific work and increasing the risk of coding errors, trans-
position errors, data loss, and data corruption.

As the pace of science continues to accelerate, specific LIMS rapidly become 
obsolete. As they are replaced, demand begins for clinical trials, and thus for clini-
cal trials management systems, to rapidly incorporate data from the new replace-
ment LIMS. As already noted developers, already overburdened with maintenance 
and enhancement requests for these brittle legacy systems, must run to stand still. 
Academic medical centers may be forced to decide between expanding develop-
ment staff to cope with the demand for new interfaces and allowing some degree of 
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manual process, with its attendant waste and errors, rather than requiring investigators 
to wait for systems staff to develop the interfaces.

10.2 � Context: The Cancer Biomedical Informatics Grid‚

NCI’s Cancer Biomedical Informatics Grid (caBIG®) program was launched in 
2004 as an information network enabling all constituencies in the cancer commu-
nity – researchers, physicians, and patients – to share data and knowledge. The 
mission of caBIG® is to develop a truly collaborative information network that 
accelerates the discovery of new approaches for the detection, diagnosis, treatment, 
and prevention of cancer, ultimately improving patient outcomes. Specifically, the 
goals of caBIG® are to:

Connect scientists and practitioners through a shareable and interoperable •	
infrastructure.
Develop standard rules and a common language to more easily share •	
information.
Build or adapt tools for collecting, analyzing, integrating, and disseminating •	
information associated with cancer research and care.

In 2003, in preparation for the launch of the program, NCI visited nearly all of its 
Designated Cancer Centers, a network of over 60 of the most advanced centers in 
the United States conducting research into, and treatment of, cancer, to better 
understand the research informatics needs and capabilities of these organizations. 
Notably, far and away the greatest need expressed by Centers was that for tools to 
manage clinical data, i.e., in clinical trials (see Fig. 9.1). A full discussion of the 
caBIG® initiative is presented in Chap. 9.

10.3 � Description of the caBIG‚ Clinical Trials Suite

The caBIG® Clinical Trials Suite (hereinafter referred to as the Suite) was devel-
oped by the caBIG® program to fulfill the expressed needs of NCI’s cancer research 
community for tools to manage clinical trials. The Suite is a modular clinical trials 
management system designed primarily for use in trial sites, e.g., NCI-designated 
Cancer Centers and other academic medical centers, and comprises a collection of 
interoperable modules covering a broad range of key functionality in clinical trials 
management. The functionality of the modules, and of the Suite as a whole, was 
selected and prioritized by the caBIG® Clinical Trials Management Systems 
Workspace, an open community of practice comprising individuals and groups 
interested in the management of clinical trials and the development of informatics 
solutions to facilitate this activity. The caBIG® Clinical Trials Management Systems 
Workspace includes representatives from NCI-designated Cancer Centers, NCI 
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Cooperative Groups, NCI Specialized Programs of Research Excellence (SPOREs), 
NCI Community Clinical Oncology Program (CCOP) sites, NCI National 
Community Cancer Centers Program (NCCCP) sites, other groups within NCI and 
the broader National Institutes of Health, academic medical centers, patient advo-
cacy groups, biopharmaceutical companies, standards bodies, regulatory organiza-
tions, and software vendors.

Functionality supported by the current version of the Suite includes the manage-
ment of study participant registration (C3PR), study participant scheduling (PSC), 
management and reporting of adverse events (caAERS), import of data to clinical 
trials systems from clinical laboratory and other data source systems (caXchange), 
viewing and selection of imported laboratory data (Lab Viewer), and exchange of 
information with clinical data management systems (CDMS Connector). 
Implementation of the Suite is based upon the caGrid infrastructure, with Clinical 
Data Exchange (caXchange) providing reliable message routing.

10.3.1 � Cancer Adverse Events Reporting System

The Cancer Adverse Events Reporting System (caAERS) is an open-source, stan-
dards-based, web application for documenting, managing, reporting, and analyzing 
adverse events (AEs). The system operates both as a repository for capturing and 
tracking routine and serious AEs and as a tool for preparing and submitting expe-
dited AE reports to sponsors and regulatory agencies, supporting regulatory and 
protocol compliance for adverse event reporting.

caAERS uses accepted standards for classifying adverse events, such as NCI’s 
Common Terminology Criteria for Adverse Events (CTCAEs) and MedDRA. 
A rules engine in caAERS allows automated assessment and disposition of AE 
reports – common rule sets are included “out of the box” and institution-specific 
rules can be added. Furthermore, caAERS features the unique ability to send auto-
mated AE reports to NCI’s Adverse Event Expedited Reporting system (AdEERS), 
as well as the generation of populated MedWatch 3500A forms as required by the FDA.

10.3.2 � Cancer Central Clinical Participant Registry

The Cancer Central Clinical Participant Registry (C3PR) is a web-based clinical 
trials information management system available for use by multiple cancer research 
centers for end-to-end registration of study participants (i.e., patients) to single-site 
and multisite clinical trials. C3PR can support large-scale, geographically dispersed 
studies and provides current enrollment statistics and a repository for participant 
information across studies, sites, systems, and organizations.

C3PR manages participant registrations to clinical trials (ensuring that the study 
is open, the participant eligible, consent received, etc.). It can stratify participants, 
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randomize them to trial arms and register them to companion protocols, then track 
them across sites. Registration workflow is streamlined through the use of role-
based access to registration data, and users can be notified of registration events, 
including the reaching of accrual thresholds, via e-mail and through C3PR’s dash-
board. C3PR also reports data to facilitate generation of summary reports required 
by NCI of its designated Cancer Centers, and facilitates compliance with Federal 
regulations including 21 CFR Part 11, HIPAA, and Section 508.

Clinical workflows are enabled by both subject- and study-centric views into the 
registration process. C3PR can be run in a standalone mode where study defini-
tions, investigators, study personnel, and sites are entered into the system, or in an 
integrated mode with the Suite. C3PR also enables multisite clinical trials where 
registration information is entered locally at affiliate sites and the registration is 
completed by call-out to the coordinating site.

10.3.3 � Clinical Data Exchange

caXchange is a configurable service and messaging hub for exchanging clinical 
information between applications and systems. For instance, caXchange can be 
used to map and automatically transfer clinical data from point-of-care systems, 
such as clinical chemistry laboratory systems, into standard formats such as the 
Health Level Seven (HL7) Version 3 message format for periodic reporting of labo-
ratory data in clinical trials. caXchange can then route this data to clinical trials 
databases, using the reliable transaction control of an Enterprise Service Bus (ESB) 
architecture to ensure it is successfully received. The configurability of caXchange 
enables this mapping and transfer no matter how nonstandard is the data format of 
the source system, or for that matter the destination system.

caXchange also provides a virtualizable data warehouse, the Clinical Trials 
Object Data System (CTODS), to collect laboratory data gathered during a clinical 
trial, and an application (Lab Viewer) that allows users to view and query labora-
tory data sent to the hub and select subsets of tests to be sent to a clinical trials 
database. Lab Viewer allows search by Medical Record Number (MRN) and date 
range, and automatically flags out-of-range laboratory result values that may indi-
cate toxicities.

10.3.4 � Participant Study Calendar

Participant Study Calendar (PSC) is an open-source, standards-compliant software 
application intended to manage study participants on clinical trials. At the highest 
level, it takes as input a study calendar template defining the schedule of tests, 
administrations of study agents, etc., required by the study protocol, and the on-
study date of a study participant, and uses them to generate a personalized calendar 
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of events for the participant. PSC provides the ability to create, edit, import, and 
export study calendar templates, generate and view prospective calendars of study 
participant activities, track activities as they occur, manage participant schedules as 
they change during a study and share them with study participants, either on paper 
or via standard electronic calendar files. PSC accommodates all types of studies and 
facilitates management of the screening process, registration, active monitoring, 
and long-term follow-up. Templates can be exchanged and shared between 
instances of PSC. Reporting includes the ability to provide prospective and histori-
cal views of participant activities, and to track the history of changes to an activity 
as well as its ideal date. PSC can manage changes to templates from protocol 
amendments, reconsent of participants on a study and access control to participant 
calendars within a multisite environment. It can also receive adverse event notifica-
tions from a caBIG® compatible adverse event system, such as caAERS, and 
display them in the participant calendar.

10.3.5 � Clinical Connector

The Clinical Connector is a connectivity utility. It provides a semantically inte-
grated service that allows clinical data management systems (CDMSes), including 
commercial and open-source solutions, to integrate their functionality with the 
Suite. For instance, C3PR can use the Clinical Connector to enroll study partici-
pants onto clinical trials hosted by the CDMS.

10.4 � Role of the caBIG‚ Clinical Trials Suite within  
the caBIG‚ Program

The Suite is not just a set of interoperable tools intended to fulfill specific research 
needs; it is also a reference implementation of NCI’s enterprise architecture. 
Implicit in the notion of modularization of software is a need for true interoperability; 
when needed, the modular components must work together seamlessly, as though 
they were a single monolithic system. NCI’s clinical research community 
expressed the need for the Suite’s components to fulfill a number of specific 
real-world interoperability scenarios that require dependable, near-real-time 
coordination of actions between components; in short, computable semantic 
interoperability (CSI).

NCI’s Enterprise Conformance and Compliance Framework distinguishes between 
three kinds of interoperability as follows:

Syntactic Interoperability guarantees the exchange of the structure of the data, 
but carries no assurance that the meaning will be interpreted identically by all parties. 
Web pages built with HTML and/or XML are good examples of machine-to-machine 
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syntactic interoperability since a properly structured page can be read by any machine 
with a web browser. However, the meaning of the page to a particular machine may 
vary substantially. This is not usually deemed to be a problem since the semantics 
of a page’s contents are meant to be interpreted by human viewers. The ability of 
browsers to display HTML pages regardless of the implementation technology (i.e., 
the browser) or the content of the web page is an example of syntactic 
interoperability.

(Human) Semantic Interoperability guarantees that the meaning of a structure is 
unambiguously exchanged between humans. Documents such as progress notes, 
referrals, and consultant reports rely on the specificity of medical vocabularies and 
on common community practice to guarantee semantic interoperability at a clinician-
to-clinician level. The ability of a human being to read a clinical discharge summary 
formatted in multiple ways in multiple contexts and still extract the “true meaning” 
irrespective of its presentation is an example of human semantic interoperability.

Computable Semantic Interoperability (CSI) requires that the meaning of data 
be unambiguously exchanged from machine to machine. Note that this does not 
necessarily mean that all machines need to process the received data the same 
way, but rather that each machine will make its processing decisions based on the 
same meaning.

Thus, for instance, in the caBIG® Clinical Trials Suite, the action of registering 
a study participant to a study in C3PR needs to trigger different actions in other 
components: caXchange will attempt to retrieve the study participant’s baseline 
laboratory values, PSC will generate a personalized trial calendar for the study 
participant, and so on. Computable semantic interoperability is required because 
the data transmitted – in this case the data point that indicates the registration of the 
study participant – must cause other component applications receiving it to perform 
predictable actions without human intervention.

Furthermore, because new component applications will periodically be added to 
the Suite, and newly required real-world interoperability scenarios may be identi-
fied at any time, it is important that additions and changes to the way the compo-
nents interoperate be accommodated with minimal, if any, changes required in the 
way in which the information is expressed. This requirement is especially challenging 
because the components of the Suite have been developed by different, indeed 
competing, teams of software engineers, so the opportunities for “hands-on” coor-
dination during software development are constrained. This inherent “coopertition” 
between teams is by design; as already noted, implicit in the caBIG® paradigm is 
an expectation that disparate groups, including government, for-profit and not-for-
profit entities can contribute components that, if they conform to the architecture, 
will interoperate without the need for complex negotiations.

Key to the ability of the caBIG® Clinical Trials Suite to achieve this interoper-
ability is the requirement that all development teams harmonize the semantics of 
the information that they process with a single Domain Analysis Model, i.e., a 
shared view of the dynamic and static semantics that collectively define a shared 
domain-of-interest. The accepted model of the semantics of the domain of clinical 
and preclinical research is called the Biomedical Research Integrated Domain 
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Group (BRIDG) model, which has been developed jointly by caBIG®, the Clinical 
Data Interchange Standards Consortium (CDISC), HL7 and the FDA. Harmonizing 
an application’s data model with BRIDG not only ensures that the semantics of that 
application are aligned to those of another application similarly harmonized, it also 
enables domain experts (in this case, practitioners of clinical research) to under-
stand, and thus to review for correctness and completeness, the semantics of the 
application. Furthermore, as BRIDG is itself mapped to HL7’s Reference 
Information Model (RIM), mapping an application to BRIDG ensures that the 
application’s semantics are HL7-compliant. In the case of the caBIG® Clinical 
Trials Suite, introducing the requirement for BRIDG harmonization in the incep-
tion and elaboration phases of application development meant that post hoc, it was 
possible to add new, unplanned, real-world interoperability scenarios and deliver a 
working demonstration of those scenarios within 2 months.

The second component of the Suite that facilitates the required interoperability is 
caXchange. In addition to being an application component that delivers integration 
of clinical care data into clinical research, caXchange also acts as middleware, using 
an ESB to ensure reliable transaction control, i.e., that component applications can 
know whether a signal to another application to perform some action was not only 
received, but also acted upon in the appropriate way within a set time interval.

10.5 � Support

NCI has established an Enterprise Support Network in order to provide users of the 
Suite with options for obtaining support. NCI has designated a series of Knowledge 
Centers to provide free domain-focused support and to serve as a venue for a peer 
support community of practice via wikis, bulletin boards, bug notification/feature 
request tracking and a source code repository. The Suite is supported by the Clinical 
Trials Management Systems Knowledge Center. In addition, NCI has licensed a 
series of Support Service Providers, commercial organizations qualified to provide 
full-service support for organizations using the software on a contract basis.

10.6 � User Base

Users of the Suite and its applications fall into three groups. First, each application 
has between one and three designated Adopter organizations from the NCI clinical 
research community – these organizations work with NCI and the application 
developers to install and use the applications, and deliver feedback on features and 
functionality. In addition, NCI has established a Center Deployment Program for 
the NCI-designated Cancer Center community. At the time of writing, 49 out of the 
65 NCI-designated Cancer Centers were participating in the Center Deployment 
Program, and 31 out of these 49 were either adopting, or evaluating the adoption 
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of, the Suite or one or more of its component applications. Finally, as caBIG® 
software is freely available for download, NCI often does not know about users of 
software until they contact NCI for support. The University of Arkansas for 
Medical Sciences is a notable example of an organization that, despite being neither 
a designated Adopter not a Center Deployment Program participant, has taken full 
advantage of the open-source nature of the software to seamlessly integrate its local 
applications with those of the Suite.

10.7 � Enterprise Architecture

In parallel with the development of the first generation of the Suite, caBIG®’s enter-
prise architecture was strengthened to incorporate NCI Enterprise Services – com-
mon, shareable sources of record for areas of information that they have in common. 
As an example, all applications in the Suite have a concept of a clinical trial proto-
col. Not only does allowing each application to represent and store protocols locally 
mean that the applications have to synchronize with each other when one applica-
tion adds, removes or, in some cases, edits a protocol, the way in which each appli-
cation represents a protocol will almost certainly be different. Even after all 
applications have harmonized with BRIDG, typically each application will store 
only the elements it requires for a protocol. The first step in refactoring the Suite 
applications to use common services is for a common functional specification to be 
developed, in this case for representation of a protocol. This representation is then 
implemented by all applications, turning redundant, inconsistent representations 
into redundant, consistent ones. The next step is to eliminate the redundancy by 
implementing the functional specification as a common service which all applica-
tions access. This not only eliminates the need for synchronization, it also reduces 
the amount of code in each application, making them more agile and less error-
prone. Furthermore, the services can be federated, allowing for some protocols to 
be stored in a local instance of the service while others can be stored and curated 
in a central instance. The first four NCI Enterprise Services – for protocols, people, 
organizations, and correlations between these three, were released into production 
in January 2009, and at the time of writing, all applications in the Suite were being 
refactored to leverage NCI Enterprise Services, with a planned release date of 
November 2009. In addition, many other NCI Enterprise Services were in develop-
ment, including those for other key clinical trials concepts such as Adverse Event, 
Schedule, and Registration.

10.8 � Availability

The caBIG® Clinical Trials Suite is available freely for download and use under a 
nonviral open-source license that permits redistribution, modification, and incorporation 
of the code in other products. Free domain-specific and peer support is available 
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from the caBIG® Clinical Trials Management Systems Knowledge Center. Access 
is available at the following links:

Main page for the Suite: https://cabig.nci.nih.gov/tools/toolsuite_view#CCTS

Documentation page for the Suite: https://cabig-kc.nci.nih.gov/CTMS/KC/index.
php/CCTS

Documentation page for all Suite applications: https://cabig-kc.nci.nih.gov/CTMS/
KC/index.php/Documentation_Library

caAERS overview: https://cabig-kc.nci.nih.gov/CTMS/KC/index.php/CaAERS

C3PR overview: https://cabig-kc.nci.nih.gov/CTMS/KC/index.php/C3PR

PSC overview: https://cabig-kc.nci.nih.gov/CTMS/KC/index.php/PSC

caXchange overview: https://cabig-kc.nci.nih.gov/CTMS/KC/index.php/
CaXchange

Download Center for the Suite: http://ncicb.nci.nih.gov/download/cctslicenseagree-
ment.jsp

Knowledge Center (Support): https://cabig-kc.nci.nih.gov/CTMS/KC/index.php/
Main_Page

Support for the Download Center, or if any of the above pages are unavailable, can 
be obtained via e-mail at ncicb@pop.nci.nih.gov, or by telephone at +1 301-451-
4384 (toll free from within the United States: 888-478-4423).
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Abstract  CAISIS is a research data system that was started to support predictive 
model development in urologic oncology at Memorial Sloan-Kettering Cancer 
Center (MSKCC) and has become widely adopted across different departments and 
institutions to manage biomedical research data for a variety of diseases, mostly 
cancers. It was developed using ASP.NET/C# and Microsoft SQL Server, and is 
freely distributed under the GPL open-source license. This system complements 
both clinical systems and clinical data repositories, and its functionality has been 
extended recently to manage biorepositories and prospective clinical trials. The 
database structure is organized temporally and around patients rather than around 
protocols or individual projects, which allows it to be extended to manage data for 
multiple diseases and medical specialties.

11.1 � Introduction

CAISIS (pronounced “keisis”) is an open-source, web-based system that was 
initiated at Memorial Sloan-Kettering Cancer Center (MSKCC) as a Microsoft 
Access database for retrospective prostate cancer outcomes research in the late 
1990s. With contributions from many groups and individuals, it has grown over 
10 years and multiple iterations to manage a wide range of clinical research 
activities across many oncology disease groups, departments, and cancer centers 
(Fearn et  al. 2003; Potters et  al. 2003; Fearn et  al. 2004; Fearn et  al. 2007b). 
Although CAISIS would probably not be classified as a clinical system (e.g., 
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Electronic Medical Record or Electronic Health Record, see Chap. 2) by most IT 
or informatics professionals, the current version (v4.5) has a number of features 
that enable integration of research data collection with clinical practice, including 
a framework for browsing clinical histories, creating and managing structured 
templates for clinical data capture, and generating documentation for the medical 
record. Development of CAISIS from 2006 to 2009 has been partly supported by 
a grant from the National Cancer Institute (R01-CA119947). This funding was 
used to make the application more modular and extensible to handle a number of 
new diseases, to make the interface dynamically driven from metadata and XML 
configuration files, and to make the application easier to set up, configure and use 
for a rapidly growing user community. The CAISIS community is active and 
growing across centers in the U.S. and internationally, and the primary develop-
ment teams are at MSKCC and BioDigital Systems. Since 2007, a number of 
groups in the CAISIS community have started to fund the development of 
enhancements and new functionality (e.g., patient quality of life survey manage-
ment, biospecimen management, clinical trials management, LDAP authentica-
tion). At most sites, data feeds are established to pull demographic, scheduling and 
laboratory data into CAISIS from clinical systems to reduce costly manual data 
abstraction and data entry. Most of these data feeds are extract-transform-load 
(ETL) procedures that pull structured data from an enterprise data warehouse (see 
Chap. 3) or clinical data repository, and these interfaces are most often imple-
mented using Microsoft SQL Server Integration Services (SSIS). The CAISIS data 
model and vocabulary are well documented within the system metadata tables, and 
there are no proprietary or obscure formats or APIs required to interface with the 
system. As caBIG® and other data exchange stacks continue to emerge, MSKCC 
and BioDigital are working to make CAISIS interoperable with these standards 
(National Cancer Institute 2009).

11.2 � Contact Information

CAISIS public web site: http://CAISIS.org
CAISIS LinkedIn group: http://www.linkedin.com/groups?gid=1778711
Email for CAISIS team at MSKCC: CAISISAdmin@mskcc.org
BioDigital Systems, LLC public web site: http://www.biodigital.com

11.3 � Availability

All of the CAISIS system requirements, installation packages, upgrade scripts, 
source code, and documentation are available on http://CAISIS.org or through 
SourceForge (http://sourceforge.net/projects/caisis/). It is freely distributed 
under version 2.0 of the GPL open-source license (Free Software Foundation 1991). 

http://CAISIS.org
http://www.linkedin.com/groups?gid=1778711
http://www.biodigital.com
http://CAISIS.org
http://sourceforge.net/projects/caisis/
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The development source code is managed using Subversion, and access is granted 
upon request to any interested individual or group (Tigris 2009).

11.4 � Links for Documentation, Installation Guides, Notes

http://caisis.org/wiki/index.php?title=Installation. Installation test examples:  
http://caisis.org/demo/login.aspx. User guides: http://caisis.org/wiki/index.
php?title=Data_Entry_Guide.

11.5 � Description of Tool

Many of the ideas behind CAISIS originated at Baylor College of Medicine in the 
1990s out of the need to assemble large datasets in a reusable and sustainable for-
mat to produce predictive models (Kattan et al. 2000; Kattan et al. 2001; Cuzick 
et al. 2006; Stephenson et al. 2006; Kattan et al. 2008). Previously built retrospec-
tive research databases and project-specific databases had become difficult to scale 
or impossible to sustain as the number of patients followed grew from hundreds to 
thousands and as the number of research projects drawing from these databases 
increased. Most research groups were not able to scale up their productivity because 
the per-project cost of data collection and dataset generation is too great.

Duplication of data entry activities is common. Many groups abstract clinical 
data from medical records and enter them into disparate systems for different pur-
poses (e.g., retrospective research projects, prospective outcomes protocols, clinical 
trials, clinical practice operations, quality assurance, outcomes reporting, tumor 
registry reporting.) The intent of CAISIS is to provide a single repository to central-
ize and coordinate multiple streams of data entry, data processing, and production 
of information.

Staff entrenchment and inability to easily deploy staff resources across a variety 
of disease- or project-specific databases to cover changing research data manage-
ment needs is also a common issue that CAISIS was designed to address. In many 
research groups, individual research project databases for single diseases are man-
aged by individual staff members. Much of the metadata for these systems is 
undocumented, and researchers are completely dependent upon the individuals who 
understand how to enter and retrieve data from single-purpose databases. The 
CAISIS data model was designed to organize data temporally and provide a granu-
lar structure that facilitates the use of the similar data across multiple diseases and 
medical specialties. With this approach, it is possible to train and allocate staff 
resources more efficiently, allowing resources to shift according to demand rather 
than being locked to a single purpose and dataset. A person who can enter data into 
or query data from CAISIS for one disease has most of the knowledge needed to 
manage data for other diseases. Although there is definitely a learning curve associated 

http://caisis.org/wiki/index.php?title=Installation
http://caisis.org/demo/login.aspx
http://caisis.org/wiki/index.php?title=Data_Entry_Guide
http://caisis.org/wiki/index.php?title=Data_Entry_Guide
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with this approach, the startup and training costs are offset by downstream economies 
of scale, scope, and experience.

Because the patient-centric CAISIS database has a higher degree of normaliza-
tion than many study centric databases, and a patient’s medical history is stored in 
highly structured, temporally organized fields, there is less risk of introducing 
investigator bias and subjective data interpretation during data collection or analy-
sis. Before statistical analysis, data from CAISIS is generally queried and processed 
into denormalized research datasets or reports, but the methods for generating these 
datasets are explicit and reproducible, often taking the form of configurable data 
processing algorithms.

From its early days as a Microsoft Access database to the current web-based 
ASP.NET and SQL Server application, CAISIS was made freely available under the 
GPL open-source license to promote collaborative research. There is generally a 
high per-project cost for interinstitutional collaboration, which often requires pains-
taking mapping, quality assurance and reabstraction of data when combining data-
sets across multiple sites. By running CAISIS as an open-source effort and helping 
many other sites set up the system, organize their data management activities 
around this common data structure, and interface with other systems in their local 
IT ecosystem, the CAISIS developers at MSKCC aim to reduce the per-project 
transaction costs of interinstitutional research, as well as to establish working rela-
tionships across cancer centers that are conducive to future research collaboration.

The aims of the CAISIS initiative are to create a reusable patient history struc-
tured in a temporal format, to increase reproducibility of study results by separat-
ing the interpretation of raw data for analysis from its collection and storage in a 
research database, to promote interinstitutional collaboration, to assemble large, 
high quality, and minimally biased datasets for predictive modeling, to improve 
productivity of investigators and research staff, and to achieve economies of scale 
and scope in the overall research data supply chain. In order to achieve these 
aims, CAISIS was built around a single, patient-centric database model that 
would scale to manage clinical and research data for all diseases and medical 
specialties. The database and web application have been specially architected to 
support these end goals.

11.5.1 � Details on Tool Function

Unlike more monolithic systems, version 4.5 of CAISIS is a tiered framework built 
to handle the rapid addition of new modules and diseases. Individual modules are 
loosely coupled ASP.NET applications that run within distinct tabs and share a 
common platform for navigation, security, database access, transferring data 
objects and cross-browser presentation. Similar to common libraries like Hibernate 
(Red Hat Middleware, Inc. 2009), the CAISIS object/relational mapper (ORM) 
liberates the developer from programming repetitive data persistence tasks. With 
the creation of a CAISIS Business Object, the complexities of reading, writing, and 
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transferring data across tiers is abstracted from the developer. Use of attributes 
within these objects further hides implementation details. For example, classes 
attributed with “Exportable” and “Breast” are automatically included in breast 
cancer data exports. Members within that class attributed with “Deidentify” are 
automatically removed from the export. At the user interface (UI) level, database- 
driven metadata allows customization without programming. Presentation proper-
ties such as labels, input control types, validation, field widths, visibility, drop-
down options and form styles can be modified by system administrators with little 
technical expertise. The ease of local customization is one of the primary factors in 
widespread adoption of CAISIS and remains an integral design principal for all 
new development.

The Patient Data tab of CAISIS (Fig. 11.1) is completely dynamic, driven from 
metadata about tables, fields and vocabulary for drop-down lists, as well as XML 
configuration files. The left side of Fig.  11.1 shows the chronological or “Date/
Variable/Value” list, which is essentially a stacked and sorted subset of key fields 
from data tables directly connected to the patient table (i.e., medications, lab tests, 
procedures, pathology, image studies, comorbidities, etc.). This chronological list 
of patient data allows clinicians, researchers, and data management staff to quickly 
view or navigate information across a patient’s entire medical history.

As the user clicks on items in the chronological list, the details branch off to the 
right frame of the web application, which has a number of noteworthy features: (1) 
all dates in CAISIS are stored both as text and as datetime fields, allowing for entry 
of incomplete dates; (2) all web controls, drop-down lists and field attributes (i.e., 
required labels, help bubbles) are drawn from metadata tables in the database; (3) 

Fig. 11.1  CAISIS Patient Data section
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all record updates and deletes are audited so that entire change logs for each record 
can be viewed from the UI; (4) the amount of variation allowed for data entry is 
configurable from metadata (Fig. 11.2) so that an instance of CAISIS can use any 
combination of open text boxes, select boxes, combo boxes (input controls that 
allow either drop-down or type-in of desired value); (5) the File Upload Utility 
Plug-in can be included on any patient data form to allow users to attach source 
document Word, Excel, PDF or image files to individual records; (6) most forms 
allow users to annotate records with a specific data source, data quality and notes 
or comments. The Patient Data section reflects the underlying data model of 
CAISIS, which is patient-centric and designed to handle multiple diseases. For 
disease- or treatment-specific differences, the system has subtables and associated 
subforms as well as the ability to add virtual entity-attribute-value (EAV) fields 
without programming (Nadkarni et al. 2000).

The Patient Lists tab allows the user to list groups of patients in CAISIS by 
clinic schedule, last name, protocol, physician, user-defined categories, and other 
options.

The eForms tab is one of the key features of CAISIS and an active area of 
development. It offers a way to provide users with custom interfaces that follow 
specific data entry workflows and hide the underlying database structure. Entered data 
is stored temporarily in XML until approval by a user in the appropriate role. Upon 
approval, the system parses the XML, inserts the data into the database, and 
generates a report through an XSL transform. This functionality is analogous to 

Fig. 11.2  CAISIS System Administration: configuring the UI through Metadata
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clinical documentation in an EMR. It allows users to capture data through structured 
templates and to generate notes that replace dictation. The Paper Forms tab is a 
predecessor to the eForms tab. It has been used to prototype structured and pre-
populated templates to capture data for research during clinical practice 
encounters.

The Reports and Data Export sections of CAISIS allow users to drop canned 
SQL reports into the framework and to export data into an Access database to run 
operational reports. Access to any tab can be restricted to certain groups under the 
role-based security framework.

The CAISIS Project Tracking module is the most recent addition to the applica-
tion. It is based on a Microsoft Access prototype that has been used at MSKCC to 
track all departmental research projects from idea through publication. The func-
tionality has been extended to track all files associated with projects, manuscripts, 
citations, as well as protocol development for clinical trials.

The Protocol Manager module is a tool for developing a protocol schema and 
then automatically generating patient study calendars. It also guides data entry for 
protocols. This feature will be extended as a key part of CAISIS’ multisite clinical 
trials management functionality.

The Specimen Manager is a simple biospecimen tracking system designed to 
link with the clinical annotation in CAISIS’ Patient Data section. The Specimen 
Manager development was originally funded by Westmead Millenium Institute 
in Sydney, Australia (Carpenter et al. 2007; Fearn et al. 2007a).

The Patient Education tab allows clinical staff to create and deliver customized 
patient education materials for individual patients based on their unique history. It 
is currently a content management system with an interface for navigating and 
selecting portions of content and printing them for patients, but it could be extended 
to automatically select appropriate content by applying rules or queries to the 
underlying patient data.

The System Admin tab allows designated users to configure everything about 
the application, including setting up datasets, configuring and auditing security, 
configuring the UI or drop-down lists, browsing and modifying data.

Overall, the unified look and feel of the application UI, including the images and 
icons, color palette, fonts, screen layout and navigation were designed by a single 
graphic/web designer. Visual and interaction design is often an underappreciated 
but important aspect of medical systems. Initial reactions and user satisfaction seem 
to be significantly impacted by the look and feel of the UI.

11.5.2 � Description of Input/Output

At most sites, CAISIS is implemented as departmental research data repository, and 
users input data into the system from a variety of sources. Abstracting data from 
medical records and manually entering data into the patient data section is generally 
a fundamental activity to support CAISIS. There is a steep but short learning curve 
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that most users go through when shifting from a field-oriented system to the relational 
and temporal structure of CAISIS. For the first couple cases entered, the UI seems 
slow and complex; however, most users are do not notice the complexity as much 
after entering 10 cases, and after 50–100 cases they tend to prefer the CAISIS for-
mat over other systems. Most sites start implementation with a prospective data 
entry process, and then migrate existing retrospective datasets into the system 
through a one-time data mapping and batch import process. High volume data that 
can be easily retrieved from an enterprise data warehouse or clinical data repository 
such as lab tests, demographics, clinic visits, and surgical procedures are com-
monly pulled into CAISIS from regularly scheduled SSIS/ETL data feeds. Most 
sites have not found it necessary to build real-time HL7 interfaces or use service 
oriented methods to exchange data with CAISIS; however, each individual site has 
different needs and circumstances, and in some cases real-time application inter-
faces are desired. Many cancer centers are in the process of implementing EPIC, 
Eclipsys or another leading EMR system, and several are planning to pull struc-
tured data from those systems into CAISIS for research.

There are several methods to output data from CAISIS. The Reports tab is a 
simple reporting engine that allows users to drop a SQL query into the frame-
work, configure it with an XML file, and then allow users to run the report 
through the UI. From the UI, users can export the report to Excel. The Data 
Export tab allows authorized users to export data from CAISIS to XML. An 
import of the XML into Microsoft Access or a statistical package allows users to 
write queries and analyze the data themselves. In larger installations such as at 
MSKCC, which has over 120,000 patient histories in the system, the production 
instance of CAISIS is replicated into a warehouse copy, disease and dataset spe-
cific views are created, and authorized users are allowed to connect to and query 
the warehouse using Microsoft Access, SQL Server, or their own query and 
reporting tool of choice. A number of utilities such as longitudinal follow-up 
tools to assist with mailing letters to patients, algorithms for generating research 
datasets, and database browsers are available in an “Export Analysis Utility” 
which is a separate Microsoft Access application that can be downloaded from 
the website and linked to CAISIS.

11.5.3 � Technical Details

CAISIS was originally a prostate cancer database prototyped in Microsoft Access 
in the late 1990s, and the current database structure reflects some of the early 
database structure and application design. With the help of BioDigital Systems, 
it was scaled up to a web-based ColdFusion and SQL Server platform in 2002, 
and in 2004 the web application was completely rewritten using ASP.NET and C#. 
BioDigital Systems has developed the majority of the web application, and most 
of the SQL Server database was developed by MSKCC staff in the Department 
of Surgery.
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•	 Language(s) used: ASP.NET/C#, JavaScript, HTML, XML.
•	 Ancillary tools needed for compilation, application hosting, etc.: Microsoft 

Visual Studio 2005/2008, Microsoft SQL Server 2005 or greater, IIS 5+, and 
Windows Server. See System Requirements on CAISIS.org for details.

•	 Version/Suite dependencies: CAISIS v4.5 requires SQL Server 2005 or greater 
and .NET framework version 2.0. Cross-browser compatible with MSIE v6+, 
Safari, and Firefox 2+.
Documentation is available on the wiki (•	 http://caisis.org/wiki/index.php). There 
are also links on the public website for the Issue Tracker and Forums. There is a 
CAISIS mailing list and bi-weekly web conference call which users can sign up 
for by emailing CaisisAdmin@mskcc.org. The CAISIS group on LinkedIn.com 
is also a useful way of interacting with the broader CAISIS user community.

CAISIS is freely distributed under the open-source GNU Public License, version 
2.0 (Free Software Foundation 1991).

11.6 � Suggested Best Practices for Use of Tool  
in Research Setting

First, there are no magic bullet solutions. Implementing CAISIS or any other clini-
cal research system will not cure operational problems. However, implementing a 
new information system like CAISIS can be an opportunity or catalyst for changing 
roles, processes, and practices in ways that will pay off in the long-term. The best 
practice for using CAISIS is to explore and learn how to use it most effectively 
through local pilot projects, and to leverage the larger user and developer commu-
nity for ideas and assistance.

Second, many of the technical stumbling blocks encountered in implementation of 
CAISIS seem to be due to inadequate knowledge and skills in the underlying tech-
nologies: Microsoft SQL Server, ASP.NET and C#. Sites interested in using CAISIS 
should have support from IT professionals with up-to-date Microsoft training and 
certifications for these technologies (Microsoft 2009). In most cases, running CAISIS 
in a professionally managed enterprise data center is preferable and in the long run 
less expensive than “under the desk” implementations with inadequate support.

Third, CAISIS should be considered part of an overall IT ecosystem and research data 
supply chain rather than just a standalone research application for a particular project 
(Fearn et al. 2007c). Manual data entry can be expensive and time consuming, so iden-
tifying and implementing a variety of opportunities for data capture from different staff, 
systems and methods, routing multiple streams of data into CAISIS, and producing use-
ful output in return for data entry (e.g., clinical notes, operational and outcomes reports, 
research project datasets) can go a long way toward reaping value from the system, gain-
ing stakeholder buy-in, and building a sustainable data supply chain.

Fourth, there are learning curves and economies of scale, scope, and experience. 
Many groups choose apparently “simple” database solutions that work well in the 

http://caisis.org/wiki
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short-term, but that are ultimately not scalable or sustainable. Any solution seems 
to work for hundreds of cases, but managing thousands of cases requires a different 
approach. At MSKCC, CAISIS is currently being used to manage over 120,000 
cases in over ten cancer types. When a new group starts using the system, they learn 
a new, more generalizable method for entering and retrieving data, which at first 
seems overly complex and unfamiliar. There is a tendency among new users to 
attempt to overcustomize the application in the early stages of implementation 
rather than wrestle their way up the learning curve. This is probably a mistake with 
any system implementation. Groups that take the time to learn the system and 
explore options for redesigning their operations before customization achieve pay-
offs in research productivity and start to experience economies of scale and scope 
as they learn to use it effectively, integrate it with other systems, and reorganize 
their data supply chain.

11.7 � Future Development and Enhancement Plans,  
Extensions, or Novel Uses

At this point, with increasing modularity, metadata-driven dynamic interfaces, cus-
tom controls, and virtual fields, CAISIS is becoming more like a framework for 
adapting to local clinical research needs than a specific application. As existing 
sites expand their usage of this system and new sites start using it, the development 
team at MSKCC and BioDigital plan to further generalize the system so that it can 
be configured to serve many functions in both patient care and research.

Most sites that are using CAISIS are also in the process of implementing enter-
prise clinical systems and EDW/CDRs, and building integrated data supply chains 
so that data captured in a variety of source systems can be piped to downstream 
uses in other systems. CAISIS will need to become more interoperable and stan-
dards-based (i.e., using or mapping to standard terminologies like SNOMED and 
LOINC, providing APIs for caBIG® and CDISC, and integrating with HL7 and 
service-based feeds).

CAISIS is currently expanding rapidly to manage data for multiple services 
within surgical oncology, and the clinical trials management functionality will 
enable further extension across medical oncology groups. In terms of functionality, 
the clinical trials management features in CAISIS will be significantly enhanced 
and integrated over the next couple years to enable management of clinical trials 
across a network of participating sites. To effectively broker the secure exchange of 
data between these sites, a robust middle tier API will be built using industry stan-
dard messaging protocols.

Biorepositories are the resource and data link that enables translational research. 
The CAISIS specimen manager will likely continue to be enhanced rapidly, and 
will need to interface with caTissue or the caBIG® Common Biorepository Module 
to provide interoperability with this maturing infrastructure.
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Abstract  Data collection and management is an essential activity for most scientific 
investigations. To be able to “quickly” develop and support the data collection 
needs for the various types of investigations undertaken in a comprehensive cancer 
center is a challenge. CAF-É is an object-oriented development environment that 
combines common objects with study-specific data entry form(s) libraries with 
common and study-specific metadata has been used successfully to address this 
task. It is based on a Windows forms front-end with a SQL Server database as 
the back-end.

12.1 � Introduction

Data collection and management is an essential activity for most scientific inves-
tigations. To be able to “quickly” develop and support the data collection needs for 
the various types of investigations undertaken in a comprehensive cancer center is 
a challenge. Investigations and/or data collection needs run the gamut from 
“administrative” type activities such as specimen inventory and dispersal to tissue 
microarray data capture thru translational research projects involving the integration 
of clinical/disease status with tissue and/or “omics” or lab information from a variety 
of sources.

Investigators have historically tried to address these needs using a variety of 
strategies and tools. Many options are available for an investigator ranging from 
purchasing commercial systems tailored for a specific purpose through designing 
and building a custom study-specific application. Every alternative has its own set 
of advantages, challenges, and costs that must be considered and no single solution may 
work for all situations. We present here a framework developed to support the data 
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collection activities at the University of Southern California’s Norris Comprehensive 
Cancer Center.

CAF-É is an object-oriented development environment that combines common 
objects with study-specific data entry form(s) libraries with common and study-
specific metadata. It was initially developed for protocol management, patient 
enrollment, and electronic data capture (EDC) to manage clinical trials (CTMS). It 
has now been generalized and has been used for tissue microarray data capture, 
epidemiologic studies, prevention trials, laboratory management, tissue reposito-
ries, and administrative systems such as the Center’s membership database.

12.2 � Description of CAF-É

CAF-É utilizes a Microsoft SQL server back-end database that is accessed using a 
Windows forms based front end to access the databases and present data entry 
forms and reports to the user. The CTMS application developed in CAF-É includes 
many of the essential features typical of commercial clinical trials EDC systems 
(e.g., capability for complex business rules, audit trails, role-based security model), 
but in contrast to most commercial EDC systems, it uses a hierarchical organization 
model that nests individual studies within a more global data model for patient and 
study data, thus making it well suited for cancer center environments where studies 
must be tightly managed and where a single patient can participate sequentially or 
concurrently in multiple studies or trials.

CAF-É applications rely upon several databases (CAFÉ, Look Up, App, Study) 
detailed below and containing all user and application-specific research data and 
metadata. CAF-É provides a dynamically configurable user interface via a menu 
tree built from a database and handles user access and role-based security. For data 
storage/retrieval, CAF-É utilizes a common data access layer that simplifies devel-
opment of audit trails and the binding of form controls to database fields. A key 
support feature utilizes built-in .NET functionality that provides the deployment of 
a fully featured Windows application from a Web server, so that a user can down-
load a Windows executable simply by accessing a URL. When updates are needed, 
the existing components on the Web server are updated, and these are transparently 
moved to the client desktops by .NET when the application is started on the user’s 
machine, so that users always run the most current version of the application 
without the need for intervention from IT staff. Figure 12.1 shows a pictorial view 
of the various components of the CAF-É framework.

12.2.1 � Databases Used

The initial implementation of CAF-É was based on Microsoft SQL Server 2000, 
but as new versions were released CAF-É was updated accordingly. Currently 
CAF-É is using the Microsoft SQL Server 2008 Database engine but is downward 
compatible to SQL 2000. The data and metadata used by the framework was 
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distributed across several databases for organizational reasons. These databases 
include: APP, CAFÉ, Lookup, and Study Specific. APP, CAFÉ, and Lookup con-
tain control and metadata used by the framework and the Study Specific database 
houses the unique data specific for each investigation or application.

The APP database contains several tables that contain information regarding 
each individual application, the users, application roles, and connection string 
information for the databases used in the framework. For each application, its 
name, id, URL, data source, connection string, application roles, and Active 
Directory security group name are captured. For users, their username, hashed 
password value, last name, first name and e-mail address, and other contact infor-
mation are recorded. All user logins and normal logouts are recorded here.

The CAFÉ database contains several tables that contain deployment and configu-
ration information for each individual application. A table defining the menu items 
for each application and the roles allowed for the application is contained here. For 
each application the path for the application’s forms library is specified, parameters 
controlling whether the same form can be opened simultaneously for multiple indi-
viduals, parameters defining whether the context window or menu windows are 
displayed, parameters controlling form and item level auditing as well as the menu 
ID for the application’s main “demographic” entry form are all housed here.

The Lookup database contains all the code lists used by the various applications 
for drop down lists, combo boxes, tree views, and other controls. This forces a cer-
tain level of data consistency and standardization for data capture. A standardized 
nomenclature and formatting has been implemented to make the access of these 

Fig. 12.1  Schematic overview of CAF-É framework components
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lookups consistent and straightforward. When needed, study specific lookups can be 
used in addition to many “common” lookups that are used across one or more appli-
cations. Many standard definitions such as ICD-9 (International classification of 
Diseases, 2002), CPT (Current Procedutal Terminology, 2003), and Common 
Toxicity Category Versions 2 and 3 (Cancer Theraphy Evaluation Program, 1998, 
2003) have been included here to expedite data entry.

The Study Specific database contains all the data that is needed by an investigator 
for his/her specific study. During the initial design of an application, the study 
workflow, the enumeration of required study data items and the content and rela-
tionships between the various tables are defined in collaboration with the user.

12.2.2 � Source Code Projects

Visual Basic (VB) .Net is the programming language used for the CAF-É frame-
work; however, objects created in any CLR-compliant language can be incorpo-
rated. Version control is done using Microsoft’s Visual Source Safe. The rationale 
for utilizing these technologies was based on the large number of existing research 
applications that were already in use at our center using either Microsoft Access or 
Excel. We also wanted to take advantage of other Microsoft Office products such 
as Word or Excel in our framework, so we thought it is best to utilize Microsoft-
centric tools. Microsoft’s Visual Studio interactive development environment is 
used for the creation of all forms and program modules.

A CAF-É framework application consists of seven VB projects; six of these are 
“common” for all applications developed in CAF-É and only one is application 
specific, and it is referred to as the forms library project, since it contains the appli-
cation specific data collection forms and program code. A description of each 
project is below.

AppExplorer is the startup project for all applications. It contains the Login 
form and the CAF-Elite form, which is the start-up form for all applications. The 
CAF-Elite form has three screen display areas for each application: the main menu 
pane, the study context pane, and the pane to display the forms, reports, or Web 
pages that are selected by the user via the main menu option. This latter pane is 
best thought of as a nested tab page. Each application may have a slightly different 
look and feel; however, all CAF-É applications essentially look and work the same 
way. A user first enters his/her username and password in a Login screen and then 
based on the user’s roles, a drop-down list of applications that the user has been 
granted access to is displayed. The user then selects the desired application and the 
application starts.

BaseFormsLibrary is the heart of CAF-É. This project contains several base 
forms and user controls that are used to develop every application. The key class in 
this project is BaseFormKid. BaseFormKid is used to create “forms,” more correctly 
User Controls that will display in the “forms” window and will collect and/or store 
the data needed by the application. Another useful base form is BaseRowPopup. 
This is a base Windows’ form used to display data in a data row contained in an 
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Ultragrid. It provides a “pop-up” form that the programmer can use to request all 
data items populating the grid row. This makes the entry of a large number of data 
columns easier for the user since all items needed are displayed on the pop-up and 
eliminates scrolling through the grid columns which might be hidden from the user. 
Pop-up forms are windows modal forms (user must close before proceeding) which 
are opened separately to perform some specific function within CAF-É. They are 
used to select a study subject, a protocol, etc., and, since they are usually used for 
“picking” something, they are sometimes also referred to as “pickers.”

BaseObjects contains classes used in CAF-É that are used for developing 
an application. Some classes that are very useful are BaseLookup and 
FakeIdCollection. BaseLookup provides a number of useful tools to work with 
lookup tables for drop downs and combo boxes. FakeIdCollection is very useful 
when dealing with database tables with parent–child relationships where it might 
be necessary to insert a foreign key in a table. This project may also contain user-
developed user controls that have dependencies on other projects which do not 
allow them to be placed in NCCGUIControls discussed below.

DataAccess contains all the data layer code to connect to a SQL Server data-
base, retrieve data from the database, and store data to the database. It also pro-
vides all the audit tracking for inserts, updates, and deletes for all transactions. In 
some cases Federal, Health Insurance Portability, and Accountability Act of 1996 
(HIPAA) (21CFR Part 11, 1997), State or local law mandates that audit trails are 
kept for research databases, so if this is a requirement for an application, all data-
base connections, and modifications must use DataAccess code for auditing to be 
done. In addition, form auditing can also be used to record user activity at the 
form level. The developer controls these auditing features via an App database 
parameter and there are no other specific coding issues to be concerned with. 
Commonly used functions in DataAccess are GetDataTable (to retrieve data) and 
TableUpdateExecQuery4 (to store data).

NCCGUIControls contains many graphical user interface (GUI) controls that are 
used by a CAF-É application. Many of these controls are just wrappers for existing 
Windows controls. However, there are also some unique controls here that are use-
ful, for example, the MadTabContext control that one of us (MD) has developed. 
The MadTabContext control is like a tab control and simplifies using the .Net 
Binding Context construct. Binding context allows the developer to bind a database 
column with a property of a control; for example, the text property of a textbox 
control, the value property of a date/time control or the selected index or value 
property of a drop down list control. For convenience, some user controls that need 
to reference resources that are not available in NCCGUIControls have been placed 
in BaseObjects instead of here.

SharedCode is kind of the basement of the CAF-É framework. It (figuratively 
speaking) contains lots of the pipes and wires that make CAF-É work. It also has a 
module called Utilities which contains common utility functions used by the 
CAF-É framework and by CAF-É applications. Another important module housed 
here is MyConstants. MyConstants allows the developer to change CAF-É framework 
variables for running an application in Debug mode or switching between the pro-
duction and development SQL Server databases.
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The AppNameFormsLibrary contains the data collection forms and program code 
unique to each application. As mentioned above, a CAF-É application inherits lots of 
common code from the CAF-É framework via the common projects. CAF-É does not 
do any auto-code generation so a programmer knowledgeable about the use of CAF-
É, Visual Basic, and SQL programming and relational databases concepts is still 
needed to build a working application. However, since CAF-É does many of the 
“lower” level functions using reflection and other abstractions, the developer can 
spend more time on the design and the form specifications for the investigation. 
Although CAF-É does most of the rudimentary functions the developer needs, there 
are occasions when it is necessary to add new things to the base code. To service these 
features an inheritance and override strategy is used. All forms in an application are 
inherited from a base equivalent. This base form provides functions for binding con-
trols to data table fields, database querying, and updates etc. Thus, when an enhance-
ment is made to these base forms or in common code all future and existing 
applications can also utilize them, if needed. Training documents and tips on using 
CAF-É for new developers have been created and are available from the authors.

CAF-É’s user interface consists of three windows. The menu window (upper 
left in the Fig.  12.2 showing the CTMS application) presents a hierarchically 

Fig. 12.2  Description of CAF-É user interface
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structured set of user tasks. Each task in the menu has a corresponding form, 
report, or Web page that is displayed in the user’s work window (right pane) when 
a task is chosen by the user. The user accomplishes this selection by a simple click 
of their mouse. Each form that is opened maintains its own context. This enables 
users to look at similar data for two or three patients and/or protocols at the same 
time, or if necessary dissimilar forms can also be simultaneously displayed. The 
work window is a nested tab page so forms, reports, and Web pages can be left 
open and the user can move between these various nested tab pages as needed. The 
form context window (pane on bottom left) is intended to display the patient/pro-
tocol displayed in the currently active work window and also which patient/proto-
col will be retrieved for any new form the user chooses to select from the menu 
window. The user can customize the look and feel of the application in many 
ways. The menu and form context windows can be undocked or minimized, or 
resized via scroll bars thus freeing up more screen space as needed. If not needed, 
the menu and/or context windows can be excluded from an application via a data-
base parameter. Multiple forms, reports, and Web pages can be opened simultane-
ously, re-sized and/or closed. They can also be arranged horizontally or vertically 
at the user’s discretion.

12.2.3 � Other Dependencies

In addition to the two control libraries mentioned below, CAF-É has several other 
“external” dependencies for it to function. The first is a stored procedure that is 
utilized by the DataAccess layer and the second consists of several Web services 
used for encryption and passing of database connection strings and e-mail messages. 
The implementation guide available from the authors has VB code examples for 
these Web services but any language code be used as long as the service signature 
is identical to the one expected by CAF-É.

The Data Access layer utilizes a modified SQL System Stored Procedure to 
determine the data types for all the data columns in a data table. The name of the 
original stored procedure is SP_Help and the modified version is SP_Help_JTC. 
The SQL user ID associated with all application connection strings for an applica-
tion needs to given execute rights for SP_Help_JTC. SP_Help_JTC should be cre-
ated in the SQL Master database.

A Send Mail Web service is used within CAF-É to forward alerts to application 
users or to notify the development and/or support team of error messages or warn-
ings the users’ might encounter. The e-mail addresses used are stored in the App 
database in the Applications table for each application. The valid e-mail address of 
the person to monitor all error e-mail messages is entered here. This Web service 
requires a “validation” phrase that is needed for the service to function. If an incor-
rect validation phrase is used in the call to the Web service a message is not sent. 
For the message service to work the environment hosting CAF-É must have an 
SMTP mail server available.
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To allow secure processing of database connection string user names and pass-
words, a public/private key encryption strategy is utilized. A public and private pair 
encryption key is generated. The public key is used in a Web method to fetch the 
encrypted username and password for the connection string. As above a “valida-
tion” phrase is used by this Web service to insure only appropriate users can com-
municate with it. These validation phrases are environment specific and usernames 
and passwords are database specific. Independently, another set of user specific 
credentials are maintained for each application, which is associated with the roles 
a user may have for an application.

In addition to using the NCCGUIControls project, CAF-É uses two Third Party 
purchased control “toolsets.” The AppExplorer code makes extensive use of the 
Crownwood DotNETMAGIC library (Dot Net Magic, 2003) for the creation and 
manipulation of docking windows in the GUI. Most of the forms in the Application-
specific Forms Library utilize one or more Infragistics windows controls (Net 
Advantage for .Net 2007, 2006). Common Infragistics controls used are – 
UltraGrid, UltraCombo, and UltraDateTimeEditor.

12.2.4 � Unique Features of CAF-É

CAF-É includes a number of features that are provided in the base objects that assist 
in complying with regulatory requirements like 21 CFR Part 11 and HIPAA (21 CRF 
Part 11, 1997, 2003). CAF-É has three distinct types of audit trails that can be used: 
user login/logout, form access, and item level detail. These can be each turned on/off 
as needed by simple parameter changes in the database as mentioned previously.

Figure 12.3 shows the data items captured for each form a user accesses. This 
includes a unique ID, the date and time the form opened, the user’s session ID, the 
subject/patient, and protocol/study, the type of menu item (form, report, web page, 
etc.), the description displayed for the menu item, the class name of the menu item, 
the unique ID of the menu item, and the application’s ID. A similar database table 
records the following items each time a user logs in and successfully logs out: a 
unique ID, the date and time of the login, the user’s unique ID, the IP address of 
the user’s workstation, the date and time of successful logout, the application’s 
unique ID, and several messages or comments relating to the type of access or error 
encountered by the user.

A third data table records all insert, update, and deletion to the individual data items 
on all forms. The items recorded include: a unique ID, the date and time of the action, 
the user ID, the session ID, the database table name, column name and value entered, 
and several other items relating to the type of action (insert, update, or deletion). A 
base form feature, Form History, utilizes the above information to present the user a 
pop-up that displays the entire audit trail for all items on a form – see Fig. 12.4.

Another unique feature is the “Status Review” feature that allows for a data entry, 
data review, approval, and form data locking cycle to be used. For example, after a 
data manager has completed data entry, they can set the status to “Needs review,” 
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their supervisor or Q/A person, can then review the data and either accept it and/or 
lock it or set the status of items needing correction, at which point the data manager 
can alter as needed. Figure 12.5 is an example of this. In addition, to aid in the 
communication flow for these status changes, a Send Mail Web service is included 
to communicate the status changes between the data manager and Q/A person. This 
Web service is also used as a mechanism to report bugs or errors to development 
staff and to notify external systems when patients go on or off study; for example, 
for research billing compliance.

In most scientific investigations, those entering the data onto the computer 
forms and those performing the data analysis are very familiar with the screen 
displays of the forms but not the database tables and columns where the data is 
stored. This makes selection and retrieval of individual data item for analysis 
problematic. In the past, we have printed the screens and annotated them manually 
to assist in this process. This is obviously a very labor intensive and repetitive task 
as changes are made to the collection forms. We have leveraged a .Net feature 
called “reflection” to automate and simplify this process. Reflection is a feature in 
.Net, which enables one to retrieve information about an object at runtime. Since 
nearly all forms, controls, etc. are based on objects in .Net and all these objects are 
contained in class files, one can use reflection to get information about these objects. 

Fig. 12.3  Description of user login audit data table
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You can fetch a variety of information depending on the specific objects; for 
example, control names, database bindings, method names, and the constructors 
of objects. By using reflection, we programmatically generate the documentation 
needed for data retrieval and analysis via a base object called the Form Binding 
Viewer. Figure 12.6 depicts this in use; another feature not mentioned in the figure 
is that the columns in the data grid (5b) can be sorted by clicking on the column 
headers.

12.3 � Future Development and Enhancement Plans

EDC in CAFÉ is currently implemented using Microsoft Windows forms, which 
are only supported on Microsoft Windows-based computers. This platform depen-
dence is viewed as one of the main limitations of CAFÉ. In addition, the requirement 

Fig. 12.4  Display of transaction audit history data
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to install the application on the client machine(s) requires permission from or 
intervention by information technology departments at outside institutions. This 
complicates its use for management of national or international studies. Although 
we currently allow external collaborations via remote terminal access using remote 
desktop protocol we believe the best alternative is to add a web browser-based 
front-end to CAFÉ in the future.

In conjunction with the Web-based forms, we believe a formalized common data 
item repository and electronic screen generation component is essential to making 
CAFÉ more widely acceptable.

Finally, we are going to add a task queuing capability that will allow us to pro-
vide a “dashboard” type of form to allow users to get an overview of work requests 
needing attention for study/protocol or patient management.

Fig. 12.5  Display of the form status review process
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Abstract  Shared Resource Management (SRM) is a laboratory management 
system designed to support shared resource facility (or core laboratory) activi-
ties. It was originally designed to support the laboratories in the Hartwell Center 
for Bioinformatics and Biotechnology at St. Jude Children’s Research Hospital, 
which includes High Throughput DNA Sequencing and Genotyping, Genome 
(Next Generation) Sequencing, Macromolecular Synthesis, Functional Genomics 
(spotted microarray), Affymetrix (commercial microarray), Molecular Interaction 
Analysis, and Proteomics facilities. In addition, it supports St. Jude’s Protein 
Production Facility and Cell and Tissue Imaging Center. SRM was designed to be 
sufficiently modular and scalable to support other laboratory activities as needed. 
It could conceivably support all facilities on a campus or at a research organization 
and provide a single portal for investigators to access these resources, retrieve data, 
receive invoices for services, and generate reports.

In July 2007, SRM was released to the open-source community as STJUDE-SRM 
and is distributed under the GNU Lesser General Public License v3.0. A partial 
version of the system (minus invoicing and reporting capabilities) targeted at the 
MySQL database platform is available for download from http://stjude-srm.source-
forge.net. A complete platform targeted at Oracle 9i/10g as well as Postgres Plus® 
Advanced Server is forthcoming.

Basic installation and usage documentation is available via the STJUDE-SRM 
wiki at http://stjude-srm.wiki.sourceforge.net/. Practical experience with the JBoss 
Application Server (http://www.jboss.org), MySQL Database (http://www.mysql.
com), and basic Unix/Linux administration, as well as a working knowledge of Java 
2™ Enterprise Edition applications and the Apache Ant build tool (http://ant.
apache.org) are required to install and administer SRM.

C. Naeve (*) 
St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA 
e-mail: Clayton.Naeve@STJUDE.ORG
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13.1 � Description of Tool

13.1.1 � Overview

SRM is a laboratory management system designed to support shared resource facility 
(or core laboratory) activities. It currently supports multiple laboratories at St. Jude 
Children’s Research Hospital, offering the following services:

High Throughput DNA Sequencing•	
Genome (Next Generation) Sequencing•	

Illumina Platform––

ChIP-Seq
Digital Gene Expression
miRNA Analysis
Resequencing
Mate-Paired Sequencing
De Novo Sequencing
mRNA-Seq

Roche FLX Platform––

Amplicon Analysis
ChIP-Seq
De Novo Sequencing
Digital Gene Expression
Resequencing

Genotyping•	

Minisatellite and Microsatellite Analysis––
Insertion/Deletion Screening––
Mouse Genotyping––
SNP Screening––
Multiplex Ligation-Dependent Probe Amplification (MLPA)––
DNase Footprinting––
PCR-Restriction Fragment Length Polymorphism (RFLP)––
Surveyor mutation assay––
Promega Powerplex system––

Macromolecular Synthesis•	

DNA (Oligo) Synthesis––
Standard Peptide Synthesis––
96-Well Pin (Mimotope) Synthesis––
HPLC Quality Assurance/Purification––
Post-Synthesis Modifications––
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Functional Genomics (Custom/Spotted Microarray Technology)•	

Expression Analysis––
Comparative Genomic Hybridization (aCGH) Analysis––
Clone Retrieval––

Proteomics•	

SDS-polyacrylamide Gel Electrophoresis––
Large Format 2-D Gel Electrophoresis––
Small Format 2-D Gel Electrophoresis––
Electroblotting––
Protein Identification – Tandem MS––
Protein Peptide Chromatography––
Protein Isoelectric Focusing––
Protein Identification – LC/Tandem MS––
Isotope-Coded Affinity Tag Analysis––
Protein Mass Measurement––

Molecular Interaction Analysis•	

Surface Plasmon Resonance (Biacore) Analysis––
Analytical Ultracentrifugation––
Multiangle Light Scattering––

Clinical Applications Core Technology (Affymetrix)•	

RNA Gene Expression––
Whole Genome Mapping and SNP Analysis––
Genome Tiling, Exon Analysis, and Chromatin Immunoprecipitation (ChIP)––

Protein Production Facility•	

Bacterial Expression––
Baculovirus Expression––
Purification––
Crystallization Trials––

Cell and Tissue Imaging Center•	

TEM Imaging––
Negative Staining––
2D Analysis––
SEM Services––
Confocal Microscopy––
Microinjection––
Multiphoton Microscopy––

This diversity of shared resources allowed the development team to take a broad 
look at shared resource management (SRM) activities and analyze the common 
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functions required to manage such facilities. SRM currently breaks these functions 
down into nine main subsystems:

Online Ordering•	
Online Scheduling•	
Online Order/Sample Tracking•	
Sample and Workflow Management Tracking (LIMS)•	
Data Processing, Archival and Retrieval•	
Messaging•	
Client Management•	
Billing•	
Reporting•	

13.1.2 � Online Ordering

The online ordering subsystem allows clients to place online orders for shared 
resource/core facility services (Fig. 13.1). Orders are ultimately linked to a princi-
pal investigator’s group, or “PI Group,” which is the first bit of information that 
must be selected by the client (clients can belong to multiple groups). This information 
allows SRM to link any resulting data produced by the service to the group, allowing 
any member of that group access to the data, which is deposited in a flat-file archive 
having the group’s name as the parent folder. Online order forms are customized to 
fit each individual service’s needs, with fields common to all services present 
throughout.

Fig. 13.1  Online ordering screen for St. Jude’s Genome Sequencing Facility
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13.1.3 � Online Scheduling

The online scheduling (Fig. 13.2) subsystem allows shared resources to schedule client 
appointments (through the ordering subsystem) for shared instrumentation usage. 
Instrument schedules are viewable as daily, weekly, or monthly calendars. Facility 
staff can create calendars for new instruments as necessary. The subsystem features 
the ability to request unassisted (for “power users”) or technician-assisted usage of the 
instrument. Technicians are assigned to bookings via a ranking system, whereby 
the highest-ranked available technician is chosen. Staff can flag blocks of time as 
unavailable for technicians (such as when a technician is out for vacation) on an indi-
vidual or recurring basis. Usage of the instrumentation is billed hourly, with configurable 
rates for each instrument as well as for unassisted vs. technician-assisted usage.

13.1.4 � Online Order/Sample Tracking

The online order/sample tracking subsystem allows clients to track the progress 
of online orders they have placed for shared resource/core facility services. 
The Tracking subsystem is grouped into two portions, the first being a “My 
Pending Orders” view, which is a listing of all pending orders the logged-in client 
has placed in SRM, and the second being a search view, which allows clients to 
search for any pending orders placed by his/her PI Group.

Fig. 13.2  Online scheduling screen for St. Jude’s cell and tissue imaging facility
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13.1.5 � Sample and Workflow Management Tracking (Laboratory 
Information Systems, LIMS)

The LIMS subsystem (Fig. 13.3) allows shared resource staff to track their activities 
as they process samples through their workflow. The LIMS system is broken down 
into individual pages representing the typical steps in the workflow. On each of these 
pages, staff can annotate samples currently at that step with various data items, as 
well as archive large data files for later retrieval (e.g., DNA sequencing data, quality 
control information, Affymetrix/Custom microarray data, etc.). Most LIMS systems 
also include sample check-in/check-out; a “List All Samples” page to allow a global 
perspective of the lab’s queue, various procedure/material management pages; and an 
Edit Workflow/Workflow Template facility, where by staff can edit the typical work-
flows available to the lab, or make changes to the workflow for a particular sample.

13.1.6 � Data Processing, Archival, and Retrieval

The data processing/archival subsystem (Fig. 13.4) allows developers to construct 
various data processing/archiving pipelines to manage the vast amounts of data 
generated by many shared resources. It allows for synchronous or asynchronous 
pipeline execution.

The data retrieval subsystem allows clients to retrieve data resulting from the 
experiments performed via various shared resources. Clients can search for samples 
based on various criteria, and then choose to look for data for all or a subset of the 
samples returned from the search. The subsystem will provide a list of all data 
archived by SRM for those samples, and clients can download all or a subset of 
those files to their local PC/Mac, or they may also copy them to an institutional 

Fig. 13.3  LIMS screen for St. Jude’s Clinical Applications Core Technology (Affymetrix™) Facility
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shared file system. Data Retrieval also includes a “shopping cart” style function, 
whereby clients may add files to their cart and then conduct additional searches. 
When finished they can download the entire contents of their cart.

13.1.7 � Messaging

The messaging subsystem sends email to clients and shared resource staff when 
various events occur within the system. It also maintains an internal message queue 
for each user, so that users may view their messages in the event of an email system 
failure.

13.1.8 � Client Management

The STJUDE-SRM Client Management subsystem allows administrators to update 
the information maintained for the principal investigators (PIs) served by the system, 
assign delegates for PIs, and update account information for PIs.

13.1.9 � Billing

The billing subsystem (Fig. 13.5) allows shared resources to bill clients for services 
rendered. Bills can be generated according to a standard or custom billing cycle. 

Fig. 13.4  Data retrieval screen
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Clients are notified via email of pending bills, and they (or their delegates) may login 
to SRM and approve the bills. If necessary, they may make changes to the distribution 
of charges amongst various accounts and grants. Approved charges may then be 
automatically sent to the institutional accounting system for balance updates.

13.1.10 � Reporting

The reporting subsystem provides a valuable global view of the data contained in 
the system. It is broken down into two primary components. The first, custom 
reports, allows clients, administrators, and shared resource staff to perform ad-hoc 
queries for samples by various criteria. They may then drill down into the individ-
ual histories of samples returned from the search. The second component, prepared 
reports, allows quick-and-easy generation of various reports required by various 
users of SRM on a regular basis. One of the key prepared reports is the Cancer 
Center Support Grant report that allows an administrator to generate the required 
usage information for CCSG grant renewals.

13.2 � Technical Details

The primary implementation technology for SRM is Java™. SRM is currently 
compiled using the Java Platform, Standard Edition 5.0 compiler. The primary sup-
porting technology stack for SRM is the Java™ 2 Platform, Enterprise Edition 1.3 

Fig. 13.5  Billing summary screen
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specification, including Enterprise JavaBeans 2.0, JavaServer Pages 1.2, and Java 
Servlet 2.3.

SRM is divided into multiple deployment units. The original platform was 
deployed as a monolithic enterprise archive (EAR) file containing both the business 
and data persistence services as well as the Web application archive (WAR) mod-
ule. This EAR deployment supports all services provided by the original Hartwell 
Center laboratories.

As newer facilities were brought online, a shift to a more modular deployment 
scheme was made. The business and data persistence services are still provided by 
the EAR deployment, with the Web user interface (UI) for each new facility 
deployed in a separate WAR. This move was made for two reasons:

As the core technologies supporting SRM continue to age and newer technolo-•	
gies come available, isolating the use of these newer technologies to the UI 
supporting a new facility reduced the risks and other barriers to introduction of 
these technologies. Thus, the introduction of the Spring Framework, Java Server 
Faces (JSF), and WebWork were enabled.
Most coding specific to a new facility has historically been found within the UI •	
layer of the system, so this enabled the isolation of defects introduced by new 
facilities (flesh out and rework).

The base environment required for an SRM deployment is the following:

Java™ Platform, Standard Edition 5.0•	
Any server OS platform supporting Java™ 5 (Windows/Unix/Linux/Mac •	
OS X)
JBoss Application Server 4.2.x•	
MySQL 5.x•	
Apache Ant 1.7.x•	

As was stated in the abstract, the currently available open-source version of SRM 
is incomplete and will run on the MySQL 5.x platform. St. Jude’s current produc-
tion deployment of SRM runs on Oracle 10g. A full migration of the database 
schema to MySQL was attempted and did not succeed for various technical/perfor-
mance reasons. We have since completed a migration to Postgres Plus® Advanced 
Server, available from EnterpriseDB Corporation (http://www.enterprisedb.com). 
We will soon release a version of SRM that will run on either Oracle 10g or 
Postgres Plus® Advanced Server.

SRM must be built from its source for any new deployment. Many configuration 
options are compiled into the deployed code, so anyone installing SRM will need 
to be able to run the Ant build.

The SRM development team maintains a Google Group at http://groups.google.
com/group/stjude-srm. So far this list has generated very little traffic, but SRM 
developers are always available via this channel to assist those looking to deploy 
the platform. This group is currently invite only, and potential members can request 
an invitation by providing the name of their institution and their interest in joining 
the group.

http://www.enterprisedb.com
http://groups.google.com/group/stjude-srm
http://groups.google.com/group/stjude-srm
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13.3 � Examples of Usage

Usage of SRM is best illustrated by walking through the lifecycle of an order:

1.	 An investigator, desiring to sequence a 96-well plate of DNA templates, logs in 
to SRM. He clicks on the place order link, selects his group from the list pro-
vided, selects DNA sequencing from the service list, indicates that the order is 
grant funded, and submits the form. On the next page he selects plate order, the 
grant to which he will charge the work, and the number of plates he is submitting.  
On the next page he browses his computer to locate an Excel™ workbook 
containing his sample information and uploads it. On the final ordering screen he 
is shown the plate map generated from his workbook and clicks OK.

2.	 The investigator walks his 96-well plate down to the DNA Sequencing facility. 
A staff member logs in to SRM, locates the plate in the LIMS system, and checks 
in the plate.

3.	 A staff member uses the LIMS system to assign the plate to a sequencer and then 
generates a file used by the data collection software to analyze the plate. The 
staff member then proceeds with the sequencing laboratory work.

4.	 After the sequencing run is complete, the staff member imports a report file con-
taining length-of-read (LOR) information into SRM. He then places the gener-
ated data into a shared network drive known by SRM and clicks “Archive.” SRM 
picks up the data and moves it to a flat-file archive organized by investigator. The 
staff member then “checks out” the plate and the investigator receives an email 
indicating that his data is available to download.

5.	 The investigator clicks on a link in the notification email, which carries him to a 
page containing a list of files available for download. He selects the files he 
wishes to download and clicks “Retrieve Now.” The files are transferred to his 
PC via FTP.

Another example of SRM usage is the billing workflow:

1.	 A facility’s billing administrator logs into SRM and clicks “Billing.” Once in bill-
ing, she clicks “Current cycle,” and is shown a list of outstanding charges by 
investigator for the current billing cycle. She selects the investigators she wishes 
to bill and clicks “Bill.” Emails containing the bills are sent to each investigator.

2.	 The investigator receives a billing notification and clicks on the link it contains. 
He is presented by a list of charges and the grants to which they are charged. 
When satisfied, he clicks “Approve.”

3.	 The billing administrator accesses the “Bill management” screen to see the status 
of all outstanding bills. From this screen she can see the current status (pending 
vs. approved), send additional notifications, as well as see the number of times 
each investigator has been notified. She can also change the charged amount and 
the grants to which bills have been charged.

4.	 When ready, the billing administrator generates a spreadsheet containing the 
approved charges and submits it to the financial services department.
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13.4 � Future Development Plans

An original goal for SRM was for it to be sufficiently modular and scalable to sup-
port additional laboratories and potentially support all core facilities within an 
institution, providing a single portal for investigators to requisition services, 
retrieve data and invoices for services, and generate reports. The original imple-
mentation of SRM allowed modules for new facilities and/or services to be 
deployed within 3–6 months, assuming 2–3 developers concurrently dedicated to 
developing modules for a new facility. Little did we know that the rate of desired 
SRM adoption and introduction of new facilities to St. Jude would far outstrip our 
ability to deliver the required modules.

Clearly a different approach was necessary. Work is now underway to deliver 
SRM 2.0. SRM 2.0 will largely be driven by domain-specific metadata specified at 
runtime, allowing new facilities and/or services to be deployed (and existing facili-
ties and/or services to be modified) without writing any additional code modules. 
According to our estimates, this will allow us to deliver at least 75–80% of the 
required functionality to support any one facility.

The remaining functionality will be delivered by utilizing an innovative plug-in 
system, whereby various predefined extension points throughout the system can be 
enhanced by developing domain specific plug-in modules that will be deployed 
independently of the core system. We believe these two fundamental concepts will 
allow us to shorten deployment time for new facilities and/or services to 3–6 weeks 
or possibly less. It is our vision that SRM 2.0 will represent the next generation of 
core facility management systems and be the best available software in the world 
for managing core facilities.
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Abstract  caBIG® is a virtual network of organizations developing and adopting 
interoperable databases and analytical tools to facilitate translational cancer 
research (von Eschenbach and Buetow 2007). It is an open-source, open-access 
program, and all the tools and resources are freely available to the research com-
munity. The National Cancer Institute is developing resources to assist enterprise-
wide adoption of the caBIG® tools. To this end, we have bundled mature software 
tools together to facilitate easy adoption and installation. The Life Sciences 
Distribution (LSD) is comprised of tools to support the continuum of translational 
research: caArray, for the management and annotation of microarray data; caTis-
sue, to support the collection, annotation, and distribution of biospecimens; the 
Clinical Trials Object Data System, for the sharing of clinical trials information; 
the National Biomedical Imaging Archive, for annotation, storage, and sharing of 
in vivo images; cancer Genome Wide Association Studies, for publishing and min-
ing data from GWAS studies; and geWorkbench, supporting the integrated analysis 
and annotation of expression and sequence data. All the LSD tools are connected 
to caGrid (Saltz et al. 2006), which makes it possible for the databases at multiple 
institutions to be interconnected to support data sharing and integration.

More information on the LSD suite of products, including installation packages, 
user and installation guides, and links to exemplar installations can be found at 
http://ncicb.nci.nih.gov/NCICB/tools/lsd.
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14.1 � National Biomedical Imaging Archive

14.1.1 � NBIA Overview

The National Biomedical Imaging Archive (NBIA) is a software package that 
allows for archiving and sharing of medical imaging data in a secure and federated 
fashion. The need for such an archive originated from NCI’s goals to support the 
development and validation of analytical software for lesion detection and classifi-
cation, accelerated diagnostic imaging decision making, and quantitative imaging 
assessment of drug response.

14.1.2 � NBIA User Interface

NBIA is a Web-based application that allows researchers to query and retrieve imag-
ing and any available related annotation data using multiple Digital Imaging and 
Communications in Medicine (DICOM) standard attributes (http://medical.nema.
org/). The user is also able to browse JPEG versions of the stored images as a pre-
view function before downloading an entire set. Images are loosely organized into 
“collections,” a dynamic grouping that allows images to be grouped into relevant 
sets based on a clinical trial, a study, or any other common attribute across the set.

14.1.3 � NBIA Inputs and Outputs

NBIA currently stores DICOM files submitted from any Picture Archiving and 
Communication Systems (PACS) using an open-source software called the Clinical 
Trials Processor (CTP, available at http://mircwiki.rsna.org/index.php?title=CTP-The_
RSNA_Clinical_Trial_Processor). The CTP software allows submitters to anonymize 
and remotely submit DICOM files to configured instances of NBIA. The images are 
stored in a file system with pointers to their relative locations stored in a MySQL backend 
database. The DICOM tags are parsed and their values stored in the backend database.

Users are able to query and download the files supported by the archive to their 
local workstations. The query and retrieve functionality is available via an applica-
tion programming interface (API) as well, allowing programmers to write queries 
to access any caGrid-enabled instance of an NBIA server.

14.1.4 � NBIA Future Development and Enhancements

NBIA development continues to focus on supporting additional imaging modalities 
including pathology and optical modalities. Multiple service endpoints are also being 
developed for ease of access to the underlying data in a service-oriented fashion. 

http://medical.nema.org/
http://medical.nema.org/
http://mircwiki.rsna.org/index.php?title=CTP-The_RSNA_Clinical_Trial_Processor
http://mircwiki.rsna.org/index.php?title=CTP-The_RSNA_Clinical_Trial_Processor


25514  The caBIG® Life Sciences Distribution

There are also plans underway to integrate with an image annotation service using the 
Annotation and Imaging Markup (AIM) standard (https://cabig.nci.nih.gov/tools/
AIM). Multiple improvements are being made to the user interface to make it more 
intuitive and to allow for a more flexible query interface.

14.2 � caTissue Suite

14.2.1 � caTissue Suite Overview

Many biobanks manage their inventory in ad hoc tools, such as spreadsheets or 
paper-based systems. The caTissue project was initiated to develop an enterprise 
quality solution for managing biorepositories. caTissue Suite is a tissue bank 
repository tool for biospecimen inventory, tracking, and basic annotation. This tool 
permits repository staff to track the collection, storage, quality assurance, and dis-
tribution of specimens as well as the derivation and aliquotting of new specimens 
from an existing ones (e.g., for DNA analysis). It also allows end-user scientists to 
find and request specimens that may then be used in molecular correlative studies.

The latest version of caTissue Suite (version 1.1) is an integrated suite adding in 
clinical annotation of specimens and a tool (caTIES) for processing free text surgi-
cal pathology reports into a structured database that can be searched according to 
specific criteria such as diagnosis, surgical procedure, and anatomical site.

14.2.2 � caTissue Suite User Interface

caTissue Suite provides customizable, role-based functions through its graphical 
user interface. Through the Administrator features, the sets of specimens required 
from each individual on a study can be defined. As the study proceeds, the accrual 
of specimens can be monitored. In addition, the Administrator also registers new 
users, containers (e.g., freezers, liquid nitrogen tanks), consent tiers, and distribu-
tion protocols into the system. A Supervisor adds participants to the system and 
registers them to collection protocols. Technicians add specimens to the system and 
capture participant responses for consent tiers. Users with the Scientist role may 
use the advanced query wizard to create and save complex, predefined, or param-
eterized searches to identify and order specimens of interest.

14.2.3 � caTissue Suite Inputs and Outputs

In addition to the graphical user interface, an important part of caTissue Suite is its 
API. While principally intended for use by programmers, its value lies in enabling 
integration with other systems. In practice, the API has enabled many institutions to 

https://cabig.nci.nih.gov/tools/AIM
https://cabig.nci.nih.gov/tools/AIM
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load data into caTissue Suite from existing systems. A range of third party solutions 
have been developed using the API that allow loading of data from simple spread-
sheets, XML files, or complex relational systems. The API has also been used to 
integrate caTissue with other systems at a number of institutions.

14.2.4 � Future Development

Adaptations will be added to coordinate with services that enable full integration of 
research data by use of identifiers for specimens that are unique across the grid. This 
will also support integration with systems that manage the research results obtained 
on specimens, for example, caArray. Integration with Clinical Trials Management 
Systems (CTMSs), such as those in the companion caBIG® CTMS bundle (see 
Chap. 11), are planned and will enable integration of the workflows on such trials.

14.3 � caArray Overview

caArray is a software application which supports the management and sharing of 
microarray data, including gene expression, SNP, and copy number data. The intended 
end users of caArray include lab scientists, principle investigators, and biostatisti-
cians. caArray supports the annotation of microarray experiments in accordance 
with Minimal Information About A Microarray Experiment (MIAME) guidelines 
(Brazma et al. 2001) and provides a graphical user interface for the capture and 
display of annotations. The use of controlled vocabularies to describe the experimen-
tal details and biological samples is supported and encouraged through the caArray 
application; in particular, a number of data entry fields are limited to terms from the 
Microarray Gene Expression Data (MGED) Ontology (Whetzel et al. 2006).

A key feature of caArray is security management. When data is loaded to caAr-
ray, it is private to the data owner unless is it shared with a collaboration group or 
made public. Users create and manage their own collaboration groups and can give 
members of the group read-only or read/write access to the whole experiment or 
just selected samples in the experiment.

14.3.1 � caArray User Interface

End users interact with caArray through the Web-based application user interface. 
A user who is not logged in is able to browse, search for, and download public data. 
Users can search for experiments of interest based on desired attributes, or they can 
search for individual samples of interest. From the search results, a user can choose 
to download the associated microarray data files for individual samples or for the 
entire experiment.
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A logged-in user has the access to upload and annotate microarray data. When 
first logging in, the user is presented with “My Experiment Workspace” which 
contains a tab for Work Queue Experiments that are not yet public, as well as a tab 
for experiments that have been made public. When logged in, users have the option 
to add data to an existing experiment or create a new experiment, to manage 
collaboration groups, to load or edit array designs, and to load or edit reusable 
protocols and vocabulary terms.

14.3.2 � caArray Inputs and Outputs

caArray currently parses data from Affymetrix, GenePix, and Illumina formats. 
Parsed values are available to analysis tools and services through the caArray remote 
Java API and grid service. In addition, caArray stores the native data files of these 
formats, as well as from the Agilent and Nimblegen platforms, among other formats. 
The full set of supported platforms is available in the caArray User Guide.

A popular feature of caArray is support for the import, update, and export of 
data in MAGE-TAB format (Rayner et al. 2006). MAGE-TAB is a spreadsheet-
based format for capturing MIAME-compliant microarray experiment annota-
tions. This easy-to-use format has rapidly become the approach of choice for loading 
data into caArray, largely due to the familiarity most scientists have with the use 
of spreadsheets and the readiness with which the format can be produced by other 
systems.

14.3.3 � Future Development and Enhancement

caArray development continues to proceed with an open architecture and support-
ive documentation to allow for future enhancements. Areas of future planned 
emphasis include interfacing with additional analysis tools; integration with bio-
specimen annotation services, such as caTissue Suite, and seamless publishing to 
other array databases including GEO.

14.4 � Clinical Trials Object Data System

14.4.1 � CTODS Overview

The Clinical Trials Object Data System (CTODS) has been developed to enable the 
exchange of deidentified clinical trials data across multiple systems while support-
ing syntactic and semantic interoperability. As a reference implementation of the 
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Biomedical Research Integrated Domain Group (BRIDG) Model (Fridsma et  al. 
2008), CTODS provides a single, unified set of APIs that can access clinical data 
from multiple data sources.

14.4.2 � CTODS User Interface

The CTODS user interface consists of a viewer that allows for querying and retriev-
ing data from the underlying database based on four major categories of data – pro-
tocol, enrollment, treatments, and adverse events. The user interface allows for 
keyword searching using either exact or synonym-based searches for organs using 
NCI’s Enterprise Vocabulary Services (EVS). Data generated from these queries 
can also be exported into comma separated values (CSV) or XML formats.

14.4.3 � CTODS Inputs and Outputs

A separate module called the CTODS Loader is used to load data into the backend 
database. Data exported from a local CTMS using a specified format (as described 
in the CTMS Theradex version 3.12 available at https://gforge.nci.nih.gov/svnroot/
cactus/ctods/docs/ctodsdataloader/CTMS_312.pdf) can be loaded into the CTODS 
system using this utility. Sample data files using this format are also available from 
the location described above. Output from CTODS is in the form of structured 
reports and the data generated from these reports can also be exported into CSV or 
XML formats.

14.4.4 � Future Development and Enhancement

Future developments of CTODS include additional reports and API enhancements 
to harmonize it with the current version of the BRIDG model.

14.5 � Cancer Genome Wide Association Studies

14.5.1 � caGWAS Overview

Cancer Genome-Wide Association Studies (caGWAS) allows researchers to integrate, 
query, report, and analyze significant associations between genetic variations and dis-
ease, drug response, or other clinical outcomes. caGWAS supports the correlation of 
Single Nucleotide Polymorphism (SNP) genotype data, SNP association findings, popu-
lation frequency data, and clinical phenotypes and provides tools for search and retrieval 
of GWAS findings in the context of genes or chromosomal regions of interest.

https://gforge.nci.nih.gov/svnroot/cactus/ctods/docs/ctodsdataloader/CTMS_312.pdf
https://gforge.nci.nih.gov/svnroot/cactus/ctods/docs/ctodsdataloader/CTMS_312.pdf
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14.5.2 � caGWAS User Interface

caGWAS provides an easy-to-use graphical user interface for performing three 
types of searches: SNP Association Findings, Population Frequencies, and Subjects 
Data. A user starts their investigation with caGWAS by selecting a study of interest 
and the version of that study to interrogate and then indicating which kind of search 
to perform. For SNP Association or Population Frequency searches, the user may 
designate a genomic location, one or more genes of interest, or one or more SNPs 
of interest. Association queries also include p-value or whole genome rank cutoff; 
Population Frequency queries allow specification of the Hardy–Weinberg p-value, 
Minor Allele Frequency, and Completion rate. The output includes these data 
elements in a sortable table. Subject data may also be searched by population or 
analysis group and by gender, age, case/control status, and/or family history. In the 
case of a subject search, returned data includes a subject identifier as well as the 
gender, age, affection status, family history, and population.

14.5.3 � caGWAS Inputs and Outputs

caGWAS was built upon common but specific use cases and as such, caGWAS 
analysis results must first be precomputed. To load data into caGWAS, the source 
data must first be converted to the required file format and then formatted data is 
loaded to a database staging area. Data in the staging area is then transformed and 
transferred to the tables in the caGWAS warehouse schema. caGWAS also provides 
the ability to bulk download all data from a specified study.

14.5.4 � Future Development and Enhancement

Planned enhancements include support for more scans with additional search capa-
bilities, online analytic and visualization capabilities, and cross-study comparisons.

14.6 � geWorkbench

14.6.1 � geWorkbench Overview

geWorkbench is a platform for genomic data integration, bringing together analysis 
and visualization tools for gene expression, sequences, protein structures, path-
ways, and other biomedical data. It gives scientists access to a number of external 
caGrid-enabled data sources and algorithmic services, combining these with many 
built-in tools for analysis and visualization.
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Over 50 geWorkbench plugin components are currently available, covering a wide 
range of genomics domains. Analyses include several popular clustering and classifi-
cation methods (e.g., hierarchical clustering, self-organizing maps, support vector 
machines, K nearest neighbors, and principal components analysis), differential 
expression tools, as well as advanced systems biology algorithms for regulatory net-
work reconstruction [ARACNe (Margolin et al. 2006), MINDy (Wang et al. 2009), 
and MatrixREDUCE (Ward and Bussemaker 2008)]. Sequence support includes 
BLAST (Altschul et al. 1990), pattern discovery, transcription factor mapping, as well 
as access to novel pipelines for protein structure prediction and structured-based 
functional annotation. A wide variety of visualization modules accompany these 
tools, enabling users to interact and interrogate data and analysis results in sophisti-
cated ways. Further, integration with a number of external annotation sources [caBIO 
gene and pathway data (Komatsoulis et al. 2008), Gene Ontology (Ashburner et al. 
2000), GeneWays (Rzhetsky et al. 2004), and the B-Cell Interactome (Lefebvre et al. 
2007)] facilitates the incorporation of biological knowledge in evaluating the plausibi
lity of analysis results. A listing of components as well as detailed project documentation 
and user tutorials is available at the project Web site (http://www.geworkbench.org).

14.6.2 � geWorkbench User Interface

Effective interaction with high-throughput genomic data requires the use of sophis-
ticated, fast, and flexible user interfaces. geWorkbench provides a wide range of 
advanced visualization tools. Some of these tools were developed de novo while 
others incorporate and leverage third party community technologies, such as 
JFreeChart (http://www.jfree.org/jfreechart/) (for displaying graphs), Cytoscape 
(Shannon et al. 2003) (for displaying molecular interaction networks), JMol (http://
www.jmol.org/) (for displaying 3D structures), and Jalview (Waterhouse et  al. 
2009) (for displaying sequence alignments), among others. A small representative 
sample of screenshots can be found at the project Web site, under the “Screenshots” 
section: http://wiki.c2b2.columbia.edu/workbench/index.php/Screenshots.

geWorkbench utilizes the workspace-projects paradigm that is popular with many 
workbench-type applications. Users work in workspaces that contain projects. Each 
project is used to group and manage all data (input files and analysis results) 
involved in a single analysis workflow. Prior to exiting, the application users can 
save their entire workspace so that it can be reloaded at a subsequent session.

14.6.3 � geWorkbench Inputs and Outputs

geWorkbench can parse data files for many popular gene expression, genomic 
sequence, and protein structure formats, including Affymetrix, txt, GenePix, 
RMAExpress (http://rmaexpress.bmbolstad.com/), GEO, FASTA, and PDB. Several 

http://www.jfree.org/jfreechart/
http://www.jmol.org/
http://www.jmol.org/
http://wiki.c2b2.columbia.edu/workbench/index.php/Screenshots
http://rmaexpress.bmbolstad.com/


26114  The caBIG® Life Sciences Distribution

custom formats have also been developed (e.g., a file format for representing gene 
interaction networks). Data can be loaded from the local file system or from remote 
sources. A caArray connector component offers the ability to retrieve experiments 
from caArray instances. Three-dimensional protein structures can be directly 
downloaded from the PDB. The geWorkbench Sequence Retriever component 
allows the retrieval of DNA sequences from the Human Genome repository at the 
University of Santa Cruz as well as protein sequences from EBI.

14.6.4 � Future Development and Enhancement

geWorkbench provides an integration and dissemination platform for the state-of-
the-art systems biology and structure analysis tools developed by the MAGNet Center 
investigators (http://magnet.c2b2.columbia.edu/). As more such tools become avail-
able, their integration into the application will remain a key area of focus. Additional 
effort will be targeted on hardening the server side component of geWorkbench, so 
that it too can be made available for download and deployment to support users who 
would like to run the geWorkbench services on their own infrastructure. Finally, the 
plugin framework will be extended to support dynamic loading of components from 
Internet-based repositories.

14.7 � LSD Bundle Technical Overview

All of the tools in the Life Sciences Distribution (LSD) are written with, and 
deployed on, entirely open-source software. The Web-based data services 
(caArray, caTissue, NBIA, caGWAS, and CTODS), are all run on the Java EE 
technology stack. The applications use Java Server Faces (JSF) technology for 
the front end Web pages and a JBoss server acts as the middle tier for the appli-
cation. In addition, all of the Web-based tools use Hibernate for object-to-
relationship mapping and MySQL for the database persistence layer. User 
provisioning, security, and administration are performed using NCI CBIIT’s 
Common Security Module (CSM) and the User Provisioning Tool (UPT). 
Finally, the data services also include a Web service component that leverages 
the Globus grid computing (Foster 2005) platform and the caGrid informatics 
infrastructure (Saltz et al. 2006).

geWorkbench is a client application developed in Java and requires a compat-
ible Java Run Time Environment (JRE). From a code design stand point, the 
overarching objective has been to create a plugin architecture that enables the 
addition of new tools with minimal effort. As a result, geWorkbench has been 
implemented around a data representation and exchange framework that provides 
basic communication services to the various plugin components. These components 
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are developed independent of one another (each on its own code directory) and 
leverage the framework in order to share information. In many ways, geWork-
bench resembles an application server, with each plugin component behaving as 
a “deployed” service.

14.8 � Licensing and Support for the LSD Bundle Applications

14.8.1 � Licensing

All tools in the LSD Bundle are distributed under the caBIG® License Agreement 
and the model agreement can be found at https://cabig.nci.nih.gov/working_groups/
DSIC_SLWG/Documents/caBIG_Model_Open_Source_Software_License_
v2_20080107.doc. The license is nonviral, such that derivative works are not sub-
ject to the original open source terms.

14.8.2 � Support

NCI CBIIT is committed to end user and technical support for tools that are part of 
the LSD (Table 14.1) and there are a variety of mechanisms through which users 
can gain assistance, depending on their needs:

caBIG•	 ® Knowledge centers: Knowledge centers have been established at institu-
tions with demonstrated expertise in a specific area of focus or domain of inter-
est to caBIG®. Within the LSD, caTissue, CTODS, caArray, caGWAS, and 
geWorkbench are supported through knowledge center resources. The caBIG® 
knowledge center resources are available at https://cabig-kc.nci.nih.gov/
MediaWiki/index.php/Main_Page. The knowledge centers provide primarily 
Web-based resources for these tools including moderated user and developer 
forums, a knowledge base of frequently asked questions, as well as training and 
outreach materials.
Support service providers: Support service providers are organizations that pro-•	
vide client-specific caBIG® support under negotiated client-provider business 
arrangements. Support service providers are distinguished in that they hold a 
limited license to NCI’s caBIG® program trademarks. A full listing of available 
support services providers can be found at https://cabig.nci.nih.gov/esn/
service_providers.
NCI CBIIT application support: The NCI CBIIT application support team provides •	
general support for all LSD tools, aimed particularly at deployment and training 
needs. The application support team can be contacted at ncicb@pop.nci.nih.gov.

https://cabig.nci.nih.gov/working_groups/DSIC_SLWG/Documents/caBIG_Model_Open_Source_Software_License_v2_20080107.doc
https://cabig.nci.nih.gov/working_groups/DSIC_SLWG/Documents/caBIG_Model_Open_Source_Software_License_v2_20080107.doc
https://cabig.nci.nih.gov/working_groups/DSIC_SLWG/Documents/caBIG_Model_Open_Source_Software_License_v2_20080107.doc
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14.9 � Best Practices for Implementing the Life Sciences 
Distribution

Since the first release of the LSD Bundle in 2008, tools in the bundle have been 
installed at many cancer centers across the country. The caGrid Portal, https://cagrid-
portal.nci.nih.gov, provides a view of caBIG® applications which are exposing data 

Table 14.1  The tools in the Life Sciences Distribution

Product Description

National Biomedical 
Imaging Archive (NBIA)

Repository for DICOM images integrated with the 
associated image markup, annotation, and metadata. 
https://cabig.nci.nih.gov/tools/NCIA

caTissue Suite Tissue banking tool for tracking the collection storage, 
annotation, quality assurance, and distribution of 
biospecimens. https://cabig-kc.nci.nih.gov/Biospecimen/
KC/index.php/CaTissue_Suite_v1.1

caArray Standards-based microarray data management system 
that connects to analysis tools in caBIG® and supports 
prepublication collaboration through owner-driven data 
access controls. https://cabig-kc.nci.nih.gov/Molecular/
KC/index.php/CaArray

Clinical Trials Object Data 
System (CTODS)

Enables the exchange of identified and deidentified clinical 
trials data across multiple systems while supporting 
syntactic and semantic interoperability. https://cabig-kc.
nci.nih.gov/CTMS/KC/index.php/LabViewer

Cancer Genome-Wide 
Association Studies 
(caGWAS)

Supports the correlation of SNP genotype data, SNP 
association findings, population frequency data, and 
clinical phenotypes and provides tools for search and 
retrieval of GWAS findings in the context of genes or 
chromosomal regions of interest. https://cabig.nci.nih.gov/
tools/caGWAS

geWorkbench Enables the integrated analysis of genomics data including 
gene expression, sequence, and pathway information. 
User-friendly interface provides access to over 50 analysis 
and visualization modules. https://cabig-kc.nci.nih.gov/
Molecular/KC/index.php/GeWorkbench

caBench-to-Bedside (caB2B)* Allows investigators to discover and query data repositories 
across multiples sites on caGrid, to refine queries based 
on results, and to export data locally. https://cabig.nci.nih.
gov/tools/caB2B

caIntegrator2* Enables the creation of custom Web portals that bring 
together heterogeneous clinical, microarray, and 
medical imaging data such that these data can be 
queried, analyzed, visualized, and securely shared with 
collaborators. https://cabig-kc.nci.nih.gov/Molecular/KC/
index.php/CaIntegrator2

An asterisk indicates those that will be added to the LSD bundle in release 1.2. The URL listed 
for each tool is the primary location for supporting tool information

https://cagrid-portal.nci.nih.gov
https://cagrid-portal.nci.nih.gov
https://cabig.nci.nih.gov/tools/NCIA
https://cabig-kc.nci.nih.gov/Biospecimen/KC/index.php/CaTissue_Suite_v1.1
https://cabig-kc.nci.nih.gov/Biospecimen/KC/index.php/CaTissue_Suite_v1.1
https://cabig-kc.nci.nih.gov/Molecular/KC/index.php/CaArray
https://cabig-kc.nci.nih.gov/Molecular/KC/index.php/CaArray
https://cabig-kc.nci.nih.gov/CTMS/KC/index.php/LabViewer
https://cabig-kc.nci.nih.gov/CTMS/KC/index.php/LabViewer
https://cabig.nci.nih.gov/tools/caGWAS
https://cabig.nci.nih.gov/tools/caGWAS
https://cabig-kc.nci.nih.gov/Molecular/KC/index.php/GeWorkbench
https://cabig-kc.nci.nih.gov/Molecular/KC/index.php/GeWorkbench
https://cabig.nci.nih.gov/tools/caB2B
https://cabig.nci.nih.gov/tools/caB2B
https://cabig-kc.nci.nih.gov/Molecular/KC/index.php/CaIntegrator2
https://cabig-kc.nci.nih.gov/Molecular/KC/index.php/CaIntegrator2
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to caGrid, and as of September 2009, the largest numbers of grid nodes for LSD tools 
were caArray, with 25 grid nodes, and caTissue, with 16 grid nodes. Many of these 
organizations are participating in the caBIG® Cancer Center Deployment Initiative, a 
structured deployment process begun in 2007 to help participating centers deploy 
caBIG® tools and infrastructure. Deploying centers receive resources and support to 
achieve caBIG® interoperability by adopting caBIG® tools and infrastructure or by 
adapting existing systems to be caBIG® compatible. More detailed information about 
this initiative can be found at https://cabig.nci.nih.gov/center_deployment.

A number of cancer centers participating in the deployment activities have 
shared their experiences on rolling out elements of a new translational research 
informatics infrastructure at their institution. A common theme shared by these 
groups is that a successful implementation of new software in a research setting 
requires a “team science” approach involving not only IT-professionals but also the 
adopting scientists, trainers, and project managers. An example of a successful 
deployment of LSD tools is at the Jackson Laboratory. The team at Jackson Labs 
has installed a grid-enabled instance of caArray and has developed an Extract–
Transform–Load (ETL) method that integrates their internal laboratory information 
management system for microarray data with caArray, thereby allowing their 
scientists to continue using a system they were familiar with for data entry while 
enabling the implementation of a new tool that will allow data sharing over the grid 
and connection to caBIG®-compatible analytical tools including geWorkbench. 
Other caBIG® adoption case studies can be found at http://cabig.cancer.gov.

14.10 � Future Development and Enhancement of the Life 
Science Distribution

The vision for the LSD is a comprehensive informatics infrastructure to support the 
continuum of translational research. A central goal of translational research is the 
correlation of molecular findings with clinical and pathological observations. This 
type of integrative analysis requires that data be collected in such a way that the 
necessary associations are maintained – for example, between biospecimens and 
their molecular derivations and assays – and the tools to aggregate and analyze 
across the component data types. The strategic roadmap of the LSD is aimed 
toward this critical goal. An overview of how all of the components of the LSD fit 
together is shown in Fig.  14.1. Individual tools currently in the LSD are being 
enhanced to more seamlessly support the capture of data in a way that represents 
the association of information across systems. In addition, the next release of the 
LSD will include two additional tools – Cancer Bed-to-Bedside (caB2B) and caInt-
egrator2 – that support data aggregation and analysis of an institution’s local data 
as well as data distributed across the Grid.

Cancer Bed-to-Bedside (caB2B) is a caGrid-aware tool to allow end-users to 
query local and remote LSD components through a keyword and templated search 
interface. caB2B supports search and retrieval of data across distributed systems 

https://cabig.nci.nih.gov/center_deployment
http://cabig.cancer.gov
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and supports queries such as, “Are there any gene expression microarray data available 
from patients with Stage III lung cancer and are there corresponding in vivo images 
available for the affected patients?” Such a query would potentially span information 
federated across caArray, caTissue, and NBIA.

In order to share a logical set of data with collaborators – from a directed study 
or from in silico data mining with a federated grid search tool such as caB2B – and 
to perform in depth reasoning and analysis over that data, it is often necessary to 
bring the information into a common data warehouse. The caIntegrator2 platform 
has been developed to support this requirement. caIntegrator2 provides a graphical 
user interface to allow a study author to “point” to data of interest in systems on the 
grid and to then bring that data (or pointers to it, in the case of images) into the data 
warehouse. Once information is in the caIntegrator2 environment, end user scien-
tists can then run advanced queries, perform correlative outcomes analysis using 
Kaplan–Meier plots, and access analysis and visualization tools on and off the grid. 
caIntegrator2 allows data from multiple studies to be stored in the same database, 
providing the same query and analysis functionality across all studies.

caArray caTissue

NCIA

caArray

caGWAS NCIA

caTissue

NCIA CTODS

caGrid Cancer Center A Local Apps

Cancer Center C Local Apps

Cancer Center B Local Apps

caArray caTissue NCIA

caArray caTissue NCIA CTODS

caTissue caGWAS

Cancer Center A Grid Services

Cancer Center B Grid Services

Cancer Center C Grid Services

caIntegrator 2

Query

Resuts

caArray DNACopy

GISTIC Visualization

Analytical worflows

Send data
for analysis

Analysis
 results

caB2B

Integration Tools

geWorkbench
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Resuts

Send data
for analysis

Analysis
 results

Data sets 
of interest

Fig. 14.1  Overall vision for the Life Science Distribution Bundle. On the far right of the figure 
are examples of individual cancer centers’ deployment of one or more elements of the bundle. 
Represented in the center of the figure are the caGrid nodes for each of these tools. On left are the 
LSD tools that enable integrative browsing, aggregation, and analysis of grid data within and 
across institutions deploying components of the LSD bundle
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All tools in the LSD are open source and community members are encouraged 
to participate and contribute. The application code is made available through the 
code management repository at NCI. For production-level components (those 
included in official production releases), a formal software engineering life cycle is 
followed comprising development of functional requirements and design documen-
tation, execution of formal system testing, and updating of end-user documentation 
(user guide, online help, and Web tutorials).

References

Altschul SF, Gish W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410
Ashburner M, Ball CA et al (2000) Gene ontology: tool for the unification of biology. The gene 

ontology consortium. Nat Genet 25(1):25–29
Brazma A, Hingamp P et  al (2001) Minimum information about a microarray experiment 

(MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371
Foster I (2005) Globus toolkit version 4: software for service-oriented systems. Netw Parallel 

Comput, Proc 3779:2–13
Fridsma DB, Evans J et al (2008) The BRIDG project: a technical report. J Am Med Inform Assoc 

15(2):130 –137
Komatsoulis GA, Warzel DB et al (2008) caCORE version 3: Implementation of a model driven, 

service-oriented architecture for semantic interoperability. J Biomed Inform 41(1):106–123
Lefebvre C, Lim WK, Basso K, Dalla Favera R, Califano A (2007) A context-specific network of 

protein-DNA and protein-protein interactions reveals new regulatory motifs in human B cells. 
Lect Notes Bioinform 4532:42–56

Margolin AA, Nemenman I et al (2006) ARACNE: an algorithm for the reconstruction of gene 
regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl 1):S7

Rayner TF, Rocca-Serra P et al (2006) A simple spreadsheet-based, MIAME-supportive format for 
microarray data: MAGE-TAB. BMC Bioinform 7:489

Rzhetsky A, Iossifov I et al (2004) GeneWays: a system for extracting, analyzing, visualizing, and 
integrating molecular pathway data. J Biomed Inform 37(1):43–53

Saltz J, Oster S et al (2006) caGrid: design and implementation of the core architecture of the 
cancer biomedical informatics grid. Bioinformatics 22(15):1910–1916

Shannon P, Markiel A et al (2003) Cytoscape: a software environment for integrated models of 
biomolecular interaction networks. Genome Res 13(11):2498–2504

von Eschenbach AC, Buetow K (2007) Cancer Informatics Vision: caBIG. Cancer Inform 
2:22–24

Wang K, Alvarez MJ et al (2009) Dissecting the interface between signaling and transcriptional 
regulation in human B cells. Pac Symp Biocomput 20:264–275

Ward LD, Bussemaker HJ (2008) Predicting functional transcription factor binding through 
alignment-free and affinity-based analysis of orthologous promoter sequences. Bioinformatics 
24(13):i165–i171

Waterhouse AM, Procter JB et al (2009) Jalview Version 2 – a multiple sequence alignment editor 
and analysis workbench. Bioinformatics 25(9):1189–1191

Whetzel PL, Parkinson H et  al (2006) The MGED ontology: a resource for semantics-based 
description of microarray experiments. Bioinformatics 22(7):866–873



267

Abstract  MultiExperiment Viewer (MeV) is a freely available software application 
that puts modern bioinformatics tools for integrative data analysis in the hands of 
bench biologists. MeV is a versatile microarray data analysis tool, incorporating 
sophisticated algorithms for clustering, visualization, classification, statistical 
analysis, and biological theme discovery from single or multiple experiments. This 
chapter gives an overview of MeV technical details and its use in a real setting.

15.1 � Introduction

MeV’s simple interface provides easy access to an extensive library of bioinformatics 
algorithms and visualization tools normally only available through a complicated 
command-line interface. The program’s graphical menu- and button-driven user 
interface makes the manipulation and visualization of large complex biological 
datasets possible for anyone possessing basic computer skills. MeV was originally 
built to analyze DNA microarray expression data; however, its functions have been 
expanded greatly such that it can now process data from Array Comparative 
Genomic Hybridization (aCGH) and protein–protein interaction (PPI) experiments. 
These data and many others can be loaded into the program and examined using a 
wide variety of functions: clustering, visualization, statistical testing, and annota-
tion-based meta-analysis. The results of each analysis are presented in attractive 
graphical viewers and their numerical results can be saved as text files for later 
reference. If annotation is loaded along with the data, links to biologically relevant 
Web sites, such as NCBI, AmiGO, and others are also made, turning MeV into a 
launching pad for further exploration of the data on the Web.
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15.2 � Technical Details

This chapter is written in reference to MeV v4.4. MeV is released under the terms 
of the Artistic License (http://www.opensource.org/licenses/artistic-license-1.0.php) 
and as such is freely available to the commercial and scientific community. It is 
cross-platform compatible and has been tested on Windows 2000/XP/Vista, Mac 
OSX, and several distributions of Linux. MeV for Windows and Linux requires 
Java v1.6 or higher, while MeV for Mac OSX requires Java v1.5 or higher. Some 
modules of MeV that display 3D graphics also require the Java3D package be 
installed. MeV is one component of the TM4 Microarray Software Suite, and as 
such can be downloaded from http://www.tm4.org/. Users of the suite should cite 
(Saeed et al. 2003).

15.2.1  �Getting Started with MeV

New MeV users should begin at the TM4 Web site, http://www.tm4.org/, where 
MeV and the other components of the TM4 Software Suite can be downloaded. The 
first stop should be MeV’s quick-start guide, a short guided tour through download-
ing and installing the application and running a simple analysis. More detailed 
descriptions of the modules in MeV, the clustering interface, file formats, and many 
other topics are covered in the MeV user manual, a 200+ page pdf file. Both of 
these documents are also included in the MeV download package. Questions about 
MeV can be directed to the MeV forums, where the developers answer questions 
and provide support. There, users can report bugs, request new features and discuss 
their data analysis strategies. Users can also sign up for the TM4-announce mailing 
list that provides notification of updates to the program.

15.2.2 � MeV In Use

Most will begin their work with MeV by loading genomic data that has been pro-
cessed by a standard normalization tool, such as RMA, in the case of mRNA 
expression arrays. The most common format for loading data is a simple tab-
delimited text file, containing both expression values and annotation data, such as 
Entrezgene IDs or Affymetrix probe IDs. In addition, MeV contains many special-
ized file loaders capable of reading files from a variety of sources, such as Agilent 
data files, GEO and ArrayExpress downloads, and many others.

Once the data is loaded, it will be displayed in a few basic viewers, including 
a heatmap, a multiline graph of expression values, and a tabular text-based view. 
These viewers can be customized to accommodate small monitors or the color 
preferences of the user. Groups of genes or samples can be labeled with color to 

http://www.opensource.org/licenses/artistic-license-1.0.php
http://www.tm4.org/
http://www.tm4.org/
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distinguish them from the other elements in the dataset. These groups are 
referred to as “clusters” and are an integral part of the MeV user interface. Using 
these clusters, the results of different analyses can be labeled with distinct colors 
and displayed alongside each other in the same view for comparison. These 
clusters can also be exported to text files and broadcasted via the Gaggle 
network to other programs.

The wide range of data-manipulation tools that are the core of MeV are available 
in a series of drop-down menus located at the top of the viewer window. Each item 
in these drop-down menus corresponds to an analysis module that takes expression 
or annotation input and produces groups of genes or samples and other data as 
output. On choosing a module the user is presented with a dialog, common in style 
across all modules in the program, where any parameters required by the module 
can be selected. Help text is available to explain the options and the statistical 
processes used by the module.

After a module has finished, its output appears as a node in the result tree on the 
left-hand side of the screen, under the heading “Analysis Results.” The results there 
differ depending on the type of module selected, but most modules include a varia-
tion on the same common heatmap and tabular views used in the initial display. 
Some modules also produce custom output; for example, the Principle Components 
Analysis (PCA) module produces a three-dimensional interactive graph of the 
result data. Each new module that is run produces another addition to the result tree. 
These results can be stored as clusters in the cluster manager and used as input into 
other algorithms within MeV.

15.3 � Highlights of MeV Analysis Tools

A complete description of all of the tools in MeV is outside the scope of this chap-
ter. Instead we will describe a small selection of the more popular or more interest-
ing modules. A complete list of all of the available modules in MeV can be found 
in Table 15.1.

15.3.1 � Gene Selection Tools

A common goal of microarray analysis is the detection of genes that are differen-
tially expressed under varying conditions. Numerous statistical techniques are 
available in MeV for the evaluation of the statistical significance of these expres-
sion changes. MeV provides several traditional methods, such as t test and analysis 
of variance as well more novel approaches such as Significance Analysis of 
Microarrays (SAM), Bayesian Estimation of Temporal Regulation (BETR), and 
Rank Products.

The widely used Significance Analysis of Microarrays (SAM) algorithm (Tusher 
et al. 2001) is readily available from the drop-down analysis menu. Like all other 
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modules, running SAM presents the user an intuitively visual initialization dialog. 
Users have five options for choosing the analysis type: one-class, two-class paired 
and unpaired, multiclass, and censored survival. Their choice will depend on the 
details of their data. Assigning samples to groups is easy in SAM. Like other mod-
ules, users may employ either an individual radio button technique or a cluster 
assignment feature to place their samples into appropriate groups. Numerous addi-
tional parameters, such as permutation count and the use of hierarchical clustering 
(HCL) are available to be adjusted in the area below the group selection box.

After receiving the user-specified parameters and group assignments, MeV’s 
SAM calculates gene-specific test statistics and plots them against unaffected scores. 
MeV then plots the graph and asks the user to select a delta value before assigning 
significance. By using the scroll bar in the SAM graph, one can choose a suitable 
number of significant genes with an acceptable false discovery rate to go with it.

The Rank Products module (Breitling et al. 2004) provides a similar function to 
SAM. It is a nonparametric method, which is based on ranks of fold-changes rather 
than the actual expression values. This allows for greater robustness against noisy data 
and can provide reproducible results with a smaller number of replicate experiments.

The BETR module is a novel technique specifically designed for time-course 
data. BETR (Aryee et al. 2009) is a flexible linear random-effects modeling frame-
work that takes into account correlations between samples and the corresponding 
sampling times. It attempts to regain information from the data that is often lost by 

Table 15.1  Complete list of modules included with MeV

Clustering
Hierarchical clustering
Tree-EASE
Support trees clustering
Self-organizing tree algorithm
k-means clustering
k-means support clustering
Cluster affinity search technique
Figure of merit
QT cluster
Self-organizing map

Statistics
Pavlidis template matching
t-Test
Bridge
Significance analysis of microarrays (SAM)
One-way ANOVA
Two-way ANOVA
Nonparametric tests (includes Wilcoxon,  

Man-Whitney test, Kruskal–Wallace test, 
Mack–Skillings test, Fisher exact test)

Bayesian estimation of temporal regulation
Rank products

Classification
Support vector machines
Uncorrected shrunken centroid classification
K-nearest neighbors classification
Discriminant analysis classification

Data-reduction
Relevance networks
Principle components analysis
Correspondence analysis
Expression terrain map

Meta-analysis
Gene set enrichment analysis
Expression analysis systematic explorer

Visualization
Linear expression maps
Gene distance matrix

Miscellaneous
Gene shaving
Bayesian network
Literature mining
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many methods that treat each data measured at a different time-point as indepen-
dent and ignore crucial clues hidden within the arrays.

The typical statistics analysis produces several standard viewers. Genes are divided 
into significant and nonsignificant clusters and output in the form of expression 
images, centroid graphs, expression graphs, and tables. The latter contain important 
information regarding the module’s calculations, such as p values, q values, fold-
change, or any other value pertinent to the analysis.

15.3.2 � Clustering Tools

HCL is one of the cornerstones of unsupervised data analysis in MeV. It allows 
users to visualize their dataset’s heatmap in a more organized manner, via a dendro-
gram, to look for emergent trends (Eisen et  al. 1998). Constructing hierarchical 
trees from the results is also an option in many of the statistics modules.

The HCL module can be reached via the “Clustering” drop-down menu at the 
top of the Viewer window. The first section of user-defined input asks whether to 
create clusters by gene, sample, or both. The next section allows the user to select 
if they would like to optimize the leaf ordering. Optimized leaf ordering arranges 
the tree nodes such that samples/genes with shortest distance appear adjacent in the 
resulting dendrogram. This makes for a neater heatmap, but the process (and HCL 
in general) is memory-intensive and may require trimming down the dataset. HCL 
will prompt the user if this is the case. The HCL module also allows users to pick 
a distance metric for constructing hierarchical trees, and asks them to choose the 
linkage methods among average, complete, and single linkage.

Once these parameters have been selected, MeV will create a results viewer 
labeled “HCL” in the result tree on the left-hand side of the window. Opening up the 
result node reveals the results in the form of a tree diagram attached to a heatmap. 
Right-clicking on the nodes allows users to save genes/samples in the resultant sub-
section of the tree as a cluster. Right-clicking on the heatmap and selecting “sample/
gene node properties” will bring up a dialog allowing users to set the minimum/
maximum node height, and to reduce the complexity of the tree by imposing a distance 
threshold. By using the “Apply” button in this dialog, the HCL tree can be fine-tuned 
visually. An example of the display resulting from HCL can be found in Fig. 15.1.

15.3.3 � Functional Classification

The Expression Analysis Systematic Explorer (EASE) algorithm was developed by 
the DAVID Bioinformatics group as a means of identifying trends in a subset of 
genes relative to the parent group (Dennis et al. 2003; Hosack et al. 2003). The 
implementation of this tool in MeV has the advantage that it is fully integrated with 
the other MeV functions as well as the MeV annotation model. Often, a set of dif-
ferentially expressed genes identified by a SAM analysis is used as an input of this 



272 E. Howe et al.

algorithm. EASE will then return a list of functional categories, such as GO terms 
or KEGG pathways, that are more frequently associated with the genes in that 
group than with the rest of genes in the microarray. This list can help the user iden-
tify biological themes in their data.

EASE analysis requires support annotation information, and for that, MeV sup-
ports many microarray formats. The EASE module makes use of MeV’s new 
annotation-downloading features to simplify this process. If a user has already 
loaded annotation using the automatic annotation loader, running EASE is as sim-
ple as selecting a cluster of interest and selecting the files containing the functional 
categories of interest. These files are given sensible names, such as “GO Biological 
Process.txt.” Several statistical options are also available, such as various multiple-
testing corrections and trimming parameters.

The basic results of the EASE include a list of terms (GO terms, KEGG path-
ways, etc.) that are overrepresented in the selected data subset, relative to the back-
ground population – in this case, the complete contents of the array. This list of 
resulting terms is presented in tabular form for easy viewing and can be saved as a 
text file. The standard MeV viewers are used to display the names and expression 
values of each gene, which is associated with these resultant terms. These groups 
can be stored as clusters or exported as text files for use with other applications.

Fig. 15.1  The main graphical user interface containing output from the Hierarchical clustering 
module
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Gene Set Enrichment Analysis (GSEA) is another functional classification tool, 
first introduced in 2003 (Subramanian et al. 2005). Several extensions and enhance-
ments to this method have been proposed (Jiang and Gentleman 2007; Kim and 
Volsky 2005). GSEA provides a clear edge over classical DNA microarray analysis 
methods, by focusing on groups of functionally related genes rather than treating 
genes as independent entities. This design allows for detection of small but coordi-
nated gene expression changes of genes within groups that are defined according to 
some significant biological property such as a metabolic pathway or biological 
process. GSEA has been implemented in various gene expression analysis pro-
grams including MeV, which has adopted the extensions proposed by Jiang and 
Gentleman (Jiang and Gentleman 2007).

The power of GSEA lies in being able to detect significant expression changes 
in groups of functionally related genes as opposed to testing genes individually. We 
utilize data from a clinical trial in Acute Lymphoblastic Leukemia (ALL) (Chiaretti 
et al. 2004) to demonstrate the insights gained from this method.

ALL has been associated with cytogenetic abnormalities. For the analysis of this 
data we define our gene sets of interest as those groups representing common chro-
mosomal regions. The focus of the analysis of this data is to compare the expression 
changes within these groups for the BCR/ABL samples vs. those samples collected 
from patients with no chromosomal abnormalities. Previous analysis on the data set 
(Jiang and Gentleman 2007) suggests using the hyperdiploidy information and 
gender status of the patients as factors to infer phenotype effects. We, therefore, 
used a three-factor model with factors corresponding to phenotype, hyperdiploidy, 
and sex.

Gene annotations for the data set (Affymetrix HG-U95av2 chip) were obtained 
using the automatic annotation download utility in MeV. In mapping the signal 
from multiple Affymetrix probe sets to a single Entrez gene identifier, we used the 
probe with the maximum standard deviation (SD). Only probes with SD 0.6 or 
higher were included in the analysis.

Filtering the data set for samples not associated with either phenotype elimi-
nated 49 samples, leaving us with 12,625 genes and 79 samples. In addition to this, 
Affymetrix quality control probes present in the dataset were also eliminated, leav-
ing us with 12,558 genes and 79 samples. The gene sets were filtered to retain only 
those where at least five genes mapped to a chromosomal location. A basic tabular 
view of the significant gene sets from this analysis is presented in Table  15.2. 
Visualizations available for this analysis include all the standard MeV viewers and 
a graph of overenriched p values.

15.3.4 � Network Analysis

Bayesian Network (BN) analysis attempts to learn biologically meaningful gene 
interaction networks (Directed Acyclical Graphs – DAGs) from mRNA expression 
data. The underlying assumption in this effort is that most popular bioinformatics 
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methods are good at identifying genes that discriminate among several subject/
experiment groups or experimental conditions. However, they often fail to elucidate 
the underlying mechanism of gene interaction that captures a biological process.

This novel method (Djebbari and Quackenbush 2008) uses seeds learned from 
the biomedical literature, protein–protein interactions or KEGG interactions, or any 
combination thereof, to construct a starting “prior” network. The machine-learning 
algorithm then uses information obtained from the expression data to learn and 
refine the network, and predict a new, high-confidence network. The samples are 
bootstrapped to control overfitting of the network. The results of this process are 
then exported to Cytoscape, a network visualization and analysis tool, for viewing 
(Shannon et al. 2006).

As an extension to this already published method, a Cytoscape plug-in has been 
developed, which provides predictive modeling of the Bayes Network described 
above. This plugin is open-source and freely available, and designed to work 
closely with MeV. In a nutshell, it attempts to predict the state of a gene, given the 
state of its parent gene. The possible states that a gene can exist in are: up regulated, 
down regulated, or unchanged. Once a network has been learned, the method finds 
the conditional probability table (CPT) associated with each node (gene). The CPT 
of a node constitutes the individual probabilities of the gene being up, down, or 
unchanged given its parent(s) is/are in state up, down, unchanged (any combination 
of parent and state). Knowing the CPT of any node, one can then predict the exact 
probability of the node being in any state, given any combination of parents and 
their states. This method allows researchers to conditionally alter gene expression 
and predict the resulting changes in a biological process based on microarray data; 
these predictions can then be experimentally validated. Hopefully, this novel 
approach would enable researchers to (a) get a better understanding of the biologi-
cal interactions that exists in an enriched set of genes and (b) to predict as-yet 
unknown processes and/or interactions that are important in a disease condition.

The BN module in MeV can be accessed from under the “Miscellaneous” cate-
gory of algorithms. MeV provides annotations and support files for all major 
Affymetrix platforms required to run this module and constantly adds new arrays 
and platform to the annotation database.

Table 15.2  GSEA result table

Gene sets (Chromosome) p values

16p12.1 0.008
19p13.13 0.008
19q13.1 0.004
19q13.1-q13.2 0.004
1p34 0.008
1p34.1 0.008
1p36.1-p35 0
22q13.1 0.004
22q13.2-q13.31 0
Xq28 0.008
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15.4 � MeV and Other Software

15.4.1 � Further Analysis of MeV’s Results

The results from MeV’s many modules are easy to export to other programs for 
further analysis and display. Heatmaps can be saved as image files suitable for 
publication (e.g., bmp or jpg format). Lists of genes can be saved as text files. The 
results of these output groups can be labeled within MeV, allowing the user to 
identify them when they appear in other module’s result viewers. This makes it easy 
to compare the results of differing analyses, or to select subsets of the loaded data 
for later analysis.

MeV implements the Gaggle framework, allowing it to share data with other 
programs that implement the interface (Shannon et  al. 2006). These programs 
include the R programming environment (R_Development_Core_Team 2005) and 
Cytoscape (Killcoyne et al. 2009). The interface for doing this work is simple, and 
uses the same context-sensitive menus that allow the storing and manipulation of 
MeV’s results. MeV can also receive data from other Gaggle-enabled programs, 
bypassing the need for text file intermediates.

MeV can be configured to launch directly from a Web site, preloaded with 
selected data and annotation. An example of this behavior in action is found on the 
Web site for the GeneChip Oncology Database or GCOD (http://compbio.dfci.
harvard.edu/tgi/cgi-bin/tucan/tucan.pl). This site is a search interface to a large 
database of cancer-related DNA microarray studies. There, the results of any search 
can be launched directly into MeV simply by clicking on the appropriate link; MeV 
need not even be installed on the user’s computer. Any data file that can be loaded 
by MeV’s file loaders can be launched directly from a Web site in this way. 
Complete instructions for enabling this kind of display are available on the TM4 
Web site.

15.5 � The Future of MeV

15.5.1 � Improvements and Maintenance of MeV

MeV is maintained and constantly improved by a group of programmers at the 
Dana-Farber Cancer Institute under the direction of Dr. John Quackenbush. These 
developers support the application through the SourceForge forums and regularly 
update the program with new features. A new version containing these latest new 
features is released approximately every 6 months, in June and December. This 
document refers to MeV v4.4, released in June of 2009.

This latest release included improvements to the GSEA module and the cluster-
management tools, and the addition of the Cytoscape plugin that will allow network 
prediction as part of the Bayes Networks module. Within the next year the development 

http://compbio.dfci.harvard.edu/tgi/cgi-bin/tucan/tucan.pl
http://compbio.dfci.harvard.edu/tgi/cgi-bin/tucan/tucan.pl
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team expects to offer an upgraded version of the SAM algorithm, the Predictive 
Analysis for Microarrays (PAM) sample-classification algorithm (Tibshirani et al. 
2002), and an implementation of the Linear Models for Microarray data (LIMMA) 
algorithm (Smyth 2004, 2005).

In addition to new numerical methods for expression analysis, the MeV develop-
ment team plans to expand the application’s support for nonnumerical support data: 
annotation. The constant updating of annotation data is one of the difficulties in 
high-throughput biological data analysis. Many of the algorithms implemented in 
MeV require annotation information to function. Furthermore, the results for any 
analysis are useless without up-to-date annotation to inform the investigator about 
the nature of the genes in their result list. MeV mitigates this problem for many 
array types by connecting to the internet and automatically downloading the appro-
priate annotation. The MeV team will be expanding the list of currently supported 
arrays from approximately 100 to many more. We plan to also support a variety of 
platforms, such as Affymetrix GeneChips, Illumina chips, Agilent chips, various 
popular 2-color spotted arrays, etc.

The MeV development team is committed to expanding the list of available 
modules and improving the user interface and display capabilities of the program. 
As research proceeds and new genomic analysis methods are developed, the team 
plans to add the most popular and most powerful of the new tools to MeV, so as to 
provide a complete resource for data analysis.

The team also hopes to continue a tradition of including new features contrib-
uted by collaborating developers. Collaborators working with other groups have 
added to MeV new file loaders, new user-interface features, and entirely new modules. 
We gladly accept such contributions and hope to encourage more in the future. To 
that end, we will be more thoroughly documenting the modular system that MeV 
is based on, in the hopes of making it very simple for an outside developer to add 
new functionality to the application.

15.6 � Conclusions

MeV is not only an analysis tool useable by the average biologist but a development 
platform for building new software tools for microarray data analysis. It has a 
simple interface and a wide range of analysis tools, making it ideal for the bench 
biologist. Because it is free and open-source, it is easy to try out and modify to suit 
the specific needs of any given project. Small bioinformatics groups can easily 
write new modules that take advantage of all the visualization and data-manipula-
tion infrastructure of MeV. These modifications, if submitted to the MeV team, can 
be distributed as part of the MeV package and made immediately available to thou-
sands of end-users.
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Abstract  Enforcing controlled access to resources in cancer research systems, 
while facilitating resource sharing among collaborators, is a challenging problem. 
This is especially challenging when resources are distributed across organizational 
boundaries and researchers from a distributed set of organizations require access to 
them. In this chapter, we will present motivating use cases, a software solution, and 
policies for enforcing access control in large distributed cancer research systems.

16.1 � Introduction

The informatics requirements of multi-institutional translational research projects 
are characterized by the need to securely share and access data and analytical 
resources hosted at different sites. In a multi-institutional project, sites participating 
in the collaborative effort can be viewed as being part of a virtual organization. One 
of the major obstacles to forming virtual organizations in biomedical research has 
been the lack of interoperability among disparate data and analytical resources. 
Another major problem has been the limited availability of infrastructure to provide 
secure and efficient access to these resources. Without mechanisms that enable 
service providers to enforce access control policies to protect sensitive and propri-
etary information, data and analytical resources cannot be shared effectively. 
Traditionally, collaborative projects have created virtual organizations by employ-
ing a centralized system to host the databases and analysis tools at one of the insti-
tutions participating in the project. This approach, while alleviating some of the 
security and interoperability issues, is not scalable when the number of collaborating 
sites is large. It also is not efficient when it is desirable to rapidly and dynamically 
create, manage, and change virtual organizations.
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The National Cancer Institute’s (NCI) Cancer Biomedical Informatics Grid 
(caBIG®) (caBIG® 2009a) is addressing the informatics issues that arise in multi-
institutional studies in biomedical research (see Chap. 9). This effort is developing 
informatics standards, a suite of common tools and applications, shared data and 
analytical resources, and a Grid infrastructure, called caGrid (Oster et  al. 2007; 
caGrid 2009; see Chap. 4) to dynamically link applications, clients, and community 
provided resources. Security is of paramount importance in the caBIG® program to 
ensure that any sensitive information such as patient-related information as well as 
the intellectual properties of researchers can be protected while promoting and 
facilitating collaborative projects.

Supporting authentication (i.e., determining whether or not a given user is who 
she/he claims to be) and authorization (i.e., controlling access to the functionality of 
a resource, for an authenticated user) in the caBIG® environment is difficult. User 
identities and credentials should be managed in a decentralized manner for scalabil-
ity and manageability reasons, while allowing institutions to set up and enforce their 
access control policies locally for their resources. If there are many participants from 
different organizations, credentials should be managed in a federated environment. 
Tools are needed for system administrators to efficiently provision the credentials of 
users in their institutions in this federated environment. Another issue that becomes 
critically important in a dynamic and large-scale federated environment such as 
caBIG® is the management of a trust fabric. Because a given institution will have 
autonomous control over its policies for granting, managing, changing, and revoking 
user credentials for its users, it can be expected that other institutions will have vary-
ing levels of trust of its users wanting access to their resources. Moreover, there is a 
need to be able to efficiently propagate dynamic changes in policies and trust rela-
tionships, as well as any sensitive security-related events (e.g., a user’s credentials 
are revoked, because they have been compromised) to other entities in the federated 
environment. Tools are needed to provide collaborating institutions a mechanism to 
define and manage these trust relationships, while infrastructure is needed to distrib-
ute this information to their participating services and users; this combination of 
policy and infrastructure defines the trust fabric.

The caGrid software provides a comprehensive security suite to address the 
security challenges in multi-institutional translational research. This suite is 
referred to as the “Grid Authentication and Authorization with Reliably Distributed 
Services” infrastructure (GAARDS) (Langella et al. 2007a, 2008). The salient fea-
tures of the GAARDS infrastructure can be summarized as follows (1) it provides 
services to support (a) integration of institutional identity provider and authentica-
tion systems with the Grid environment, (b) efficient management and federation 
of user and service/server credentials, and (c) easy deployment of a Grid-enabled 
identity provider system; (2) it implements support for group (role) based access 
control such that a service provider can use both community accepted roles and 
locally defined roles to implement and enforce access control policies; and (3) it 
provides a service infrastructure for management of a trust fabric in the Grid envi-
ronment, where institutions use different policies for provisioning of credentials for 
their local researchers and where credentials can be created, revoked, and reinstated 
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dynamically. While the requirements for GAARDS have been motivated mainly by 
use cases from the caBIG® program, the design and implementation of the infra-
structure is generic and can be applied in other domains. The GAARDS infrastruc-
ture is available as both a stand-alone system and a component of the caGrid 
infrastructure, which is the Grid architecture of caBIG®.

In Sect. 16.2, we will discuss the security challenges faced in multi-institutional 
translational research. We will then present an overview of the infrastructure that 
addresses these challenges. Finally we will provide an overview of the policies caBIG® 
is investigating for governing this infrastructure, and will demonstrate how this 
infrastructure can be deployed in a production environment under these policies.

16.2 � Security Challenges

The GAARDS infrastructure is designed to support authentication and authoriza-
tion in a federated environment. This section presents the issues that have motivated 
the design and implementation of these components in GAARDS. We describe the 
issues in the context of the caBIG® environment, which is envisioned to span 
hundreds of institutions and thousands of researchers.

The objective of the caBIG® program is to help accelerate research toward curing 
cancer by implementing the enabling informatics technologies for researchers to 
more efficiently find, share, retrieve, integrate, and process clinical and research data 
from disparate sources. The caBIG® community consists of participants from cancer 
centers, research institutions, government organizations, and the informatics indus-
try. Efforts underway in the caBIG® program include the development and deploy-
ment of (1) informatics standards, (2) guidelines and tools to improve semantic and 
syntactic interoperability among data and analytical resources, (3) open-source, 
common applications for data management and analysis, (4) guidelines and pro-
cesses for data and tool sharing, and (5) an open-source, standards based Grid infra-
structure that is designed to federate distributed resources. While the spirit of 
caBIG® is to promote and facilitate sharing of information and applications, not all 
information and tools can be made publicly available to everyone. Clinical information 
and the intellectual properties of researchers must be protected, and such informa-
tion should be accessible only by those with appropriate privileges.

caBIG® is implemented as a federated environment where individuals, groups, 
and institutions manage and administer their resources locally. Resources are exposed 
to the environment and shared among institutions and researchers using the caGrid 
infrastructure, which provides a core suite of tools, services, and a runtime environ-
ment to enable secure federation of resources. Through caGrid, all data and analyti-
cal resources are implemented as Grid Services conforming to the Web Services 
Resource Framework standards. Interactions between the clients and the caGrid 
services are carried out using standard Grid Service protocols. The GAARDS infra-
structure is designed to support security requirements in a service-oriented environ-
ment. We now discuss these requirements.
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In order to access the caBIG® resources, users are required to authenticate with 
caGrid services that encapsulate those resources. For this purpose, users are issued 
grid credentials through which they can authenticate and prove their identity to the 
services. To support the mutual-authentication of users and services across organi-
zational boundaries, a common type of credentials needs to be adopted. Furthermore, 
those credentials have to be issued by a trusted set of credential issuers (also known 
as certification authorities or CAs). The Grid uses X.509 digital certificates for the 
authentication and identification of users and services. By digitally signing the certifi-
cate, a CA asserts the binding of a name to a public key. An X.509 certificate with its 
corresponding private key forms a unique credential: the so-called grid credential.

Although this approach is very effective and secure, it is difficult to manage 
the certificate life-cycle in a multi-institutional environment. Using existing tools, the 
provisioning of grid credentials is a manual process, which is very complex for most 
users and system administrators and, therefore, error-prone. The overall process is 
further complicated if a user wishes to authenticate from multiple locations, because 
a copy of their grid-credentials, that is, their private key and certificate, has to be 
present at every location. Not only is this process complex, but securely distributing 
private keys poses an additional security risk as it is subject to easily made mistakes. 
Additionally, there are scalability and efficiency problems with vetting user identi-
ties. Often security policies that govern access to public health information require 
in-person identity vetting. Organizing the policies and human infrastructure required 
for in-person identity vetting in a multi-institutional environment that spans across 
countries is a very difficult process and resource intensive. In the majority of cases, 
organizations that wish to participate in multi-institutional studies have already 
invested a significant amount of resources into their existing identity management 
systems and already have processes in place for the vetting and issuing of some form 
of user-credentials. In such settings, it would be more efficient to leverage existing 
identity management systems to derive and provision Grid user accounts. Users 
would be able to use their existing credentials to “log on” to obtain Grid credentials, 
which in turn allow them access to the Grid services. This scenario requires a mecha-
nism to allow users to obtain Grid credentials using their existing organization-pro-
vided credentials. In other words, in this scenario, the federation will operate a set 
of certification authorities that will issue certificates to users who present their existing 
organization-provided credentials. This mechanism should also remove the compli-
cations of using and managing Grid credentials, meaning from the user’s perspective 
they will be using the locally provided credentials they use everyday; the Grid 
credentials should be abstracted from them and hidden.

The GAARDS infrastructure addresses these challenges using its Authentication 
Service (Langella 2009a) and Dorian (Langella et al. 2007; Langella 2009c) frame-
works, each of which are discussed later in this chapter. To realize this scenario, 
organizations participating in the federation will need to trust one another’s policies 
and procedures for local authentication in order to accept one another’s credentials 
as an acceptable authentication mechanism. To accomplish this, a VO-wide policy 
must be developed to govern the procedures and operations of the local identity 
providers. This policy must be reasonable such that it gives the different organizations 
in the collaboration the confidence to trust one another but flexible enough that it 
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gives each organization the freedom to operate their identity provider based on 
local requirements. Each organization participating in the federation must agree to 
comply with this policy.

Besides leveraging traditional identity providers as described in the last sce-
nario, organizations with existing CAs or those that employ third party CAs, should 
be able do so, provided those authorities can also comply with the VO’s policies. 
Likewise in certain collaboration scenarios, credentials issued by the CAs from 
other Grids should be able to be leveraged. In such a setting, it is important to be 
able to verify and validate identities and privileges with a level of confidence. 
Because each CA will have different policies as to how it issues, controls, audits, 
and revokes its credentials, it can be expected that a service provider may want to 
use a tiered level of assurance (in terms of authentication) for the different users 
wishing to access the service. In addition, while institutions will want to collabo-
rate, they will have services with different levels of security policy enforcement 
requirements. In the Grid (and in any public key infrastructure) services and users 
need to maintain a list of CAs they trust. The main challenge is that there may be 
dozens to hundreds of different CAs, each issuing certificates for potentially thou-
sands of users. Properly maintaining this list of trusted CAs for all relying parties 
is critical to the security of the infrastructure, but is extremely difficult due to the 
distributed and large-scale nature of the environment. This problem is compounded 
by the fact that certificates will be issued and revoked continuously and CAs may 
be added to or deleted from the environment dynamically. A Grid-wide mechanism 
is needed to create and manage a trust fabric for the collaboration so that services 
and users can make authentication and authorization decisions based on the most 
up-to-date security configuration information. This challenge is addressed by the 
Grid Trust Service (GTS), which will be described later in this chapter.

Authorization is a challenging issue as well. It is desirable that access control 
policy be maintained and enforced locally, giving data providers the ability to deter-
mine who has access to their data. At the same time, it is important for scalability 
that access control policies be based on Grid-level information. To ease the burden 
of access control administration, many systems base their access control policies on 
abstractions like group membership and roles. As a result there is a clear require-
ment for a standardized mechanism to organize and manage groups and their mem-
bership spanning organizational boundaries. This challenge is addressed by an 
infrastructure service Grid Grouper (Langella 2009d), which will be described later 
in this chapter.

16.3 � GAARDS

The GAARDS infrastructure provides services and tools for the administration and 
enforcement of security policy in an enterprise Grid. The GAARDS infrastructure 
has been developed as a suite of services and administrative tools on top of the 
Globus Toolkit (Globus 2009) and its Grid Security Infrastructure (GSI) component. 
It consists of the following core services/components:
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Dorian (Langella et al. 2006; Langella 2009c): A Grid service for the provisioning 
and management of Grid credentials. Dorian provides an integration point between 
external security domains and the collaboration’s Grid infrastructure. Dorian allows 
users to use their existing credentials (external to the Grid) to obtain Grid creden-
tials that can be used for authentication to the Grid services. Dorian also allows 
service credentials to be issued, by binding them to an authorized user credential.

Authentication Service (Langella 2009a): A framework for issuing Security 
Assertion Markup Language (SAML) authentication-assertions for existing iden-
tity providers. It allows the identity provider to assert in a standardized digitally 
signed statement (SAML) that a user has already been authenticated, which is then 
presented to the Dorian service. Dorian validates the assertion and subsequently 
issues Grid credentials. The authentication service also provides an optional uni-
form log-in interface upon which applications can be built.

Grid Trust Service (GTS) (Langella et  al. 2007b, Langella 2009e): A Grid-wide 
mechanism for maintaining a federated trust fabric of the VO’s certification authori-
ties. GTS also provides services for the provisioning of the associated trust configura-
tion data, which allows Grid services and users to make authentication decisions 
against the most up-to-date security information.

Grid Grouper (Langella et al. 2008, Langella 2009d): A group-based authorization 
solution for the Grid, which enables services and applications to enforce authori-
zation policy based on membership to VO-wide groups.

Credential Delegation Service (CDS) (Langella 2009b): A Grid service that enables 
users/services (delegator) to delegate their Grid credentials to other users/services 
(delegatee) such that the delegatee(s) may act on the delegator’s behalf.

Web Single Sign On (WebSSO) (Garmilla 2009): This provides a comprehensive, 
Single Sign On (SSO) solution for web-browser clients and web-applications using 
GAARDS.

Common Security Module (CSM) (caBIG® 2009b): This provides a centralized 
approach to managing and enforcing access control policies.

GAARDS User Interface: Comprehensive graphical user interface to administer 
and to interact with the GAARDS security services.

In order for users/applications to communicate securely with services, they must 
be able to authenticate with an X.509 credential, that is, an X.509 public key certifi-
cate with its associated private key. Users with accounts with Dorian may request an 
X.509 credential from that service. Dorian provides two methods to register for a Grid 
user account: (1) the user can register directly with Dorian, or (2) they can register 
indirectly via their existing user account with the identity management system of their 
organization. In order to obtain X.509 credentials via an existing user account, a 
Dorian administrator must register the organization issuing the account as a Trusted 
Identity Provider. Users not affiliated with an existing identity provider, can register 
directly with Dorian. However, it is anticipated that most users will be able to use 
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their existing local credentials to obtain X.509 credentials. For Dorian to issue X.509 
credentials, it requires proof that local authentication succeeded, which is asserted 
through a digitally signed SAML authentication statement. The GAARDS 
Authentication Service provides a framework for existing credential providers to 
issue SAML assertions to Dorian. The Authentication Service also provides a uniform 
authentication interface upon which applications can be built. Figure 16.1 illustrates 
the process to obtain Grid credentials. The user/application first authenticates with the 
appropriate local credential provider via the Authentication Service and obtains a 
SAML assertion as proof of successful authentication. With this proof the user can 
obtain X.509 credentials from Dorian. Assuming the local credential provider is reg-
istered as a trusted identity provider and that the user’s account is in good standing, 
Dorian will issue X.509 credentials to the user. If a user is registered directly with 
Dorian, the user may contact Dorian directly to obtain Grid credentials.

After users have obtained X.509 credentials from Dorian, they are enabled to 
securely communicate with the Grid services. All secure communication is mutu-
ally authenticated and is established through the SSL/TLS protocol. As part of the 
authentication’s validation process, it is checked that all X.509 credentials are 
issued by a trusted CA (e.g., Dorian). The GTS maintains the federated trust fabric 
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of all the trusted digital signers in the collaboration. Credential providers such as 
Dorian and other Grid CAs are registered as trusted digital signers and updated trust 
information is regularly published to the GTS. As such Grid services validate cre-
dentials against the trusted digital signers registered with the GTS.

After a user has been authenticated to a service, that service determines if the 
user is authorized to perform the desired operation. The access control enforce-
ment to resources that are made available through the Grid is controlled locally 
by those resources. The Grid services have many configurable options to perform 
authorization. GAARDS provides two approaches that can either be used inde-
pendently or together. The first approach is group-based authorization provided 
by the Grid Grouper service. In this approach, Grid services and applications 
enforce authorization policy based on membership to Grid-level groups. 
Assuming the groups are provisioned by Grid Grouper, services can determine 
whether or not a caller is authorized based on certain group membership. The 
second approach is user-resource-operation authorization provided by the CSM. 
In this approach, Grid services ask CSM whether a user can perform a given 
operation on a specified resource. Based on the access control policy maintained 
in CSM, CSM decides whether or not a user is authorized. In Fig. 16.1, the Grid 
services defer the authorization to CSM. CSM can also enforce group-based 
access control policy by asking Grid Grouper whether the caller is a member of 
the groups specified in the policy. Note that, in addition to these two approaches, 
other authorization mechanisms (e.g., user-developed authorization or other com-
munity provided software) can be deployed in conjunction with the GAARDS 
authentication/trust infrastructure.

In addition to the components reviewed in the above use case, GAARDS 
provides three other components:

1.	 The Credential Delegation Service (CDS) allows users and services to delegate 
their credentials to other users or services such that they may operate on their 
behalf. Delegation plays an important role in being able to support things like 
workflow and federated queries, wherein infrastructure services invoke other 
services on behalf of a user.

2.	 The Web Single Sign On Framework integrates the GAARDS infrastructure and 
Grid security with web applications, enabling single sign on across web applica-
tions, allowing users to securely invoke Grid services through web applications.

3.	 The GAARDS User Interface provides a complete graphical user interfaces that 
allows administrators and users to manage and interact with any of the GAARDS 
security services.

16.4 � Security Policy

In order to achieve and maintain confidence amongst the members of the federation, 
a commonly agreed, well-defined security policy is required. Given that a federated 
authentication model is being employed, a policy is required to govern the authentication 
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process. The National Institute of Standards and Technology (NIST) has developed 
the Electronic Authentication Guideline (Burr et al. 2006) which are intended for 
federal agencies implementing electronic authentication. The Electronic Authentication 
Guideline defines four levels of authentication, Levels 1–4, in terms of the conse-
quences of the authentication errors and misuse of credentials. Level 1 is the lowest 
assurance and Level 4 is the highest; with each higher level of assurance the confi-
dence in the authentication increases. This guideline defines the technical requirements 
for each of four levels of assurance in the areas of identity proofing, registration, 
tokens, authentication protocols, and related assertions:

Level 1. Authentication using username and password, enforcement of password 
security requirements, no identity vetting.
Level 2. Authentication using username and password, stricter password security 
requirements, in person identity vetting with government id or electronic identity 
vetting via government id number and financial records.
Level 3. Authentication via proving possession of cryptographic key or token, in 
person identity vetting with government id or electronic identity vetting via government 
id number and financial records.
Level 4. Authentication by proving possession of hard cryptographic key or token, 
in person identity vetting with government id and additional form of acceptable 
identification.

The Electronic Authentication Guideline is being adopted by federations such as 
InCommon (InCommon 2009) and caBIG®.

As mentioned previously, access control (or authorization) is locally enforced, 
giving service owners the right to determine who has access to their resources. 
Therefore authorization policy is evaluated locally and policy at the federation level 
is not needed (other than being soundly anchored on a common authentication 
mechanism). That being said, services such as Grid Grouper may optionally be 
operated and shared by the community, such that group membership can be defined 
on the VO-level and used by the local authorization policy at the discretion of the 
resource owner. In such cases, operational procedures are policies that are needed 
for governing the community operated services.

16.5 � Deployment

In this section, we provide details on how the policy presented in the last section 
is enforced and how the GAARDS infrastructure is deployed in a production envi-
ronment. In Grid environments users, clients, and services authenticate with one 
another using X.509 credentials. From the perspective of the Grid, certification 
authorities are credential providers for users and services. Dorian enables existing 
identity providers to be integrated into the Grid, by acting as a CA for those creden-
tial providers. Dorian enables existing users of the identity providers registered 
with it, to use their existing credentials to access the Grid. Figure 16.2 illustrates 
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how GAARDS can be deployed in a production environment in compliance with the 
Electronic Authentication Guideline. In this deployment we show Level 1, Level 2, 
and Level 3, which are the current levels targeted by the GAARDS Infrastructure. 
Certification authorities are registered with the GTS at the Electronic Authentication 
Guideline level of assurance that they comply with. In the diagram, we show two types 
of CAs: (1) Dorian and (2) Traditional CAs (VeriSign, Entrust, etc.). Authentication 
Services, representing organizational identity providers, are classified based on the 
level of assurance to which they comply. At a minimum, a Dorian service is deployed 
for each level of assurance, although multiple Dorians may be operated for a single 
level of assurance. Each Authentication Service is registered to the Dorian service 
that complies to the equal level of assurance. For example, Level 1 Authentication 
Services are registered to level 1 Dorian(s), level 2 Authentication Services are 
registered to level 2 Dorian(s), and level 3 Authentication Services are registered 
to level 3 Dorian(s). Each Dorian is registered with the GTS as a trusted CA at the 
level of assurance with which it complies.

Traditional CAs such as VeriSign and Entrust can also act as credential providers 
in the Grid. These certificate authorities are registered directly with the GTS at the 
level of assurance with which they comply.
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When clients make requests to secure services, both sides must authenticate 
themselves using their X.509 credential. The authentication’s validation process 
leverages the GTS to ensure that the presented certificates were issued and signed 
by a CA at the level of assurance that the service requires. For example, a service 
may specify that it will accept level 2 and level 3 credentials. Since all trusted CAs 
are registered with the GTS, the service needs to verify that a certificate presented 
is signed by a level 2 or level 3 CA that is registered to the GTS. If the certificate 
presented is signed by a CA that is not in the GTS or is signed by a CA not regis-
tered at level 2 or level 3 (i.e., level 1), the service request is rejected. Note in this 
scenario, no discussion of policy adherence is specified, and it is assumed that 
appropriate mechanism to verify and assure compliance to a particular level of 
assurance (e.g. service level agreements, memorandums of understanding, etc) is 
present; only the technological aspects of the deployment are discussed.

Once a client has authenticated, they have proven who they are to the service 
with the appropriate authentication credentials. The service must then determine 
whether or not to grant access to the requested resources based on the client’s 
authenticated identity. As mentioned previously, access control policy is enforced 
locally; services may leverage GAARDS components such as Grid Grouper or the 
CSM to enforce access control or integrate their own mechanism. Note that Grid 
Grouper can be leveraged either locally where the local service provider operates 
their own Grid Grouper, or globally where the community or a subset of the community 
operates a Grid Grouper.

16.6 � Conclusion

To provide informatics collaborations with a cross-organizational infrastructure that 
enables the secure sharing of data and results is a big challenge. It requires common 
protocols, services, and agreed upon policies. In this chapter, we presented a solution 
that meets those requirements: a set of implementations for infrastructure services 
and libraries, application programming interfaces (APIs) and tools to construct client 
and service applications that are tailored to work securely within that infrastructure. 
Furthermore, the solution includes the components that allow for a modular integra-
tion with different identity providers to leverage the organizations’ existing identity 
management. Lastly, the infrastructure includes services and tools that allow one to 
define the trust fabric that pulls the different collaborating partners together into a 
single Virtual Organization with a well-defined and enforced trust-policy.
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Abstract  We present the cacher and CodeDepends packages for R, which provide 
tools for (1) caching and analyzing the code for statistical analyses and (2) distributing 
these analyses to others in an efficient manner over the Web. The cacher package 
takes objects created by evaluating R expressions and stores them in key-value 
databases. These databases of cached objects can subsequently be assembled into 
“cache packages” for distribution over the Web. The cacher package also provides 
tools to help readers examine the data and code in a statistical analysis and reproduce, 
modify, or improve upon the results. In addition, readers can easily conduct alternate 
analyses of the data. The CodeDepends package provides complementary tools 
for analyzing and visualizing the code for a statistical analysis and this functionality 
has been integrated into the cacher package. In this chapter, we describe the cacher 
and CodeDepends packages and provide examples of how they can be used for 
reproducible research.

17.1 � Introduction

The replication of scientific findings using independent investigators, methods, 
data, equipment, and protocols is the standard by which scientific claims are evalu-
ated. However, in many fields of study, there are examples of scientific investiga-
tions that cannot be fully replicated (see Chap. 8). Common reasons for a lack of 
replicability include a lack of time or resources. When scientific studies cannot be 
replicated, there is a need for a minimum standard that can fill the void between full 
replication and nothing. One candidate for this minimum standard is reproducibility, 
which requires that datasets and computer code implementing analyses be made 
available to others for verifying published results and conducting alternative analyses.
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The need for publishing reproducible results is increasing for a number of reasons. 
Investigators are more frequently examining weak associations and complex interac-
tions for which the data contain relatively little information. New technologies allow 
scientists in all areas to compile complex high-dimensional databases, and the ubiq-
uity of powerful statistical and computing capabilities allows investigators to explore 
those databases and identify associations of potential interest. However, with the 
increase in data and computing power comes a greater potential for identifying spuri-
ous associations. In addition to these developments, recent reports of fraudulent 
research being published in the biomedical literature have highlighted the need for 
reproducibility in biomedical studies and have invited the attention of the major medi-
cal journals (e.g., Laine et al. 2007). Even without the presence of deliberate fraud, it 
should be noted that as analyses become more complicated, the possibility of inad-
vertent errors resulting in misleading findings looms large. In the example of Baggerly 
et al. (2005), the errors discovered were not necessarily simple or obvious and the 
examination of the problem itself required a sophisticated analysis. Misunderstandings 
about commonly used software can also lead to problems, particularly when such 
software is applied to situations not originally imagined.

While many might agree with the benefits of disseminating reproducible results, 
there is unfortunately a general lack of infrastructure for supporting such endeav-
ors. Investigators who are willing to make their results reproducible are confronted 
with a number of barriers, one of which is the need to distribute, and make available 
for an indefinite amount of time, the supplementary materials required for repro-
ducing the results. Readers who are interested in reproducing the results of others 
often need to expend substantial effort to gather the materials and study the statisti-
cal analysis code. There is currently a need and opportunity for the development of 
software to more efficiently connect authors and readers so that results can be 
reproduced and science can be advanced.

The distribution of reproducible results is a problem for which the solution var-
ies depending on the complexity of the research. Small investigations involving 
moderately sized datasets and standard computational techniques can be archived 
and distributed in their entirety. Readers can subsequently study and rerun the entire 
analysis from start to finish to see if they can obtain the same results as the authors. 
Complex investigations involving large or multiple linked datasets and sophisti-
cated statistical computations will be more difficult for readers to reproduce 
because of the resources and time required for running the analysis. In such a situ-
ation, a method is needed to give readers without equivalent resources the ability to 
conduct an initial examination of the details of the investigation and to partially 
reproduce or verify the results. In addition, complex statistical analyses will typi-
cally involve complex statistical code whose details may be difficult to understand 
upon first glance. Software that can help to visualize the analysis code itself can be 
useful to readers for understanding the flow of the analysis and for identifying 
potential points of interest.

A framework in which reproducible results can be distributed using cached 
computations is described in Peng and Eckel (2009). Cached computations are 
results that are stored in a database as an analysis is being conducted. These stored 
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results can be distributed via Web sites or central repositories so that others may 
explore the datasets and computer code for a given scientific investigation.

We have developed some tools for assisting authors and researchers in conducting 
reproducible research. In this chapter, we describe the cacher and CodeDepends 
packages for the R system. For authors, these packages provide tools for caching 
statistical analyses and for distributing these analyses to others in an efficient man-
ner. For readers, these packages provide tools for visualizing the code and the 
results of a statistical analysis.

17.2 � Description of Software

The cacher package is available from the Comprehensive R Archive Network 
(http://cran.r-project.org/). The CodeDepends package is available from the 
Omegahat project (http://www.omegahat.org/CodeDepends/). The Rgraphviz 
package (also available from CRAN) is required to use some of the functional-
ity of the CodeDepends package described here. The cacher package is written 
primarily in R with a few components written in C. The CodeDepends package 
is written entirely in R. Both packages are licensed on the GNU GPL version 2 
or higher.

The cacher package provides interfaces for two types of users. The first type 
consists of authors of statistical analyses who wish to cache their analyses in a 
database and distribute the cached analysis to others. The second type of user con-
sists of readers who wish to obtain cached analyses over the Web and explore the 
data and code in those analyses in an efficient manner. In this chapter, we give a 
brief overview of the capabilities of both packages. Complete information about the 
design of the cacher package can be found in Peng (2008).

The primary function in the cacher package for authors of statistical analyses is 
the cacher function, which takes the name of an R source file as its first argu-
ment. This should be a standard source file containing R code to be evaluated and 
cached. The remaining two arguments to cacher specify the location of the cache 
directory (the default is .cache). Optionally, the log file can be specified where 
messages on the progress of cacher will be printed. The simplest invocation of 
cacher is

where “myanalysis.R” is the name of an R source file. The basic procedure of 
cacher is to read each R expression in the source file, evaluate it, cache the results 
to a key-value database, and then move to the next expression, until the end of the 
file is reached. More specifically, cacher will

1.	 Parse the R source file
2.	 Create the necessary cache directories and subdirectories

http://cran.r-project.org/
http://www.omegahat.org/CodeDepends/
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3.	 Set various configuration variables and hook functions for plotting
4.	 Copy the source file to the cache directory
5.	 Cycle through each expression in the source file:

(a)	 If an expression has never been evaluated, evaluate it and store any resulting 
R objects in the cache database

(b)	 If a cached result exists, lazy-load the results from the cache database and 
move to the next expression

(c)	 If an expression does not create any R objects (i.e., there is nothing to 
cache), add the expression to the list of expressions where evaluation needs 
to be forced

(d)	 Write out metadata for this expression to the metadata file

If a source file needs to be executed multiple times (e.g., because of revisions), 
cached results from previous runs can be used in place of actual evaluation in order 
to minimize the total time for evaluation. However, if the code changes, then some 
parts will need to be reevaluated. In order to assess changes to the R code, the 
cacher function creates a unique identifier for each expression in an R code file by 
taking the SHA-1 digest of the expression, the expression history (i.e., expressions 
preceding the current expression), and the name of the source file. For the first 
expression, the expression history is of length zero. Therefore, if the code in the source 
file changes, the digest of the expression will also change. Using the expression 
history to identify individual R expressions is a way to prevent expressions such as

from being inappropriately loaded from the cache. In this case, the expression 
y <- x^2 appears twice, but the value of x changes in between. An expression such 
as this one may appear multiple times in a source file and we do not want to load the 
same value for y every time since the value of x may be changing. Using the expres-
sion history can uniquely identify each occurrence of a duplicate expression. The 
CodeDepends package has tools that can also keep track of the sequence of expres-
sions and determine that the value of x has changed since y was last defined.

17.2.1 � Distributing Cached Analyses

Authors who wish to distribute a cached statistical analysis over the Web and also 
have access to a local Webserver can post the cache directory on the Webserver so 
that others can download the materials using the clonecache function. All that 
is required is for the user to copy the directory to a location on the Webserver that 
is visible to outside users. We have placed a number of example analyses on the 
Web site of the Reproducible Research Archive (http://penguin.biostat.jhsph.edu), 
which is currently under development and is hosted and supported by the Department 

http://penguin.biostat.jhsph.edu
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of Biostatistics at Johns Hopkins University. While this Archive site is currently the 
only Web site hosting cache packages, our long-term goal is to develop multiple 
such sites to facilitate the distribution of packages, not unlike the network of mir-
rors that make up CRAN. Such a network of distribution sites would also mitigate 
the risk of any single site failing or no longer being supported. As an alternative to 
using a central repository, an author can use the cachepackage() function which 
creates a zip file of the entire cache. This zip file could then be distributed to others 
(e.g., via email or the Web) who can subsequently unzip the file and explore the 
contents of the cache using the functions described below.

The primary function for downloading a cached analysis is the clonecache 
function. The user can pass to clonecache the URL of the directory containing 
a cached analysis. Given a URL, clonecache creates a cache directory on the 
user’s local machine and downloads the source files and metadata from the remote 
machine. The clonecache function also takes an ID string that can be used to 
retrieve analyses stored on the Archive Web site. By default, clonecache does 
not download any of the database files since these could be very large and the user 
may not be interested in every R object in the analysis. Rather, these database files 
are downloaded as needed when the users explore a cached analysis. In order to 
force the downloading of all database objects when initially cloning, the user needs 
to set the option all.files = TRUE when calling clonecache. Once an 
analysis is cloned, the functions described in the following section can be used to 
explore the code and data objects in the analysis.

17.2.2 � Exploring and Visualizing Cached Analyses

The cacher package provides some basic tools to allow users to interact with the code 
and data provided in a cached analysis. The primary functions making up the user inter-
face for readers wishing to explore a cached analysis written by someone else are:

•	 showfiles: Show what source files are available in the cache to be examined 
by the user. If the author of the package cached analyses from multiple source 
files, then this function can be used to determine which analysis should be exam-
ined. One can switch between different source files by calling the sourcefile 
function.

•	 sourcefile: Get or set the current source file for analysis.
•	 code: Show the expressions for a given source file. By default, code shows all 

expressions in a file in a one-line abbreviated form along with their expression 
sequence numbers. To see each expression in its entirety, the argument full = 
TRUE must be set.

•	 showcode: Show the original source file in the pager, which can be useful if 
one is interested in seeing any comments.

•	 loadcache: Lazy-load cached computation databases into an environment. 
This function takes a numeric vector of expression sequence numbers and loads 
objects associated with those expressions in the order that the expressions are 
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specified. Once a cache database is lazy loaded, the object names appear in the 
environment into which the database was loaded, but they do not occupy any 
memory until they are first accessed. If loadcache is used to load objects 
from a remote cache, then the corresponding database files will be downloaded 
on the object’s first access.

•	 runcode: This function takes as input a numeric vector of expression sequence 
numbers that executes the code in those expressions. Each expression is evaluated 
in the order in which it appears in the input vector. By default, if a cached compu-
tation database is associated with an expression, then the database is lazy loaded 
via loadcache rather than executed. In order to force evaluation of code in an 
expression, one needs to set forceAll = TRUE when calling runcode. If an error 
occurs when executing the code in an expression, a message is printed to the con-
sole indicating the error and the expression is skipped. While the runcode function 
can be used to evaluate individual expressions, the results of such evaluation may 
not be correct if the dependent expressions have not previously been evaluated. At 
this point in development of the cacher package, reproducible results for a specific 
expression in an analysis can only be obtained by evaluating all of the expressions 
in order up to that expression. The CodeDepends package has functions for track-
ing the dependencies of R objects in an analysis and we will be working to inte-
grate that functionality into the cacher package in a future release.

•	 graphcode: This function reads the source code for the cached analysis and 
creates a directed graph showing the relationships between the R objects created 
in the analysis and how they are used in defining each other. The graphcode 
function uses the capabilities implemented in the CodeDepends package to stati-
cally examine code and compute the various dependencies. For the creation of 
the graph itself, the Rgraphviz package is required.

•	 objectcode: This function takes the name of an R object and returns the 
sequence of R expressions that leads to the creation of that object. It returns the 
indices of the sequence of R expressions which could subsequently be passed to 
a function like runcode. This function can be useful for identifying the code 
for reconstructing an R object without having to run an entire analysis, which 
may contain many unrelated parts.

17.2.3 � Example

As an example of how the cacher and CodeDepends packages can be used, we pres-
ent a brief statistical analysis of particulate matter (PM) air pollution and mortality 
data. The data that we use come from the National Morbidity, Mortality, and Air 
Pollution Study (NMMAPS), and details about the data can be obtained from the 
Internet-based Health and Air Pollution Surveillance System Web site (http://www.
ihapss.jhsph.edu/). Information about the original study is presented in Samet et al. 
(2000). The analysis presented here estimates the short-term association between daily 
PM levels and daily mortality. Briefly, a Poisson generalized linear time series 

http://www.ihapss.jhsph.edu/
http://www.ihapss.jhsph.edu/
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model is fit to daily mortality count and PM data from the largest 20 cities in the 
USA, adjusting for other factors like temperature, humidity, and seasonal trends. 
The primary target of inference is the log relative risk associated with short-term 
changes in ambient PM levels for each of the 20 cities. Further details about the 
methodology used in the analysis can be found in Peng and Dominici (2008).

We start by downloading the analysis from the Reproducible Research Archive 
Web site using the clonecache function. Each analysis on the Archive Web site 
is assigned a unique 40 character ID string that can be passed to the clonecache 
function. Any unique prefix of this ID string can also be used, and typically 4–8 
characters are enough.

By default, clonecache downloads the source files and various metadata files 
about the analysis but does not download any data files. We can see what source files 
are available in this cache by using the showfiles function. In this case, there is 
only one file and so we deisgnate that file as the “active” file via the sourcefile 
function.

In this case, because there is only one source file available in this package, there is 
no need to call the sourcefile function explicitly because that file will be used 
by default. For analyses involving multiple files, the sourcefile function needs 
to be called to indicate the file to be examined. To obtain a listing of the code in 
the analysis we can use the code function. By default, the code function shows an 
abbreviated one-line representation of each expression.

The original source file for this analysis was called “top20.R” (shown at the top of the 
listing), and there are eight expressions in the analysis. To the left of each expression 
is its expression sequence number. We can get a quick “sense” of the analysis by calling 
graphcode to see how the various objects relate to each other. The graph produced 
by graphcode is shown in Fig. 17.1. From the graph, we can see clearly that a 
number of elements come together to form the “data” which leads to an object called 
“estimates.” From the estimates, we obtain an effect and a standard error. Given this 
visualization of the analysis code itself, we can decide on which objects we might 
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wish to inspect more closely. For example, we can examine the code expressions that 
lead to the creation of the “data” object using the objectcode function.

We can also inspect individual objects by printing them to the console. Here we 
examine the “cities” object which is simply a character vector that contains the 

Fig. 17.1  Graph of statistical analysis code
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abbreviated names of the 20 cities used in the analysis. Before examining the object, 
we must load it from the cache with the loadcache function.

The loadcache function does not load the object directly, but rather “lazy 
loads” the object into the workspace. When the “cities” object is accessed for the 
first time, it is downloaded from the remote cache and then made available to the 
user. If the “verbose” option is set to TRUE for cacher (via the setConfig func-
tion), then the message “transferring cache db file” will be printed. This message 
indicates that an object needs to be downloaded from the remote cache. Once an 
object has been downloaded, it is available for future access and does not need to 
be downloaded again.

Finally, we can see the estimated effect pooled across the 20 cities.

This would translate into an approximately 0.23% increase in daily mortality asso-
ciated with a ten-unit increase in ambient PM air pollution (ten units is a commonly 
used increment).

17.3 � Summary

In this chapter, we have given a brief presentation of the capabilities of the cacher 
and CodeDepends packages. These packages provide functions for caching, distrib-
uting, exploring, and visualizing statistical analyses conducted in R. For the pur-
poses of reproducible research, obtaining data and code as well as visualizing the 
flow of an analysis is critical. The cacher package comes with a vignette that con-
tains more details of the functions in the package. Both packages are currently 
under active development, and the addition of features and capabilities is planned 
for future releases.
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Abstract  BayesMendel is an open-source software program created to provide 
individuals with personalized risk for carrying an inherited mutation of a cancer-
causing gene and for developing cancer related to this mutation. BayesMendel 
is freely available as an R package (http://astor.som.jhmi.edu/BayesMendel/) 
or within the CancerGene software program (http://www4.utsouthwestern.edu/
breasthealth/cagene/). Documentation for the R package is available on the web 
(http://astor.som.jhmi.edu/BayesMendel/BayesMendel.pdf) and questions can be 
directed to BayesMendel@jhu.edu.

18.1 � Introduction

Cancer is caused by genetic alterations, many of which are changes in the DNA 
code (mutations). The discovery of genes mutated in cancers has provided key 
insights into the mechanisms underlying tumorigenesis and has proven useful for 
the design of targeted prevention and therapeutic approaches (Vogelstein and 
Kinzler 2004). Cancer-related mutations can be inherited (germline mutations) or 
can occur during one’s lifetime (somatic mutations) (Vogelstein and Kinzler 1998). 
Identifying individuals at high risk of cancer because of inherited genetic suscepti-
bility is critical in both prevention and treatment activities, through which probabi-
listic algorithms for risk evaluation are influencing the degree, quality, and cost of 
care received by millions of individuals in the United States. BayesMendel is a soft-
ware package written in the statistical freeware language R (http://www.r-project.org) 
that provides an individual, referred to as the “counselee,” an estimate of his or her 
probability of carrying an inherited mutation of a known cancer-related gene and 
the corresponding future risk of developing that cancer, based on the counselee’s 
reported family history of cancer.
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18.1.1 � Hereditary Cancer

Genetic research has identified a number of “susceptibility” genes, inherited muta-
tions of which confer a significantly increased risk of one or more types of cancer 
(Foulkes and Hodgson 1998). These genetic effects are characterized by penetrance 
functions – probability distributions of developing cancer by age, conditional on a 
specific genetic variant. Operationally, we define a variant to be deleterious if the 
associated penetrance is increased compared to the penetrance of normal variants.

The models in BayesMendel currently focus on six major cancers: breast, ovarian, 
colorectal, endometrial, pancreatic, and melanoma. Each of these cancers is 
known to be more highly prevalent among individuals who carry one or more 
genetic susceptibility genes. The specific genes included in the BayesMendel mod-
els are highlighted in Table 18.1. More information about these cancers and their 
associated genes are described in Sect. 1.3.

18.1.2 � Genetic Testing

The identification of a cancer gene allows for direct testing for deleterious muta-
tions (Weber 1996; Ponder 1997). Myriad Genetics Laboratories provides testing 
for hereditary breast and colorectal cancers, among others, and by 2008 had tested 
over 250,000 individuals through 20,000 or more oncologists and obstetrician/
gynecologists (Myriad Genetics 2008). Their two main products, BRACAnalysis 
and COLARIS, provide testing for the two main breast/ovarian cancer-causing 
genes, BRCA1 and BRCA2, and the hereditary nonpolyposis colorectal cancer 
genes, MLH1, MSH2 and MSH6. Many more patients are being counseled about 
whether to be genotyped, as cancer touches almost every family and it is not 
unusual to have more than one close relative who has cancer. Once a deleterious 
mutation is detected, steps can be undertaken to decrease the risk of mortality 
(Robson and Offit 2007), including increased screening (Syngal 1998) and, for 
BRCA genes, salpingo-oophorectomy, chemoprevention, and preventive mastectomy. 
It is now widely recognized that, when counseling individuals facing decisions 
about genetic testing, it is important to accurately evaluate the probabilities that he 
or she carries a deleterious mutation and that a mutation will be found if he or she 
is genotyped (Rimer and Glassman 1997; Petersen et al. 1999). Reliable strategies 
for individualized counseling enhance informed decision making, both about whether 

Table 18.1  Summary of familial genes included in BayesMendel, by cancer site

Cancer Model Familial genes

Breast, Ovarian BRCAPRO BRCA1, BRCA2
Colorectal, Endometrial MMRpro MLH1, MSH2, MSH6
Pancreas PancPRO Hypothetical PANC gene
Melanoma MelaPRO CDKN2A/P16
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or not to pursue testing, and about what to do with results (ASCO 2003). Currently, 
most cancer centers and many community hospitals have special clinics for families 
at high risk of cancer and staff genetic counselors. The demand for assessment of 
family histories has led to widespread use of statistical models to estimate mutation 
probabilities (Claus et al. 1991; Berry et al. 1997; Parmigiani et al. 1998). Model-
based predictions are currently used in counseling and clinical activities, are included 
in materials distributed to patients considering genetic testing (Bluman et al. 1999), 
used for determining eligibility for screening and prevention studies (Hartman et al. 
2004), and factored into coverage decisions by insurers (Domchek et al. 2003).

18.2 � Model Development

18.2.1 � Mendelian Modeling

Statistically, mutation prediction is inference on the genotype of an individual condi-
tional on information about his/her disease history and his/her relatives’ disease and 
genotype history (a pedigree). Two broad classes of modeling approaches have been 
used so far: “empirical” and “Mendelian.” Empirical approaches model the conditional 
distribution of genotype given phenotype directly, by applying statistical or artificial 
intelligence techniques to collections of pedigrees from tested individuals. Candidate 
features are defined based on clinical and epidemiological expertise, and further 
selected for inclusion in models using variable selection techniques (Wijnen et al. 
1998; Couch et al. 1997; Frank et al. 1998), classification trees (Hartge et al. 1999) or 
other techniques. By contrast, Mendelian models are built upon the conditional distri-
butions of phenotypes given genotype (penetrance), and the marginal distributions of 
genotypes (prevalence). The probabilities required for counseling are then derived 
from these using Bayes’ rule and Mendel’s laws (Leal and Ott 1994; Szolovits and 
Pauker 1992). Validation studies indicate that Mendelian risk prediction models 
provide a well-founded approach to genetic counseling, and improved predictive perfor-
mance compared to empirical approaches (Berry et al. 2002; Parmigiani et al. 2007).

This section outlines the general formalism by which the Mendelian prediction 
approach is implemented in all the models discussed in this chapter. Family pheno-
types as a whole are referred to as family history F

ij
, or pedigree data (following 

(Elston and Stewart 1971)), with the history of relative r denoted by H
rij

. BayesMendel 
models have so far focused on one individual, who is termed the counselee. All 
probabilities refer to him/her. Let g

0
 be the vector of genotypes of the counselee 

at each of the genes considered. Each dimension represents a different locus. 
For example, a model considering BRCA1 and BRCA2 will have two dimensions. 
Let R be the family size, r be a relative in the family, and g

r
, for r = 1, …, R be the 

corresponding genotypes. Also, let H
0
, H

1
, . . ., H

R
 be the relevant phenotypes of 

the counselee and relatives. A mutation probability model provides the probability 
distribution of the counselee’s genotypes given family history and pedigree structure, 
that is p(g

0
 | H

0
, H

1
, . . ., H

R
).
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Mendelian approaches can be formulated by combining Bayes’ rule and Mendel’s 
laws, along lines charted by the seminal work of Murphy and colleagues (Murphy 
and Mutalik 1969) and presented in more formal terms by Lange (Lange 1997). 
Formally, this involves an updating step and an integration step. The updating step 
is based on Bayes’ rule:

	
…

…
∑ …

0

0 0 1 R 0
0 0 1

all ' 0 0 1 R 0

( ) ( | )
 ( | , , ) = .

( ) ( | ) R
s

p p H ,H , ,H
p H ,H H

p p H ,H , ,Hg

g g
g

g g
	 (1)

The prevalence p(g
0
) can be taken as the carrier probability for an individual about 

whom nothing is known. This is then updated to incorporate information from the 
pedigree. The term p(H

0
, H

1
, . . ., H

R
 | g

0
) is the probability of the phenotypes for the 

whole pedigree given the genotype of the counselee. Because this is complex to 
evaluate directly, it is computed by conditioning on the entire set of family geno-
types and then obtained using the law of total probability in the integration step:
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The term p(g
1
, . . ., g

R
 | g

0
) is known for all genotype configurations from Mendel’s 

laws, as long as the mode of inheritance and the exact relationship of each relative 
to the counselee are known. In most models, the term p(H

0
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further decomposed as in
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which assumes conditional independence of phenotypes given genotypes – this 
assumption may be relaxed in the future to account for shared environmental or 
behavioral risks. Together, these relationships connect the mutation probability 
with penetrance and prevalence information that can be abstracted from literature 
or estimated from family data, or both.

Given the array of interventions available for familial cancer syndromes, many 
counselees are reporting family members who have undergone medical interven-
tions for prevention of cancer. Specifically, oophorectomy is increasingly common 
for women at high risk of breast and ovarian cancers. Approximately 50% of 
BRCA mutation carriers undergo oophorectomy (Katki 2007). Such medical inter-
ventions are accounted for by the Mendelian modeling approach because ignoring 
the intervention would incorrectly assume that penetrances are the same between 
those with and without the intervention.

18.2.2 � Model Parameters

All of the models within the BayesMendel package follow the Mendelian approach 
outlined above. What distinguishes models from each other are the genes of interest 
and how mutations in these genes are associated with incidence of the cancer of 
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interest. The main inputs required for a BayesMendel model are the prevalance of 
deleterious mutations in the general population, and their penetrance. When we 
develop a new model to be included in the BayesMendel framework, we research 
and continually update the penetrance and prevalance estimates to be as current as 
possible (Chen and Parmigiani 2007; Chen et al. 2009), so that models constitute a 
comprehensive compendium of information relevant for genetic counseling. Other 
inputs, such as test results related to the cancer or the gene of interest, can be 
included and are specific to the model of interest. The open-source nature of the 
software allows users to customize the input and also create their own models for 
specific genes and diseases of interest. This is illustrated by Gonzalez et al., who 
adapted BayesMendel to create a model for identifying mutations on the DFNB1 
locus for congenital cases of nonsyndromic autosomal recessive deafness (González 
et al. 2006).

18.2.3 � Model Validation

When a new model is developed, it must be validated on a real set of data mimicking 
the conditions of clinical use. The data is generally from a set of individuals who 
have undergone germline testing for the genes of interest and have provided their 
relevant family history. The model being validated is applied to each individual, and 
the resulting predictions are compared to genetic test results. Standard evaluation 
criteria include concordance (area under the receiver-operating characteristic (ROC) 
curve) and calibration (ratio of observed number of mutations to the number of 
model-predicted mutations). In addition, sensitivity, specificity, and predictive 
values will be calculated to guide clinical use. The model’s strengths and weak-
nesses will be assessed based on the outcomes of these validation measurements.

18.3 � Existing Models

18.3.1 � BRCAPRO

Deleterious mutations of BRCA1 and BRCA2, BRCA mutations for short, increase 
risk of breast and ovarian cancer (Struewing et al. 1997; Satagopan et al. 2001) and 
are associated with a large fraction of cases attributable to inherited susceptibility 
(Newman et al. 1997; Ford et al. 1998). Mutations in BRCA1 have been estimated 
to occur in 1 in 40 Ashkenazi Jewish, 1 in 400 non-Ashkenazi (Whittemore et al. 
2004), and figures of the same general magnitude are thought to apply to BRCA2 
(Risch et  al. 2001; Antoniou et  al. 2004). BRCA genes are polymorphic, and 
several hundreds of both deleterious and missense mutations have been identified 
(Biotechnology Information 2003; BIC 1997).
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The probabilistic prediction algorithm BRCAPRO was developed for identifying 
individuals at high risk of breast cancer because of inherited genetic susceptibility. 
It calculates the probability that an individual carries a germline deleterious mutation 
of the BRCA1 and BRCA2 genes and, for individuals free of cancer, the probability 
that they will develop cancer in the future, in yearly or 5-year intervals.

During a counseling session, BRCAPRO receives information on the coun-
selee’s family history of breast and ovarian cancer in all relatives for whom it is 
available (Berry et al. 1997). History for members with a cancer diagnosis includes 
age at onset of breast and/or ovarian and/or contralateral breast cancers and molec-
ular markers (ER, PR, CK5/6, CK14). For unaffected relatives, users input current 
age or age of death. For either unaffected or affected relatives, age at oophorectomy 
can be included. If any relatives have been previously tested for a BRCA1 or BRCA2 
mutation, their test results can also be included in the model. The race/ethnicity and 
Ashkenazi Jewish status of the counselee is also considered (Chen et al. 2009).

The BRCAPRO model estimates the probabilities that an individual has a par-
ticular genotype profile based on the input family history. BRCAPRO considers 
three possible mutations (wild-type, heterozygous or homozygous) on two genes, 
BRCA1 and BRCA2, which yields nine genotype profiles. The model will return 
the probabilities of carrying each genotype, in addition to the four marginal prob-
ability estimates based on the input provided: probabilities of (1) not carrying a 
mutation in either BRCA gene, (2) being a BRCA1 mutation carrier, (3) being a 
BRCA2 mutation carrier, or (4) being a carrier of both BRCA genes. With these 
estimates, the model also provides future risks of developing breast and ovarian 
cancers in age intervals of the user’s specification.

BRCAPRO has been extensively validated in both population-based and high-
risk samples, and has been compared to other models that also provide risk esti-
mates for carrying an inherited mutation of BRCA1 or BRCA2. One such study 
included 3,342 families, 1,668 population-based and 1,674 from high-risk counseling 
clinics. BRCAPRO was compared to six other models, and although all models 
performed similarly well, BRCAPRO was shown to discriminate carriers from 
noncarriers with the highest frequency (Parmigiani et al. 2007).

18.3.2 � MMRpro

The Lynch Syndrome can be caused by a germline mutation of any one of five 
known DNA mismatch repair (MMR) genes: MSH2 (Leach et  al. 1993), MLH1 
(Papadopoulos et  al. 1994; Bronner et  al. 1994), and less frequently by PMS1, 
PMS2 (Nicolaides et  al. 1994), and MSH6 (Miyaki et  al. 1997). Inheritance is 
autosomal dominant. Carriers are characterized by early onset tumors that are more 
likely to develop in the proximal portion of the colon. For each of the genes, a large 
and growing number of deleterious mutations have been identified (Biotechnology 
Information 2003). Missense mutations are also common and their clinical signifi-
cance is often uncertain.
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The probabilistic prediction algorithm MMRpro was developed for identifying 
individuals at high risk of Lynch Syndrome because of inherited genetic suscepti-
bility. It calculates the probability that an individual carries a germline deleterious 
mutation of the MMR genes, MLH1, MSH2, and MSH6. For individuals free of 
cancer, MMRpro also gives the probability that individuals will develop cancer in 
the future, in yearly or 5-year intervals.

During a counseling session, MMRpro receives information on the counselee’s 
family history of colorectal and endometrial cancer in all relatives for whom it is 
available (Chen et al. 2006). History for members with a cancer diagnosis includes 
age at onset of colorectal and/or endometrial cancers, microsatellite instability 
(MSI) testing of the tumor and whether a colorectal tumor was found in the proxi-
mal or distal colon. For unaffected relatives, users input current age or age of death. 
If any relatives have been previously tested for an MMR gene mutation, their test 
results can also be included in the model.

The MMRpro model estimates the probabilities that an individual has a particular 
genotype profile based on the input family history. MMRpro considers three possible 
mutations (wild-type, heterozygous, or homozygous) on three genes, MLH1, MSH2, 
and MSH6, which yields 27 genotype profiles. The model will return the probabilities 
of carrying each genotype. These are typically summarized via the four marginal prob-
ability estimates: probabilities of (1) not carrying a mutation in any MMR gene, (2) 
being an MLH1 mutation carrier, (3) being an MSH2 mutation carrier, or (4) being an 
MSH6 carrier. With these estimates, the model also provides future risks of developing 
colorectal and endometrial cancers in age intervals of the user’s specification.

MMRpro was validated on a set of 279 individuals from 226 families in three 
clinic-based groups. All individuals were tested for one of the MMR genes. 
Among the 279 individuals, there were 121 germline mutations found. The valida-
tion study compared MMRpro to two other prediction tools and demonstrated that 
MMRpro, both with and without MSI testing results included, discriminated car-
riers from noncarriers at the highest rate and was also the most well-calibrated 
(Chen et al. 2006).

18.3.3 � PancPRO

Pancreatic cancer is the fourth leading cause of cancer death in the United Status, 
and 7–10% of patients have a family history of pancreatic cancer. Germline muta-
tions in CDKN2A, PRSS1, BRCA2, and STK11 are known to increase this risk. 
However, when combined, these genetic factors account for less than 20% of the 
observed familiar aggregation, suggesting that additional susceptibility genes exist.

PancPRO is the first risk prediction model for familial pancreatic cancer and was 
developed to provide individuals with their probability of carrying a pancreatic can-
cer susceptibility gene and the absolute future risk of developing pancreatic cancer 
for user-specified age intervals (Wang et  al. 2007). As input, PancPRO receives 
information on the counselee’s family history of pancreatic cancer in all individuals 
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for whom it is available. History for affected family members includes the age of 
onset. For unaffected members, PancPRO takes in their current age or age of death. 
Because smoking is attributed to 25% of pancreatic cancers, future improvement to 
PancPRO includes adding smoking information on all family members.

PancPRO was validated on 6,134 individuals in 961 families who met the fol-
lowing criteria for inclusion in the validation study: alive and clinically free of 
pancreatic cancer at baseline; prospective follow-up data available; and not included 
in prior analyses used for model building (Wang et al. 2007). The study validated 
the absolute risk estimates from PancPRO and how well they discriminated between 
individuals who developed incident pancreatic caner during the follow-up period. 
PancPRO performed well in discriminating between those with and without inci-
dent pancreatic cancer and is useful in identifying high-risk individuals for ongoing 
and future early detection trials.

18.4 � Software

18.4.1 � BayesMendel R Package

The main framework of the BayesMendel models and all model development and 
improvements are housed in an add-on package of the statistical freeware R (http://
www.r-project.org). BayesMendel is implemented in an object-oriented structure 
in the language R and distributed freely as an open-source library (Chen et  al. 
2004). In its first release, BayesMendel included the BRCAPRO and MMRpro 
models. PancPRO was added in 2007. R is a flexible environment that allows users 
to input their own genetic parameters, if desired, and run calculations for many 
families in an efficient way. The R package is regularly updated with improvements 
and additions to the models.

18.4.1.1 � Functions and Data Sets

The BayesMendel R package library contains a series of functions and data 
sets. The functions can be grouped into two sets: (1) A core set of utilities and (2) 
A set of functions intended to be called by the typical user of BayesMendel. The 
core includes a set of functions (peeling, calc.future.risk, Check- 
FamStructure, FamilyHistoryContributions, TestContributions,  
rescale, PostIntervention, MakePenetPostIntervention, 
findids, CensorAtIntervention) that take the input family history 
information and perform the approach outlined in the Mendelian Modeling section 
above using the Elston–Stewart algorithm (Elston and Stewart 1971). These core 
functions are used by all of the specific models included in BayesMendel.

There are six main functions included in BayesMendel that are designed to be used 
directly. There are three main model evaluation functions: brcapro, MMRpro, and 

http://www.r-project.org
http://www.r-project.org
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pancpro, which take as input a family pedigree with all ages and diagnoses as 
discussed above, an indication of who the person being counseled is and other 
optional parameters. For each model, there is a function that allows users to set these 
optional input parameters, such as allele frequency, penetrance, sensitivity, and speci-
ficity of germline tests, and age intervals for computing risk estimates.

The data sets provided in BayesMendel include (1) penetrance values for each 
of the main models; (2) example breast, colorectal, and pancreas families; and 
(3) hazards of death excluding the cancer of interest for calculating future absolute 
risk of cancer. All of these data sets are in .RData format.

BayesMendel is implemented in an object-oriented fashion, which means that 
all data sets, numeric vectors or scalars, output from functions, models, plots, and 
lists are defined as objects and stored in the open workspace’s memory. R objects 
can be easily saved, manipulated, and called. Two concepts are central to object-
oriented programming: classes and methods (Team 2008). Classes define objects, 
and all objects in the BayesMendel library are members of the BayesMendel 
class. Methods are simply functions that are run on objects, such as the brcapro 
function in BayesMendel. In this case, brcapro is a method specific to the 
BayesMendel class. R contains generic functions, such as plot, which will look 
for the appropriate method to be applied to the input object based on its classes. 
In BayesMendel, objects output from the BayesMendel functions can be run 
through the function plot to produce a graphical display of the family pedigree 
and carrier probability results.

18.4.1.2 � Input and Output

Each of the main BayesMendel R functions, brcapro, MMRpro, and pancpro, 
take three main objects as input: the family pedigree in data frame format, the ID 
of the counselee in scalar format, and the parameters to be used in the calculation 
in list format (output from functions brcaparams, MMRparams and panc-
params). The functions return an object of class BayesMendel with the following 
components, referred to as slots: (1) family: the input family, (2) posterior: 
a matrix giving the joint probability of carrying mutations on the gene(s) of interest, 
(3) probs: a vector with the marginal probabilities of being a carrier or non-carrier 
of the gene(s) of interest, (4) counselee.id: The ID of the person for whom the 
calcualtion was performed, and (5) loglik: The total log-likelihood from the 
model. The functions also print the prospective absolute risks of developing the 
cancers of interest in age intervals of the user’s choice.

18.4.2 � CancerGene

CancerGene is a Windows-based, user-friendly, freely downloadable software 
program developed at the University of Texas Southwestern, Division of Surgical 
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Oncology (http://www4.utsouthwestern.edu/breasthealth/cagene/). It is run inde-
pendently from R, but interfaces with R to calculate BayesMendel estimates. 
CancerGene provides genetic counselors, physicians and other health professionals 
with an easy-to-use framework for generating risk predictions for their patients. It 
allows users to input their family pedigrees in a point-and-click interface and then 
runs the BayesMendel R package in the background to compute the risk scores. 
There are currently over 3,000 registered users of CancerGene.

18.5 � Examples

An example of a hypothetical family pedigree of a counselee who may present for 
genetic testing or counseling is shown in Fig. 18.1. The counselee is denoted by 
the arrow. Females are represented by circles and males by squares. Individuals 
unaffected by the cancers in question are denoted by empty symbols, and affected 
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OC  65

Fig. 18.1  Hypothetical family pedigree with a history of breast and ovarian cancers. BC breast 
cancer, OC ovarian cancer

http://www4.utsouthwestern.edu/breasthealth/cagene/
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members are either shaded black on the left for breast cancer and/or gray on the 
right for ovarian cancers. Ages of onset for affected and current age or age of death 
for unaffected members are listed below the symbols.

In this example, the counselee is a cancer-free, 57-year-old woman. Both her 
sister and maternal aunt had a unilateral breast cancer diagnosis at ages 45 and 85, 
respectively. Her mother had ovarian cancer at age 69 and maternal grandmother at 
age 65. Using the BRCAPRO program, the counselee’s probability of carrying a 
BRCA mutation is 28% (14% risk of BRCA1 and 14% risk of BRCA2). Her risk 
of developing breast cancer by age 67 is 7.4%. Her risk of developing ovarian 
cancer by age 67 is 4.4%. This calculation assumes that the counselee is not of 
Ashkenazi Jewish descent.

If we change the counselee’s mother to be a healthy 70-year-old woman, then 
the counselee’s carrier probability decreases to 4%. Her risk of developing breast 
cancer by age 67 is now 3.7%. Because the mother is now healthy at age 70, this 
suggests that she is less likely to carry a BRCA mutation. If we switch the ovarian 
cancer diagnosis of the counselee’s maternal grandmother to her paternal grand-
mother at age 60, then the counselee’s carrier probability goes up to 8%. Her risk 
of breast cancer by age 67 is 4.4%. Although the cancer diagnosis was just swapped 
between grandmothers, the paternal aunt also has a breast cancer diagnosis, which 
suggests a lineage in the cancer diagnoses and that the paternal grandmother and 
aunt may have inherited mutations.

18.6 � Discussion and Future Development

Family history is a highly efficient way of identifying individuals that are at 
high risk for cancer. Its role in cancer prevention is growing and will continue 
to grow with our ability to measure genomes inexpensively on a large number 
of individuals. The approaches we have developed for high-risk families can 
constitute the basis for a more extensive use of family information in personal-
ized medicine.

A critical juncture concerns the beast approach for deploying prediction algo-
rithms to the public. The approach described here is based on distributing tools to 
clinicians and counselors, who then use them directly. An alternative trend is to pro-
vide web-based services. From a computational standpoint, these have the advantage 
that the modelers retain full control over the calculations that are provided to the 
public. Upgrades are centralized and efficient. On the other hand it becomes more 
difficult to ensure that risk predictions are provided to the public in the context of a 
well-rounded interaction with a health-care professional. This is a concern motivated 
by ethical issues and by the challenges of communicating quantitative risk to the 
public in an effective way.
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Abstract  In large-scale transcriptome analysis with DNA microarrays, experimen-
talists are typically using clustering or pattern recognition algorithms that group 
genes with similar expression profiles into clusters of biological significance, which 
aid in interpreting the data. The choice of clustering algorithm and their parameters 
is essential, since they have a large impact on the final results. However, no stan-
dards have been established with regard to these choices, leading to the development 
of bioinformatics methods to quantify their final impact on the analysis.

ClutrFree is a visualization software package that provides a solution to the 
problem of comparing multiple clustering experiments. It features a graphical user 
interface for cluster visualization and a method for organizing clusters into mean-
ingful trees and highlighting stable features found in the data through a measure of 
persistence. It also allows for exploring gene lists within each cluster by measuring 
gene ontology enrichment and statistical significance.

Several data formats are supported (Multiple Experiment Viewer output and 
PattTools output), and a standard API is provided for developing plugin code for 
format extensions. This chapter presents ClutrFree features and shows examples of 
data analysis of phylogenomic profiles and of a microarray cancer dataset.

Availability: http://clutrfree.sourceforge.net
Links for documentation:

User guides and documentation are available from •	 http://clutrfree.sourceforge.net/
ClutrFree test datasets are available from •	 http://clutrfree.sourceforge.net/
clutrfree-datasets/
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19.1 � ClutrFree Description and Typical Analysis Environment

19.1.1 � Overview of ClutrFree

DNA microarrays have become a de facto standard for transcriptome activity 
exploration in several areas of biology. For instance, this technology has led to an 
established molecular classification of breast cancer (Sotiriou and Pusztai 2009) 
and has the potential of improving therapeutic strategies in personalized medicine 
(Sabatier et al. 2009). Public repositories such as the Gene Expression Omnibus 
(GEO, Barrett et  al. 2007) have been widely adopted by researchers to host and 
share data in a standardized sharing format: the Minimum Information about a 
Microarray Experiment (MIAME) (Ball and Brazma 2006). This set of minimum 
information is aimed toward allowing repeated experimentation and meta-analysis 
on similar datasets – that is, datasets generated on similar biological questions. 
However, no standards have yet emerged in terms of analysis and, in particular, 
clustering, which is typically applied to extract patterns from DNA microarray data-
sets. While hierarchical clustering has been widely used, there exist many other 
choices in statistical and computer science literature [neural networks, support vector 
machines, Bayesian Decomposition – see Do and Choi (2008) for a review]. This 
has been underlined by software suites that natively implement many clustering/
analysis techniques. Among them, the Multiple Experiment Viewer (MeV, Saeed 
et al. 2006) is a Java package that allows clustering DNA microarray data with mul-
tiple methods, including hierarchical clustering, self-organizing maps (SOM), neural 
networks, and others (see Chap. 15). A critical issue with this type of analysis is 
to make a rational choice for several parameters, which include the choice of clus-
tering method and the choice of mathematical or statistical parameters for a given 
method [e.g., the number of patterns for Bayesian Decomposition (Bidaut et al. 
2006) or K-means clustering (Quackenbush 2001)]. Typically, no guidance for a 
better algorithm choice or parameter choice regarding the data is provided. 
Nevertheless, the proper choice of such parameters is essential to extract the proper 
gene expression patterns and groups of genes from a large scale experiment, and 
techniques for providing such guidance for parameter optimization are needed.

Several strategies have been proposed to tackle this problem: A visualization 
approach to find the most appropriate clustering method to choose for an analysis 
has been proposed, based on detection of outliers and 3D visualization (Hibbs et al. 
2005). The use of validation measures has also been proposed for choosing clustering 
strategies based on cluster consistency (Datta and Datta 2006).

The major focus of this chapter is to describe ClutrFree (Bidaut and Ochs 2004) 
software in order to aid in devising a clustering strategy for large datasets. The basic 
principle of ClutrFree is to run several clustering algorithms on a given dataset, or 
a given clustering algorithm with parameter variations, and compare the obtained 
clusters by creating a tree of consistently stable clusters. We will also review its 
intrinsic capabilities, including gene list visualization jointly with Gene Ontology 
(GO) enrichment analysis, and extraction of stable data (genes or experiments) that 
are consistently present in several clustering experiments, regardless of the parameters 
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used. Data analysis is demonstrated on two datasets, a bacterial phylogenomic 
profiles dataset analyzed with Bayesian Decomposition and a large-scale microarray 
dataset clustered with K-means.

19.1.2 � Data Typically Analyzed

The data analyzed with ClutrFree are results of statistical clustering method(s) on 
DNA microarray data or phylogenomic profiles (Bidaut et al. 2005). Briefly, DNA 
microarray datasets are the results of measurement of RNA abundance across sev-
eral experiments. For instance, the Affymetrix HGU133Plus2.0 platform contains 
54,615 spotted probes, corresponding to ~47,000 gene transcripts in the human 
genome. Once the microarray has been scanned, expression data is quantified and 
normalized. Standard algorithms, such as GCRMA,1 are typically applied here, 
leading to an N × M table describing the expression of N genes across M experi-
ments. Data are then filtered (gene with low variance are removed) and clustered in 
suitable ways.

19.1.3 � Clustering Methods

Many clustering methods exist, as widely described in the bioinformatics literature 
(for a review of feature selection techniques, see Boutros and Okey 2005). The most 
widely used clustering algorithm is hierarchical clustering with average linkage and 
Euclidian distance. Its basic principle is recursive profile aggregation to create a 
dendrogram grouping genes with similar expression profiles. Experiments can also 
be clustered the same way to group conditions with similar expression across genes 
(for instance patients within the same molecular subgroup). Other methods include 
other variations of hierarchical clustering (maximum linkage, variation of distance 
measure), SOM, K-means or K-medians, Self-Organizing Tree Algorithm (SOTA), 
Bayesian Decomposition, and others. In the following paragraphs, we briefly 
describe two clustering methods that are used in the examples section.

19.1.3.1 � K-means

K-means (or K-medians when median is used instead of mean) is an algorithm in 
four steps:

(a)	 K centroids are chosen randomly in the data. K is the predetermined number of 
clusters to find in the data and the initial parameter of the algorithm.

1 Wu J, Rafael IR. gcrma: Background adjustment using sequence information. R package version 
2.16.0.
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(b)	 For each data point in a cluster, the nearest centroid is computed.
(c)	 Centroids are updated (mean of all gene profiles that belong to the same 

centroid).
(d)	 Repeat (b) and (c) until convergence.

This is a heuristic that does not guarantee convergence and whose results depend 
strongly upon the initial conditions, that is, the choice of the parameter K, and the 
initial locations of centroids, which makes it a case to use with ClutrFree for 
optimizing the choice of parameters. It has been implemented in many packages 
such as the Multiple Experiment Viewer (MeV), Bioconductor (Gentleman et al. 
2004), Matlab©, and others. K-means++ (Arthur and Vassilvitskii 2007) is a variation 
of the initial algorithm that chooses automatically initial centroids with a high distance 
from each other. In most practical implementation, the risk of falling into a local 
maximum is reduced through data point exchange between clusters during the search.

19.1.3.2 � Bayesian Decomposition

Bayesian Decomposition (BD) is a matrix factorization algorithm that retrieves 
simultaneously two matrices A and P from the data D, so that D = A⋅P + e, D being 
the initial data; P, a set of vectors representing patterns devised by BD; and A, a set 
of coefficients that describe pattern distribution in the data. Mathematical details 
are available here (Moloshok et al. 2002). A Gibbs sampler samples the solution 
space and minimizes the chi-square distance between data and the model A⋅P and 
operates on two stages: (a) the burn-in period during which the Gibbs sampler 
reaches an area of high probability in the sample space and equilibrates and (b) the 
sampling stage, during which the sampler is taking samples to draw A and P distri-
butions, with means and p-values for each matrix element.

This is a heuristic that does not guarantee convergence and whose results depend 
strongly upon the initial choice of parameters and the number of rows in P. It has 
been implemented in the PattTools package, available from the Ochs Lab.2

19.1.4 � Issues with Typical Visualization/Analysis Methods

Using one of these algorithms, the user will typically explore several clustering 
results obtained from several runs of various algorithms or the same algorithm with 
parameters variation (for instance, variations and number in K-means). This will 
generate multiple clustering results that need to be compared. However, typical 
visualization methods do not include the capability of using Gene Ontology 
annotations for assessing biological functions of multiple clusters obtained from 

2 http://www.cancerbiostats.onc.jhmi.edu/ochs.cfm

http://www.cancerbiostats.onc.jhmi.edu/ochs.cfm
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separate sources. This is generally done separately by using other programs, such 
as ErmineJ (Lee et al. 2005). Also, there are no built-in capabilities for comparing 
clusters using standard visualization tools.

19.1.5 � Details on Tool Function

ClutrFree allows for comparison of several clustering algorithms, or analysis of 
results from a unique clustering algorithm that runs with multiple parameter sets 
(for instance, K-means run with K ranging from K = 3 to K = 15). It uses a mixture 
of visualization approaches and statistical measures to integrate results from anno-
tation databases such as Gene Ontology or the Munich Information center for 
Protein Sequence (MIPS). ClutrFree functionalities are as follows:

(a)	 Loading multiple clustering experiments from the MeV or PattTools
(b)	 Visualization of average gene profiles from these clusters
(c)	 Computation of persistence, a measurement of cluster stability
(d)	 Computation of statistical enrichment for Gene Ontology or any hierarchical-

based annotations

19.1.6 � Description of Input/Output: Data Organization

ClutFree input data is a mixture of clustering outputs from several experiments. For 
instance, it allows the analysis of output from K-means with the number of clusters 
spanning from 5 to 10 on a dataset using MeV. Several plugins have been developed to 
handle multiple data formats and the user can develop his or her own plugin to handle 
newer formats if needed – an example of code is given in the documentation.

Data is basically organized in two matrices A and P. The P matrix (pattern 
matrix) contains the set of patterns found in the data. In the case of K-means, these 
patterns are the average profile of the groups of genes that belong to the same 
centroid. In the case of BD or principal component analysis (PCA), these patterns 
are the vectors on which data is projected.

The A matrix (distribution matrix) describes which genes are present in each 
cluster. In the case of K-means, each row of the A matrix represents a gene profile, 
each column a pattern, and the values are descriptors of a gene being present (v = 1) 
or absent (v = 0) in a given cluster. In BD or PCA, the A matrix quantifies the dis-
tribution of patterns in the data.

File system organization is the following (see documentation for more details). 
For each clustering run, a directory is created containing calculation results (for 
instance, K-means-X, with X being replaced by the number of clusters). Additional 
files are created to describe the data annotations as follows:

annot.txt: This is a tab-delimited gene annotation files. Annotations can be of •	
multiple types: gene IDs (multiple gene IDs can be provided in a free format), 
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description (free format string), and gene ontology (multiple formats are 
supported, as seen in Sect. 19.1.10). The file must be in the same order as the 
D matrix.
ontology.txt: This is an optional tab-delimited lookup table that contains gene •	
ontology terms.
expnames.txt: This file specifies conditions/experiments labels (listed on a single •	
row).
expannot.txt: This file describes annotations for experimental conditions. It has •	
to be in the same order as the experiments in the D matrix. Only one of the files, 
expnames.txt or expannot.txt, can be used by ClutrFree.

A typical directory organization is shown Fig. 19.1. ClutrFree is capable of generating 
publication quality images (TIFF/PNG /JPEG and SVG formats). It also allows for 
export of textual data from statistical analysis.

19.1.7 � Tree Algorithm

Two trees are constructed to allow data exploration and to underline cluster stability 
across parameter variation. The two trees are constructed using the same algorithm 
from rows of the P matrix or columns of the A matrix.

The different clustering runs are represented vertically, one run being repre-
sented by a set of horizontal nodes. The tree is started with the clustering results 
having the lowest number of clusters (Fig.  19.2a). Additional clustering runs 
are then added by connecting each node to the one having the highest correla-
tion (Pearson correlation is used here). Remaining nodes are added the same 
way.

<experiment_root_directory> <Kmeans-1>

<Kmeans-2>

<Kmeans-3>

<Kmeans-n>

annot.txt

...

ontology.txt

expannot.txt

schmidt-kmeans-1.txt
schmidt-kmeans-2.txt
schmidt-kmeans-3.txt

schmidt-kmeans-1.txt
schmidt-kmeans-2.txt
schmidt-kmeans-3.txt
schmidt-kmeans-4.txt

Fig. 19.1  An example of a typical ClutrFree directory structure. This example is taken from the 
Schmidt dataset analysis detailed in Sect.  19.2.2. The structure includes a set of subdirectory 
Kmeans*, each of them containing an individual clustering experiment. In this example, Kmeans-1 
contains three clusters and Kmeans-2 contains four clusters. The set of flat files contains gene and 
experimental annotations
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19.1.8 � Persistence Algorithm

Persistence can be measured at the gene level (A matrix) or the experimental con-
dition level (P matrix). Data must first be transformed into binary according to 
the threshold n⋅s, n being a number set by the upper slider on the main window and 
s the standard deviation on the gene expression profile.

Persistence at a given level is then calculated on values set to “1,” that is, 
above the n⋅s threshold, within a tree branch (see Fig. 19.2b), by counting the con-
secutive times a gene (or condition) has been set to “1” within the branch.

Results Of Algorithm 1
(2 clusters)

Results Of Algorithm 2
(3 clusters)

c=0.99 c=0.80 c=0.80

cluster from level i

cluster from level i+1

cluster from level i+2

P = 3P = 2
P = 3P = 1

Genes

Genes

Genes

Expression

Expression

Expression

Tree
Branch

a

b

Fig. 19.2  ClutrFree algorithms: (a) the basic principle of the tree construction algorithm. The two 
clusters on top and the three clusters on bottom have been obtained from two separate clustering 
experiments. The lower level is connected to upper level through maximization of correlation. The 
branch splitting on the right may also represent biological function splitting. (b) The persistence 
calculation algorithm. Each row represents a cluster gene expression profile or a gene membership 
list from a tree branch. Data is first converted in binary form in “0” and “1” (see text for threshold 
calculation). Persistence is calculated as the number of consecutive times an experiment or a gene 
is set to “1” (meaning present) in the branch
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19.1.9 � Description of User Interface

The ClutrFree graphical user interface (GUI) is composed of four windows to allow 
for multiple data type exploration and integration (Fig. 19.3):

The Main window (Fig. •	 19.3a): This is the main ClutrFree window, which 
allows for loading the data and visualizing the cluster profiles (P matrix rows). 
It shows the average profile of a given cluster. An arrow pad is provided, which 
allows navigation throughout all the clusters organized in the pattern tree. 
Multiple graphical features help the interpretation of cluster profiles. For 
instance, it is possible to see whether the current cluster is conserved across 
multiple experiments by looking at the corresponding pattern tree window 
(current pattern is highlighted in yellow color on the tree). In the main window, 
on the graph itself, each data point is represented as a stem or as a continuous 
profile (useful to examine time-dependent data such as time series for instance). 
On every stem background, vertical blue box thickness (see persistence box 
Fig. 19.3a) is proportional to a measure of persistence (Sect. 19.1.8) that quantifies 
the stability of this data point across multiple clustering experiments. The blue 
value within the parenthesis (at the top of each stem) is the actual persistence 
value. The yellow background of the stem means that the corresponding data 
point is below the threshold n.s. On top of the graph, experiment names are 
mentioned, and on the bottom, a color code is labeled. This color code is associated 
with hierarchical annotations provided in the “expannot.txt” file.

Main Window Gene Table

Pattern TreeMembership Tree Ontology Table

Persistence box

a b

cde

Fig. 19.3  The ClutrFree GUI. (a) The main window showing pattern found in the data. (b) The 
gene list window showing gene membership to each clusters and gene ontology enrichment statistics 
in (c). The pattern tree and membership tree windows are shown in (d) and (e), respectively
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The Gene Table (Fig. •	 19.3b): The table describes both gene annotation and gene 
contribution to each cluster and is divided into two parts horizontally, if files 
annot.txt and ontology.txt are correctly formatted and provided. The upper table 
shows the distribution of genes in the clusters (columns of A matrix), and the 
lower part gives enrichment statistics. In addition to the gene contribution to 
the cluster, the persistence value for each gene is also represented in dark blue. 
In addition to the values represented in the table, bar graphs are superimposed 
on these in order to improve general readability. Similarly, yellow bars are used 
for gene cluster contributions and blue for persistence. In order to filter genes 
that are considered more stable in the data, a persistence filter is on the window 
top – allowing the user to keep only genes that have a minimum persistence on 
one or several branches. Two columns show textual data: the first column is a 
gene ID (multiple ID systems can be provided to ClutrFree and chosen from a 
radio button), and the second is the Gene Ontology. Multiple ontology sys-
tems are supported, including the Gene Ontology Consortium (Ashburner et al. 
2000), the MIPS database ontology, and the EcoCyc database ontology (see 
Sect. 19.1.10).
In the lower part of the gene table (Fig. •	 19.3c), statistics are provided in two 
forms for gene ontology enrichment. Using the binary data for each annotated 
gene in a given cluster and the total number of genes in the current cluster and in 
the full dataset, two values are computed: the relative ratio enrichment and the 
p-value based on the hypergeometric distribution (see Sect.  19.1.11.7 for 
mathematical details). Each measurement is showed in the form of a bar 
graph in the table; yellow color is used for enrichment and orange for p-value. 
Two filters are present to highlight ontology in the table according to two 
criteria. The left slider controls the highlight threshold for enrichment values 
on the range [0–2.0] (represented on the UI by the 0–200 interval). The right 
slider controls the threshold to display ontology terms according to their 
instance numbers. This allows focus on either higher level ontology terms 
(more genes and less specific annotations) or lower level ontology terms (more 
specific annotations).
Pattern tree (Fig. •	 19.3d): Two trees are generated by ClutrFree (see Sect. 19.1.7). 
The pattern tree windows display the tree generated with the patterns. Several 
parameters can be changed from the window menu. If ontology terms have been 
loaded by ClutrFree, they can be superimposed on the tree in the form of a pie 
(Menu [Display][Ontological Pies], see Fig.  19.4a). Since it is impossible to 
display all ontology terms on top of every node, only the most representative are 
displayed. These are parameterized by values set on the [Option] dialog (menu 
[Display][Options]). Tree options that can be parameterized include a p-value 
threshold, upon which ontology terms are not displayed (default = 0.1), a mini-
mal level for ontology terms (default = 0 – all ontology terms are displayed), and 
a minimal enhancement value. Optionally, users can display correlations 
(Fig. 19.4b).
Membership tree (Fig. •	 19.3e): This window is similar to the pattern tree window 
in features and functions and provides a view for the membership tree.
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19.1.10 � Ontology Types

Three Ontology formats can be used: the MIPS format, the Gene Ontology 
Consortium format, and the EcoCyc format. Three examples are shown here for the 
annot.txt or ontology.txt file format (only two rows are shown). The corresponding 
rendered display is shown Fig. 19.5:

MIPS format (Fig. •	 19.5a):

Annot.txt File:

ID: 
names

Desc: 
Feature 
Type Hipath:mips

Hipath: 
mips

Hipath: 
mips

Hipath: 
mips

Hipath: 
mips

Hipath: 
mips

YAL 

067C

CDS CELLULAR 
TRANSPORT, 
TRANSPORT 
FACILITATION 
AND 
TRANSPORT 
ROUTES BC-20

Transported 

compounds 

(substrates) 

BC-20.01

Ion transport 

BC-20.01.01

Anion  

transport  

(Cl, SO4,  

PO4, etc.)  

BC- 

20.01.01.07

CELLULAR 
TRANSPORT, 
TRANSPORT 
FACILITATION 
AND  
TRANSPORT 
ROUTES BC-20

Transport 

facilitation 

BC-20.03

Fig. 19.4  Tree with superimposed ontology. If ontology is provided, it can be superimposed to 
the pattern tree, showing biological significance for all the experiments currently analyzed. 
Parameters for displayed ontological pies (threshold for p-values, ontology size) can be set from 
the options dialog
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EcoCyc format (Fig. •	 19.5b)

Annot.txt file

ID: blattner ID: tub ID: name ID: eg Desc: EcoCyc Description

b3702 Rv0001 dnaA EG10235 DNA biosynthesis; initiation; 
binding protein

b3701 Rv0002 dnaN EG10242 DNA biosynthesis; sliding clamp 
subunit; required for high 
processivity; DNA polymerase 
III beta-subunit

Ontology.txt file:

b3702 Regulation 
BC-3

Type of 
regulation 
BC-3.1

Transcriptional  
level  
BC-3.1.2

Action unknown 
BC-3.1.2.5

Information 
transfer BC-2

b3701 Information 
transfer 
BC-2

DNA related 
BC-2.1

DNA replication 
BC-2.1.1

Location of gene 
products 
BC-7

Cytoplasm 
BC-7.1

Gene Ontology Consortium Format (Fig. •	 19.5c):

Annot.txt file:

ID:Probes

205916_at
205509_at

MIPS ontology

Ecocyc ontology

Gene Ontology Consortium ontology

a

b

c

Fig. 19.5  This figure shows ClutrFree rendering for several gene ontology systems. ClutrFree 
currently supports: (a) The MIPS (Munich Information center for Protein Sequences) annotations, 
(b) the EcoCyc annotations, and (c) the Gene Ontology Consortium annotations
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Ontology.txt file: (only the two first columns are represented – the file contains 
annotation for the whole Affymetrix HG-U133A platform).
209728_at GO:0006955 – immune response GO:0002376 – immune system 

process
209728_at GO:0002504 – antigen processing 

and Presentation of peptide 
or polysaccharide antigen via 
MHC class II

GO:0019882 – antigen processing 
and presentation

209729_at GO:0007050 – cell cycle arrest GO:0022402 – cell cycle process

19.1.11 � Technical Details

19.1.11.1 � Language(s) used

ClutrFree is currently developed in Java under Eclipse Ganymede with JRE 6.0. 
The system can be compiled and used on any platform capable of running the Sun 
Java Virtual machine version 6.0.

19.1.11.2 � Ancillary Tools Needed for Compilation and Application Hosting

ClutrFree is hosted on Sourceforge3 (CVS and main Web site). Compiled code can 
be downloaded for direct use (File Clutrfree-1.40.zip), and source code can be 
checked out from CVS. Details are given in the documentation.

19.1.11.3 � Version/Suite Dependencies

ClutrFree does not allow for any low-level analysis on microarray data (such as 
normalization and probe calculation) or clustering – this has to be done on third 
party software. For Affymetrix data normalization, we recommend the affy package 
from Bioconductor (Gautier et al. 2004). For clustering, we recommend the use of 
PattTools and MeV. The current version is ClutrFree 1.4, which can be used seam-
lessly with MeV 4.0.

19.1.11.4 � Options for Assistance from Developers

The hosting Web site on Sourceforge hosts a Web page for feature requests4 and a 
bug tracker.5

3 http://clutrfree.sourceforge.net
4 https://sourceforge.net/tracker/?group_id=182093&atid=899833
5 https://sourceforge.net/tracker/?group_id=182093&atid=899830

http://clutrfree.sourceforge.net
https://sourceforge.net/tracker/?group_id=182093&atid=899833
https://sourceforge.net/tracker/?group_id=182093&atid=899830
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19.1.11.5 � References to Published Manuscripts

Bidaut G (2007) Gene function inference from gene expression of deletion mutants. 
Methods Mol Biol 408:1–18.

Bidaut G, Suhre K, Claverie JM, Ochs MF (2006) Determination of strongly over-
lapping signaling activity from microarray data. BMC Bioinform 7:99.

Bidaut G, Ochs MF (2004) ClutrFree: cluster tree visualization and interpretation. 
Bioinformatics 20(16):2869–2871.

19.1.11.6 � Code Extension: Development of Plugins

Since the code is available under the General Public License, it can be modified to handle 
new calculation types, as allowed by its object architecture. Also, a plugin system allows 
for development of new data types handler. Details are found in the documentation.

19.1.11.7 � Statistical Enrichment

Relative ratio enrichment formula:•	
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e GO i pattern j
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Hypergeometric distribution•	
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•	 k being the number of occurrences of GO i in pattern j.
•	 g being the number of annotated gene(s) in pattern j.
•	 K being he number of occurrences of GO in whole experiment.
•	 G being the number of annotated genes in whole experiment.

Details of the practical implementation can be found in the ClutrFree source code 
(file GOData.java).

19.2 � Representative Examples of the Tool in Use

Two representative examples of data analysis are provided, presenting analysis on 
two distinct data types. The first describes analysis of phylogenomic profiles based 
on Bayesian Decomposition (PattTools) and ClutrFree. The second analysis is 
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about clustering cancer type microarray data (Affymetrix platform U133A). 
Bioconductor and MeV are used for clustering, and those results are combined and 
compared in ClutrFree.

19.2.1 � Analysis of Clusters from Bayesian Decomposition 
Analysis of Phylogenomic Profiles

19.2.1.1 � Data Gathering

The data represents BLAST score alignments (e-values) for 31 bacterial genomes 
to a set of reference genes. Each gene profile quantifies sequence similarity with 
31 bacteria. Data is generated with specific scripts which are not described here. 
The final dataset is provided in the supplemental data. The biological background 
has already been described (Bidaut et al. 2005).

19.2.1.2 � Computing Environment

Data analysis is done on a Unix-like type of system (CentOS, Ubuntu, MacOSX, 
or Cygwin). Access to a high-end server or workstation is required, preferably a 
multicore processor with at least 2 GB of RAM and 100 MB of free disk space. The 
PattTools package has to be installed (http://www.cancerbiostats.onc.jhmi.edu/
PattRun.cfm).

19.2.1.3 � Clustering Analysis

The file “merged.txt” has to be loaded in PattTools. The algorithm used is Bayesian 
Decomposition, and several runs with variation of the number of patterns have to 
be done. For this dataset, we decomposed the data between 3 and 31 patterns. 
Description of the procedure is found in (Bidaut 2007). Annotations are from the 
EcoCyc database.

19.2.1.4 � Visualization with ClutrFree

The resulting data is loaded in ClutrFree for visualization. The main window shows 
patterns with contributions of each bacterial genome. Each of these corresponds to 
clusters of genes that are conserved within groups of bacteria. Various patterns are 
described in (Bidaut et al. 2005).

http://www.cancerbiostats.onc.jhmi.edu/PattRun.cfm
http://www.cancerbiostats.onc.jhmi.edu/PattRun.cfm
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19.2.2 � Analysis of Clusters Generated from the Multiple 
Experiment Viewer on Publicly Available Cancer Data

This is an example of a complete data analysis of cancer microarray data. The data 
is from a large-scale breast cancer study using the Affymetrix U133A platform  
(Schmidt et al. 2008). Genomic prognostic motifs are studied on gene expression 
profiles from 200 tumor samples from breast cancer patients, who were not treated 
after surgery.

19.2.2.1 � Computing Environment

Data analysis is done on a Unix-like system (CentOS, Ubuntu, MacOSX, or Cygwin). 
Access to a high-end server or workstation is required, preferably a multicore processor 
with at least 8 GB of RAM and 1 GB of free disk space. The following software has to 
be installed: R (Version 2.8) and Bioconductor (Version 2.3),6 The MeV (Version 
4.2.03),7 ClutrFree (latest version 1.4),8 and a spreadsheet program. Instructions and 
links for each program are available in the supplementary data Web site.

19.2.2.2 � Data Gathering

We downloaded the data from the public repository GEO. The accession number for 
the dataset is GSE11121. Description of the dataset and links to various files are avail-
able at http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE11121.

The data is available as a raw file and can be downloaded with the following 
commands:

$ mkdir schmidt-cel
$ cd schmidt-cel
$ wget http://www.ncbi.nlm.nih.gov/projects/geo/query/
acc.cgi mode=raw&acc=GSE11121&db=GSE11121%5FRAW.tar& 
is_ftp=true?

ClutrFree Annotation data for the platform (Affymetrix U133A) is available from the 
Automated Service Annotation Pipeline (ASAP) system v2.6.9 Registration is 
needed at first use. Once logged, click on the “Query” tab and choose the “db/
AffyAnnotation” plan. Then, choose the HG-U133A platform and select the “Additional 
output for ClutrFree” box. Than, start the job by clicking the “query” button.

6 Installation instructions are here: http://www.bioconductor.org/docs/install/
7 Available here: http://www.tm4.org/mev.html
8 Available here : http://clutrfree.sourceforge.net/
9 http://hammurabi.onc.jhmi.edu/cgi-bin/ASAP/login.pl

http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE11121
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi
http://www.bioconductor.org/docs/install/
http://www.tm4.org/mev.html
http://clutrfree.sourceforge.net/
http://hammurabi.onc.jhmi.edu/cgi-bin/ASAP/login.pl
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Once done, ASAP allows downloading ClutrFree files for the three main Gene 
Ontology Trees. Note that we keep only the “Biological Process” data for this analysis. 
Once downloaded, the file is saved under “NNN_ontology_process.txt,” where 
NNN is an index number generated by ASAP.

19.2.2.3 � Analysis

Normalization:•	

Normalization is performed with bioconductor. Detailed documentation is available 
from the affy vignette: (command vignette(“affy”) at the R prompt).
Data has to be uncompressed with the following command:

$ tar xf GSE11121_RAW.tar

We then normalize it with the following R commands:

> library(affy)
> SchmidtData = ReadAffy()

Data is normalized with the GCRMA function from the gcrma library.

> library(gcrma)
> expr = gcrma(SchmidtData)

After normalization, the data is exported on the disk:

> write.table(expr, ‘NormalizedSchmidt150509.txt’);
> q()

Variation filtering and •	 K-means clustering:

Clustering is performed within the MeV environment. On our system, MeV is 
invoked with the following command:

$ /opt/MeV_4_3_02/tmev.sh

�Once loaded, click on the [file] menu, and select the “NormalizedSchmidt 
150509.txt” data file.

Adjust data, data filters, variance filter, and percentage of highest SD genes. We ––
set the filter to 3%.
Expand “data filter–variance filter.”––
Save the resulting dataset as “schmidt-expression-file-668-200.txt.”––

�Edit the file within Excel© or OpenOffice™ spreadsheet to remove all annota-
tion columns and to keep only the ProbeIDs. Restart the MeV session and load 
the “schmidt-expression-file-668.txt” file.

Create a new Script, name it as “schmidt-kmeans-3-20”––
Right click Add Algorithm Node––
Select the “KMC” algorithm (–– K-Means/median Clustering)
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Parameters for –– K-means are “Distance Metric Selection”: “Pearson Correlation” 
and “number of clusters”: 03
Restart the two last steps by varying the number of clusters from 04 to 20––
Right click on “Primary Data” on the “execute script” item––

MeV is now processing the data.

Data organization for ClutrFree:•	

Every K-means output must be placed in an appropriate subdirectory. First, one 
creates a subdirectory containing the data to load in ClutrFree:

$ mkdir Schmidt-clutrfree

Then, one creates each subdirectory.

$ mkdir KMeans-XX (with XX varying from 03 to 20)

The ontology file generated with ASAP must be linked or renamed:

$ ln –s 75012_ontology_process.txt ontology.txt

The full directory tree is available from the supporting Web site as a tar archive.

�Back to MeV, results are found under the “Script Results” tab. Numerical data is 
under “Results.” To open the results for the K-means run with three centroids, open 
the first “KMC – genes” tab, “Centroid Graphs.” On the graphics pane, do a right 
click, to bring up the “Save all clusters” menu, and save the result under the 
“schmidt-clutrfree/Kmeans-03” subdirectory, under the name “Kmeans-03.”

�The same operation has to be repeated for all K-Means runs until the directory 
structure has been filled.

Data annotation:•	

The first column of the “schmidt-expression-668-200.txt” file has to be copied 
into the “annot file.” The column header has to be set to “ID:Probes.” Additional 
information such as gene ID or gene symbol can also be specified, and the 
header must be specified as “ID:gene symbol” for instance. The file has to be 
stored under the schmidt-clutrfree directory.

�The file generated with ASAP has also to be copied in this directory and linked 
as “ontology.txt.”

19.2.2.4 � Visualization with ClutrFree

ClutrFree is launched with the following command:

$ java –Xmx1024M –jar clutrfree.jar

Data is loaded with the file menu. The experiment directory root must be 
selected for data loading (“schmidt-clutrfree”). Once data has been correctly 
parsed, ClutrFree displays the following message: “ClutrFree has successfully 
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loaded 18 experiments”; the current experiment has three clusters of length 18. The 
Tree windows show the current position within the tree.

Patterns found and corresponding clusters can then be explored and analyzed 
with GO enrichment and hypergeometric p-values measurements (Fig. 19.5).

19.3 � Future Development and Enhancement Plans

Several development avenues are currently considered for ClutrFree. First, persis-
tence measurements can be refined to include measures for stability of genes/
conditions under threshold n⋅s and set to “0.” Also, the calculation of hypergeometric 
distribution could be done for depleted categories (as opposed to enriched categories) 
as an option.

To accommodate high-throughput studies on large dataset compendia, develop-
ment of a command line version of Clutrfree for scripting is envisioned. It would 
be also possible to turn it into a Web application.

Hierarchical clustering is not supported at this time, even though this algorithm 
is widely employed in array data analysis. This is due to the inherent dendrogram 
structure that is more complex to handle than gene lists. Also, Gene Ontology dis-
play must be improved, and a color system to accommodate the GO hierarchy is 
envisioned.

On the longer term, the ASAP system could be integrated with ClutrFree, and 
data could be automatically loaded from it through the network.
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Abstract  Dynamic documents that combine text and code, which is evaluated to 
dynamically create content when the document is “rendered,” for example, Sweave, 
are a large step forward in reproducible data analysis and computation. However, to 
capture the research process, we need richer paradigms and infrastructure. The pro-
cess includes all the investigations and computations, and not just the final reported 
ones, and the entirety represents reproducible research. In addition to richer para-
digms for reproducability, we want to be able to capture more complex aspects of 
the computational process, such as the use of multiple languages, and also engage 
different communities using other programming languages so that reproducible 
computations and research become more widespread. We also need to integrate 
existing and future approaches with commonly used tools such as Microsoft Word 
and make the resulting documents richer for authors and readers. We present two 
approaches to structured, dynamic documents that use modern, ubiquitous standard 
technologies (XML) and provide extensible infrastructure for richer documents. 
The first integrates R and Microsoft Word for use by a broader audience and pro-
vides some innovations in this interface, and the second uses eXtensible Stylesheet 
Language (XSL) and R to provide a flexible and extensible infrastructure for richer, 
more accessible dynamic documents.

20.1 � Introduction

Dynamic documents as a means to reproducing computational results are gaining 
prominence in statistics and science generally. Systems such as Sweave (Leisch 
2002) and odfWeave (Max Kuhn 2008) provide ways to author documents containing 
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code that is evaluated when the document is processed. This greatly enhances the 
standard of reproducibility in research. The computations that produce the reported 
results are available to both the author and other researchers.

Reproducible research is a broader, more ambitious goal than dynamic docu-
ments. While richer than regular documents, dynamic documents are still lin-
ear/sequential reports of what the author decides to present. They differ in that 
the results of the computations are “guaranteed” to come from the reported 
computations. Ideally, we would also be able to explore what the researcher 
actually did in totality. We would be able to see the different approaches that 
she pursued but did not report or that she considered but did not pursue and 
possibly why. This information is of great value to other researchers, reviewers, 
and students, but it is lost in publication and often to the researcher herself. To 
capture and archive the research process, we need to go much further than cur-
rent dynamic documents.

Sweave and related systems are quite closely coupled to R (R Development 
Core Team 2008) and LaTeX (Mittelbach et al. 2006). The ideas are generaliz-
able to other languages and formats and there are drivers for SAS and for Open 
Office (http://www.openoffice.org) and HTML output. However, the noweb-
based (Ramsey 1994) syntax of Sweave is quite limited in supporting richer, 
more structured documents. Documenting analyses that use a mixture of pro-
gramming languages such as the UNIX shell, Python, Perl, R, or C is not easily 
done. Furthermore, developing or extending drivers for different formats is com-
plicated because the framework and associated tools are somewhat ad hoc and 
nonstandard in terms of word processing. Using more ubiquitous and standard 
technologies would facilitate new experiments and developments and dissemi-
nating the practice to other communities.

We envisage a system for dynamic documents that acts much like an electronic 
laboratory notebook. The researcher(s) would passively capture the computations 
they perform and be able to organize them as tasks and subtasks at different resolu-
tions. Some code analysis tools would help her visualize and manage these tasks. 
She would be able to project the document into papers for different audiences, for 
example, a paper that describes the conclusions of her work for a journal, another 
that provides more extensive details about the work such as a technical report, and 
an interactive document which reviewers could explore at different levels of detail, 
that is, “drill down.” Readers would be able to examine the tasks and the computa-
tions. They would be able to run “what-if” computations, bringing in new data sets 
or selecting alternative approaches to tasks, for example, using a different classifi-
cation technique. Using (partially automated) metadata from the document and the 
code, interactive views of the document would allow readers to change parameters 
in the computations and explore, for example, sensitivity and robustness of the 
results and conclusions.

In order to develop a new system for reproducible research and rich docu-
ments capable of these facilities, we believe we need to use more extensible, 
ubiquitous, and standard technologies suited to both modern publishing and 

http://www.openoffice.org
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programmatic manipulation. In this short overview, we describe two systems 
that provide infrastructure that we believe can grow to support this more ambi-
tious style of dynamic and interactive documents. Both approaches exploit the 
eXtensible Markup Language (XML) and related technologies (XPath, XSL, 
XInclude) as the foundation. The first approach allows researchers to author 
dynamic documents using Microsoft Word. The second uses Docbook – an XML 
format for technical documents akin to LaTeX – and provides a highly extensi-
ble framework. XML is a natural choice as the model relies on being able to 
markup the different elements to provide structured documents. XML is very 
widely used in modern software, and the connection with XML technologies 
allows us to easily connect the documents with new Web formats and modern 
publishing tools. The structured nature of these documents and powerful tools 
for operating on them also allows us to build more automated document valida-
tion tools (e.g., the XDocTools package for R) that check cross references, 
synchronize and update documents and the software they reference, verify code, 
check table and figure captions, dynamically construct content, spell check 
diagrams, and so on.

The software we describe is available in the R packages RWordXML and 
XDynDocs with support from several additional packages (ROOXML, 
Rcompression, and XML). These packages are made available under the very per-
missive Berkeley Software Distribution (BSD) license. They have been designed 
with extensibility and customization by others as a primary goal. As a result, they 
offer a platform for us and others to experiment with richer forms of dynamic docu-
ments and reproducible computational-based research techniques. They also trans-
fer to other programming environments, for example, MATLAB or Python, very 
naturally. Similarly, some of the new ideas from the R-Word interface for dynamic 
documents apply to odfWeave and Open Office.

In the rest of this chapter, we give a very high-level description of how one can 
use the software that we have developed for authoring and processing dynamic 
documents. We describe the high-level aspects of Microsoft Word in Sect. 20.2 and 
follow this with a discussion of the R-Docbook-XSL approach.

20.2 � Using Microsoft Word and R for Dynamic Documents

Before we discuss details of how one authors or generates content in a dynamic 
document, it is useful to describe some terms that we will use below. The author/
researcher creates a Word document (a .docx file) that contains both text and 
R code. This is the source or input document. To generate the paper or document 
for a reader, we take a copy of this source .docx file, evaluate the code, and insert 
the results into this newly created copy of the input .docx file. The original .docx 
file remains unaltered by the processing to generate the results. The RWordXML 
package does this dynamic processing and we will discuss this below. The important 
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thing to keep in mind is that the input and output documents are very similar but 
they are two separate documents. One can use Word to create a PDF or HTML ver-
sion of the output document.

20.2.1 � Authoring Dynamic Documents with Word

The aim is to allow users of Microsoft Word to conveniently create dynamic 
documents using a familiar interface. The author writes and formats text in the 
usual manner, adding new sections, titles, lists, tables, and regular text. To make 
the document “dynamic,” she adds code by writing it directly or cutting and 
pasting it from an R session or a file. The key step is that she must identify the 
code as being dynamic (and not just text that happens to be code) so that it will 
be evaluated when we project/process the document. Styles are used to perform 
this markup and identify the content of the document as a block of R code, an 
inline R expression (the value of which is part of sentence), R code that produces 
a graphical display, an R function definition, or R language elements such as a 
reference to an R package or function or class, a function parameter, and so on. 
There are also styles for identifying code that is to be evaluated but not displayed 
in the output document and for code that is to be displayed for the reader, but 
not evaluated.

The author sets the style for a paragraph or segment of text either by selecting/
highlighting the existing content and applying a style or by setting the style and 
then adding content. To apply a style, she chooses the particular style from the 
Styles section of the Formatting Palette. This is shown in Fig. 20.1. This example 
document contains code for the two R plots, each of which is indented and 
colored red via the “R lattice plot style” (a particular graphics system in R). 
The selected word “lattice” is the name of an R package and so will be given the 
“R package style.”

Because the number of available styles can be overwhelming and difficult to 
work with, we provide an additional “R formatting” toolbar that presents the col-
lection of R-specific styles and makes applying styles significantly more conve-
nient. We also provide key bindings or shortcuts for applying these R-related styles 
for those of us who do like to avoid using the mouse.

In addition to using styles to identify R code, an author can also include R output 
from the computations and use the “R output” style to identify it. This helps the 
author to see the actual results in the document as she is authoring it. When the 
document is processed and the code is reevaluated, this output area will be replaced 
with the actual output. However, this manually inserted output serves a potentially 
valuable purpose. The author can format the output as she wants the results to 
appear in the final view/projection of the document. For example, she may change 
the margins, color or font of the text, and the width and color of columns in a table 
or specify a style for the output. Similarly, she may include an R plot and specify 
its format (PNG, JPG, PDF) and its dimensions. When we process the document 
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dynamically and insert the new results of the computations, we attempt to insert the 
R results into this format. Rather than specifying options via noweb syntax within 
the document, the author can use Word tools to specify the format of the results. 
This gives the author a great deal of control over the appearance of the final docu-
ment in a familiar and natural manner for Word users.

Styles are pivotal for our software. They are also an underused but important 
part of rendering text in word processors, HTML documents [via Cascading Style 
Sheets (CSSs)], etc. They attempt to separate content and structure from appear-
ance. They allow authors to control the appearance of all the content that share a 
particular style (both within and across documents). Centralizing the definition of 
a style makes it easy to update the characteristics of the style and immediately 
update the appearance of all corresponding text. In addition to appearance, we 
make use of styles as markup and structure so that we can identify the nature or 
purpose of particular text when processing the document. It is imperative that 
authors use these styles in order to identify the code. It is also useful to identify 
R concepts such as the names of R functions, packages, classes, and parameters 
so that we can programmatically not just manipulate the dynamic code, but also 
validate and synchronize the content with respect to the software being used in 
the code.

Fig. 20.1  Here, the author of a Word document uses styles to markup content such as R plot code, 
R function, and package references. The word “lattice” has been selected for marking up as an 
R package. Styles can be selected from the regular Formatting palette toolbar on the far right. 
For convenience, we provide an additional toolbar with just the R-related styles which is on the 
left of the Formatting palette
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20.2.2 � Processing the Dynamic Document

Having created the dynamic input document, the author turns to the separate 
step of creating the output document. To do this, she (or someone else) calls 
the R function wordDynDoc() in the RWordXML package. The function 
requires two arguments: the name of the input .docx file and the name of the 
output file. For most uses, this is all that is needed. The function reads the 
content of the Word document and finds all the content that has R code-related 
styles. It then evaluates the code in these blocks sequentially. It takes the val-
ues obtained by evaluating each block and uses the generic function toWord-
processingML() to create XML representations that are inserted into the 
output document. At the end of this process, the newly generated document is 
stored in the output .docx file.

The wordDynDoc() function has options that control how and where the 
code is evaluated and whether the code in the original document is displayed in 
the output document or not. The function also reads R-specific options stored in the 
input document’s metadata as Word properties. This is a convenient way to specify 
characteristics such as the default number of digits, the type of graphics device, etc. 
without requiring the caller of wordDynDoc() to specify them each time.

The process is highly extensible. An R programmer can define methods for 
the toWordprocessingML() function to control how R objects of differ-
ent types are converted and displayed in a Word document. The RWordXML 
package provides many utility functions for such programmers to leverage 
when creating WordprocessingML (Vugt 2007) content and querying and 
modifying Word documents, for example, to find all section titles or hyper-
links; insert data from R as a list or table. An R programmer can also pass their 
own function to wordDynDoc() that is used to process each code node 
within the Word document. This can use alternative techniques to evaluate the 
code and render the results. This mechanism allows us, for example, to inte-
grate caching of results using a package such as cacher (Peng 2008). This 
permits us to avoid reprocessing lengthy computations each time the document 
is generated when the particular code nodes have not changed, only evaluating 
the code for modified content.

In addition to programmatic extensibility, the author of a Word document can 
introduce new styles. These can be new formatting of existing styles such as how 
the margins or color for R code appears, or they can be markup for new struc-
tured elements within the document. The new styles should be built or extended 
from existing ones using Word’s “based on” property for styles. For example, by 
basing a new code style on the “R code” style, the authors are guaranteed that 
wordDynDoc() will recognize content that uses such a style as R code and 
include it in the processing. This gives a simple object-oriented flavor for struc-
tured styles.

While we have focused on the dynamic aspect of these documents, we should 
note that the author can easily extract just the code from the document or even 
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source the code directly into the R session using the xmlSource() function. This 
allows Word to be used as a literate programming environment.

There are many additional aspects to the RWordXML and ROOXML packages 
for working with Word (and Excel) documents, but these are not our focus here. We 
end this section by noting that the package is available for both Windows and Mac 
OS X operating systems. It can be installed with all its dependent packages using 
the R command:

install.packages (“RWordXML”,  repos = “http://www.omegahat.org/R”,
dependencies = TRUE)

20.2.3 � Drawbacks

The approach leverages the familiarity and strengths of Word and is attractive to 
those who write documents using this interface. This does limit the audience to 
Microsoft Windows and Mac OS X users. Some of the ideas are available via Open 
Office via new elements of odfWeave. Cutting and pasting code from R into a 
Word document can be somewhat tedious. We would prefer a mechanism that 
allows the code to be inserted directly from R into the current point of the Word 
document. This is not feasible in this approach as the Word document cannot be 
edited while it is being accessed from within R. On Windows, it is reasonably 
straightforward to use DCOM technology from within R to have synchronized 
access within both systems.

Word is a graphical user interface and it allows its users to perform word pro-
cessing tasks for “linear” or sequential documents. It is somewhat difficult to 
enhance the interface and markup to conveniently allow for richer markup such as 
customizations for evaluating the code or alternative approaches/branches within an 
analysis. We turn our attention next to an approach that does allow this and removes 
us from the world of graphical word processors.

20.3 � Dynamic Documents with XML Technologies

Microsoft Word and Open Office use XML to represent a document internally, but 
provide high-level graphical interfaces for the authors to format the document as 
they want it to appear for the reader (WYSWIG – what you see is what you get). 
Many authors prefer writing documents directly using a typesetting language such 
as LaTeX (or TeX) to specify how the content is to appear. This is more direct in 
some ways and also gives the author significantly more control. It also allows the 
author to programmatically manipulate the content of documents to some extent. 
(La)TeX, however, is not widely used outside of mathematically oriented commu-
nities. LaTeX source documents are also not amenable to robust structured query 

http://www.omegahat.org/R
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and manipulation. Furthermore, they do not fully separate content from appearance. 
Also, LaTeX does not readily support more modern aspects of dynamic, interactive 
publishing used with Web technologies.

Instead of using a LaTeX-like language for formatting text, some authors use the 
XML-based vocabulary Docbook (Walsh and Muellner 1999) for writing structured 
text documents such as books, articles, and software documentation. Once the 
author has used this markup language to describe the content, we use XML tech-
nologies such as XSL to transform the document into any of several different for-
mats (e.g., PDF and HTML) for different audiences, for example, content such as 
low-level details omitted for general readers or just the code for developers.

We will not go into great detail about Docbook, XML, and XSL. We will, how-
ever, illustrate the basics of each and discuss how the pieces are connected for creat-
ing dynamic documents. Docbook has extensive documentation, including two 
online books that cover all major aspects of its use. Knowing only about 15 
Docbook elements, an author only needs to additionally know the basic structure of 
an XML document to be able to create a Docbook document. To write the Docbook 
content, one can use any text editor. We use emacs and nxml-mode. Alternatively, 
one can use an XML content editor such as XMLSpy. To “project” a (dynamic) 
Docbook document into HTML or PDF, one does not need to know any XSL but 
just the command to apply XSL to the document.

The author might start by creating an article that looks something like the 
following:

<article xmlns:r=”http://www.r-project.org”>
<title>Analyzing Traffic Flow</title>
<section><title>Introduction</title>
<para>
This article looks at the flow of cars along a
section of Highway 80 in California just outside of 
Sacramento.
</para>
</section>
</article>

Hopefully the meaning of the XML elements such as <section>, <title>, and 
<para> (paragraph) are self-explanatory. The key thing to note is that this must be 
legitimate, well-formed XML. All elements are of the form <name>…</name>, 
that is, with opening and closing named tags and properly nested. Elements 
can have child elements, for example, <article> has <title> and <section>, and 
<section> has <title> and <para>. The resulting document is a hierarchical tree 
structure. Other Docbook elements used frequently include <ulink> for hyperlinks, 
<emphasis>, <table>, <figure>, <xref> for cross-references within and between 
documents, <itemizedlist> and <listitem>.

XML permits extending a vocabulary and we have added new elements to the 
Docbook vocabulary to introduce new concepts. These are <r:code>, <r:plot>, 
<r:lattice>, <r:function>, and <r:expr>, which are used to represent R commands/
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code with different types of output, just as we had styles in Word. We would use 
these something like:

<para>We plot all
<r:expr>length(levels(lanes))</r:expr> levels of the
categorical variable.
<r:lattice width=”5in”>
    bwplot(Flow ~ hour | lane, rtraffic)
</r:lattice>
and compute a numerical summary
<r:code>
   with(rtraffic, by (Flow, lane, summary))
</r:code>
</para>

The author can display output from R using the r:output element, either nested 
within r:code elements or immediately following it.

The XML elements <r:func>, <r:pkg>, <r:class> are used to refer to R functions, 
packages, and classes. We can identify the package for a function or class using an 
XML attribute, for example, <r:func pkg=”graphics”>hist</r:func>. 
Function parameters and variables are identified using <r:param> and <r:var>, 
respectively. There are also XML elements to represent R constants such as 
<r:true>, <r:false>, <r:null>, and <r:na>.

Note that we have used the prefix r: for all of the R elements. This is a name space 
in XML to avoid conflicts with other vocabularies that we might want to mix in the 
same document. The name space is declared via the xmlns:r=”http://www.r-project.
org” content in the <article> element, with the prefix “r” being the author’s choice.

The Docbook markup is relatively simple and one learns new “words” as one 
needs them. While XML is generally more verbose than LaTeX and other lan-
guages, there is a close correspondence between the Docbook and LaTeX vocabu-
laries. What XML and Docbook give us over LaTeX is an array of technologies that 
provide much more flexibility in constructing documents and a rich set of tools for 
processing them in many different, programmatic manners which significantly 
improve the entire document production process. As we mentioned in the introduc-
tion, the extensibility by allowing us to introduce new markup and customize and 
extend the tools is perhaps the most important aspect for us if we are to go further 
in developing new paradigms for reproducible research documents.

20.3.1 � Transforming the R-Docbook Document

Once the author has created an R-Docbook document, she will want to project it 
into a form that can contain the results of the embedded code and can be given to 
readers. Because this is XML, it can readily be converted into any form the author 
wants. She can extract all the code segments or just those in a particular section. 
The author can remove entire sections or discard the code, leaving only the text. 

http://www.r-project.org
http://www.r-project.org
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Typically, the author wants to create either an HTML or PDF version of the docu-
ment. The Docbook software contains XSL libraries for transforming regular 
Docbook documents to either HTML or another XML format – Formatting Objects 
(FO) (Pawson 2002) – used for describing high-quality printed material, similar in 
concept to LaTeX. FO content can then be transformed directly to PDF using fop 
(http://www.apachage.org/fop).

There are two approaches to providing the dynamic aspect to these documents, 
that is, evaluate the code and render the results in the output document. We can use 
a two-step processor that (a) reads the documents in R and processes only the R 
code nodes and inserts the resulting output using Docbook markup, for example, 
<programlisting>, <table>, and <figure>. Alternatively, the second approach (b) 
uses a single, regular XSL transformation for Docbook to create the final transfor-
mation by processing both Docbook and R-specific XML nodes all at once. The 
second approach integrates R with an XSL engine – libxslt http://www.libxslt.org 
and allows us to do the processing in a single step. This is the approach we use in 
the XDynDocs package.

The user calls the function dynDoc() with the name of the input XML docu-
ment. The second argument specifies the target format. This can be “HTML,” 
“FO,” or “latex.” If “FO” is specified, this will also create the resulting PDF if the 
fop program is available. The user can also specify the name of the file to create, 
but the default is to use the input file name and change the extension to that of the 
target format.

The dynDoc() function calls the embedded XSL engine. It determines the 
appropriate XSL style sheet to use for the target format, but one can also explicitly 
specify a different XSL file to use one’s own or other customizations. One can also 
specify XSL parameters as name=value pairs. These provide run-time customiza-
tion of the different XSL rules and can be used, for example, to specify a different 
CSS to use for the output HTML document, control margins for FO and PDF, 
enable a table of contents, and specify the bibliography format.

The dynDoc() function passes control to the XSL engine. An XSL transforma-
tion is made up of a collection of templates. Each template identifies to which XML 
nodes it applies, and actions that process that XML node and creates new output. For 
example, the XSL template for a <title> node when rendering HTML would create 
an <h1> node and then process its child nodes, that is, the text of the title including 
any child nodes such as links and formatting. We can extend and override any XSL 
template by providing our own XSL style sheet and specifying templates that match 
particular XML nodes. (The Sxslt package also allows us to provide XSL templates 
locally within the XML document, like macro definitions for LaTeX.)

By integrating R and the XSL engine, we have the ability to call R functions 
from XSL templates. We can pass XML nodes from XSL template actions to R 
functions in order to generate content for the output document. We use this to 
implement the XSL templates for <r:code> and other XML elements. We pass 
the node to an R function that extracts the code, evaluates it, and then converts 
the result(s) to the target format. As with Word, there is a generic function 
(convert()) that transforms the R object to that format and one can define 
methods for different R types and different targets (HTML, Docbook, FO, text). 

http://www.apachage.org/fop
http://www.libxslt.org


34520  Enhanced Dynamic Documents for Reproducible Research

We can also implement facilities such as caching computations by providing our 
own XSL templates.

This XDynDocs package is available from the Omegahat Web site as an R package. 
It can be installed with the command:

install.packages (“XDynDocs”,  repos = “http://www.omegahat.org/R”,
dependencies = TRUE)

This will take care of installing the necessary XML and Sxslt packages. While the 
approach may seem very complex for users of word processors, it will be quite 
familiar to LaTeX users. More importantly, we feel it provides a very rich and flex-
ible framework for working with documents in very new ways.

20.4 � Future Work

The work we have described provides the foundations for more ambitious work on 
richer structured documents. The aim is to capture more aspects of computational-
based research that makes the process significantly more reproducible and informa-
tive to the researchers, collaborators, reviewers, and general audience. We have been 
working on ideas for representing the research process and identifying different alter-
native approaches to analyses within the document. We have also been developing 
interactive techniques for readers to be able to explore a dynamic document at differ-
ent levels of resolution. We have done some work on making dynamic documents 
interactive by providing interactive controls that the reader can manipulate to change 
the computations at run-time, for example, vary tuning parameters in statistical meth-
ods or introduce alternative data sets. This allows them to do “what-if” analysis and  
to explore different ideas from what the author presents. We have embedded Web 
browsers within R and R within browsers and hope to soon make these robust so that 
researchers can use these to publish and disseminate in rich new ways.
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