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PREFACE

Computational biology is an interdisciplinary field devoted to the interpretation and
analysis of biological data using computational techniques. It is an area of active
research involving biology, computer science, statistics, and mathematics to analyze
biological sequence data, genome content and arrangement, and to predict the function
and structure of macromolecules. This field is a constantly emerging one, with new
techniques and results being reported every day. Advancement of data collection
techniques is also throwing up novel challenges for the algorithm designers to analyze
the complex and voluminous data. It has already been established that traditional
computing methods are limited in their scope for application to such complex, large,
multidimensional, and inherently noisy data. Computational intelligence techniques,
which combine elements of learning, adaptation, evolution, and logic, are found
to be particularly well suited to many of the problems arising in biology as they
have flexible information processing capabilities for handling huge volume of real-
life data with noise, ambiguity, missing values, and so on. Solving problems in
biological informatics often involves search for some useful regularities or patterns
in large amounts of data that are typically characterized by high dimensionality and
low sample size. This necessitates the development of advanced pattern analysis
approaches since the traditional methods often become intractable in such situations.

In this book, we attempt to bring together research articles by active practition-
ers reporting recent advances in integrating computational intelligence and pattern
analysis techniques, either individually or in a hybridized manner, for analyzing bi-
ological data in order to extract more and more meaningful information and insights
from them. Biological data to be considered for analysis include sequence, structure,
and microarray data. These data types are typically complex in nature, and require
advanced methods to deal with them. Characteristics of the methods and algorithms

xi



xii PREFACE

reported here include the use of domain-specific knowledge for reducing the search
space, dealing with uncertainty, partial truth and imprecision, efficient linear and/or
sublinear scalability, incremental approaches to knowledge discovery, and increased
level and intelligence of interactivity with human experts and decision makers. The
techniques can be sequential or parallel in nature.

Computational Intelligence (CI) is a successor of artificial intelligence that com-
bines elements of learning, adaptation, evolution, and logic to create programs that
are, in some sense, intelligent. Computational intelligence exhibits an ability to learn
and/or to deal with new situations, such that the system is perceived to possess one or
more attributes of reason, (e.g., generalization, discovery, association, and abstrac-
tion). The different methodologies in CI work synergistically and provide, in one
form or another, flexible information processing capabilities. Many biological data
are characterized by high dimensionality and low sample size. This poses grand chal-
lenges to the traditional pattern analysis techniques necessitating the development of
sophisticated approaches.

This book has five parts. The first part contains chapters introducing the basic
principles and methodologies of computational intelligence techniques along with a
description of some of its important components, fundamental concepts in pattern
analysis, and different issues in biological informatics, including a description of
biological data and their sources. Detailed descriptions of the different applications of
computational intelligence and pattern analysis techniques to biological informatics
constitutes the remaining chapters of the book. These include tasks related to the
analysis of sequences in the second part, structures in the third part, and microarray
data in part four. Some topics in systems biology form the concluding part of this book.

In Chapter 1, Das et al. present a lucid overview of computational intelligence
techniques. They introduce the fundamental aspects of the key components of modern
computational intelligence. A comprehensive overview of the different tools of com-
putational intelligence (e.g., fuzzy logic, neural network, genetic algorithm, belief
network, chaos theory, computational learning theory, and artificial life) is presented.
It is well known that the synergistic behavior of the above tools often far exceeds
their individual performance. A description of the synergistic behaviors of neuro-
fuzzy, neuro-GA, neuro-belief, and fuzzy-belief network models is also included in
this chapter. It concludes with a detailed discussion on some emerging trends in
computational intelligence like swarm intelligence, Type-2 fuzzy sets, rough sets,
granular computing, artificial immune systems, differential evolution, bacterial for-
aging optimization algorithms, and the algorithms based on artificial bees foraging
behavior.

Chakraborty provides an overview of the basic concepts and the fundamental
techniques of pattern analysis with an emphasis on statistical methods in Chapter 2.
Different approaches for designing a pattern recognition system are described. The
pattern recognition tasks of feature selection, classification, and clustering are dis-
cussed in detail. The most popular statistical tools are explained. Recent approaches
based on the soft computing paradigm are also introduced in this chapter, with a brief
representation of the promising neural network classifiers as a new direction toward
dealing with imprecise and uncertain patterns generated in newer fields.
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In Chapter 3, Byron et al. deal with different aspects of biological informatics.
In particular, the biological data types and their sources are mentioned, and two
software tools used for analyzing the genomic data are discussed. A case study in
biological informatics, focusing on locating noncoding RNAs in Drosophila genomes,
is presented. The authors show how the widely used Infernal and RSmatch tools can
be combined to mine roX1 genes in 12 species of Drosophila for which the entire
genomic sequencing data is available.

The second part of the book, Chapters 4 and 5, deals with the applications of
computational intelligence and pattern analysis techniques for biological sequence
analysis. In Chapter 4, Rani et al. extract features from the genomic sequences in
order to predict promoter regions. Their work is based on global signal-based methods
using a neural network classifier. For this purpose, they consider two global features:
n-gram features and features based on signal processing techniques by mapping the
sequence into a signal. It is shown that the n-gram features extracted for n = 2, 3, 4,
and 5 efficiently discriminate promoters from nonpromoters.

In Chapter 5, Masulli et al. deal with the task of computational prediction of
microRNA (miRNA) targets with focus on miRNAs’ influence in prostate cancer.
The miRNAs are capable of base-pairing with imperfect complementarity to the
transcripts of animal protein-coding genes (also termed targets) generally within the
3’ untranslated region (3’ UTR). The existing target prediction programs typically
rely on a combination of specific base-pairing rules in the miRNA and target mRNA
sequences, and conservational analysis to score possible 3’ UTR recognition sites
and enumerate putative gene targets. These methods often produce a large number of
false positive predictions. In this chapter, Masulli et al. improve the performance of
an existing tool called miRanda by exploiting the updated information on biologically
validated miRNA gene targets related to human prostate cancer only, and performing
automatic parameter tuning using genetic algorithm.

Chapters 6–10 constitute the third part of the book dealing with structural analysis.
Chapter 6 deals with the structural search in RNA motif databases. An RNA structural
motif is a substructure of an RNA molecule that has a significant biological func-
tion. In this chapter, Wen and Wang present two recently developed structural search
engines. These are useful to scientists and researchers who are interested in RNA
secondary structure motifs. The first search engine is installed on a database, called
RmotifDB, which contains secondary structures of the noncoding RNA sequences in
Rfam. The second search engine is installed on a block database, which contains the
603 seed alignments, also called blocks, in Rfam. This search engine employs a novel
tool, called BlockMatch, for comparing multiple sequence alignments. Some exper-
imental results are reported to demonstrate the effectiveness of the BlockMatch tool.

In Chapter 7, Bhattacharya et al. explore the construction of neighborhood-based
kernels on protein structures. Two types of neighborhoods, and two broad classes of
kernels, namely, sequence and structure based, are defined. Ways of combining these
kernels to get kernels on neighborhoods are discussed. Detailed experimental results
are reported showing that some of the designed kernels perform competitively with
the state of the art structure comparison algorithms, on the difficult task of classifying
40% sequence nonredundant proteins into SCOP superfamilies.
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The use of protein blocks to characterize structural variations in enzymes is dis-
cussed in Chapter 8 using kinases as the case study. A protein block is a set of 16 local
structural descriptors that has been derived using unsupervised machine learning al-
gorithms and that can approximate the three-dimensional space of proteins. In this
chapter, Agarwal et al. first apply their approach in distinguishing between confor-
mation changes and rigid-body displacements between the structures of active and
inactive forms of a kinase. Second, a comparison of the conformational patterns of
active forms of a kinase with the active and inactive forms of a closely related kinase
has been performed. Finally, structural differences in the active states of homologous
kinases have been studied. Such studies might help in understanding the structural
differences among these enzymes at a different level, as well as guide in making drug
targets for a specific kinase.

In Chapter 9, Smalter and Huan address the problem of graph classification through
the study of kernel functions and the application of graph classification in chemi-
cal quantitative structure–activity relationship (QSAR) study. Graphs, especially the
connectivity maps, have been used for modeling chemical structures for decades.
In connectivity maps, nodes represent atoms and edges represent chemical bonds
between atoms. Support vector machines (SVMs) that have gained popularity in drug
design and cheminformatics are used in this regard. Some graph kernel functions
are explored that improve on existing methods with respect to both classification
accuracy and kernel computation time. Experimental results are reported on five dif-
ferent biological activity data sets, in terms of the classifier prediction accuracy of
the support vector machine for different feature generation methods.

Computational ligand design is one of the promising recent approaches to address
the problem of drug discovery. It aims to search the chemical space to find suitable
drug molecules. In Chapter 10, genetic algorithms have been applied for this com-
binatorial problem of ligand design. The chapter proposes a variable length genetic
algorithm for de novo ligand design. It finds the active site of the target protein
from the input protein structure and computes the bond stretching, angle bending,
angle rotation, van der Waals, and electrostatic energy components using the distance
dependent dielectric constant for assigning the fitness score for every individual. It
uses a library of 41 fragments for constructing ligands. Ligands have been designed
for two different protein targets, namely, Thrombin and HIV-1 Protease. The ligands
obtained, using the proposed algorithm, were found to be similar to the real known
inhibitors of these proteins. The docking energies using the proposed methodology
designed were found to be lower compared to three existing approaches.

Chapters 11–13 constitute the fourth part of the book dealing with microarray
data analysis. In Chapter 11, Saha and Maulik develop a differential evolution-based
fuzzy clustering algorithm (DEFC) and apply it on four publicly available bench-
mark microarray data sets, namely, yeast sporulation, yeast cell cycle, Arabidopsis
Thaliana, and human fibroblasts serum. Detailed comparative results demonstrating
the superiority of the proposed approach are provided. In a part of the investigation, an
interesting study integrating the proposed clustering approach with an SVM classifier
has been conducted. A fraction of the data points is selected from different clusters
based on their proximity to the respective centers. This is used for training an SVM.
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The clustering assignments of the remaining points are thereafter determined using
the trained classifier. Finally, a biological significance test has been carried out on
yeast sporulation microarray data to establish that the developed integrated technique
produces functionally enriched clusters.

The classification capability of SVMs is again used in Chapter 12 for identifying
potential gene markers that can distinguish between malignant and benign samples
in different types of cancers. The proposed scheme consists of two phases. In the
first, an ensemble of SVMs using different kernel functions is used for efficient
classification. Thereafter, the signal-to-noise ratio statistic is used to select a number
of gene markers, which is further reduced by using a multiobjective genetic algorithm-
based feature selection method. Results are demonstrated on three publicly available
data sets.

In Chapter 13, Maulik and Sarker develop a parallel algorithm for clustering gene
expression data that exploits the property of symmetry of the clusters. It is based
on a recently developed symmetry-based distance measure. The bottleneck for the
application of such an approach for microarray data analysis is the large computational
time. Consequently, Maulik and Sarker develop a parallel implementation of the
symmetry-based clustering algorithm. Results are demonstrated for one artificial and
four benchmark microarray data sets.

The last part of the book, dealing with topics related to systems biology, consists
of Chapters 14–16. Jeong and Chen deal with the problem of gene prioritization in
Chapter 14, which aims at achieving a better understanding of the disease process
and to find therapy targets and diagnostic biomarkers. Gene prioritization is a new
approach for extending our knowledge about diseases and potentially about other
biological conditions. Jeong and Chen review the existing methods of gene prioriti-
zation and attempt to identify those that were most successful. They also discuss the
remaining challenges and open problems in this area.

In Chapter 15, Bagchi discusses the various aspects of protein–protein interactions
(PPI) that are one of the central players in many vital biochemical processes. Emphasis
has been given to the properties of the PPI. A few basic definitions have been
revisited. Several computational PPI prediction methods have been reviewed. The
various software tools involved have also been reviewed.

Finally, in Chapter 16, Bhattacharyya and Bandyopadhyay study PPI networks in
order to investigate the system level activities of the genotypes. Several topological
properties and structures have been discussed and state-of-the-art knowledge on
utilizing these characteristics in a system level study is included. A novel method
of mining an integrated network, obtained by combining two types of topological
properties, is designed to find dense subnetworks of proteins that are functionally
coherent. Some theoretical analysis on the formation of dense subnetworks in a
scale-free network is also provided. The results on PPI information of Homo Sapiens,
obtained from the Human Protein Reference Database, show promise with such an
integrative approach of topological analysis.

The field of biological informatics is rapidly evolving with the availability of new
methods of data collection that are not only capable of collecting huge amounts of
data, but also produce new data types. In response, advanced methods of searching for
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useful regularities or patterns in these data sets have been developed. Computational
intelligence, comprising a wide array of classification, optimization, and represen-
tation methods, have found particular favor among the researchers in biological
informatics. The chapters dealing with the applications of computational intelligence
and pattern analysis techniques in biological informatics provide a representative
view of the available methods and their evaluation in real domains. The volume will
be useful to graduate students and researchers in computer science, bioinformatics,
computational and molecular biology, biochemistry, systems science, and informa-
tion technology both as a text and reference book for some parts of the curriculum.
The researchers and practitioners in industry, including pharmaceutical companies,
and R & D laboratories will also benefit from this book.

We take this opportunity to thank all the authors for contributing chapters
related to their current research work that provide the state of the art in advanced
computational intelligence and pattern analysis methods in biological informatics.
Thanks are due to Indrajit Saha and Malay Bhattacharyya who provided technical
support in preparing this volume, as well as to our students who have provided
us the necessary academic stimulus to go on. Our special thanks goes to Anirban
Mukhopadhyay for his contribution to the book and Christy Michael from Aptara
Inc. for her constant help. We are also grateful to Michael Christian of John Wiley
& Sons for his constant support.

U. Maulik, S. Bandyopadhyay, and J. T. L. Wang
November, 2009
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1
COMPUTATIONAL INTELLIGENCE:
FOUNDATIONS, PERSPECTIVES,
AND RECENT TRENDS

Swagatam Das, Ajith Abraham, and B. K. Panigrahi

The field of computational intelligence has evolved with the objective of developing
machines that can think like humans. As evident, the ultimate achievement in this field
would be to mimic or exceed human cognitive capabilities including reasoning, under-
standing, learning, and so on. Computational intelligence includes neural networks,
fuzzy inference systems, global optimization algorithms, probabilistic computing,
swarm intelligence, and so on. This chapter introduces the fundamental aspects of
the key components of modern computational intelligence. It presents a comprehen-
sive overview of various tools of computational intelligence (e.g., fuzzy logic, neural
network, genetic algorithm, belief network, chaos theory, computational learning the-
ory, and artificial life). The synergistic behavior of the above tools on many occasions
far exceeds their individual performance. A discussion on the synergistic behavior of
neuro-fuzzy, neuro-genetic algorithms (GA), neuro-belief, and fuzzy-belief network
models is also included in the chapter.

1.1 WHAT IS COMPUTATIONAL INTELLIGENCE?

Machine Intelligence refers back to 1936, when Turing proposed the idea of a univer-
sal mathematics machine [1,2], a theoretical concept in the mathematical theory of
computability. Turing and Post independently proved that determining the decidabil-
ity of mathematical propositions is equivalent to asking what sorts of sequences of a

Computational Intelligence and Pattern Analysis in Biological Informatics, Edited by Ujjwal Maulik,
Sanghamitra Bandyopadhyay, and Jason T. L. Wang
Copyright C© 2010 John Wiley & Sons, Inc.
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4 COMPUTATIONAL INTELLIGENCE

finite number of symbols can be recognized by an abstract machine with a finite set of
instructions. Such a mechanism is now known as a Turing machine [3]. Turing’s re-
search paper addresses the question of machine intelligence, assessing the arguments
against the possibility of creating an intelligent computing machine and suggesting an-
swers to those arguments, proposing the Turing test as an empirical test of intelligence
[4]. The Turing test, called the imitation game by Turing, measures the performance
of a machine against that of a human being. The machine and a human (A) are placed
in two rooms. A third person, designated the interrogator, is in a room apart from both
the machine and the human (A). The interrogator cannot see or speak directly to either
(A) or the machine, communicating with them solely through some text messages or
even a chat window. The task of the interrogator is to distinguish between the human
and the computer on the basis of questions he/she may put to both of them over the
terminals. If the interrogator cannot distinguish the machine from the human then,
Turing argues, the machine may be assumed to be intelligent. In the 1960s, computers
failed to pass the Turing test due to the low-processing speed of the computers.

The last few decades have seen a new era of artificial intelligence focusing on
the principles, theoretical aspects, and design methodology of algorithms gleaned
from nature. Examples are artificial neural networks inspired by mammalian neural
systems, evolutionary computation inspired by natural selection in biology, simulated
annealing inspired by thermodynamics principles and swarm intelligence inspired by
collective behavior of insects or micro-organisms, and so on, interacting locally
with their environment causing coherent functional global patterns to emerge. These
techniques have found their way in solving real-world problems in science, business,
technology, and commerce.

Computational Intelligence (CI) [5–8] is a well-established paradigm, where new
theories with a sound biological understanding have been evolving. The current exper-
imental systems have many of the characteristics of biological computers (brains in
other words) and are beginning to be built to perform a variety of tasks that are difficult
or impossible to do with conventional computers. To name a few, we have microwave
ovens, washing machines, and digital cameras that can figure out on their own what
settings to use to perform their tasks optimally with reasoning capability, make intel-
ligent decisions, and learn from the experience. As usual, defining CI is not an easy
task. Bezdek defined a computationally intelligent system [5] in the following way:

“A system is computationally intelligent when it: deals with only numerical (low-level)
data, has pattern recognition components, does not use knowledge in the AI sense; and
additionally when it (begins to) exhibit i) computational adaptivity, ii) computational
fault tolerance, iii) speed approaching human-like turnaround and iv) error rates that
approximate human performance.”

The above definition infers that a computationally intelligent system should be
characterized by the capability of computational adaptation, fault tolerance, high
computational speed, and be less error prone to noisy information sources. It also
implies high computational speed and less error rates than human beings. It is true that
a high computational speed may sometimes yield a poor accuracy in the results. Fuzzy
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logic and neural nets that support a high degree of parallelism usually have a fast
response to input excitations. Further, unlike a conventional production (rule-based)
system, where only a single rule is fired at a time, fuzzy logic allows firing of a large
number of rules ensuring partial matching of the available facts with the antecedent
clauses of those rules. Thus the reasoning capability of fuzzy logic is humanlike, and
consequently it is less error prone. An artificial neural network (ANN) also allows
firing of a number of neurons concurrently. Thus it has a high computational speed;
it usually adapts its parameters by satisfying a set of constraints that minimizes the
error rate. The parallel realization of GA and belief networks for the same reason
have a good computational speed, and their inherent information filtering behavior
maintain accuracy of their resulting outcome.

In an attempt to define CI [9], Marks clearly mentions the name of the constituent
members of the family. According to him:

“. . . neural networks, genetic algorithms, fuzzy systems, evolutionary programming and
artificial life are the building blocks of computational intelligence.”

At this point, it is worth mentioning that artificial life is also an emerging discipline
based on the assumption that physical and chemical laws are good enough to explain
the intelligence of the living organisms. Langton defines artificial life [10] as:

“. . . . an inclusive paradigm that attempts to realize lifelike behavior by imitating the
processes that occur in the development or mechanics of life.”

Now, let us summarize exactly what we understand by the phrase CI. Figure 1.1
outlines the topics that share some ideas of this new discipline.

The early definitions of CI were centered around the logic of fuzzy sets, neural
networks, genetic algorithms, and probabilistic reasoning along with the study of
their synergism. Currently, the CI family is greatly influenced by the biologically
inspired models of machine intelligence. It deals with the models of fuzzy as well as
granular computing, neural computing, and evolutionary computing along with their
interactions with artificial life, swarm intelligence, chaos theory, and other emerg-
ing paradigms. Belief networks and probabilistic reasoning fall in the intersection
of traditional AI and the CI. Note that artificial life is shared by the CI and the
physicochemical laws (not shown in Fig. 1.1).

Note that Bezdek [5], Marks [9], Pedrycz [11–12], and others have defined com-
putational intelligence in different ways depending on the then developments of this
new discipline. An intersection of these definitions will surely focus to fuzzy logic,
ANN, and GA, but a union (and generalization) of all these definitions includes many
other subjects (e.g., rough set, chaos, and computational learning theory). Further,
CI being an emerging discipline should not be pinpointed only to a limited number
of topics. Rather it should have a scope to expand in diverse directions and to merge
with other existing disciplines.

In a nutshell, which becomes quite apparent in light of the current research pursuits,
the area is heterogeneous as being dwelled on such technologies as neural networks,
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PR= Probabilistic reasoning, BN= Belief networks. 

Computational Intelligence Family

Traditional AI

PR

BN

Fuzzy and
Granular
Computing

Neuro-
Computing

Artificial Life, Rough Sets, Chaos Theory,
Swarm Intelligence, and others

Evolutionary
Computing

FIGURE 1.1 The building blocks of CI.

fuzzy systems, evolutionary computation, swarm intelligence, and probabilistic rea-
soning. The recent trend is to integrate different components to take advantage of
complementary features and to develop a synergistic system. Hybrid architectures
like neuro-fuzzy systems, evolutionary-fuzzy systems, evolutionary-neural networks,
evolutionary neuro-fuzzy systems, and so on, are widely applied for real-world prob-
lem solving. In the following sections, the main functional components of CI are
explained with their key advantages and application domains.

1.2 CLASSICAL COMPONENTS OF CI

This section will provide a conceptual overview of common CI models based on their
fundamental characteristics.

1.2.1 Artificial Neural Networks

Artificial neural networks [13–15] have been developed as generalizations of math-
ematical models of biological nervous systems. In a simplified mathematical model
of the neuron, the effects of the synapses are represented by connection weights that
modulate the effect of the associated input signals, and the nonlinear characteristic ex-
hibited by neurons is represented by a transfer function, which is usually the sigmoid,
Gaussian, trigonometric function, and so on. The neuron impulse is then computed
as the weighted sum of the input signals, transformed by the transfer function. The
learning capability of an artificial neuron is achieved by adjusting the weights in
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Input layer
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output (O)

θ f

Artificial neuron Multilayered artificial neural network
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FIGURE 1.2 Architecture of an artificial neuron and a multilayered neural network.

accordance to the chosen learning algorithm. Most applications of neural networks
fall into the following categories:

Prediction. Use input values to predict some output.

Classification. Use input values to determine the classification.

Data Association. Like classification, but it also recognizes data that contains
errors.

Data Conceptualization. Analyze the inputs so that grouping relationships can be
inferred.

A typical multilayered neural network and an artificial neuron are illustrated in
Figure 1.2. Each neuron is characterized by an activity level (representing the state of
polarization of a neuron), an output value (representing the firing rate of the neuron),
a set of input connections, (representing synapses on the cell and its dendrite), a
bias value (representing an internal resting level of the neuron), and a set of output
connections (representing a neuron’s axonal projections). Each of these aspects of
the unit is represented mathematically by real numbers. Thus each connection has an
associated weight (synaptic strength), which determines the effect of the incoming
input on the activation level of the unit. The weights may be positive or negative.
Referring to Figure 1.2, the signal flow from inputs x1 · · · xn is considered to be
unidirectional indicated by arrows, as is a neuron’s output signal flow (O). The
neuron output signal O is given by the following relationship:

O = f (net) = f

⎛
⎝

n∑
j=1

w j x j

⎞
⎠ (1.1)

where w j is the weight vector and the function f (net) is referred to as an activation
(transfer) function and is defined as a scalar product of the weight and input vectors

net = w T x = w1x1 + · · · · +wn xn (1.2)
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where T is the transpose of a matrix and in the simplest case the output value O is
computed as

O = f (net) =
{

1 if w T x ≥ θ

0 otherwise
(1.3)

where θ is called the threshold level and this type of node is called a linear threshold
unit.

The behavior of the neural network depends largely on the interaction between
the different neurons. The basic architecture consists of three types of neuron layers:
input, hidden and output layers. In feedforward networks, the signal flow is from
input to output units strictly in a feedforward direction. The data processing can
extend over multiple (layers of) units, but no feedback connections are present, that
is, connections extending from outputs to inputs of units in the same or previous
layers.

Recurrent networks contain feedback connections. Contrary to feedforward net-
works, the dynamical properties of the network are important. In some cases, the
activation values of the units undergo a relaxation process such that the network will
evolve to a stable state in which these activations do not change anymore. In other
applications, the changes of the activation values of the output neurons are significant,
such that the dynamical behavior constitutes the output of the network. There are sev-
eral other neural network architectures (Elman network, adaptive resonance theory
maps, competitive networks, etc.) depending on the properties and requirement of
the application. The reader may refer to [16–18] for an extensive overview of the
different neural network architectures and learning algorithms.

A neural network has to be configured such that the application of a set of inputs
produces the desired set of outputs. Various methods to set the strengths of the
connections exist. One way is to set the weights explicitly, using a priori knowledge.
Another way is to train the neural network by feeding its teaching patterns and letting
it change its weights according to some learning rule. The learning situations in
neural networks may be classified into three distinct types. These are supervised,
unsupervised, and reinforcement learning. In supervised learning, an input vector is
presented at the inputs together with a set of desired responses, one for each node, at
the output layer. A forward pass is done and the errors or discrepancies, between the
desired and actual response for each node in the output layer, are found. These are then
used to determine weight changes in the net according to the prevailing learning rule.
The term ‘supervised’ originates from the fact that the desired signals on individual
output nodes are provided by an external teacher. The best-known examples of this
technique occur in the back-propagation algorithm, the delta rule, and perceptron
rule. In unsupervised learning (or self-organization) an (output) unit is trained to
respond to clusters of patterns within the input. In this paradigm, the system is
supposed to discover statistically salient features of the input population [19]. Unlike
the supervised learning paradigm, there is no a priori set of categories into which the
patterns are to be classified; rather the system must develop its own representation
of the input stimuli. Reinforcement learning is learning what to do—how to map
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situations to actions—so as to maximize a numerical reward signal. The learner is
not told which actions to take, as in most forms of machine learning, but instead must
discover which actions yield the most reward by trying them. In the most interesting
and challenging cases, actions may affect not only the immediate reward, but also the
next situation and, through that, all subsequent rewards. These two characteristics,
trial-and-error search and delayed reward are the two most important distinguishing
features of reinforcement learning.

1.2.2 Fuzzy Logic

Professor Zadeh [20] introduced the concept of fuzzy logic (FL) to present vagueness
in linguistics, and further implement and express human knowledge and inference
capability in a natural way. Fuzzy logic starts with the concept of a fuzzy set. A
fuzzy set is a set without a crisp, clearly defined boundary. It can contain elements
with only a partial degree of membership. A membership function (MF) is a curve
that defines how each point in the input space is mapped to a membership value (or
degree of membership) between 0 and 1. The input space is sometimes referred to as
the universe of discourse.

Let X be the universe of discourse and x be a generic element of X . A classical
set A is defined as a collection of elements or objects xεX , such that each x can
either belong to or not belong to the set A, A � X. By defining a characteristic
function (or membership function) on each element x in X , a classical set A can be
represented by a set of ordered pairs (x , 0) or (x , 1), where 1 indicates membership
and 0 nonmembership. Unlike the conventional set mentioned above, the fuzzy set
expresses the degree to which an element belongs to a set. Hence, the characteristic
function of a fuzzy set is allowed to have a value between 0 and 1, denoting the degree
of membership of an element in a given set. If X is a collection of objects denoted
generically by x , then a fuzzy set A in X is defined as a set of ordered pairs:

A = {(x, µA(x))|xεX} (1.4)

µA(x) is called the MF of linguistic variable x in A, which maps X to the membership
space M , M = [0,1], where M contains only two points 0 and 1, A is crisp and µA is
identical to the characteristic function of a crisp set. Triangular and trapezoidal mem-
bership functions are the simplest membership functions formed using straight lines.
Some of the other shapes are Gaussian, generalized bell, sigmoidal, and polynomial-
based curves. Figure 1.3 illustrates the shapes of two commonly used MFs. The most
important thing to realize about fuzzy logical reasoning is the fact that it is a superset
of standard Boolean logic.

It is interesting to note about the correspondence between two- and multivalued
logic operations for AND, OR, and NOT. It is possible to resolve the statement
A AND B, where A and B are limited to the range (0,1), by using the operator
minimum (A, B). Using the same reasoning, we can replace the OR operation with
the maximum operator, so that A OR B becomes equivalent to maximum (A, B).
Finally, the operation NOT A becomes equivalent to the operation 1-A.
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(a)

(b)

FIGURE 1.3 Examples of FM functions (a) Gaussian and (b) trapezoidal.

In FL terms, these are popularly known as fuzzy intersection or conjunction
(AND), fuzzy union or disjunction (OR), and fuzzy complement (NOT). The inter-
section of two fuzzy sets A and B is specified in general by a binary mapping T ,
which aggregates two membership functions as follows:

µA∩B(x) = T (µA(x), µB(x)) (1.5)

The fuzzy intersection operator is usually referred to as a T -norm (Triangular norm)
operator. The fuzzy union operator is specified in general by a binary mapping S.

µA∪B(x) = S(µA(x), µB(x)) (1.6)

This class of fuzzy union operators are often referred to as T -conorm (or S-norm)
operators.

The fuzzy rule base is characterized in the form of if–then rules in which precon-
ditions and consequents involve linguistic variables. The collection of these fuzzy
rules forms the rule base for the FL system. Due to their concise form, fuzzy if–then
rules are often employed to capture the imprecise modes of reasoning that play an



CLASSICAL COMPONENTS OF CI 11

essential role in the human ability to make decisions in an environment of uncertainty
and imprecision. A single fuzzy if–then rule assumes the form

if x is A then y is B

where A and B are linguistic values defined by fuzzy sets on the ranges (universes
of discourse) X and Y, respectively. The if –part of the rule “x is A” is called the
antecedent (precondition) or premise, while the then–part of the rule “y is B” is
called the consequent or conclusion. Interpreting an if–then rule involves evaluating
the antecedent (fuzzification of the input and applying any necessary fuzzy operators)
and then applying that result to the consequent (known as implication). For rules with
multiple antecedents, all parts of the antecedent are calculated simultaneously and
resolved to a single value using the logical operators. Similarly, all the consequents
(rules with multiple consequents) are affected equally by the result of the antecedent.
The consequent specifies a fuzzy set be assigned to the output. The implication
function then modifies that fuzzy set to the degree specified by the antecedent. For
multiple rules, the output of each rule is a fuzzy set. The output fuzzy sets for each
rule are then aggregated into a single output fuzzy set. Finally, the resulting set is
defuzzified, or resolved to a single number.

The defuzzification interface is a mapping from a space of fuzzy actions defined
over an output universe of discourse into a space of non-fuzzy actions, because the
output from the inference engine is usually a fuzzy set while for most practical appli-
cations crisp values are often required. The three commonly applied defuzzification
techniques are, max-criterion, center-of-gravity, and the mean- of- maxima. The max-
criterion is the simplest of these three to implement. It produces the point at which
the possibility distribution of the action reaches a maximum value.

Reader, please refer to [21–24] for more information related to fuzzy systems. It is
typically advantageous if the fuzzy rule base is adaptive to a certain application. The
fuzzy rule base is usually constructed manually or by automatic adaptation by some
learning techniques using evolutionary algorithms and/or neural network learning
methods [25].

1.2.3 Genetic and Evolutionary Computing Algorithms

To tackle complex search problems, as well as many other complex computational
tasks, computer-scientists have been looking to nature for years (both as a model and
as a metaphor) for inspiration. Optimization is at the heart of many natural processes
(e.g., Darwinian evolution itself ). Through millions of years, every species had to
optimize their physical structures to adapt to the environments they were in. This
process of adaptation, this morphological optimization is so perfect that nowadays,
the similarity between a shark, a dolphin or a submarine is striking. A keen observation
of the underlying relation between optimization and biological evolution has led to
the development of a new paradigm of CI (the evolutionary computing techniques
[26,27]) for performing very complex search and optimization.
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Evolutionary computation uses iterative progress (e.g., growth or development in a
population). This population is then selected in a guided random search using parallel
processing to achieve the desired end. Such processes are often inspired by biological
mechanisms of evolution. The paradigm of evolutionary computing techniques dates
back to the early 1950s, when the idea to use Darwinian principles for automated
problem solving originated. It was not until the 1960s that three distinct interpre-
tations of this idea started to be developed in three different places. Evolutionary
programming (EP) was introduced by Lawrence J. Fogel in the United States [28],
while John Henry Holland called his method a genetic algorithm (GA) [29]. In Ger-
many Ingo Rechenberg and Hans-Paul Schwefel introduced the evolution strategies
(ESs) [30,31]. These areas developed separately for 15 years. From the early 1990s
on they are unified as different representatives (dialects) of one technology, called
evolutionary computing. Also, in the early 1990s, a fourth stream following the gen-
eral ideas had emerged—genetic programming (GP) [32]. They all share a common
conceptual base of simulating the evolution of individual structures via processes
of selection, mutation, and reproduction. The processes depend on the perceived
performance of the individual structures as defined by the environment (problem).

The GAs deal with parameters of finite length, which are coded using a finite
alphabet, rather than directly manipulating the parameters themselves. This means
that the search is unconstrained by either the continuity of the function under inves-
tigation, or the existence of a derivative function. Figure 1.4 depicts the functional
block diagram of a GA and the various aspects are discussed below. It is assumed that
a potential solution to a problem may be represented as a set of parameters. These
parameters (known as genes) are joined together to form a string of values (known as
a chromosome). A gene (also referred to a feature, character, or detector) refers to a
specific attribute that is encoded in the chromosome. The particular values the genes
can take are called its alleles.

Encoding issues deal with representing a solution in a chromosome and unfor-
tunately, no one technique works best for all problems. A fitness function must be
devised for each problem to be solved. Given a particular chromosome, the fitness
function returns a single numerical fitness or figure of merit, which will determine
the ability of the individual, that chromosome represents. Reproduction is the second
critical attribute of GAs where two individuals selected from the population are al-
lowed to mate to produce offspring, which will comprise the next generation. Having
selected the parents, the off springs are generated, typically using the mechanisms of
crossover and mutation.

Start
Initialization

of Population
Valuation

(fitness value)
Solution
Found?

Stop
Yes

No

Reproduction

FIGURE 1.4 Flow chart of genetic algorithm iteration.
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Selection is the survival of the fittest within GAs. It determines which individuals
are to survive to the next generation. The selection phase consists of three parts. The
first part involves determination of the individual’s fitness by the fitness function. A
fitness function must be devised for each problem; given a particular chromosome,
the fitness function returns a single numerical fitness value, which is proportional to
the ability, or utility, of the individual represented by that chromosome. The second
part involves converting the fitness function into an expected value followed by the
last part where the expected value is then converted to a discrete number of offspring.
Some of the commonly used selection techniques are the roulette wheel and stochastic
universal sampling. If the GA has been correctly implemented, the population will
evolve over successive generations so that the fitness of the best and the average
individual in each generation increases toward the global optimum.

Currently, evolutionary computation techniques mostly involve meta-heuristic op-
timization algorithms, such as:

1. Evolutionary algorithms (comprising of genetic algorithms, evolutionary pro-
gramming, evolution strategy, genetic programming, learning classifier sys-
tems, and differential evolution)

2. Swarm intelligence (comprised of ant colony optimization and particle swarm
optimization) [33].

And involved to a lesser extent in the following:

3. Self-organization (e.g., self-organizing maps, growing neural gas) [34].

4. Artificial life (digital organism) [10].

5. Cultural algorithms [35].

6. Harmony search algorithm [36].

7. Artificial immune systems [37].

8. Learnable evolution model [38].

1.2.4 Probabilistic Computing and Belief Networks

Probabilistic models are viewed as similar to that of a game, actions are based on
expected outcomes. The center of interest moves from the deterministic to probabilis-
tic models using statistical estimations and predictions. In the probabilistic modeling
process, risk means uncertainty for which the probability distribution is known. There-
fore risk assessment means a study to determine the outcomes of decisions along with
their probabilities. Decision makers often face a severe lack of information. Probabil-
ity assessment quantifies the information gap between what is known, and what needs
to be known for an optimal decision. The probabilistic models are used for protection
against adverse uncertainty, and exploitation of propitious uncertainty [39].

A good example is the probabilistic neural network (Bayesian learning) in which
probability is used to represent uncertainty about the relationship being learned.
Before we have seen any data, our prior opinions about what the true relationship
might be can be expressed in a probability distribution over the network weights that
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define this relationship. After we look at the data, our revised opinions are captured by
a posterior distribution over network weights. Network weights that seemed plausible
before, but which donot match the data very well, will now be seen as being much
less likely, while the probability for values of the weights that do fit the data well will
have increased. Typically, the purpose of training is to make predictions for future
cases in which only the inputs to the network are known. The result of conventional
network training is a single set of weights that can be used to make such predictions.

A Bayesian belief network [40,41] is represented by a directed acyclic graph
or tree, where the nodes denote the events and the arcs denote the cause–effect
relationship between the parent and the child nodes. Here, each node, may assume
a number of possible values. For instance, a node A may have n number of possible
values, denoted by A1,A2, . . . , An . For any two nodes, A and B, when there exists
a dependence A→B, we assign a conditional probability matrix [P(B/A)] to the
directed arc from node A to B. The element at the j th row and i th column of P(B/A),
denoted by P(B j /Ai ), represents the conditional probability of B j assuming the prior
occurrence of Ai . This is described in Figure 1.5.

Given the probability distribution of A, denoted by [P(A1) P(A2) · · · · · P(An)], we
can compute the probability distribution of event B by using the following expression:

P(B) = [P(B1) P(B2) · · · · P(Bm)]1 × m

= [P(A1) P(A2) · · · · P(An)]1 × n · [P(B/A)]n × m

= [P(A)]1 × n · [P(B/A)]n × m (1.7)

We now illustrate the computation of P(B) with an example.
Pearl [39–41] proposed a scheme for propagating beliefs of evidence in a Bayesian

network. First, we demonstrate his scheme with a Bayesian tree like that in Figure 1.5.
However, note that like the tree of Figure 1.5 each variable, say A, B . . . need not
have only two possible values. For example, if a node in a tree denotes German
measles (GM), it could have three possible values like severe-GM, little-GM, and
moderate-GM.

In Pearl’s scheme for evidential reasoning, he considered both the causal effect and
the diagnostic effect to compute the belief function at a given node in the Bayesian
belief tree. For computing belief at a node, say V, he partitioned the tree into two
parts: (1) the subtree rooted at V and (2) the rest of the tree. Let us denote the subset
of the evidence, residing at the subtree of V by ev

− and the subset of the evidence

A

P (B /A) B

FIGURE 1.5 Assigning a conditional probability matrix in the directed arc connected from
A to B.
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from the rest of the tree by ev
+. We denote the belief function of the node V by

Bel(V), where it is defined as

Bel (V) = P(V/ev
+, ev

−)

= P(ev
−/V) · P(V/ev

+)/α

= λ(V)�(V)/α (1.8)

where, λ (V) = P(ev
−/V)

}

�(V) = P(V/ev
+) (1.9)

and α is a normalizing constant, determined by

α = �v ∈(true, false)P(ev
−/V) · P(V/ev

+) (1.10)

It seems from the last expression that v could assume only two values: true and
false. It is just an illustrative notation. In fact, v can have a number of possible values.

Pearl designed an interesting algorithm for belief propagation in a causal tree.
He assigned a priori probability of one leaf node to be defective, then propagated
the belief from this node to its parent, and then from the parent to the grandparent,
until the root is reached. Next, he considered a downward propagation of belief from
the root to its children, and from each child node to its children, and so on, until
the leaves are reached. The leaf having the highest belief is then assigned a priori
probability and the whole process described above is repeated. Pearl has shown that
after a finite number of up–down traversal on the tree, a steady-state condition is
reached following which a particular leaf node in all subsequent up–down traversal
yields a maximum belief with respect to all other leaves in the tree. The leaf thus
selected is considered as the defective item.

1.3 HYBRID INTELLIGENT SYSTEMS IN CI

Several adaptive hybrid intelligent systems (HIS) have in recent years been devel-
oped for model expertise, image and video segmentation techniques, process control,
mechatronics, robotics and complicated automation tasks, and so on. Many of these
approaches use the combination of different knowledge representation schemes, deci-
sion making models, and learning strategies to solve a computational task. This inte-
gration aims at overcoming limitations of individual techniques through hybridization
or fusion of various techniques. These ideas have led to the emergence of several
different kinds of intelligent system architectures. Most of the current HIS consists
of three essential paradigms: artificial neural networks, fuzzy inference systems, and
global optimization algorithms (e.g., evolutionary algorithms). Nevertheless, HIS
is an open instead of conservative concept. That is, it is evolving those relevant
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TABLE 1.1 Hybrid Intelligent System Basic Ingredients

Methodology Advantage

Artificial neural networks Adaptation, learning, and approximation
Fuzzy logic Approximate reasoning
Global optimization algorithms Derivative-free optimization of multiple parameters

techniques together with the important advances in other new computing methods.
Table 1.1 lists the three principal ingredients together with their advantages [42].

Experience has shown that it is crucial for the design of HIS to primarily focus
on the integration and interaction of different techniques rather than merge different
methods to create ever-new techniques. Techniques already well understood, should
be applied to solve specific domain problems within the system. Their weakness must
be addressed by combining them with complementary methods.

Neural networks offer a highly structured architecture with learning and gen-
eralization capabilities. The generalization ability for new inputs is then based on
the inherent algebraic structure of the neural network. However, it is very hard to
incorporate human a priori knowledge into a neural network. This is mainly because
the connectionist paradigm gains most of its strength from a distributed knowledge
representation.

In contrast, fuzzy inference systems exhibit complementary characteristics, offer-
ing a very powerful framework for approximate reasoning as it attempts to model the
human reasoning process at a cognitive level. Fuzzy systems acquire knowledge from
domain experts and this is encoded within the algorithm in terms of the set of if–then
rules. Fuzzy systems employ this rule-based approach and interpolative reasoning to
respond to new inputs. The incorporation and interpretation of knowledge is straight
forward, whereas learning and adaptation constitute major problems.

Global optimization is the task of finding the absolutely best set of parameters
to optimize an objective function. In general, it may be possible to have solutions
that are locally, but not globally, optimal. Evolutionary computing (EC) works by
simulating evolution on a computer. Such techniques could be easily used to optimize
neural networks, fuzzy inference systems, and other problems.

Due to the complementary features and strengths of different systems, the trend
in the design of hybrid systems is to merge different techniques into a more powerful
integrated system, to overcome their individual weaknesses.

The various HIS architectures could be broadly classified into four different
categories based on the systems overall architecture: (1) Stand alone architec-
tures, (2) transformational architectures, (3) hierarchical hybrid architectures, and
(4) integrated hybrid architectures.

1. Stand-Alone Architecture. Stand-alone models of HIS applications consist of
independent software components, which do not interact in anyway. Devel-
oping stand-alone systems can have several purposes. First, they provide di-
rect means of comparing the problem solving capabilities of different tech-
niques with reference to a certain application. Running different techniques in a
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parallel environment permits a loose approximation of integration. Stand-alone
models are often used to develop a quick initial prototype, while a more time-
consuming application is developed. Some of the benefits are simplicity and
ease of development using commercially available software packages.

2. Transformational Hybrid Architecture. In a transformational hybrid model, the
system begins as one type of system and ends up as the other. Determining
which technique is used for development and which is used for delivery is
based on the desirable features that the technique offers. Expert systems and
neural networks have proven to be useful transformational models. Variously,
either the expert system is incapable of adequately solving the problem, or the
speed, adaptability, or robustness of neural network is required. Knowledge
from the expert system is used to set the initial conditions and training set for
a neural network. Transformational hybrid models are often quick to develop
and ultimately require maintenance on only one system. Most of the developed
models are just application oriented.

3. Hierarchical Hybrid Architectures. The architecture is built in a hierarchical
fashion, associating a different functionality with each layer. The overall func-
tioning of the model will depend on the correct functioning of all the layers. A
possible error in one of the layers will directly affect the desired output.

4. Integrated Hybrid Architectures. These models include systems, which com-
bine different techniques into one single computational model. They share
data structures and knowledge representations. Another approach is to put
the various techniques on a side-by-side basis and focus on their interaction in
the problem-solving task. This method might allow integrating alternative tech-
niques and exploiting their mutuality. The benefits of fused architecture include
robustness, improved performance, and increased problem-solving capabilities.
Finally, fully integrated models can provide a full range of capabilities (e.g.,
adaptation, generalization, noise tolerance, and justification). Fused systems
have limitations caused by the increased complexity of the intermodule in-
teractions and specifying, designing, and building fully integrated models is
complex.

1.4 EMERGING TRENDS IN CI

This section introduces a few new members of the CI family that are currently gaining
importance owing to their successful applications in both science and engineering.
The new members include swarm intelligence, Type-2 fuzzy sets, chaos theory,
rough sets, granular computing, artificial immune systems, differential evolution
(DE), bacterial foraging optimization algorithms (BFOA), and the algorithms based
on artificial bees foraging behavior.

1.4.1 Swarm Intelligence

Swarm intelligence (SI) is the name given to a relatively new interdisciplinary field
of research, which has gained wide popularity in recent times. Algorithms belonging
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to this field draw inspiration from the collective intelligence emerging from the
behavior of a group of social insects (e.g., bees, termites, and wasps). These insects
even with very limited individual capability can jointly (cooperatively) perform many
complex tasks necessary for their survival. The expression "Swarm Intelligence" was
introduced by Beni and Wang in 1989, in the context of cellular robotic systems [43].

Swarm intelligence systems are typically made up of a population of simple agents
interacting locally with one another and with their environment. Although there is
normally no centralized control structure dictating how individual agents should
behave, local interactions between such agents often lead to the emergence of global
behavior. Swarm behavior can be seen in bird flocks, fish schools, as well as in insects
(e.g., mosquitoes and midges). Many animal groups (e.g., fish schools and bird flocks)
clearly display structural order, with the behavior of the organisms so integrated that
even though they may change shape and direction, they appear to move as a single
coherent entity [44]. The main properties (traits) of collective behavior can be pointed
out as follows (see Fig. 1.6):

Homogeneity. Every bird in a flock has the same behavior model. The flock moves
without a leader, even though temporary leaders seem to appear.

Locality. Its nearest flock-mates only influence the motion of each bird. Vision is
considered to be the most important senses for flock organization.

Collision Avoidance. Avoid colliding with nearby flock mates.

Velocity Matching. Attempt to match velocity with nearby flock mates.

Flock Centering. Attempt to stay close to nearby flock mates.

Individuals attempt to maintain a minimum distance between themselves and others
at all times. This rule is given the highest priority and corresponds to a frequently

Collision
Avoidance

Velocity
Matching 

Collective
Global
Behavior 

Flock 
Centering

Locality 

Homogeneity 

FIGURE 1.6 Main traits of collective behavior.
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observed behavior of animals in nature [45]. If individuals are not performing an
avoidance man oeuvre, they tend to be attracted toward other individuals (to avoid
being isolated) and to align themselves with neighbors [46,47].

According to Milonas, five basic principles define swarm intelligence [48]. First is
the proximity principle: The swarm should be able to carry out simple space and time
computations. Second is the quality principle: The swarm should be able to respond
to quality factors in the environment. Third is the principle of diverse response: The
swarm should not commit its activities along excessively narrow channels. Fourth is
the principle of stability: The swarm should not change its mode of behavior every
time the environment changes. Fifth is the principle of adaptability: The swarm must
be able to change behavior mote when it is worth the computational price. Note that
principles four and five are direct opposites; opposite sides of the same coin.

Below we provide a brief outline of two most popular algorithms of SI paradigm,
namely, the particle swarm optimization (PSO) algorithm and the ant colony opti-
mization (ACO) algorithm.

1.4.1.1 The PSO Algorithm. The concept of particle swarms, although initially
introduced for simulating human social behavior, has become very popular these days
as an efficient means of intelligent search and optimization. The PSO [49], as it is
called now, does not require any gradient information of the function to be optimized,
uses only primitive mathematical operators, and is conceptually very simple. The
PSO emulates swarming behavior of insects, animals, and so on, and also draws
inspiration from the boid’s method of Reynolds and sociocognition [49]. Particles
are conceptual entities, which search through a multidimensional search space. At
any particular instant, each particle has a position and velocity. The position vector
of a particle with respect to the origin of the search space represents a trial solution
to the search problem. The efficiency of PSO is mainly attributed to the efficient
communication of information among the search agents.

The classical PSO starts with the random initialization of a population of candidate
solutions (particles) over the fitness landscape. However, unlike other evolutionary
computing techniques, PSO uses no direct recombination of genetic material between
individuals during the search. Rather, it works depending on the social behavior of the
particles in the swarm. Therefore, it finds the best global solution by simply adjusting
the trajectory of each individual toward its own best position and toward the best
particle of the entire swarm at each time-step (generation). In a D-dimensional search
space, the position vector of the i th particle is given by �Xi = (xi,1, xi,2, . . . , xi,D)
and velocity of the i th particle is given by �Vi = (vi,1, vi,2, . . . , vi,D). Positions and
velocities are adjusted and the objective function to be optimized, f ( �Xi ), is evaluated
with the new coordinates at each time-step. The velocity and position update equations
for the dth dimension of the i th particle in the swarm may be represented as

vi,d,t = ω*vi,d,t−1 + C1*rand1*(pbesti,d − xi,d,t−1) + C2*rand2*(gbestd − xi,d,t−1)

(1.11)

xi,d,t = xi,d,t−1 + vi,d,t (1.12)
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where rand1 and rand2 are random positive numbers uniformly distributed in (0,1)
and are drawn anew for each dimension of each particle. pbest is the personal best
solution found so far by an individual particle while gbest represents the fittest particle
found so far by the entire community. The first term in the velocity updating formula is
referred to as the “cognitive part”. The last term of the same formula is interpreted as
the “social part”, which represents how an individual particle is influenced by the other
members of its society. The acceleration coefficients C1 and C2 determine the relative
influences of the cognitive and social parts on the velocity of the particle. The particle’s
velocity is clamped to a maximum value �Vmax = [vmax,1, vmax,2, . . . , vmax,D]T . If in
dth dimension,

∣∣vi,d

∣∣ exceeds vmax,dspecified by the user, then the velocity of that
dimension is assigned to sign(vi,d )*vmax,d , where sign(x) is the triple-valued signum
function.

1.4.1.2 The ACO Algorithm. The main idea of ACO [50,51] is to model a problem
as the search for a minimum cost path in a graph. Artificial ants as those walking on
this graph, looking for cheaper paths. Each ant has a rather simple behavior capable
of finding relatively costlier paths. Cheaper paths are found as the emergent result
of the global cooperation among ants in the colony. The behavior of artificial ants is
inspired from real ants: They lay pheromone trails (obviously in a mathematical form)
on the graph edges and choose their path with respect to probabilities that depend
on pheromone trails. These pheromone trails progressively decrease by evaporation.
The basic idea of a real ant system is illustrated in Figure 1.7. In (a), the ants move
in a straight line to the food. Part (b) illustrates the situation soon after an obstacle
is inserted between the nest and the food. To avoid the obstacle, initially each ant
chooses to turn left or right at random. Let us assume that ants move at the same
speed depositing pheromone in the trail uniformly. However, the ants that, by chance,
choose to turn left will reach the food sooner, whereas the ants that go around the
obstacle turning right will follow a longer path, and so will take a longer time to
circumvent the obstacle. As a result, pheromone accumulates faster in the shorter
path around the obstacle. Since ants prefer to follow trails with larger amounts of

Nest

Food Food Food

Nest Nest

(b) (c)(a)

FIGURE 1.7 Illustrating the behavior of real ant movements.
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pheromone, eventually all the ants converge to the shorter path around the obstacle,
as shown in (c).

In addition, artificial ants have some extra features not seen in their counterpart
in real ants. In particular, they live in a discrete world (a graph) and their moves
consist of transitions from nodes to nodes. Pheromone placed on the edges acts
like a distributed long-term memory. The memory, instead of being stored locally
within individual ants, remains distributed on the edges of the graph. This indirectly
provides a means of communication among the ants called stigmergy [50]. In most
cases, pheromone trails are updated only after having constructed a complete path
and not during the walk, and the amount of pheromone deposited is usually a function
of the quality of the path. Finally, the probability for an artificial ant to choose an
edge not only depends on pheromones deposited on that edge in the past, but also on
some problem dependent local heuristic functions.

1.4.2 Type-2 Fuzzy Sets

The idea of types-2 fuzzy sets emerged from a 1975 paper by Zadeh [52], where he
tried to address a typical problem with type-1 fuzzy sets that the membership function
of type-1 fuzzy sets has no uncertainty associated with it. Thus this sometimes
contradicts the word fuzzy, since that word has the connotation of lots of uncertainty.
Type-2 fuzzy sets [53–55] are special kinds of fuzzy sets, the membership grades of
which are themselves fuzzy (i.e., they incorporate a blurring of the type-1 membership
function). The idea of type-2 fuzzy sets emerged from a 1975 paper by Zadeh [53],
where he tried to address a typical problem with type-1 fuzzy sets that the membership
function of a type-1 fuzzy set has no uncertainty associated with it. Thus this finding
sometimes contradicts the word fuzzy, since that word has the connotation of lots
of uncertainty. Now, in type-2 fuzzy sets, there is no longer a single value for the
membership function for any input measurement or x value, but there are a few. This
fact has been illustrated in Figure 1.8.

In order to symbolically distinguish between a type-1 fuzzy set and a type-2 fuzzy
set, researchers use a tilde symbol over the symbol for the latter fuzzy set; so, if
A denotes a type-1 fuzzy set, Ã may denote the comparable type-2 fuzzy set. The

 (a) Single membership grade in type 1 fuzzy set (b) Membership grades corresponding to
     a single entity x in type 2 fuzzy set 

1.0

0.5

0.0
x

1.0

0.5

0.0
x

FIGURE 1.8 Illustrating the membership grades in (a) type-1 and (b) type-2 fuzzy sets.
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FOU

u (Primary membership)

(Third dimension)

(Primary variable)
x

I

FIGURE 1.9 Illustrating the 3D membership of a general type-2 fuzzy set. A cross section
of one slice of the third dimension is shown. This cross section, as well as all others, sits on
the FOU.

distinguishing feature of Ã versus A is the membership function values of Ã are
blurred, (i.e., they are no longer a single number from 0 to 1), but are instead a
continuous range of values between 0 and 1, say [a, b]. We can either assign the same
weighting or a variable weighting to the interval of membership function values [a,
b]. When the former is done, the resulting type-2 fuzzy set is called either an interval
type-2 fuzzy set or an interval valued fuzzy set (although different names may be
used, they are the same fuzzy set). When the latter is done, the resulting type-2 fuzzy
set is called a general type-2 fuzzy set (to distinguish it from the special interval
type-2 fuzzy set).

The membership function of a general type-2 fuzzy set, Ã, is three-dimensional
(3D) and the third dimension represents the value of the membership function at each
point on its two-dimensional (2D) domain that is called its footprint of uncertainty
(FOU). It is illustrated in Figure 1.9. For an interval type-2 fuzzy set that 3D value
is the same (e.g., 1) everywhere, which means that no new information is contained
in the third dimension of an interval type-2 fuzzy set. So, for such a set, the third
dimension is ignored, and only the FOU is used to describe it. It is for this reason
that an interval type-2 fuzzy set is sometimes called a first-order uncertainty fuzzy
set model, whereas a general type-2 fuzzy set (with its useful third dimension) is
sometimes referred to as a second-order uncertainty fuzzy set model.

1.4.3 Rough Set Theory

Introduced by Pawlak [56,57] in the 1980s, rough set theory constitutes a sound basis
for discovering patterns in hidden data and thus have extensive applications in data
mining in distributed systems. It has recently emerged as a major mathematical tool
for managing uncertainty that arises from granularity in the domain of discourse (i.e.,
from the indiscernibility between objects in a set).
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Rough sets can be considered sets with fuzzy boundaries: Sets that cannot be
precisely characterized using the available set of attributes. The basic concept of the
rough set theory (RST) is the notion of approximation space, which is an ordered
pair A = (U, R), where

U : Nonempty set of objects, called universe.

R: Equivalence relation on U , called indiscernibility relation. If x, y ∈ U and xRy
then x and y are indistinguishable in A.

Each equivalence class induced by R, (i.e., each element of the quotient set R̃ =
U

/
R), is called an elementary set in A. An approximation space can be alternatively

noted by A = (U, R̃). It is assumed that the empty set is also elementary for every
approximation space A. A definable set in A is any finite union of elementary sets
in A. For x ∈ U let [x]R denote the equivalence class of R, containing x. For each
X ⊆ U, X is characterized in A by a pair of sets: its lower and upper approximation
in A, defined respectively as

Alow(X) = {x ∈ U |[x]R ⊆ X}
Aupp(X) = {x ∈ U |[x]R ∩ X 
= ∅}

A rough set in A is the family of all subsets of U having the same lower and
upper approximations. Figure 1.10 illustrates rough boundaries Alow(X) [the lower
approximation and Aupp(X)] the upper approximation of a given point set X.

Many different problems can be addressed by RST. During the last few years,
this formalism has been approached as a tool used in connection with many different
areas of research. There have been investigations of the relations between RST
and the Dempster–Shafer theory and between rough sets and fuzzy sets. The RST

Alow(X)

Aupp(X)

X

FIGURE 1.10 The rough boundaries Alow(X) [the lower approximation and Aupp(X)] the
upper approximation of a given point set X ⊆ U-the universe of discourse.
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has also provided the necessary formalism and ideas for the development of some
propositional machine learning systems. It has also been used for, among many
others, knowledge representation; data mining; dealing with imperfect data; reducing
knowledge representation, and for analyzing attribute dependencies. The notions of
rough relations and functions are based on RST and can be applied as a theoretical
basis for rough controllers, among others.

1.4.4 Granular Computing

The philosophy of rough set analysis is general enough to be applicable to many
problem-solving tasks. It, in fact, has a major influence on an emerging field of
study known as granular computing (GrC) [58–60]. The theory of rough sets and the
theory of granularity offer artificial intelligence perspectives on granular computing.
Specifically, granular computing can be viewed as a study of human-inspired problem
solving and information processing. Granular computing concerns the processing of
complex information entities called information granules, which arise in the pro-
cess of data abstraction and derivation of knowledge from information. Generally
speaking, information granules are collections of entities that usually originate at the
numeric level and are arranged together due to their similarity, functional or physical
adjacency, indistinguishability, coherency, or the like.

Currently, granular computing is more a theoretical perspective than a coherent
set of methods or principles. As a theoretical perspective, it encourages an approach
to data that recognizes and exploits the knowledge present in data at various levels of
resolution or scales. In this sense, it encompasses all methods that provide flexibility
and adaptability in the resolution at which knowledge or information is extracted and
represented.

1.4.5 Artificial Immune Systems

The artificial immune systems (AIS) [61,62] have appeared as a new computational
approach for the CI community. Like other biologically inspired techniques, it tries
to extract ideas from a natural system, in particular the vertebrate immune system,
in order to develop computational tools for solving engineering problems. The pio-
neering task of AIS is to detect and eliminate non-self materials, called “antigens”
(e.g., virus cells or cancer cells). The artificial immune system also plays a great role
to maintain its own system against dynamically changing environment. The immune
system thus aims at providing a new methodology suitable for dynamics problems
dealing with unknown–hostile environment.

In recent years, much attention has been focused on behavior-based AI for its
proven robustness and flexibility in a dynamically changing environment. Artificial
immune systems are one such behavior-based reactive system that aims at developing
a decentralized consensus making mechanism, following the behavioral characteris-
tics of biological immune system.
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The basic components of the biological immune system are macrophages, an-
tibodies, and lymphocytes, the last one being classified into two types: B- and
T-lymphocytes [63], which are the cells stemming from the bone marrow. The human
blood circulatory system contains roughly 107 distinct types of B-lymphocytes, each
of which has a distinct molecular structure and produces Y-shaped [63] antibodies
from its surface. Antibodies can recognize foreign substances, called antigens, that
invade a living creature. Virus, cancer cells, and so on, are typical examples of anti-
gens. To cope with a continuously changing environment, a living system possesses an
enormous repertoire of antibodies in advance. The T-lymphocytes, on the other hand,
are the cells maturing in the thymus, and are used to kill infected cells and regulate
the generation of antibodies from B-lymphocytes as outside circuits of B-lymphocyte
networks. It is interesting to note that an antibody recognizes an antigen by part of its
structure called epitope. The portion of the antibody that has the recognizing capabil-
ity of an antigen is called paratope. Usually, epitope is the key portion of the antigen,
and paratope is the keyhole portion of the antibody. Recent study in immunology re-
veals that each type of antibody has its specific antigen determinant, called idiotope.

Jerne [63–65] proposed the idiotypic network hypothesis to explain the biological
communication among different species of antibodies. According to the hypothesis,
antibodies–lyphocytes are not isolated, but they communicate to each other among
their variant species.

A simple model of the immune system can be put forward in the following way:
Let

αi (t) be the concentration of the i th antibody

mi j be the affinity between antibody j and antibody i

mik be the affinity between antibody i and the detected antigen k

ki be the natural decay rate of antibody i

N and M , respectively, denote the number of antibodies that stimulate and suppress
antibody i

The growth rate of antibody is given below:

dαi

dt
=

⎧⎨
⎩

N∑
j=1

m ji · a j (t) −
N∑

k=1

mik · ak(t) − mi − ki

⎫⎬
⎭αi (t) (1.13)

and αi (t + 1) = 1

1 + exp(0.5 − αi (t))
(1.14)

The first and the second term on the right-hand side of Eq. (1.13), respectively,
denote the stimulation and suppression by other antibodies, respectively. The third
term denotes the stimulation from the antigen, and the fourth term represents the
natural decay of the i th antibody. Equation (1.14) is a squashing function used to
ensure the stability of the concentration.
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1.4.6 Chaos Theory

In mathematics, chaos theory [66,67] describes the behavior of certain dynamical
systems (i.e., systems whose states evolve with time) that may exhibit dynamics that
are highly sensitive to initial conditions (popularly referred to as the butterfly effect).
As a result of this sensitivity, which manifests itself as an exponential growth of
perturbations in the initial conditions, the behavior of chaotic systems appears to be
random. This happens even though these systems are deterministic, meaning that their
future dynamics are fully defined by their initial conditions with no random elements
involved. This behavior is known as deterministic chaos, or simply chaos. Chaos
theory describes the behavior of certain nonlinear dynamical systems that under
certain conditions exhibit a peculiar phenomenon known as chaos. One important
characteristic of the chaotic systems is their sensitivity to initial conditions (popularly
referred to as the butterfly effect). Because of this sensitivity, the behavior of these
systems appears to be random, even though the dynamics is deterministic in the sense
that it is well defined and contains no random parameters. Examples of such systems
include the atmosphere, the solar system, plate tectonics, turbulent fluids, economics,
and population growth.

Currently, fuzzy logic and chaos theory form two of the most intriguing and
promising areas of mathematical research. Recently, fuzzy logic and chaos theory
have merged to form a new discipline of knowledge, called fuzzy chaos theory
[68,69]. The detailed implications of fuzzy chaotic models are beyond the scope of
this chapter.

1.4.7 The Differential Evolution Algorithm

Differential evolution (DE) [70–72] is well known as a simple and efficient scheme
for global optimization over continuous spaces. It has reportedly outperformed a
few evolutionary algorithms (EAs) and other search heuristics like the PSO when
tested over both benchmark and real-world problems. Differential evolution is a
population-based global optimization algorithm that uses a floating-point (real-coded)
representation. The i th individual (parameter vector or chromosome) of the population
at generation (time) t is a D-dimensional vector containing a set of D optimization
parameters:

�Zi (t) = [Zi,1(t), Zi,2(t), . . . , Zi,D(t)] (1.15)

Now, in each generation (or one iteration of the algorithm) to change the population
members �Zi (t) (say), a donor vector �Yi (t) is created. It is the method of creating
this donor vector that distinguishes the various DE schemes. In one of the earliest
variants of DE, now called the DE–rand–1 scheme, to create �Yi (t) for each i th member,
three other parameter vectors (say the r1, r2, and r3th vectors such that r1, r2, r3 ∈
[1, N P] and r1 
= r2 
= r3) are chosen at random from the current population. Next,
the difference of any two of the three vectors is multiplied by a scalar number F and
the scaled difference is added to the third one, hence we obtain the donor vector �Yi (t).
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The process for the j th component of the i th vector may be expressed as,

Yi, j (t) = Zr1, j (t) + F · (Zr2, j (t) − Zr3, j (t)) (1.16)

Next, a crossover operation takes place to increase the potential diversity of the
population. The DE family primarily uses two kinds of crossover schemes, namely,
“exponential” and “binomial” [70]. To save space here, we briefly describe the bino-
mial crossover, which is also employed by the modified DE algorithm. The binomial
crossover is performed on each of the D variables whenever a randomly picked num-
ber between 0 and 1 is within the Cr value. In this case, the number of parameters
inherited from the mutant has a (nearly) binomial distribution. Thus for each target
vector �Zi (t), a trial vector �Ri (t) is created in the following fashion:

Ri, j (t) = Yi, j (t) if rand j (0, 1) ≤ Cr or j = rn(i)

= Zi, j (t) if rand j (0, 1) > Cr or j 
= rn(i) (1.17)

for j = 1, 2, . . . , D and rand j (0, 1) ∈ [0, 1] is the j th evaluation of a uniform random
number generator. The Paramiter rn(i) ∈ [1, 2, . . . , D] is a randomly chosen index
that ensures �Ri (t)gets at least one component from �Zi (t). To keep the population
size constant over subsequent generations, the next step of the algorithm calls for
“selection” in order to determine which one between the target and trial vector will
survive in the next generation (i.e., at time t = t + 1). If the trial vector yields a
better value of the fitness function, it replaces its target vector in the next generation;
otherwise the parent is retained in the population:

�Zi (t + 1) = �Ri (t) if f ( �Ri (t)) ≤ f ( �Zi (t))

= �Zi (t) if f ( �Ri (t)) > f ( �Zi (t)) (1.18)

where f (.) is the function to be minimized.
The DE has successfully been applied to diverse domains of science and engineer-

ing (e.g., mechanical engineering design, signal processing, chemical engineering,
machine intelligence, and pattern recognition, see [73]). It has been shown to perform
better than the GA and PSO over several numerical benchmarks [74].

1.4.8 BFOA

In 2002, Passino and co-workers proposed the BFOA [75,76] based on the foraging
theory of natural creatures that try to optimize (maximize) their energy intake per
unit time spent for foraging, considering all the constraints presented by their own
physiology (e.g., sensing and cognitive capabilities), and environment (e.g., density
of prey, risks from predators, physical characteristics of the search space). Although
BFOA has certain characteristics analogous to an evolutionary algorithm ([75], p. 63),
it is not directly connected to Darwinian evolution and natural genetics, which formed
the basis of the GA type algorithms in the early 1970s.
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During foraging of the real bacteria, locomotion is achieved by a set of tensile
flagella. Flagella help an Escherechia coli bacterium to tumble or swim, which are
two basic operations performed by a bacterium at the time of foraging [70]. When
they rotate the flagella in the clockwise direction, each flagellum pulls on the cell.
That results in the moving of flagella independently and finally the bacterium tumbles
with a lesser number of tumbling, whereas in a harmful place it tumbles frequently to
find a nutrient gradient. Moving the flagella in the counterclockwise direction helps
the bacterium to swim at a very fast rate. In the above-mentioned algorithm, the
bacteria undergoes chemotaxis, where they like to move toward a nutrient gradient
and avoid noxious environment. Generally, the bacteria move for a longer distance
in a friendly environment. Figure 1.11 depicts how clockwise and counterclockwise
movement of a bacterium take place in a nutrient solution.

When they get sufficient food, they increased in length, and in the presence
of a suitable temperature, they break in the middle to from an exact replica of
themselves. This phenomenon inspired Passino to introduce an event of reproduction
in BFOA. Due to the occurrence of sudden environmental changes or attack, the
chemotactic progress may be destroyed and a group of bacteria may move to some
other places or something else may be introduced in the swarm of concern. This
constitutes the event of elimination dispersal in the real bacterial population, where
all the bacteria in a region are killed or a group is dispersed into a new part of the
environment.

Now, suppose that we want to find the minimum of J (θ ), where θ ∈ p (i.e., θ

is a p-dimensional vector of real numbers), and we do not have measurements or an
analytical description of the gradient ∇ J (θ ). The BFOA mimics the four principal
mechanisms observed in a real bacterial system: chemotaxis, swarming, reproduction,
and elimination dispersal to solve this nongradient optimization problem. Below, we
introduce the formal notations used in BFOA literature, and then provide the complete
pseudocode of the BFO algorithm.

Counter
clockwise
rotation

SWIM 

TUMBLEClockwise rotation

FIGURE 1.11 Swim and tumble of a bacterium.
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Let us define a chemotactic step to be a tumble followed by a tumble or a tumble
followed by a run. Let j be the index for the chemotactic step. Let k be the index for
the reproduction step. Let l be the index of the elimination-dispersal event. Also, let

p = Dimension of the search space

S = Total number of bacteria in the population

Nc = The number of chemotactic steps

Ns = The swimming length

Nre = The number of reproduction steps

Ned = The number of elimination-dispersal events

Ped = Elimination-dispersal probability

C(i) = The size of the step taken in the random direction specified by the tumble

Let P( j, k, l) = {θ i ( j, k, l)|i = 1, 2, . . . , S} represent the position of each mem-
ber in the population of the S bacteria at the j th chemotactic step, kth reproduction
step, and lth elimination-dispersal event. Here, let J (i, j, k, l) denote the cost at the
location of the i th bacterium θ i ( j, k, l) ∈ p (sometimes we drop the indices and
refer to the i th bacterium position as θ i ). Note: We will interchangeably refer to J as
being a “cost” (using terminology from optimization theory) and as being a nutrient
surface (in reference to the biological connections). For actual bacterial populations,
S can be very large (e.g., S = 109), but p = 3. In our computer simulations, we will
use much smaller population sizes and will keep the population size fixed. However,
the BFOA, allows p > 3 so that we can apply the method to higher dimensional
optimization problems. Below we briefly describe the four prime steps in BFOA. We
also provide a pseudocode of the complete algorithm.

1. Chemotaxis. This process simulates the movement of an E. coli cell through
swimming and tumbling via flagella. Suppose θ i ( j, k, l) represents i th bac-
terium at the j th chemotactic, kth reproductive, and lth elimination-dispersal
step. The parameter C(i) is a scalar and indicates the size of the step taken
in the random direction specified by the tumble (run length unit). Then in
computational chemotaxis, the movement of the bacterium may be represented
by

θ i ( j + 1, k, l) = θ i ( j, k, l) + C(i)
�(i)√

�T (i)�(i)
(1.19)

where � indicates a unit length vector in the random direction.

2. Swarming. An interesting group behavior has been observed for several motile
species of bacteria including E. coli and Salmonella typhimurium, where stable
spatiotemporal patterns (swarms) are formed in a semisolid nutrient medium.
A group of E. coli cells arrange themselves in a traveling ring by moving up the
nutrient gradient when placed amid a semisolid matrix with a single nutrient
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chemoeffecter. The cells when stimulated by a high level of succinate, release
an attractant aspertate, which helps them to aggregate into groups and thus
move as concentric patterns of swarms with high bacterial density. The cell-to-
cell signaling in E. coli swarm may be represented by the following function:

Jcc(θ, P( j, k, l)) =
S∑

i=1

Jcc(θ, θ i ( j, k, l))

=
S∑

i=1

[−dattractant exp(−wattractant

p∑
m=1

(θm − θ i
m)2)]

+
S∑

i=1

[hrepellant exp(−wrepellant

p∑
m=1

(θm − θ i
m)2)] (1.20)

where Jcc(θ, P( j, k, l)) is the objective function value to be added to the
actual objective function (to be minimized) to present a time varying objective
function. The coefficients dattractant, wattractant, hrepellant, and wrepellant control the
strength of the cell-to-cell signaling. More specifically dattractant is the depth of
the attractant released by the cell; wattractant is a measure of the width of the at-
tractant signal (a quantification of the diffusion rate of the chemical); hrepellant =
dattractant is the height of the repellant effect (a bacterium cell also repels a
nearby cell in the sense that it consumes nearby nutrients and it is not physically
possible to have two cells at the same location); and wrepellant is a measure of
the width of the repellant. For a detailed discussion on the function Jcc, please
see [70].

3. Reproduction. The least healthy bacteria eventually die while each of the
healthier bacteria (those yielding lower value of the objective function)
asexually split into two bacteria, which are then placed in the same location.
This keeps the swarm size constant.

4. Elimination and Dispersal. To simulate this phenomenon in BFOA, some
bacteria are liquidated at random with a very small probability while the new
replacements are randomly initialized over the search space.

1.4.9 Bees Foraging Algorithm

Besides the gradually increasing popularity of BFOA, the current decade also wit-
nessed the development of a family of computer algorithms mimicking the foraging
strategies of honey bees. A colony of honey bees can extend itself over long distances
(up to 14 km) and in multiple directions simultaneously to exploit a large number of
food sources. A colony prospers by deploying its foragers to good fields. In principle,
flower patches with plentiful amounts of nectar or pollen that can be collected with
less effort should be visited by more bees, whereas patches with less nectar or pollen
should receive fewer bees [77,78]. The foraging process begins in a colony by scout
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bees being sent to search for promising flower patches. Scout bees move randomly
from one patch to another. During the harvesting season, a colony continues its ex-
ploration, keeping a percentage of the population as scout bees. When they return
to the hive, those scout bees founding a patch that is rated above a certain quality
threshold (measured as a combination of some constituents, e.g., sugar content) de-
posit their nectar or pollen and go to the “dance floor” to perform a dance known
as the Waggle Dance [41]. The family of Artificial Bee Foraging algorithms try to
mimic the above aspects of the foraging strategies employed by real bee colonies.
The key members of the family and their applications to several different engineering
optimization problems have been summarized in Table 1.2.

TABLE 1.2 A Summary of State-of-the-art Research Works on Bees
Foraging Algorithm

Researchers References Related Algorithms Applications

1. Yonezawa and
Kikuchi (1996)

[79] Biological Simulations

2. Seeley and
Buhrman (1999)

[80],

3. Schmickl et al.
(2005)

[81],

4. Lemmens
(2006)

[82],

Sato and Hagiwara
(1997)

[83] Bee System Genetic Algorithm
Improvement

Karaboga (2005) [84] Artificial Bee Colony
(ABC)

Continuous Optimization

Yang (2005) [85] Virtual Bee Algorithm
(VBA)

Continuous Optimization

Pham et al. (2006) [86] Bees Algorithm (BA) Continuous Optimization
Lucic and

Teodorovic
(2001)

[87] Bee System (BS) Travelling Salesman
Problem (TSP)

Lucic and
Teodorovic
(2002)

[88] BS TSP and Stochastic Vehicle
Routing Problem

Teodorovic and
Dell’Orco
(2005)

[89] Bee Colony
Optimization (BCO)
+ Fuzzy Bee System
(FBS)

Ride-Matching Problem

Nakrani and Tovey
(2003)

[90] A Honey Bee Algorithm Dynamic Allocation of
Internet Service

Wedde et al. (2004) [91] Bee Hive Telecommunication
Network Routing

Drias et al. (2005) [92] Bees Swarm Max-W-Sat Problem
Pham et al. (2006) [93] BA LVQ-Neural Network
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Recently, Quijano et al. [94] modeled the social foraging behavior of honey bees
for nectar, involving the environment representation, activities during bee expedi-
tions (exploration and foraging), unloading nectar, dance strength decisions, explorer
allocation, recruitment on the dance floor, and accounting for interactions with other
hive functions [95]. They used the computational model of bee foraging to (1) solve
a continuous optimization problem underlying resource allocation, and (2) provide
novel strategies for multizone temperature control, an important industrial engineer-
ing application. They also established the global optimality of such algorithms for
single or multiple hives theoretically on the resource allocation problem.

1.5 SUMMARY

This chapter introduced different fundamental components of CI, discussed their
scope of possible synergism, and also focused on the most prominent recent topics
emerging in the field. It is clear from the discussions that fuzzy logic is a fundamental
tool for reasoning with approximate data and knowledge. Neural network plays a
significant role in machine learning and GA has an extensive application in intelligent
search and optimization problems. Belief networks are capable of propagating beliefs
of an event node based on the probabilistic support of its cause and effect nodes in
the causal tree–graph. The chapter also provided a list of possible synergism of two
or more computational models that fall under the rubric of CI. It ends with a brief
exposure to some very recently developed methodologies, which are gaining rapid
importance in the realm of CI.

REFERENCES

1. A. M. Turing (1936), On Computable Numbers, with an Application to the Entscheidungs
problem, Proc. London Math. Soc., 2, 42: 230–265.

2. Turing Machine: Available at http://www.turing.org.uk/turing/.

3. A. M. Turing (1950), Computing Machinery and Intelligence Available at http://abelard.
org/turpap/turpap.htm.

4. A. M. Turing (1948), Machine Intelligence, in B. J. Copeland (Ed.), The Essential Turing:
The ideas that gave birth to the computer age, Oxford University Press, Oxford, UK.

5. J. C. Bezdek (1994), What is Computational Intelligence? Computational Intelligence
Imitating Life, J. M., Zurada, R. J. Marks, and C. J. Robinson (Eds.), IEEE Press, NY,
pp. 1–12.

6. A. Konar (2005), Computational Intelligence, Principles, Techniques, and Applications,
Springer-Verlag, Berlin, Heidelberg.

7. D. Poole, A. Mackworth, and R. Goebel (1998), Computational Intelligence—A Logical
Approach, Oxford University Press, NY.

8. A. P. Engelbrecht (2007), Computational Intelligence: An Introduction, John Wiley &
Sons, Inc., NY.



REFERENCES 33

9. R. J., Marks (1993), Intelligence: Computational versus Artificial, IEEE Trans. Neural
Networks, 4: 737–739.

10. C. G. Langton (Ed.) (1989), Artificial Life, Vol. 6, Addison-Wesley, Reading, MA.

11. W. Pedrycz (1996), Fuzzy Sets Engineering, CRC Press, Boca Raton, FL, pp. 73–106.

12. W. Pedrycz and F. Gomide (1998), An Introduction to Fuzzy Sets: Analysis and Design,
MIT Press, MA.

13. S. Haykin (1999), Neural Networks: A Comprehensive Foundation, Prentice-Hall, NJ.

14. Li. M. Fu (1994), Neural Networks in Computer Intelligence, McGraw-Hill, NY.

15. J., Hertz, A. Krogn, and G. R. Palmer (1990), Introduction to the Theory of Neural
Computation, Addison-Wesley, Reading, MA.

16. R. J. Schalkoff (1997), Artificial Neural Networks, McGraw-Hill, NY.

17. S. Kumar (2007), Neural Networks—A Classroom Approach, Tata, McGraw-Hill, India.

18. C. M. Bishop (1995), Neural Networks for Pattern Recognition, Oxford University
Press.

19. T. Kohonen (1988), Self-Organization and Associative Memory, Springer-Verlag, NY.

20. Zadeh, L. A. (1965), Fuzzy Sets, Information and Control, Vol. 8: pp. 338–353.

21. G. J. Klir and B. Yuan (1995), Sets and Fuzzy Logic: Theory and Applications, Prentice-
Hall, NJ.

22. B. Kosko (1991), Neural Networks and Fuzzy Systems: A Dynamical Systems Approach
to Machine Intelligence, Prentice-Hall, Englewood Cliffs, NJ.

23. T. J. Ross (1995), Fuzzy Logic with Engineering Applications, McGraw-Hill, NY.

24. H. J. Zimmerman (1996), Fuzzy Set Theory and Its Applications, Kluwer Academic,
Dordrecht, The Netherlands, pp. 131–162.

25. A. Abraham (2001), Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques, Con-
nectionist Models of Neurons, Learning Processes, and Artificial Intelligence, Lecture
Notes in Computer Science. Mira J. and Prieto A. (Eds.), Vol. 2084, Springer-Verlag
Germany, pp. 269–276.

26. T. Back, D. B. Fogel, and Z. Michalewicz (Eds.) (1997), Handbook of Evolutionary
Computation, Oxford University Press.

27. D. B. Fogel (1995), Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence, IEEE Press, Piscataway, NJ.

28. L. J., Fogel, A. J. Owens, and M. J. Walsh (1966), Artificial Intelligence through Simulated
Evolution, John Wiley & Sons, NY.

29. J. H. Holland (1975), Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor, MI.

30. I. Rechenberg (1973), Evolutionsstrategie—Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution (Ph.D. thesis, 1971), Reprinted by Fromman-
Holzboog.

31. H.-P. Schwefel (1974), Numerische Optimierung von Computer-Modellen (Ph.D. thesis).
Reprinted by Birkhäuser (1977).
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2
FUNDAMENTALS OF PATTERN
ANALYSIS: A BRIEF OVERVIEW

Basabi Chakraborty

2.1 INTRODUCTION

With the rapid proliferation of the use of computers, a vast amount of data are
generated in every area of engineering and scientific disciplines (biology, psychology,
medicine, marketing, finance, etc.). This vast amount of data with potentially useful
information needs to be analyzed automatically for extraction of hidden knowledge.
Pattern analysis is the process of automatically detecting patterns characterizing the
inherent information in data. A pattern is defined in [1] as opposite of chaos; It is an
entity, vaguely defined, that could be given a name. The objective of pattern analysis
is to identify the patterns into some known categories–classes or to group the patterns
in different categories that are then assigned some tags–class names. The former is
known as supervised pattern classification and the later is known as unsupervised
pattern classification or clustering.

The area of pattern analysis or pattern classification is not a new one, the research
began during the 1950s and varieties of techniques [2–4] have been developed over the
years. The survey papers of Unger [5], Wee [6], and Nagy [7] represent an account of
the earlier works done in this area. Classical data analysis techniques for pattern dis-
covery are based mainly on statistics and mathematics [8–10]. An excellent overview
of statistical pattern recognition techniques is available in [11]. Though statistical
techniques are well developed, they seem to be no longer adequate for analyzing
an increasingly huge collection of complex data in a variety of domains (e.g., the
worldwide web, bioinformatics, healthcare, or scientific research). Recently, new in-
telligent data analysis technologies are emerging based on soft computing tools (e.g.,
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artificial neural network, fuzzy logic, and rough sets), evolutionary techniques, and
genetic algorithm to deal with imprecision and uncertainty in complex data [12–18].

This chapter represents an introduction to the fundamental concept behind pat-
tern recognition techniques and a brief overview of the methodologies developed to
date. Section 2.2 introduces the basic concepts behind pattern analysis and different
approaches for designing a pattern recognition system. The following sections deal
with the key processes of pattern analysis and a brief overview of the presently avail-
able techniques. Emphasis has been given to statistical techniques, the pioneering
contributor in the field of pattern analysis. Section 2.7 concludes with a discussion
of future issues.

2.2 PATTERN ANALYSIS: BASIC CONCEPTS AND APPROACHES

The basic steps of an automatic pattern analysis system are shown in Figure 2.1. The
numerical representation of the pattern constitutes the measurement space. The lower
dimensional representation of the measurement space constitutes the feature space
and the categorization of the pattern represents the decision space. The role of the
preprocessing step is to separate the pattern of interest from noisy background, and
other necessary operations for suitable processing in the next step. Feature selection
or feature extraction is to select–extract discriminatory features for representing the
input pattern in a compact way for correct classification in the next stage, while
discarding redundant information. The final step classifies input patterns to one of the
possible classes or groups the patterns into some categories according to similarities
among them. The accuracy of an automatic pattern recognition system depends
jointly on the performance of the feature selector and the classifier. The degradation
at any stage affect the efficiency of the other stage resulting in an overall inefficient
system.

The different approaches for pattern analysis developed so far can be categorized
into four areas: which are (1) template matching, (2) statistical approach, (3) syntactic
approach, and (4) the soft computing approach. Some attempts also have been made to
design hybrid systems with combinations of different approaches. A brief description
of the different approaches are presented below.

2.2.1 Template Matching

The simplest and earliest approach to pattern recognition is based on template match-
ing. The input pattern to be classified is matched against the reference patterns called
the templates of the available classes. The reference patterns are learned from the

Output

Class

Classification
Selection
Feature 

Pattern

Input Preprocessing

FIGURE 2.1 Basic pattern analysis system.
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training samples and matching is done by using a similarity measure, mostly cor-
relation measures. This approach is used mostly in the application of text or string
matching. Dynamic programming based techniques [19] are the popular example of
template matching [20,21]. The rigid template matching approach is not suitable for
pattern analysis problems where the intraclass variation is large.

2.2.2 Syntactic Approach

For hierarchical patterns, where a pattern is composed of simple subpatterns that are
themselves composed of simpler subpatterns, the syntactic approach is efficient for
analysis [22]. In syntactic approach, a formal analogy is drawn between the structure
of patterns with a syntax of a language. The simplest patterns are called primitives
and the complex patterns are formed by interconnecting primitives according to some
defined rules (e.g., rules of grammar in a language). Thus the patterns are described by
primitives and grammatical rules. The grammatical rules for each class are assessed
from the training samples. This approach is useful for the non-numeric patterns
having definite structure.

2.2.3 Statistical Approach

Among all the approaches, statistical pattern recognition has gained the widest ac-
ceptance. In classical statistical pattern analysis [9], a pattern is represented by a set
of n features, or attributes, viewed as an n-dimensional feature vector (the points in
n-dimensional measurement space Rn) are represented as x = (x1, x2, . . . xn)T . Fea-
ture selection process transforms the pattern vector from n-dimensional measurement
space to a d-dimensional feature space, where d ≤ n. Recognition or classification
process classifies or groups the patterns into one of the m possible classes. The
statistical techniques for pattern analysis are represented in brief in the following
sections.

2.2.4 Soft Computing Approach

Different computing tools (e.g., artificial neural network, fuzzy logic, rough set,
genetic algorithm and evolutionary computation, and their integration to deal with
impreciseness and uncertainty in real-world pattern analysis problems are collectively
known as soft computing tools. Recently, these tools are increasingly used for pattern
analysis. A brief presentation of soft computing approaches is presented in the later
section.

2.3 FEATURE SELECTION

Feature selection or extraction is one of the major steps in an automatic pattern
analysis system. The main objective of feature selection is to retain the optimum
discriminatory information and to reduce the dimensionality of the measurement
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space from n to d (d ≤ n) to facilitate classification or recognition processes. The
pioneering works on feature selection deals mostly with statistical tools and the major
techniques developed so far can be broadly classified into two categories:

Feature selection in measurement space in which the feature set is reduced by
discarding redundant or unimportant features.

Feature selection in transformed space in which the higher dimensional pattern
vector is mapped to a lower dimensional space.

2.3.1 Feature Selection in Measurement Space

Feature selection in measurement space or feature subset selection selects a subset
of d features from a set of n features on the basis of their quality in discriminating
classes. Feature subset selection techniques are based on the design of a criterion
function and the selection of a search strategy. The criterion function evaluates the
goodness of a feature and ranks them. The best two features may not be the best
feature subset of two features when used in combination [23]. So, we need a search
strategy to decide the best possible feature subset among a number of candidates.

2.3.1.1 Feature Evaluation Measures. There are several approaches to evaluate the
goodness of a feature subset. Some of the popular measures are listed here. The
details can be found in [8].

2.3.1.1.1 Measures Based On Error Probability. Pattern classification is a decision-
making process in which an input pattern in an n-dimensional feature space, defined
by f = [ f1, f2, . . . , fn], is assigned to one of a number of possible classes wi ,
where i = 1, 2, . . . , m , depending on the value of the feature vector. Let the a
priori probability of occurrence of a class wi be P(wi ), and let the multivariate
class-conditional probability density function of class wi be p( f | wi ). The mixture
density function p( f ) is given by

p( f ) = �m
i=1 p( f | wi )P(wi ) (2.1)

According to Bayes’ rule [2], the a posteriori probability for the i th class is

P(wi | f ) = p( f | wi )P(wi )p( f ) (2.2)

and according to Bayes’ decision procedure, an unknown input pattern is assigned to
class wi if

P(wi | f ) ≥ P(w j | f ) for all i, j = 1, 2, . . . , m. i �= j (2.3)

The objective of any pattern recognition process is to classify unknown patterns
with the lowest possible probability of misrecognition. The objective for designing the
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feature selection criterion should be such that the error probability pe is minimized.
In an n-dimensional feature space f , the error probability pe is given by

pe =
∫

[1 − max
i

P(wi | f )]p( f )d f (2.4)

Although the error probability is, from the theoretical viewpoint, the ideal measure
for designing the feature selection criterion, it is not easy to evaluate from the practical
computational point of view. Therefore a number of alternative criteria for feature
evaluation have been suggested so far. Most of the indirect measures have been
developed based on the concept of distance, separability, overlap, or dependence
between the probability distributions characterizing the pattern classes.

2.3.1.1.2 Measures Based On Class Separability. The discriminatory power of any
feature is associated with the concept of class separability. The interclass distance
between two classes w1 and w2 is the simplest concept of class separability and
can easily be used to assess the discriminatory potential of a feature in pattern
representation. This measure is not defined explicitly by class-conditional probability
density functions. Its estimate based on elements of the training set can be computed
directly without prior determination of the probabilistic structure of the classes.
Thus, separability measures based on this concept cannot serve as true indicators of
the mutual overlap of the classes,though it is very simple to evaluate. The measures
derived from the concept of class separability that are normally used in practice are
divided into the following three groups:

1. Measures Derived from the Probabilistic Distance To obtain a realistic picture
of mutual class overlap, measures have been developed based on the concept
of the measure of distance between the probability density functions character-
izing the pattern classes. These measures are termed as probabilistic distance
measures. They do not bear any exact relationship to pe. Hence, upper and
lower bounds expressed in terms of these measures have been derived to pro-
vide an indication of the accuracy of the estimate of pe. The error probability
pe in the two-class case is easily shown as, for m = 2,

pe = 0.5[1 −
∫

|p( f |w1)P(w1) − p( f |w2)P(w2|d f ] (2.5)

Now, pe is maximum when the integrand is zero (i.e., the density functions are
completely overlapping, and pe is zero when the functions do not overlap. The
integral in Eq. (2.5) can be considered to quantify the “probabilistic distance”
between the two density functions. The greater the distance, the smaller the
error, and vice versa. Any other measure of “distance” between the two density
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functions, such as

J =
∫

f [p( f |wi ), P(wi ) i = 1, 2]d f (2.6)

satisfying J ≥ 0 can be used as a feature evaluation criterion. Here J = 0 when
p( f |wi ), i = 1, 2 are overlapping and J is maximum when p( f |wi ), i = 1, 2
are nonoverlapping.

The most commonly used probabilistic distance measure are given below:
Bhattacharya Distance. The Bhattacharya distance function is defined as

follows:

JB = − ln
∫

[p( f |w1)p( f |w2)]1/2d f (2.7)

For multivariate Gaussian distributions where

p( f |wi) = N (µi , �i ), i = 1, 2, . . . , (2.8)

JB becomes,

JB = 1/8(µ1 − µ2)T

(
�1 + �2

2

)−1

(µ1 − µ2)

+ 1/2 ln

{
det(�)√

det(�1)det(�2)

}
(2.9)

µi and �i represent a mean vector and covariance matrix for the probability
distribution of the feature for the i th class, respectively.

The Jeffreys–Matsusita Distance Measure. The Jeffreys–Matushita distance
measure JM is defined to be

JM = [
∫

(
√

p( f |w1) −
√

p( f |w2))2d f ] (2.10)

Note that the Jeffreys–Matushita and Bhattacharya distance are two different
variations of the same measure and the relationship between them is given
by

JM = {2[1 − exp(1 − JB)]}1/2 (2.11)

Divergence Function. The divergence function was first introduced by Jeffreys
and is defined by

JD =
∫

[p( f |w1) − p( f |w2)] ln
p( f |w1)

p( f |w2)
]d f (2.12)
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Later it was developed by Toussaint and for the multivariate Gaussian dis-
tribution, the divergence function becomes

JD = 1

2
tr(�−1

1 �2 + �−1
2 �1 − 2I )

+ 1

2
tr[(�−1

1 + �−1
2 (µ1 − µ2)T (µ1 − µ2)]. (2.13)

Mahalanobis Distance. For two multivariate distributions with common dis-
persion matrix, the Mahalanobis distance is given as

D2 = (µ1 − µ2)T �−1(µ1 − µ2) (2.14)

This distance function is very easy to compute though it is difficult to make
theoretical assessment of the accuracy in a distribution-free case.

Kolmogorov Variational Distance. The Kolmogorov variational distance is
defined to be

JK = 1

2
E{|(P(w1| f ) − P(w2| f )|} (2.15)

From this measure, the probability of error pe can be determined directly
by the equation

pe = 1

2
− JK (2.16)

but the computational difficulty associated with this measure is the same as
that for pe.

There are several other measures, developed from time to time, by the
researchers. A complete discussion on their relative merits and demerits in
evaluating feature quality is available in [24].

2. Measures Derived from Probabilistic Dependence. The degree of dependence
between the feature vector and the class membership can be used as a measure of
the effectiveness of any feature in distinguishing different classes. The degree
of dependence between the variables f and wi can be measured by the distance
between the conditional density p( f |wi ) and the mixture density p( f ). Any of
the probabilistic distance measure can be used for evaluating the probabilistic
dependance between f and wi simply by replacing one of the class-conditional
density functions with the mixture density. By computing the weighted average
of the class-conditional distance, the overall dependency can be used that will
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indicate the effectiveness of any feature in a multiclass environment. Some of
the measures are given below:

Bhattacharyya

IB = �c
i=1 P(wi )[− ln

∫ √
p( f |wi )p( f )d f (2.17)

Matushita Distance

IM = �c
i=1 P(wi ){

∫
[
√

p( f |wi ) −
√

p( f )]2d f }0.5 (2.18)

Patric–Fisher Distance

IP = �c
i=1 P(wi ){

∫
[p( f |wi ) − p( f )]2d f }0.5 (2.19)

3. Measure Derived from Information Theoretic Approach. These measures are
generally derived from the generalizations of Shannon’s entropy [25], based on
probabilistic measures. From information theory, information gain is analogous
to reduction in uncertainty, which in turn is quantified by entropy. From the
a posteriori probabilities P(wi | f ) , one can gain information about the depen-
dance of f on wi . Thus the expected value of the generalized entropy function
can be used as a measure of feature quality, considering that the smaller the
uncertainty, the better the feature vector. The average generalized entropy of
degree α is defined as

Jα
E =

∫
(21−α − 1)−1[�m

i=1 Pα(wi | f ) − 1]p( f )d f, (2.20)

where α is a real, positive parameter. For α = 1, the measure becomes

Js = −
∫

�m
i=1 P(wi | f ) log2 P(wi | f )d f (2.21)

which is the separability measure based on the well-known Shannon entropy.
The optimal feature set can be obtained by minimizing the above criterion.

Entropy can also be used without the knowledge of densities as in decision
tree algorithm [26], where the information gain with the inclusion–deletion of
features are independently computed.

2.3.1.2 Search Strategies. The selection of an optimal feature subset of d features
from a set of n features on the basis of a feature evaluation measure becomes a difficult
search problem when n is large. The two main approaches by which suboptimal
solutions to the problem can be achieved are forward and backward selection [8]. A
lot of search algorithms of different variants (sequential search, random search [27],
etc.) of the two main approaches and their combinations have been developed for
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feature subset selection process. One of the popular techniques is branch and bound
developed by Narendra and Fukunaga [28] and its variants [29]. A good survey of
search strategies for feature subset selection can be found in [2, 30, 31].

2.3.1.3 Feature Selection Algorithms. The existing approaches of a feature subset
selection can also be viewed as broadly classified into two categories: filter and
wrapper approaches. Filter approaches [32,33] are based on a criterion function that
is classifier independent, while wrapper approaches [34] use the classifier accuracy as
the criterion function and depends on the learning algorithm of the specific classifier.
The two approaches have basic merits and demerits. While classifier dependant
methods produce good results, especially when the classifier is designed to solve
the particular problem, it is not computationally attractive when the number of input
features are large. The computational burden is more heavy when a nonlinear classifier
with complex learning algorithms are used.

2.3.2 Feature Selection in Transformed Space

The feature selection in transformed space is commonly known as a feature extraction
method that uses all the information contained in a pattern vector and maps the
higher dimensional pattern vector to a lower dimensional one. The objective of
transformation, linear or nonlinear, is also to make original features uncorrelated
to remove redundancy. The mathematical mapping techniques are computationally
simpler than the probabilistic criteria and produce satisfactory results in practical
situations, but unlike the probabilistic criteria they do not have any relationship with
the error probability.

Linear transformation (e.g., principal component analysis, PCA), factor analy-
sis, linear discriminant analysis, independent component analysis, and projection
pursuit [2] are widely used in pattern analysis. The PCA or K-L transform is the
most popular one in which d largest eigenvectors of the covariance matrix of the
n-dimensional patterns are used for representation of the pattern. A lot of trans-
forms [e.g., Fourier transform (FT) and its variants DFT, FFT, Harr transform, direct
cosine transform (DCT)] are popular in spatial pattern analysis. Kernel PCA [35],
multidimemsional scaling (MDS) [36], and artificial neural network-based [37, 38]
methods are examples of nonlinear transformation. A comparative study of feature
selection algorithms can be found in [39].

2.3.3 Soft Computing Approaches for Feature Selection

Recently, many feature selection algorithms based on soft computing approaches
[40, 41], mainly artificial neural network, fuzzy set, genetic algorithm, and evolu-
tionary computation and their hybrids [17], have been developed for solving real-
world problems, where statistical methods are difficult to apply. Artificial neural
network-based approaches are found in [38,42–44]. In [45], a fractal neural network
architecture is proposed and is used as a feature selector. The self-organization map
(SOM) [46] or autoassociative networks [47] can be used as a nonlinear feature
extractor. A comparative review of neural network feature extractor is found in [48].
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In [49], fuzzy set theoretic measure based on the index of fuzziness and fuzzy
entropy is developed for feature evaluation and ranking. Some hybrid neuro-fuzzy
approaches are reported in [50–52]. Feature selection algorithm based on rough set
theory and hybrid approaches are reported in [53–56]. Genetic algorithm (GA, widely
used in optimization problems, is also a good candidate for feature subset selection
and a number of GA based and hybrid algorithms are developed in this different appli-
cation area. Some of them are reported in [57–63]. Other evolutionary computational
techniques, like particle swarm optimization (PSO) and their hybrids with other soft
computing tools, recently have been used for feature selection problems [64–69].

2.4 PATTERN CLASSIFICATION

The final and ultimate goal of pattern analysis is to classify the input patterns to
known classes or to group them in different categories depending on their similarity.
When the class information is available, the pattern analysis system learns from the
training samples. The unknown input pattern, when presented to the learned system,
is identified as a member of one of the known classes. This paradigm, known as
supervised classification, is represented in this section.

2.4.1 Statistical Classifier

In supervised classification, a set of patterns having known class information are
used as training samples by which the classifier learns the decision rule with some
suitable algorithm. The learned classifier then categorizes the unknown input pattern
to one of the classes with the help of the learned decision rule. Lots of learning
algorithms using statistical concepts have been developed and are based on them and
a variety of classifiers now have been designed. Statistical classification methods can
be broadly classified into three groups [11]. The simplest and most intuitive approach
is based on similarities measured by some distance function [70]. Here the proximity
of a pattern to a class serves as the measure for its classification. Minimum distance
classifier, nearest-neighbor algorithm [8], and its variants are the popular techniques
in this category. The most advanced techniques for computing prototypes are vector
and learning vector quantization [46].

2.4.1.1 k-NN Classifier. The k nearest-neighbor (k-NN) classifier is one of the earli-
est, simpliest, and most popular classifier. The algorithm known as the k-NN decision
rule, can be stated as follows: Given an unknown pattern vector x and a distance
measure,

Out of n training patterns, k nearest neighbors, irrespective of the class labels, are
chosen, where k is always odd.

Assign the unknown vector x to the class wi , i = 1, 2, . . . , m for which
∑

i ki is
maximum, where ki denotes the neighboring pattern belonging to class wi .
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For k = 1 the algorithm is simply known as the nearest-neighbor rule. Various
distance measures can be used including the simplest Euclidean and Mahalanobis.
For large values of n, this simple classifier can show quite a good performance.

2.4.1.2 Bayes Classifier and Discriminant Analysis. The main approachs of statisti-
cal methods are the probabilistic approach and the famous Bayes classfier [2,8], based
on Bayes decision rule, which has been developed for a known class of conditional
probability densities p(x |wi ). A number of well-known decision rules, including
Bayes decision rule, the maximum likelihood rule, and the Neyman–Pearson rule are
available to generate the decision boundary. First, according to the Bayes decision
rule, an input pattern x is assigned to class wi for minimum error or minimum risk
of classification if,

P(wi |x) ≥ P(w j |x) for all i, j = 1, 2, . . . , m. i �= j (2.22)

P(wi |x) is the a posteriori probability for class wi .
Using Bayes rule of probability, the above rule can be effectively expressed using

class conditional probability densities.
In practice, the estimates of densities are used in place of true densities. The

density estimates are either parametric, where the distribution of the feature vectors
are known, nonparametric, or distribution free methods. Commonly used parametric
models are Gaussian distributions given as

p(x |wi ) = 1

(2π )n/2|�i |1/2
exp

[
−1

2
(x − µi )

T �−1
i (x − µi )

]
(2.23)

where i = 1, 2, . . . , m, µi = E[x] denotes the mean value of class wi , �i denotes
the n × n covariance matrix defined as �i = E[(x − µi )(x − µi )T ].

A variety of density estimators for the nonparametric approach from simple his-
togram estimators, followed by window estimators and kernel estimators, are avail-
able in the literature [2, 8].

The equation for the decision surface of the two regions containing the i th and j th
class is given by

P(wi |x) − P(w j |x) = 0 (2.24)

Now gi (x), a monotonically increasing function representing f (P(wi | x)), is
known as discriminant function. Thus the decision rule can be stated as follows in
Eqs. (2.25) and (2.26).

Classify the pattern x in class wi if

gi (x) ≥ g j (x) ∀ j �= i (2.25)

and the equation of decision surface separating two regions becomes

gi (x) − g j (x) = 0, i, j = 1, 2 . . . , m, i �= j (2.26)
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Linear discriminant analysis is another category of approaches to construct decision
boundaries or decision surface by optimizing certain error criterion. When the esti-
mate of densities are difficult, it is preferable to compute decision surfaces directly
by alternative costs. Such approaches gives rise to linear discriminant analysis and
design of many linear classifiers. Linear discriminant analysis (LDA) approximates
boundaries between classes by placing hyperplanes optimally assuming the classes
to be linearly separable. The limitations of linear classifiers for nonlinearly separable
classes prompted the development of nonlinear classifiers. A comparative study of
various statistical classifiers can be found in [71].

2.4.1.3 Decision Tree Classifier. Decision tree classifiers [26] are a special type
of nonlinear classifier. They are multistage decision systems that iteratively select
an individual feature to partition the feature space generating a tree structure. The
leaf nodes represent the final classification. Selection of a feature at each node is
done according to some criterion function (e.g., information content). Though these
classifiers are suboptimal, they are popular due to the fast classification ability and the
rule generation with individual features making the classification process transparent
to users.

2.5 UNSUPERVISED CLASSIFICATION OR CLUSTERING

When class information is not available, the input patterns are grouped into some
classes or clusters according to their similarity. This paradigm of classification is
known as unsupervised classification or cluster analysis in the context of pattern
analysis. Clustering is one of the primitive mental activities of humans to deal with
huge amounts of information they receive every day. Remembering every piece of
information is difficult and humans tend to categorize entities into clusters. Cluster
analysis is applied to different areas and has a long history of research. The early
works can be found in [72, 73]. More recent algorithms can be found in [74]. Like
the case of supervised classification, a pattern here is also represented in terms of
n-dimensional vectors. The basic steps of the clustering task are as follows:

1. Preprocessing. As in the supervised classification, noise reduction and nor-
malization is to be done first before any processing.

2. Feature Selection. Features must be properly selected to retain discrimina-
tory information and to reduce the dimension of the pattern vectors to ease
computational burden in later stages. Most of the methodologies for feature
selection described in earlier sections can be used also for feature selection in
this case. Some works on feature selection for unsupervised classification have
been reported in [75–77].

3. Proximity or Similarity Measure. The measure for computing the similarity of
two pattern vectors is to be selected from a variety of similarity metrics.
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4. Clustering Criterion. The clustering criterion is expressed as an objective
function or cost function that evaluates the goodness of a cluster based on the
intended objective of clustering.

5. Clustering Algorithms. A specific algorithm to obtain the cluster using prox-
imity measure and the clustering criterion is needed for formation of clusters.

6. Validation of the Clusters. The process of evaluating the correctness of the
generated cluster through some measure is known as validation [78–80].

7. Interpretation. The process of attaching meaning to the generated clusters or
naming the clusters is known as interpretation.

2.5.1 Definition of Clustering and Proximity Measure

Let X be a set of N pattern vectors, that is, X = (x1, x2, . . . , xN ). An m clustering of
X partitions the pattern space into m sets C1, C2, . . . , Cm , such that

Ci �= �, i = 1, 2, . . . , m
m⋃

i=1

Ci = X

Ci ∩ C j = �, i �= j, i, j = 1, 2, . . . , m

As there is an overlapping of categories for real-world data, crisp clustering defined
above cannot handle them. Fuzzy clustering [81] of X into m clusters in which all the
patterns can belong to several clusters with a varying degree of membership functions
u j can be defined below as:

u j : X → [0, 1] j = 1, 2, . . . , m

and

m∑
j=1

u j (xi ) = 1 i = 1, 2, . . . , N

0 ≤
N∑

i=1

u j (xi ) ≤ N j = 1, 2, . . . , m

A proximity measure can be defined in terms of either a dissimilarity measure
(DM) or a similarity measure (SM). A similarity measure is intuitively opposite to a
DM. Now, a DM d on X is a function

d : X × X → R
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where R is the set of real numbers, such that

∃d0 ∈ R : −∞ ≤ d0 ≤ d(x, y) ≤ +∞ ∀x, y ∈ X

d(x, x) = d0 ∀x ∈ X

d(x, y) = d(y, x) ∀x y ∈ X

d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X

The simplest dissimilarity metric is the Euclidean distance and is widely used as
DM in clustering applications. There are also other DMs (Manhattan distance, point
symmetric metric etc.).

The most common SM is an inner product

Si n(x, y) = xT y =
n∑

i=1

xi yi

The Hamming distance, Tanimoto measure, and so on, are other examples of SMs.

2.5.2 Clustering Algorithms

Clustering algorithms available in the literature can be divided into the following
major categories:

Sequential Algorithms. These algorithms are simple and fast and produce sin-
gle clustering. The patterns are presented in order, the clusters produced are
compact, and are hyperspherical and hyperellipsoidal an shaped.

Hierarchical Clustering Algorithms. These algorithms are further divided into
agglomerative and divisive algorithms. Agglomerative clustering produces a
sequence of clustering with a decreasing number of clusters in each step,
merging two clusters from the previous step into one. Divisive algorithms work
in just the opposite direction. They produce a sequence of clustering with
an increasing number of clusters in each step, splitting one cluster from the
previous step to two clusters in the next steps.

Clustering Algorithm Based on Cost Function Optimization. This category con-
tains algorithms in which a cost function is optimized to evaluate the clustering
process. Generally, the number of cluster is fixed, the algorithm iteratively
produces successive clusters with the objective of improving cost function, and
finally stops when the optimal value is reached. This category includes the
following subcategories:

1. Hard or crisp clustering algorithms, where a pattern belongs exclusively to
a specific cluster. The most famous ISODATA [3] belongs in this category.

2. Fuzzy clustering algorithm, where a pattern can belong to multiple clusters
with a certain membership value lying within (0,1). Fuzzy ISODATA [82]
is an example of this category.
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3. Probabilistic clustering algorithm where the cost function follows Bayesian
theory.

4. Possibilistic clustering algorithm based on a measure of possibility of a
pattern vector belonging to a certain cluster.

5. Boundary detection algorithms detect the boundary of a cluster region in-
stead of determining the clusters by feature vector.

Soft Computer-Based Clustering Algorithms. An artificial neural network with
competitive learning, fuzzy logic, and genetic algorithm-based clustering tech-
niques [83, 84] are the popular successful clustering approaches from a soft
computing paradigm.

A comparative performance analysis of several clustering algorithm can be found
in [85].

2.6 NEURAL NETWORK CLASSIFIER

Artificial neural networks, the most widely used soft computing paradigm, have
recently emerged as an important tool for data analysis and pattern classification.
Their effectiveness in both supervised and unsupervised classification has been tested
empirically and many applications in a variety of real-world classification tasks have
been developed [12, 14, 86]. A survey of neural network classifiers can also be
found in [87]. Links between neural and other conventional classifiers are discussed
in [47, 88]. Performance comparisons of neural network classifiers and conventional
statistical classifiers also have been studied in a number of works. Some of them are
reported in [89, 90]. Riplay [91] compared neural networks with various classifiers
(e.g., classification tree, projection pursuit, linear vector quantization, and nearest-
neighbor methods).

Although many types of neural networks are used in classification problem, the
most widely studied neural network for classification purposes is the feedforward
multilayer perceptrons (MLP). One of the pioneer works on the use of MLP for
pattern classification is studied in [92]. In [93], fractal neural network architecture is
proposed and its performance as a classifier has been studied in comparison to MLP. It
was found that it is well suited for classification of fractal patterns. Other architectures
(e.g., radial basis function, RBF, networks [94], support vector machines (SVM) [96]
and are also developed for supervised classification. Self-organizing map (SOM) or a
Kohonen Network [46] is applied to unsupervised classification.

Although significant progress has been made in neural network-based classifica-
tion for real-world problems, there are still some unresolved issues. Though neural
networks do not require explicit knowledge of underlying distribution of patterns
like statistical classifiers, their classification process in most of the cases is not
transparent. This blackbox characteristics of neural architecture poses problem for
generating explicit decision rules. To avoid this, some hybrid approaches combining
neural network with a rough set or fuzzy logic have also been studied recently [17].
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2.7 CONCLUSION

This chapter presents a brief overview of the fundamental techniques of pattern
analysis. Pattern analysis is an important process for knowledge extraction from raw
data generated everyday in different areas of human interest. With the progress of
computing technologies, large amounts of data in recently discovered areas (e.g.,
molecular biology or genomic research), is now becoming available daily. This huge
amount of data needs to be processed in order to extracting hidden information.
Though the techniques of pattern analysis have grown for a long time and well-
known tools are available, the demand for development of newer and more powerful
techniques is also increasing due to the generation of newer and newer varieties
of data.

Thus, the importance of research for improving pattern analysis techniques is ever
increasing. For the development of new techniques, one should be fully aware of
the basic concepts of fundamental pattern analysis techniques. This chapter attempts
to represent the basic concepts and approaches behind pattern analysis techniques.
A brief overview of the important and most popular statistical tools are explained.
Recent approaches based on the soft computing paradigm are also introduced with
a brief representation of the promising neural network classifiers as a new direction
toward dealing with imprecise and uncertain patterns generated in newer fields.
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BIOLOGICAL INFORMATICS:
DATA, TOOLS, AND APPLICATIONS

Kevin Byron, Miguel Cervantes-Cervantes,
and Jason T. L. Wang

3.1 INTRODUCTION

Biological informatics (BI) has emerged as one of the most important interdisciplinary
fields in the last decade. Major research efforts in BI include nucleotide sequence and
structure alignment, gene finding and genome assembly, gene expression and regu-
lation, protein and ribonucleic acid (RNA) structure prediction, biological networks
and pathway analysis, genome-wide association studies, computational proteomics
and biomarker detection, molecular evolution and population genetics, to name a few.
These efforts are often concurrent with the development of software tools for data
analysis, leading to new discoveries in diverse areas of the biological sciences [1–4].

This chapter presents a case study in BI, focusing on locating noncoding RNAs
(ncRNAs) in Drosophila genomes using software tools, in particular the Infernal pack-
age [5–7]. Noncoding RNAs are functional RNA transcripts that are not messenger
RNAs (mRNAs) and therefore are not templates in protein biosynthesis. Recent ex-
periments have shown that ncRNAs perform a wide range of cellular functions [8]. In
particular, RNA on the X-1 (roX1) plays an essential role in the dosage compensation
system, which increases the transcription level on the X chromosome in Drosophila
males (XY) with respect to that of females (XX) [9]. Experiments have shown roX1
functionality in some species of Drosophila whose genomes have been annotated
[10–12]. Our working hypothesis is that RNA transcripts of the roX1 genes across
Drosophila species possess conserved secondary structures. Advances in genomic se-
quencing from 12 Drosophila species [13] will contribute to support this hypothesis.
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The software package Infernal has implemented covariance models for the pre-
diction of ncRNA functional conservation and it is considered to be one of the most
accurate tools for this purpose [14]. A covariance model is a statistical representa-
tion or profile of a family of related RNAs that share a consensus RNA secondary
structure [15]. Infernal [6, 7] contains the utility cmbuild for the production of a
covariance model from a multiple sequence alignment in Stockholm format. Another
utility, cmsearch, is used to search for sequences that are similar to the model. The
cmsearch process is computationally expensive when using a single-processor ap-
proach. However, by utilizing a parallel-processing approach, search results can be
obtained expeditiously.

We have used a covariance model to demonstrate its capabilities in genome-scale
searching. The roX1 sequences were experimentally obtained from eight Drosophila
species, namely, D. ananassae, D. erecta, D. melanogaster, D. mojavensis, D. pseu-
doobscura, D. simulans, D. virilis, and D. yakuba. We focused on obtaining evidence
of conserved RNA secondary structures within roX1 sequences on the entire genomes
of these eight organisms. To this effect, we used a covariance model derived from sev-
eral roX1 sequences at hand. We found conserved RNA secondary structures within
roX1 genes of six of the eight Drosophila species. We then used the same covariance
model to search for evidence of conserved RNA secondary structures in the com-
plete genomes of the four remaining sequenced Drosophila species for which we
have no experimentally obtained roX1 genes. These four species are D. grimshawi,
D. persimilis, D. sechellia, and D. willistoni. Our results show strong evidence for
the presence of roX1 functional domains encoded in the genome of D. sechellia.

3.2 DATA

There is a wide variety of biological data stored in open access databases. Herbert
et al. [16] surveyed the many bioinformatic databases accessible on the worldwide
web. In this case study, we use two categories of data: roX1 genes and Drosophila
genomes (cf. Tables 3.1 and 3.2). We used a “slide-and-fold” method to construct
thermodynamically stable RNA secondary structures in the roX1 genes. Gene subse-
quences of 100 nucleotides (nt) long or less were folded according to thermodynamic
properties using the Vienna RNA package [17, 18]. Adjacent subsequences were
overlapped by 50 nt. With this method, RNA secondary structures can be derived
accurately and efficiently for two reasons: (1) predicting the formation of small
secondary structures is more accurate and efficient than for large ones; and (2) sec-
ondary structures with size <50 nt are folded twice as subsequences of two different
larger secondary structures, further increasing the chance of getting accurate RNA
secondary structures. We also used the setting in the Vienna package that yielded mul-
tiple RNA secondary structures with the same minimum energy for a given sequence
to further improve the folding accuracy. The number of predicted RNA secondary
structures for each roX1 gene is shown in the last column of Table 3.1. A total of 773
RNA secondary structures was obtained for all eight species examined.
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TABLE 3.1 Description of roX1 Genes Used in This Case Study

FlyBase Region No. of
Species Length Region Coordinates Structures

D. ananassae 3493 scaffold 13117 695557–693154 77
693089–692300
692143–692065
692247–692215

D. erecta 3462 scaffold 4690 1139892–1137083 98
1140318–1139928
1137036–1136857

D. melanogaster 3468 chromosome X 3755987–3754338 106
3754043–3753143
3756379–3756024
3754304–3754082
3753108–3752929

D. mojavensis 3768 scaffold 6328 3900419–3899115 99
3901467–3900566
3901937–3901499
3902390–3902000
3898736–3898624
3898929–3898874
3898845–3898810
3947396–3947375

246881–246900
700541–700522

D. pseudoobscura 3469 XL group 1e 6901185–6898994 92
6898915–6897910
6897801–6897717
1352025–1352045

10880750–10880730
476212–476239

2910133–2910114
D. simulans 3439 chromosome X 2761962–2759151 101

2762379–2761996
2759122–2758943
9903425–9903446

D. virilis 3623 scaffold 13042 4639617–4638455 97
4637622–4636608
4638333–4637894
4636532–4636064
4637736–4637672
4637835–4637787
4636035–4635995
4638396–4638367

D. yakuba 3433 chromosome X 4658396–4661828 103
3710814–3710795
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TABLE 3.2 Description of Drosophila Genomes Downloaded from FlyBase

Release Release No. of No. of No. of
Species No. Date Nucleotides Sequences Files

D. ananassae 1.3 7/24/08 230,993,012 13,749 1
D. erecta 1.3 7/24/08 152,712,140 5,124 1
D. grimshawi 1.3 7/24/08 200,467,819 17,440 1
D. melanogaster 5.18 5/16/09 130,430,583 7 7
D. mojavensis 1.3 7/24/08 193,826,310 6,841 1
D. persimilis 1.3 7/24/08 188,374,079 12,838 1
D. pseudoobscura 2.4 5/19/09 152,738,921 4,896 1
D. sechellia 1.3 7/24/08 166,577,145 14,730 1
D. simulans 1.3 7/24/08 137,828,247 10,005 1
D. virilis 1.2 7/24/08 206,026,697 13,530 1
D. willistoni 1.3 7/24/08 235,516,348 14,838 1
D. yakuba 1.3 7/24/08 165,693,946 8,122 1

Table 3.2 presents details of the 12 Drosophila genomes used in our case study.
Genome data were downloaded from FlyBase, accessible at http://flybase.org/. The
number of files these sequences reside in is indicated in the last column. There is
a total of 2,161,185,247 nucleotides in the 12 genomes, which collectively contain
122,120 sequences residing in 18 files. Most of the genomes have not been separated
into clearly defined chromosomes. As sequencing efforts continue for species of
Drosophila, we expect that in time all 12 specie genomes will be annotated regarding
specific chromosome identification.

3.3 TOOLS

In the case study presented here, we used two software tools to analyze the genomic
data at hand. The first tool, called RSmatch and developed in our lab [19–21], is
capable of aligning structure-annotated RNA sequences so that both sequence and
structure information are taken into consideration during the alignment process. The
second tool, Infernal [6, 7], was designed for genome-wide searching for conserved
RNA secondary structures. Since the secondary structure of RNA determines its
function, the Infernal tool is capable of predicting ncRNA functional conservation in
genomes.

RSmatch [21] decomposes an RNA secondary structure into a set of components
that are further organized by a tree model to capture the peculiarities of this RNAs
framework. RSmatch can find the optimal global or local alignment between two
RNA secondary structures using two scoring matrices, one for single-stranded re-
gions and the other for double-stranded regions. The time complexity of RSmatch is
O(mn), where m is the size of the query structure and n that of the subject structure.
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FIGURE 3.1 Screenshot showing a partial output from the local alignment function of
RADAR.

The RSmatch program is implemented into a web server called RADAR (acronym
for RNA Data Analysis and Research) [19,22]. This web server can perform a multi-
tude of functions related to RNA structure comparison, including pairwise structure
alignment, constrained structure alignment, multiple structure alignment, database
search, clustering, and consensus structure prediction. The goal behind establishing
this web server is to develop a versatile tool that provides a computationally efficient
platform for performing tasks related to RNA structure analysis. Figure 3.1 shows
a partial output obtained from aligning a query RNA structure with a set of subject
RNA structures using the local alignment function of RADAR. The figure lists the
top two ranked subject structures that receive the largest alignment scores, where the
structures are represented in the Vienna style dot bracket format [17, 18].

A program component of Infernal, cmbuild, takes a structurally annotated multiple
sequence alignment as input, and outputs a profile, whereas the program cmsearch
uses the profile to search a nucleic acid sequence database for homologous RNAs. In
addition, Infernal contains a program called cmalign, which uses the profile to align
any number of unaligned RNA sequences to the profile, producing a structure-based
multiple sequence alignment [6, 7].

Infernal employs profile stochastic context-free grammars, which include both
sequence and RNA secondary structure consensus information. This tool is used
for constructing and maintaining the Rfam database of structurally annotated RNA
multiple alignments [8]. The Rfam database contains hundreds of RNA sequence
families, where each family has a hand-curated representative alignment, called a
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# STOCKHOLM 1.0

dme_rox1:3102-3165 GGUUCGUGUUUCGGAAAACGCAUUAAAAGGCGUAAUUUUAAAUCG

dsi_rox1:3079-3142 GGUUCGUGUUUCGGAAAACGCUCUAAAAGGCGCAAUUUUAAAUCG

dya_rox1:3080-3143 GGUUCGUGUUUCGGAAAACGCACUAAAAGGCGUAGUUUUGAAUCG

#=GC SS_cons <<<<<.<<<<<<<<<<<<<<.<<<<<<<..<...>>>>>>>>.>>

dme_rox1:3102-3165 UUUUCCGAAAUGGGAAUCA

dsi_rox1:3079-3142 UUUUCCGAAAUGGGAAUCA

dya_rox1:3080-3143 UUUUCCGAAAUGGGAAUCA

#=GC SS_cons >>>>>>>>>>>>.>>>>>.

//

FIGURE 3.2 Illustration of the structurally annotated multiple sequence alignment used to
build the covariance model in this case study.

seed alignment. This seed alignment is used to make a profile, which can be aligned
to new RNA sequences, obtained when nucleic sequence databases grow, to obtain a
large, more complete alignment, called a full alignment. The Rfam sequence contains
the seed alignments, full alignments, and consensus secondary structures of all the
RNA families stored in its database.

3.4 APPLICATIONS

We applied RSmatch and Infernal to mining roX1 genes in Drosophila genomes
as follows: We carried out species-against-species pairwise comparisons of all 773
RNA secondary structures obtained from the roX1 genes shown in Table 3.1 using the
local alignment function of RSmatch. This required ∼520,000 pairwise comparisons
of RNA secondary structures, each comparison yielding an alignment score. Then,
we selected local matches across the species that received the largest alignment
scores and that were the longest among all the local matches. We obtained one
sequence from each of the following three species: D. melanogaster, D. simulans, and
D. yakuba. Then, we used the MXSCARNA tool [23] to align the three sequences and
obtain a multiple alignment in Stockholm format with predicted structure annotation.
Figure 3.2 illustrates the multiple sequence alignment; the numeric range following
the species code represents the portion of the roX1 gene from which the sequence
was extracted. In Figure 3.3, the consensus secondary structure for the alignment in
Figure 3.2 is portrayed using RNAz [24]. This structurally annotated alignment was
input to the cmbuild program of Infernal 1.0 [7] to create a covariance model.

Then, we used the cmsearch program of Infernal 1.0 to locate homologs in the
genomes of Drosophila species that have been sequenced to date (shown in Table 3.2)
using the covariance model (CM) we constructed. Table 3.3 presents a summary of



G C

G G

A

A
A

U

G C

G CC

C
A

G C
A U
A U
A U

A U
A U
A U
A U

A U

C G

C G

C G

G U

G U
U G

U A

U A
U A
U A

U A

U
A
AG

C
G

G

U A

FIGURE 3.3 Illustration of the consensus structure used to build the covariance model in
this case study.

TABLE 3.3 Summary of Homologs Found in the Drosophila Species Analyzed

Genome CM FlyBase Region Within
ID Searched Score Region Coordinates Strand roX1

1 D. ananassae 32.26 scaffold 13117 692432– − Y
692373

2 D. erecta 72.78 scaffold 4690 1137235– − Y
1137172

3 D. melanogaster 88.84 chromosome X 3753295– − Y
3753232

4 D. pseudoobscura 29.4 Unknown group 410 14965– − N
14898

5 D. pseudoobscura 29.11 Unknown group 260 63165– − N
63089

6 D. pseudoobscura 28.28 XL group 1e 6898105– − Y
6898042

7 D. sechellia 88.1 scaffold 4 2954091– + N/A
2954154

8 D. simulans 88.1 chromosome X 2759303– − Y
2759240

9 D. yakuba 88.69 chromosome X 4661475– + Y
4661538
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TABLE 3.4 Homologous RNA Sequences Found in the Drosophila Species Analyzed

ID RNA Sequencea Length

1 UUC- -GUGUUUCGGGAAAUGCUUUGAAAAGCG-C 60
UUUUGAAACGUUUUCCGAGACGACAGAAA

2 GAUUUGUAUUUCGGAAAACGCACCAAAAGGCGUAA 64
UUUAGAAUCGUUUUCCGAAAUGGGAAUCA

3 GGUUCGUGUUUCGGAAAACGCAUUAAAAGGCGUAA 64
UUUUAAAUCGUUUUCCGAAAUGGGAAUCA

4 GACCACUCCUUCGGGUACCUCAAAAAAAaagGGCA 68
UAGgUAUUUGGGAGGUACCCGAAGGAGUGGUCU

5 UCCACACGUUUCCAACUUCGUUUCCACACGC**** 77
**********GUGUGGAAACGAAGUUGGAAACGCg
uGUGGAA

6 CGUUCGGGUUUCGGAAAACGCGUCGA********* 64
*****UUGAAACGUUUUCCGAAAC-AGAA- -A

7 GGUUCGUGUUUCGGAAAACGCUCUAAAAGGCGCAA 64
UUUUAAAUCGUUUUCCGAAAUGGGAAUCA

8 GGUUCGUGUUUCGGAAAACGCUCUAAAAGGCGCAA 64
UUUUAAAUCGUUUUCCGAAAUGGGAAUCA

9 GGUUCGUGUUUCGGAAAACGCACUAAAAGGCGUAG 64
UUUUGAAUCGUUUUCCGAAAUGGGAAUCA

a An asterisk (*) indicates a base that is left unaligned with a CM counterpart; a minus (−) sign indicates
that no base is present to align with a CM counterpart (not included in the sequence length); and a
lowercase letter represents a base on the genome that has been added with respect to the CM.

the homologs with the largest scores found in each species, and Table 3.4 lists the
homologous RNA sequences.

It was observed that for the three sequences used to build the covariance model,
each of them received the largest score on its respective genome (D. melanogaster,
D. simulans, and D. yakuba, respectively). In addition, we found high-score hits in
three other species, namely, D. ananassae, D. erecta, and D. pseudoobscura. Note
that in D. pseudoobscura, the homolog with the largest score is not within the roX1
gene in that species. Instead, we found a homolog with the third largest score that
is within the roX1 gene in D. pseudoobscura. These homologs found in the above
six species for which roX1 genes have been experimentally obtained fall within
the known roX1 genes. The homologous RNAs are similar in their structure. This
confirms our hypothesis that there are conserved RNA secondary structures within
roX1 genes across these species. Finally, note that a homolog was found in the
genome of D. sechellia for which we have not experimentally obtained a roX1 gene.
Figure 3.4 illustrates the secondary structure of the homologous RNA discovered
from D. sechellia; this secondary structure is similar in structure to the consensus
structure in Figure 3.3. This uncovering may help compensation dosage researchers
in locating roX1 functional domains in D. sechellia.
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FIGURE 3.4 Secondary structure of the homologous RNA found in Drosophila sechellia.

3.5 CONCLUSION

This chapter presents a case study of biological informatics, showing how software
tools are applied to the analysis of genomic data arising in the biological sciences. In
particular, this chapter showed how the widely used Infernal and RSmatch tools can
be combined to mine roX1 genes in 12 species of Drosophila for which entire genomic
sequencing data are available. As more genomes are sequenced, new techniques are
needed to perform genome-wide discovery of functional elements that play essential
roles in metabolic processes. This opens many new research directions in both the
biological sciences and computing sciences, while bringing them together.
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4
PROMOTER RECOGNITION USING
NEURAL NETWORK APPROACHES

T. Sobha Rani, S. Durga Bhavani, and S. Bapi Raju

4.1 INTRODUCTION

Currently, huge amount of genome data is available due to fast sequencing methods.
Similar fast annotation methods of the genome are not available and current tech-
nologies consume a lot of time. Hence, machine annotation methods are required to
tackle the major problems of promoter recognition and gene recognition.

Promoters occur upstream of a gene and are regions at which ribonucleic acid
(RNA) polymerase binds and initiates transcription. Promoters also act as switches
specifying the location in the organism, as well as the time at which the transcription
can occur at that gene. The location where transcription begins is known as the
transcription start site (TSS). A majority of the promoters of genes that transcribe
large amounts of messenger RNA (mRNA) have a set of binding sites or regions [1,2].
One of these sites is a TATA sequence, a hexamer, upstream from TSS. Promoter
also contains one or more binding regions further upstream and downstream. The
eukaryotic and prokaryotic promoter recognition problems have to be dealt with
independently. For example, the promoter structure for Escherichia coli has two
binding regions present at −10 and −35 positions with respect to TSS (position of
which is taken as +1). These are indicated as a −35 motif and a −10 motif. The
patterns at these binding sites are known to be conserved. In general, patterns (TATA
box, CAAT box, Initiator, etc.) are known to be conserved in the promoter sequences
within and across species in some cases.
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The distinct feature in case of eukaryotic transcription is that the RNA polymerase
does not bind to the promoter directly. A number of transcription-binding proteins
bind to the binding sites and form a complex before RNA polymerase binds. Also,
there are three kinds of RNA polymerase in eukaryotes unlike the prokaryotes. For the
proteins to bind to deoxyribonucleic acid (DNA), it has to have a physical structure
wherein the proteins can come and bind. Special proteins that are used for this purpose
are Helix turn Helix, and Zn++ fingers.

Promoter recognition is not a trivial problem due to the following reasons: Pro-
moter recognition unlike other recognition problems (e.g., exon prediction and gene
recognition) does not yield good results with methods of alignment or sequence
similarity searches, since promoters have very low sequence similarity. Though the
patterns (e.g., TATA box) are known to be conserved, there exist many exceptions
to this rule. Nonconservation and distance between the patterns, the presence or ab-
sence of the patterns themselves make the task of promoter prediction an even more
complex problem. Also, the occurrence of a promoter is not restricted to the 5’ end
of a gene alone, but could in fact be found in a coding region or may overlap with
another promoter [3] in the case of prokaryotes. Additionally, in the case of eukary-
otes, promoters additionally may exist in an intron or in the untranslated region of
3’. Hence, the problem of recognition of promoter against various backgrounds gains
importance computationally.

Recently, there has been a deluge of sequencing information due to efficient
sequencing methods. Several mammalian, bacterial, and plant species have been se-
quenced. One can use experimental methods [e.g., DNA footprinting, DNA protein
cross-linking, X-ray crystallography, and nuclear magnetic resonance (NMR) spec-
troscopy] to identify a promoter or a gene. Typically, there are millions of protein
sequences, but experimentally determined protein structures are only on the order of
1000. Experimental methods to determine a promoter, a gene, or a protein structure
are time-consuming processes. Hence, annotation of important regions (e.g., genes)
is not very fast. To overcome this handicap, computational techniques or algorithms
that can automatically identify these regions are required.

4.2 RELATED LITERATURE /BACKGROUND

The crux of the problem is to identify a promoter irrespective of its place of occurrence
in the genome, by extracting features that are unique to it. Different research groups
have been trying to identify these patterns or features specific for promoters by various
feature extraction methods and different classifiers.

Machine learning techniques can be used to address the issues mentioned above
by modeling the recognition–prediction problem as a pattern recognition problem. To
properly classify the promoter sequences in silico, one should get features that capture
the essence of promoters. Some of the popular feature extraction methods are based
on genetic algorithms [4], statistical models (e.g., hidden Markov models [5] and
position weight matrices [6–8]), syntactic recognition algorithms [9], expectation,
and maximization method [10, 11].
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Methods based on features extracted from the binding sites or local consensus
regions can be termed as local signal-based methods. Position weight matrices, ex-
pectation and maximization algorithm, and hidden Markov models have been used in
the literature to extract local signals for the promoter recognition problem [5, 6, 10].
Local signal-based methods for eukaryotic promoter recognition use specific motifs
like the four binding sites: The TATA box, the initiator (Inr) region, an upstream
activating element (UPE), and a downstream promoter element (DPE). The detec-
tion of transcription factor binding sites forms the core of the local signal-based
methods.

The techniques that use the whole promoter sequence to extract features can
be categorized as global signal-based methods. Techniques like Fourier transform
(FT), sequence alignment method, and so on, fall under this category. Global signal-
based methods use properties, such as GpC content, secondary structure elements,
and cruciform DNA structure, for eukaryotic promoter recognition [12]. The lit-
erature is abundant with local signal-based methods. Global signal-based methods
are also catching up. Some of the work on the promoter recognition problem of
both these kinds, which were carried out in the last few years, is presented in
Section 4.3.

Das and Dai [13] present a comprehensive literature survey on the DNA motif find-
ing algorithms. Motifs generally searched in the promoter sequences of coregulated
genes and more recently integrated approaches that include phylogenetic footprinting
are being used to find motifs. This survey gives a view of the local signal-based meth-
ods that are used to extract conserved patterns in the DNA promoter sequences. Huerta
and Collado-Vides created an E. coli promoter data set called Regulon database [14].
They extracted and aligned motifs in a given set of unordered sequences producing
a frequency matrix. A set of 96 different weight matrices were created for promoter,
coding, and noncoding regions. A score is computed using these weight matrices and
the best weight matrix is used to predict a promoter. The predictive capacity of the
method is 86%, however, accuracy defined as the average of sensitivity and positive
predictive rate, is 53%. An important contribution of this work is that they predict a
high number of putative promoters (promoter-like signals) in the vicinity of a true
promoter, which show a better score than the true promoter. The authors suggest that
these putative promoters may be trying to bring Ribonucleic polymerase (RNAP)
closer to the functional promoter.

Bajic et al. designed a local signal-based algorithm that combines a nonlinear pro-
moter recognition model with signal processing, artificial neural networks (ANNs),
and a set of sensors in Dragon fly (Drosophila melanogaster) promoter prediction [6].
These sensors are based on the statistical concept of oligonucleotide positional dis-
tributions in specific functional regions of DNA. Each sensor models a particular
functional region (e.g., promoter, coding-exon, and intron). These distributions are
modeled as a set of position weight matrices of the most significant oligonucleotides.
Pentamers (regions of length 5) that most significantly contribute to the separation
between the promoter and nonpromoter regions are chosen by determining the signif-
icance using their statistical relevance. The signals of a sequence using the positional
weight matrices for the three functional regions are fed to a signal processing block.
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The output is fed to ANN, which performs multisensor integration. Scores that make
the ANN output greater than the selected threshold are to be treated as positive pre-
dictions in the promoter region. They have obtained a sensitivity rate of 67%. The
authors have shown that their methods predict less false positives compared to the
then existing algorithms.

Levitsky and Katokhin [4] have used the genetic algorithm based on iterative
discriminant analysis, which is based on a global signal to classify eukaryotic
(Drosophila) promoters. The negative set is obtained by shuffling the promot-
ers. Two promoter sample TATA and DPE containing sets are formed. The cross-
correlation (CC) for TATA containing promoters is reported to be 0.92 and for DPE
is shown to be 0.82.

Pedersen et al. characterized the promoters of prokaryotes (E. coli) and eukaryotes
(human) using self-organizing parallel HMMs [5]. They considered a set of three
states (the main, the delete, and the insertion states), in addition to start and end
states. The set of emissions are the four nucleotides A,T,G,C. Main and insertion states
always emit a nucleotide, whereas the deletion state is a no-emission state (i.e., a mute
state). Given a set of K training sequences, the parameters of HMM are iteratively
modified to optimize the data fit using a measure based on the log-likelihood. A set
of HMMs trained on 38 σ 70, and 3 σ 54 sequences are combined in parallel to create a
super HMM for E. coli promoter recognition. Similarly, human promoter sequences
are used to train another HMM model. Clear patterns of well-known consensus signals
(TATA box, etc.) could be obtained from the emission probabilities of main states
of the HMM model. Their model is able to classify 162 σ70 out of 166 sequences
as σ 70 and 3 σ 54 out of 166 as σ 54 sequences. Only one σ 70 sequence out of 166 is
misclassified. They have not been tested on nonpromoter sequences.

It is said that DNA encodes two levels of functional information. The first level
is for proteins and targets for activators, enhancers, repressors, transcription factor
binders, and so on. The second level of information is contained in the physical
and structural properties of the DNA itself [15, 16]. In the literature, several groups
have exploited these properties to distinguish between features specific to a partic-
ular set of a DNA sequences and sequences that do not belong to a particular set.
Physico-chemical parameters of a DNA double strand are available in the litera-
ture [16]. Kobe et al., reviewed the work of other groups that have considered the
structural properties specific to mammals and plants [17]. There are some groups who
have encoded the DNA independent of these properties in terms of binary values.
Whatever encoding is used, the whole sequence is considered for modeling in global
signal-based methods. Conformational and physicochemical properties of B-DNA
dinucleotides [16] tabulated by the author and are used as global features for promoter
recognition.

This chapter presents our work, which is based on global signal-based methods
using a neural network classifier. For this purpose, we considered two global features:
n-gram features and features based on signal processing techniques. It is shown that
the n-gram features extracted for n = 2, 3, 4, 5 efficiently discriminate promoters
from nonpromoters.
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4.3 GLOBAL SIGNAL-BASED METHODS FOR
PROMOTER RECOGNITION

Promoter recognition has been conventionally attempted using binding-site prediction
algorithms that are primarily based on motif search techniques. We believe that along
with binding sites, the upstream and downstream regions contribute to the function of
the promoter, and hence we do an indepth study of the entire promoter region. There
is an indication that codons that are triplets constitute useful features [18] in a DNA
sequence and also the promoter regions are shown to have conserved hexamers [19].
On the other hand, to compute hexamers that will be 46 in number for every DNA
sequence is computationally expensive. We present our study of the promoter region
using n-gram features that are contiguous blocks of n characters from a sequence for
n = 2, 3, 4, and 5.

Traditionally, biomedical signals have been analyzed by signal processing tech-
niques [e.g., FT and wavelet transforms]. Biological data sets consist mostly of
sequences made up of either nucleotides or amino acids. Hence, an encoding system
is required to convert these sequences into numerical series. Once a numerical series
is obtained, FT or wavelet transform (WT) can be applied. Wavelets have been used in
the literature to analyze biological signals (e.g., genome sequences, protein structures,
and gene expression data) [20]. It is assumed that the promoter signal that is respon-
sible for the binding is retained by the promoter whether it occurs in an inter-genic
portion or in a coding region [21]. To start with, FT of the sequences is used to analyze
the promoter region to gain knowledge in the frequency domain. Fourier transform
per se cannot be used for promoter recognition. Hence, its power spectrum computed
using the Fourier coefficients are used as features. Since in FT, positional information
is lost, WT is being used to retain that information. Promoter recognition is posed as
a binary classification problem. So far FT has been used by quite a few groups, but
there is no work, as far as we know, which uses wavelets for promoter recognition.

4.3.1 Data Set

This section describes the prokaryotic and eukaryotic data sets that are used for
promoter recognition problem and the n-gram feature extraction methods used for
experimentation.

The prokaryotic data set of E. coli is built by taking 669 σ -70 promoter sequences
of length 80 with 60 base pairs (bp) upstream of the TSS and the rest downstream
as is proposed in the literature from RegulonDB and Promec data bases [22]. Both
the positive and the negative data sets are obtained from Gordon et al. [22]. There
is no standard negative data set available. Gordon et al., build the negative data set
by choosing sequence fragments outside the promoter region. This is a biologically
meaningful data set that consists of 709 sequence fragments from the coding region
and 709 sequence segments from intergenic portions.

The eukaryotic promoter data set of Drosophila is obtained from Ohler et al. [23],
which is taken from the eukaryotic promoter database (EPD) [24]. A negative data
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set is built by them from the Drosophila genome [23]. Sequences from both positive
and negative data sets are of length 300 bp with 250 bp upstream of the TSS and
the rest is downstream. The data set contains 1864 promoter sequences, 2859 from
coding and 1799 sequences from intron portions.

4.3.2 Promoter Recognition Using n-Gram Features

A few research papers on protein sequence classification and gene identification that
use n-grams are seen, but very few are available in the literature that are applied to pro-
moter recognition. A new class of variable-order Bayesian network models (VOBN)
is proposed by Ben-gal et al. [25]. These models generalize the widely used position
weight matrix (PWM), Markov, and Bayesian network models. Instead of considering
a fixed subset of the positions to model dependencies, in VOBN models, these subsets
may vary based on the specific nucleotides observed, which are called the context.
The VOBN model is applied to a set of 238 σ70 binding sites in E. coli. The authors
show that the VOBN model can distinguish those 238 sites from a set of 472 inter-
genic nonpromoter sequences with higher accuracy than fixed-order Markov models
or Bayesian trees. They consider the statistical dependencies between adjacent base
pairs of nucleotides in E. coli to achieve a true positive recognition rate of 47.56% [25].

Leu et al. used n-gram features for n = 6–20 to predict promoters for vertebrates
[26]. They consider sequences of length 550 bp. Each sequence segment of length
200 bp is given a cumulative score using all these n-grams with the individual n-gram
score designed based on its occurrence only in promoter or in nonpromoter or in both
promoter and nonpromoter. They achieve an accuracy rate of 88% with this method.
Ji et al. implemented support vector machine using n-gram features (n = 4,5,6,7) for
target gene prediction of Arabidopsis [27].

Wang and Hannenhalli proposed a position specific propensity analysis model
(PSPA), which extracts the propensity of DNA elements at a particular position and
their cooccurrence with respect to TSS in mammals [28]. They considered a set of
top ranking k-mers (k = 1–5) at each position ±100 bp relative to TSS and computed
the cooccurrence with other top-ranking k-mers at other downstream positions. The
PSPA score for a sequence is computed as the product of scores for the 200 positions
of ±100 bp relative to TSS. They found many position-specific promoter elements
that are strongly linked to gene product function.

Li and Lin considered position-specific weight matrices of hexamers at 10 spe-
cific positions for the promoter data of E. coli [29]. The position correlation scoring
matrix (PCSM) is computed for promoter as well as the nonpromoter set of training
sequences. If the score is higher for positive than in the negative PCSM, then the
test sequence is identified as a promoter and similarly nonpromoters are identified.
Li and Lin [28] report performance of sensitivity being 91% and specificity 81% for
nonpromoter data consisting of coding regions alone and 90 and 77% for nonpro-
moter data taken from inter-genic portions only. Applying these scores to the whole
genome to predict the promoters, all 683 experimentally verified σ -70 promoters are
successfully predicted and 1567 predictions as probable promoters.
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More recently, Sonnenburg et al. introduced the positional oligomer importance
matrices (POIMs) that are k-mer based scoring schemes and proposed an efficient
algorithm to compute the scores for k-mers [30]. The POIMs can be utilized to
recognize transcription start, trans-splicing sites (TRSSs) and acceptor splice sites.
They showed that POIMs can recover many known motifs whose length, location,
and typical sequences of motifs can be obtained accurately by these matrices.

Rani and Bapi carried out a study of different n-grams (n = 2,3,4, and 5) and their
suitability as features for the promoter recognition problem posed as a binary classi-
fication problem [31]. The authors have chosen genomes of E. coli from prokaryotes
and the method is extended to the eukaryote D. melanogaster promoter prediction.
In [32], an investigation was made using dinucleotide frequencies as features in pro-
moter recognition. The emphasis here was on analyzing misclassified sequences in
both promoter and nonpromoter data sets. Further, in [31], a global view of the whole
promoter is attempted using a systematic study of n-grams as features for promoter
recognition. The whole promoter sequence is considered for the prediction and no
position specific information is used. In Section 4.3.2.1, details of this work are
presented.

4.3.2.1 n-Gram Extraction A global signal is extracted from the promoter sequence
by looking at the frequency of occurrence of n-grams in the promoter region. The set
of n-grams for n = 2 is 16 possible combinations of features (AA, AT, AG, AC, TA,
etc.) and the set of n-grams for n = 3 are 64 triples (AAA, AAT, AAG, AAC, ATA,
etc.). The frequency of occurrence of n-grams is calculated on the DNA alphabet
A,T,G,C for n = 2, 3, 4, and 5. Let fi (n) denote the frequency of occurrence of
the i th feature of n-grams for a particular n value and let L denote the length of
the sequence. The feature values vi (n) are normalized frequency counts given in the
following equation:

vi (n) = fi (n)

L − n + 1
1 ≤ i ≤ 4n for n = 2, 3, 4, 5

Here, the denominator denotes the number of n-grams that are possible in a sequence
of length L . Hence, vi (n) denotes the proportional frequency of occurrence of i th
feature for a particular n value. Thus each promoter and nonpromoter sequence of the
data set is represented as a 16-dimensional feature vector (v1(2), v2(2), . . . , v16(2))
for n = 2, as a 64-dimensional feature vector (v1(3), v2(3), . . . , v64(3)) for n = 3, and
so on, and a 1024-dimensional feature vector (v1(5), v2(5), . . . , v1024(5)) for n = 5.

The feature vectors for promoter and nonpromoter sequences constitute the entire
data set. A portion of the data set is used as the training set and the remaining as a
test set in this binary classification problem. The data sets are well separated in the
feature spaces fi (n) for n = 2, 3, 4, and 5. As an illustration, the average separation
between promoter and nonpromoter sequences for 3-grams is shown in Figure 4.1. A
neural network classifier is trained using n-grams of the training set as input feature
vectors and then the test set is evaluated using the same network.
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FIGURE 4.1 Average separation between promoter and nonpromoter sequences for 3-grams
for E. coli. On the x-axis, 0,...,63 denotes 3-grams AAA, AAT, AAG, AAC, . . . , CCG, CCC.

4.3.2.2 Neural Network Classification Performance Promoter classification is ob-
tained using a multilayer perceptron having three layers, namely, an input, a hidden,
and an output layer. The output layer has one node to give a binary decision as to
whether the given input sequence is a promoter or nonpromoter. The input layer
contains 16, 64, 256, and 1024 nodes corresponding to the n-gram features for n =
2,3,4, and 5, respectively. Different experiments are carried out to find the optimal
number of hidden nodes that give the best classification performance. In a fivefold
cross-validation, 80% of the data set is used for training the network and the remain-
ing 20% is used as the test data set. Average performance of the neural network over
fivefolds is reported in order to evaluate the efficacy of the various n-gram features
for promoter classification. These simulations are done using the Stuttgart neural
network simulator [33].

The classification results are evaluated on the test data set using different perfor-
mance measures (e.g., precision, specificity and sensitivity, and positive predictive
value). Precision is the proportion of the correctly classified sequences of the entire
test data set. Specificity is the proportion of the negative test sequences that are cor-
rectly classified and sensitivity is the proportion of the positive test sequences that
are correctly classified. Positive predictive value (PPV) is defined as the proportion
of true positives with respect to the total number of sequences that are predicted as
positive (true positives + false positives).

Using this architecture of the neural network, promoter classification is carried out
for E. coli and Drosophila for n = 2,3,4, and 5 grams. It is found in E. coli that PPV for
2, 3, 4, and 5-grams is 81.29, 82.97, 80.03, and 81.09, respectively, and the percentage
of PPV obtained for Drosophila is 85.5, 89.28,89.35, and 91.2, respectively. In the
case of Drosophila, as the sensitivity value for 5-grams is less than that of 4-grams,
hence 4-grams is chosen as the best n-gram features. The classification results for the
best n-grams are presented in Table 4.1.

The results show that 3-grams are the best discriminators in E. coli, whereas,
4-grams are good in discriminating promoters from nonpromoters in Drosophila. It
can be seen that the identification of nonpromoters being 85% is much higher than
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TABLE 4.1 Classification Performance for E. coli and Drosophila Promoter
Recognition: Best n-gram results are shown

Species Positive Predictive Value Specificity Sensitivity

E. coli (3-gram) 82.97 86.1 67.75
Drosophila (4-gram) 89.35 91.0 75.86

the promoter recognition results at 67%. The ratio of the positive-to-negative data
sets is chosen to be 1:2. With the ratio of 1:1, the precision turns out to be 77.1%,
specificity 75.69%, and sensitivity 80.47%. It can be seen that even though a much
better recognition of promoters is achieved, false positives increase compared to the
case when the training data set is in the ratio of 1:2. Hence, only the 1:2 case is used.

We had also experimented with random negative data sets that are obtained by
generating nucleotide sequences randomly with 60 and 50% A+T composition used
by some research groups [11]. Exceptionally good promoter classification results
are obtained with precision, sensitivity, and specificity values being 95.5, 98.18 and
93.0%, respectively, with a single-layer perceptron [32]. Promoter classification with
an accuracy of near 96% is achieved by a single-layer perceptron for synthetic negative
data sets, potentially indicating the linear separability of the promoter data sets. But
then these experiments cannot be used for the whole genome promoter prediction
where the predictor has to annotate each nucleotide as belonging to a promoter or
a nonpromoter based on the neighboring bases. Hence, it is important to carry on
studies of promoter classification with nonpromoters obtained from the genome.

An indepth analysis is carried out in Section 4.4.1 to investigate the limitation
on the sensitivity of promoter prediction using 3-gram features. A closer look at the
misclassified promoter sequences showed that they belong to the reverse strand of
the genome. This fact has to be further investigated.

In Section 4.3.3, we explore a global signal-based method that is based on FT and
wavelet transform to extract features for the promoter recognition problem.

4.3.3 Investigation of Promoter Recognition in Frequency Domain

This section explores the application of signal processing techniques (e.g., Fast
Fourier Transform (FFT) and wavelet transforms) for promoter recognition as well
as the possibility of modeling the RNA polymerase–promoter interaction. Various
encoding techniques [electron–ion interaction potential (EIIP), enthalpy, roll angle,
etc.] are also included in the encoding of a sequence into a numerical format.

Tiwari et al. showned that the FT gene portion often has a prominent peak at 1
3

position confirming the periodicity of codons [34]. But, nongenes do not have any
such peak. They have decomposed the original sequence into a set of four indicator
sequences for the four nucleotides A, T, G, C [35]. Each sequence is a binary sequence
indicating the presence or absence of a particular nucleotide. Deyneko et al. applied
the physical features (e.g., melting enthalpy, roll angle, and minor groove depth
of DNA) to find similar promoters that correlate with their transcription regulatory
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responsiveness to different antibiotic and osmotic treatments [36]. They transformed
the E. coli promoters into numerical sequences using physical parameters (enthalpy,
roll angle, etc.) Fourier Transform of the transformed sequences is used in computing
cross-correlation and auto-correlation between different promoters. In particular, they
looked for genes responsible for SOS response.

4.3.3.1 Encoding and Decomposition A DNA sequence is made up of four nu-
cleotides A, T, G, and C. Different kinds of encodings have been used by different
groups [37–39]. Nobuyuki et al. [37] used the values A = 1, T = −1, G = 1, and
C = −1, whereas Cosic et al. [39] encoded the nucleotides by using the EIIP values:
A: 0.1260, G: 0.0806, T: 0.1335, and C: 0.1340.

There are another set of encodings that are based upon dinucleotides. A large
number of physicochemical parameters of DNA double strands/reflecting its specific
properties have been collected in a public database [16]. Three parameter sets, melting
enthalpy, minor groove depth, and roll, are given in Table 4.2. The DNA enthalpy
data describes the melting of DNA double strands. The enthalpy data are dependent
on the neighboring nucleotide and direction 5′ → 3′ is important here. The reason is
that enthalpy is not only attributable to the direction invariant hydrogen bonds, but
also to the interactions between electrons of neighboring bp. van der Waals forces
also contribute to the interactions between the immediate base neighbors [40]. This
information is not reversible for the strand direction and must therefore be taken into
account in the enthalpy-based conversion of the primary structure into a signal [41].
Roll angle is another structural feature that may help in promoter recognition. A

TABLE 4.2 Physicochemical Properties of DNA [36]

Melting Enthalpy Roll Angle
Dinucleotide (kcaL/mol.) Minor Groove Depth (Å) (degree)

AA 9.05 9.03 0.3
AT 8.60 8.91 −0.8
AG 7.84 8.98 4.5
AC 6.54 8.79 0.5
TA 6.00 9.00 2.8
TT 9.14 9.03 0.3
TG 5.84 9.09 0.5
TC 5.64 9.11 −1.3
GA 5.55 9.11 −1.3
GT 6.45 8.79 0.5
GG 10.95 8.99 6.0
GC 11.10 8.98 −6.2
CA 5.75 9.09 0.5
CT 7.75 8.98 4.5
CG 11.90 9.06 −6.2
CC 11.04 8.99 6.0
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FIGURE 4.2 A sample promoter sequence represented in terms of EIIP values for nu-
cleotides.

dinucleotide step is helically twisted since the distance between sugar–phosphate,
backbone is twice the distance between base-stacking distance [42]. If a step is
untwisted, the base pairs are pushed apart and the rise distance increases. To regain
the stacking, (i.e., to decrease the rise distance) the step then rolls around the major
groove [43]. For RNA polymerase to bind to the promoter, an open complex near
the −10 site is required. Hence, this particular structural feature may be important in
analyzing the dynamics of the DNA segment. The parameters are used to represent
the DNA by Kauer and Co-workers [15,36]. Deyneko et al. [36] contend that the mere
symbol computations are misleading since AA instead of GA numerically is more
significant in terms of melting enthalpy. They claim that by using the physicochemical
parameters, they were able to find significant similarity of promoters than with
nucleotide comparison.

Here, we followed the EIIP encoding system of Cosic et al. for promoter–RNA
polymerase interaction computations, since they also provide EIIP values for amino
acids [39]. In the FT case, we used binary indicator sequences [35], enthalpy and roll
angle encoding [36], and EIIP encoding [39]. Each sequence is encoded into a numer-
ical sequence by using the encoding scheme. This numerical series is normalized to
zero mean and unit standard deviation. Figure 4.2 depicts a sample sequence from the
promoter data set that is converted into a numerical sequence using the EIIP values.

4.3.3.2 Feature Extraction Using one of these encodings, the original sequence is
converted into a numerical series. This numerical series is transformed using FTs
and WTs.

In FT, discrete fourier transform (DFT) is applied to the promoter, as well as
nonpromoter sequences to cull out the dominant components in frequency space.
Discrete FT is computed by using FFT in MATLAB. The FFT coefficients are
complex, hence the power spectrum is computed using the FFT coefficients.

In wavelet transform, this series is decomposed using a discrete wavelet transform
into a number of levels [44]. Bior3.3 biorthogonal wavelets are used to decompose
the numerical promoter sequence.

As described earlier, a major portion of the data set is used for training the classifier
and the rest that is not exposed to the classifier is used as the test data set. We denote
the set of promoters as positive data set and the set of nonpromoters as the negative
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data set. Wavelet decomposition is done for each positive and negative sequence.
This collection of vectors is divided into fivefolds in order to do the standard fivefold
cross-validation. A neural network classifier is then trained using the wavelet feature
vectors. The test set is used to evaluate the performance of the classifier.

In the case of a nonpromoter, data set consisting of both gene and inter-gene
portions, the proportion of positive data set to the negative data set is taken as 1:2.
Each promoter and nonpromoter sequence of the data set is encoded by using the
coding scheme of Cosic et al [38]. Each sequence is decomposed into six levels by
using Bior3.3. In total, there are 120 decomposition structure values that are required
to decompose the original numerical sequence. The original wave is decomposed into
six detail waves, namely, D1, D2, D3,D4, D5, D6, and one smooth component A6,
each of length 80. The classification is based upon various features that are extracted
from these decomposition structure values and decomposed wavelet coefficients.

4.3.3.3 Classification A multilayer feedforward neural network with three layers,
namely, an input layer, one hidden and an output layer, is used for promoter classifi-
cation in the following classification sections with various features based upon signal
analysis techniques. The number of nodes in the input layer is dependent on particular
features that are used. A hidden layer consists of a certain number of hidden nodes,
the number found by trial and error that gives optimal classification performance.
The output layer has one node to give a binary decision as to whether the given input
sequence is a promoter or a nonpromoter. These simulations are done using Stuttgart
neural network simulator [33].

Neural network is trained on the training set and then the classification performance
is evaluated on the test set. All the classification experiments are carried out using a
fivefold cross validation procedure [45, 46]. The classification results are evaluated
using performance measures (e.g., Precision, Specificity, and Sensitivity).

4.3.3.4 Classification Using Power Spectrum Features Earlier research using FT
showed that the coding region of eukaryotes gave a peak at 1

3 pointing to a codon
bias [34], which could be used in gene recognition in case of eukaryotes. In the
case of prokaryotes, the periodicity of 3 is observed not only in coding regions, but
also in noncoding regions [47]. If different triplets are responsible for periodicities in
coding and noncoding regions, they may become helpful in identifying promoters and
nonpromoters. Tiwari et al. [34] showed that the gene portion often has a prominent
peak at 1

3 position confirming the periodicity of codons. But, nongenes do not have
any such peak. They have decomposed the original sequence U into a set of four
indicator sequences, namely, UA, UG, UT , and UC for the four nucleotides A, T, G,
and C [34]. Each sequence is a binary sequence indicating the presence or absence
of a particular nucleotide. Table 4.3 displays the classification results of E. coli
with the power spectrum values as features for a feedforward neural network. The
positive recognition results are not very encouraging even though negative recognition
results are good, pointing possibly to the inseparability of coding versus noncoding
sequences in this feature space.
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TABLE 4.3 Classification Results Using Power Spectrum Values For E. coli Using
Different Encoding Schemes

Features Precision (%) Specificity (%) Sensitivity (%)

EIIP 75.85 88.72 48.58
Binary indicators 73.98 88.36 43.5
Enthalpy 74.44 86.61 46.91
Roll Angle No training

Experimenting with various lengths starting from 80 to 350 bp in steps of 40 bp
for coding and noncoding sequences, we found that sequence lengths >200 bp might
be needed to get a sizeable distinction near the 1

3 rd peak. Hence, it is possible that the
promoters versus nonpromoters are not able to throw up any distinct peak structure,
which will be useful in classification of E.coli promoters.

In order to check the validity of the ideas, same experimentation is done on the
Drosophila data set [23] used in Section 4.3.1. Here again the sequence is represented
as a set of four binary-indicator sequences, each indicating the presence or absence
of a particular nucleotide. Classification results using these encodings are shown in
Table 4.4. The sensitivity is 50–60%, even though specificity is 85%. When the intron
data is removed from the total data set, where is only consists of promoter and coding
sequences, the sensitivity improves to 86%. Further, instead of binary values, if EIIP
values are used in place of 1 in binary-indicator sequences, the sensitivity is much
higher, ( 94%), which is supported by Trifonov and Sussman [47] data. Hence, it can
be concluded that the intron part is similar to the promoter, which is hindering the
classification accuracy. In view of the above arguments, in the case of E. coli, there are
two factors that are affecting the accuracy: one is the length of the sequence and the
second is the similarity of noncoding sequences to the promoter sequences. Thus FFT
of the DNA sequence encoded using EIIP encoding, gives a slightly better accuracy
compared to the other encodings for E. coli, and for Drosophila binary-indicator
sequences gives a marginal improvement over EIIP encoding.

4.3.3.5 Classification Using Wavelet Coefficients A global signal using wavelet
transforms is extracted from both promoter, as well as nonpromoter, sequences and is
used as input to a classifier. Basically, there are two operations that can be performed
on a signal: decomposition and reconstruction. One set of experiments is done using
wavelet coefficients at various scales as features for a feedforward neural network

TABLE 4.4 Classification Results Using Power Spectrum Values for Drosophila Using
Different Encoding Schemes

Features Precision (%) Specificity (%) Sensitivity (%)

EIIP 77.13 87.68 50.69
Binary indicators 77.98 86.51 56.66



86 PROMOTER RECOGNITION USING NEURAL NETWORK APPROACHES

TABLE 4.5 Classification Results Using Wavelet Coefficients as Features for a Neural
Network Classifier for E. coli Using EIIP Encoding

Features Precision (%) Specificity (%) Sensitivity (%)

All 120 values 63.6 86.52 31.7

to classify the promoter sequence. Another set of experiments is done using the
decomposed waves as features to the classifier.

Simple FT is not enough to discriminate a promoter against coding and non-
coding backgrounds as seen above. The time or positional information is lost in an
FT. Wavelet transform retains the positional, as well as frequency information. The
decomposition structure has a total number of coefficients of 120. The values are
8, 8, 9, 11, 16, 25, and 43 for A6, D6, D5, D4, D3, D2, and D6, respectively. The
classification accuracy of promoter recognition problem is computed using wavelet
coefficients as input to the neural network. The results are given in Table 4.5. The
results show that nonpromoter recognition is good compared to promoter recognition.

4.3.3.6 Classification Using Decomposed Signals Each decomposed wave is rebuilt
using decomposed structure values into a wave of length 80. In total, there are seven
waves, namely, A6, D6, D5, D4, D3, D2, and D1 resulting in 560 values (7 × 80).
All waves are used to see whether more information is imparted by transforming
one initial signal wave into so many decomposed waves. These 560 values are used
as input features to a neural network classifier to identify the promoters. Table 4.6
presents the results of the classifier for these feature values. The results again are
showing good nonpromoter recognition rather than promoter recognition. It can be
concluded that both experiments using wavelet coefficients and decomposed waves
are good for nonpromoter recognition. Increase in the number of features has not
helped in gaining more information to classify promoters better. Experiments on the
Drosophila data set also present similar results. The sensitivity is 50% for Drosophila
using binary indicator sequence encoding scheme. The results are shown in Table 4.7.

4.3.3.7 Cross-Correlation between Promoter and RNA-Polymerase We also looked
at modeling the interaction between promoter and RNA polymerase during promoter
recognition [48]. Basically, interactions between protein and DNA can be categorized
into four classes: DNA backbone–protein backbone (18%), DNA backbone–protein

TABLE 4.6 Classification Results Using Decomposed Waves as Features to a Neural
Network Classifier for E. coli Using EIIP Encoding

Features Precision (%) Specificity (%) Sensitivity (%)

All decomposed waves (560) 69.23 87.59 30.21



GLOBAL SIGNAL-BASED METHODS FORPROMOTER RECOGNITION 87

TABLE 4.7 Classification Results Using Decomposed Waves as Features to a Neural
Network Classifier for Drosophila Binary Indicators Encoding Scheme

Features Precision (%) Specificity (%) Sensitivity (%)

All decomposed waves (2100) 77.61 89.14 50.62

side chain (51%), DNA side chain–protein backbone (1%) DNA side chain–protein
side chain (30%) [49]. Protein–DNA interactions are chemically the same as protein–
protein interactions. They consist of electrostatic interactions, hydrogen bonds, and
hydrophobic interaction. However, hydrogen bonds constitute the major term for
recognition and specificity and a large portion of the binding energy [50, 51]. It has
been proposed that matching of periodicities within the distribution of energies of
free electrons along the interacting proteins or protein and DNA can be regarded
as resonant recognition [38]. The whole process can be observed as the interaction
between transmitting and receiving antennaes of a radio system.

The sigma subunit of the RNA polymerase is of 612 aa (amino acids) length.
The subunit is converted into a numerical sequence using the EIIP values for the
aa [44]. This particular subunit is also decomposed into six levels using the Bior3.3
biorthogonal wavelet. The maximum absolute value of the correlation coefficient at
each decomposition level can be treated as the similarity score between the signals.
Cross-correlation between RNA polymerase and sample sequence is given Figure 4.3.
The number of correlation coefficients is 691. In case of binary encoding, wavelet at
a particular level is obtained by taking the norm of four vectors for each i, j , where
i is the location and j is the level number as

W ( j, i) =
√

WA( j, i)2 + WT ( j, i)2 + WG( j, i)2 + WC ( j, i)2 (4.1)

The results of classification using both these encodings are given in Table 4.8.
The results using features of cross-correlation between promoter and RNA poly-

merase sigma subunit, and cross-correlation between decomposed waves of both
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FIGURE 4.3 Cross-correlation between sample promoter and RNA polymerase subunit
sigma.
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TABLE 4.8 Classification Results Using DNA–RNA Polymerase Sigma Subunit
Cross-Correlation Values as Features for a Neural Network Classifier for E. coli

Features Precision (%) Specificity (%) Sensitivity (%)

EIIP encoding 66.46 86.18 24.65
Binary encoding 69.67 89.64 27.34

promoter and RNA polymerase sigma subunit have shown a remarkable ability to
identify nonpromoters. Finally, the assumption that signal processing methods can
capture the interaction between the RNA polymerase sigma subunit and promoter has
not fructified well. It is also found that the different encoding schemes, including those
that use the structural properties of the genome do not influence the classification
performance.

4.4 CHALLENGES IN PROMOTER CLASSIFICATION

4.4.1 Limitations in the Neural Network Performance

Detailed analysis of the classification results of promoters of E. coli is carried out
with the best features, which are 3-grams as basis. Many experiments are carried
out in the training phase of the neural network by varying the network architecture
with different number of hidden layers and the number hidden nodes in each hidden
layer. Yet, the network could not achieve a training performance beyond 85%. The
sets of misclassified and correctly classified sequences are studied closely by keeping
the feature extraction and the classifier scheme as described in Sections 4.3.2.1
and 4.3.2.2. For a deeper analysis of promoters classification, a set of sequences is
selected randomly from both promoters and nonpromoters (consisting of both gene
and intergene portions) in the ratio of 1:2, respectively, for training. That is, a set of
454 sequences are taken from a promoter data set as a positive set, and 454 sequences
are taken from each gene and inter-gene sequence sets. The rest of the data set is used
as a test data set.

It clearly can be seen from Figure 4.4 and Table 4.9 that the true positives and
false positives stay together and the true negatives and the false negatives are not
distinguishable in this feature space.

The experiments clearly demonstrate that there is a small confusion set in both
the promoter and nonpromoter data sets. We categorize the two classes within the
data set as the “majority” promoter–nonpromoter class and the other that reflects
the “minority” signal. Now, the sequences that the neural network finds difficult
to classify are isolated from both positive and negative data sets. In the following
experiment, we reconstitute the data set by removing the minority data set from both
the promoter and nonpromoter sets and call it Major Set (Maj). It is found that a
neural network, which we call N NMaj, without a hidden layer achieves 100% training
performance and the results of the test data set are shown in Table 4.10.
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FIGURE 4.4 Plot of 3-gram frequency averages for promoter and negative data sets consist-
ing of segments from gene and inter-gene portions of the DNA.

Similar performance is observed for the neural network NNMin when trained only
on Min. That is, the Maj class constituting the majority promoter and the majority
nonpromoters is linearly separable. Similarly, the Min set is also linearly separable.

Note that in Table 4.9 the numbers as well as the exact sequences in each of these
boxes match. For example, the set of 130 FNs of NNMin is a superset of the 128 TPs
of NNMaj. Thus, we see that both promoter and nonpromoter sequences have two
distinct patterns, one being recognized by NNMaj and the other by NNMin. But for
5–7 sequences, the NNMaj and NNMin behave in a complementary fashion, which is
confusing. A small portion (14%) of the nonpromoter data set is similar to a majority
(70%) of the promoter data set. Also, 86% of the nonpromoter data set (TN) is closer
to 30% of the promoter data set (FN).

TABLE 4.9 Test Data Results of Neural Networks
NNMaj and NNMin

Positive Test Data (156) Negative Test Data (392)

TP of NNMaj = 128 TN of NNMaj = 321
⊆ ⊇

FN of NNMin = 130 FP of NNMin = 307

FN of NNMaj = 28 FP of NNMaj = 71
⊇ ⊆

TP of NNMin = 26 TN of NNMin = 85
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TABLE 4.10 Classification Results of NNMaj a Single
Layer Perceptron

Precision (%) Specificity (%) Sensitivity (%)

81.93 81.89 82.05

When the misclassified sequences are removed, it is clear that the classification
results will be very good, but it is surprising that a single-layer perceptron is able to
achieve accuracy when the confusion set is removed. Note that in this process we
have successfully built a neural network NNMaj, which is a single-layer perceptron
achieving promoter recognition performance of 80%. This result is comparable to
the powerful classifiers that are presented in the literature [22].

4.4.2 Genome-Wide Promoter Recognition

A main goal of promoter recognition is to locate promoter regions in the genome
sequence. In this section, a scheme for locating promoters in a given DNA sequence
segment of E. coli genome of length N in a particular direction (say, 5′–3′) is proposed.
The scheme does not address the issue of locating TSS in the promoter region. The
NNMaj network is a classifier that is constructed with the negative data set composed of
genic and intergenic portions. When the negative data set is a combination of both cod-
ing and noncoding segments, it is advantageous in the sense that the promoter and non-
promoter could be classified at the same time. But, the classification accuracy is not
100%, and there is no way one can eliminate the false positives and negatives. To over-
come this handicap, instead of using the earlier neural networks, a new set of neural
networks based on different combinations of the data sets are designed. One network,
NNPC, is trained using promoter and coding data sets as positive and negative data
sets, respectively, and another one, NNPN, using promoter and noncoding data sets.

A moving window of length 80 is considered to extract segments from the start of
the DNA sequence, that is, 1–80, 2–81, 3–82, and so on. A given sequence segment
is classified as promoter by a voting scheme. If NNPC and NNPN both classify the
sequence as a promoter sequence, then the sequence is voted as a promoter or
otherwise a nonpromoter. Each of the segments thus gets classified as a promoter (P)
or nonpromoter (NP). If a segment m − (m + 79) is classified as a promoter, then
the nucleotide m is annotated as P and if it is classified as nonpromoter, then m is
annotated as NP. This process of annotation is continued for the entire sequence to
get a sequence of P’s and NPs. A stretch of these outcomes greater than a threshold
(e.g., 50 consecutive positive outcomes) is treated as a P or as an NP region.

The whole genome of E. coli is divided into 400 sections. The following is a case
study on two sections (Sections 1 and 3) of E. coli whole genome. The combined
outputs of NNPC and NNPN, as described earlier, is used to annotate the promoter
regions. The consensus regions can be seen in Figures 4.5 and 4.6. Since NNPN shows
many spurious promoters, it is essential to take the consensus result. In the figures,
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FIGURE 4.5 The combined output of the networks NNPC and NNPN versus the moving
window for section1 of the E. coli genome.

the output result of the ensemble of networks of NNPC and NNPN is shown to indicate
that a consensus for a stretch of >50 bp will be annotated as a promoter.

Table 4.11 shows the section number, the sigma factor, and the extent of the re-
gion identified as promoter from the experiment. In the whole genome annotation,
it is considered essential that no true promoter is missed. The n-gram based classi-
fier is able to annotate all the existing promoters that are in NCBI in the sections
that are considered. On the other hand, a few regions are additionally annotated as
promoters. For example in section3, 3296–3355, 7537–7590, 8454–8708 which are
regions predicted as promoters, are not accounted for in the NCBI data. Only wet lab
experiments can verify the validity of this result.

There are not many whole genome promoter prediction programs for prokaryotes.
The available tools for prokaryotic promoter prediction are that of Gordon et al.
[52] who developed a whole genome promoter prediction based on their sequence
alignment kernel (SAK); Bacterial Promoter BPROM is developed by SoftBerry
Inc. [53]; Neural network promoter prediction (NNPP) tool developed by Reese [54].
SAK predicts whether the 61st position of a sequence of length 80 is a TSS or not.
The legend of SAK says that the more positive the outcome is, the more probable
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FIGURE 4.6 The combined output of the networks NNPC and NNPN versus the moving
window for section3 of the E. coli genome.
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TABLE 4.11 Promoter Regions Predicted by the Neural Networks NNPC and NNPN

Section Factor Predicted Promoter Regions

section1 Sigma70 0–148; 5004–5109; 8174–8220; 9208–9311
Sigma32 228–277

section3 Sigma70 420–478; 660–698; 1497–1561; 3296–3355; 5101–5150
6563–6605; 7151–7188; 7537–7590; 8454–8708; 8714–8838
8872–8961; 9078–9106; 10061–10125; 13378–13384; 13390–13401

Sigma54 4962–5015

that segment is a promoter, and a promoter, is denoted by “L”. There are no such
annotations in the test case. But, it can be seen that most of the peaks coincide.
In the case of BPROM, an internal parameter threshold for promoters is set as
0.20 [51]. Bacterial promoter (BPROM) has predicted 31 promoters in this region.
Further, BPROM predicts the TSS and determines the binding regions. The NNPP
predictions are made with a cut-off rate of 0.80 [55]. A comparative study of promoter
recognition by these tools along with 3-grams shows that 3-grams outperform these
tools. Classifier based on 3-grams achieves 100% sensitivity, whereas SAK, NNPP,
and BPROM achieve 69.23, 76.92, and 38.46, respectively.

The results give a clear indication that cascaded networks based on 3-grams
perform significantly well. One more factor is that, unless we know, here a promoter
region exists, we cannot say an outcome from these other tools is positive since there
are many false positives. In our scheme, wherever we find a stretch of positives, using
the cascaded method, we can label them as positive predictions.

The promoter prediction is carried out for the Drosophila genome with the ensem-
ble of neural networks of NNPC and NNPN using 4-grams. A stretch of 10 kbp is used
that starts with a gene followed by two more genes. For this data, four promoters are
identified by the ensemble of which two promoters occur before the genes and one in
the intron region and one in the exon region. The stretches of promoter occurring in
intron and exon portions are 150 bp in length, whereas the portions identified before
the genes are 350 bp in length. The threshold has to be set more rigorously, by more
experimentation. The NNPP2.2 is used for cross-checking the method as the data set
for Drosophila is taken from them. The NNPP2.2 software predicted 21 promoters
with a cutoff of 0.8, 8 with a cutoff of 0.95 and only one with a cutoff of 0.99. In this,
the cutoff plays a crucial role. The other software package FirstEF did not predict
any promoter at all.

4.5 CONCLUSIONS

In the literature, the techniques proposed for feature extraction can be broadly classi-
fied as those that exploit biological information explicitly and those that do not need
a priori biologically based labeling information. In the former category, called the
local methods, the features are extracted from the binding regions or local motifs,
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whereas in the latter, global signal methods, features are derived utilizing the physic-
ochemical and structural properties of the whole promoter region. The recognition
methods that exploit the promoter signal like the position weight matrices (PWM),
the expectation maximization algorithm, and the techniques like FTs, are proposed in
the literature. This chapter presents promoter recognition using n-gram based features
and features based on FT and WT. We demonstrate that the n-gram based features
perform the best for the whole genome annotation.

Whole genome annotation is a major challenge for promoter prediction tools. The
performance of an algorithm on a limited training and test data set may not be really
a performance indicator of how well it may identify promoters in a whole genome.
Methods that are proposed giving good accuracies on training and test data sets, may
or may not perform better on the whole genome.

The binding regions are important in assisting the RNA polymerase to bind the
promoter, but that information alone is not sufficient to recognize a promoter. Local
features are calculated from binding sites that are available in Harley’s data [19].
Global features are extracted from the whole promoter sequence aligned with respect
to TSS and nonpromoter data sets. If we compare the results that are obtained using a
signal extracted from motifs–binding regions in the promoter with the signal obtained
from the whole promoter sequence, it is evident that the local signal has a handicap in
extending to a whole genome promoter prediction process. The signal from the entire
promoter sequence without segmenting it into important and nonimportant portions
will lead to better generalization in the case of E. coli. The PWM based features, as
well as n-grams from the whole promoter, give better genome promoter annotation
results than the other local signal extraction schemes.

Experiments are carried out to find a signature of the promoter present at any
particular resolution. If the characteristic signal of a promoter that is supposed to
be conserved irrespective of place of occurrence of the genome promoter is not
preserved, then promoter recognition based on the signal processing techniques will
not be very helpful. The results of E. coli and Drosophila show that features using
FFT and wavelets are not sufficient to recognize a promoter against a coding and
noncoding background. This fact is evident from the results where the negative data
seems to be recognized better than a promoter. The promoter data set seems to have no
pattern in the FT, WT feature space that can be learned by the classifier. In summary,
it turns out that signal processing techniques cannot be used as general classification
algorithm. The conjecture that structural properties are underlying principles for base
selection is not evident from the current experiments.

This chapter shows that in an n-gram feature space, recognition rate of Drosophila
promoters is better than E. coli promoter recognition. Best performance for
Drosophila is 87% compared to E. coli’s 80% with a very good positive predictive
rate as shown in Section 4.3.2.2. Promoter architecture of eukaryotes is in general
much more complex than a prokaryote promoter architecture. It is found that n-gram
preferences for Drosophila is stronger in a discriminating promoter versus a non-
promoter than for E. coli. The prediction of the negative data set is higher possibly
because the intron portions are similar to nongene segments in eukaryotes. In fact,
the results of promoter recognition using FT give only ∼50% positive identification.
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From these results, we can conclude that different adjacency preferences are shown
for promoter and nonpromoter regions. One major advantage of using n-gram based
whole genome promoter annotation is that one does not need any prior information
about the promoter, the location of binding sites, the spacer lengths, and so on. The
additional advantage of using n-gram features is that the input vectors computed for
neural network classifier will not change irrespective of the length of the promoter
sequence.

4.6 FUTURE DIRECTIONS

The techniques described in this chapter can be developed to build a full-fledged
automated whole genome promoter annotation tool. Whole genome promoter pre-
diction using 3-grams has been applied to the forward strand only. The same scheme
needs to be applied to the reverse strand with appropriate preprocessing so that the
method can achieve whole genome promoter recognition.

Signal processing techniques need to be explored further to enhance the recogni-
tion rates. Since RNA polymerase is an enzyme, which is a protein, three-dimensional
structure information of RNA polymerase can be used to characterize promoter–RNA
polymerase interaction. It is to be explored if instead of using Bior3.3 as the mother
wavelet, RNA polymerase itself can be used as a mother wavelet to imitate the
biological mechanism closely. This line of application of wavelets would be quite
novel.

Proteins are believed to be responsible for most of the genetically important func-
tions in all cells. Hence, the focus has been entirely on gene recognition. Recent
studies indicate that ncRNAs (noncoding RNAs), which do not code for proteins,
affect transcription and the chromosome structure, in RNA processing and modifi-
cation, regulation of mRNA stability and translation, and also affect protein stability
and transport [56, 57]. An effort to look for them in typically 95% of the total DNA
is a huge task. By suitably modeling the promoters of these ncRNAs, they can be
predicted much more easily. Some of the techniques that are developed here can be
extended to do this work.
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5
PREDICTING microRNA PROSTATE
CANCER TARGET GENES

Francesco Masulli, Stefano Rovetta, and Giuseppe Russo

5.1 INTRODUCTION

MicroRNAs (or miRNAs) are a class of noncoding RNA (ncRNA) of 18–25 nu-
cleotides (nt) in length regulating gene expression that were first described in 1993
by Lee et al. [1], while the term microRNA was first introduced in 2001 [2]. The
miRNAs are capable of base pairing with imperfect complementarity to the tran-
scripts of animal protein-coding genes (also termed targets), usually within the 3′

untranslated region (3′–UTR). The miRNAs are involved in several biological and
metabolic pathways and play a very important role in many diseases (e.g., cancer [3],
alzheimer’s disease [4], Parkinson’s disease [5], and viral infections [6]).

Because animal miRNAs form base pairing with imperfect complementarity, com-
putational prediction of miRNA targets is not an easy task, and nowadays many
miRNA target prediction programs have been developed and applied.

The Mirecords website available at (http://mirecords.umn.edu/miRecords/) shows
a continuously updated list of biologically validated gene targets of known miRNAs
in humans and other animals (as reported by the scientific literature) together with
the miRNA target predictions obtained by various target prediction programs. This
list tells us that much more work must be done in order to obtain reliable miRNA
target prediction methods. The reason is because (1) at present there are target
genes biologically validated that are not predicted by any method; (2) the considered
methods seldom agree; (3) even where there is a concordance concerning the target
gene between the biological procedure and the prediction of a computational method,
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this cannot be considered a final validation of the prediction method as the available
biological procedures are not able to detect the specific miRNA target site.

This chapter presents an approach to improve the state of the art of computa-
tional prediction of target sites, by identifying several refinements of the available
algorithms, and providing an optimization of the parameters involved so as to max-
imize the adherence of results to biological evidence. The increased selectivity of
the method may also be used to guide the experimental validation in a more focused
direction. The proposed approach applies a genetic algorithm [7] to fine-tune the
parameters of the analysis chain exploiting the biological knowledge on miRNA and
genes involved in prostate cancer.

The following sections discuss the role of miRNAs in prostate cancer. Sections 5.3
and 5.4, present the most diffused software tools for miRNA gene target prediction.
Sections 5.5–5.7 show our approach and the experimental analysis. The discussion
and conclusions are in Section 5.8.

5.2 miRNA AND PROSTATE CANCER

MicroRNAs or miRNAs are small noncoding RNAs of 18–25 nucleotides in length.
The miRNA genes are generally transcribed by RNA polymerase II [8] even though
it was recently documented that RNA polymerase III might be involved as well [9].
MicroRNA is derived from a complex process of maturation of its primary transcript
named pri-miRNA, a molecule capped at the 5′ end, polyadenylated at the 3′ end
similarly to mRNAs and containing a local stem–loop structure, a terminal loop, and
two flanking single-stranded arms. Then, the pri-miRNA is processed into a 70 nt
hairpin-like precursor miRNA named pre-miRNA by a multienzymatic complex
composed of the RNase III enzyme Drosha and the double-stranded RNA binding
protein DGCR8/Pasha [10]. Next, the pre-miRNA is transported from the nucleus
to the cytoplasm and diced into miRNA duplexes together with a double-stranded
RNA binding-domain protein named TRBP by RNaseIII nuclease Dicer. After Dicer
processing, the miRNA duplex is unwound, the released mature miRNA binds to a
protein named Argonaute, the RNA strand of the miRNA duplex complementary to
the mature miRNA is degraded and the mature miRNA is then free to interact with
its mRNA targets. More details about miRNA biogenesis can be found in [11, 12].

The miRNAs are involved in lung, prostate, breast, and colorectal cancer [13–18].
Following a simple view, if a certain miRNA target binds tumor suppressor genes,
it is supposed to be an oncogene, but, if a miRNA targets an oncogene, it might be
viewed as a tumor suppressor gene. However, things may be far more complicated, as
each miRNA can mediate the expression of hundreds of mRNAs. The first evidence
that miRNAs may function as tumor suppressors has been reported in [19]. More
details about the role of miRNAs in cancer are presented in [20].

This chapter will focus on miRNAs’ influence in prostate cancer. Prostate cancer
(PC) is the second leading cause of cancer deaths in men [21, 22]. It is not invari-
ably lethal, however, and is a heterogeneous disease ranging from asymptomatic
to a rapidly fatal systemic malignancy. The prevalence of PC is so high that it
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could be considered a normal age-related phenomenon. In spite of the availability of
biomarkers for PC, the basic molecular mechanisms regulating its development and
progression are still very poorly understood. These observations have led researchers
to speculate that other key factors might play a role in PC pathogenesis and/or pro-
gression. Different studies demonstrated aberrant expression of several miRNAs in
PC cells (e.g., let-7c , miR-19b, miR-20a, miR-29b, miR-100, miR-125b, miR-126*,
miR-128b, miR-146a, miR-146b, miR-184, miR-221, miR-222, miR-361, miR-424
miR-663) [23–28]. Although a number of PC related miRNAs were discovered, to
date, only five are characterized for their functionalities: three as oncogenes and two as
tumor suppressors (miR-20a, miR-125b, miR-126*, miR-146a, and miR-221/222).
Oncogenic miRNAs downregulate the expression of apoptosis-related genes, and
tumor suppressor miRNAs target the proliferation related genes. Due to the onco-
genic or tumor-suppressive properties of PC related miRNAs, they might be consid-
ered as new potential biomarkers, but more importantly as therapeutic targets for PC
treatment in the near future.

Research efforts are therefore currently focusing on the discovery of more precise
markers, which are needed so that appropriate treatment decisions can be made for
individual patients, and on the characterization of genetic pathways involved in the
development and progression of the disease. However, simply identifying the list of
genes involved in a disease is only a first step in the process. There is the need for
identifying more refined information (e.g., the interaction between the various steps
in the pathway).

5.3 PREDICTION SOFTWARE FOR miRNAs

The discovery of miRNAs acting in PC pathways and the identification of the specific
sites where they act is a major advance in the identification of regulatory networks
that lead to the development and progress of the disease. The overall activity aims
to develop and use novel computational (in silico) methods for predicting both novel
miRNAs and target genes and sites, with the long-term goal to substantially improve
the knowledge about PC, and consequently the development of ad hoc therapies.

The miRNA genes are identified on a large scale using direct biochemical cloning
and computational approaches [29, 30]. It has been estimated that there are as many
as 1000 miRNAs in the human genome. As miRNA sequences are identified they are
collected in several databases including miRBase and MicroRNAdb [31].

The other goal is to identify and experimentally validate mRNA gene targets.
Nowadays high-throughput approaches to validate miRNA targets experimentally
are lacking. Only few nonhigh-throughput experimental approaches, which are not
able to detect the specific miRNA target site, are available, (e.g., using a luciferase
reporter construct by cloning the predicted binding site sequence of the miRNA
into the 3′–UTR region) [32, 33], and then transfecting the miRNA into a cell line
containing the luciferase reporter to access the effect of the miRNA on luciferase
expression [34].
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Researchers can publish discovered miRNA target data and experimental details
into the public domain by submitting they results to some databases recently realized,
including miRBase [31] and miRNAMAP [35], Mirecords, Argonaute [36], and
TarBase [37, 38].

A large number of target prediction algorithms have been developed to guide the
experimental validation in a more focused direction. Presently, the cited databases
contain only a limited number of confirmed miRNA targets (i.e., true positives). An
even more limited number of known miRNAs do not interact with a target gene (i.e.,
true negatives), so it is very difficult to develop miRNA target prediction algorithms
with high sensibility and selectivity, by using, for example, neural networks or support
vector machines [39].

A particular microRNAs can base-pair with perfect or imperfect complementarity
to the transcripts of several hundred animal protein-coding genes (also termed targets),
generally within the 3′–UTR. A large number of target prediction algorithms have
been developed since direct experimental methods for discovering miRNA targets
are lacking.

In plants, miRNA targets are computationally identified through the extensive
complementarity between miRNAs and their corresponding targets. However, com-
putational identification of miRNA targets in mammalian miRNAs is considerably
more difficult because most animal miRNAs only partially hybridize to their mRNA
targets.

The miRNA target prediction programs typically rely on a combination of specific
base-pairing rules and conservational analysis to score possible 3′–UTR recognition
sites and enumerate putative gene targets. Predictions based solely on base-pairing
rules yield a large number of false-positive hits. The number of false-positive hits,
as estimated by random shuffling of miRNA sequences, can be greatly reduced,
however, by limiting hits to only those conserved in other organisms [40, 41]. By
systematically varying selected miRNA sequences and testing for their ability to
repress a given target, several rules have been established for miRNA:target bind-
ing [42–44]. Usually, only the 3′–UTR of the mRNA is considered and some-
times it is possible to find more than one target site prediction for the same
miRNA.

The miRNA target prediction tools have been applied in a variety of organisms
with two primary aims. The first is to allow researchers to narrow down the list of
potential gene targets for experimental confirmation and validation when searching
for a particular miRNA target. The second is to predict the number of genes regulated
by miRNAs and various global trends in miRNA regulation.

As these algorithms predict between 10 and 30% of all genes that are regulated
by miRNAs [45–47] and neither available tool can comprehensively elucidate all
possible targets, suggest was for handling a variety of tools [38, 48] together were
made.

Anyway, the most important goal is to ensure the selectivity and sensibility of a
specific miRNA target prediction software. To this aim, we describe the optimization
process we applied to a miRanda [49] tool that nowadays is the most popular miRNA
target prediction method. Both the miRanda and our method will be described in
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the following sections. Here, we report the principal characteristics of other diffused
miRNA target programs:

� miTarget [50], based on a support vector machine (SVM) classifier [39], which
uses features (e.g., the thermodynamic free energy of binding between the
miRNA and possible target site), base complementarity at specific positions,
and structural features (e.g., mismatches and bulges as input). This approach is
limited, however, by the lack of availability of experimentally validated targets
for classifier training.

� PicTar [51] first looks for perfect seed binding of seven nucleotides in the 5′ end
starting at either the first or second position. The free energy of miRNA:target
binding is then computed for seeds with imperfect matches. To delineate a list
of predicted target sites, energy thresholds are imposed and then a maximum
likelihood score is computed based on conservation across multiple organisms.

� PITA [52] incorporates the role of target-site accessibility, as determined by
base-pairing interactions within the mRNA, in miRNA target recognition.

� RNA22 [53] finds putative miRNA binding sites in the sequence of interest, and
then identifies the targeting miRNA.

� RNAhybrid [54] finds the minimum free energy hybridization of a long and a
short RNA.

� TargetScan [41] computes seed-binding sites based on perfect complementarity
of a seven nucleotide region conserved across five organisms (chicken, mouse,
chimp, human, and dog) between bases 2–8 on the 5′ end of the miRNA.

� MicroTar evaluates miRNA–target complementarity and thermodynamic
data [55].

� DIANA-microT [44], variant of miRanda, uses a modified initial base-pairing
rule that focuses on the sizes of allowable bulges in initial seeds.

5.4 miRanda

In 2003, (available at http://www.microRNA.org/microRNA/home.do) Enright et al.
[49] proposed miRanda that nowadays is the most popular miRNA target prediction
method. The miRanda [40,49] splits the target gene prediction task into three distinct
steps carried out in sequence: (1) homology evaluation; (2) free energy computation;
(3) evolutionary conservation computation. In the following description of miRanda,
we will present the values of parameters used in the last release of the package (Sept.
2008) (available at http://cbio.mskcc.org/miRanda-sept2008.tar.gz).

5.4.1 Homology Evaluation

The first step in miRanda is based on sequence matching: miRNA and 3′–UTR
miRNA sequences are aligned in order to find sites with a certain level of
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TABLE 5.1 Values of Parameters Used by miRandaa

Parameters Notation miRanda Proposed

A:U and G:C AU 5 1.5
G:U GU 1 1.5
Mismatch M −3 −1.75
Gap opening GO −9 −6.5
Gap extension GE −4 −2.25
Scale factor SF 4 3
Temperature (◦C) T 30 37
Homology score threshold HT 140 32.92
Free energy threshold (kcal mol−1) �F −7 −5.25

a Release of September 2008, and those obtained for the proposed method after GA training.

complementarity, to assess if there are any potential binding sites. Sequence alignment
is carried out using a slightly modified version of the Smith–Waterman algorithm [56],
a dynamic-programming based technique.

The Smith–Waterman algorithm is usually used to compute subsequence align-
ment based on matching nucleotides. However, miRanda uses it to compute alignment
based on complementarity rather than match: the score matrix assigns positive scores
to complementary nucleotides (AU) and G=U “wobble” pairs (GU), which are im-
portant for the accurate detection of RNA:RNA duplexes [57], and negative scores
(M) to all other base pairs, as reported in Table 5.1; penalties are also applied for gap
opening (GO) and extension (GE).

In addition, following observation of known target sites, the algorithm applies a
scaling factor (SF) to the first 11 positions of the miRNA, to reflect 5′–3′ asymmetry,
and some empirical rules: (a) no mismatches are accepted at position 3–12; (b) at
least one mismatch should be present between positions 9 and L-5 (where L is total
alignment length); and (c) fewer than two mismatches can be present in the last five
positions of alignment. A homology threshold (HT) parameter is defined as the score
for a perfect 7 nt match in the 3′–UTR side of the miRNA:

HT = 7 × SF × AU (5.1)

The algorithm computes various nonoverlapping alignments and only those align-
ments whose score exceeds HT are considered potential binding sites and passed to
the subsequent processing step, that is, the free energy computation, as free energy
computation is a very demanding task in term of computational complexity.

5.4.2 Free Energy Computation

The second step of the miRanda method is computation of the free energy (�G),
carried out using the RNA folding routine RNAfold included in the Vienna RNA
secondary structure library (RNAlib) (available at http://www.tbi.univie.ac.at/RNA/)
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[57]. This routine computes the secondary structure and the free energy of a single
RNA sequence folding. To obtain the co-folding of miRNA and the 3′–UTR of miRNA
sequences, the two sequences are joined in a single sequence with an artificial, linker
sequence containing 5 ’X’ that cannot base pair. Again only hybridization sites whose
free energy is under a given threshold (�F) are considered valid.

5.4.3 Evolutionary Conservation Computation

The third step of miRanda method is the computation of the evolutionary con-
servation. This is a third filter applied to binding sites that passed the previ-
ous two filtering stages. In order to reduce false positives, only predicted target
sites that are conserved among different species are considered valid. The evo-
lutionary conservation computation is carried out using PhastCons (available at
http://compgen.bscb.cornell.edu/phast) [58, 59] that is a software tool based on a
phylogenetic hidden Markov model (phylo-HMM) able to estimate the degree of
sequence conservation starting from a multialignment of different sequences. Phast-
Cons is not integrated in the miRanda code, so this computation is carried out after
the execution of the miRanda program itself.

5.5 PROPOSED METHOD

Table 5.1 shows the parameters used in the latest release of miRanda (Sept. 2008): the
rewards and the penalties for match and mismatch, the temperature for free energy
estimation, and the thresholds on homology and free energy. All these parameters
have been manually optimized in order to reduce the false positives and negatives
detection of target genes according to biological knowledge available in 2003–2004,
when the method was presented [40, 49], and then updated in the same way in the
following years. Moreover, as already reported, the usage of the RNAfold function to
estimate the free energy of the hybridization is tricky because this routine is optimized
to compute the secondary structure folding for a single RNA sequence, and cofolding
of the miRNA and miRNA sequence is obtained using an artificial linking sequence.

This chapter presents a complete rewriting and rebuilding of miRanda, providing
some improvements and updates to the original program. Our work is aimed at
obtaining a computational prediction of target sites with higher selectivity to be used
for guiding the experimental validation in a more focused direction. To this aim,
we exploit the updated knowledge on biologically validated miRNA gene targets
available in the Mirecords website, using the information related to genes and miRNA
involved in human PC only, as reported in the recent literature.

For free energy calculation, instead of RNAfold, we use the RNAcofold routine
recently introduced in the Vienna RNA library [60]. The RNAcofold is specifically
intended to compute the cofolding of two The RNA sequences. The RNAcofold
works much like the RNAfold, but allows us to specify two RNA sequences that are
then allowed to form a dimer structure. The RNAcofold can compute minimum free
energy structures, as well as partition function and base-pairing probability matrix.
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Since dimer formation is concentration dependent, RNAcofold can be used to compute
equilibrium concentrations for all five monomer and (homo/hetero)-dimer species,
given input concentrations for the monomers. Using this routine, we can obtain a
reliable estimation of free energy, without using the trick related to the usage of the
RNAfold routine.

Moreover, in our approach we do not include the third step of miRanda evaluating
the evolutionary conservation, because while conservation has been a primary aspect
used to filter hits in most target prediction algorithms, not all target sites are necessarily
conserved [20]. See the case of target human genes for specific miRNAs. Note that
other newly developed programs use machine learning approaches instead of reliance
on conservation [50,55,61], even if the lack of availability of experimentally validated
targets for classifier training limits the validity of their results.

In miRanda, the tuning of parameters involved in computational prediction of tar-
get sites is done manually on the basis of recent scientific literature. In our case, we
studied a machine learning approach exploiting the Mirecords website. As Mirecords
website and other miRNA target genes repositories report only (few) positive ex-
amples (i.e., biologically validated miRNA gene targets) and an even more limited
number of miRNAs known to not interact with a target gene (i.e., true negatives), we
decided not to apply machine learning-based methods, like neural networks or support
vector machines [39]. We approached this one-class prediction problem by imple-
menting a quick automatic parameter tuning technique based on a genetic algorithm,
shown in Section 5.6.

5.6 AUTOMATIC PARAMETER TUNING

The one-class prediction approach we have implemented is based on the following
assumption: Given the set U of all genes taken into account, an optimal tuning of
parameters should allow us to improve the match between the set S of genes selected
as predicted targets and the set V of biologically validated target genes, as reported
in Mirecords (see Fig. 5.1).

S

U

V

FIGURE 5.1 Here U is the set of all genes taken into account, S is the set of genes selected
as predicted targets, and V is the set of biologically validated target genes.
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Let us introduce the following notations: n̂ ≡ |S|, nv ≡ |V |, and n̂v ≡ |S ∩ V |,
where |X | is the cardinality (size) of set X . In our approach, more emphasis has
been put on increasing the size n̂v of the intersection of S and V (lowering the false
negative rate) than on decreasing the size n̂ − n̂v of their difference S \ V , since the
goal is not to miss any of the biologically validated genes. Indeed, predicting some
genes that are not validated is a desirable behavior, because these can be submitted
for further lab testing, and hopefully could lead to discovery of new, experimentally
validated target sites. We can express this goal as the maximization of

D ≡ n̂v

nv
(5.2)

subject to a penalty if n̂ > n̂v , that can be expressed by a Fermi’s sigmoid function:

D1 ≡ n̂v

nv

1

1 + e−( n̂
n̂v

−µ)/s
µ, s ∈ � (5.3)

To this aim, we used a genetic algorithm (GA) [7, 62], even if other global search
techniques (e.g., simulated annealing [63], particle swarm optimization [64], or har-
mony [25]) could be employed. Genetic algorithms are global search heuristics to find
exact or approximate solutions to minimization or maximization problems, and are
based on techniques inspired by evolutionary biology (e.g., selection, crossover, and
mutation). Genetic algorithms are implemented as a computer simulation in which a
population of abstract representations (chromosomes or genotypes) of candidate so-
lutions (individuals or phenotypes) to an optimization problem evolves toward better
solutions. Traditionally, solutions are represented as binary strings (sequences of 0s
and 1s), but other encodings are also possible. The evolution usually starts from a
population of randomly generated individuals and happens in generations. In each
generation, the fitness of every individual in the population is evaluated, multiple
individuals are randomly selected from the current population (on the basis of their
fitness), and recombined and mutated to form a new population. The new population
is then used in the next iteration of the algorithm. The GA terminates when either a
maximum number of generations has been produced, or a satisfactory fitness level
has been reached for the population.

5.7 EXPERIMENTAL ANALYSIS

5.7.1 Data Set Considered

Candidate target genes have been selected from among those that are involved in
pathways related to PC. These targets were obtained from different sources. The first
source is [65], where three subtypes of PC are identified at the molecular level and a
notable clinical relevance of the subtypes is observed. This study includes a selection
of the genes found to be the most discriminative between one subtype and the other
two. Another source is [14], where the specific role of two, closely related miRNAs
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TABLE 5.2 GA—Genotype/Phenotype

Parameters Notation Bits Interval

A:U and G:C AU 5 [1,70.75]
G:U GU 5 [−3, 4.75]
Mismatch M 5 [−8,−0.75]
Gap opening GO 5 [−12,−4.75]
Gap extension GE 5 [−8,−0.25]
Homology score threshold variation HV 8 [−0.32, 0.32]
Free energy threshold (kcal mol−1) �F 8 [−64,0]
Scale factor SF 3 [2,9]

(miR-15a and miR-16-1) have been experimentally observed in PC. These studies
suggest the use of a set of genes from which we have selected an overall data set of
50. We focused on miR-1, a miRNA proven to be involved in mechanisms related to
PC [13,15]. Eight of the genes in the data set are reported as a biologically validated
target for miR-1 on the Mirecords website. The available data set of candidate target
genes was randomly split into two data sets of 25 each, labeled as A and B, containing
four validated targets each. Training was performed with miR-1 on data set B, and
the resulting parameters have been used for testing on data set A by cross-validation.

5.7.2 Search Methodology

The tuning of the parameters has been performed by using the GALOPPS 3.2.4 (avail-
able at http://garage.cse.msu.edu/software/galopps/) package [66] by Goodman that
extends and optimizes the implementation of the simple genetic algorithm (SGA) [7].

We used D1, Eq. (5.3), as the fitness function. In the third column, Table 5.2 shows
the size in bits of the fields of the chromosome assigned to the different parameters
of our method (referred to the “genotype”), and in the fourth column the range of the
intervals assigned to them (in terms of the “phenotype”, i.e., the actual values). All
integer values in the genotype, except for the scale factor, are treated as fixed-point
numbers with 2 bits for the fractional part. The homology threshold variation (HV)
parameter is defined as a percentage variation from the theoretical threshold resulting
from Eq. (5.1) and the parameters from the phenotype. The GA parameters have been
selected after many attempts and are presented in Table 5.3.

The training task on training set B was repeated several times with different
random seeds. In Section 5.2.3, we report the result with the best performances on
the test set A.

5.7.3 Results

On a single core Intel laptop with 1600 MHz clock and Linux operating system, the
GA finds an optimal solution in 10 min, after 14 generations (iterations) with n̂ = 4
and n̂v = 3. The values of tuned parameters are shown in column three of Table 5.1.

On the left of Table 5.4, we report the results obtained by the training on data set B
and on the test set A. Column three shows the candidate target genes found, column
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TABLE 5.3 Selected Parameters for GA Training

Parameter Value

s Eq. (5.3) −1
µ Eq. (5.3) 0.69
Probability of mutation 0.01
Crossover probability 0.7
Crossover type Simple
Selection method Tournament on five randomly

selected individuals
Number of individuals in a generation 50
Maximum number of generations 100

TABLE 5.4 Results on hsa-miR-1a

Proposed method on training set (R = 0.60)

Rank Data Set Gene Free Energy Validated

1 B CSPG2 −15.1
2 B FBLN2 −12.6 v
3 B EML4 −11.2 v
4 B MMD −10.3 v

miRanda on training set (R = 0.28)

Rank Data Set Gene Free Energy Validated

1 B CSPG2 −16.59
2 B BCL2 −16.53
3 B PLS3 −13.73
4 B EML4 −12.57 v
5 B MMD −12.54 v
6 B FBLN2 −11.17 v

Proposed method on test set (R = 0.83)

Rank Data Set Gene Free Energy Validated

1 A NETO2 −18.2 v
2 A ARF3 −12.3 v
3 A COL1A1 −12.2

miRanda on test set (R = 0.5)

Rank Data Set Gene Free Energy Validated

1 A NETO2 −19.49 v
2 A CCND1 −15.71
3 A HDAC9 −12.32
4 A ARF3 −11.59 v

a Free energies are in kcal/mol−1.
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four shows their free energy, and the last column indicates if the gene is reported as
biologically validated on the Mirecords website.

On the right side of the same table, we report the results obtained with miRanda
using its original parameters [49] presented in column two of Table 5.1.

Note that the 3′–UTR region of a miRNA can contain multiple target sites for an
assigned miRNA. In the shown results site, multiplicity is not taken into account.

As in miRanda and the proposed method, the free energies are computed ac-
cording to two different library routines (RNAfold vs RNAcofold), and we cannot
compare their absolute values. Therefore, we rank the target genes according to their
free energy values, so that we can compare ranks instead of actual values. Note that
the validated targets with the proposed method are consistently at the highest posi-
tions of the list (where the most negative value is the best); this does not hold for
miRanda.

To objectively assess this fact, we compare the results obtained by the two methods
by using the following performance index ranging in the interval [0, 1]:

R ≡ 2

n̂(n̂ + 1)

∑
i∈S

v(i) · (n̂ + 1 − r (i))

= 2

n̂

(
n̂v − 1

n̂ + 1

∑
i∈S

v(i) · (r (i))

)
(5.4)

where: r (i) is the rank of the target gene in the list of results, ordered by the value of
free energy; v(i) is 1 if the target is validated in miRecords, 0 otherwise. In both data
sets, the performance index R of the proposed method is higher than that obtained
using miRanda, showing that our method is more selective.

Note that, given the lack of validated miRNA targets (true positives) and validated
nontargets (true negatives) in Mirecords and in the other the available databases, it is
not possible to perform a depth comparison of the two target prediction algorithms
on the basis of more standard metrics for sensitivity and selectivity.

5.8 DISCUSSION AND CONCLUSIONS

As available methods for miRNA discovering miRNA targets are not high through-
put, and in general are not completely satisfactory, a large number of target predic-
tion algorithms have been developed, but they show low sensibility and selectivity.
Consequently, there are several target genes reported as experimentally validated
in databases like miRBase [31] and miRNAMAP [35], Mirecords, Argonaute [36],
TarBase [37, 38], that are not predicted by any method or for which the methods
seldom agree. Moreover, as the experimental approaches to miRNA targets valida-
tion are unable to detect the specific miRNA target site, even when the same target
gene is experimentally validated by the biological procedure and predicted by a
computational method, this concordance cannot be considered a final validation.
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This chapter presented a complete rewriting and rebuilding of the miRanda
tool [40, 49] aimed at obtaining a more reliable computational prediction of tar-
get sites. Our approach makes use of the updated knowledge about biologically
validated miRNA gene targets, especially those related to PC, which is available in
the Mirecords website for tuning the parameters using a GA. We apply the RNA-
cofold routine for free energy calculation recently introduced in the Vienna RNA
library [60], and we do not include the third step of miRanda evaluating the evolu-
tionary conservation, since in the case of target human genes for specific miRNAs
not all target sites are necessarily conserved [20].

The proposed approach shows a higher selectivity than miRanda and can be
considered a good candidate for guiding the experimental validation in a well-focused
direction. Moreover, we achieve fast parameter tuning instead of the long manual
process needed for other tools, (e.g., miRanda), thanks to the application of the GA.
Moreover, as the base of known miRNAs grows with new experimentally validated
target sites, the procedure presented in this chapter can be used to refine the method
to reflect the increased knowledge, in an incremental way.

Note that other criteria than those considered may be important in identifying
target sites [67]. Future studies involving other mechanisms may lead to even better
reliability of the computational methods with respect to biological evidence.

In the presented work, we used the biological knowledge available on PC. Using
the different biological knowledge available, one can extend this approach to the
discovering of miRNA target genes for different pathologies.

As larger numbers of validated miRNA targets (true positives) and validated
nontargets (true negatives) will become available, methods like the one presented,
but developed on a larger scale (more candidate genes, more miRNAs), may lead
to even better results. Moreover, it will be possible to develop accurate miRNA
target prediction algorithms, using, for example, neural networks or support vector
machines [39]. Moreover, it will be possible to perform depth comparisons of target
prediction algorithms based on metrics for sensitivity and selectivity.
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STRUCTURAL SEARCH IN RNA
MOTIF DATABASES

Dongrong Wen and Jason T. L. Wang

6.1 INTRODUCTION

Ribonucleic acid (RNA) is transcribed from deoxyribonucleic acid (DNA) and plays
a key role in the synthesis of proteins [1]. An RNA structural motif is a substructure
of an RNA molecule that has a significant biological function. Well-known RNA
structural motifs include the iron response element (IRE) and histone 3′-UTR stem-
loop (HSL3) [2, 3]. As increasingly more RNA structural motifs are discovered, it
becomes crucial to have databases holding the motifs that can be accessed and used by
researchers. For example, Rfam [4] and RNA STRAND [5] are two such databases.

Rfam is a well-annotated, open access database containing information on noncod-
ing RNA (ncRNA) families as well as other RNA structural motifs. The latest version
of Rfam 9.0, comprising 603 families in total, is available at http://rfam.sanger.ac.uk/.
In Rfam, each ncRNA family is represented by two structure-annotated multiple se-
quence alignments (MSAs). One MSA is called the seed alignment and the other
is called the full alignment. Each multiple sequence alignment is associated with
a consensus secondary structure, represented in Stockholm format [6, 7]. The seed
alignment consists of functionally related RNA sequences obtained from the literature
or wet lab experiments. The seed alignment is used to build a covariance model used
by the Infernal program [6] to collect additional functionally related RNA sequences.
These additional RNA sequences obtained from the Infernal program are added to
the full alignment.

Rfam is equipped with several different search methods. By entering a query
sequence, the user can search the covariance models representing the 603 noncoding
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RNA families in Rfam. Since the computational cost involved with covariance models
is high, Rfam employs BLAST as a filter to speed up searches. When a search is
completed, the search result shows the RNA families that have a high degree of
similarity to the input query sequence. The user can view and browse the RNA families
displayed in the search result. In addition to the search-by-sequence method, Rfam
allows the user to search the ncRNA families stored in its database via keyword and
EMBL ID or accession number. The entire Rfam database can also be downloaded
in plain text format from the Rfam website and searched offline locally using the
Infernal program [6] on the user’s own computer.

While Rfam provides keyword- and sequence-based search methods, it lacks
structure-based search methods. Many functionally related ncRNAs differ at the
sequence level but are similar in their secondary structures. Thus, it is desirable to have
structure-based search engines on RNA motif databases. This chapter presents two
structural search engines developed in our lab. The first search engine is installed on
a database, called RmotifDB [8], which contains secondary structures of the ncRNA
sequences in Rfam. The second search engine is installed on a block database,
which contains the 603 seed alignments, also called blocks, in Rfam. This search
engine employs a novel tool, called BlockMatch, for comparing multiple sequence
alignments. We report some experimental results to demonstrate the effectiveness of
the BlockMatch tool.

6.2 THE SEARCH ENGINE ON RMOTIFDB

This section presents the structure-based search engine on RmotifDB. This search en-
gine employs our previously developed program, called RSmatch [9], for comparing
two RNA sequences taking into account their secondary structures. In what follows,
we first review the RSmatch tool and then describe RmotifDB and its structural search
engine.

6.2.1 RSmatch

Functional RNA motifs may be detected by aligning the secondary structures of RNA
sequences on which the motifs exist. Many software tools have been developed to
find the RNA motifs by aligning the RNA secondary structures. However, existing
software tools suffer from some drawbacks. They either require a large number of
prealigned RNA sequences or have high time complexities. Therefore, these tools
have difficulty in processing RNAs without prealigned sequences or in handling large
RNA structure databases.

RSmatch is a software tool designed for comparing RNA secondary structures and
for motif detection. The RSmatch algorithm is fast; its time complexity is O(mn),
where m is the length of a query RNA structure and n is the length of a subject RNA
structure. The algorithm decomposes an RNA secondary structure into a collection
of structure components. To capture the structural particularities of RNA, RSmatch
uses a tree model to organize these structure components. The tool compares a pair
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of RNA secondary structures using two separate scoring matrices in performing local
and global alignments. One scoring matrix is used for single-stranded regions and the
other is used for double-stranded regions. When searching an RNA structure database,
RSmatch can detect similar RNA substructures, and perform an iterative database
search and multiple structure alignment. These operations enable the identification
and discovery of functional RNA structural motifs.

By conducting experiments with instances of known RNA structural motifs, in-
cluding simple stem-loops and complex structures with junctions, we have demon-
strated that in detecting the RNA structural motifs, the accuracy of RSmatch is
high compared with other software tools [9]. RSmatch is especially useful to sci-
entists and researchers interested in aligning RNA structural motifs obtained from
RNA folding programs or wet lab experiments where the size of the RNA structure
data set is large. The software is available from http://datalab.njit.edu/biodata/rna/
RSmatch/software.htm. Figure 6.1 presents a screenshot illustrating the execution of
RSmatch’s database search function in the Unix command line environment.

6.2.2 The RmotifDB System

RSmatch offers an efficient algorithm for aligning two RNA structures, along with
a basic RNA database search capability, but it must be run offline on a user’s local

FIGURE 6.1 A screenshot showing the execution of RSmatch in Unix.
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machine, which is a major drawback. Even RADAR (http://datalab.njit.edu/biodata/
rna/RSmatch/server.htm) [10, 11], a descendant of RSmatch with an excellent web
interface for aligning two RNA structures, does not contain a search method for
a large database. In Section 6.2.1, we observed that there are provisions for se-
quence and keyword searching in the Rfam database, but not structure searching.
To intensively study RNA structural functions or motifs, a structure-based search
engine for RNA motif databases is needed. With this motivation, we have built
RmotifDB, which is equipped with a structural search engine and is available at
http://datalab.njit.edu/bioinfo/singleseq index.html.

To build the database for RmotifDB, the plain text seed alignment file with 603
ncRNA families is downloaded from the Rfam 9.0 website. A total of 18,233 ncRNA
sequences are extracted from this seed alignment file. Each of these sequences is
then folded using the Vienna RNA package’s RNAfold [12] to obtain its secondary
structure. Finally, the entire 18,233 ncRNA sequences along with their secondary
structures are stored in a single plain text file, which constitutes the major database
file for RmotifDB. The RSmatch version 2.0 is used by the structural search engine
of RmotifDB. The RSmatch 2.0 software is downloaded from the RADAR website.
The implementation uses a perl-cgi approach to integrate the system’s web interface
with RSmatch. This allows the use of the structural search engine over the web via a
browser.

RmotifDB supports searching for “nearest neighbors” of RNA structural motifs
from its database. Nearest neighbors of an RNA structural motif are other motifs with
a high degree of similarity to the given motif. The two major search modes provided
by RmotifDB are search-by-sequence and search-by-structure. The user can submit
a query, which is either an RNA sequence or an RNA secondary structure, through
RmotifDBs web interface. If the RNA sequence is given, it must be in FASTA format.
This sequence is then folded by RNAfold and used to compare with the secondary
structures in the database file of RmotifDB. If the RNA structure is given, it must
be in the Vienna style Dot Bracket format. The user can either paste the input query
into a text box or upload the query from a plain text file. Additional options include
variations on the alignment type, the scoring matrix, and the gap penalty. Local or
global alignment can be selected as the alignment type. Currently, the only scoring
matrix used is RSmatch’s default matrix, but additional options for scoring matrices
can be accommodated. The default gap penalty is -2, which can be changed based on
the user’s preference. The user’s e-mail address is required. Figure 6.2 illustrates the
web interface for the search-by-structure method in RmotifDB.

On completion of a search, an e-mail notification is sent to the user with a link to
the result, in which the subject RNA structures are ranked based on their similarity
to the query with the most similar structure being ranked highest. Figure 6.3 shows
a search result in RmotifDB. Since the structural search engine uses RSmatch to
compare the given query sequence or structure, one by one, with the 18,233 RNA
secondary structures in Rfam (version 9.0), it may take minutes or even hours to
complete the search when the server is busy.

RmotifDB capitalizes on RSmatch and the Rfam database to build a structure-
based search engine. By providing a convenient browser-style interface, RmotifDB



FIGURE 6.2 The web interface of RmotifDBs search-by-structure method.

FIGURE 6.3 An example search result in RmotifDB.
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provides the ability to search for ncRNA structural motifs via search-by-sequence and
search-by-structure methods, benefiting researchers interested in ncRNAs functions
and structural motifs.

6.3 THE SEARCH ENGINE BASED ON BLOCKMATCH

BlockMatch is a software tool capable of aligning and comparing two RNA blocks.
An RNA block is a structure-annotated multiple RNA sequence alignment repre-
sented in Stockholm format. Examples of blocks can be found in Rfam [4], where a
seed alignment is a block, or in GLEAN-UTR DB [13], where a group of function-
ally related RNA sequences is a block. The BlockMatch web server is available at
http://datalab.njit.edu/compbio/blockmatch/.

This section presents a block database and the structural search engine on the
database. The block database contains the 603 seed alignments, also called blocks, in
Rfam. The search engine accepts a user-input query block in Stockholm format, then
uses BlockMatch to compare the query block one by one with the seed alignment of
each ncRNA family in Rfam, and finally displays the seed alignments that are most
similar to the query block. Each seed alignment is a block in Stockholm format. The
query block could represent a putative RNA structural motif, and the database search
function allows the detection of Rfam families that are closely related to the structural
motif. These Rfam families can be considered as structural neighbors of the motif.

6.3.1 Search by Block

The input interface of the structural search engine on the block database is shown
in Figure 6.4. The example query block, in Stockholm format, in the figure is called
group 3 taken from GLEAN-UTR DB, which is the Histone 3′-UTR stem–loop group
found in human messenger RNA (mRNAs). The query block can be pasted into the
text box or uploaded from a plain text file. If a file is provided, then the block in the
file is used as the query. If no file is uploaded, then the block in the text box is used
as the query. The user can change the number of hits he/she wants to display. The
default number is 5. When the search result is available, the user will be notified via
e-mail.

Figure 6.5 shows a sample result obtained from the structural search engine on the
block database. The structural search engine compares the user-input query block,
one by one, with the seed alignments in Rfam using the BlockMatch algorithm, and
finds related Rfam families whose seed alignments are most similar to the query
block with the largest alignment scores. The search result consists of a summary of
the query block including its length and size, (i.e., the number of sequences in the
multiple alignment of the query block, the date and time of query submission, and
the date and time of the completed search, shown in the top table in Figure 6.5),
followed by the Rfam families that are closely related to the query block, with the top
ranked family being the most similar to the query block (shown in the bottom table
in Fig. 6.5).
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FIGURE 6.4 The web interface of the structural search engine based on BlockMatch.

FIGURE 6.5 A sample result returned by the structural search engine based on BlockMatch.
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6.3.2 Experiments and Results

To our knowledge, the structural search engine based on BlockMatch is the first
one of its kind designed for comparing structure-annotated multiple RNA sequence
alignments. We have compared this search engine with the RNA structure alignment
tool RADAR [10] described in Section 6.3.1. Given a query RNA secondary structure
and a database of subject RNA secondary structures, RADAR is able to find the subject
structures similar to the query structure.

We conducted a series of experiments to evaluate the relative performance of
BlockMatch and RADAR. We first downloaded two blocks from the GLEAN-
UTR database [13] accessible from http://datalab.njit.edu/biodata/GLEAN-UTR-
DB/. This database contains putative structural motifs in human and mouse UTRs.
The first block we downloaded is called group 3 in the database, which is the Hi-
stone 3′-UTR stem-loop (HSL3) group in human homolog sequences. The second
block we downloaded is called group 9 in the database, which is the Iron response
element (IRE) group in human homolog sequences. Group 3 contains 6 HSL3 se-
quences, denoted by HSL3i , 1 ≤ i ≤ 6. Group 9 contains 6 IRE sequences, denoted
by IREi , 1 ≤ i ≤ 6. Table 6.1 lists the two blocks and details of the sequences in each
block. Each block contains a multiple alignment of six sequences together with the
consensus secondary structure of the sequences.

In the first experiment, we used the Vienna RNA package’s RNAfold [12,14] to fold
each sequence in the two blocks in Table 6.1 to obtain 12 secondary structures, and to
fold the sequences in Rfam release 9.0 into secondary structures. There were 18,233
RNA sequences grouped into 603 blocks (seed alignments) in the Rfam database,
among which there were 64 HSL3 sequences and 39 IRE sequences; hence we
obtained 18,233 secondary structures in total for the Rfam database. Each sequence
together with its secondary structure in Table 6.1 was used as a query to search
the Rfam database by comparing the query with the secondary structures in Rfam, one
by one, using RADAR. In the second experiment, we compared each query sequence
(structure) in Table 6.1 with the seed alignments or blocks of the 603 families in Rfam
using BlockMatch. (In an extreme case, BlockMatch can take a single RNA secondary
structure and compare it with a block.) In the third experiment, we compared each
block in Table 6.1 with the 18,233 secondary structures in Rfam using BlockMatch.
Finally, in the fourth experiment, we compared each block in Table 6.1 with the 603
seed alignments (blocks) in the Rfam database.

The performance measures used to evaluate the performance of the tools are
sensitivity, Sn, and specificity, Sp, where

Sn = TP

TP + FN
(6.1)

Sp = TN

TN + FP
(6.2)

where TP is the number of true positives, FN is the number of false negatives, TN is
the number of true negatives, and FP is the number of false positives. There were 64
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TABLE 6.1 The HSL3 and IRE Blocks Used in Our Experimental Study

Query ID Block

HSL31 NM 005321:721-785 AACC-C-AAAGGCTCTTTTCAGAGCCACCCA
Homo sapiens histone cluster 1, H1e (HIST1H1E), mRNA

HSL32 NM 021062:401-431 AACC-C-AAAGGCTCTTTTCAGAGCCACCTA
Homo sapiens histone cluster 1, H2bb (HIST1H2BB), mRNA

HSL33 NM 005319:704-732 AACC-CAAAAGGCTCTTTTCAGAGCCACC-A
Homo sapiens histone cluster 1, H1c (HIST1H1C), mRNA

HSL34 NM 003526:412-438 --CC-C-AAAGGCTCTTTTAAGAGCCACCCA
Homo sapiens histone cluster 1, H2bc (HIST1H2BC), mRNA

HSL35 NM 002105:545-578 A-CCAC-AAAGGCCCTTTTAAGGGCCACC-A
Homo sapiens H2A histone family, member X

HSL36 NM 003516:510-534 A------AAAGGCTCTTTTCAGAGCCACCCA
Homo sapiens histone cluster 2, H2aa3 (HIST2H2AA3),
mRNA
#=GC SS cons ..........((((((....)))))).....

IRE1 NM 014585:197-237 AACTTCAGCTACAGTGTTAGCTAAGTT
Homo sapiens solute carrier family 40 (iron-regulated
transporter), member 1 (SLC40A1), mRNA

IRE2 NM 003234:3884-3912 ATTATCGGGAGCAGTGTCTTCCATAAT
Homo sapiens transferrin receptor (p90, CD71) (TFRC)

IRE3 NM 003234:3481-3509 ATTATCGGAAGCAGTGCCTTCCATAAT
Homo sapiens transferrin receptor (p90, CD71) (TFRC)

IRE4 NM 000032:13-36 GT--TCGTCCTCAGTGCAGGGCA--AC
Homo sapiens aminolevulinate, delta-, synthase 2
(sideroblastic/hypochromic anemia) (ALAS2), nuclear
gene encoding mitochondrial protein, mRNA

IRE5 NM 000146:20-40 TG---CTTCAACAGTGTTTGGA---CG
Homo sapiens ferritin, light polypeptide (FTL), mRNA

IRE6 NM 003234:3430-3460 TTTATCAGTGACAGAGTTCACTATAAA
Homo sapiens transferrin receptor (p90, CD71) (TFRC)
#=GC SS cons (((((.(((((......))))))))))

HSL3 structures and 39 IRE structures in Rfam. In experiments 1 and 3, a true positive
is an HSL3 (IRE, respectively) structure that is returned as one of the top 64 (39,
respectively) hits by the tools. A false positive is a non-HSL3 (non-IRE, respectively)
structure that is returned as one of the top 64 (39, respectively) hits. A true negative
is a non-HSL3 (non-IRE, respectively) structure that is not returned as one of the top
64 (39, respectively) hits. A false negative is an HSL3 (IRE, respectively) structure
that is not returned as one of the top 64 (39, respectively) hits.

There was a single HSL3 block (accession RF00032) and a single IRE block
(accession RF00037) among the 603 blocks in Rfam. In experiments 2 and 4, TP
equals 1 if the HSL3 (IRE, respectively) block is ranked as the top hit by BlockMatch,



128 STRUCTURAL SEARCH IN RNA MOTIF DATABASES

TABLE 6.2 Sensitivity and Specificity Values Obtained from Our Experiments

Experiment 1 (%) Experiment 2 (%) Experiment 3 (%) Experiment 4 (%)

Sn Sp Sn Sp Sn Sp Sn Sp

HSL31 98.44 99.99 100 100
HSL32 98.44 99.99 100 100
HSL33 100 100 100 100

100 100 100 100
HSL34 98.44 99.99 100 100
HSL35 98.44 99.99 100 100
HSL36 100 100 100 100

IRE1 56.41 99.91 0 99.83
IRE2 64.10 99.92 0 99.83
IRE3 48.72 99.89 0 99.83

74.36 99.95 100 100
IRE4 43.59 99.88 0 99.83
IRE5 79.49 99.96 100 100
IRE6 35.90 99.86 0 99.83

or 0 otherwise. The FP equals 1 if the HSL3 (IRE, respectively) block is not ranked
as the top hit, or 0 otherwise. The TN equals 602 if the HSL3 (IRE, respectively)
block is ranked as the top hit, or 601 otherwise. The FN equals 1 if the HSL3 (IRE,
respectively) block is not ranked as the top hit, or 0 otherwise.

Table 6.2 summarizes the experimental results. Combining all sequences into a
query block and using BlockMatch to align the query block with all the blocks in
Rfam yielded the best performance, where BlockMatch achieved a sensitivity value
of 100% and a specificity value of 100%. In this case, the tool was able to take into
account the characteristics of all sequences in the blocks while aligning them. In
experiments 2 and 3, where a sequence (structure) was aligned with a block, partial
sequence information was lost, and hence the performance of BlockMatch degraded.
In experiment 1, where a query sequence (structure) was aligned with each individual
sequence (structure) in the Rfam database, the notion of blocks was completely
missing and the RADAR tool yielded the worst performance. These experimental
results show that when blocks are available, one should use BlockMatch to do block
alignments in performing database searches, hence considering all sequences in an
entire block during the alignments, as opposed to using single sequence or structure
matching tools to align individual sequences or structures in the blocks.

Note that BlockMatch computes the alignment score of two blocks by considering
both the sequence alignment and the consensus structure in each block. We conducted
experiments to evaluate the impact of changing the sequence alignment or consensus
structure on alignment results. When the sequence alignment or the consensus struc-
ture in a block changes, so does the alignment score. The alignment score depends
on how many base pairs and single bases occur and what nucleotides are present
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in each column of the alignment. Suppose there are four sets of blocks {A1, B1},
{A2, B2}, {A3, B3}, and {A4, B4}. Here A1 and B1 have similar sequences and sim-
ilar consensus structures; A2 and B2 have similar sequences but different consensus
structures; A3 and B3 have different sequences but similar consensus structures; and
A4 and B4 have different sequences and different consensus structures. The align-
ment score between A1 and B1 is generally higher than that of A2 and B2 (A3 and
B3, respectively), which is generally higher than the alignment score between A4

and B4.

6.4 CONCLUSION

This chapter presented two structure-based search engines for RNA motif databases.
These search engines are useful to scientists and researchers who are interested in
RNA secondary structure motifs. The search engine on RmotifDB employs the effi-
cient RSmatch program to perform pairwise alignment of RNA secondary structures.
The search engine on the block database uses BlockMatch to perform pairwise align-
ment of blocks or seed alignments. Both the RNA secondary structures and seed
alignments are taken from the widely accessed Rfam database. In future work, we
plan to extend the techniques presented here to search for three-dimensional motifs
in RNA structure databases [15, 16].
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7
KERNELS ON PROTEIN STRUCTURES

Sourangshu Bhattacharya, Chiranjib Bhattacharyya,
and Nagasuma R. Chandra

7.1 INTRODUCTION

Kernel methods have emerged as one of the most powerful techniques for supervised,
as well as semisupervised learning [1], and with structured data. Kernels have been
designed on various types of structured data including sets [2–4], strings [5], probabil-
ity models [6], and so on. Protein structures are another important type of structured
data [7, 8], which can be modelled as geometric structures or pointsets [9, 10]. This
chapter concentrates on designing kernels on protein structures [7, 11].

Classification of protein structures into different structural classes is a problem
of fundamental interest in computational biology. Many hierarchical structural clas-
sification databases, describing various levels of structural similarities, have been
developed. Two of the most popular databases are structural classification of pro-
teins (SCOP) [12] a manually curated database, and class, architecture, topology
and homologous superfamilies (CATH) [13], which is a semiautomatically curated
database. Since the defining characteristics of each of these classes is not known
precisely, machine learning is the tool of choice for attempting to classify proteins
automatically. We propose to use the kernels designed here along with support vector
machines to design automatic classifiers on protein structures.

Many kernels have been designed to capture similarities between protein se-
quences. Some of the notable ones include Fisher kernels [6], kernels based on
comparison of k-mers [5], and alignment kernels [14]. However, the problem of
designing kernels on protein structures remains relatively unexplored. Some of the
initial attempts include application of graph kernels [15] and empirical kernel maps
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with existing protein structure comparison algorithms [16]. Reference [17] defines
various kernels on substructures using amino acid similarity. However, they fail to
capture structural similarity in a principled way. These kernels are used mainly for
finding structural motifs and annotating functions.

In a recent paper [18], we proposed several novel kernels on protein structures
by defining kernels on neighborhoods using ideas from convolution kernels [19].
These kernels captured the shape similarity between neighborhoods by matching
pairwise distances between the constituent atoms. This idea of using only geometric
properties to find similarity between proteins is also adopted by many protein structure
comparison algorithms [8,11]. We also generalized some of these kernels to attributed
pointsets [10], and demonstrated their application to various tasks in computer vision.

This chapter reports a detailed exploration of the idea of defining kernels on protein
structures using kernels on neighborhoods, which are specific types of substructures.
The idea of neighborhoods has been used previously to design protein structure
comparison algorithms [11], which performed competitively with the state of the art.
Kernels on neighborhoods are subdivided into two types: those using sequence or
structure information. Sequence-based kernels on neighborhoods draw ideas from
the general set kernels designed in [4] and convolution kernels [19]. Structure-based
kernels are motivated from protein structure comparison algorithms using spectral
graph matching [11,20]. We show that in a limiting case, the kernel values are related
to the similarity score given by protein structure comparison algorithms.

We also explore two different ways of combining sequence- and structure-based
kernels, weighting and convex combination, to get kernels on neighborhoods. Finally,
we explore two methods of combining the neighborhood kernels, one without using
structural alignment, and the other using structural alignment. Interestingly, even
though spectrum kernels [5] were defined using feature spaces involving k-mers, we
show that they are a special case of our kernels when using only sequence information
on sequence neighborhoods.

Extensive experimentation was done to validate the kernels developed here on
real protein structures and also to study the properties of various types of kernels.
The task chosen was that of classifying 40% sequence nonredundant SCOP [12]
superfamilies, which was also demonstrated to be very difficult and relevant. Our
kernels outperformed the state of the art protein structure comparison algorithm
combinatorial extension (CE) [21]. We also compared our kernels with spectrum
kernels [5] and experimentally validated a theoretical property of the structure-based
neighborhood kernels.

This chapter is organized as follows: Section 7.2 gives a background of kernel
methods and various kernels on structured data. Section 7.3 gives a background on
protein structures, describes the protein-structure alignment problem and develops a
neighborhood-based algorithm for protein-structure alignment, which is a simplified
version of the formulation used in [11]. Section 7.4 proposes kernels for sequence
and structure neighborhoods. Section 7.5 defines various kernels on protein structures
using the neighborhood kernels defined in Section 7.4. Section 7.6 describes the
experimental results obtained with various kernels proposed here and also compares
them to existing techniques. We conclude with remarks in Section 7.7.
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7.2 KERNELS METHODS

Kernel methods [1,22,23] is the collective name for the class of learning algorithms
that can operate using only a real valued similarity function (called kernel function)
defined for each pair of datapoints. Kernel methods have become popular over the
last decade, mainly due to their general applicability and theoretical underpinnings.

A critical step in the effectiveness of a kernel method is the design of an appropriate
kernel function. A function K : X × X → R, is called a positive semidefinite or
Mercer kernel if it satisfies the following properties:

Symmetry. K (x, y) = K (y, x), ∀x, y ∈ X .

Positive Norm. K(x, x) ≥ 0, and 0 only if x = 0 (a fixed element of X ).

Positive Semidefiniteness.
∑

i, j ci c j K (xi , x j ) ≥ 0∀ci , c j ∈ R and xi , x j ∈ X .

A positive semidefinite kernel K maps points x, y ∈ X to a reproducing kernel Hilbert
space (RKHS) H. Let ψx , ψy ∈ H be the corresponding points, the inner product is
given by:

〈ψx , ψy〉 = K (x, y)

Also, for a finite dataset D = (x1, . . . , xn), the n × n kernel matrix Ki j = K (xi , x j ),
constructed from a positive semidefinite kernel K , can decomposed using eigenvalue
decomposition as:

K =
n∑

k=1

λkηkη
T
k

Thus, the feature map ψx can be explicitly constructed as

ψx = (
√

λ1η1(x), . . . ,
√

λnηn(x))T

This effectively embeds the points into a vector space, thus allowing all the vector
space-based learning techniques to be applied to points from the arbitrary set X .
Some of the common methods to be kernelized are support vector machines, principal
component analysis, Gaussian process, and so on (see [1] for details).

7.2.1 Kernels on Structured Data

It is clear from the above discussion that definition of the kernel function is the key
challenge in designing a kernel method. This section enumerates some of the well-
known kernels that are related to the work described here. We begin by describing
operations under which the class of positive semidefinite kernels is closed.

If K is a positive semidefinite (PSD) kernel, so is αK for α > 0.

If K1 and K2 are PSD kernels, so are K1 + K2 and K1 K2.
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If Kn, n = 1, 2, . . . are PSD kernels and K = limn→∞ Kn exists, K is a PSD
kernel.

If K1 is a PSD kernel on X × X and K2 is a PSD kernel on Z × Z , then the
tensor product K1 ⊗ K2 and the direct sum K1 ⊕ K2 are PSD kernels on
(X × Z) × (X × Z).

For proofs of these closure properties, please see [1,22,23]. From the above properties,
it can also be shown that K ′(x, y) = ∑∞

i=1 ai (K (x, y))i is a PSD kernel if K is a PSD
kernel.

Intuitively, kernels between arbitrary objects can be thought of as similarity mea-
sures. To see this, recall that the inner product 〈ψ(x), ψ(y)〉 = K (x, y) defined by
kernel function K induces a norm ‖ψ(x)‖2 = 〈ψ(x), ψ(x)〉 in the RKHS H. This
norm induces a natural distance metric, defined as d(x, y) = ‖ψ(x) − ψ(y)‖. It is
easy to see that

(d(x, y))2 = K (x, x) + K (y, y) − 2K (x, y)

Thus, d(x, y) is a decreasing function of K (x, y). So, K (x, y) can be thought of as a
similarity function.

Various kernels between vectors have been used in the literature. Most simple of
them is the dot product or linear kernel, given by

Kdot(x, y) = xT y

This kernel uses an identity feature map. Another popularly used kernel between
vectors is the Gaussian kernel:

KGaussian(x, y) = e
‖x−y‖2

σ2

It is useful when one simply wants the kernel to be a decreasing function of the
Euclidean distance between the vectors.

One of the most general types of kernels on structured data are the convolu-
tion kernels [19]. Convolution kernels provide a method of defining PSD kernel on
composite objects using kernels on parts. Let X be a set of composite objects con-
sisting of parts from X1, . . . ,Xm . Let R be a relation over X1 × · · · × Xm × X ,
such that R(x1, . . . , xm, x) is true if x is composed of x1, . . . , xm . Also, let
R−1(x) = {(x1, . . . , xm) ∈ X1 × · · · × Xm |R(x1, . . . , xm, x) = true} and Ki be ker-
nels on Xi × Xi . The convolution kernel K on X × X is defined as

K (x, y) =
∑

(x1,...,xm )∈R−1(x),(y1,...,ym )∈R−1(y)

m∏
i=1

Ki (xi , yi ) (7.1)

It can be shown that if K1, . . . , Km are PSD, then so is K . Convolution kernels have
been used to iteratively define kernels on strings [14, 19], and applied to processing
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of biological sequences. They have also been used in natural language processing for
defining kernels on parse trees [24]. We use convolution kernels to define kernels on
neighborhoods.

Kernels on sets of vectors are the next most general types of kernels and have
also been useful in designing kernels for protein structures. It was shown in [25] that
given two d × c matrices X and Y :

Ktr(X, Y ) = tr(X T Y ) and Kdet(X, Y ) = det(X T Y )

are PSD kernels. Both [2] and [25] define kernels on the subspaces spanned by set
of vectors. They show that if UX and UY are orthogonal matrices spanning column
spaces of X and Y , then the product of cosines of principal angles between the column
spaces is given by

K (X, Y ) =
k∏

i=1

cos(ψi ) = det(U T
X UY )

where ψi are the principal angles. This kernel was applied to problems in computer
vision [2] (e.g., detection of abnormal motion trajectories and face recognition).
These kernels are further generalized in [25]. Shashua et al. also define a general
class of kernels on matrices [4]. They show that given two matrices An×k and Bn×q :

K (A, B) = tr (
∑

r

(AT Ĝr B)F̂r )

is a PSD kernel where, zero extensions of Ĝr and F̂r to m × m, m = max{n, k, q},
Fr and Gr , are such that

∑
r Fr ⊗ Gr is PSD.

Strings are a type of structured data that find wide applicability in various fields,
including biological sequence analysis, text mining, and so on. While the kernels
described above can and have been used for string processing, rational kernels,
defined in [26] are a general class of kernels defined specifically for strings. Cortes
et al. [26] give a general definition of rational kernels and show various theoretical
results on conditions for rational kernels to be PSD. A popular special case of these
kernels are the k-mer based kernels defined in [5]. Let � be the alphabet from
which the string is generated, the feature map, ψ , for the kernels are defined by |�|k
dimensional vector indexed by all k-mers. The value of ψi (x) could, for example,
be the number of occurrences of the i th k-mer in string x . The spectrum kernel is
defined as

K (x, x ′) =
|�|k∑
i=1

ψi (x)ψi (x
′)

By using ψi (x) to be the number of k-mers in x with at most m mismatches from the
i th k-mer, we get the mismatch kernel [5]. Section 7.5.1 shows a connection between
kernels proposed here and the spectrum kernel. Another kernel defined on strings is
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the alignment kernels [14], which try to capture the notion of sequence alignment
between biological sequences.

Kernels on graphs have been defined in two different settings. The first setting is
where the elements of the data set form a (weighted) graph. An example of this type
of kernels are the diffusion kernels [27]. Given a graph G with adjacency matrix A,
the diffusion kernel matrix K is given as

K = eβ A

It can be shown that K is PSD for any A.
Another setting is where each datapoint is a graph. One of the earliest kernels in

such a setting used a probability distribution over the paths in the graphs [28]. The
kernel is taken as the limiting case of sum over all lengths of paths. Kashima and
co-workers [28] provide an efficient way of computing this kernel as a solution of
some fixed point equations. Other kernels on graphs include shortest path kernels [29]
and cyclic pattern kernels based on subgraphs [30].

7.3 PROTEIN STRUCTURES

7.3.1 Background

Proteins are polymers of small molecules called amino acids. There are 20 different
amino acids found in naturally occurring proteins. The polymerized amino acids are
also known as residues. This chapter uses amino acids and residues interchangeably
to mean a unit of the polymer. Polymerization connects each amino acid (residue)
with two neighboring ones, thereby forming a sequence order of residues, sometimes
also called chain or topology. This sequence (a string in computer science parlance)
of residues is called the primary structure of a protein.

While the primary structure of a protein has been used by computational biologists
to decipher many interesting properties of proteins, higher level descriptions are found
to be more informative about protein functions. Protein structure is described on four
levels: primary, secondary, tertiary, and quaternary. Secondary structure describes
the local hydrogen-bonding patterns between residues, and is classified mainly into
α-helixes, β-sheets, and loops. Tertiary structure describes the coordinates of each
atom of a polymer chain in three-dimensional (3D) space, and has been found to
be directly related to the proteins’ properties. Quaternary structure describes the 3D
spatial arrangement of many protein chains. This chapter describes a protein by its
primary and tertiary structure.

The residues of a protein contain variable number of atoms. However, all
the residues have a central carbon atom called the Cα atom. Following com-
mon convention, we represent the tertiary structure of a protein as 3D coordi-
nates of Cα atoms. So, a protein P is represented as P = {p1, . . . , pn} where
pi = (xi , yi ), xi ∈ R

3, yi ∈ Y, 1 ≤ i ≤ n. Here, Y is the set of all 20 amino acid
residues found in natural proteins.
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Definition 7.3.1 A structural alignment between two proteins P A and P B is a 1-1
mapping φ : {i |pA

i ∈ P̄ A} → { j |pB
j ∈ P̄ B}, where P̄ A ⊆ P A and P̄ B ⊆ P B.

The mapping φ defines a set of correspondences between the residues of the two
proteins. The structures |P̄ A| = |P̄ B | is called the length of the alignment. Given a
structural alignment φ between two structures P A and P B , and a transformation T
of structure B onto A, a popular measure of the goodness of superposition is the
root-mean-square deviation (RMSD), defined as

RMSD(φ) =
√√√√ 1

|P̄ A|
∑

pA
i ∈P̄ A

‖xA
i − T (xB

φ(i))‖2 (7.2)

Given an alignment φ, the optimal transformation T , minimizing RMSD, can be
computed in closed form using the method described in [31].

7.3.2 Algorithms for Structural Alignment and a Spectral Method

A typical attempt at designing a structural alignment algorithm involves defining
an objective function that is a measure of goodness of a particular alignment, and
optimizing the function over a permitted set of alignments. The RMSD is one such
possible function. However, calculating RMSD requires calculating the optimal trans-
formation T , which is computation intensive.

Objective functions based on pairwise distances (e.g., distance RMSD) [8], are
popular because they don’t need computation of optimal transformations. Distance
RMSD for an alignment φ is defined as

RMSDD(φ) =
√√√√ 1

|P̄ A|2
∑

pA
i ,pA

j ∈P̄ A

(d A
i j − d B

φ(i)φ( j))
2 (7.3)

where, d A
i j = ‖xA

i − xA
j ‖2, is the distance between residues pA

i and pA
j . The matrix

d is also called the distance matrix of a protein structure. The RMSD is a distance
function since the lower the RMSD, the better the alignment, and hence the closer the
proteins in the (hypothetical) protein structure space. Section 7.4.2 proposes a kernel
that captures a notion of similarity related to RMSDD .

One problem in using distance RMSD as an objective function with protein struc-
tures, which are inherently noisy, is that it prefers alignments having lower lengths.
This problem was addressed in the scoring function used by the popular protein struc-
ture comparison algorithm DALI [32]. Given an alignment φ between two proteins
P A and P B , the DALI score function is defined as

SDALI(φ) =
∑

pA
i ,pA

j ∈P̄ A

(
0.2 − |d A

i j − d B
φ(i)φ( j)|

d̄i j

)
exp

(
−

(
d̄lk

20

)2
)

(7.4)
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where d̄i j = (d A
i j + d B

φ(i)φ( j))/2. This function is relatively robust to differences in
distances since any pair of residues for which the difference in distances is < 20%
of the average distance contributes positively to the total score. Another feature of
the scoring function is that it penalizes the average distance exponentially. Thus,
contribution from relatively distant residues toward the overall score is negligi-
ble. This captures the idea that nearby atoms interact with much higher force than
distant ones.

The problem of matching pairwise distances can be posed as an inexact weighted
graph matching problem [33]. In [20], we used this observation along with observa-
tion that interaction between nearby residues are more significant, to propose a new
objective function for comparing two protein structures. This objective function is
based on spectral projection vectors, and can be computed in O(n) time as com-
pared to O(n2) time needed by the above objective function. Here, we recapitulate
the definition briefly, and use it to motivate another kernel on protein structures in
Section 7.4.

We start by defining the adjacency matrix A of a protein P as

Ai j = e
−di j

α , α > 0 (7.5)

Definition 7.3.2 LetA be the adjacency matrix of a protein P andA = ∑n
i=1 λiζiζ

T
i

be it eigenvalue distribution, such that the eigenvectors are arranged in decreasing
order of the eigenvalues. The spectral projection vector f for P is defined as fi =
|ζ1(i)|.

The spectral projection vector has the property of preserving neighborhoods opti-
mally, while also preventing all projection values from being the same and thereby
giving a trivial solution. Given spectral projection vectors f A and f B of two proteins
P A and P B , respectively, and an alignment φ between them, the spectral similarity
score between the two proteins is defined as

Sspec(P A, P B) = max
φ

∑
i :pA

i ∈P̄ A

T − ( f A
i − f B

φ(i))
2 (7.6)

where T is a parameter which makes the score function robust to small perturbations
in f. The problem of optimizing Sspec with respect to all alignments, φ, is solvable in
polynomial time by posing it as an assignment problem [34]. Reference [20] proposes
an efficient heuristic solution to this problem.

Section 7.4 proposes kernels on neighborhoods that capture the notion of similarity
defined by the spectral similarity score. The structural alignment algorithm outlined
above is very efficient, but does not work satisfactorily when the proteins being
compared are of very different sizes. Section 7.3.3, outlines a method of tackling this
problem using neighborhoods.
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7.3.3 Problem of Indels and Solution Using Neighborhoods

In Section 7.3.2, we posed the problem of protein structure alignment as an inexact
weighted graph matching problem, and derived a new similarity score based on
spectral projection vectors. At the core of the method is the assumption that all
residues in one protein have a matching residue in the second one. However, often
proteins showing similar structure or function have many unmatched residues. These
unmatched residues are called indels (insertions and deletions). Up to 60% indels are
encountered in practical situations.

The way in which the algorithm in Section 7.3.2 was derived does not require the
number of residues in the two structures to be the same. In fact, it works very well
in practice when the number of indels is low. However, for a large number of indels
(typically >40%) the method fails to perform as expected. This is due to the fact that
the values of the spectral projection vector are changed by addition of extra residues.

Reference [11] proposes to address this problem by applying spectral algorithm
to neighborhoods for calculating neighborhood alignments and growing the neigh-
borhood alignments to get an alignment of entire structures. In [18] and this chapter,
a similar paradigm is followed for designing kernels on protein structures. Here,
following [11], we define two types of neighborhoods and give some biological
justification behind each of them.

Definition 7.3.3 The ith structure neighborhood, Nstr (i), of size l, 1 ≤ i ≤ |P|, of
a protein P is a set of l residues closest to residue i in 3D space. So,

Ni = {p j ∈ P|pk �∈ Ni ⇒ ‖p j − pi‖ ≤ ‖pk − pi‖ and |Ni | = l}

The idea behind this definition is that there are highly conserved compact regions
in 3D space, which are responsible for structure and functions of a given class of
proteins. For example, structural motifs are the locally conserved portions of structure,
while core folds are conserved regions responsible for the fold of the structure [35].
Similarly, active sites are conserved regions that are responsible for specfic functions.
So, the neighborhoods falling in these conserved regions will have all the residues
matched.

The algorithm (see Appendix A) considers all pairs of neighborhoods from both
structures, and computes alignment between them. Based on these neighborhood
alignments, transformations optimally superposing the aligned residues are com-
puted. Alignment between the two protein structures is then calculated using a simi-
larity measure derived from these transformations. The “best” alignment is reported
as the optimal one.

Definition 7.3.4 The ith sequence neighborhood, Nseq (i), of size l, 1 ≤ i ≤ |P| −
l + 1, of a protein P is the set of residues contained a sequence fragment of length l
starting from residue i . So,

Nseq(i) = {pi , . . . , pi+l−1}
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Sequence neighborhoods were traditionally used by sequence alignment algo-
rithms, e.g. Blast [36], and have been used in sequence-based kernels described
in [5]. They have also been used in some structural alignment algorithms (e.g.,
CE) [21]. Sequence neighborhoods are sets of residues that are contiguous in the
polymer chain, and hence are bonded together by covalent bonds. However, this may
not be necessarily compact in 3D space. Also, note that unlike sequence processing
algorithms, we include the 3D coordinates of residues along with residue type in the
sequence neighborhood. In Section 7.4, we start by defining kernels on the two types
of neighborhoods, which are them combined in various ways in Section 7.5 to define
kernels on entire protein structures.

7.4 KERNELS ON NEIGHBORHOODS

Neighborhoods are subsets of residues of a protein structure that are compact in
3D space or in the protein sequence space. It is clear from the discussion in Sec-
tion 7.3.3 that comparing neighborhoods for comparison of protein structures has
some theoretical as well as experimental justification. We are interested in extending
the same paradigm in design of kernels on protein structures. This section proposes
various positive semidefinite kernels on neighborhoods. Section 7.4.1 defines kernels
on protein structures using the kernels on neighborhoods defined here.

Each neighborhood Ni (either structure or sequence) is a set of l residues p j =
(x j , y j ), where x j ∈ R

3 is the position of the residue in 3D space, and y j ∈ Y is the
amino acid type. It may be noted that while defining kernels we do not distinguish
between the type of neighborhoods. However, some kernels make more sense with a
specific type of neighborhood. We discuss this in more detail in Section 7.4.3.

We begin by defining various kernels capturing similarity between the types of
amino acids in the two neighborhoods, then define kernels capturing similarity be-
tween 3D structures of the two neighborhoods, and finally describe two methods to
combine these two kernels to get kernels on neighborhoods.

7.4.1 Sequence-Based Kernels on Neighborhoods

Amino acid types are one of the most commonly used features in comparison of
proteins. There are 20 different types of amino acids are found in proteins. First, we
define kernels capturing the similarity between different types of amino acids. The
simplest similarity measure is to assign unit similarity between identical amino acids
and zero similarity to the rest. This gives us the identity kernel KI on Y × Y:

KI (y1, y2) =
{

1 if y1 = y2

0 otherwise
y1, y2 ∈ Y (7.7)

Another popular measure of similarity between amino acid types is given by the
substitution matrices (e.g., the BLOSUM62 matrix) [37]. BLOSUM matrices give
the log of likelihood ratio of actual and expected likelihoods. Unfortunately, the
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BLOSUM62 matrix is not positive semidefinite. We use the diffusion kernel [27]
technique to construct a positive semidefinite kernel Kblosum on Y × Y , from the
blosum matrix:

Kblosum = eSblosum/10 (7.8)

where Sblosum is the blosum substitution matrix.

Representative Residue Kernel. The amino acid kernels can be combined in vari-
ous ways to give kernels on neighborhoods. One simple way is to summarize
the entire neighborhood by a single representative residue. The choice of rep-
resentative residue is very natural in the case of a structure neighborhood, since
it has a central residue. In case of sequence neighborhoods, the representative
residue is taken as the starting residue of the sequence fragment.

Let K AA : Y × Y → R be some positive semidefinite kernel on amino acids.
The representative residue kernel Krep on neighborhoods is defined as

Krep(N1, N2) = K AA(yrep(N1), yrep(N2)) (7.9)

where, yrep(Ni ) is the amino acid type of representative residue of neighborhood
Ni chosen as described above.

All Pair Sum and Direct Alignment Kernels. The above kernel is derived by
summarizing neighborhoods with their representative residues. Neighborhoods
can also be viewed as sets of residues, thus allowing us to use existing set
kernels. Many kernels have been proposed on sets (e.g., [2, 3, 5]). Here, we
propose two kernels motivated from set kernels.

Let A and B be two d × c matrices. It was shown in [25], that if k is a
PSD kernel on R

c × R
c, then K (A, B) = tr([k(Ai , B j )]i j ) = ∑

i k(Ai , Bi ) is a
PSD kernel, Ai being the i th column of A. This can be generalized to arbitrary
objects (amino acids in this case) rather than vectors in R

c:

Definition 7.4.1 Let Ni = {pi
1, . . . , pi

l }, pi
j = (xi

j , yi
j ), xi

j ∈ R
3, yi

j ∈ Y be a
neighborhood, and K AA : Y × Y → R be any amino acid kernel. The direct align-
ment kernel Kdiral between neighborhoods Ni and N j is defined as

Kdiral(Ni , N j ) = 1

l

l∑
k=1

K AA(yi
k, y j

k )

The fact that Kdiral is positive semidefinite follows trivially from the above dis-
cussion and the fact that l is a positive constant. This kernel assumes a fixed serial
ordering of the residues. This is applicable in the case of sequence neighborhoods.

Another case is where such an ordering is not known. For such a case, [4] defines
general kernels on matrices that have the same number of rows, but a different number
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of columns. Let A and B be n × k and n × q matrices respectively. Let G and F be
n × n and q × k matrices, such that G and extension of F to m × m matrices, m =
max(n, q, k), is a positive semidefinite matrix. Then, 〈A, B〉 = tr ((AT G B)F) is a
PSD kernel. Simplifying this, it can be shown that K (A, B) = ∑q

i=1

∑k
j=1 k(Ai , B j )

is a PSD kernel. Generalizing this result, we can define sequence-based kernels on
neighborhoods.

Definition 7.4.2 Let Ni = {pi
1, . . . , pi

l }, pi
j = (xi

j , yi
j ), xi

j ∈ R
3, yi

j ∈ Y be a
neighborhood, and K AA : Y × Y → R be any amino acid kernel. The all pair sum
kernel, Kallpair , between neighborhoods Ni and N j is defined as

Kallpair(Ni , N j ) = 1

l2

l∑
s=1

l∑
t=1

K AA(yi
s, y j

t )

The fact that Kallpair is PSD follows trivially from the above discussion. This kernel
is useful in case of structure neighborhoods where there is no ordering between
residues. In Section 7.5, we use a similar technique to define kernels on protein
structures.

Permutation Sum Kernel. The set kernel derived above adds up similarity between
all pairs of residues in the two neighborhoods. Another interesting kernel is
where all possible assignments of one residue to other is considered. In case
of neighborhoods of fixed size, this implies considering all permutations of
the residues in one of the neighborhoods. We use the idea of convolution
kernels [19] to arrive at this notion.

Let x ∈ X be a composite object formed using parts from X1, . . . , Xm .
Let R be a relation over X1 × · · · × Xm × X such that R(x1, . . . , xm, x) is
true if x is composed of x1, . . . , xm . Let R−1(x) = {(x1, . . . , xm) ∈ X1 × · · · ×
Xm |R(x1, . . . , xm, x) = true} and K 1, . . . , K m be kernels on X1, . . . , Xm , re-
spectively. The convolution kernel K over X is defined as

K (x, y) =
∑

(x1,...,xm )∈R−1(x),(y1,...,ym )∈R−1(y)

m∏
i=1

K i (xi , yi ) (7.10)

It was shown in [19], if K 1, . . . , K m are symmetric and positive semidefinite,
so is K .

In our case, the composite objects are the neighborhoods Ni ’s and the
“parts” are the residues pi

j , j = 1, . . . , l in those neighborhoods. The rela-
tion R is defined as R(p1, . . . , pl , Ni ) is true iff Ni = {p1, . . . , pl}. Thus,
the set R−1(Ni ) becomes all permutations of (pi

1, . . . , pi
l ). In other words,

R−1(Ni ) = {pi
π ( j); j = 1, . . . , l; π ∈ �(l), �(l) being the set of all permuta-

tions of l numbers.
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Definition 7.4.3 Let Ni = {pi
1, . . . , pi

l }, pi
j = (xi

j , yi
j ), xi

j ∈ R
3, yi

j ∈ Y be a
neighborhood, and K AA : Y × Y → R be any amino acid kernel. The permutation
sum kernel K perm between neighborhoods Ni and N j is defined as

Kperm(Ni , N j ) = 1

l!

∑
π∈�(l)

l∏
k=1

K AA(yi
π (k), y j

k )

To see that Kperm is a PSD kernel, notice that permuting residues in both neighbor-
hoods will result in all possible assignments being generated l! times. The convolution
kernel following the above discussion is

K (Ni , N j ) =
∑

π,π ′∈�(l)

l∏
k=1

K AA(yi
π (k), y j

π ′(k))

= l!
∑

π∈�(l)

l∏
k=1

K AA(yi
π (k), y j

k )

Since the above kernel is PSD (using theorem 1 in [19]), dividing it by (l!)2, we get
Kperm, which is also PSD. In Section 7.4.2, we use the same idea to define various
structure based kernels on neighborhoods.

7.4.2 Structure-Based Kernels on Neighborhoods

Each residue pi of a protein structure P can be represented as two parts: the position
xi and the residue type (attribute) yi . In Section 7.4.1, we defined many kernels on
neighborhoods using kernels on residue type yi for each residue. Kernels on the
residue type are easier to define since the residue types are directly comparable. On
the other hand, positions of residues from different protein structures are not directly
comparable as they may be related by an unknown rigid transformation.

This section defines kernels on neighborhoods using the structure of the neighbor-
hood described by the position of residues. We begin, by using the spectral projection
vector derived in Section 7.3.2 (Definition 7.3.2). Note that the spectral projection
vector can be thought of as assignment of one real number to each residue in the
neighborhood, when used for matching neighborhoods (Section 7.3.3). Also, it can
be inferred from Eq. (7.6), that the components of the spectral projection vector can
be compared directly.

Spectral Neighborhood Kernel. Let N1 = {p1
1, . . . , p1

l } and N2 = {p2
1, . . . , p2

l }
be two neighborhoods, each having l residues. Let f1 and f2 be the spectral pro-
jection vectors (Definition 7.3.2 for these neighborhoods. The residue kernel,
Kres, between i th residue of N1, p1

i , and j th residue of N2, p2
j , is defined as the

decreasing function of the difference in spectral projection:

Kres(p1
i , p2

j ) = e
−( f 1

i − f 2
j )2

β (7.11)
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β being a parameter. This kernel is PSD since it is essentially a Gaussian kernel.
Note that the spectral projection vector trick was used to find a quantity that is
comparable between residues of two structures.

Now, we can use the techniques used in Section 7.4.1 to define kernels on
neighborhoods. We use the convolution kernel method since it also gives a
relation to the spectral similarity score [Eq. (7.6)]. In our case, X is the set of
all neighborhoods and X1, . . . , Xm are all sets of all the residues pi ’s from all
the neighborhoods. Here, note that even if the same residue appears in different
neighborhoods, the appearances will be considered to be different, since their
spectral projection values are different.

Following the discussion in Section 7.4.1, the relation R is defined as
R(p1, . . . , pl , N ) is true iff N = {p1, . . . , pl}. Since, all the Xi ’s have all
the residues from N , the cases for which R can hold true are the permutations
of residues of N . Since this can happen for both N1 and N2, each combina-
tion of correspondences occurs l! times. Thus, using K i = Kres, i = 1, . . . , l
in Eq. 7.10, the kernel becomes

K (N1, N2) = l!
∑

π∈�(l)

l∏
k=1

Kres(p1
k , p2

π (k))

= l!
∑

π∈�(l)

e
1
β
−∑l

k=1( f 1
k − f 2

π(k))
2

= l!
∑

π∈�(l)

e
−‖f1−π (f2)‖2

β

where, fi is the spectral projection vector of Ni and �(l) is the set of all possible
permutations of l numbers.

Definition 7.4.4 Let Ni = {pi
1, . . . , pi

l }, pi
j = (xi

j , yi
j ), xi

j ∈ R
3, yi

j ∈ Y be a
neighborhood, and fi be the spectral projection vector corresponding (Definition
7.3.2) to Ni . The spectral kernel, Kspec, between neighborhoods Ni and N j is defined
as

Kspec(Ni , N j ) =
∑

π∈�(l)

e
−‖fi −π (f j )‖2

β

Positive semidefiniteness of this kernel follows trivially from the above discussion.
Note that, computation of this kernel takes exponential time in l. However, since l is a
parameter of choice, and is usually chosen to be a small value (six in our experiments),
the computation time is not prohibitive. Next, we show a relation between Kspec and
Sspec [Eq. (7.6)].

Theorem 7.4.1 Let Ni and N j be two neighborhoods with spectral projection
vectors fi and f j . Let Sspec(Ni , N j ) be the score of alignment of Ni and N j , obtained
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by solving problem in Eq. (7.6), for a large enough value of T such that all residues
are matched.

lim
β→0

Kspec(Ni , N j ))
β = e−lT eSspec(Ni ,N j )

Proof: Let π∗ be the permutation that gives the optimal score Sspec(Ni , N j ). By

definition, eSspec(Ni ,N j ) = maxπ∈�(l) e
∑l

k=1 T −( f i
k − f j

π(k))
2 = elT e−‖fi −π∗(f j )‖2

.

lim
β→0

(Kspec(Ni , N j ))
β = lim

β→0
(

∑
π∈�(l)

e
−‖fi −π (f j )‖2

β )β

= e−‖fi −π∗(f j )‖2

lim
β→0

(1 +
∑

π∈�(l)\{π∗}
e

−1
β

(‖fi −π (f j )‖2−‖fi −π∗(f j )‖2))β

= e−‖fi −π∗(f j )‖2

The last step is true since ‖fi − π (f j )‖2 − ‖fi − π∗(f j )‖2 is always positive, and

hence limβ→0 e
−1
β

(‖fi −π (f j )‖2−‖fi −π∗(f j )‖2) is 0. Combining the above equations, we get
the result.

Pairwise Distance Substructure Kernel. The previous kernel used the spectral
projection based formulation to measure the similarity between neighborhoods.
However, since the size of neighborhoods are usually small, we can also capture
the similarity between pairwise distances of the two neighborhoods [Eq. (7.3)].
We do this by using the convolution kernel techniques [19].

In this case, X is the set of all neighborhoods and X1, . . . , Xm are sets of
all pairwise distances di j , i < j between the residues from all neighborhoods.
For each neighborhood of size l, we consider all pairwise distances between
residues of that neighborhood. So, m = l(l − 1)/2. We define the pairwise
distance vector, d of a neighborhood N = {p1, . . . , pl}, pi = (xi , yi ) as:

di j = ‖xi − x j‖, i, j = 1, . . . , l, i ≥ j (7.12)

The relation R is defined as R(d, N ) is true iff d is a pariwise distance vector
of N .

Definition 7.4.5 Let Ni = {pi
1, . . . , pi

l }, pi
j = (xi

j , yi
j ), xi

j ∈ R
3, yi

j ∈ Y be a
neighborhood, and di be the pairwise distance vector of N i , i.e. di

st = ‖xi
s −

xi
t‖, s, t = 1, . . . , l, s ≥ t . The pairwise distances kernel, K pd , between neighbor-

hoods Ni and N j is defined as

Kpd(Ni , N j ) = 1

l!

∑
π∈�(l)

e
−‖di −π (d j )‖2

σ2

where, by notation (π (d))i, j = ‖pπ (i) − pπ ( j)‖.
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Under the condition that all residues from two neighborhoods Ni and N j have a
matching residue in the other neighborhood, a decreasing function of optimal distance
RMSD [Eq. (7.3)] can be used as a similarity measure between the two neighborhoods.
Since all residues are matching, the space of all mapping become all permutations of
the residues of one neighborhood while keeping the other fixed. By using the above
definition of a pairwise distance vector, we define the similarity score as

Sdrmsd(Ni , N j ) = max
π∈�(l)

T ′ − ‖di − π (d j )‖ (7.13)

Next, we show a relation similar to that in Theorem 1, between Kpd and Sdrmsd.

Theorem 7.4.2 Let Ni and N j be two neighborhoods with pairwise distance vectors
di and d j . Let Sdrmsd (Ni , N j ) be the similarity score between Ni and N j , obtained
by solving problem in Eq. (7.13).

lim
σ→0

Kpd(Ni , N j ))
σ 2 = e−T ′

eSdrmsd(Ni ,N j )

Proof is essentially similar to that of Theorem 1. Both Theorems 1 and 2 show that for
low values of β and σ the structure kernels are related to the alignment scores between
neighborhoods. This is also demonstrated in the experiments in Section 7.6.4. Next,
we describe two methods for combining kernels based on sequence and structure, to
get general kernels on neighborhoods.

7.4.3 Combined Sequence and Structure-Based Kernels on Neighborhoods

According to our definition, each residue in a protein structure has two components:
position in 3D space that describes the structure, and a type (or attribute) that describes
the sequence. This can be viewed as an attributed pointset ( [10]), which is a set of
points in an Euclidean space with an attribute attached to each point. The main
difference between position and attribute is that attributes are comparable directly,
while positions can be related by a rigid transformation, and hence are not comparable
directly.

In [10], we proposed kernels on attributed pointsets and used them for various
tasks in computer vision. Kernels capturing position and attribute similarity were
combined by weighting the position kernel with the attribute kernel. Here, we begin
by weighting the structure based kernels with the sequence-based kernels.

Definition 7.4.6 Let Ni and N j be two neighborhoods. Let Kseq and Kstr be
sequence- and structure-based kernels on neighborhoods. The weighting kernel,
Kwt , on neighborhoods is defined as

Kwt(Ni , N j ) = Kseq(Ni , N j )Kstr(Ni , N j )
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where Kwt is PSD, since it is a pointwise product of two PSD kernels. In this chapter,
the choices explored for Kseq are Krep, Kallpair, Kdiral, and Kperm, while those for Kstr

are Kspec and Kpd.
Another popular method of combining information from multiple kernels, mainly

popularized by multiple kernel learning literature ( [38,39]), is to use a linear combi-
nation of the kernels. Following this paradigm, we define our next kernel as a convex
combination of sequence- and structure-based kernels.

Definition 7.4.7 Let Ni and N j be two neighborhoods. Let Kseq and Kstr be
sequence- and structure-based kernels on neighborhoods. The convex combination
kernel Kcc on neighborhoods is defined as

Kcc(Ni , N j ) = γ Kseq(Ni , N j ) + (1 − γ )Kstr(Ni , N j )

where, γ ∈ [0, 1] is a parameter. This kernel is PSD since it is a linear combination of
PSD kernels with positive coefficients. The same choices for Kseq and Kstr as above
are explored. In Section 7.5, we combine the neighborhood kernels, Kwt and Kcc, to
get kernels on entire protein structures.

7.5 KERNELS ON PROTEIN STRUCTURES

Section 7.4 defined various kernels on neighborhoods. This section describes two
ways of combining these kernels to get kernels on entire protein structures. The first
method uses set kernels by viewing each protein as a set of neighborhoods. We show
that these kernels are related to the well-known spectrum kernels [5]. The second
method uses known alignments to increase the accuracy of similarity measure.

7.5.1 Neighborhood Pair Sum Kernels

One way of combining neighborhood kernels for deriving kernels on protein structures
is by viewing proteins as a set of neighborhoods. Various strategies could be used to
choose the neighborhoods that describe a protein structure. For example, we could
choose a minimal set of neighborhoods that cover all the residues in a protein.
However, this may not have a unique solution, which may lead to a comparison
of different neighborhoods of similar structures, and hence low similarity between
similar structures.

For structure neighborhoods, we consider neighborhoods centered at each residue.
This ensures that all residues are part of at least one neighborhood. For sequence
neighborhoods, we consider neighborhoods starting at each residue except the last
l − 1 in the protein sequence since there can not be any neighborhoods of length l
starting at them.

We view a protein structure as a set of constituent neighborhoods. Thus, a protein
P A, described by n A neighborhoods, is represented as P̂ A = {N A

1 , . . . , N A
n A

}. From
the set kernels described in Section 7.4.1, only the representative element kernels
and all pair kernels are applicable since the number of neighborhoods in two proteins
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P A and P B may not be the same. Considering only one neighborhood, is generally
not a good representation of the entire protein structure. Thus we use the all pair sum
kernel for defining kernels on protein structures.

Definition 7.5.1 Let P A and P B be two proteins represented in terms of constituent
neighborhoods as P̂ A = {N A

1 , . . . , N A
n A

} and P̂ B = {N B
1 , . . . , N B

nB
}, and Knbhd be a

kernel on neighborhoods. The neighborhood pair sum kernel, Knps between the two
proteins is defined as

Knps(P̂ A, P̂ B) = 1

n AnB

n A∑
i=1

nB∑
j=1

Knbhd(N A
i , N B

j )

where Knps is a PSD kernel because it is of the form ψAψB K (A, B) where K (A, B)
is a PSD kernel and ψA is a function of only A. The parameter Knps can be computed
in O(n AnB) time. Next, we show a relation between between Knps and the spectrum
kernel [5].

The spectrum kernels were designed for protein sequence classification using sup-
port vector machines. For every protein sequence s, [5] defines the k-spectrum-based
feature map k(x) indexed by all k length subsequences Yk as k(s) = (θa(s))a∈Yk ,
where θa(s) is the number of occurrences of a in s. The k-spectrum kernel is defined
as: K spectrum

k (s, s ′) = 〈
k(s),k(s ′)

〉
.

Theorem 7.5.3 Let P and P ′ be two proteins with representations P̂ =
{N1, . . . , Nn} and P̂ ′ = {N ′

1, . . . , N ′
n′ }, and s and s ′ be their sequences. Then,

there is a sequence kernel on neighborhoods, Kseq , for which 1
nn′ K spectrum

l (s, s ′) =
Knps(P̂, P̂ ′) , where Knbhd = Kcc with γ = 1, and sequence neighborhoods of length
l are used to represent P and P ′.

Proof: K spectrum
l (s, s ′) computes the number of common subsequences of length l

between s and s ′, where each occurrence of a subsequence a is considered different.
This is because

〈
l(s),l (s ′)

〉 = ∑
a∈Y l θa(s)θa(s ′), thus adding up products of counts

every subsequence.
Observe that all nonzero entries in l(s) precisely correspond to sequence neigh-

borhoods of size l in P̂ . Consider the kernel on neighborhoods Kseq(Ni , N ′
j ) =∏l

k=1 K I (yi
k, y′ j

k ), where Ni = {pi
1, . . . , pi

l }, pi
k = (xi

k, yi
k). Kseq(Ni , N ′

j ) is 1 if Ni

and N ′
j are identical, 0 otherwise. The parameter Knbhd = Kseq since γ = 1. So,

Knps(P̂, P̂ ′) = 1

nn′

n∑
s=1

n′∑
t=1

Kseq(Ns, N ′
t )

= 1

nn′
∑
a∈Y l

θa(s)θa(s ′)

Hence, the result.
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This result shows that when restricted to use only sequence related information,
Knps is essentially the length normalized version of K spectrum. Note that a similar
result can be derived for the mismatch kernels [5] with an appropriate choice of
Kseq. Unfortunately, the feature map representation used to derive spectrum kernels
cannot be extended directly to define kernels on structures since the feature space will
be infinite. Section 7.5.2 defines kernels that use alignments generated by external
structural alignment programs.

7.5.2 Alignment Kernels

Section 7.5.1 defineds kernels on protein structures that do not need any extra infor-
mation. The kernels add up similarity between all pairs of neighborhoods in the two
protein structures. However, any neighborhood in a protein structure is expected to be
similar to only one neighborhood in the other structure. So, adding the kernels values
for other pairs of neighborhoods introduces noise in the kernel value that reduces the
classification accuracy.

This section alleviates this problem by utilizing alignment between residues given
by a structural alignment program to compute kernels. The correspondences between
residues given by a structural alignment induces correspondence between the structure
neighborhoods centered at these residues. The naive structural alignment kernel adds
up kernels between the corresponding neighborhoods.

Definition 7.5.2 Let Pi and P j be two proteins represented in terms of constituent
structure neighborhoods as P̂i = {N i

1, . . . , N i
ni

} and P̂ j = {N j
1 , . . . , N j

n j }, and Knbhd

be a kernel on neighborhoods. Let φi j be an alignment between Pi and P j . The naive
alignment kernel, Knal between the two proteins is defined as

Knal(Pi , P j ; φi j ) =
∑

a|pi
a∈P̄ i

Knbhd(N i
a, N j

φi j (a))

Note that here only structure neighborhoods can be used since some residues will
not have a corresponding sequence neighborhood. Unfortunately, this kernel is not
necessarily positive semidefinite. Though SVM training algorithm has no theoretical
guarantees for a kernel matrix that is not PSD, they work well in practice.

While many methods have been suggested for learning with non-PSD kernels [40],
most of them require computation of singular values of the kernel matrix. This may
be computationally inefficient or even infeasible in many cases. Moreover, in most
cases, the values of the kernel function do not remain the same as the original kernel
function. Another kernel is proposed based on the alignment kernel, which while
keeping the off-diagonal terms intact and only modifying the diagonal terms, is
always positive semidefinite.

Definition 7.5.3 Let D = {P1, . . . , P M } be a dataset of M proteins represented in
terms of constituent structure neighborhoods as P̂i = {N i

1, . . . , N i
ni

} and Knbhd be a
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kernel on neighborhoods. Let φi j be an alignment between Pi and P j , 1 ≤ i, j ≤ M.
The PSD alignment kernel, K psdal between the two proteins Pi and P j is defined as

Kpsdal(Pi , P j ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
a|pi

a∈P̄ i

Knbhd (N i
a, N j

φi j (a)) if i �= j

M∑
b=1

∑

a|pi
a∈dom(φib)

Knbhd (N i
a, N i

φib(a)) if i = j

where dom(φib) is the domain of function φib, which is the set of all residues partic-
ipating in the alignment φib from structure Pi . Notice that Kpsdal can be computed
in an incremental way, which is not trivial for methods that require singular value
decomposition. Next, we show that Kpsdal is indeed PSD.

Theorem 7.5.4 The parameter K psdal is positive semidefinite if Knbhd is positive
valued.

Proof: Let Lmax be the maximum length of alignments between all pairs of proteins
in the dataset D. Consider the M × ( M(M+1)

2 Lmax) matrix H having one row for each
protein in the dataset. Each row has M(M+1)

2 blocks of length Lmax corresponding
to each pairwise alignment (including alignment of every structure with itself). For
rows corresponding to proteins i and j , the kth element of the block for alignment

φi j is equal to
√

Knbhd(N i
k, N j

φi j (k)). The index k runs over all the correspondences in
the alignment. For alignments that have length smaller than Lmax, put the remaining
entries to be zero. It can be seen that Kpsdal = H H T . Since, each entry in Kpsdal is a
dot product between two vectors, Kpsdal is positive semidefinite.

This theorem can also be proved using the result that diagonally dominant matrices
(matrices having the property Aii ≥ ∑n

j=1 |Ai j |) are PSD. Note that, Knbhd needs to
be positive valued and not positive semidefinite. So, this method can get a kernel from
any postive valued similarity measure on the neighborhoods. Unfortunately, diagonal
dominance of a kernel often reduces its classification accuracy (e.g., see [41, 42]).

Computational Complexity. Time complexity of the neighborhood kernels is
O(1), since size of the neighborhoods is a user-defined parameter, rather
than a charateristic of data. For neighborhood size l, the time complexities of
Krep, Kdiral, Kallpair, Kperm, Kspec, and Kpd are O(1), O(l), O(l2), O(l!), O(l!)
and O(l!), respectively. Since for most experiments, l was fixed at a very low
value of 6, the exponential complexity of Kperm, Kspec, and Kpd does not pose
a major problem to computational feasibility.

The time complexity of Knps is O(n1n2), where n1 and n2 are the number
of neighborhoods in the two proteins being compared. Time complexity of
Knal is O(min(n1, n2). The parameter Kpsdal can be implemented in amortized
time complexity of O(n), n being the maximum length of alignment. Memory
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requirements of all the kernels are O(n1 + n2), which is necessary for storing
the proteins in memory. In Section 7.6, we report results of experiments con-
ducted for validating the kernels developed here on the task of protein structure
classification.

7.6 EXPERIMENTAL RESULTS

Extensive experimentation was conducted in order to both demonstrate the practical
applicability of the kernels proposed above on real protein structures, and to study
properties of the proposed kernels. Section 7.6.1 describes the data set, the experi-
mental procedure, and the quantities observed. Section 7.6.2 reports representative
and average results for various types of kernels and compares them with classi-
fication performed using a popular protein structure comparison method CE [21].
Section 7.6.4 studies the effects of various parameters on the classification perfor-
mance of the kernels. Section 7.6.5 describes results of experiments with spectrum
kernels in order to demonstrate the difficulty of the current task.

7.6.1 Experimental Setup

The kernels proposed above were tested extensively on the well-known structural
classification database called SCOP [12]. The experiments were designed so as to
test utility of the proposed kernels toward the practical and difficult problem of
classifying structures having very low sequence identity (< 40%). The results were
compared with a state of the art protein structure alignment algorithm, CE [21], which
was found to be the top performer in [43].

The kernels developed were implemented in C using GCC/GNU Linux. OpenMPI
over LAM was used on a cluster to speed up the computations. Eigenvalue com-
putations were done using Lapack [44], and SVM classifications were done using
Libsvm [45]. The protein structures were obtained from ASTRAL [46].

Data Set Construction. The task chosen was to classify a data set of proteins
having < 40% sequence identity between any pair of proteins. This task is
both difficult and relevant to computational biologists, since most standard
sequence processing algorithms (e.g., BLAST [36]), cannot identify many re-
lationships between proteins having low sequence similarity [47]. Thus, kernels
utilizing the structure information to achieve accurate results on such difficult
problems are highly useful. Also, the ASTRAL compendium [46] provides a
40% nonredundant data set, which is the lowest redundancy cutoff provided by
ASTRAL.

We chose the classification at the superfamily level of SCOP. This level cap-
tures functional and distant evolutionary relationships, where 21 superfamilies
were detected that had at least 10 proteins at 40% sequence non-redundance
(in SCOP 1.69). The structural classification is performed using 21 one versus
all classification problems. In order to get a balanced problem, a randomly
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chosen set of 10 proteins from other classes is used as the negative dataset for
each class. In order to get a stable estimate of the classification accuracy, this
experiment is repeated 100 times and the average is reported.

Similar tasks have been attempted by [17] and [16]. However, we concen-
trate on structural classification rather than functional annotation, since we are
more interested in studying the properties of the proposed kernels than ex-
ploring possible diverse applications. Also, the task we have chosen is more
difficult since we attempt to classify the 40% nonredundant data set, as com-
pared to say the 90% nonredundant data set used in [16]. This allows us to
concentrate on a much smaller data set (9,479 domains instead of 97,178
in SCOP 1.73), and thus allows us to use more computationally intensive
algorithms.

Experimental Procedure. We use the leave-one-out cross-validation as the basic
test for the classifier, due to a small number of datapoints per class. Leave-
one-out cross-validation was also used in [17]. The predicted labels are used
to calculate accuracies on positive and negative classes and receiver operating
characterstic (ROC) curves [48]. For a group of kernels, the average results
are reported in the form of area under ROC curve (AUC) [48] and average
classification accuracies; and the variance around average as maximum and
minimum classification accuracies. The area under ROC curve (AUC) [48] is
used as the primary index for judging the quality of a classifier and AUC is also
used in [16].

Each combination of the type of amino acid kernels, sequence- and structure-
based kernels on neighborhoods, and method of combination of sequence and
structure based kernels is called a type of kernel. Table 7.1 gives the types of
kernels for which experiments were performed. Due to intuition from biology,
all pair sum kernels were computed only for structure neighborhoods and direct
alignment kernels were computed only for sequence neighborhoods. A total
of 44 types of kernels were experimentally evaluated for various parameter
values. Average results for each type of sequence and structure kernel are in
Section 7.6.3. Due to lack of space, detailed results for each type of kernel is
provided in the supplementary material.

Table 7.2 shows the values of parameters for which experimental results
are reported. These parameters were found by trial and error to be appropriate
for current task. Section 7.6.4 compares the performance of various kernels
for these parameter values. Detailed results are reported in the supplementary
material.

7.6.2 Validation of Proposed Kernels

This section validates the effectiveness of the proposed kernels on the above men-
tioned task. All the kernels mentioned above were used to train classifiers for the task.
We report representative and average results with variances for the kernels. These
results are compared with the state of the art protein structure comparison tool called
CE [21]. Detailed results are available in the supplementary material.
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TABLE 7.1 Types of Kernels for Which Experiments Were Performed

Seq. ker. → Representative All Pair
Struct. ker. Residue Kernel Sum Kernel

Neighborhood Pair Sum Kernelsa

Spec. ker. Seq. and Str. Nbhd. Str. Nbhd.
Pair. dist. ker. Seq. and Str. Nbhd. Str. Nbhd.

Naive Alignment Kernelsb

Spec. ker. Id. and blos. ker. Id. and blos. ker.
Pair. dist. ker. Id. and blos. ker. Id. and blos. ker.

Positive Semidefinite Alignment Kernelsb

Spec. ker. Id. and blos. ker. Id. and blos. ker.
Pair. dist. ker. Id. and blos. ker. Id. and blos. ker.
Seq. ker. → Permutation Direct align.
Struct. ker. Sum Kernel Kernel

Neighborhood Pair Sum Kernelsa

Spec. ker. Seq. and Str. Nbhd. Seq. Nbhd.
Pair. dist. ker. Seq. and Str. Nbhd. Seq. Nbhd.

Naive Alignment Kernelsb

Spec. ker. Id. and blos. ker. Id. and blos. ker.
Pair. dist. ker. Id. and blos. ker. Id. and blos. ker.

Positive Semidefinite Alignment Kernelsb

Spec. ker. Id. and blos. ker. Id. and blos. ker.
Pair. dist. ker. Id. and blos. ker. Id. and blos. ker.

a Only blosum kernels were used to compute the sequence kernels.
b Only structure neighborhoods were used since sequence neighborhoods are not defined
for each residue, while structural alignment is a correspondence between residues.

Table 7.3 reports representative results for various kernels studied here and com-
pares them with the results obtained from CE [21]. All the positive semidefinite
alignment kernels, except the ones that use sequence information only (for γ = 1),
perform comparably or better than CE. Thus, kernel based methods can be used
along with SVMs to achieve performance comparable to state-of-the-art methods in
computational biology.

TABLE 7.2 Values of Various Parameters for Which Experimental Results are
Reported

PSD Alignment Naive Alignment Neighborhood Pair
Parameters Kernel Kernel Sum Kernel

α (Eq. 7.5) 10 10 10
β (Definition 7.4.4) 0.001, 0.005, 0.01, 0.05 0.001, 0.0001

0.0001, 0.0005 0.001, 0.005
σ (Definition 7.4.5) 5, 8, 9, 10 10, 11, 12, 15 8, 10, 12
γ (Definition 7.4.7) 0, 0.2, 0.5, 0.8, 1 0, 0.2, 0.5, 0.8 0.2, 0.8
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TABLE 7.3 Representative Results for Knps (def. 7.5.1), Knal (def. 7.5.2), Kpsdal

(def. 7.5.3), and CE [21]

Kernel (γ )/ Area Under Positive Negative Area Under Positive Negative
Method ROC Curve Acc. Acc. ROC Curve Acc. Acc.

Neighborhood Pair Sum Kernels (Knps)a

Sequence Neighborhood Structure Neighborhood

Kwt 0.676 76.809 58.071 0.676 77.500 56.452
Kcc 0.2 0.625 68.619 54.309 0.626 69.761 53.571
Kcc 0.8 0.569 61.809 50.214 0.572 61.071 51.071

Naive Alignment Kernels (Knal)b

Identity Kernel Blosum Kernel

Kwt 0.660 71.809 62.428 0.709 74.023 67.845
Kcc 0 0.700 72.666 66.071 0.696 72.702 66.309
Kcc 0.2 0.691 71.238 66.238 0.694 73.202 65.880
Kcc 0.5 0.693 72.261 66.333 0.702 73.345 67.059
Kcc 0.8 0.666 72.666 65.547 0.662 72.976 60.619

Positive Semidefinite Alignment Kernels (Kpsdal)c

Identity Kernel Blosum Kernel

Kwt 0.803 85.071 75.904 0.802 85.309 75.238
Kcc 0 0.795 84.809 74.380 0.795 84.619 74.285
Kcc 0.2 0.790 84.309 73.357 0.789 84.166 74.523
Kcc 0.5 0.790 84.023 74.833 0.791 83.761 75.523
Kcc 0.8 0.793 83.404 74.809 0.790 83.857 75.119
Kcc 1 0.716 76.857 66.190 0.680 74.476 62.285

CE 0.780 96.457 60.619 0.780 96.457 60.619

a Results are for permutation sum sequence neighborhood kernel and spectral structure neighborhood
kernel with α = 10 and β = 0.0001.

b Results are for all pair sequence neighborhood kernels and pairwise distance structure neighborhood
kernel with σ = 12.

c Results in the case of identity kernels are for all pair sequence neighborhood kernels and spectral
structure neighborhood kernels with α = 10 and β = 0.0001; and those in case of blosum kernel are for
permutation sum sequence neighborhood kernel and spectral structure neighborhood kernel with
α = 10 and β = 0.0001.

The other kernels do not perform as well as positive semidefinite alignment kernels.
For neighborhood pair sum kernels, this is due to inaccuracy in computing the
similarity values arising out of the fact that they sum up similarities between all
pairs of neighborhoods. For the naive alignment kernels, this is due to the fact that
they are not necessarily positive semidefinite. Also, the naive alignment kernels
perform slightly better than the neighborhood pair sum kernels, since they use the
extra information provided by the structural alignment and only add up similarities
between equivalent neighborhoods.
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We also observe that for neighborhood pair sum (NPS) kernels, the weighting
kernels perform slightly better than the linear combination kernels. However, for the
alignment kernels, the performance of weighting kernels, as well as the linear combi-
nation kernels are similar. The reason is that for NPS kernels, multiplication of struc-
ture similarity component by sequence similarity leads to more effective weighing
down of similarity values for the noncorresponding neighborhoods, thereby increas-
ing the influence of similarity between corresponding neighborhoods. This principle
was also used in [10] to improve the performance kernels for face recognition. This
problem is not present in alignment kernels, and hence there is not much difference
in accuracies of weighting and linear combination kernels.

Note that for linear combination NPS kernels there is a gradual decrease in their
performance with the increase in value γ . Hence, there is an increase in component
sequence similarity. This difference is not observed in the case of alignment kernels.
However, there is a sharp decline in performance of alignment kernels when the com-
ponent of structural similarity becomes zero (for γ = 1). From these observations,
we can conclude that the structural similarity component is much more useful than
sequence similarity component for the present task. This is also consistent with the
biological intuition that for distantly related proteins, structural similarity is higher
than sequence similarity.

Another observation is that positive classification accuracy is much higher than
negative classification for all kernels. The reason is that a multi-class classification
problem was posed as many binary class classification problems and the average
accuracy over all problems is reported. Thus for each classification problem, the
positive class is a true class while the negative class is an assortment of all other
classes. This explains the asymmetry in the classification accuracies.

Figure 7.1 presents the ROC curves for the representative kernels reported above,
and compares them with those from CE [21]. The NPS kernels (Figs. 7.1a and b)
perform worse than CE. However, some of the naive alignment kernels (Figs. 7.1c
and d) perform comparatively with CE till 30% of the false positives. After which
their performance declines.

Interestingly, the positive semidefinite alignment kernels perform much better
than CE for low false positive rates. For example, the positive semidefinite weighting
kernel gives ∼85% true positives at 25% false positives, while CE gives only about
60% true positives at the same false positive level. However, CE performs better
than the kernel based classifiers at false positive rates >35%. Overall, some kernels
perform marginally better than CE (according to AUC reported in Table 7.3).

Table 7.4 reports the average results for different kernels over all types of kernels
and parameter values listed in Tables 7.1 and 7.2. All the observations made with the
representative results are also observed for the average results.

Variance in the performance is reported using maximum and minimum classifica-
tion accuracy of the classifiers. Some classifiers obtained using Kwt and Kcc(γ = 1)
show very low minimum classification accuracy. This is due to numerical problems
that arise due to the sequence-based kernel taking very low values.

It was observed that the variance in performance of the weighting kernels is much
higher than the comvex combination kernels. Thus, weighting kernels are much more



156 KERNELS ON PROTEIN STRUCTURES

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

FALSE POSITIVE RATE

T
R

U
E

 P
O

S
IT

IV
E

 R
AT

E

RECEIVER OPERATING CHARACTERISTIC (ROC)

Kwt

Kcc 0.8
Kcc 0.2
CE

Kwt

Kcc 0.8
Kcc 0.2
CE

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

FALSE POSITIVE RATE

T
R

U
E

 P
O

S
IT

IV
E

 R
AT

E

RECEIVER OPERATING CHARACTERISTIC (ROC)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

FALSE POSITIVE RATE

T
R

U
E

 P
O

S
IT

IV
E

 R
AT

E

RECEIVER OPERATING CHARACTERISTIC (ROC)

Kwt

Kcc 0.8
Kcc 0.5
Kcc 0.2
Kcc 0
CE

Kwt

Kcc 0.8
Kcc 0.5
Kcc 0.2
Kcc 0
CE

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

FALSE POSITIVE RATE

T
R

U
E

 P
O

S
IT

IV
E

 R
AT

E

RECEIVER OPERATING CHARACTERISTIC (ROC)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

FALSE POSITIVE RATE

T
R

U
E

 P
O

S
IT

IV
E

 R
AT

E

RECEIVER OPERATING CHARACTERISTIC (ROC)

Kwt

Kcc 1
Kcc 0.8
Kcc 0.5
Kcc 0.2
Kcc 0
CE

Kwt

Kcc 1
Kcc 0.8
Kcc 0.5
Kcc 0.2
Kcc 0
CE

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

FALSE POSITIVE RATE

T
R

U
E

 P
O

S
IT

IV
E

 R
AT

E

RECEIVER OPERATING CHARACTERISTIC (ROC)

(a) (b)

(c) (d )

(e) (f )

FIGURE 7.1 Representative results for Knps (def. 7.5.1), Knal (def. 7.5.2), Kpsdal (def. 7.5.3),
and CE [21]. Parts (a) and (b) show ROC curves for Knps with sequence and structure neigh-
borhoods, respectively. Parts (b) and (d) show ROC curves for Kmax with identity and blosum
amino acid kernels. Parts (e) and (f) show ROC curves for Kprdal with identity and blosum
amino acid kernels.

sensitive to variation in parameters than the convex combination kernels. This can be
attributed to a more profound effect of the multiplication operation.

From the above observations, we conclude that overall the kernels proposed in
this chapter provide a comprehensive and effective scheme for designing classifiers
for proteins having low sequence similarity. The weighting method generates more
accurate albeit sensitive classifiers than convex combination. Also, in the case of
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TABLE 7.4 Average Results for Knps (def. 7.5.1), Knal (def. 7.5.2), and Kpsdal (def. 7.5.3)

Area Under
Kernel (γ ) ROC Curve Max. Avg. Min. Max. Avg. Min.

Positive Acc. Negative Acc.

Neighborhood Pair Sum Kernels (Knps)
Sequence Neighborhood
Kwt 0.611 76.547 68.242 61.547 57.595 53.539 49.952
Kcc 0.2 0.587 70.380 65.011 61.619 55.571 51.692 49.761
Kcc 0.8 0.565 65.952 62.439 56.000 52.380 50.542 47.952

Structure Neighborhood
Kwt 0.608 78.000 68.357 62.666 57.333 53.571 50.404
Kcc 0.2 0.584 69.333 64.987 61.761 54.738 51.865 49.952
Kcc 0.8 0.565 65.666 62.325 55.904 53.000 50.717 46.809

Naive Alignment Kernels (Knal)
Identity Kernel
Kwt 0.549 74.857 59.175 45.976 62.523 52.678 44.738
Kcc 0 0.687 73.880 72.020 69.404 67.095 65.607 64.238
Kcc 0.2 0.685 73.785 72.042 69.071 67.309 65.512 63.619
Kcc 0.5 0.682 74.095 72.116 68.500 68.214 65.700 63.976
Kcc 0.8 0.652 74.857 72.210 69.190 67.904 65.430 63.333

Blosum Kernel
Kwt 0.678 75.011 72.886 58.857 67.571 62.610 44.630
Kcc 0 0.688 73.678 72.011 69.476 67.190 65.649 64.083
Kcc 0.2 0.685 73.392 71.853 69.523 66.821 65.248 64.000
Kcc 0.5 0.682 73.583 72.197 69.666 66.630 64.454 59.059
Kcc 0.8 0.652 73.809 70.581 56.214 65.166 59.934 47.178

Positive Semidefinite Alignment Kernels (Kpsdal)
Identity Kernel
Kwt 0.661 85.166 68.455 5.166 76.523 63.830 11.880
Kcc 0 0.689 85.309 74.658 68.928 75.214 63.098 56.357
Kcc 0.2 0.690 84.738 74.739 69.452 74.571 63.277 56.857
Kcc 0.5 0.690 85.190 74.807 69.452 74.880 63.371 56.261
Kcc 0.8 0.690 84.571 74.657 68.357 76.119 63.223 56.166
Kcc 1 0.525 77.738 53.774 0.000 70.238 50.732 2.714

Blosum Kernel
Kwt 0.709 85.071 76.617 70.476 74.714 65.458 58.261
Kcc 0 0.689 85.119 74.648 68.738 74.976 63.079 56.666
Kcc 0.2 0.688 83.214 74.488 68.547 74.380 63.070 56.261
Kcc 0.5 0.686 83.476 74.466 68.785 74.476 62.759 56.190
Kcc 0.8 0.677 83.380 73.866 69.071 75.047 61.819 55.761
Kcc 1 0.658 75.333 71.891 69.380 62.571 59.859 57.047
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convex combination kernels, kernels capturing structure information turn out to be
more effective for the current purpose than kernels capturing sequence similarity.

7.6.3 Comparison of Different Types of Neighborhood Kernels

This section studies the relative performance of different types of neighborhood
kernels developed in this chapter. Table 7.5 reports the average results for all types of
kernels, averaged over all parameter values and other types of kernels. More detailed
results are reported in the supplementary material.

We observe that average performance of various types of sequence neighborhood
kernels is similar for a given type of kernel on the whole protein. This can be
attributed to the fact that sequence information is not very useful for the present task.
Thus, different types sequence neighborhood kernels are restricted by the nature of
information provided to them.

The spectral structure neighborhood kernel is performing marginally better than
the pairwise distance structure neighborhood kernel. Except the naive alignment
kernel, the maximum accuracies achieved by spectral neighborhood kernel-based
classifiers is significantly higher than those achieved by pairwise distance neighbor-
hood kernel-based classifiers. For naive alignment kernels, their performances are
comparable. The reason that protein structures data is noisy by nature. The spectral
projections are more robust to noise than pairwise distances.

The variance in accuracy was also not found to be related to the type of neigh-
borhood kernel. Thus, we conclude that spectral kernels are slightly better than
pairwise distance kernels for the current task. A characterization of the sequence
neighborhood-based kernels for various kinds of tasks remains an open question.

7.6.4 Effects of Parameter Values

This section studies the effect of various parameter values on the classification ac-
curacy of the resulting kernels. There are two parameters in for the spectral kernel
Kspec(def. 7.4.4), α [Eq. (7.5)] and β (def. 7.4.4). The value of α is fixed at 10, which
is determined to be the optimal value in previous experiments [11]. β was allowed to
vary in the set indicated in Table 7.2. Table 7.6 reports average results on the different
types of kernels and various values of β. The pairwise distance kernel Kpd (def. 7.4.5)
has one parameter, σ (def. 7.4.5). The parameter σ was allowed to take values in the
set provided in Table 7.2. Table 7.7 reports average results for various vales of σ .
Detailed results are provided in the supplementary material.

For convex combination kernels, the parameter γ (def. 7.4.7) is varied to study the
effect of sequence- and structure-based kernels on classification accuracy. This study
was reported in Section 7.6.2 along with the average results. Results are presented in
Table 7.4. Hence, we do not repeat it here.

From Table 7.6, we observe that in most cases, the classifier accuracy increases
with decrease in value of β. This finding is in accordance with the result in Theorem 1,
which says that as β → 0, the value of Kspec approaches an increasing function of
the spectral alignment score, which was motivated to be a good measure of structural
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TABLE 7.5 Average Results for Different Types of Neighborhood Kernels

Kernel/ Area Under
Method ROC Curve Max. Avg. Min. Max. Avg. Min.

Positive Acc. Negative Acc.

Neighborhood Pair Sum Kernels (Knps)
Sequence Neighborhood
Krep [Eq. (7.9)] 0.585 75.880 65.044 55.785 55.690 51.711 48.809
Kperm (def. 7.4.3) 0.597 77.380 66.218 60.809 57.857 52.807 49.761
Kdiral (def. 7.4.1) 0.582 74.857 64.874 54.857 55.833 51.485 47.238
Kspec (def. 7.4.4) 0.593 75.666 66.129 56.214 57.071 52.704 47.547
Kpd (def. 7.4.5) 0.582 71.809 64.696 60.357 54.166 51.540 49.166

Structure Neighborhood
Krep [Eq. (7.9)] 0.583 77.309 64.923 56.666 57.119 51.832 46.642
Kallpair (def. 7.4.2) 0.584 74.500 54.876 57.428 55.380 51.907 47.714
Kperm (def. 7.4.3) 0.593 77.357 65.907 60.904 55.904 52.114 49.309
Kspec (def. 7.4.4) 0.596 76.738 66.198 56.190 57.309 52.609 48.261
Kpd (def. 7.4.5) 0.582 69.761 64.830 60.952 54.166 51.820 50.095

Naive Alignment Kernels (Knal)
Identity Kernel
Krep [Eq. (7.9)] 0.646 73.690 68.595 48.261 66.809 62.278 47.547
Kallpair (def. 7.4.2) 0.667 73 666 71.707 65.690 67.047 64.671 57.976
Kperm (def. 7.4.3) 0.678 73.904 72.014 69.142 68.904 65.715 63.380
Kdiral (def. 7.4.1) 0.638 74.190 67.989 45.142 67.571 61 .728 44.690
Kspec (def. 7.4.4) 0.642 74.071 68.696 45.119 68.428 62.721 46.096
Kpd (def. 7.4.5) 0.659 74.119 69.948 48.857 67.714 63.283 46.595

Blosum Kernel
Krep [Eq. (7.9)] 0.676 74.357 71.900 58.559 66.440 63.528 48.452
Kallpair (def. 7.4.2) 0.681 75.345 72.202 60.047 67.654 64.310 48.297
Kperm (def. 7.4.3) 0.673 75.190 71.800 57.369 66.904 63.116 44.035
Kdiral (def. 7.4.1) 0.675 74.714 71.982 58.845 66.690 63.241 48.202
Kspec (def. 7.4.4) 0.669 74.642 71.038 57.833 65.692 62.912 43.726
Kpd (def. 7.4.5) 0.685 74.345 72.930 71.059 67.595 64.225 55.702

Positive Semidefinite Alignment Kernels (Kpsdal)
Identity Kernel
Krep [Eq. (7.9)] 0.675 84.642 71.228 61.428 74.500 63.567 56.785
Kallpair (def. 7.4.2) 0.704 85.023 75.800 68.5 74.690 64.938 55.880
Kperm (def. 7.4.3) 0.648 84.952 69.375 4.880 76.261 60.275 12.166
Kdiral (def. 7.4.1) 0.708 84.595 75.923 69.500 75.071 65.743 57.261
Kspec (def. 7.4.4) 0.610 84.904 74.517 4.571 75.404 65.598 13.142
Kpd (def. 7.4.5) 0.669 79.261 71.756 4.809 75.976 61.917 11.476

Blosum Kernel
Krep [Eq. (7.9)] 0.683 84.404 74.261 69.428 75.214 62.427 56.880
Kallpair (def. 7.4.2) 0.678 84.785 73.847 69.309 74.523 61.905 56.642
Kperm (def. 7.4.3) 0.696 84.928 75.477 69.214 74.666 63.808 56.880
Kdiral (def. 7.4.1) 0.682 85.357 74.051 69.119 74.523 62.299 57.452
Kspec (def. 7.4.4) 0.704 85.285 76.120 69.285 75.523 64.945 56.023
Kpd (def. 7.4.5) 0.664 77.928 72.706 69.500 70.142 60.503 56.357



160 KERNELS ON PROTEIN STRUCTURES

TABLE 7.6 Average Results for the Parameter β

Area Under
β (def. 7.4.4) ROC Curve Max. Avg. Min. Max. Avg. Min.

Positive Acc. Negative Acc.

Neighborhood Pair Sum Kernels (Knps)
Sequence Neighborhood
0.001 0.578 67.285 63.618 60.904 55.095 51.571 49.642
0.0001 0.606 78.666 67.848 54.380 58.309 53.616 47.214

Structure Neighborhood
0.001 0.583 67.928 64.195 60.071 54.380 52.021 49.690
0.0001 0.606 76.261 67.494 55.785 57.904 53.608 47.880

Naive Alignment Kernels (Knal)
Identity Kernel
0.05 0.655 72.880 68.511 51.857 66.214 62.536 48.023
0.01 0.656 73.404 68.670 52.785 65.357 62.281 45.642
0.005 0.655 72.642 69.251 52.428 65.571 62.051 45.571
0.001 0.605 73.796 69.348 47.119 68.095 63.694 47.428

Blosum Kernel
0.05 0.679 74.690 71.383 69.440 66.250 64.429 60.880
0.01 0.680 75.130 71.788 69.630 65.333 64.207 61.190
0.005 0.678 74.714 72.095 71.023 65.773 63.640 61.869
0.001 0.640 72.869 69.334 56.250 65.333 58.964 43.952

Positive Semidefinite Alignment Kernels (Kpsdal)
Identity Kernel
0.005 0.653 77.500 70.499 58.523 69.309 60.180 56.476
0.001 0.693 79.738 74.127 58.571 71.380 64.673 62.500
0.0005 0.713 82.833 75.266 8.357 74.119 67.299 15.761
0.0001 0.744 85.785 78.595 4.380 75.833 70.448 12.238

Blosum Kernel
0.005 0.642 75.261 70.445 69.095 63.285 58.236 56.428
0.001 0.688 78.595 74.700 70.142 68.404 63.219 57.738
0.0005 0.729 82.142 78.200 69.857 72.785 67.957 57.880
0.0001 0.755 85.380 80.809 68.857 75.500 70.411 57.571

similarity in Section 7.3.2. The decrease in average performance with a decrease in
β, in the case of naive alignment kernels, is due numerical errors in some of the
kernels, which is evident from the < 50% minimum classification accuracy (which
is achieved by a random classifier).

We also observe that the variance in classification accuracy increases with decrease
in the value of β. This results because we make the kernel more sensitive to difference
in spectral projection values by the decreasing value of β. Thus, even for small noise in
the spectral projections, the kernel value turns out to be zero and does not contribute
toward making better classifications. Thus, even though some classifiers are very
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TABLE 7.7 Average Results for the Parameter σ

Area Under
σ (def. 7.4.5) ROC Curve Max. Avg. Min. Max. Avg. Min.

Positive Acc. Negative Acc.

Neighborhood Pair Sum Kernels (Knps)
Sequence Neighborhood
8 0.591 70.690 66.042 63.809 54.976 52.176 50.571
10 0.583 67.166 64.200 62.547 53.309 51.375 49.666
12 0.575 68.595 64.346 62.500 54.238 51.358 49.666

Structure Neighborhood
8 0.589 69.023 66.076 64.296 53.880 52.118 50.190
10 0.583 68.357 64.648 61.880 54.476 51.460 49.333
12 0.574 68.714 63.882 62.095 53.142 51.216 48.976

Naive Alignment Kernels (Knal)
Identity Kernel
10 0.653 73.357 69.826 49.095 67.880 63.823 47.928
11 0.658 74.095 69.894 48.404 66.531 63.651 49.071
12 0.662 73.952 70.466 52.333 67.952 63.324 46.000
15 0.664 74.285 69.752 52.571 66.333 63.073 47.142

Blosum Kernel
10 0.678 73.976 72.644 71.083 67.404 63.160 56.266
11 0.686 74.619 72.959 71.952 66.964 64.406 58.952
12 0.687 74.357 73.066 72.095 66.738 64.421 60.904
15 0.687 74.785 72.812 71.750 66.678 64.774 61.666

Positive Semidefinite Alignment Kernels (Kpsdal)
Identity Kernel
5 0.674 79.142 71.167 5.523 71.476 63.485 11.666
8 0.672 78.523 72.281 60.119 74.952 62.029 58.210
9 0.667 78.571 71.923 61.357 76.404 61.644 57.190
10 0.664 79.119 71.663 60.000 71.642 61.480 56.214

Blosum Kernel
5 0.688 77.904 74.197 69.500 70.023 63.873 58.571
8 0.661 75.642 72.565 70.285 66.071 59.793 57.857
9 0.654 75.619 71.927 69.952 64.119 58.853 57.047
10 0.653 75.261 71.667 70.000 64.047 59.090 57.452

good, a lot of them are highly sensitive to the noise in data. This results in a wide
variance in the classifier performance.

Table 7.7 reveals similar trends with σ as shown in Table 7.6 with β. As suggested
by Theorem 2, an increase in the value of σ results in a decrease in classification
performance. For naive alignment kernels, the performance does not vary much.

However, the increase in variance is not apparent for the current set of parameters.
This is due to the fact that the range of parameters chosen for experimentation was
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not sufficiently extreme to induce numerical instability in most kernels. This is also
supported by the fact that minimum classification accuracy is fairly high in most
kernels.

From these observations, we conclude that in accordance with theorems described
in Section 7.4.2, decreasing values of β and σ increases the classifier performance,
but also makes the classifier more sensitive to noise in data.

7.6.5 Comparison with the Spectrum Kernel

Section 7.5.1 shows that the spectrum kernels [5] turn out to be a special case of
our kernels, when restricted to using sequence information alone. We implemented
mismatch kernels [5,49] of which spectrum kernels are a special case and performed
similar experiments on our dataset as we did for validating the kernels developed
here. This was done to ascertain the difficulty of the our task, and to demonstrate that
structure information is highly useful in the context such a task. This section reports
results from these experiments.

The spectrum kernels are a special case of mismatch kernels for which the number
of allowed mismatches is 0. We experimented with the window sizes of 4 and 5, and
allowed mismatch of 0 and 1. The original authors reported that spectrum kernels
performed best for window size 4 [49], which was reconfirmed in our experiments.

Table 7.8 reports the results from experiments conducted with spectrum kernels,
the best result obtained used a positive semidefinite alignment kernel using sequence
information only (Kpsdal(seq)), overall best result obtained using positive semidefinite
alignment kernel (Kpsdal(best)), and CE [21]. It is clear that even the best performing
spectrum kernel performs quite poorly on the current task, thereby demonstrating the
difficulty of the current task and emphasizing the need to use structure information.
It can also be observed that using alignment information along with only sequence
based kernels (Kpsdal(seq)), considerably improves the classification accuracy. Also,
using the structure information in neighborhood pair sum kernels, of which spectrum
kernels are a special case, improves the classification performance (AUC: 0.676
Table 7.3). Finally, both CE and Kpsdal(best) achieves reasonable accuracies on the
same task.

Figure 7.2 shows ROC curves for the spectrum kernels and for other representative
kernels–methods used here. The spectrum kernels perform worse than the other meth-
ods at all points of the curve. Also, the spectrum kernel with window size 4 performs
better than other spectrum kernels at all points on the ROC curve, which complies
with the results reported in [49]. Thus, we conclude that the current task is quite
difficult for the traditional kernels and the methods developed here outperform them.

7.7 DISCUSSION AND CONCLUSION

This chapter explores construction of kernels on protein structures by combining
kernels on neighborhoods. We defined two types of neighborhoods, and kernels
on each type of neighborhood, utilizing both sequence and structure information.
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TABLE 7.8 Results for Classification With Spectrum Kernels and
Other Methods Compared Above

Kernel (Parameters)/ Area Under
Method ROC Curve Positive Acc. Negative Acc.

Kspec4, 0 0.621 63.285 61.595
Kspec4, 1 0.584 58.904 57.690
Kspec5, 0 0.551 57.047 54.714
Kspec5, 1 0.545 56.357 52.166
Kpsdal(seq) 0.714 77.190 66.023
Kpsdal(best) 0.800 85.380 74.142
CE 0.782 96.685 61.171

We also explored two different ways of combining these kernels to get kernels on
neighborhoods.

The neighborhood kernels were combined in mainly two ways to form kernels
on entire protein structures: by adding similarity between all pairs of neighborhoods
(Knps), and adding similarity between equivalent pairs of neighborhoods (Knal and
psdal). The NPS kernels do not require any structural alignment information while the
other kernels require structural alignment.

Experiments conducted on the well-known structural classification benchmark
SCOP [12] show that the alignment kernels perform reasonably accurately on the
difficult task of classifying 40% sequence nonredundant data set. Some of them
also outperformed the well known structural alignment program CE [21]. Thus, the
kernels developed here can be useful for real-life bioinformatics applications.

Various experiments with the kernels confirmed that they behave predictably with
respect to various parameters. For example, in Section 7.4.2, it was predicted that
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FIGURE 7.2 Results for spectrum kernels and other kernels–methods reported above.
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decreasing the values of β and σ will increase the classification accuracy to a point
where numerical errors start reducing them. It was validated by experimental results
in Section 7.6.4. Also, as expected, structural information was found to be more
effective for the current task than sequence information.

The NPS kernels are designed from basic principles to capture structure and
sequence information in proteins, and do not require any structural alignment. This
approach is in contrast with the approach taken in [16], which essentially tries to make
a positive semidefinite kernel out of the MAMMOTH similarity score. In spite of
these advantages, NPS kernels have high computational complexity and are not very
accurate. An interesting problem is to improve the accuracy of such kernels without
increasing the time complexity. Another interesting approach could be to train a
probabilistic model for protein structures and define fisher kernels [6] on the same.

The Knps were shown to be analogous to the spectrum kernels in the sense that
when restricted to use only sequence information, they turned out to be the normalized
versions of the spectrum kernels. However, while the neighborhood pair sum kernels
do not perform as well as the structure alignment algorithms (CE), the spectrum kernel
is reported to be performing comparably with the sequence alignment algorithms (e.g.,
BLAST or Smith–Waterman [49]).

We have defined various sequence based kernels on neighborhoods, following var-
ious interpretations of the sequence neighborhoods (e.g., sets, strings, structures, etc.).
However, not much variation was observed in performance of each of these types of
kernels. The reason for this is that sequence information is not sufficient for achieving
good accuracy on the current task. It will be interesting to see how these sequence
based kernels on neighborhoods fare on different types of sequence processing tasks,
when combined in a manner analogous to the ones described in this chapter.

In summary, we have described neighborhood based kernels, which form a rea-
sonably broad class of kernels. Even though the kernels described here were designed
for protein structures, we believe the same design principles can be applied to design
kernels on general attributed pointsets [10].

APPENDIX A

A substructure N A
i of protein P A centered at residue i is a set of l residues that are

closest to residue i in 3D space, l being the size of substructures being considered.
Thus, N A

i = {pA
j ∈ P A|pA

k �∈ N A
i ⇒ ‖pA

j − pA
i ‖ ≤ ‖pA

k − pA
i ‖ and |N A

i | = l}. The
robust algorithm for comparing protein structuresP A and P B is

1. Compute the substructures centered at each residue for both proteins P A and
P B .

2. For each pair of substructures, one from each protein, compute the alignment
between the substructures by solving the problem described in Eq. (7.6).

3. For each substructure alignment computed above, compute the optimal trans-
formation of the sub-structure from P A onto the one from P B . Transform the
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whole of P A onto P B using the computed transformation, and compute the
similarity score between residues of P A and P B .

4. Compute the optimal alignment between P A and P B by solving the assignment
problem using the similarity score computed above.

5. Report the best alignment of all the alignments computed in the above step as
the optimal one.

The substructure-based algorithm relies on the assumption that the optimal structural
alignment between two protein structures contains at least one pair of optimally and
fully aligned sub-structures, one from each of the proteins. For each substructure
alignment computed in step 2 above, the optimal transformation superposing the
corresponding residues is calculated using the method described in [31]. The “best”
alignment mentioned in step 5 is decided on the basis of both RMSD and the length of
alignment. A detailed description and benchmarking of the method will be presented
elsewhere.
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CHARACTERIZATION OF
CONFORMATIONAL PATTERNS
IN ACTIVE AND INACTIVE FORMS
OF KINASES USING PROTEIN
BLOCKS APPROACH

G. Agarwal, D. C. Dinesh, N. Srinivasan, and
Alexandre G. de Brevern

8.1 INTRODUCTION

The three-dimensional (3D) structure, which is critical for the function of a pro-
tein is usually conserved during evolution. It holds a wealth of information that
can be harnessed to understand various aspects of proteins including sequence–
structure–function–evolutionary relationships. The understanding of these complex
relationships is facilitated by a simplistic one-dimensional (1D) representation of the
tertiary structure like a string of letters. The advantage is an easier visualization with-
out losing much of the vital information due to dimension reduction. Using various
methodologies, local structural patterns that can be combined to generate the desired
backbone conformation have been identified that use atomic coordinates characteris-
ing 3D structures of proteins. Protein blocks (PBs) is a set of 16 such local structural
descriptors, denoted by letters a . . . p that have been derived using unsupervised ma-
chine learning algorithms and can approximate the 3D space of proteins. Each letter
corresponds to a pentapeptide with distinct values of eight dihedral angles (�,�).

We demonstrate the use of PBs to characterize structural variations in enzymes
using kinases as the case study. A protein kinase undergoes structural alterations
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as it switches to its active conformation from its inactive form. Crystal structures
of several protein kinases are available in different enzymatic states. First, we have
applied the PBs approach in distinguishing between conformation changes and rigid-
body displacements between the structures of active and inactive forms of a kinase.
Second, we have performed a comparison of conformational patterns of active forms
of a kinase with the active and inactive forms of a closely related kinase. Third, we
have studied the structural differences in the active states of homologous kinases. Such
studies might help in understanding the structural differences among these enzymes
at a different level, as well as guide in making drug targets for a specific kinase.

Section 8.1.1 and Section 8.1.2 give a brief introduction on PBs and protein kinases,
respectively, followed by the analyses on conformational plasticity in kinases using
PBs in the subsequent sections.

8.1.1 An Introduction to Protein Blocks

The tertiary structure of a protein is complex and is formed by a specific arrangement
of regular secondary structures, namely, helices and strands connected by less regular
coils. Combinations of secondary structures in specific arrangements, called motifs,
are frequently observed in proteins and are associated with specific functions; EF hand
and helix–turn–helix motifs are some of the examples. These motifs are patterns that
can act as functional signatures. Although the three-state representation (α-helix,
β-strand, and coil) has been used for various structural analyses, it suffers from cer-
tain limitations. The description lacks the detailed information on relative orientation
of secondary structures and ambiguity in assigning their beginning and end and pre-
cise definition of distinct conformations that are collectively classified as coils. Thus,
it fails to capture the subtle variations in structures of closely related proteins. In
addition, it lacks the information required to reconstruct the backbone of a protein
structure. The depth of knowledge gained through the analysis of 3D structures is
partly dependant on the details and accuracy of the representation. The description of
protein structures as secondary structural elements is an oversimplification. There-
fore, elaborate local structures that can describe a protein structure more precisely
have been derived without using any a priori information on 3D structures. The more
detailed descriptors were to serve two purposes. First, a combination of these frag-
ments, like building blocks, would be able to approximate the backbone conformation
of known structures. The higher the number of these fragments in a library, the more
precise is the description. Second, they would be useful in understanding sequence–
structure relationships and in predicting a fold solely from its sequence. However,
fewer fragments would be better for adequate prediction of such relationships. The
number of fragments in a library is a compromise between the two requirements.

Many groups have derived libraries of short protein structures called structural
alphabets [1]. These libraries differ in the methodologies used to derive fragments
and in the parameters used to describe these fragments [2–11]. The description
parameters include the Cα coordinates, Cα distances, and dihedral angles that are
used by methods like hierarchical clustering, empirical function, artificial neural
network, hidden Markov model, and Kohonen maps for classification. These libraries
differ in length of the fragments and the number of prototypes used to describe them.
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One such library of local structural descriptors are PBs, which are highly infor-
mative and have proved to be useful in various applications. It is a set of 16 structural
prototypes named as a to p, each describing a five residue peptide [8]. Thus, each of
the 16 prototypes is defined by a set of 8 dihedral angles. The PBs d and m roughly
represent the backbone of strand and helix, respectively. The prototypes a to c are
associated with the N-caps of the β strand and e to f to its C-caps. The PBs k to l and
n to p, respectively, describes the N- and C-caps of α helix and g to j represent PBs,
which can be associated with coils. These have been identified using unsupervised
machine learning algorithm [8]. The dihedral angles were calculated for each of the
overlapping fragment, five residues long, extracted from a nonredundant set of pro-
tein structures. The difference in the values of the angles among these fragments was
scored using root-mean-square deviation on angular (RMSDA [7]) values. An unsu-
pervised approach related to self-organizing map (SOM [12]) was trained to learn
the difference in structural fragments using RMSDA as the distance metric and also
the transition probabilities between fragments in a sequence. The process resulted
in generation of 16 prototypes. It can approximate the local backbone conformation
with an RMSD of 0.42 Å [13]. Figure 8.1 shows the 3D structure of ubiquitin con-
jugating enzyme [14] transformed into a 1D PB sequence. The PBs approach has
proved useful in various kinds of analyses as described below, and at present it is the
most widely used structural alphabet.

(b)(a)

(c)

FIGURE 8.1 Transformation of a 3D structure of ubiquitin conjugating enzyme (PDB code
2AAKv [14]) to its 1D PBs sequence. (a) A 3D representation of 2AAK. (b) Focuses on the
loop region and correspondence in terms of PBs, with PBs gcehia. (c) The complete structure
encoded in terms of PBs, the loop region in (b) is boxed. This figure and Figures 8.2, 8.5, and
8.8 have been generated using PyMOL [15].
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While the superposition of 3D structures is complex, two structures encoded as
a string of PBs can be aligned through a simple dynamic programming algorithm.
The PB-ALIGN algorithm, which uses dynamic programming and PB-specific sub-
stitution table to align two PB sequences, has been developed [16,17]. A substitution
matrix specific to blocks, which contains the probability of substitution of a PB by
any of the 16 PBs, has been generated. The PALI database [18], containing structure-
based sequence alignment of homologous protein structures in every SCOP family,
was used to generate the matrix. The frequency of substitution for every PB was
calculated for all topologically equivalent regions and normalized by the occurrence
of blocks in the database. Apart from aligning two structures (see Fig. 8.2), the
PB-ALIGN algorithm has also been used successfully in database mining to iden-
tify proteins of similar structure [21]. The PB approach also has been applied in
identifying Mg2+

binding sites in proteins [22].
Protein Blocks are five residue long fragments. To assess the structural stability

of these short fragments, we identified the most frequent series of five consecu-
tive PBs. They proved their capabilities to describe long length fragments [23]. A
novel approach named the hybrid protein model (HPM) was developed [24,25]. This
innovative approach made it possible to create longer prototypes that are 10–13
residues in length. Alongside, the number of prototypes has increased significantly
to take into account structural variability for these longer fragments (e.g., 100–130
prototypes). These longer fragments were used to perform simple structural superim-
position [26], methodological optimization [24], and analysis of sequence–structure
relationships [25,27].

Prediction of protein structure from sequence alone is still a challenging task.
Protein Blocks have been used not only to predict short loops [28], but also global
structures [29]. The accuracy with a simple Bayesian approach reached 34.4% [8]; it
was improved to 48.7% [30]. Recent developments have been made by other teams.
Li et al. proposed an innovative approach for PB prediction, taking into account the
information on secondary structure and solvent accessibilities [31]. Interestingly their
approach was found to be useful for fragment threading, pseudosequence design, and
local structure predictions. Zimmermann and Hansmann developed a method for PB
prediction using support vector machines (SVMs) with a radial basis function kernel,
leading to an improvement of the prediction rate of 60–61% [32].The prototypes of
HPM have also been used in different prediction approaches [25,33].

Apart from its application in the approximation of protein backbone, comparison
of protein structures and prediction of local backbone structures as mentioned above,
the PB approach also has been used to build transmembrane protein structures [34],
to design peptides [35], to define reduced alphabets for designing mutants [36], and
to analyze protein contacts [37].

8.1.2 An Introduction to Protein Kinases

Protein phosphorylation is an important regulatory mechanism used by cells to re-
spond to external stimuli (e.g., neurotransmitters, hormones, or stress signals). Protein
kinases are enzymes that phosphorylate the target protein by transfer of γ phosphate



INTRODUCTION 173

FIGURE 8.2 Protein structure superimposition using PB-ALIGN [17]. First, the protein
structures are encoded in terms of PBs. In this example, the two proteins are the ubiquitin
conjugating enzyme (cf. Fig. 8.1) and a ubiquitin protein ligase (PDB code 1Y8X [19]). Then,
using global and / or local alignment, in a similar way to CLUSTALW [20], the two PB
sequences are aligned. Identical (*) and similar (#) PBs have been underlined. The protein
structures are easily superimposed from this PB sequence alignment.

of an adenosine triphosphate (ATP) molecule. The target proteins include enzymes
(e.g., glycogen synthase and other kinases); transcription factors (e.g., c-Jun) and non-
enzymatic proteins (e.g., histones) that are involved in distinct signaling pathways
linked to metabolism, gene expression, cell motility, cell division, cell differentiation,
and apoptosis. Phosphorylation of target protein alters its subcellular localization, ac-
tivity levels or its association with other proteins, affecting the downstream processes
in the signaling pathway. Since kinases are key players in the regulation of these
processes, a tight regulation of their activity is crucial for normal functioning of an
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organism. A few mechanisms to regulate kinases have been described in the following
paragraphs.

Based on the identity of amino acid phosphorylated in the target, protein kinases
have been broadly categorized into (1) serine–threonine, (2) tyrosine, and (3) dual-
specificity kinases, which can phosphorylate serine–threonine, tyrosine, and any of
the three residues, respectively. Phosphorylation at other residues (e.g., histidine,
lysine, arginine, cysteine, and aspartate) have also been reported in the literature.
Serine–threonine and tyrosine kinases form the largest protein family in many eu-
karyotes and share a common 3D catalytic domain. A classification of kinases based
on sequence similarity of the catalytic domain has been proposed [38]. The seven ma-
jor groups are (1) AGC (protein kinases A, B, and C), (2) CMGC (cyclin-dependant
kinase, map kinase, glycogen synthase kinase 3, casein kinase II), (3) CaMK (Ca2+,
calmodulin kinase), (4) PTK (protein tyrosine kinase), (5) TKL (tyrosine kinase-like
kinases), (6) STE (a family including many kinases from MAPK cascade), (7) OPK
(other protein kinase). Each group contains various families and subfamilies, whose
details are beyond the scope of this chapter. The reader can refer to various resources
on kinases mentioned at the end of the chapter [39,40].

The kinase catalytic domain, which is 250–300 residues long, is well conserved
among serine–threonine and tyrosine kinases. It can be divided into two subdomains:
N-terminal lobe, formed mainly from a five-stranded sheet and a helix called an
αC helix and a C terminal lobe, which is predominantly helical. Several conserved
motifs important for catalytic activity have been characterized. Figure 8.3 highlights
the important regions and the crucial residues required for catalysis. The ATP binding
and the catalytic site are located between the two subdomains. A highly conserved
P loop, which contains a glycine-rich motif, GXGXϕG, formed by two antiparallel
strands (β1 and β2) connected by a loop, binds to the phosphate group of ATP in
the ATP binding cleft. The Gly residue provides flexibility and ϕ is usually a Phe
or a Tyr residue that caps ATP. An invariant lysine, located in the β3 strand, orients
α and β phosphates of ATP for phosphotransfer and also forms a catalytic triad
through ionic interactions with Asp (184 in protein kinase PKA) and Glu (91 in
PKA) that are located in the αC helix. These interactions are important to maintain
kinase in its active state. Catalytic loop, part of the C-terminal lobe, contains an Asp
residue that acts as a base and phosphorylates the OH group of the substrate. The
activation loop present in the C-terminal lobe is phosphorylated when a kinase is
in an active state. This causes stabilization of the loop conformation allowing the
binding of substrate. The DFG motif in a typical kinase structure lies N-terminal to
the activation loop, D in this motif interacts with the Mg2+ ion. The C-terminal end of
the activation loop is marked by a conserved APE motif. The Glu forms electrostatic
interactions with a conserved Arg residue. Another important interaction responsible
for stabilization of the catalytic loop is formed between the Tyr and Arg residues. The
placement of the DFG motif and phosphorylation sites vary among different kinases.
The phosphorylation site and the nearby residues form a signature, specific for each
kinase, that acts as a peptide positioning region.

The fact that protein kinases regulate important cellular processes necessitates
a tight regulation of activation in these proteins. The enzymes are usually kept
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Mg-ATP

Lysine-72

Glutamate-91

αC Helix

Aspartate-184

Aspartate-166

Peptide Inhibitor

P-Loop

Activation Loop

Catalytic Loop

FIGURE 8.3 The catalytic domain of kinase. The motifs important for ligand binding and
catalysis have been marked. The key residues important for function are shown as sticks.
Mg-ATP is shown as spheres.

“off” and the activation is under multiple layers of control. Few important modes of
regulation of these enzymes are described [39]. (a) The binding of extracellular
ligands to receptors–ion channels leads to a change in the concentration of sec-
ondary messengers including small molecules: adenosine 3′: 5′-cyclic monophos-
phate (cAMP), guanosine 3′: 5′-cyclic monophosphate (cGMP); lipid secondary
messengers: diacylglycerol, phosphatidylinostiol, 3,4,5-triphosphate, and Ca2+. Most
secondary messengers such as cAMP, for example; exert their effect through allosteric
binding to additional domains–subunits in kinases as in PKA and Ca2+–calmodulin
activation as in CaMK. The secondary messengers-dependant kinases, in the ab-
sence of secondary messengers, are kept in the inactive state by association with
autoinhibitory regions. (b) The catalytic subunits in cyclin-dependant kinases, for
example, are activated only after their association with regulatory subunits (e.g., cy-
clins) whose level of expression varies depending on the functional state of the cell.
(c) In Src kinases, for example, additional domains (e.g., SH2 and SH3) target the en-
zyme to different subcellular localization. (d) In receptor kinases, the external signal
induces oligomerization of receptors leading to autophosphorylation of intracellular
domains. The autophosphorylated site may serve as a docking site for accessory
proteins leading to the activation of downstream processes in the signaling cascade.
(e) Many protein kinases are activated by phosphorylation in sites located mainly
in the activation loop of the catalytic domain or sometimes in regions beyond the
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catalytic domain or in another subunit. The signaling events are tightly regulated not
only to activate a molecule from an “off” state, but also to limit the lifetime of active
moieties. Even a slight perturbation in regulation can have severe consequences. The
deregulation of kinases has been linked to diseases like cancer and diabetes. Various
kinases, like MAP kinase, c-Src, c-Abl, PI3 kinase, and EGF receptor are known to
be activated in cancer genes. The use of kinases as potential drug targets has been
accelerated especially after the success of Gleevac (Novartis), an inhibitor of protein
tyrosine kinases for anti-cancer therapy.

Kinases act as molecular switches and exist in two distinct conformational states:
the “on” state, the high-activity form and “off” state, low-activity form [41]. We have
compared the two states and characterized the structural alterations into rigid-body
displacements and conformational variations by using the PBs approach. The analysis
is presented in Section 8.2.

8.2 DISTINGUISHING CONFORMATIONAL VARIATIONS FROM
RIGID-BODY SHIFTS IN ACTIVE AND INACTIVE FORMS OF A KINASE

The data set considered for this analysis includes crystal structures solved for var-
ious kinases in their active and inactive forms [42,43]. For each kinase, its active
and inactive forms were superposed using a robust structural alignment algorithm,
MUSTANG [44]. The regions that correspond to high deviation in their Cα position
were identified by calculating Cα–Cα deviation values for every pair of equivalent
residues in the two aligned protein structures. Also, each of the two structures was
encoded as a string of PBs. The two PB sequences were then mapped onto the struc-
tural alignment previously generated using MUSTANG. A score was assigned to all
positions where the deviation in Cα positions is high, by using the substitution table
for PBs [16]. The variable regions, which have undergone only rigid-body move-
ments, will be reflected as high PB scores. Since the local structure has remained
the same and has only shifted, the corresponding PBs would be identical or highly
similar giving a positive score for the alignment region. On the contrary, a low PB
score would indicate differences in the properties of aligned PBs indicating a con-
formation change at the structurally variable region. This approach was applied to
analyze the structural differences in the two forms of various kinases and the results
for individual cases are discussed below.

8.2.1 Insulin Receptor Kinase

Insulin receptor kinase is a transmembrane protein tyrosine kinase receptor that
regulates pathways involved in cell metabolism and growth. A switch from its inactive
to active form requires binding of insulin in the extracellular domain. The signal of
ligand binding is transmitted to the catalytic domain located in the cytosolic side.
The response to the signal includes autophosphorylation of tyrosine residues in the
activation loop of the kinase domain. Phosphorylation of insulin response substrates
by activated kinases leads to the activation of downstream molecules in the signaling
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FIGURE 8.4 A plot of Cα–Cα deviation and PB score versus the alignment position for the
aligned structures of distinct states of insulin receptor kinase (IRK). The regions corresponding
to conformational variations and rigid-body shifts are indicated as filled and open boxes,
respectively.

pathway. Crystal structures of human IRK in both the active (PDB code 1IRK, [43])
and inactive forms (1IR3,[46]) have been reported. Figure 8.4 shows a plot of Cα–
Cα deviation values and PB scores corresponding to each position in the alignment
of the active and inactive forms of kinases. The regions with high deviation of Cα

positions and high PB scores that correspond to rigid-body shifts are indicated in
open rectangles. The regions with high deviation and low scores that correspond to
conformational differences are indicated in filled rectangles. The regions of structural
variations in the two forms of IRK have also been marked in Figure 8.5(a). The
rigid-body shifts are shown in dark gray and conformational variations are in black.
These observations are consistent with structural variations in IRK reported in the
literature. In the inactive form, the activation loop is in an autoinhibitory conformation
preventing the binding of substrate and restricting the access of an ATP molecule.
Phosphorylation of three tyrosine residues in the activation loop of the protein results
in a large displacement in the loop that is as high as 30 Å. Overall, there is a
rigid-body shift in the N-terminal domain that is prominent in β1 and β2 strands, P
loop connected to the strands, and αC helix [Fig. 8.5(a)]. The residues in nucleotide
binding (P loop) form contacts with phosphates of ATP bound at the active site. A
small region in P loop motif undergoes slight conformational change as reflected
from the scores in the blocks alignment. The movement of helix brings a conserved
Glu in close proximity to Lys in the ATP binding site [45]. These structural alterations
together result in the alignment of residues for optimal interactions that are required
for catalysis.
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FIGURE 8.5 Superpositions of active and inactive states of various kinases. (a) Insulin
receptor kinase, (b) mitogen activated protein kinase (MAPK), (c) protein kinase A, (d)
cyclin-dependant protein kinase. The regions undergoing marked structural alterations have
been labeled.

8.2.2 Mitogen-Activated Protein Kinase

Mitogen-Activated Protein Kinase are serine–threonine specific kinases that control
embyogenesis, cell transformation, cell proliferation, cell differentiation, and apop-
tosis. The members of the MAPK family include ERKs, JNKs, and P38 kinases. The
ERKs are activated by mitogen and growth factors, while JNK and P38 are activated
in response to inflammatory cytokines, growth factors, and cellular stress. The dual
phosphorylation at Thr and Tyr in the TXY motif located in the activation loop causes
the switching of kinase to its active form. The activated kinases phosphorylate vari-
ous transcription factors, cytoskeletal elements, other protein kinases, and enzymes.
Since these enzymes mediate key events throughout the cell, they are drug targets
for a wide range of diseases including cancer and Alzheimer. The superposition
of the structures of active ERK2 (2ERK, [47]) and inactive state (1ERK, [48]) of
the enzyme are shown in Figure 8.5(b). Although, no marked rigid-body displace-
ments were observed, conformational variations were seen in nucleotide binding
loop (P loop), activation loop, and a C-terminal extension L16, a region specific to
MAPK. The N-terminal regions are disordered in both the protein structures. The
activation loop is the central regulator. Conformational change in the activation loop
brings the phosphorylated Ser and Tyr residues closer to an Arg that provides charge
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stabilization. One of the phosphorylated residues now sits between the two domains
facilitating domain closure while the other phosphorylated residue on the surface
forms the P+1 specificity site. A small loop region in inactive kinase in L16 changes
to a 310 helix in the active form. This conformation change was also captured by a
change in PBs between the active and inactive form that corresponds to loops and
helices, respectively. The conversion to helical structure brings a previously buried
Phe on the surface that now forms stacking interactions with a His in the activation
loop. The 310 helix promotes tighter interactions between the two domains. Also, the
exposure of previously buried Leu residues to solvent creates a hydrophobic patch
that facilitates homodimerization, known to be important for nuclear localization of
the enzyme. The MAPK insertion region does not undergo significant change. The
interaction of the phosphorylated region in the activation loop with the N-terminal
lobe and L16 orients the N- and C-terminal lobe.

8.2.3 Protein Kinase A

Protein Kinase A is a cAMP dependant protein kinase and plays a key role in
cellular response to this secondary messenger. The enzyme is a heterotetramer of
two regulatory and two catalytic subunits. Activation of the kinase is mediated by
binding of cAMP to the regulatory subunits with subsequent release of catalytic
subunits. The tertiary structures of active (1ATP, [49]) and inactive forms (1J3H, [50])
were superposed. The comparison of the alignment of the two structures revealed
structural alterations in the nucleotide binding loop, the αB helix, the αG helix,
and the activation loop [Fig. 8.5(c)]. The phosphorylation of the residues in the
activation loop switches the enzyme to its active form. The conformational change in
the activation loop is linked to adjustments in the rest of the structure to realign the
catalytically important residues for efficient phosphotransfer. The rigid-body shift in
the P loop brings the residues of this loop closer to ATP allowing the interactions with
α and β phosphate groups to form. The loop connecting the helices F and G is the
peptide-binding loop. Due to a shift in this loop and in the G helix, the residues in this
region can now extend the network of interactions from the substrate-binding region
to the active site allowing a communication between the distant regions promoting
catalysis.

8.2.4 Cyclin-Dependant Kinase

Cyclin-Dependant Kinase 2 (CDK2) is a serine–threonine specific kinase that coordi-
nates the events in eukaryotic cell cycle. The activation of the kinase requires binding
to cognate cyclin and phosphorylation in the activation segment in a two-step process.
The structure of phosphorylated CDK2 in complex with cyclin A and ATPγ S, the
fully active form (1JST [51]), was compared with the unphosphorylated, apo form
(1B38 [52]). Based on the PB scores, marked conformation changes were observed
in the T loop that contains the phosphorylation site analogous to the activation loop
in PKA. Other regions that undergo variations include the nucleotide-binding loop
and the loop connecting β3 to PSTAIRE helix [Fig. 8.5(d)]. High PB scores that
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correspond to rigid-body shifts were observed for β1 and β2 strands and β hairpin
connected to the PSTAIRE helix. Binding of cyclin results in variation in the acti-
vation segment and the PSTAIRE helix. The additional interactions formed by the
phosphorylated T segment with cyclin compared to the unphosphorylated segment
cause further stabilization of the complex. Binding of cyclin restores the interaction
between Lys in the β3 strand and Glu in the PSTAIRE helix. The PSTAIRE helix
seems to play a key role in regulation. The residues in this helix interacts with cyclin
and help in neutralization of charge at the phosphorylated site. Although an arginine
from the catalytic loop also helps in charge neutralization, no significant structural
alterations were observed in this region.

The above analyses indicate that different protein kinases share regions that un-
dergo structural variations to switch to their active forms. However, the nature of
structural alterations is not similar.

8.3 CROSS COMPARISON OF ACTIVE AND INACTIVE
FORMS OF CLOSELY RELATED KINASES

This section describes the analyses on comparison of active forms of a kinase with
the active and inactive forms of a closely related kinase. We show the results for two
closely related pairs: (1) PKA [active, 1ATP[49] and inactive, 1J3H [50]], protein
kinase B (PKB) [active, 1O6L [53] and inactive, 1MRV[54]]; (2) IRK [active, 1IRK
[45] and inactive, 1IR3 [46]], insulin-like growth factor receptor kinase (ILGFRK)
[active, 1K3A [55] and inactive, 1JQH [56]].

For each pair of closely related kinases, the active forms were aligned using
MUSTANG [44]. The structures of the active forms of kinases were also superposed
on the inactive form of a closely related kinase. The structures of each kinase were
transformed as PBs and mapped on the structure-based sequence alignments. For all
alignment positions where residues were aligned, the PB scores were calculated using
the PB substitution matrix. A normalized PB score was calculated after adding values
over the entire alignment and dividing by the number of residue–residue alignment
positions. The analysis revealed a high PB score for an alignment of the active forms
compared to the cross-comparison of the active and inactive forms for each pair of
closely related kinases. Additionally, the alignment of active and inactive forms of the
same enzyme scored lower than the pair of active kinases. The results are presented
in Figure 8.6.

The analysis indicates a higher global similarity in the active forms of closely
related kinases as compared to the active and inactive forms. This preliminary study
suggests a possibility of identifying the functional state of a kinase based on the PB
score obtained after its comparison with the other known states of the same enzyme
or its close homologs.

8.4 COMPARISON OF THE ACTIVE STATES
OF HOMOLOGOUS KINASES

In this analysis, the structures of the active forms of PKA, IRK, CDK2, and MAPK
have been compared. Although, the proteins share only 14% similarity in sequence,
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FIGURE 8.6 The plot highlights the difference in PBs score obtained after alignment of
active pairs and active–inactive pairs in closely related kinases. The positions in the plot that
refer to PB scores for active pairs are shown as dots and active–inactive pairs are indicated
as crosses. The notation for kinase pairs is as follows: (1) PKA active–PKB active compared
to PKA active–PKB inactive, (2) PKA active–PKB active compared to PKB active–PKA
inactive, (3) PKA active–PKB active compared to PKA active–PKA inactive, (4) PKA active–
PKB active compared to PKB active–PKB inactive, (5) IRK active–ILGFRK active compared
to IRK active–ILGFRK inactive, (6) IRK active–ILGFRK active compared to ILGFRK active–
IRK inactive, (7) IRK active–ILGFRK active compared to IRK active–IRK inactive, (8) IRK
active–ILGFRK active compared to ILGFRK active–ILGFRK inactive.

the structures of the active kinases share remarkable similarity. Figure 8.7 shows a
block of structure-based sequence alignment generated after simultaneous superpo-
sition of the structures of above mentioned kinases using MUSTANG [44] algorithm
and represented in JOY [57] format. As shown in Figure 8.7, the residues that play an
important role either in catalysis or in ligand binding are conserved: Gly-rich motif
in P loop; Lys in β3 strand that positions α and β phosphates of ATP for catalysis;
Glu in αC helix that forms ion-pair with Lys and is important for catalysis; catalytic
Asp, His, and Arg residues in the catalytic loop; conserved Asp in F helix (not shown
in the figure), and DFG and APE motifs in the activation loop. Although important
residues are aligned, certain regions holding these residues show high Cα–Cα devi-
ation with respect to equivalent regions in other kinases (see Fig. 8.8). The P loop in
PKA is shifted away compared to the loop in other kinases, which overlap better. The
representation as PBs shows dissimilarity in the properties of PBs corresponding to
this region suggesting a variation in local structure. There is a rigid-body shift in the
αC helix of IRK. The helix movement is known to be coupled to nucleotide binding
at the active site of the enzyme. The N-terminal DFG motif in IRK shows slight
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FIGURE 8.7 A multiple alignment of the structures of active kinases. The alignment has
been labeled for various regions. Secondary structures are marked in the figure; α corresponds
to α-helix, β refers to β-strand and 3 to 310 helix. The solvent inaccessible regions are shown
in upper case while buried regions are in lower case.

deviation compared to other kinases. This deviation corresponds to a conformational
variation. The activation segment differs in length and is conformationally distinct
among these kinases. The primary phosphorylation sites in these kinases do not lie
at topologically equivalent regions. The helices F and G are conserved.

The above analysis highlights the similarities and differences in the structures of
active forms of kinases through identification of regions of high Cα–Cα deviation
and their representation as PBs.

8.5 CONCLUSIONS

Protein blocks are a higher level abstraction of protein structures as compared to the
standard three-state description as helix, strand, and coil.

The PBs approach can be used successfully in distinguishing rigid-body shifts from
conformational variations, as has been exemplified for kinases, which have distinct
3D structures in their active and inactive states. The regions with high deviation in
Cα positions and low PB scores correspond to conformational variations. On the
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FIGURE 8.8 The superposition of PKA, IRK, MAPK, and CDK structures in their active
state is shown. The structurally variable regions are shown in black.

contrary, a high PB score for regions with high deviation indicates a similarity in
local structure with gross reorganization of the local region on the 3D structure.
Under such circumstances, a large value of Cα–Cα deviation is a consequence of
displacement of the region. Based on our analyses using this approach, we find that the
regions in inactive protein kinases that undergo structural alterations while switching
to their active states are generally common among these kinases; however, the nature
of variations is different. The study can be extended to analyze structural variations
in proteins at various levels. Examples include the study of homologous proteins to
understand structural differences, analyses of structural changes induced in proteins
on binding to different ligand–effector molecules, and study of structural alterations
at protein–protein interfaces because of binding to its interacting partner.

A cross-comparison of active and inactive states of closely related kinases indicates
a higher global similarity in the structure of active states of the kinases as reflected
from their PB scores compared to the active and inactive forms. This kind of study
might be useful in estimating the activity levels(state) of kinases based on their PB
score.

Even though the active states of various kinases are structurally quite similar,
differences do exist. We have compared the active forms of four different kinases
and identified the regions, which deviate from the topologically equivalent regions
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in other kinases. When encoded as PBs, some equivalent regions with high Cα–Cα

deviation have low PB scores indicating conformation differences in those regions.
The regions with high deviation and score showed differences in spatial orientations
of the local structures in the homologous kinases.
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9
KERNEL FUNCTION APPLICATIONS
IN CHEMINFORMATICS

Aaron Smalter and Jun Huan

9.1 INTRODUCTION

The fast accumulation of data describing chemical compound structures and biologi-
cal activity calls for the development of efficient informatics tools. Cheminformatics
is a rapidly emerging research discipline that employs a wide array of statistical,
data mining, and machine learning techniques with the goal of establishing robust
relationships between chemical structures and their biological properties. Hence,
cheminformatics is an important component on the application side of applying in-
formatics approach to life science problems. It has a broad range of applications in
chemistry and biology; arguably the most commonly known roles are in the area
of drug discovery where cheminformatics tools play a central role in the analysis
and interpretation of structure–activity data collected by various means of modern
high throughput screening technology. Traditionally, the analysis of large chemical
structure–activity databases was done only within pharmaceutical companies, and up
until recently the academic community has had only limited access to such databases.
This situation, however, has changed dramatically in very recent years.

In 2002, the National Cancer Institute created the Initiative for Chemical Ge-
netics (ICG) with the goal of offering to the academic research community a large
database of chemicals with their roles in cancer research [1]. Two years later, the
National Health Institute (NIH) launched a Molecular Libraries Initiative (MLI) that
included the formation of the national Molecular Library Screening Centers Network
(MLSCN). MLSCN is a consortium of 10 high-throughput screening centers for
screening large chemical libraries [2]. Collectively, ICG and MLSCN aim to offer to
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the academic research community the results of testing about a million compounds
against hundreds of biological targets. To organize this data and to provide public ac-
cess to the results, the PubChem and Chembank database have been developed as the
central repository for chemical structure–activity data. These databases currently con-
tain >18 million chemical compound records, >1000 bioassay results, and links from
chemicals to bioassay description, literature, references, and assay data for each entry.

Many machine learning and data mining algorithms have been applied to study
the structure–activity relationship of chemicals. For example, Xue et al. reported
promising results of applying five different machine learning algorithms: logistic
regression, C4.5 decision tree, k-nearest neighbor, probabilistic neural network, and
support vector machines, to predicting the toxicity of chemicals against an organism
of Tetrahymena pyriformis [3]. Advanced techniques, [e.g., random forest and MARS
(multivariate adaptive regression splines)] have also been applied to cheminformatics
applications [4, 5].

This chapter, addresses as the problem of graph classification through study of
kernel functions and the application of graph classification in chemical quantitative
structure–activity relationship (QSAR) study. Graphs, especially the connectivity
maps, have been used for modeling chemical structure for decades. In a connectivity
map, nodes represent atoms and edges represent chemical bounds between atoms.

Recently, support vector machines (SVM) have gained popularity in drug design
and cheminformatics. A key insight of SVM is the utilization of kernel functions (i.e.,
inner product of two points in a Hilbert space) to transform a nonlinear classification
problem into a linear one. Design of a good kernel function for graphs is therefore a
critical issue. The initial effort to define kernels for semistructured data was done by
Haussler in his work on the R-Convolution kernel, which provided a framework that
many current graph kernel functions follow [6].

While kernel functions and classifier (e.g., SVMs) for graphs have received a great
deal of attention recently, most approaches are stymied by graph complexity. Precise
comparisons are slow to compute, but simpler methods do not capture enough in-
formation about graph topology and structure. The focus of this work is to augment
simple graph representations with structure information, allowing the use of fast ker-
nel functions while recognizing important topological similarities. This work draws
from several studies: incorporating structure feature graphs into kernel functions [7],
extensions for approximate matching of such structure features [8], set-based match-
ing kernels with structure features [9], and an application of wavelets for simplified
topology comparison in graph kernels [10].

The material presented here explores some graph kernel functions that improve on
existing methods with respect to both classification accuracy and kernel computation
time. The following key insights are explored. First, problem relevant structure fea-
tures can be used to annotate graph vertices in an alignment-based kernel function,
raising model accuracy and adding explanatory capability [7]. Second, extensions
for matching approximate structure features [8], as well as a faster, simpler kernel
function [9], lead to gains in accuracy, as well as faster computation time. Finally,
wavelet functions can be applied to graphs in order to summarize feature informa-
tion in local graph topology, greatly reducing the kernel computation time [10]. We
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demonstrate a comprehensive experimental study, in the context of QSAR study in
cheminformatics, for graph-based modeling and classification.

9.2 BACKGROUND

Before proceeding to algorithmic details, this chapter presents some general back-
ground material from a variety of directions. The work of this chapter draws from
techniques in data mining, as well as machine learning and chemical property pre-
diction. This chapter will address the following topics: chemical structures as graphs,
graph classification, kernel functions, graph mining, and wavelet analysis for graphs.

9.2.1 Chemical Structure

Chemical compounds are organic molecules that are easily modeled by a graph repre-
sentation. In this approach, nodes in a graph model atoms in a chemical structure and
edges in the graph to model chemical bonds in the chemical structure. In this represen-
tation, nodes are labeled with the atom element type, and edges are labeled with the
bond type (single, double, and aromatic bond). The edges in the graph are undirected,
since there is no directionality associated with chemical bonds. Figure 9.1 shows an
example chemical structure, where unlabeled vertices are assumed to be carbon (C).

Figure 9.2 shows two sample chemical structures on the left, and their graph
representation on the right.

9.2.2 Graph Classification

Many classifiers exist for classification of objects as feature vectors. The feature
vector embeds objects as points in a space where the data is modeled. Recently, an
important linear classifier has gained a great deal of attention, the SVM. It is not only
fast to train with great model generalization power, but it is also a kernel classifier
giving it additional advantages over established vector space classifiers. These issues
will be addressed in Section 9.2.3 on kernel functions.

The SVM builds a classification model by finding a linear hyperplane that best
separates the classes of data objects. The optimal separating hyperplane (OSH) is
chosen by maximizing the margin between the hyperplane and the nearest data points
(termed support vectors).

When data are not linearly separable, called the soft-margin case, the SVM finds a
hyperplane that optimizes an additional constraint. Often this constraint is a penalty
for misclassified samples expressed in various ways.

HS

N

O

FIGURE 9.1 An example chemical structure.



192 KERNEL FUNCTION APPLICATIONS IN CHEMINFORMATICS

FIGURE 9.2 Graph representations of chemicals.

The problem of finding an OSH is formulated as a convex optimization problem.
Hence, it can leverage very powerful algorithms for exactly finding the OSH. Once
a OSH has been found, classification of additional objects is easily determined by
finding which side of the hyperplane the object resides on. The efficiency of these
operations makes SVM an extremely fast classifier. Since the SVM model ideally
depends only on a small number of support vectors, it generalizes well and is compact
to store.

Crucially, the SVM problem can be formulated such that it represents objects
using only the dot products between their vectors. This modification allows the dot
products to be replaced with a kernel function between objects, the use of which is
discussed further in Section 9.2.3.

9.2.3 Kernel Functions

A kernel function K is a mapping between a pair of graphs into a real number,
K : GxG → R. This function defines an inner product between two graphs and must
satisfy the following properties:

Positive semidefinite.
∑

i

∑
j K (gi , g j )ci c j ≥ 0,∀g ∈ G,∀c ∈ R.

Symmetric. K (gi , g j ) = K (g j , gi ),∀g ∈ G.

Such a function embeds graphs or any other objects into a Hilbert space, and is
termed a Mercer kernel from Mercer’s theorem.

Kernel functions can enhance classification in two ways: first, by mapping vector
objects into higher dimensional spaces; second, by embedding nonvector objects
in an implicitly defined space. The advantages of mapping objects into a higher
dimensional space, the so-called kernel trick, are apparent in a variety of cases where
objects are not separable by a linear decision boundary.
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This implicit embedding is not only useful for nonlinear mappings, but also serves
to decouple the object representation from the spatial embedding. A kernel function
need only be defined between data objects in order to apply SVM classification.
Therefore SVM can be used for classification of graph objects by defining a kernel
function between graphs, without explicitly defining any set of graph features.

9.2.4 Graph Database Mining

This section discusses a few important definitions for graph database mining: labeled
graphs, subgraph isomorphic relation, and graph classification.

Definition 9.2.1 A labeled graph G is a quadruple G = (V, E, �, λ) where V is a
set of vertices or nodes and E ⊆ V × V is a set of undirected edges. A set of (disjoint)
vertex and edge labels �, and λ: V ∪ E → � is a function that assigns labels to
vertices and edges. Assume that a total ordering is defined on the labels in �.

A graph database is a set of labeled graphs.

Definition 9.2.2 A graph G ′ = (V ′, E ′, �′, λ′) is subgraph isomorphic to G =
(V, E, �, λ), denoted by G ′ ⊆ G, if there exists a 1-1 mapping f : V ′ → V such
that

∀v ∈ V ′, λ′(v) = λ( f (v))

∀(u, v) ∈ E ′, ( f (u), f (v)) ∈ E,

and

∀(u, v) ∈ E ′, λ′(u, v) = λ( f (u), f (v))

The function f is a subgraph isomorphism from graph G ′ to graph G. It is said G ′

occurs in G if G ′ ⊆ G. Given a subgraph isomorphism f , the image of the domain
V ′ ( f (V ′)) is an embedding of G ′ in G.

Example 9.1 Figure 9.3 shows a graph database of three labeled graphs. The
mapping (isomorphism) q1 → p3, q2 → p1, and q3 → p2 demonstrates that graph
Q is subgraph isomorphic to P , and hence Q occurs in P . Set {p1, p2, p3} is an
embedding of Q in P . Similarly, graph S occurs in graph P , but not Q.

Problem Statement: Given a graph space G∗, a set of n graphs sampled from
G∗ and the related target values of these graphs D = {(Gi , Ti , )}n

i=1, the graph
classification problem is to estimate a function F : G∗ → T that accurately map
graphs to their target value.

By classification, all target values are assumed to be discrete values, otherwise it is
a regression problem. Below, several algorithms are reviewed for graph classification
that work within a common framework called a kernel function. The term kernel
function refers to an operation of computing the inner product between two points
in a Hilbert space. Kernel functions are widely used in classification of data in a
high-dimensional feature space.
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FIGURE 9.3 A database of three labeled graphs.

9.2.5 Wavelet Analysis for Graphs

Wavelet functions are commonly used as a means for decomposing and representing
a function or signal as its constituent parts, across various resolutions or scales.
Wavelets are usually applied to numerically valued data (e.g., communication signals
or mathematical functions), as well as to some regularly structured numeric data (e.g.,
matrices and images).

Graphs, however, are arbitrarily structured and may represent many relationships
and topologies between data elements. Recent work has established the successful
application of wavelet functions to graphs for multiresolution analysis [11]. The use
of wavelets in this capacity is different than the use of wavelets for signal and image
compression (e.g., in [12]). The complex graph topology must be projected into a
Euclidean space, and wavelets are used to summarize the information in the local
topology around graph nodes.

Given a vertex v in graph G, define the h-hop neighbors of v as the set of other
nodes in G whose shortest path to v is h nodes. The sets of h-hop neighbors then
lead to the notion of hop distance, which suitably projects the nodes of a graph into
Euclidean space.

Wavelets are then used to summarize feature information in the local topology
around vertices in a graph. Since regions near the origin in a wavelet function are
strongly positive, while the regions farther away are strongly negative, the distant
regions are neutral. By using a wavelet function to compute a weighted sum over
vertex features arranged according to hop distance corresponds to a comparison of
vertex features in the local neighborhood to those in the distant neighborhood.

9.3 RELATED WORKS

Given that graphs are such powerful and interesting structures, their classification
has been extensively studied. This chapter reviews the related work covering pattern
mining, kernel functions, and wavelets for graph analysis.

This section surveys work related to graph classification methods by dividing them
into two categories. The first category explicitly collects a set of features from the
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graphs. The possible features included are both structural and chemical. Structural
features are graph fragments of different types. Examples are paths, cycles, trees, and
general subgraphs [13]. Chemical descriptors, as they are called in QSAR work, are
properties describing a molecule overall (e.g., as weight and charge).

Once a set of features is determined, a graph is described by a feature vector, and
any existing classification methods (e.g., CBA [14] and decision tree [15]) that work
in an n-dimensional Euclidian space, may be applied for graph classification.

The second classification approach is to implicitly collect a (possibly infinite) set
of features from graphs. Rather than computing the features, this approach computes
the similarity of graphs, using the framework of kernel functions [16]. The advantage
of a kernel method is that it has a lower chance of over fitting, which is a serious
concern in high-dimensional space with low sample size.

The following sections summarize recent work related to pattern mining and
structural features, as well as vector-based classification , kernel functions for classi-
fication, and wavelets for graphs.

9.3.1 Pattern Mining

Algorithms that search for frequent patterns (e.g., trees, paths, and cyclic graphs) in
graphs can be roughly divided into three groups.

The first group uses a level-wise search strategy, including AGM [17] and FSG
[18]. The second category takes a depth-first search strategy, including gSpan [19] and
FFSM [20]. Different from level-wise search algorithms AGM and FSG, the depth-
first search strategy utilizes a back-track algorithm to mine frequent subgraphs. The
advantage of a depth-first search is a better memory utilization, since depth-first
search keeps one frequent subgraph in memory and enumerates its supergraphs, in
contrast to keeping all k-edge frequent subgraph in memory.

The third category of frequent subgraph mining algorithms does not work directly
on a graph space to identify frequent patterns. Instead, algorithms in this category
first project a graph space to another space (e.g., that of trees), then identify frequent
patterns in the projected space, and finally reconstruct all frequent patterns in the
graph space. This strategy is called progressive mining. Algorithms in this category
includes SPIN [21] and GASTON [22].

9.3.1.1 Frequent Subgraphs Frequent subgraph mining is a technique used to enu-
merate graph substructures that occur in a graph database with at least some specified
frequency. This minimum frequency threshold is termed the support threshold by the
data mining community. After limiting returned subgraphs by frequency, types found
can be further constrained by setting upper and lower limits on the number of vertices
they can contain. In much of this articles work, the FFSM algorithm [23] is used for
fast computation of frequent subgraphs. Figure 9.4, shows an example of this frequent
subgraph enumeration. Some work has been done by Deshpande et al. [24] toward
the use of these frequent substructures in the classification of chemical compounds
with promising results.



196 KERNEL FUNCTION APPLICATIONS IN CHEMINFORMATICS

FIGURE 9.4 Example graphs and frequent subgraphs (support = 2/3).

9.3.1.2 Chemical Properties and Target Prediction A target property of the chemi-
cal compound is a measurable quantity of the compound. There are two categories of
target properties: continuous (e.g., binding affinities to a protein) and discrete target
properties (e.g., active compounds vs inactive compounds).

The relationship between a chemical compound and its target property is typically
investigated through a quantitative structure–property relationship (QSPR). (Such
a study a also known as a quantitative structure–activity relationship (QSAR), but
property refers to a broader range of applications than activity.) Abstractly, any
QSPR method generally may be defined as a function that maps a chemical space to
a property space in the form of

P = k̂(D) (9.1)

Here, D is a chemical structure, P is a property, and the function k̂ is an estimated
mapping from a chemical to a property space.

Different QSPR methodologies can be understood in terms of the types of target
property values (continuous or discrete), types of features, and algorithms that map
descriptors to target properties.

9.3.2 Vector-Based Classification

Several classification algorithms based on explicitly collected features exist for graph
classification in a variety of applications. What follows is a brief survey of popular
methods for some pertinent applications
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Recent methods applied to QSAR and chemical activity prediction include deci-
sion trees, classification based on association [14], and random forest among many
others. Decision trees use a collection of simple learners organized in a hierarchical
tree structure to classify a object. Nonleaf nodes make decisions about an object based
on one of it’s properties and send it to one of the children. Leaf nodes of the tree
correspond to classification categories. Random forest uses a collection of randomly
generated decision trees and typically classify an object according to the mode of the
classes returned by all trees.

Classification based on association (CBA) is somewhat different than these other
methods. It seeks to find a set of association rules of the form A → ci , where A
is some set of properties and ci is a class label. The XRules [13] are similar to
CBA and utilize frequent tree patterns to build a rule-based classifier for XML data.
Specifically, XRules first identifies a set of frequent tree patterns. An association rule:
G → ci is then formed where G is a tree pattern and ci is a class label. The confidence
of the rule is the conditional probability p(ci |G) estimated from the training data.
The XRules carefully selects a subset of rules with high confidence values and uses
those rules for classification.

Graph boosting [25] also utilizes substructures toward graph classification. Similar
to XRules, graph boosting uses rules with the format of G → ci . Different from
XRules, it uses the boosting technique to assign weights to different rules. The final
classification result is computed as the weighted majority.

9.3.3 Kernel Functions for Graph Classification

The term kernel function refers to an operation for computing the inner product
between two vectors in a feature space, thus avoiding the explicit computation of
coordinates in that feature space. Graph kernel functions are simply kernel functions
that have been defined to compute the similarity between two graph structures. In
recent years, a variety of graph kernel functions have been developed, with promising
results as described by Ralaivola et al. [26].

Graph kernel functions can be roughly divided into two categories. The first group
of kernel functions consider the full adjacency matrix of graphs, and hence measured
the global similarity of two graphs. These include product graph kernels [27], random
walk based kernels [28], and kernels based on the shortest paths between a pair of
nodes [29]. The second group of kernel functions tries to capture the local similarity
of two graphs by counting the shared subcomponents of graphs. These include the
subtree [30], cyclic [31], and spectrum kernels [24]. This section reviews the relevant
work on these kernel functions.

Product graph kernels use a feature space of all possible node label sequences for
walks in graphs. Since the number of possible walks are infinite, there is no way to
enumerate all the features in kernel computation [27]. Instead, a product graph is
computed in order to make the kernel function computation feasible.

Rather than computing the shared paths exactly, which has prohibitive compu-
tational cost for large graphs, the work of Kashima et al. [28] is based on the
use of shared random label sequences in the computation of graph kernels. Their
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marginalized graph kernel uses a Markov model to randomly generate walks of a
labeled graph. The random walks are created using a transition probability matrix
combined with a walk termination probability. These collections of random walks are
then compared and the number of shared sequences is used to determine the overall
similarity between two molecules.

Spectrum kernels aim to simplify the aforementioned kernels by working in a
finite-dimensional feature space based on a set of subgraphs (or as special cases, trees,
cycles, and paths). The kernel function is computed as the inner product between two
feature vectors (e.g., counts of subgraph occurrences) as in [24]. Transformations
of the inner product (e.g., minmax kernel [32] and Tanimoto kernel [26]), are also
widely used. The subtree kernel [33] is a variation on the spectrum kernel that uses
subtrees instead of paths.

The optimal assignment kernel, described by Frölich et al. [10], differs significantly
from the marginalized graph kernel. This kernel function first computes the similarity
between all vertices in one graph and all vertices in another. The similarity between the
two graphs is then computed by finding the maximal weighted bipartite graph between
the two sets of vertices, called the optimal assignment. The authors investigate an
extension of this method whereby certain structure patterns defined a priori by expert
knowledge, are collapsed into single vertices, and this reduced graph is used as input
to the optimal assignment kernel.

9.3.4 Wavelets Functions for Graphs

Crovella and Kolaczyk [11] developed a multiscale method for network traffic data
analysis. For this application, they are attempting to determine the scale at which
certain traffic phenomena occur. They represent traffic networks as graphs labeled
with some measurement (e.g., bytes carried per unit time). In their method, they use
the hop distance between vertices in a graph, defined as the length of the shortest
path between them, and apply a weighted average function to compute the difference
between the average of measurements close to a vertex and measurements that are far,
up to a certain distance. This process produces a new measurement for a specific vertex
that captures and condenses information about the vertex neighborhood. Figure 9.5
shows a diagram of wavelet function weights overlayed on a chemical structure.

Maggioni et al. [12] demonstrate a general purpose biorthogonal wavelet for
graph analysis. In their method, they use the dyadic powers of an diffusion operator
to induce a multiresolution analysis. While their method applies to a large class of
spaces, (e.g., manifolds and graphs), the applicability of their method to attributed
chemical structures is not clear. The major technical difficulty is how to incorporate
node labels in a multiresolution analysis.

9.4 ALIGNMENT KERNELS WITH PATTERN-BASED FEATURES

Traditional approaches to graph similarity rely on the comparison of compounds
using a variety of molecular attributes known a priori to be involved in the activity
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FIGURE 9.5 A chemical graph and hop distances. From [10], with permission.

of interest. Such methods are problem-specific, however, and provide little assistance
when the relevant descriptors are not known in advance. Additionally, these methods
lack the ability to provide explanatory information regarding what structural features
contribute to the observed chemical activity. The method proposed here, referred to
as OAPD for Optimal-Assignment with Pattern-Based Descriptors, alleviates both
of these issues through the mining and analysis of structural patterns present in the
data in order to identify highly discriminating patterns, which then augment a graph
kernel function that computes molecular similarity.

9.4.1 Structure-Based Pattern Mining for Chemical
Compound Classification

The following sections outline the algorithm that drives the experimental method.
In short, it measures the similarity of graph structures whose vertices and edges
have been labeled with various descriptors. These descriptors represent physical and
chemical information (e.g., atom and bond types). They are also used to represent the
membership of atoms in specific structure patterns that have been mined from the data.
To compute the similarity of two graphs, the vertices of one graph are aligned with
the vertices of the second graph, such that the total overall similarity is maximized
with respect to all possible alignments. Vertex similarity is measured by comparing
vertex descriptors, and is computed recursively so that when comparing two vertices,
it also compares the neighbors of those vertices, and their neighbors, and so on.

9.4.1.1 Structure Pattern Mining The frequent subgraph mining problem can be
phrased as such: Given a set of labeled graphs, the support of an arbitrary subgraph
is the fraction of all graphs in the set that contain that subgraph. A subgraph is
frequent if its support meets a certain minimum threshold. The goal is to enumerate
all the frequent, connected subgraphs in a graph database. The extraction of important
subgraph patterns can be controlled by selecting the proper frequency threshold, as
well as other parameters (e.g., size and density) of subgraph patterns.
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9.4.1.2 Optimal Assignment Kernel The optimal assignment kernel function com-
putes the similarity between two graph structures. This similarity computation is
accomplished by first representing the two sets graph vertices as a bipartite graph,
and then finding the set of weighted edges assigning every vertex in one graph to a
vertex in the other. The edge weights are calculated via a recursive vertex similarity
function. This section presents the equations describing this algorithm in detail, as
discussed by Frölich et al. [34]. The top-level equation describing the similarity of
two molecular graphs is

kA(M1, M2) := maxπ

m∑
h=1

knei (vπ (h), vh) (9.2)

where π denotes a permutation of a subset of graph vertices, and m is the number of
vertices in the smaller graph. This information is needed to assign all vertices of the
smaller graph to vertices in the large graph. The knei function, which calculates the
similarity between two vertices using their local neighbors, is given as follows:

knei (v1, v2) := kv (v1, v2) + R0(v1, v2) + Snei (v1, v2) (9.3)

Snei (v1, v2) :=
L∑

l=1

γ (l)Rl(v1, v2) (9.4)

The functions kv and ke compute the similarity between vertices (atoms) and edges
(bonds), respectively. These functions could take a variety of forms, but in the OA
kernel they are RBF functions between vectors of vertex–edge labels.

The γ (l) term is a decay parameter that weights the similarity of neighbors accord-
ing to their distance from the original vertex. The l parameter controls the topological
distance within which to consider neighbors of vertices. The Rl equation, which
recursively computes the similarity between two specific vertices, is given by the
following equation:

Rl(v1, v2) = 1

|v1||v2|
∑
i, j

Rl−1(ni (v1), n j (v2)) (9.5)

where |v| is the number of neighbors of vertex v , and nk(v) is the set of neighbors of
v . The base case for this equation is R0, defined by

R0(v1, v2) := 1

|v1| maxπ

|v2|∑
i=1

(kv (a, b)|ke(x, y)) (9.6)

a = nπ (i)(v1), b = ni (v2) (9.7)

x = v1 → nπ (i)(v1), y = v2 → ni (v2) (9.8)
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The notation v → ni (v) refers to the edge connecting vertex v with the i th neigh-
boring vertex. The functions kv and ke are used to compare vertex and edge descriptors,
by counting the total number of descriptor matches.

9.4.1.3 Reduced Graph Representation One way in which to utilize the structure
patterns that are mined from the graph data is to collapse the specific subgraphs into
single vertices in the original graph. This technique is explored by Frölich et al. [10]
with moderate results, although they use predefined structure patterns, so called
pharmacophores, identified a priori with the help of expert knowledge. The method
proposed here ushers these predefined patterns in favor of the structure patterns
generated via frequent subgraph mining.

The use of a reduced graph representation has some advantages. First, by collapsing
substructures, an entire set of vertices can be compared at once, reducing the graph
complexity and marginally decreasing computation time. Second, by changing the
substructure size, the resolution at which graph structures are compared can be
adjusted. The disadvantage of a reduced graph representation is that substructures
can only be compared directly to other substructures, and cannot align partial structure
matches. As utilized in Frölich et al. [34], this is not as much of a burden since they
have defined the best patterns a priori using expert knowledge. In the case of the
method presented here, however, this is a significant downside, as there is no a priori
knowledge to guide pattern generation and we wish to retain as much structural
information as possible.

9.4.1.4 Pattern-Based Descriptors The loss of partial substructure alignment fol-
lowing the use of a reduced graph representation motivated us to find another way of
integrating this pattern-based information. Instead of collapsing graph substructures,
vertices are simply annotated with additional descriptor labels indicating the vertex’s
membership in the structure patterns that were previously mined. These pattern-based
descriptors are calculated for each vertex and are used by the optimal assignment
kernel in the same way that other vertex descriptors are handled. In this way, sub-
structure information can be captured in the graph vertices without needing to alter
the original graph structure.

9.4.2 Experimental Study

Classification experiments were conducted on five different biological activity data
sets, and measured SVM classifier prediction accuracy for several different feature
generation methods. The data sets and classification methods are described in more
detail in the following sections, along with the associated results. Figure 9.6 gives a
graphical overview of the process.

All of the experiments were performed on a desktop computer with a 3-GHz
Pentium 4 processor and 1 GB of RAM. Generating a set of frequent subgraphs is
very quick, generally a few seconds. Optimal assignment requires significantly more
computation time, but not intractable, at less than one-half of an hour for the largest
data set.
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FIGURE 9.6 Experimental workflow for a cross-validation trial with frequent subgraph
mining.

9.4.2.1 Data Sets Five data sets used in various problem areas were selected to
evaluate classifier performance. The predictive toxicology challenge (PTC) data set,
discussed by Helma et al. [35], contains a set of chemical compounds classified
according to their toxicity in male rats (PTC–MR), female rats (PTC–FR), male mice
(PTC-MM), and female mice (PTC–FM). The human intestinal absorption (HIA)
dataset (Wessel et al. [36]) contains chemical compounds classified by intestinal
absorption activity. Also included were two different virtual screening data sets
(VS-1 and VS-2) used to predict various binding inhibitors from Fontaine et al. [37]
and Jorissen and Gilson [38]. The final data set (MD) is from Patterson et al. [39],
and was used to validate certain molecule descriptors. Various statistics for these data
sets can be found in Table 9.1.

9.4.2.2 Methods The performance of the SVM classifier was evaluated by training
with several different feature sets. The first set of features (FSM) consists only of
frequent subgraphs. Those subgraphs are mined using the FFSM software [23] with

TABLE 9.1 Data Set Statistics for OAPD Experiments

Number of Number of Number of Average
Data Set Compunds Positives Negatives Compund Size

HIA 86 47 39 22.45
MD 310 148 162 10.38
VS-1 435 279 156 59.81
VS-2 1071 125 946 39.33
PTC–MR 344 152 192 25.56
PTC–MM 336 129 207 25.05
PTC–FR 351 121 230 26.08
PTC–FM 349 143 206 25.25
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minimum subgraph frequency of 50%. Each chemical compound is represented by a
binary vector with length equal to the number of mined subgraphs. Each subgraph is
mapped to a specific vector index, and if a chemical compound contains a subgraph
then the bit at the corresponding index is set to one, otherwise it is set to zero.

The second feature set (optimal assignment, OA) consists of the similarity values
computed by the optimal assignment kernel, as proposed by Frölich et al. [34]. Each
compound is represented as a real-valued vector containing the computed similarity
between it and all other molecules in the data set.

The third feature set optimal assignment reduced graph (OARG) is computed
using the optimal assignment kernel as well, except that the frequent subgraph pat-
terns are embedded as a reduced graph representation before computing the optimal
assignment. The reduced graph representation is described by Frölich et al. as well,
but they use a priori patterns instead of frequently mined ones.

Finally, the fourth feature set optimal assignment pattern discovery (OAPD) also
consists of the subgraph patterns combined with the optimal assignment kernel,
however, in this case a reduced graph is not derived, and instead annotate vertices
in a graph with additional descriptors indicating its membership in specific subgraph
patterns.

In the experiments, SVM classifier was used in order to generate activity predic-
tions. The use of SVM has recently become quite popular for a variety of biological
machine learning applications because of its efficiency and ability to operate on high-
dimensional data sets. The SMO SVM classifier was used, implemented by Platt [40]
and included in the Weka data-mining software package by Witten and Frenk [41].
The SVM parameters were fixed, with a linear kernel and C = 1. Classifier perfor-
mance was averaged over a ten-fold cross-validation set.

Some feature selection was performed in order to identify the most discriminating
frequent patterns. Using a simple statistical formula, known as the Pearson corre-
lation coefficient (PCC), the correlation between a set of feature samples (in this
case, the occurrences of a particular subgraph in each of the data samples) and the
corresponding class labels was measured. Frequent patterns are ranked according to
correlation strength, and the top patterns are selected.

9.4.2.3 Results Table 9.2 contains results reporting the average and standard devi-
ation of the prediction accuracy over the 10 cross-validation trials. The following
observations can be made from this table:

First, notice that OAPD (and OARG) outperforms FSM methods in all of the tried
data sets except one (FSM is better than OARG on the PTC–MR data set). This result
indicate that use of frequent subgraphs alone without using the optimal alignment
kernel, does not produce a good classifier. Although the conclusion is generally true,
interestingly, for the PTC–MR data set, the FSM method outperforms both the OA
and OARG methods, while the OAPD method outperforms FSM. This seems to
suggest that important information is encoded in the frequent subgraphs, and is being
lost in the OARG, but is still preserved in the OAPD method.

Second, notice that the OAPD (or OARG) method outperforms the original OA
method in five of the tried eight data sets: The HIA, MD, PTC–FR, PTC–MM,
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TABLE 9.2 Average and Standard Deviation of 10-Fold Cross-Validation Accuracy for
OAPD Experiments

Method

Data Set FSM OA OARG OAPD

HIA 57.36 ± 19.11 63.33 ± 20.82 62.92 ± 22.56 65.28 ± 15.44
MD 68.39 ± 7.26 70.00 ± 6.28 69.35 ± 6.5 70.32 ± 5.65
VS-1 60.00 ± 5.23 64.14 ± 3.07 62.07 ± 4.06 63.91 ± 4.37
VS-2 90.29 ± 2.3 94.96 ± 1.88 93.18 ± 2.68 94.77 ± 2.17
PTC–MR 54.16 ± 5.82 61.35 ± 9.53 59.03 ± 6.46 59.29 ± 8.86
PTC–MM 63.28 ± 5.32 60.10 ± 9.21 64.68 ± 3.96 64.39 ± 3.6
PTC–FR 60.45 ± 3.87 62.16 ± 6.43 62.75 ± 7.69 63.05 ± 5.24
PTC–FM 58.42 ± 4.43 56.41 ± 6 54.07 ± 7.52 60.76 ± 7.32

PTC–MR. OAPD data sets have a very close performance to that of OA in the
rest of the three data sets. The results indicate that the OAPD method provides
good performance for diverse data sets that involve tasks (e.g., predicting chemical’s
toxicology, human intestinal absorption of chemicals, and virtual screening of drugs).

In addition to outperforming the previous methods, this method also reports the
specific subgraph patterns that were mined from the training data and used to augment
the optimal assignment kernel function. By identifying highly discriminative patterns,
this method can offer additional insight into the structural features that contribute to
a compound’s chemical function. Table 9.3 contains the five highest ranked (using
Pearson correlation coefficient) subgraph patterns for each data set, expressed as
SMARTS strings that encode the specific pattern. Many of the patterns in all sets

TABLE 9.3 SMARTS String of Highly Ranked Chemical Patterns from the OAPD
Method

HIA MD VS-1 VS-2

[NH3+]C(C)C C(=CC)(C)S C(C=CC=C)C=C C(=CCC)C
C(=C)(C)C C(=CC=CC)(C)S C(=CC)CNC C=CCC
C(=CC)(C)C C(=C)(C=CC=C)S C(=C)CNC [NH2+](CC=C)CC
C(=CC)(C=C)C C(=CCC)C=C CC(=CC)N [NH2+](CCC)CC
C(=CC=C)(C=C)C C(=CS)C=C CNCC=CC [NH3+]CC(=CC)C

PTC–MR PTC–MM PTC–FR PTC–FM

[NH2+]C(=C)C=C [NH3+]CC [NH2+]C(=CC)C=C OCC=C
[NH2+]C=CC clcccccl [NH2+]C(=C)C=C C(=CC)C(=C)C
[NH3+]CC C(=CC)C(=C)C [NH3+]CC CCC=CC
CC=C C(=CC=C)C CC=C C(=C)(C)C
C(CC)C C(=C)C(=C)C C(CC)C clcccccl
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denote various carbon chains (C(CC)C, C=CC, etc.), however, there seem to be some
unique patterns as well. The MD data set contains carbon chain patterns with some
sulfur atoms mixed in, while the VS-1 data set has carbon chains with nitrogen mixed
in. The [NH2+] and [NH3+] patterns appear to be important in the VS-2 data set, as
well as some of the PTC data sets.

9.4.3 Conclusions

Graph structures are a powerful and expressive representation for chemical com-
pounds. This work presents a new method, termed OAPD, for computing the similar-
ity of chemical compounds, based on the use of an optimal assignment graph kernel
function augmented with pattern-based descriptors that have been mined from a set
of molecular graphs. Experimental studies demonstrate that the OAPD method inte-
grates the structural alignment capabilities of the existing optimal alignment kernel
method with the substructure discovery capabilities of the frequent subgraph min-
ing method and delivers better performance in most of the tried benchmarks. In the
future, it may be possible to involve domain experts to evaluate the performance of
this algorithm, including the prediction accuracy and the capability of identifying
structure important features, in diverse chemical structure data sets.

9.5 ALIGNMENT KERNELS WITH APPROXIMATE
PATTERN FEATURES

The work presented in this chapter aims to leverage existing frequent pattern mining
algorithms and explore the application of kernel classifiers in building highly accurate
graph classification algorithms. Toward that end, a novel technique is demonstrated
called graph pattern diffusion kernel (GPD). In this method, all frequent patterns are
first identified from a graph database. Then subgraphs are mapped to graphs in the
graph database and nodes of graphs are projected to a high-dimensional space with
a specially designed function. Finally, a novel graph alignment algorithm is used to
compute the inner product of two graphs. This algorithm is tested using a number of
chemical structure data sets. The experimental results demonstrate that this method
is significantly better than competing methods (e.g., those based on paths, cycles, and
other subgraphs).

9.5.1 Graph Pattern Diffusion Kernels for Accurate Graph Classification

Here we present the design of the pattern diffusion kernel. The section begins by first
presenting a general framework. It is proved, through a reduction to the subgraph
isomorphism problem, that the computational cost of the general framework can be
prohibitive for large graphs. The pattern-based graph alignment kernel is then pre-
sented. Finally, a technique is shown called “pattern diffusion” that can significantly
improve graph classification accuracy in practice.
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9.5.1.1 Graph Similarity Measurement with Alignment An alignment of two
graphs G and G ′ (assuming |V [G]| ≤ |V [G ′]|) is a 1-1 mapping π : V [G] → V [G ′].
Given an alignment π , define the similarity between two graphs, as measured by a
kernel function kA, below:

kA(G, G ′) = max
π

∑
v

kn(v, π (v)) +
∑
u,v

ke((u, v), (π (u), π (v))) (9.9)

The function kn is a kernel function to measure the similarity of node labels and
the function ke is a kernel function to measure the similarity of edge labels. Equation
(9.9) uses an additive model to compute the similarity between two graphs. The
maximal similarity among all possible mappings is defined as the similarity between
two graphs.

9.5.1.2 NP-Hardness of Graph Alignment Kernel Function It is no surprise that
computing the graph alignment kernel is a nonpdynomial (NP)-hard problem. This
has been proposed with a reduction from the graph alignment kernel to the subgraph
isomorphism problem. Here, paragraphs, assuming there exists an efficient solver of
the graph alignment kernel problem, it is shown that the same solver can be used to
solve the subgraph isomorphism problem efficiently. Since the subgraph isomorphism
problem is an NP-hard problem, with the reduction mentioned before, it is proved
that the graph alignment kernel problem is therefore an NP-hard problem as well.
Note: This section is a stand-alone component of this work, and readers who choose
to skip this section should encounter no difficulty in reading the rest of the text.

Given two graphs G and G ′ (for simplicity, assume nodes and edges in G and
G ′ are not labeled as usually studied in the subgraph isomorphism problem), use
a node kernel function that returns a constant 0. Define an edge kernel function
ke : V [G] × V [G] × V [G ′] × V [G ′] → R as

ke((u, v), (u′, v ′)) =
{

1 if (u, v) ∈ E[G] and (u′, v ′) ∈ E[G ′]
0 otherwise

With the constant node and the specialized edge function, the kernel function of
two graphs is simplified to the following format:

kA(G, G ′) = max
π

∑
u,v

ke((u, v), (π (u), π (v))) (9.10)

The NP-hardness of the graph alignment kernel is established with the following
theorem.

Theorem 9.5.1 Given two (unlabeled) graphs G and G ′ and the edge kernel function
ke defined previously, G is subgraph isomorphic to G ′ if and only if Ka(G, G ′) =
|E[G]|.
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Proof: If: Notice from the definition of ke that the maximal value of Ka(G, G ′)
is |E[G]|. Given Ka(G, G ′) = |E[G]|, it is claimed that there exists an alignment
function π : V [G] → V [G ′] such that for all (u, v) ∈ E[G], (π(u), π (v)) ∈ E[G ′].
The existence of such a function π guarantees that graph G is a subgraph of G ′.

Only if: Given G is a subgraph of G ′, there is an alignment function π : V [G] →
V [G ′] such that for all (u, v) ∈ E[G], (π(u), π (v)) ∈ E[G ′]. According to Eq. (9.10),
Ka(G, G ′) = |E[G]|.

Theorem 9.5.1 shows that the graph alignment kernel problem is no easier than
the subgraph isomorphism problem. Hence, it is at least NP-hard in complexity.

9.5.1.3 Graph Node Alignment Kernel To derive an efficient algorithm scalable to
large graphs, the idea is that a function f is used to map nodes in a graph to a high
(possibly infinite)-dimensional feature space that captures not only the node label
information, but also the neighborhood topological information around the node. If
such a function f is obtained, the graph kernel function may be simplified with the
following formula:

kM (G, G ′) = max
π

∑
v∈V [G]

kn( f (v), f (π (v))) (9.11)

Where π : V [G] → V [G ′] denotes an alignment of graph G and G ′. f (v) is a set
of “features” associated with a node.

With this modification, the optimization problem that searches for the best align-
ment can be solved in polynomial time. To derive a polynomial running time
algorithm, a weighted complete bipartite graph is constructed by making every
node pair (u,v) ∈ V [G] × V [G ′] incident on an edge. The weight of the edge
(u,v) is kn( f (v), f (u)). Figure 9.7, shows a weighted complete bipartite graph for
V [G] = {v1, v2, v3} and V [G ′] = {u1, u2, u3}. Highlighted edges (v1, u2), (v2, u1),
(v3, u3) have larger weights than the rest of the edges (dashed).

With the bipartite graph, a search for the best alignment becomes a search for
the maximum weighted bipartite subgraph from the complete bipartite graph. Many
network flow-based algorithms (e.g., linear programming) can be used to obtain
the maximum weighted bipartite subgraph. The Hungarian algorithm is used with
complexity O(|V [G]|3). For details of the Hungarian algorithm see [42].

Applying the Hungarian algorithm to graph alignment was first explored by [34]
for chemical compound classification. In contrast to their algorithm, which utilized
domain knowledge of chemical compounds extensively and developed a complicated
recursive function to compute the similarity between nodes, a new framework is
developed here that maps such nodes to a high-dimensional space in order to mea-
sure the similarity between two nodes without assuming any domain knowledge.
Even in cheminformatics, experiments show that this technique generates similar and
sometimes better classification accuracies compared to the method reported in [34].
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FIGURE 9.7 A maximum weighted bipartite graph for graph alignment.

Unfortunately, using the Hungarian algorithm for assignment, as used by [34] is
not a true Mercer kernel. Since the kernel function proposed here uses this algorithm
as well, it is also not a Mercer kernel. As seen in [34], however, this kernel still
performs competitively.

9.5.1.4 Pattern Diffusion This section introduces a novel technique “pattern diffu-
sion” to project nodes in a graph to a high-dimensional space that captures both node
labeling and local topology information. This design has the following advantages as
a kernel function:

The design is generic and does not assume any domain knowledge from a specific
application. The diffusion process may be applied to graphs with dramatically
different characteristics.

The diffusion process is straightforward to implement and can be computed effi-
ciently.

Below, the pattern diffusion kernel is outlined in three steps.
In the first step, a seed is identified as a starting point for the diffusion. In this

design, a “seed” could be a single node, or a set of connected nodes in the original
graph. In the experimental study, frequent subgraphs are used for seeds since a seed
can easily be compared from one graph to a seed in another graph. However, there is
no requirement that frequent subgraphs must be used for the seed.

In the second step given a set of nodes S as seed, recursively define ft in the
following way.

The base f0 is defined as

f0(u) =
{

1/|S| if u ∈ S
0 otherwise
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Given some time t , define ft+1 (t ≥ 0) with ft in the following way:

ft+1(v) = ft (v) × (1 − λ

d(v)
) +

∑
u∈N (v)

ft (u) × λ

d(u)
(9.12)

In this notation, N (v) is the set of nodes that connects to v directly. The parameter
d(v) is the node degree of v , or d(v) = |N (v)| and λ is a parameter that controls the
diffusion rate.

Equation (9.12) describes a process where each node distributes a λ fraction of
its value to its neighbors evenly and in the same way receives some value from
its neighbors. Call it “diffusion” because the process simulates the way a value is
spreading in a network. The intuition is that the distribution of such a value encodes
information about the local topology of the network.

To constrain the diffusion process to a local region, one parameter, called diffusion
time, is used and is denoted by τ , to control the diffusion process. Specifically, the
diffusion process is limited to a local region of the original graph with nodes that
are at most τ hops away from a node in the seed S. For this reason, the diffusion is
referred to as “local diffusion”.

Finally, for the seed S, define the mapping function fS as the limit function of ft

as t approaches infinity, or

fS = lim
t→∞ ft (9.13)

9.5.1.5 Pattern Diffusion Kernel and Graph Classification This section summa-
rizes the discussion of kernel functions and shows how they are utilized to construct
an efficient graph classification algorithm at both the training and testing phases.

Training Phase. In the training phase, divide graphs of the training data set D =
{(Gi , Ti , )}n

i=1 into groups according to their class labels. For example, in binary
classification there are two groups of graphs: positive or negative. For multiclass
classification, there are multiple groups of graphs where each group contains
graphs with the same class label. The training phase is composed of four steps:

1. Obtain frequent subgraphs for seeds. Identify frequent subgraphs from each
graph group and take union of the subgraph sets together as the seed set S.

2. For each seed S ∈ S and for each graph G in the training data set, use
fS to label nodes in G. Thus the feature vector of a node v is a vector
LV = { fSi (v)}m

i=1 with length m = |S|.
3. For two graphs G, G ′, construct the complete weighted bipartite graph

as described in Section 9.5.1.3 and compute the kernel Ka(G, G ′) using
Eq. (9.11).

4. Train a predictive model using a kernel classifier.
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Testing Phase. In the testing phase, the kernel function is computed for graphs in
the testing and training data sets. The trained model is used to make predictions
about graph in the testing set.
� For each seed S ∈ S and for each graph G in the testing data set, fS is used

to label nodes in G and create feature vectors as done in the training phase.
� Equation (9.11) computes the kernel function Ka(G, G ′) for each graph G

in the testing data set and for each graph G ′ in the training data set.
� Use kernel classifier and trained models to obtain prediction accuracy of the

testing data set

9.5.2 Experimental Study

Classification experiments were conducted using 10 different biological activity data
sets, and compared cross-validation accuracies for different kernel functions. The
following sections describe the data sets and the classification methods in more detail
along with the associated results.

All of the experiments were performed on a desktop computer with a 3 GHz
Pertium 4 processor and 1 GB of RAM. Generating a set of frequent subgraphs is
efficient, generally taking a few seconds. Computing alignment kernels somewhat
takes more computation time, typically in the range of a few minutes.

In all kernel classification experiments, the LibSVM software [43] was used as the
kernel classifier. The nu-SVC type classifier was used with nu = 0.5, the LibSVM
default. To perform a fair comparison, model selection was not performed, the SVM
parameters were not tuned to favor any particular method, and default parameters were
used in all cases. The classifiers CBA and Xrule were downloaded as instructed in the
related papers, and default parameters were used for both. The classification accuracy
is computed by averaging over 10 trials of a 10-fold cross-validation experiment.
Standard deviation is computed similarly.

9.5.2.1 Data Sets Ten data sets were selected covering typical chemical benchmarks
in drug design to evaluate our classification algorithm performance.

The first five data sets are from drug virtual screening experiments taken from [38].
In this data set, the target values are drugs’ binding affinity to a particular protein.
Five proteins also are used in the data set including: CDK2, COX2, FXa, PDE5, and
A1A, where each symbol represents a specific protein. For each protein, the data
provider carefully selected 50 chemical structures that clearly bind to the protein
(active ones). The data provider also deliberately listed chemical structures that are
very similar to the active ones (judged with domain knowledge), but clearly do not
bind to the target protein. This list is known as the “decoy” list and 50 chemical
structures were randomly sampled.

The next data set, from Wessel et al. [37] includes compounds classified by affinity
for absorption through human intestinal lining. Moreover, the PTC [35] data sets were
included, which contain a series of chemical compounds classified according to their
toxicity in male and female rats and male and female mice.
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TABLE 9.4 Data Set and Class Statistics for GPD
Experiments

Data Set No. G No. P No. N

CDK2 inhibitors 100 50 50
COX2 inhibitors 100 50 50
Fxa inhibitors 100 50 50
PDE5 inhibitors 100 50 50
A1A inhibitors 100 50 50
Intestinal absorption 310 148 162
Toxicity (female mice) 344 152 192
Toxicity (female rats) 336 129 207
Toxicity (male mice) 351 121 230
Toxicity (male rats) 349 143 206

The same protocol was used as in [23] to transform chemical structure data sets
to graphs. Table 9.4 lists the total number of chemical compounds in each data set,
as well as the number of positive and negative samples. In the table, no. G-number
of samples (chemical compounds) in the data set, no. P-positive samples and no.
N-negative samples

9.5.2.2 Feature Sets Frequent patterns were exclusively used from graph represen-
tations of chemicals in our study. Such frequent subgraphs were generated from a
data set using two different graph mining approaches: that with exact matching [23]
and that of approximate matching. In the approximate frequent subgraph mining, a
pattern matches with a graph as long as there are up to k > 0 node label mismatches.
For chemical structures, typical mismatch tolerance is small, that is k values are 1, 2,
and so on. In the experiments, approximate graph mining with k = 1 was used.

Once frequent subgraphs are mined, three feature sets are generated: (1) general
subgraphs (all of mined subgraphs), (2) tree subgraphs, and (3) path subgraphs.
Cycles were examined as well, but were not included in this study, since typically
less than two cyclic subgraphs were identified in a data set. These feature sets are
used for constructing kernel functions as discussed below.

9.5.2.3 Classification Methods The performance of the following classifiers was
evaluated:

CBA. The first is a classifier that uses frequent item set mining, known as CBA
[14]. In CBA mined frequent subgraphs are treated as item sets.

Graph Convolution Kernels. This type of kernel include the mismatch kernel
(MIS) and the min–max (MNX) kernel. The former is based on the normalized
Hamming distance of two binary vectors, and the latter is computed as the ratio
between two sums: The numerator is the sum of the minimum between each
feature pair in two binary vectors, and the denominator is the same, except it
sums the maximum. See [32] for details about the min–max kernel.
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SVM Built-in Kernels. A linear kernel (Linear) and radial basis function (RBF)
kernel were used.

GPD. The graph pattern diffusion kernel was implemented, as discussed in Sec-
tion 9.5.1. The default parameter for the GPD kernel is a diffusion rate of
λ = 20% and the diffusion time τ = 5.

9.5.2.4 Experimental Results Here we present the results of our graph classification
experiments. One round of experiments was performed to evaluate the methods based
on exact subgraph mining, and another round of experiments were with approximate
subgraph mining. For both subgraph mining methods, patterns were selected that
were general graphs, trees, and paths.

A simple feature selection method is applied in order to identify the most discrim-
inating frequent patterns. Using a simple statistical formula, PCC, the correlation is
measured between a set of feature samples (in our case, the occurrences of a particular
subgraph in each of the data samples) and the corresponding class labels. Frequent
patterns are ranked according to correlation strength, and the top 10% patterns are
selected to construct the feature set.

Comparison between Classifiers. The results of the comparison of different graph
kernel functions are shown in Table 9.5. For these results, frequent subgraph
mining using exact matching was used. In the table that uses general subgraphs
(the first 10 rows in Table 9.5), it is shown that for exact mining of general
subgraphs, in 4 of the 10 data sets, the GPD method provides mean accuracy
that is significantly better (at least two standard deviations above the next
best method). In another, 4 data sets, GPD gives the best performance, but
the difference is less significant and is still >1 standard deviation). In the last
two data sets, other methods perform better, but not significantly better. The
mismatch and min–max kernels all give roughly the same performance. Hence,
only the results of the mismatch kernel are shown. The GPD’s superiority is
also confirmed in classifications where tree and path patterns are used.

Table 9.6 compares the performance of our GPD kernel to the classification
based on association (CBA) method. In general it shows comparable perfor-
mance to the other methods. In one data set, it does show a noticeable increase
over the other methods. This is expected since CBA is designed specifically
for discrete data such as the binary feature occurrences used here. Despite the
strengths of CBA, the GDA method still gives the best performance for six
of the seven data sets. These data sets were also tested using the recursive
optimal-assignment kernel included in the JOELib2 computational chemistry
library. It’s results are comparable to those of the CBA method, and hence were
not included here as separate results.

In addition, a classifier called XRules was tested. XRules is designed for
classification of tree data [13]. Chemical graphs, while not strictly trees, often
are close to trees. To run the XRules executable, a graph is transformed to a tree
by randomly selecting a spanning tree of the original graph. Our experimental
study shows the application of XRules on average delivers incompetent results
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TABLE 9.5 Comparison of Different Graph Kernel Functions and Feature Sets in
GPD Experiments, With Strict Subgraph Matching

Subgraph Type Data Set MISa GPDa Lineara RBF

CDK2 76.3 2.06 87.2* 2.04 76.3 2.06 77.9 1.6
COX2 85.1* 0.99 83.2 0.79 85.1* 0.99 84.5 1.08
FXa 87 0.94 87.6* 0.52 87 0.94 86.2 0.42
PDE5 83.2* 0.63 82.8 1.4 83.2* 0.63 83 0.67

General A1A 84.8 0.63 90.9* 0.74 85 0.94 88.7 1.06
Int. abs. 49.53 4.82 56.86* 3.12 50.7 4.56 47.56 3.44
Toxicity (FM) 51.46 3.4 54.81* 1.16 51.95 3.26 50.95 2.75
Toxicity (FR) 52.99 4.33 56.35* 1.13 49.57 4.71 51.94 3.34
Toxicity (MM) 49.64 3.43 60.71* 1.16 49.38 1.96 51.16 2.28
Toxicity (MR) 50.44 3.06 56.83* 1.17 49.91 3.09 54.3 2.59

CDK2 76.3 2.06 87.2* 2.04 76.3 2.06 77.9 1.6
COX2 85.1* 0.99 83.2 0.79 85.1* 0.99 84.5 1.08
FXa 87 0.94 87.6* 0.52 87 0.94 86.2 0.42
PDE5 83.2* 0.63 82.8 1.4 83.2* 0.63 83 0.67

Trees A1A 84.8 0.63 90.9* 0.74 85 0.94 88.7 1.06
Int. abs. 49.53 4.82 56.86* 3.12 50.7 4.56 47.56 3.44
Toxicity (FM) 51.46 3.4 54.81* 1.16 51.95 3.26 50.95 2.75
Toxicity (FR) 52.99 4.33 56.35* 1.13 49.57 4.71 51.94 3.34
Toxicity (MM) 49.64 3.43 60.71* 1.16 49.38 1.96 51.16 2.28
Toxicity (MR) 50.44 3.06 56.83* 1.17 49.91 3.09 54.3 2.59

CDK2 76.3 0.82 86.2* 2.82 76.4 0.97 77.1 0.74
COX2 85* 0 83.7 0.48 85* 0 85* 0
FXa 86.8 0.79 87.6* 0.52 86.8 0.79 86.6 0.84
PDE5 82.6 0.84 83* 1.25 82.6 0.84 82.7 0.95

Paths A1A 84.1 0.88 91.2* 1.14 84 0.67 85.7 0.67
Int. abs. 49.07 7.16 54.07* 3.52 50.58 4.32 50 4.72
Toxicity (FM) 50.14 3.41 54.79* 2.13 50.37 2.59 50.14 4.38
Toxicity (FR) 47.83 6.85 55.93* 2.44 48.32 7.83 50.09 4.37
Toxicity (MM) 46.85 3.57 58.81* 1.07 48.6 4.78 50.33 2.29
Toxicity (MR) 50.26 3.13 54.71* 1.38 48.69 3.93 54.27 3.04

a The asterisk represents the best accuracy in the column.

among the group of classifiers (e.g., 50% accuracy on the CDK2 inhibitor
data set), which may be due to the particular way a graph is transformed to a
tree. Since tree patterns are computed for the rule based classifier CBA in our
comparison, XRules was not explored further.

A method based on a recursive optimal assignment [10] was also tested using
biologically relevant chemical descriptors labeling each node in a chemical
graph. In order to perform a fair comparison with this method to the other
methods, the chemical descriptors are ignored and the focus is instead on the
structural alignment. In these experiments, the performance of this method is
very similar to CBA. Hence, only the results of CBA are shown here.
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TABLE 9.6 Comparison of GPD Kernel to CBA

Data Set GPDa CBAa

CDK2 inhibitors 88.6* 80.46
COX2 inhibitors 82.7* 77.86
Fxa inhibitors 89.3* 86.87
PDE5 inhibitors 81.9 87.14*
A1A inhibitors 91.4* 87.76
Intestinal absorption 63.14* 54.36
Toxicity (male rats) 56.66* 55.95

a The asterisk represents the best accuracy in the column.

Comparison between Descriptor Sets. Various types of subgraphs (e.g., trees,
paths, and cycles) have been used in kernel functions between chemical com-
pounds. In addition to exact mining of general subgraphs, approximate sub-
graph mining was also used to generate the features for our respective kernel
methods. In both cases, the general subgraphs mined are filtered into sets of
trees and sets of paths as well.

The results for all kernels using exact tree subgraphs are identical to those
for exact general subgraphs. This is not surprising, given that most chemical
fragments are structured as trees. The results using exact path subgraphs, how-
ever, do show some shifts in accuracy, but the difference is not significant.
These results are not recorded here since they add no appreciable information
to the evaluation of the various methods.

The results using approximate subgraph mining (shown in Table 9.7) are
similar to those for exact subgraph mining (shown in Table 9.5). In contrast
to the hypothesis that using approximate subgraph mining might improve the
classification accuracy, the data show that there is no significant difference
between the set of features. However, it is clear that GPD is still better than the
competing kernel functions.

Effect of Varying GPD Diffusion Rate and Time. This section evaluates the sensi-
tivity of the GPD methods to its two parameters: diffusion rate λ and diffusion
time. Different diffusion rate λ values and diffusion time values were tested.
Figure 9.8 shows that the GPD algorithm is not very sensitive to the two pa-
rameters at the range that was tested. Although only three data sets are shown
in Figure 9.8, the observation is true for other data sets in the experiments.

9.5.3 Conclusions

With the rapid development of fast and sophisticated data collection methods, data
has become complex, high-dimensional, and noisy. Graphs have proven to be pow-
erful tools for modeling complex, high-dimensional, and noisy data; building highly
accurate predictive models for graph data is a new challenge for the data-mining com-
munity. This work demonstrates the utility of a novel graph kernel function, graph
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TABLE 9.7 Comparison of Different Graph Kernel Functions and Feature Sets in
GPD Experiments, With Approximate Subgraph Matching

Subgraph Type Data Set MISa GPDa Lineara RBFa

CDK2 76.3 2.06 85.7* 1.49 76.3 2.06 77.9 1.6
COX2 85* 0 83 0.67 85* 0 85* 0

General FXa 86.4 0.52 87.5* 0.53 86.4 0.52 86.1 0.32
PDE5 83.3* 0.67 83.3* 1.64 83.3* 0.67 82.9 0.74
A1A 86.2 1.81 88.7* 0.82 86.2 1.81 88.7 0.48
Int. abs. 51.28 4.3 60.81* 2.63 52.67 4.07 51.86 6.18

CDK2 76.3 2.06 85.7* 1.49 76.3 2.06 77.9 1.6
COX2 85* 0 83 0.67 85* 0 85* 0

Trees FXa 86.4 0.52 87.5* 0.53 86.4 0.52 86.1 0.32
PDE5 83.3* 0.67 83.3* 1.64 83.3* 0.67 82.9 0.74
A1A 86.2 1.81 88.7* 0.82 86.2 1.81 88.7* 0.48
Int. abs. 51.28 4.3 60.81* 2.63 52.67 4.07 51.86 6.18

CDK2 76.3 0.82 86.1* 2.13 76.4 0.97 77.1 0.74
COX2 85* 0 83.4 0.7 85* 0 85* 0

Paths FXa 86 0 88* 0.82 86 0 86 0
PDE5 83.1 0.57 83.8* 2.53 83.1 0.57 82.9 0.57
A1A 83.6 0.7 88.6* 0.7 83.6 0.7 85.7 0.67
Int. abs. 49.88 4.3 60.23* 4.34 51.05 3.82 49.65 3.76

a The asterisk represents the best accuracy in the column.

pattern diffusion kernel (GPD kernel). It is shown that the GPD kernel can capture
the intrinsic similarity between two graphs and has the lowest testing error in many
of the data sets evaluated. Although a very efficient computational framework was
developed, computing a GPD kernel may be hard for large graphs. Future work will
concentrate on improving the computational efficiency of the GPD kernel for very
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FIGURE 9.8 Effect of diffusion rate and time on GPD classification accuracy. From [8],
with permission.
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large graphs, as well as performing additional comparisons between this method and
other two-dimensional (2D)-descriptor and QSAR-based methods.

9.6 MATCHING KERNELS WITH APPROXIMATE
PATTERN-BASED FEATURES

This chapter expands on the GPD kernel presented in Chapter 8, by defining a similar
kernel function that uses a matching-based set kernel instead of an alignment kernel.
This method is termed a graph pattern matching (GPM) kernel. The advantage of
this modification is that the GPM kernel, unlike GPD, is guaranteed to be positive
semidefinite, and hence a true Mercer kernel. This algorithm was tested using 16
chemical structure data sets. The experimental results demonstrate that this method
outperforms existing state-of-the-art methods with a large margin.

9.6.1 Graph Pattern Matching Kernel with Diffusion for Accurate
Graph Classification

This section presents the design of a graph matching kernel with diffusion. The
section begins by first presenting a general framework for graph matching. Then the
pattern-based graph matching kernel is presented. Finally, a technique called “pattern
diffusion” is discussed that significantly improves graph classification accuracy in
practice.

9.6.1.1 Graph Matching Kernel To derive an efficient algorithm scalable to large
graphs, a function � : V → R

n is used to map nodes in a graph to an n-dimensional
feature space that captures not only the node label information, but also the neigh-
borhood topological information around the node. If there is such a function �, the
following graph kernel may be defined

Km(G, G ′) =
∑

(u,v)∈V [G]×V [G ′]

K (�(u), �(v)) (9.14)

where K can be any kernel function defined in the codomain of �. This function
Km is called a graph matching kernel. The following theorem indicates that Km is
symmetric and positive semidefinite, and hence a real kernel function.

Theorem 9.6.1 The graph matching kernel is symmetric and positive semidefinite
if the function K is symmetric and positive semidefinite.

Proof sketch: The matching kernel is a special case of the R-convolution kernel
and is hence positive semidefinite as proved in [45].

The kernel function can be visualized by constructing a weighted complete bi-
partite graph: connecting every node pair (u,v) ∈ V [G] × V [G ′] with an edge. The
weight of the edge (u,v) is K (�(v), �(v)). Figure 9.6 shows a weighted complete
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bipartite graph for V [G] = {v1, v2, v3} and V [G ′] = {u1, u2, u3}. Highlighted edges
(v1, u2), (v2, u1), (v3, u3) have larger weights than the rest of the edges (dashed).

We can see from the figure that if two nodes are quite dissimilar, the weight of
the related edge is small. Since dissimilar node pairs usually outnumber similar node
pairs, if a linear kernel is used for nodes, the kernel function may be noisy, and hence
lose the signal. In this design, the RBF kernel function is used, as specified below, to
penalize dissimilar node pairs.

K (X, Y ) = e
−||X−Y ||22

2 (9.15)

where ||X ||22 is the squared L2 norm of a vector X .

9.6.1.2 Graph Pattern Matching Kernel One way to design the function � is to
take advantage of frequent patterns mined from a set of graphs. Intuitively, if a node
belongs to a subgraph F , there is some information about the local topology of the
node. Following the intuition, given a node v in a graph G and a frequent subgraph
F , a function �F is designed such that

�F (v) =
{

1 if u belongs an embedding of F in G
0 otherwise

The function �F is called a “pattern membership function” since this function tests
whether a node occurs in a specific subgraph feature (membership to a subgraph).

Given a set of frequent subgraphs F = F1, F2, . . . , Fn , each membership function
is treated as a dimension and the function �F is defined as

�F (v) = (�Fi (v))n
i (9.16)

In other words, given an n frequent subgraph, the function � maps a node v in G
to an n-dimensional space, indexed by the n subgraphs, where values of the features
indicate whether the node is part of the related subgraph in G.

Example 9.2 Figure 9.9, showns that two subgraph features, F1 and F2, where F1

is embedded in Q at {q1, q2} and F2 occurs in Q at {q1, q3}. The occurrences are
depicted using shadings with different color and orientations. For node q1, a subgraph
F1 is considered as a feature, and �F1 (q1) = 1 since q1 is part of an embedding
of F1 in Q. Also, �F1 (q3) = 0 since q3 is not part of an embedding of F1 in Q.
Similarly, �F2 (q1) = 1 and �F2 (q3) = 1. Hence, �F1,F2 (q1) = (1, 1) and �F1,F2 (q3) =
(0, 1). The values of the function �F1,F2 are also illustrated in the same figure using
the annotated Q.

9.6.1.3 Graph Pattern Matching Kernel with Pattern Diffusion This section intro-
duces a better technique than the pattern membership function to capture the local
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topology information of nodes. This technique is called “pattern diffusion”. The
design here has the following advantages:

It is generic and does not assume any domain knowledge from a specific applica-
tion. The diffusion process may be applied to graphs with dramatically different
characteristics.

The diffusion process is straightforward to implement and can be computed effi-
ciently.

It is proof that the diffusion process is related to the probability distribution of
a graph random walk. This explains why the simple process may be used to
summarize local topological information.

Below, the pattern diffusion kernel is outlined in three steps.
In the first step, a seed is identified as a starting point for the diffusion. In this

design, a “seed” could be a single node, or a set of connected nodes in the original
graph. In the experimental study, frequent subgraphs are always used for seeds since
a seed from one graph can be easily compared to a seed in another graph.

In the second step, given a set of nodes S as seed, a diffusion function ft is
recursively defined in the following way:

The base f0 is defined as

f0(u) =
{

1/|S| if u ∈ S
0 otherwise

Define ft+1 (t ≥ 0) with ft in the following way:

ft+1(v) = ft (v) × (1 − λ

d(v)
) +

∑
u∈N (v)

ft (u) × λ

d(u)
(9.17)

In the notation, N (v) = {u|(u, v) is an edge} is the set of nodes that connects to
v directly and d(v) = |N (v)| is the node degree of v . The parameter λ controls the
diffusion rate.
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Equation (9.17) describes a process where each node distributes a λ fraction of
its value to its neighbors evenly and in the same way receives some value from its
neighbors. It is called “diffusion” because the process simulates the way a value is
spreading in a network. The intuition is that the distribution of such a value encodes
information about the local topology of the network.

To constrain the diffusion process to a local region, one parameter called diffusion
time, denoted by τ , is used to control the diffusion process. Specifically, the diffusion
process is limited to a local region of the original graph with nodes that are at most
τ hops away from a node in the seed S. In this sense, the diffusion should be named
“local diffusion”.

Finally, in the last step for the seed S, define the mapping function �d
S as the limit

function of ft as t approaches to infinity, or

�d
S = lim

t→∞ ft (9.18)

And given a set of frequent subgraph F = F1, F2, . . . , Fn as seeds, define the
pattern diffusion function �d

F as

�d
F (v) = (�d

Fi
(v))n

i (9.19)

9.6.1.4 Connections of Other Graph Kernels

Connection to Marginalized Kernels. Here the connection of pattern matching
kernel function to the marginalized graph kernel [28] is shown, which uses a
Markov model to randomly generate walks of a labeled graph.

Given a graph G with nodes set V [G] = {v1, v2, . . . , vn}, and a
seed S ⊆ V [G], for each diffusion function ft , construct a vector Ut =
( ft (v1), ft (v2), . . . , ft (vn)). According to the definition of ft , Ut+1 = M × Ut ,
where the matrix M is defined as

M(i, j) =
⎧⎨
⎩

λ
d(v j )

if i �= j and i ∈ N ( j)

1 − λ
d(vi )

i = j
0 otherwise

In this representation, compute the stationary distribution ( fS = limt→∞ ft )
by computing M∞ × U0.

Note that the matrix M corresponds to a probability matrix corresponding
to a Markov chain since
� All entries are non-negative.
� Column sum is 1 for each column.

Therefore the vector M∞ × U0 corresponds to the stationary distribution of
the local random walk as specified by M . In other words, rather than using
random walk to retrieve information about the local topology of a graph, the
stationary distribution is used to retrieve information about the local topology.
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The experimental study shows that this in fact is an efficient method of graph
classification.

Connection to Optimal Assignment Kernel. The optimal assignment (OA) kernel
[34] carries the same spirit of the graph pattern matching kernel in that OA
uses pairwise node kernel function to construct a graph kernel function. The
OA kernel has been utilized for cheminformatics applications and is found to
deliver good results empirically.

There are two major differences between GPM and the OA kernel. (1) The
OA kernel is not positive semidefinite, and hence is not a Mercer kernel in a
strict sense. Non-Mercer kernel functions are used to train SVM models and
the problem is that the convex optimizer utilized in SVM will not converge to
a global optimal and hence the performance of the SVM training may not be
reliable. (2) The OA utilizes a complicated recursive function to compute the
similarity between nodes, which make the computation of the kernel function
run slowly for large graphs [10].

9.6.1.5 Pattern Diffusion Kernel and Graph Classification This section summa-
rizes the discussions presented so far and shows how the kernel function is utilized
to construct an efficient graph classification algorithm in both the training and testing
phases.

Training Phase. In the training phase, graphs of the training data set D =
{(Gi , Ti , )}n

i=1 are divided into groups according to their class labels. For exam-
ple in binary classification there are two groups of graphs: positive or negative.
For multiclass classification, graphs are partitioned according to their class
label, where graphs having the same class labels are grouped together. The
training phase is composed of four steps:

1. Obtain frequent subgraphs. Identify frequent subgraphs from each graph
group and union the subgraph sets together as the seed set F .

2. For each graph G in the training data set, use the node pattern diffusion
function �d

F to label nodes in G. Thus the feature vector of a node v is a
vector LV = (�d

Fi
(v))m

i=1 with length m = |F |.
3. For two graphs G, G ′, construct the complete weighted bipartite graph

as described in Section 9.6.1.1 and compute the kernel Km(G, G ′) using
Eqs. (9.14) and (9.15).

4. Train a predictive model using a kernel classifier.

Testing Phase. In the testing phase, the kernel function is computed for graphs in
the testing and training data sets. The trained model is used to make predictions
about graph in the testing set.
� For each graph G in the testing data set, use �d

F to label nodes in G and
create feature vectors as in the training phase.

� Use Eqs. (9.14) and (9.15) to compute the kernel function Km (G, G ′) for each
graph G in the testing data set and for each graph G ′ in the training data set.

� Use kernel classifier and trained models to obtain prediction accuracy of the
testing data set
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9.6.2 Experimental Study

Classification experiments were conducted using six different graph kernel functions,
including the pattern diffusion kernel, on 16 different data sets. There are 12 chemical–
protein binding data sets, and the rest are chemical toxicity data sets. All of the
experiments were performed on a desktop computer with a 3-GHz Pertium 4 processor
and 1 GB of RAM. The following sections describe the data sets and the classification
methods in more detail along with the associated results.

In all classification experiments, the LibSVM [44] was used as kernel classifier.
The nu-SVC was used with default parameter ν = 0.5. The classification accuracy
(TP+TN/S, TP: true positive, TN: true negative, S: total number of testing samples)
is computed by averaging over a 10-fold cross-validation experiment. Standard de-
viation is computed similarly. To have a fair comparison, default SVM parameters
were used in all cases, and were not tuned to increase the accuracy of any method.

9.6.2.1 Data Sets Sixteen data sets were selected, covering prediction of chemical–
protein binding activity and chemical toxicity. The first seven data sets are manually
extracted from the BindindDB database [45]. The next five are established data sets
taken from Jorissen and Gilson [38]. The last four are from the predictive toxicology
challenge [35] (PTC). Detailed information for the data sets is available in Table 9.8
where no. G-number of samples (chemical compounds) in the data set, no. P-positive
samples, and no. N -negative samples .

BindingDB Sets. The BindingDB database contains >450 proteins. For each pro-
tein, the database record chemicals that bind to the protein. Two types of
activity measurements Ki and IC50 are provided. Both measurements measure

TABLE 9.8 Characteristics of Data Sets in GPM Experiments

Source Data Set No. G No. P No. N

AChE 138 69 69
ALF 93 47 46
EGF–R 377 190 187

BindingDB HIV–P 202 101 101
HIV–RT 365 183 182
HSP90 82 41 41
MAPK 255 126 129

CDK2 100 50 50
COX2 100 50 50

Jorissen FXa 100 50 50
PDE5 100 50 50
A1A 100 50 50

Predictive PTC–FM 344 152 192
Toxicology PTC–FR 336 129 207
Challenge PTC–MM 351 121 230

PTC-MR 349 143 206
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inhibition–dissociation rates between a proteins and chemicals. From Bind-
ingDB, 7 proteins were manually selected with a wide range of known inter-
acting chemicals (ranging from tens to several hundreds). These data sets are
AChE, ALF, EGF-R, HIV-P, HIV-RT, HSP90, and MAPK.

Jorissen Sets. The Jorissen data sets also contains information about chemical–
protein binding activity. In this case, the provider of the data set carefully
selected positive and negative samples, and hence is more reliable than the data
sets created from BindingDB. For more information about the creation of the
data sets, see [38] in details. The data sets from this study are CDK2, COX2,
FXa, PDE5, and A1A.

PTC Sets. The PTC data sets contain a series of chemical compounds classified
according to their toxicity in male and female rats and male and female mice.
While chemical–protein binding activity is an important type of chemical ac-
tivity, it is not the only type. Toxicity is another important, though different,
kind of chemical activity necessary to predict in drug design. These data sets
(PTC–FR/FM/MR/MM) are well curated and highly reliable.

9.6.2.2 Kernel Functions Six different kernel functions were selected for evaluation:
marginalized [28], spectrum [24], tanimoto [26], subtree [33], optimal assignment
[34], together with the graph pattern matching kernel.

Four kernel functions (marginalized, spectrum, tanimoto, and subtree) are com-
puted using the open source Chemcpp v1.0.2 package [47]. The optimal assignment
kernel was computed using the JOELib2 package, and is not strictly a kernel function,
but still provides good prediction accuracy. The graph pattern matching kernel was
computed using MATLAB code.

9.6.2.3 Experimental Results
Comparison between Kernel Functions. This section presents the results of our

graph classification experiments with various kernel functions. Figure 9.10
shows the classification accuracy for different kernel functions and data sets,
averaged over a 10-fold cross-validation experiment. The standard deviations
(omitted) of the accuracies are generally very high, from 5–10%, so statistically
significant differences between kernel functions are generally not observed.

The data shows that the GPM method is competitive for all 16 data sets. If
the accuracy of each kernel function averaged over all data sets is examined, the
GPM kernel performs the best overall. Again, the standard deviations are high so
the differences between the top performing kernels are not statistically significant.
Still, with 16 different data sets some trends are clear: GPM kernel delivers the
highest classification accuracy in 8 out of the 16 data sets, with tanimoto kernel best
in 4, marginalized best in 2, subtree in 2, optimal assignment in 1, and spectrum
in none.

Although GPM does not work well on a few data sets (e.g., AChE, HIV–RT,
MAPK, and PTC–FR/MR), overall it performs better when compared to any other
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FIGURE 9.10 Average accuracy for kernel functions and data sets in GPM experiments.
From [9], with permission.

kernels for a majority of data sets. It is better than every other kernel function in at
least 10 of the 16 data sets.

In general the GPM, spectrum and tanimoto kernels perform the best, with an
overall average accuracy of ∼80%. The subtree, optimal assignment, and marginal-
ized also perform very good, in the mid to high 70%. The min–max tanimoto kernel
performed much worse than the other methods, and hence were not included in the
figure. Note that the optimal assignment kernel is missing a prediction accuracy for
the FXa data set, which was due to a terminal error in the JOELib2 software used to
calculate this kernel on this data set.

9.6.3 Conclusions

Graphs have proven to be powerful tools for modeling complex and high-dimensional
biological data; building highly accurate predictive models for chemical graph clas-
sification is a goal for cheminformatics and drug design. This work demonstrates
the utility of a novel graph kernel function, graph pattern matching kernel (GPM
kernel). It is shown that the GPM kernel can capture the intrinsic connection between
a chemical and its class label and has the lowest testing error in a majority of the data
sets we evaluated.

9.7 GRAPH WAVELETS FOR TOPOLOGY COMPARISON

Previous kernels such as the alignment kernel or other substructure-based kernels
attempt to mitigate the high-dimensionality of graphs in different ways. The first
possibility is to use complex patterns (e.g., general subgraphs), but restrict pattern
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selection in some way. The second approach is to use simpler patterns (e.g., paths
or trees), but retain the set of feature patterns. In the most extreme case, graphs are
reduced to point sets of vertices for very fast but information-poor analysis. The
approach presented here, termed Wavelet–Alignment (WA) kernel, works on simpler
graph representations, but uses an application of graph wavelet analysis to create
high-quality localized structure features for chemical analysis. The wavelet functions
are used to condense neighborhood information about an atom into a single feature of
that atom, rather than features spread over it’s neighboring atoms. By doing so, (local)
features are extracted with various topological scales about chemical structures and
these wavelet features can be used to compute an alignment of two chemical graphs.
This chapter describes the wavelet-alignment method in detail and compares it to
competing methods for chemical activity prediction with several data sets.

9.7.1 Graph Wavelet Alignment Kernels for Drug Virtual Screening

The following sections outline the algorithms that drive our experimental method.
This method measures the similarity of graph structures whose nodes and edges
have been labeled with various features. These features represent different kinds of
chemical structure information including atoms and chemical bond types, among
others. To compute the similarity of two graphs, the nodes of one graph are aligned
with the nodes of the second graph, such that the total overall similarity is maximized
with respect to all possible alignments. Vertex similarity is measured by comparing
vertex descriptors, and is computed recursively so that when comparing two nodes,
the immediate neighbors of those nodes are also compared, and the neighbors of
those neighbors, and so on.

9.7.1.1 Graph Alignment Kernel An alignment of two graphs G and G ′ (assuming
|V [G] ≤ |V [G ′]|) is a 1-1 mapping π : V [G] → V [G ′]. Given an alignment π ,
define the similarity between two graphs, as measured by a kernel function kA,
below:

kA(G, G ′) := maxπ

∑
v∈V [G] kn(v, π (v)) + ∑

u,v ke((u, v), (π (u), π (v))) (9.20)

The function kn is a kernel function to measure the similarity of nodes and the func-
tion ke is a kernel function to measure the similarity of edges. Intuitively, Eq. (9.20)
uses an additive model to compute the similarity between two graphs by computing
the sum of the similarity of nodes and the similarity of edges. The maximal similarity
among all possible alignments is defined as the similarity between two graphs.

9.7.1.2 Simplified Graph Alignment Kernel A direct computation of the graph
alignment kernel is computationally intensive and is unlikely scalable to large graphs.
With no surprise, the graph alignment kernel computation is no easier than the sub-
graph isomorphism problem, a known NP-hard problem. (Formally, showing a re-
duction from the graph alignment kernel to the subgraph isomorphism problem is
needed. The details of such reduction are omitted due to their loose connection to
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the main theme of the current paper, which is an advanced data-mining approach, as
applied to cheminformatics applications.) To derive efficient algorithms scalable to
large graphs, the graph kernel function is simplified with the following formula:

kM (G, G ′) = max
π

∑
v∈V [G]

ka( f (v), f (π (v))) (9.21)

Where π : V [G] → V [G ′] denotes an alignment of graph G and G ′. The parame-
ter f (v) is a set of features associated with a node that not only include node features,
but also include information about topology of the graph where v belongs.

Equation (9.21), computes a maximal weighted bipartite graph, which has an
efficient solution known as the Hungarian algorithm. The complexity of the algorithm
is O(|V [G]|3). See [34] for further details.

Provided below is an efficient method, based on graph wavelet analysis, to create
features to capture the topological structure of a graph.

9.7.1.3 Graph Wavelet Analysis Originally proposed to analyze time series signals,
wavelet analysis transforms a series of signals to a set of summaries with different
scale. Two of the key insights of wavelet analysis of signals are (1) using localized
basis functions and (2) analysis with different scales. Wavelet analysis offers efficient
tools to decompose and represent a function with arbitrary shape [47, 48]. Since in-
vented, wavelet analysis has quickly gained popularity in a wide range of applications
outside time series data, (e.g., image analysis and geography data analysis). In all
these applications, the level of detail, or scale, is considered as an important factor
in data comparison and compression. Figure 9.11 shows two examples of wavelet
functions in a 3D space, the Haar and Mexican Hat.

Intuition. With wavelet analysis, as applied to graph representations of chemical
structure features about each atom and its local environment are collected at
different scales. For example, information can be collected about the average
charge of an atom and it’s surrounding atoms, then assign the average value
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FIGURE 9.11 Two wavelet functions in three dimensions (3 Ds), Mexican hat and Haar.
From [10], with permission.
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as a feature to the atom. Information can also be collected about whether an
atom belongs to a nearby functional group, whether the surrounding atoms of
a particular atom belong to a nearby functional group, and the local topology
of an atom to its nearby functional groups.

In summary, conceptually the following two types of insights are gained
about the chemicals after applying wavelet analysis to graph represented chem-
ical structure:

1. Analysis With Varying Levels of Scale. Intuitively, at the finest level, two
chemical structures are compared by matching the atoms and chemical
bonds in the two structures. At the next level, comparison of two regions is
performed (e.g., chemical functional groups). At an even coarser level, small
regions may be grouped into larger ones (e.g., pharmacophore), and two
chemicals are compared by matching the large regions and the connections
among large regions.

2. Nonlocal Connection. In a chemical structure, two atoms that are not di-
rectly connected by a chemical bond may still have some kind of interaction.
Therefore when comparing two graphs, their vertices cannot depend only
on the local environment immediately surrounding an atom, but rather must
consider both the local and nonlocal environment.
Though conceptually appealing, current wavelet analysis is often limited

to numerical data with regular structures (e.g., matrices and images). Graphs,
however, are arbitrarily structured and may represent innumerable relation-
ships and topologies between data elements. In order to define a reasonable
graph wavelet function, the following two important concepts are introduced
(1) h-hop neighborhood and (2) discrete wavelet functions.

The former (h-hop neighborhood) is essentially used to project graphs from a
high-dimensional space with arbitrary topology into a Euclidean space suitable
for operation with wavelets. The h-hop measure defines a distance metric
between vertices that is based on the shortest path between them. The discrete
wavelet function then operates on a graph projection in the h-hop Euclidean
space to compactly represent the information about the local topology of a
graph. It is the use of this compact wavelet representation in vertex comparison
that underlies the complexity reduction achieved by this method. Based on
the h-hop neighborhood, a discrete wavelet function is used to summarize
information in a local region of a graph and create features based on the
summarization. These two concepts are discussed in detail below.

h-hop Neighborhood. In this section, the following definitions are introduced.

Definition 9.7.1 Given a node v in a graph G the h-hope neighborhood of v,
denoted by Nh(v), is the set of nodes that are (according to the shortest path) exactly
h-hops away from v.

For example if h = 0, then N0(v) = v and if h = 1, then N1(v) = {u|(u, v) ∈
E[G]}.
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Here, fv denotes the feature vector associated with a node v in a graph G. The
parameter | f | is the feature vector length (number of features in the feature vector).
The average feature measurement, denoted by f j (v) for nodes in N j (v), is

f j (v) = 1

|N j (v)|
∑

u∈N j (v)

fu (9.22)

Example 9.3 Figure 9.5(a) shows a chemical graph. Given a node v in the graph
G, label the shortest distance of nodes to v in G. In this case, N0(v) = v and N1(v) =
{t, u}. If the feature vector contains a single feature of atomic number, f 1(v) is the
average atomic number of atoms that are at most 1-hop away from v . In this case,
since N1(v) = {t, u} and {t, u} are both carbon with an atomic number equal to eight,
then f 1(v) is equal to eight as well.

Discrete Wavelet Functions. In order to adapt a wavelet function to a discrete
structure (e.g., graphs), a wavelet function ψ(x) must be applied to the h-hop
neighborhood. Toward that end, a wavelet function ψ(x) (e.g., the Haar or
Mexican Hat) can be scaled to have support on the domain [0, 1), with integral
0, and partition the function into h + 1 intervals. Then, compute the average,
ψ j,h , as the average of ψ(x) over the j th interval, 0 ≤ j ≤ h as

ψ j,h ≡ 1

h + 1

∫ ( j+1)/(h+1)

j/(h+1)
ψ(x)dx (9.23)

With neighborhood and discrete wavelet functions, wavelet analysis can be
applied to graphs. This analysis is called wavelet measurements, denoted by
�h(v), for a node v in a graph G at scale up to h > 0.

�h(v) = Ch,v ∗
h∑

j=0

ψ j,h ∗ f j (v) (9.24)

where Ch,v is a normalization factor with C(h, v) = (
∑h

j=0
ψ2

j,h

|Nk (v)| )
−1/2

Define �h(v) as the sequence of wavelet measurements as applied to a node
v with scale value up to h. That is �h(v) = {�1(v), �2(v), . . . , �h(v)}. Call
�h(v) the wavelet measurement vector of node v . Finally insert the wavelet
measurement vector into the alignment kernel with the following formula:

k�(G, G ′) = max
π

∑
v∈V [G]

ka(�h(v), �h(π (v))) (9.25)

where ka(�h(v), �h(π (v)) is a kernel function defined on vectors. Two popular
choices are linear kernel and radius-based function kernel.
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Example 9.4 Figure 9.5(b) shows a chemical graph overlayed with a wavelet func-
tion centered on a specific vertex. It is clear how the wavelet is most intense at the
central vertex, hop distance of zero, corresponding to a strongly positive region of
the wavelet function. As the hop distance increases, the wavelet function becomes
strongly negative, roughly at hop distances of one and two. At hop distance >2,
the wavelet function returns to zero intensity, indicating negligible contribution from
vertices at this distance.

9.7.2 Experimental Study

Classification experiments were conducted on five different biological activity data
sets, and measured SVM classifier prediction accuracy for several different feature
generation methods. The following sections describe the data sets and classification
methods in more detail, along with the associated results.

We performed all experiments on a desktop computer with a 3-GHz Pertium 4
processor and 1 GB of RAM.

9.7.2.1 Data Sets Five data sets were selected to represent typical chemical bench-
marks in drug design to evaluate the classifier performance. The PTC data set,
discussed by Helma et al. [35], contains a set of chemical compounds classified ac-
cording to their toxicity in male rats (PTC–MR), female rats (PTC–FR), male mice
(PTC–MM), and female mice (PTC–FM). The human intestinal absorption (HIA)
data set (Wessel et al. [36]) contains chemical compounds classified by intestinal
absorption activity. The remaining data set (MD) is from Patterson et al. [40], and
was used to validate certain molecule descriptors. Various statistics for these data sets
can be found in Table 9.9.

All of these data sets exist natively as binary classification problems, therefore in
the case of the MD and HIA data sets, some preprocessing is required to transform
them into regression and multiclass problems. For regression, this is a straightforward
process of using the compound activity directly as the regression target. In the case
of multiclass problems, the transformation is not as direct. A histogram of compound
activity values was chosen to visualize which areas of the activity space are more
dense, allowing natural and intuitive placement of class separation thresholds.

9.7.2.2 Methods The performance of the SVM classifier trained with different meth-
ods was evaluated. The first two methods (WA–linear, WA–RBF) are both computed
using the wavelet-alignment kernel, but use different functions for computing atom–
atom similarity; both a linear and RBF function were tested here. Different hop
distance thresholds were evaluated and fixed to h = 3 in all experiments.

The method OA consists of the similarity values computed by the optimal assign-
ment kernel, as proposed by Frölich et al. [34]. There are several reasons that we
consider OA as the current state-of-the-art graph-based chemical structure classifi-
cation method. First, the OA method is developed specifically for chemical graph
classification. Second the OA method contains a large library to compute different
features for chemical structures. Third, the OA method has developed a sophisticated
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TABLE 9.9 Data Set and Class Statistics for WA Experiments

Data Set No. Graphs Class Labels Count

Regression 0–100 86
Binary 0 39

1 47
HIA 86 Multiclass 1 21

2 18
3 21
4 26

Regression 0–7000 310
Binary 0 162

1 148
MD 310 Multiclass 1 46

2 32
3 37
4 35

PTC–MR 344 Binary 0 192
1 152

PTC–MM 336 Binary 0 207
1 129

PTC–FR 351 Binary 0 230
1 121

PTC–FM 349 Binary 0 206
1 143

kernel function to compute the similarity between two chemical structures. The
experimental study shows that the wavelet analysis obtains performance profiles
comparable to, and sometimes exceeding that of the existing state-of-the-art chem-
ical classification approaches. In addition, a significant computation time reduction
was achieved by using the wavelet analysis. The details of the experimental study are
shown below.

In these experiments, the SVM classifier was used in order to generate activity
predictions. The LibSVM classifier was used, as implemented by Chang et al. [43]
and included in the Weka data-mining software package by Witten et al. [42]. The
SVM parameters were fixed across all methods, and we use a linear kernel. For
(binary) classification, nu-SVC was used for multiclass classification with nu = 0.5.
The Haar wavelet function was used in the WA experiments. Classifier performance
was averaged over a 10-fold cross-validation set.

Most of the algorithms were developed and tested under the MATLAB program-
ming environment. The OA software was provided by [34] as part of their JOELib
software, a computational chemistry library implemented in java [23]

9.7.2.3 Results Below are results of the experimental study of the wavelet-alignment
kernel with two focuses: (1) classification accuracy and (2) computational efficiency.
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TABLE 9.10 Prediction Results of Cross-Validation Trials for WA Experiments

Data Set Labels OAa WA–RBFa WA–lineara

Real 979.82(32.48)* 989.72(33.60) 989.31(24.62)
HIA Binary 51.86(3.73) 61.39(2.77)* 57.67(3.54)

Multiclass 29.30(2.23) 39.06(0.63)* 29.76(5.73)

Real 3436395(1280) 3436214(1209)* 3440415(1510)
MD Binary 67.16(0.86)* 52.51(3.34) 65.41(0.42)

Multiclass 39.54(1.65)* 33.35(3.83) 33.93(1.87)

PTC–FM Binary 58.56(1.53)* 51.46(3.45) 55.81(1.31)
PTC–FR Binary 58.57(2.11) 52.87(2.65) 59.31(1.95)*
PTC–MM Binary 58.23(1.25) 52.36(0.93) 58.91(2.078)*
PTC–MR Binary 51.51(1.20) 52.38(3.48) 52.09(2.61)*

a The asterisk represents the best accuracy in the column.

9.7.2.4 Classification Accuracy Table 9.10 reports the average and standard devi-
ation of the prediction results over 10 trials. The best results are marked with an
asterisk. For classification problems, results are in prediction accuracy, and for re-
gression problems they are in mean-squared-error (MSE) per sample. From the table,
observe that for the HIA data set, WA–RBF kernel significantly outperforms OA for
both binary and multiclass classification. For the MD data set, OA does best for both
classification sets, but WA–linear is best for regression. For the PTC binary data, the
WA–linear method outperforms the others in three of the four sets.

9.7.2.5 Computational Efficiency In Table 9.11, the kernel computation time for
both OA and WA methods was documented using six different data sets. The runtime
advantage of the WA algorithm over OA is clear, showing improved computation
efficiency by factors of >10-fold for the WA–linear kernel and over fivefold for the
WA–RBF kernel.

Figure 9.12 shows the kernel computation time across a range of data set sizes,
with chemical compounds sampled from the HIA data set. Using simple random
sampling with replacement, data sets were created sized from 50 to 500. The OA
method was not run on even larger data sets since the experimental results clearly
demonstrate the efficiency of the WA kernel already.

What these run time results do not demonstrate is the even greater computational
efficiency afforded by the WA algorithm when operating on general, non-chemical
graph data. Chemical graphs have some restrictions on their general structure, specif-
ically, the number of atom neighbors is bound by a small constant (4 or so). Since
the OA computation time is much more dependent on the number of neighbors, WA
is even more advantageous in these circumstances. Unfortunately, since the OA soft-
ware is designed as part of the JOELib chemoinformatics library specifically for use
with chemical graphs, it will not accept generalized graphs as input, and hence this
aspect of the algorithm could not be empirically demonstrated
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TABLE 9.11 Running Time Results for WA Experiments

Data Set Kernel Time Speedup

OA 75.87
HIA WA–RBF 13.76 5.51

WA–linear 4.91 15.45

OA 350.58
MD WA–RBF 50.85 6.89

WA–linear 26.82 13.07

OA 633.13
PTC–FM WA–RBF 103.95 6.09

WA–linear 44.87 14.11

OA 665.95
PTC–FR WA–RBF 116.89 5.68

WA–linear 54.64 12.17

OA 550.41
PTC–MM WA–RBF 99.39 5.53

WA–linear 47.51 11.57

OA 586.12
PTC–MR WA–RBF 101.68 5.80

WA–linear 45.93 12.73
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FIGURE 9.12 Comparison of computation times between methods for WA experiments.
From [10], with permission.
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9.7.3 Conclusions

Graph structures are a powerful and expressive representation for chemical com-
pounds. This work presents a new method wavelet-assignment, for computing the
similarity of chemical compounds, based on the use of an optimal assignment graph
kernel function augmented with pattern and wavelet-based descriptors. The exper-
imental study demonstrates that this wavelet-based method delivers an improved
classification model, along with an order of magnitude speedup in kernel computa-
tion time. For high-volume, real-world data sets, this algorithm is able to handle a
much greater number of graph objects, demonstrating it’s potential for processing
both chemical and non-chemical data in large amounts. In the present study, only
a limited number of atom features are used. In the future, domain experts can be
involved to evaluate the performance of these algorithms, including the prediction
accuracy and the capability for identifying important features in diverse chemical
structure data sets.

9.8 CONCLUSIONS

Graph structures are a powerful and expressive representation for many kinds of data.
With the rapid development of fast and sophisticated data collection methods, data has
become complex, high-dimensional, and noisy. Graphs have proven to be powerful
tools for modeling such data. Building highly accurate predictive models for graph
data is a new challenge for the data mining and machine learning communities. These
methods are of great value in a variety of fields, but especially so in biological and
chemical research where computational tools are helping to make many important
new discoveries with respect to disease treatment and other medical activities.

Much recent activity on graph classification has focused on the definition of
kernel functions for comparing graph objects directly. The kernel function defines
an implicit feature space where graph classification can be accomplished via support
vector machine or another kernel classifier. Classification in kernel space avoids
many difficulties associated with using high-dimensional feature vectors to represent
graphs and other complex objects.

The use of kernel functions do not completely mitigate the problems of working
with complex graph objects, however. Currently established kernel functions are ei-
ther slow to compute or lack discriminative power. This chapter addresses these issues
through several novel techniques, however, there remain many opportunities for fur-
ther improvement. In the chemical domain, at least, there appear to be many high-level
structural rules that even complex models have difficulty capturing. The most precise
models are prohibitively time consuming for databases of the size now available.

Future work must focus on methods for efficient, large-scale analysis. The value
of this high-volume approach is exemplified by the proliferation of high-throughput
screening technology, which has drastically accelerated the analysis of chemicals
and biological molecules. The ability to accurately and quickly analyze databases
in the millions of compounds using only computer models offers unprecedented
opportunities for learning about biological systems.
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Ultimately, the result of improved computer models is a better understanding and
control of complex phenomena. Biological systems, though an important beneficiaries
of such models, are only a single area of potential application. Graphs are fundamental
to our general understanding of many concepts. Therefore, only by fully understand-
ing graphs can these concepts themselves be fully modeled and understood.
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10
IN SILICO DRUG DESIGN USING A
COMPUTATIONAL INTELLIGENCE
TECHNIQUE

Soumi Sengupta and Sanghamitra Bandyopadhyay

10.1 INTRODUCTION

Discovery of novel lead molecules has always been a long, time consuming, and
expensive process in traditional drug discovery. It involves searching a chemical
space of >1018 compounds [1] to find a suitable small molecule that can act as a drug
and is safe to be administered. Finding a suitable molecule with the desired chemical
property from such a large search space is a very complex problem. With the advent of
new technologies and the abundance of three-dimensional (3D) structures of proteins,
the scientific fraternity can exploit this structural information in order to design novel
ligands possessing high-binding affinity to selective target proteins. This approach
of finding novel ligand molecules using the structure information of the receptor is
usually referred to as structure-based drug design.

Several Lead molecules have been discovered using the structure-based drug de-
sign approach. A few of them are approved drugs and many others are under clinical
trials. Prostaglandin D synthase inhibitors [2] and X-linked inhibitor of apoptosis
protein inhibitors [3] are most recent examples of drug design using fragment-based
Lead design. The success of this approach inspired the scientists to apply compu-
tational technologies to aid the drug discovery process. The main objectives of the
computational methods was to reduce the time and expense of the drug discovery
process. One of the earliest such approaches for computer-aided drug design or ratio-
nal drug design is DOCK [4]. This approach is a virtual screening method. It searches
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the database of 3D ligands to find the most suitable small molecule for a given target
protein. To find the goodness of a ligand, it docks the ligand to the given receptor and
gauges the stability of the complex. There is another approach to address the prob-
lem. Instead of searching among known 3D molecules to find a suitable molecule,
algorithms can be developed to design molecules with desired chemical features.

The problem of Lead optimization, be it by searching known 3D molecules or
by conceiving novel molecular scaffolds, is a search and optimization problem. In
such a scenario, application of genetic algorithms (GAs) [5, 6] seems natural and
appropriate. These GAs are a family of search and optimization techniques inspired
by the principles of evolution.

A few earlier applications of GAs for efficient ligand design are [7–9]. Budin et al.,
[10] developed a GA based approach for building peptides. However, a seed has to be
provided to the program for building the final ligand. Globus et al., proposed another
GA based approach to evolve small molecules represented as graphs, with atoms as
nodes and bonds between the atoms as edges [11]. Goh and Foster [8] proposed a GA
based ligand design framework that uses a tree structure encoding for representing
the ligands. The trees representing the ligands contain a functional group, selected
from a given library, at each leaf. But, it had an important limitation. This approach
used a fixed tree length for encoding the ligands. Ligands can never be of the same
size for every target, rather the ligand size would vary with the active site geometry of
different targets. To overcome this, Bandyopadhyay et al., proposed a method based
on variable length genetic algorithm (VGA) [7]. This approach was more realistic
as it used a variable length tree for encoding ligand as chromosomes. Consideration
of the variable tree length allowed ligand size to vary with different active site
geometries [7]. But again this approach also builds two-dimensional (2D) ligands.
Therefore, solutions provided by the approach may not be as good when conceived
in 3Ds. This chapter endeavors to improve this work by mining the active site from a
given protein structure, building 3D ligands, considering different energy components
for optimization, a much larger suite of functional groups for constructing the ligand,
both inter- and intramolecular interactions for optimization and domain specific
crossover and mutation operators. Experiments have also been conducted to study
the contribution of the intramolecular and the intermolecular energy components
in virtual screening. The effectiveness of the algorithm is established through a
comparative analysis of the results of proposed methods to VGA and two other
existing approaches for ligand design, namely, NEWLEAD [12] and LigBuider [13].

10.2 PROPOSED METHODOLOGY

This chapter discusses a genetic algorithm-based approach to de novo ligand design
and emphasizes the importance of the contribution of intramolecular and intermolec-
ular interaction energy for optimizing the ligands. The program takes the protein data
bank (PDB) structure files of the target proteins as input. From these input files, the
active site of the target protein is mined. According to the geometry and chemistry
of the target active site, the core ligand molecules are built while initialization. These
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molecules are evolved using specially tailored domain specific genetic operators ac-
cording to the value of the optimization parameter. Intramolecular and intermolecular
interaction energy are the optimization criteria computed by the fitness function. In-
tramolecular energy is a sum of bond stretching, angle bending, angle rotation, van der
Waals, and electrostatic energy components. The intermolecular interaction energy
is a sum of van der Waals and electrostatic energy components. We have obtained the
fitness value as a weighted sum of the intramolecular and intermolecular energies to
investigate the importance of their contribution for the Lead optimization problem.
Further, to validate our results we have docked the ligands built using the proposed
algorithm, VGA, NEWLEAD, and LigBuilder with their target proteins employing an
already established software InsightII [ MSI/Accelrys, San Diego, CA] and have com-
pared them to their similar molecules present in Cambridge structural database (CSD).

10.2.1 Active Site Processing

The steps involved in active site identification for ligand building are accounted for
in Section 10.2.1.1–10.2.1.3.

10.2.1.1 Active Site Identification Preliminary information about the geometry and
chemical composition of either the target active site or the natural ligand of the
target is required to address the Lead molecule design problem. The program that
we have developed requires the geometry and chemistry of the active site to build
its corresponding ligands. The geometry of the target active site determines the size
of the ligand and the chemical composition actuate the desired chemical property
of the ligand. To mark the active site in the given protein, its coordinates obtained
from the PDB are fit into a grid with a spacer of 0.5 Å. Grids containing protein
coordinates are labeled as “full”. If the input file is a ligand–protein complex, then
grids occupied by the ligand coordinates are labeled as “empty” and this group of
grids is treated as the active site. If an isolated protein molecule is input, then the
empty grids containing nothing are labeled “empty” and the largest assembly of such
“empty” grids is considered as the active site.

10.2.1.2 Active Site Surface Marking After identifying the active site, the dimen-
sions and chemical property of the active site is determined. Therefore, as the next
step the surface of the active site is marked and the amino acids on its surface are also
marked. To find the active site surface each “empty” grid comprising the active site
is filled with a water molecule of radius 1.4 Å. After placing the water molecule in
each grid, the distance between the water molecule and the nearest protein coordinate
is calculated. If the distance is 0.5 Å or less, then that particular grid containing
the coordinate of the protein molecule is labeled as “surface” and the atom on that
coordinate is noted. The atoms on the surface of the active site are responsible for the
biological functionality of the protein. So, these atoms are necessary to be considered
while building a ligand that is supposed to bind to it. These atoms are responsible for
the protein–ligand interaction. The center of the active site is detected by calculating
the median of the set of grid points considered as the active site. The ligand building
starts from this point.
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10.2.1.3 Building Preference Matrix The atoms on the surface of the active site are
marked to design ligands that can bind efficiently to the target protein. A preference
matrix is constructed to make a sequential list of every fragment being in the vicinity
of a particular atom in the active site. The preference matrix contains atoms of
the receptor protein comprising the active site in its rows while columns contain the
estimation of the different fragments, as mentioned in Figure 10.1, of being in the
vicinity of the given atom in the specific row.

To estimate the probability of a fragment being in the neighborhood of a particular
active site atom, first the nonbonding interactions (NBI) between all the fragments
and each of the atoms constituting the active site are calculated. These interactions
are calculated as

NBIi, f ′ =
| f ′|∑
i=1

[
Cn

ri j
6

− Cm

ri j
12

+ (qi × q j )

(4 × π × ε0 × ε × ri j
2)

]
. (10.1)

Equation (10.1) considers van der Waals and electrostatic interactions. Here, Cn and
Cm are constants, ri j is the distance between the ith atom of the fragment f ′ and
j th interacting atom on the receptor active site, and qi , q j are charges on i and j ,
respectively.

Then the probability of each fragment f ′, f ′ = 0, 1, 2, . . . , 40, to be considered
in the neighborhood of a given atom j on the receptor active site, is calculated as

prob j, f ′ = N B I j, f ′∑40
f ′=0[NBI j, f ′]

(10.2)

Here, prob j, f ′ is the probability of the fragment f ′ being in proximity of the atom j ,
in the active site of the receptor. The numerator is the NBI energy between atom j
on the receptor active site and a fragment f ′. The denominator is the sum of the NBI
energies between each fragment and the atom j of the receptor active site.

10.2.2 Genetic Algorithm-Based Ligand Design

A GA based de novo ligand design algorithm is described here. This algorithm uses
the fragment-based approach for designing ligands. The fragment library that it uses
for ligand building is shown in Figure 10.1. Chromosome representation, population
initialization, fitness computation, and genetic operators of the proposed algorithm
for ligand design are explained in Sections 10.2.2.1–10.2.2.4.

10.2.2.1 Chromosome Representation and Population Initialization The present
work uses 41 fragments, as shown in Fig. 10.1, for constructing the ligands. Table 10.1
gives the valencies corresponding to each fragment. For example, fragment number
9 is a nitrogen atom and and it has a valency of 3 (i.e., it can form three more bonds
to join itself to other fragments). The ligand size may vary according to the different
target active sites. Therefore, to allow construction of ligands with varying length,
a chromosome is encoded as a variable length tree like structure. Each gene of a
chromosome or each node of the tree representing a ligand is a structure containing 3
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FIGURE 10.1 Forty-one fragments (groups) were used to build the ligands using the pro-
posed method.
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TABLE 10.1 Fragment Number and Their Corresponding Valencies

Fragment No. of Children Fragment No. of Children
Number (Valency) Number (Valency)

0 4 1 6
2 4 3 6
4 6 5 2
6 4 7 4
8 4 9 3

10 5 11 7
12 2 13 4
14 6 15 2
16 4 17 6
18 2 19 4
20 4 21 6
22 3 23 5
24 5 25 7
26 4 27 10
28 8 29 12
30 8 31 6
32 6 33 7
34 7 35 10
36 9 37 8
38 12 39 4
40 1

integers and 12 pointers. The first integer is the gene number, the second contains the
fragment number of the fragment present at that gene position, and the third denotes
the valency of the fragment as given in Table 10.1. Twelve pointers are considered
since the highest valency of a fragment in the fragment library considered for ligand
building is 12. Each pointer can either be NULL or can point to any other node. The
valency of a fragment decides the number of pointers pointing to any other node. For
the convenience of implementation, a back pointer is kept from every node of the
tree, except the root, which points back to its parent.

The scheme is defined as follows:

if (node == root)

ptri = childi if i <= number of children

ptri = NULL otherwise

else if (i == 1)

ptri = parent of node

else

ptri = childi if i <= (number of children)

ptri = NULL otherwise

end

end
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To initialize a chromosome i , the first gene position of the chromosome is filled by
a fragment selected randomly from the fragment library, as mentioned in Figure 10.1.
From the second gene position onward, each fragment is placed at every gene position
and the fragment due to which the internal energy of the ligand is least is used for
ligand extension. The ligand extension occurs as long as the ligand does not grow
out of the active site. This incremental construction is done only for initializing the
population with core ligands that are further evolved using the GA.

10.2.2.2 Fitness Evaluation The fitness value of a ligand gauges the goodness of the
solution. The goodness of a probable ligand is calculated as a function of its chemical
composition and proximity to the target active site. The fitness function computes the
intramolecular ligand energy and the intermolecular nonbonding interaction energy
of the ligand and protein. Low intramolecular energy ensures a stable ligand and
low inter molecular interaction energy warrants a stable ligand–protein complex
implying better binding affinity. In this work, we have taken a weighted sum of the
intramolecular and intermolecular interaction energy to enunciate their contributions
in selectivity of ligands.

The van der Waals (vdw) energy is calculated using the following Lennard-Jones
6–12 potential function [14]

Evdw(x, y) =
(

Cn

rxy
6

)
−

(
Cm

rxy
12

)
(10.3)

Here, Evdw(x, y), Cn , Cm , and rxy are the van der Waals interaction energy, con-
stants and the distance between the interacting atoms x and y, respectively.

The electrostatic interaction energy Eel(x, y) between two atoms x and y is cal-
culated by [14]

Eel(x, y) = (qx × qy)

(4 × π × ε0 × ε × rxy
2)

(10.4)

Here, qx and qy are formal charges of the interacting atoms, ε0 is a constant, and
rxy is the distance between the interacting groups. Solvent water molecules are not
considered for the calculations, so distance-dependent dielectric constant (ε) is used
to mimic the solvent effect during calculation [15].

Equation (10.5) is used for calculating the bond-stretching energy El(x, y) [14]

El(x, y) = kl × (lxy − lxy,0)2

2
(10.5)

Here, lxy and lxy,0 are the calculated bond length and reference bond length between
the two atoms x and y, respectively. The bond-stretching constant is kl .

The angle bending energy Eθ is calculated using the following equation [14]:

Eθ = kθ × (θ − θ0)2

2
(10.6)
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Here, θ and θ0 are the calculated angle and reference angle, respectively and kθ is the
angle-bending constant.

The torsional energy Eφ is calculated using the following expression [14]:

Eφ = kφ × (1 − cos n × (φ − φ0)) (10.7)

Here, φ and φ0 are the calculated and reference torsion angles, respectively, kφ is the
torsion contribution constant, and n is the periodicity linked with the type of central
bond of the torsion.

Therefore the intramolecular energy can be calculated by combining all the above
mentioned energies as follows:

Eintra =
lig∑

l ′=1

l ′−1∑
l=1

[
Evwd(l, l ′) + Eel(l, l ′)

] +
∑
bonds

El +
∑

angles

Eθ +
∑

torsion

Eφ (10.8)

The intermolecular energy is

Einter =
lig∑

i=1

receptor∑
j=1

[Evwd(i, j) + Eel(i, j)] (10.9)

Here, lig and receptor are the number of groups in the ligand and the receptor,
respectively. Sum of the intramolecular and intermolecular energy gives the total
energy that determines the stability of the ligand, as well as the ligand–protein
complex. But, as mentioned above, to enunciate the contributes of the Eintra and
Einter in ligand selection pressure weighted sum of both the energy components are
considered. Therefore the total energy is calculated as

Etotal = w × Eintra + (1 − w) × Einter (10.10)

Here, w , that varies between 0 and 1, controls the contributions of the two energy
components toward the composite energy, Etotal. Different values of w are used in
the experiments in order to evaluate the relative importance of the two factors and to
design an effective fitness function.

As mentioned before, lower energy corresponds to more stable ligands. Therefore
the fitness value of a chromosome is set to be inversely proportional to the total
energy value. In other words, the fitness value, F , of a chromosome is defined as

F = 1

Etotal
(10.11)

such that individuals with higher fitness correspond to ligands having lower energy
values, and hence greater stability.
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For refining the results, a few domain specific constraints are applied. Nonbonding
interaction energy are is calculated for the functional group of the ligand lying at a
distance not >5 Å and not <0.65 Å from the protein receptor molecule to avoid
steric hindrance. Three dimensional conformation and orientation of a ligand is
very important to make bonds with its target. For example, a polar hydroxyl group
should lie close to an amine group or acidic amino acids to make stable hydrogen
bonds. Similarly, hydrophobic interactions will occur only when hydrophobic atoms
of the ligand will face the hydrophobic amino acids on the active site of the target
protein. Ligands violating these constraints are heavily penalized by adding a large
positive integer to the total energy so that they will be automatically eliminated in the
evolutionary process.

10.2.2.3 Genetic Operators The genetic operators used are selection, crossover, and
mutation. Roulette wheel selection technique is employed. According to this selection
strategy, more fit individuals are more probable to reproduce (i.e., a chromosome is
more likely to be selected as a parent for reproduction if it has better fitness).

A crossover probability of cprob is adaptively set for application of the domain
specific crossover operator, on a pair of parent chromosomes. For performing the
crossover, the crossover points in both the parents are generated. A crossover point
is a randomly generated gene number in a parent. The subtrees following these gene
numbers on the crossover points are exchanged to obtain two new chromosomes.
After the exchange, the pointers and the gene numbers are rearranged appropriately
by following a breadth first traversal. According to the cprob, if the crossover is
not to performed between a pair of parents, then they are simply copied to the next
population. The adaptive crossover probability is calculated similarly to [16]. If fmax

is the maximum fitness value of the current population, f is the average fitness value
of the population and f

′
is the larger of the fitness values of the solutions to be

crossed. Then the probability of crossover, cprob, can be calculated as

cprob = k1 × ( fmax − f
′
)

( fmax − f )
if f

′
> f , cprob = k3 if f

′ ≤ f (10.12)

Here, similar to [16], the values of k1 and k3 are both considered as 1.0. Note that,
when fmax= f , then f

′ = fmax and cprob attains the same value as k3. The impetus
for this adaptation is to achieve a trade-off between exploration and exploitation in
a different manner. When two chromosomes with poor fitness are to be crossed, the
cprob increases, but it decreases if the two solutions under consideration for crossover
are good solutions. This adaptation increases the likelihood of the bad solution to be
evolved and decreases the likelihood of disrupting a good solution by crossover.

Mutation is also performed with an adaptive mutation probability of mprob as
described in [16]. A gene position is to be mutated or not is decided using the
mutation probability mprob. If a gene position is found to be suitable for mutation
then the preference matrix, described earlier, is consulted to replace the gene position
with the most likely substitute. For finding the appropriate substitute, the nearest
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neighbor on the gene on the active site is located. Then, a roulette wheel selection
scheme is employed to select an appropriate fragment from the preference matrix to
replace the fragment in the selected gene position. The mprob is calculated using the
following expression

mprob = k2 × ( fmax − f )

( fmax − f )
if f > f ,

mprob = k4 if f ≤ f (10.13)

Here, values of k2 and k4 are set equal to 0.5. Adaptive mutation is an aid to GA
for overcoming a local optimum.

Adaptive crossover and mutation probabilities are helpful in avoiding premature
convergence of GA at local optima. When ( fmax − f ) decreases indicating an optima,
both cprob and mprob increases preventing the convergence of the GA. But due to
this phenomenon, disruption of the near-optimal solutions can occur in order to
prevent the convergence of the GA at even the global optimum. But as cprob and
mprob attain lower values for more fit solutions and attain higher values for less fit
solutions, individuals with high fitness values help in the convergence of the GA
while the individuals with low fitness values prevent the GA from getting stuck at a
local optimum. For solutions with the maximum fitness value, cprob and mprob are
both zero.

10.2.2.4 Elitism The termination criterion for the algorithm is a specified number of
generations. Elitism is incorporated in each generation. The best solution observed
till a generation is stored in the next population, as well as in a location outside
the population, is referred to as the elite population. Note that the size of the elite
population is equal to the number of generations executed.

10.2.3 Postprocessing of the Ligand

The proposed algorithm is executed with the value of w as 0, 0.25, 0.50, 0.75, and 1.
Elite and final populations are screened to identify the three top scoring individuals
for each run of the proposed algorithm with w as 0, 0.25, 0.50, 0.75, and 1. A total
of 15 high-scoring ligands were screened from the solution pool obtained using the
proposed algorithm with various weights of inter- and intramolecular energy and
are further analyzed for their goodness. For this analysis, the “Docking" module of
Insight II [MSI/Accelrys, San Diego, CA] is used. Three ligands corresponding to the
weight producing best results are chosen and are further compared with the output
of VGA [7], NEWLEAD [12], and LigBuilder [13]. The optimized 3D structure of
the 2D ligands designed by VGA are obtained by using a “Build” module of Insight
II [MSI/Accelrys, San Diego, CA]. This module has a built in optimization routine
to find the most stable conformation of the input ligand. Similar to comparing the
activity of the ligands designed using the proposed algorithm, VGA, NEWLEAD, and
LigBuilder, they are docked using the “Docking" module of Insight II [MSI/Accelrys,
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San Diego, CA]. To study if it was possible to synthesize the designed ligands, CSD,
a library of >450,000 small molecules, is searched using ConQuest [17] to find
molecules similar to the designed ligands. These are considered for further docking
and comparative analyses. The idea behind the comparison of the real molecules,
retrieved from CSD, to the designed molecules, is that if any derivative of the designed
molecule has already been synthesized, then perhaps the designed molecules can also
be synthesized. Therefore, the corresponding real molecule can also assist in finding
out the activity of the designed molecules. Moreover, if the similar real molecule is
found to posses high-binding affinity to the given target, then both the real molecule
and the designed molecules could be investigation worthy.

10.3 EXPERIMENTAL RESULTS AND DISCUSSION

C programming language has been used to develop the proposed algorithm on the
UNIX platform. The performance of GA depends on the choice of the control param-
eters. Hence, the mutation and crossover probability are adaptively set as suggested
in [16]. The number of generations and the population size are set to 1000 and 100,
respectively.

The drug targets considered for the study are HIV-1 Protease and Thrombin. The
posttranscriptional processing of viral gag and gag-pol proteins for the production
of functional viral proteins are assisted by HIV-l Protease. The structural proteins of
virion core (i.e., p17, p24, p7, and p6) are transcribed and translated from the gag
gene. Gag-pol is responsible for the release of viral replicative enzymes (protease,
reverse transcriptase, and integrase), necessary for its retroviral life cycle. Thrombin
is a serine protease prominently participating in blood coagulation. It hydrolyzes
fibrinogen to fibrin for activating platelets to form the clot. Thrombin can be used
as a tool to control coagulation cascade and ameliorate specific diseases [18]. A
wide variety of binding modes and geometries of thrombin has been revealed by
many scientists. According to [19] thrombin contains three principal interaction
sites, namely, S1, D, and P. The S1 site contains an aspartic acid residue. Both D and
P sites contain hydrophobic pockets. All three sites are responsible for the specificity
of thrombin. The PDB entries 1AAQ and 1DWD [19, 20], the structure of HIV-1
Protease and Thrombin, respectively, are used as input files to the program. Both
NAPAP and Ritonavir are the known synthetic inhibitors of Thrombin and HIV-1
Protease, respectively. Therefore, the ligands designed using the proposed algorithm,
VGA, NEWLEAD, and LigBuilder are compared with these molecules to estimate
their goodness.

10.3.1 Comparative Analyses of the Contribution of Intramolecular
and Intermolecular Energy for Ligand Designing

The three top scoring individuals obtained after each run of the proposed algorithm
using the value of w as 0, 0.25, 0.50, 0.75, and 1 corresponding to each of the target
proteins are docked to their respective receptors. Their corresponding energy values
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TABLE 10.2 Interaction Energies for the Ligands Designed Using the Proposed
Method With the Weight as 0, 0.25, 0.50, 0.75, and 1 for HIV-1 Protease and Thrombina

Interaction Energy (kcal mole−1)

Protein Ligand w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1

HIV-1 ligand1 −2.52 −3.88 −9.35 −3.69 1.02
Protease ligand2 −2.67 −3.56 −8.54 −3.66 1.96

ligand3 0.19 −2.11 −6.23 −3.24 2.5

Thrombin ligand1 −5.45 −2.98 −10.33 −1.24 2.55
ligand2 −4.11 −2.24 −9.42 0.56 3.01
ligand2 −4.86 −1.29 −9.11 0.98 3.51

a In kcal mole−1.

are given in Table 10.2. The results shows that the ligand target complexes possess less
energy when the ligands are designed with w = 0.5. This observation indicates that
the ligands designed using the equal contribution of intramolecular and intermolecular
energy are better in comparison to the ligands designed with unequal contribution of
the intermolecular and intramolecular energy. The reason behind such an observation
could be that the ligands that are being designed need to have a stable conformation
for itself and should be able to bond well to its target. It can also be observed from
Table 10.2 that the ligands designed considering only intermolecular energy (w = 0)
are better than the ligands designed using only intramolecular energy (w = 1). The
reason for this is that while designing ligands for a given target, the interaction of
the target to the protein must be considered so as to get an approximate estimate of
the binding affinity of the designed molecule to its given target. In fact, the work
in [7] used only this component of the energy. Though the intermolecular interaction
energy is more important to be evaluated than de novo ligand design, the efficacy
of the algorithm increases when intramolecular energy is incorporated. Therefore,
we conclude that the fitness function for evolving small drug-like molecules should
give equal importance to both intramolecular and intermolecular interaction. Further
analysis of the results for the comparative study with other existing approaches are
obtained using w = 0.5.

10.3.2 Comparative Analyses of Interaction Energy
and Hydrogen-Bond Interaction

The ligands designed by the proposed algorithm (VGA, NEWLEAD, and LigBuilder)
for HIV-1 Protease and Thrombin are docked with their corresponding receptor pro-
teins using the “Docking” module of Insight II [MSI/Accelrys, San Diego, CA]. The
corresponding interaction energies are provided in Table 10.3. The significantly lower
energy values of the molecules designed using the proposed algorithm indicate that
these produce more stable receptor ligand complexes. The ligands designed for HIV-1
Protease by each of the de novo design scheme and their docked complexes with the
protein are shown in Figure 10.2. The ligands designed by the proposed algorithm
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TABLE 10.3 Interaction Energies for the Ligands Designed Using the Proposed
Method, VGA, NEWLEAD, and LigBuilder for HIV-1 Protease and Thrombina

Interaction Energy (kcal mole−1)

Proposed
Protein Ligand method VGA NEWLEAD LigBuilder

HIV-1 ligand1 −9.35 2.53 −7.98 −8.67
Protease ligand2 −8.54 5.76 −6.14 −7.11

ligand3 −6.23 0.23 −4.32 −6.02
Average interaction

energy
−8.04 2.84 −6.14 −7.26

Thrombin ligand1 −10.33 −2.53 −5.80 −8.97
ligand2 −9.42 −2.23 −5.64 −8.56
ligand2 −9.11 −1.52 −4.28 −7.79
Average interaction

energy
−9.62 −2.09 −5.24 −8.44

a In kcal mol−1.

are generally smaller and comprise less aromatic groups (see Figure 10.2), causing
less stearic hindrance and better interaction with the target protein, in comparison to
the ligands designed by the other methods.

Hydrogen bonds in a protein–ligand complex are very essential since the binding
affinity between the protein and the ligand is dependent on them. Therefore, the inter-
acting residues of the protein–ligand complex are observed to identify the hydrogen
bonds.

Tables 10.4–10.6 give the hydrogen-bond details for the protein–ligand interaction.
From these tables, it is evident that ligands designed by the proposed algorithm are
in general forming more hydrogen bonds with their target proteins, implying a more
stable docked complex.

The rationale behind the formation of more and good hydrogen bonds between
the target and the ligand designed by the proposed algorithm could be better genetic
operators, bigger fragment libraries, and building 3D ligands. The proposed algorithm
builds 3D ligands, therefore it can be expected that the ligands designed by it will
always dominate results of VGA since 3D adaptation will allow better exploration of
the search space. Consideration of preference matrix for mutation makes the process
knowledge based and thus the algorithm is able to evolve a more fit individual
in comparison to NEWLEAD and LigBuilder. The fragment library of the proposed
algorithm is a balanced combination of the chemical fragments and atoms making the
algorithm more flexible while designing small molecules. It is not compelled to grow
ligands using only fragments, unlike LigBuilder, or only atoms, unlike [21,22]. It can
grow ligands using both fragments and atoms as per requirement. References [21,22]
have a comparatively large time complexity due to usage of atoms for building
ligands. Therefore, the type of fragment library modeled for this algorithm increases
the precision of the algorithm and reduces the time complexity.
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FIGURE 10.2 Structure of a ligand and the docked protein–ligand complex obtained by (a
and b) the proposed method, (c and d) VGA, (e and f ) NEWLEAD, and (g and h) LigBuilder
for HIV-1 Protease (visualized using Insight II [ MSI/Accelrys, San Diego, CA], where the
protein is represented in ribbons and the ligands are represented in CPK).
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TABLE 10.4 H-Bond Interactions of Ligand1 Designed by the Proposed Method, VGA,
NEWLEAD, and LigBuilder With HIV-1 Protease and Thrombin

H-Bond H-Bond H-Bond
Approach Protein Donor Acceptor Distance

Proposed method HIV-1 Protein:48:HN Ligand:2:OH 2.38
Protease Ligand:2:HH Protein:48:N 2.36

Ligand:2:HH Protein:48:O 2.48

Thrombin Ligand:3:O Protein:96:O 1.43
Ligand:7:NH Protein:98:HH 2.07

VGA HIV-1 Protein:87:HH Ligand:3:OH 2.13
Protease Ligand:3:HH Protein:87:NH 2.30

Thrombin Ligand:2:HH Protein:102:NH 2.02

NEWLEAD HIV-1 Protein:29:OH Ligand:5:HH 1.13
Protease Ligand:5:HH Protein:29:NH 2.05

Thrombin Ligand:3:HH Protein:94:OH 1.67
Ligand:4:HH Protein:94:O 2.11

LigBuilder HIV-1 Protein:48:N Ligand:7:HH 2.08
Protease Ligand:5:HH Protein:49:NH 2.28

Thrombin Protein:97:HN Ligand:2:HH 2.87
Ligand:2:HH Protein:97:N 2.76

TABLE 10.5 H-Bond Interactions of Ligand2 Designed by the Proposed Method, VGA,
NEWLEAD, and LigBuilder With HIV-1 Protease and Thrombin

H-Bond H-Bond H-Bond
Approach Protein Donor Acceptor Distance

Proposed method HIV-1 Ligand:2:HH Protein:87:NH 2.14
Protease Ligand:4:HH Protein:27:O 0.25

Ligand:7:HH Protein:48:O 2.48

Thrombin Ligand:1:NH Protein:94:HH 1.82
Ligand:10:OH Protein:96:HH 1.87

VGA HIV-1 Protein:87:HH Ligand:4:OH 2.13
Protease Ligand:4:HH Protein:87:NH 1.46

Thrombin Ligand:2:OH Protein:102:HH 2.94

NEWLEAD HIV-1 Protein:48:NH Ligand:5:HH 1.13
Protease Ligand:5:HH Protein:48:NH 1.75

Thrombin Ligand:1:HH Protein:98:O 2.05
Ligand:3:HH Protein:94:N 2.87

LigBuilder HIV-1 Protein:48:NH Ligand:7:HH 2.46
Protease Protein:48:NH Ligand:6:OH 2.35

Thrombin Protein:98:NH Ligand:5:OH 2.43
Ligand:5:OH Protein:98:NH 2.35
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TABLE 10.6 H-Bond Interactions of Ligand3 Designed by the Proposed Method, VGA,
NEWLEAD, and LigBuilder With HIV-1 Protease and Thrombin

H-Bond H-Bond H-Bond
Approach Protein Donor Acceptor Distance

Proposed method HIV-1 Protein:27:HN Ligand:2:HH 1.08
Protease Ligand:2:HH Protein:27:N 0.96

Thrombin Ligand:2:HH Protein:94:O 1.87
Ligand:3:HH Protein:94:O 2.27

VGA HIV-1 Protein:89:HH Ligand:5:OH 2.05
Protease Ligand:6:HH Protein:89:NH 2.16

Thrombin Ligand:4:HH Protein:93:OH 2.84

NEWLEAD HIV-1 Protein:30:HH Ligand:4:NH 1.62
Protease Ligand:4:HH Protein:30:NH 1.78

Thrombin Ligand:7:OH Protein:96:HH 2.11

LigBuilder HIV-1 Protein:27:HH Ligand:3:NH 2.12
Protease Ligand:3:HH Protein:27:NH 2.28

Thrombin Ligand:4:HH Protein:83:O 2.32

To investigate the synthesizability of the ligands designed by the proposed method,
VGA, NEWLEAD, and LigBuilder, analogous real molecules, are retrieved from
CSD using the search module “ConQuest” [17]. When CSD is searched using the
proposed ligands as query, several similar molecules are reported by ConQuest.
Among these, the molecules that form a stable docked complex with their recep-
tors are reported. The CSD Ref Codes, along with the interaction energy with their
corresponding target proteins, HIV-1 Protease, and Thrombin are reported in Ta-
ble 10.7. As seen earlier, the interaction energies are found to be smaller for the real
CSD molecules that are similar to the ligands designed by the proposed algorithm in

TABLE 10.7 Comparison of the Interaction Energies for the Molecules Obtained from
CSD for HIV-1 Protease and Thrombin

Ligand Building Scheme Protein CSD Ref Code Energy kcal mol−1

Proposed HIV-1 Protease SEWZOJ −24.76
method Thrombin VELTIP −19.04

VGA HIV-1 Protease VEHMUQ −17.76
Thrombin EADPUU −12.34

NEWLEAD HIV-1 Protease AMPTRA −18.10
Thrombin EHIYAV −10.43

LigBuilder HIV-1 Protease QUIASP −22.86
Thrombin INITAA10 −16.90
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TABLE 10.8 RMSD Values, (Å) between NAPAP and Ligands
Designed Using the Computational Approaches for Thrombin

The Proposed Method VGA NEWLEAD LigBuilder

0.76 8.54 3.62 1.04

comparison to the molecules designed by VGA, NEWLEAD, and LigBuilder. The
results point out that the molecules designed by the proposed algorithm form more
stable docked complexes than the other three approaches.

10.3.3 Comparative Study Using Root-Mean-Square Deviation Analysis

In order to compare the RMSD values between the known protein inhibitor and the
ligands designed by the proposed method (VGA, NEWLEAD, and LigBuilder), the
protein Thrombin is considered. Pymol [23] is used for aligning the two molecules ap-
propriately and computing the RMSD values. The comparative results are reported in
Table 10.8. As seen, the ligands designed using the proposed method and LigBuilder
have small RMSD values, indicating their high similarity to the know inhibitor for
Thrombin, NAPAP. The poor performance of VGA is expected since it builds the
ligand in 2D space. Figures 10.3 (a) (b) show the ligands designed by LigBuilder
and the proposed method, respectively, superimposed over NAPAP. For HIV-1 Pro-
tease, the known inhibitor is Ritonavir. A result for LigBuilder is unavailable for this
protein. The ligand designed using the proposed method superimposed on Ritonavir
is shown in Figure 10.3 (c). As seen, the proposed molecule is highly similar to the
known inhibitor, with an RMSD value, computed using PyMol, of 1.97 Å.

10.4 CONCLUSION

Traditional drug discovery is a well-established process that involves large amounts of
time and money. Though there is no substitute for the methodology, the advancement
of science and technology have definitely found various ways to assist the procedure
to reduce its time consumption and expense. Rational drug design tries to do the same
thing (i.e., it helps reducing time and cost of the process by reducing the search space
for wet experiments). This chapter describes a rational drug design technique for
de novo ligand design. The program illustrated in this chapter takes the structure
files of the target proteins in PDB file format and mines the active site from it. A
preference matrix is built using the chemical property of the active site that is further
used to evolve the ligands. It uses a library of 41 fragments for building ligands. The
program uses genetic algorithm to search the chemical space and find an appropriate
ligand for the given target. It uses a variable length tree-like structure for chromo-
some representation and domain-specific genetic operators. Though the chromosome
representation involves memory overhead, it is manageable as the ligands designed
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(b)

(c)

(a)

FIGURE 10.3 (a) Ligand built using grow module of LigBuilder (White) superimposed
with NAPAP (Grey). (b) Ligand built using the proposed method (White) superimposed
with NAPAP (Grey). (c) Ligand built using the proposed method (White) superimposed with
Ritonavir (Grey).
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are usually small. The fitness function of the algorithm computes bond stretching,
dihedral angle, angle bending, electrostatic, and van der Waals energy components.

The results can be further improved if the algorithm amalgamates hydrophobic
interaction and desolvation energies with the present fitness function for evaluating
the goodness of the solutions. Usage of Lipinski rule of five, QSAR properties, and
ADMET properties for ligand building can also improve results. Inclusion of these
properties will assist in deciding the safety and efficacy of the ligands designed.
The memory overhead also needs to be reduced using some other chromosome
representation. The ligands designed using the proposed methodology are flexible,
but while designing ligands, receptor proteins are considered rigid. To improve the
algorithm, receptor flexibility needs to be incorporated.
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INTEGRATED DIFFERENTIAL FUZZY
CLUSTERING FOR ANALYSIS OF
MICROARRAY DATA

Indrajit Saha and Ujjwal Maulik

11.1 INTRODUCTION

In recent years, DNA microarrays has been developed as a popular technique for
gathering a substantial amount of gene expression data that is necessary to examine
complex regulatory behavior of a cell [1]. Microarray gene expression data, consisting
of G genes and T time points, is typically organized in a two-dimensional (2D) matrix
E = [ei j ] of size G × T . Each element ei j gives the expression level of the i th gene
at the j th time point. Clustering [2–4], an important microarray analysis tool, is used
to identify the sets of genes with similar expression profiles. Clustering methods
partition the input space into K regions, depending on some similarity–dissimilarity
metric, where the value of K may or may not be known a priori . The main objective
of any clustering technique is to produce a K × n partition matrix U (X ) of the given
data set X , consisting of n patterns, X = {x1, x2, . . . , xn}. The partition matrix may
be represented as U = [uk, j ], k = 1, 2, . . ., K and j = 1, 2, . . ., n, where uk, j is the
membership of pattern x j to the kth cluster.

In 1995, Storn and Price proposed a new floating point encoded evolutionary al-
gorithm for global optimization [5] and named it differential evolution [6, 7], owing
to a special kind of differential operator, which they invoked to create new offspring
from parent vectors instead of classical mutation. The DE algorithm is a stochas-
tic optimization [8] method minimizing an objective function that can model the
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problem’s objectives while incorporating constraints. The DE has been used in differ-
ent fields of engineering and science including unsupervized image classification [9].

This chapter develops a differential evolution-based fuzzy clustering algorithm
(DEFC). The superiority of the developed method over genetic algorithm-based fuzzy
clustering (GAFC) [10], simulated annealing-based fuzzy clustering (SAFC) [11],
and Fuzzy C-Means (FCM) [12], has been demonstrated on four publicly available
benchmark microarray data sets, namely, yeast sporulation, yeast cell cycle, arabidop-
sis thaliana, and human fibroblasts serum. To improve the clustering result further, an
SVM is trained with a fraction of the datapoints selected from different clusters based
on their proximity to the respective centers. The clustering assignments of the remain-
ing points are thereafter determined using the trained classifier. Finally, a biological
significance test has been conducted on yeast sporulation microarray data to establish
that the developed integrated technique produces functionally enriched clusters.

11.2 CLUSTERING ALGORITHMS AND VALIDITY MEASURE

This section describes some well-known clustering methods and cluster validity
measures.

11.2.1 Clustering Algorithms

11.2.1.1 Fuzzy C-Means Fuzzy C-Means [12] is a widely used technique that uses
the principles of fuzzy sets to evolve a partition matrix U (X ) while minimizing the
measure

Jm =
n∑

j=1

K∑
k=1

um
k, j D2(zk, x j ) 1 ≤ m ≤ ∞ (11.1)

where n is the number of datapoints, K represents the number of clusters, u is the
fuzzy membership matrix (partition matrix), and m denotes the fuzzy exponent. Here,
x j is the j th datapoint and zk is the center of kth cluster, and D(zk, x j ) denotes the
distance of datapoint x j from the center of the kth cluster.

The FCM algorithm starts with random initial K cluster centers, and then at
every iteration it finds the fuzzy membership of each datapoint to every cluster using
Eq. (11.2)

uk,i =
(

1
D(zk ,xi )

) 1
m−1

∑K
j=1

(
1

D(z j ,xi )

) 1
m−1

for 1 ≤ k ≤ K 1 ≤ i ≤ n (11.2)

for 1 ≤ k ≤ K ; 1 ≤ i ≤ n, where D(zk, xi ) and D(z j , xi ) are the distances between
xi and zk , and xi and z j , respectively. The value of m, the fuzzy exponent, is taken as
2. Note that while computing uk,i using Eq. (11.2), if D(z j , xi ) is equal to 0 for some
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j , then uk,i is set to zero for all k = 1, . . . , K , k �= j , while uk,i is set equal to 1.
Based on the membership values, the cluster centers are recomputed using Eq. (11.3)

zk =
∑n

i=1 um
k,i xi∑n

i=1 um
k,i

1 ≤ k ≤ K (11.3)

The algorithm terminates when there is no further change in the cluster centers. Fi-
nally, each datapoint is assigned to the cluster to which it has maximum membership.
The main disadvantages of the Fuzzy C-Means clustering algorithms are (1) it depends
on the initial choice of the center and (2) it often gets trapped into some local optimum.

11.2.1.2 Genetic Algorithm based Fuzzy Clustering Here we briefly discuss the use
of genetic algorithms (GAs) [13] for fuzzy clustering. In GA based fuzzy clustering,
the chromosomes are made up of real numbers that represent the coordinates of the
centers of the partitions [14]. If chromosome i encodes the centers of K clusters
in N -dimensional space, then its length l is N × K . For initializing a chromosome,
the K centers are randomly selected points from the data set while ensuring that
they are distinct. The fitness of a chromosome indicates the degree of goodness of
the solution it represents. In this chapter, Jm is used for this purpose. Therefore, the
objective is to minimize Jm for achieving proper clustering. Given a chromosome, the
centers encoded in it are first extracted. Let the chromosome encode K centers, and
let these be denoted as z1, z2, . . . , zK . The membership values uk,i , k = 1, 2, . . . , K
and i = 1, 2, . . . , n are computed as in Eq. (11.2). The corresponding Jm is computed
as in Eq. (11.1). The centers encoded in a chromosome are updated using Eq. (11.3).
Conventional proportional selection implemented by the roulette wheel strategy is
applied on the population of strings. The standard single-point crossover is applied
stochastically with probability µc. The cluster centers are considered to be indivisible,
(i.e., the crossover points can only lie in between two clusters centers). In [14], each
gene position of a chromosome is subjected to mutation with a fixed probability µm ,
resulting in the overall perturbation of the chromosome. A number ± in the range [0,
1] is generated with uniform distribution. If the value at a gene position is v , after
mutation it becomes (1±2×δ)×v , when v �= 0, and ±2×δ, when v = 0. The + or
− signs occurs with equal probability. Note that because of mutation more than one
cluster center may be perturbed in a chromosome. The algorithm terminates after
a fixed number of generations. The elitist model of GAs has been used, where the
best chromosome seen so far are stored in a location within the population. The best
chromosome of the last generation provides the solution to the clustering problem.

11.2.1.3 Simulated Annealing-Based Fuzzy Clustering Simulated annealing (SA)
[15] is an optimization tool that has successful applications in a wide range of
combinatorial optimization problems. This fact motivated researchers to use a SA
to optimize the clustering problem, where it provides near optimal solutions of an
objective or fitness function in the complex, large, and multimodal landscapes. In SA
based fuzzy clustering [11], a string or configuration encodes K cluster centers. The
fuzzy membership of all the points that are encoded in the configuration is computed
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p Random initial configuration.

(Here each configuration encodes K cluster centres)

T Tmax.

E(p) Energy of p is computed using Eq. (11.1).

while(T ≥ Tmin)

for i = 1 to k

s Perturb ( p ).

E(s) Energy of s is computed using Eq. (11.1).

if (E(s) - E(p) < 0 )

Set p = s and E(p) E(s)

else

if (rand(0,1) < exp(−(E(s)−E(p)))
T

)

Set p s and E(p) E(s)

end if

end if

end for

T T×r. /* 0 < r < 1 */

end while

FIGURE 11.1 The SAFC algorithm.

by using Eq. (11.2). configuration. Subsequently, the string is updated using the
new centers [Eq. (11.3)]. Thereafter, the energy function, Jm , is computed as per
Eq. (11.1). The current string is perturbed using the mutation operation, as discussed
for GAFC. This way, perturbation of a string yields a new string. It’s energy is also
computed in a similar fashion. If the energy of the new string (E(s)) is less than that
of the current string (E(p)), the new string is accepted. Otherwise, the new string is
accepted based on a probability exp(−(E(s)−E(p)))

T , where T is the current temperature
of the SA process. Figure 11.1 demonstrates the SAFC algorithm.

11.2.2 Cluster Validity Indices

11.2.2.1 I index A cluster validity index I, proposed in [16] is defined as follows:

I(K ) =
(

1

K
× E1

EK
× DK

)p

(11.4)

where K is the number of clusters. Here,

EK =
K∑

i=1

n∑
k=1

ui,k ‖ zi − xk ‖ (11.5)
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and

DK = maxi �= j‖ zi − z j ‖ (11.6)

The index I is a composition of three factors, namely,1/K ; E1/EK , and DK . The
first factor will try to reduce index I as K is increased. The second factor consists of
the ratio of E1, which is constant for a given data set, to EK , which decreases with
an increase in K . To compute E1, the value of K in Eq. (11.5) is taken as 1 (i.e.,
all the datapoints are considered to be in the same cluster). Hence, because of this
term, index I increases as EK decreases. This, in turn, indicates that formation of
more clusters, which are compact in nature, would be encouraged. Finally, the third
factor, DK , which measures the maximum separation between two clusters over all
possible pairs of clusters, will increase with the value of K . However, note that this
value is upper bounded by the maximum separation between two datapoints in the
data set. Thus, the three factors are found to compete with and balance each other
critically. The power p is used to control the contrast between the different cluster
configurations. In this chapter, p = 2.

11.2.2.2 Silhouette Index The silhouette index [17] is a cluster validity index that
is used to judge the quality of any clustering solution C . Suppose a represents the
average distance of a datapoint from the other datapoints of the cluster to which
the datapoint is assigned, and b represents the minimum of the average distances
of the datapoint from the datapoints of the other clusters. Now, the silhouette width
s of the datapoint is defined as

s = b − a

max{a, b} (11.7)

Silhouette index s(C) is the average silhouette width of all the datapoints and reflects
the compactness and separation of clusters. The value of the silhouette index varies
from −1 to 1, and higher values indicate a better clustering result.

11.3 DIFFERENTIAL EVOLUTION BASED FUZZY CLUSTERING

11.3.1 Vector Representation and Population Initialization

Each vector is a sequence of real numbers representing the K cluster centers. For an
N -dimensional space, the length of a vector is l = N × K , where the first N positions
represent the first cluster center. The next N positions represent those of the second
cluster center, and so on. The K cluster centers encoded in each vector are initialized
to K randomly chosen points from the data set. This process is repeated for each of
the P vectors in the population, where P is the size of the population.
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11.3.2 Fitness Computation

The fitness of each vector (Jm) is computed using Eq. (11.1). Subsequently, the
centers encoded in a vector are updated using Eq. (11.3).

11.3.3 Mutation

The i th individual vector of the population at time-step (generation) t has l compo-
nents, that is,

Gi,l(t) = [Gi,1(t), Gi,2(t), . . . , Gi,l(t)] (11.8)

For each target vector Gi,l(t) that belongs to the current population, DE samples three
other individuals, like Gx,l (t), G y,l (t), and Gz,l (t) (as describe earlier) from the same
generation. Then, the (componentwise) difference is calculated, scale by a scalar F
(usually ∈ [0, 1]), and creates a mutant offspring ϑi,l(t + 1).

ϑi,l(t + 1) = Gx,l (t) + F (G y,l (t) − Gz,l (t)) (11.9)

11.3.4 Crossover

In order to increase the diversity of the perturbed parameter vectors, crossover is
introduced. To this end, the trial vector:

Ui,l(t + 1) = [Ui,1(t + 1), Ui,2(t + 1), . . . , Ui,l (t + 1)] (11.10)

is formed, where

U ji,l(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

ϑ j i,l(t + 1)
i f rand j (0, 1) ≤ CR or j = rand(i)

G ji,l(t)
i f rand j (0, 1) > CR and j �= rand(i)

(11.11)

In Eq. (11.11), randl(0, 1) is the lth evaluation of a uniform random number generator
with outcome ∈ [0, 1], CR is the crossover constant ∈ [0, 1] that has to be determined
by the user. rand(i) is a randomly chosen index ∈1, 2,. . . , l that ensures that Ui,l(t +
1) gets at least one parameter from ϑi,l(t + 1).

11.3.5 Selection

To decide whether or not it should become a member of generation G + 1, the trial
vector Ui,l(t + 1) is compared to the target vector Gi,l(t) using the greedy criterion.
If vector Ui,l(t + 1) yields a smaller cost function value than Gi,l(t), then Ui,l(t + 1)
is set to Gi,l(t); otherwise, the old value Gi,l(t) is retained.
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11.3.6 Termination Criterion

The processes of mutation, crossover, and selection are executed for a fixed number
of iterations. The best vector seen up to the last generation provides the solution to
the clustering problem.

11.4 EXPERIMENTAL RESULTS

11.4.1 Gene Expression Data Sets

11.4.1.1 Yeast Sporulation This data set [18] consists of 6118 genes measured across
seven time points (0, 0.5, 2, 5, 7, 9, and 11.5 h) during the sporulation process of
budding yeast. The data are then log-transformed. The sporulation data set is publicly
available at the website http://cmgm.stanford.edu/pbrown/sporulation. Among the
6118 genes, the genes whose expression levels did not change significantly during
the harvesting have been ignored from further analysis. This is determined with a
threshold level of 1.6 for the root mean squares of the log2-transformed ratios. The
resulting set consists of 474 genes.

11.4.1.2 Yeast Cell Cycle The yeast cell cycle data set was extracted from a data set
that shows the fluctuation of expression levels of ∼6000 genes over two cell cycles
(17 time points). Out of these 6000 genes, 384 genes have been selected to be cell-
cycle regulated [19]. This data set is publicly available at http://faculty.washington
.edu/kayee/cluster.

11.4.1.3 Arabidopsis Thaliana This data set consists of expression levels of 138
genes of Arabidopsis Thaliana. It contains expression levels of the genes over eight
time points, namely, 15, 30, 60, 90 min, 3, 6, 9, and 24 h [20]. It is available at
http://homes.esat.kuleuven.be/»thijs/Work/Clustering.html.

11.4.1.4 Human Fibroblasts Serum This data set [21] contains the expression levels
of 8613 human genes. This data set has 13 dimensions corresponding to 12 time points
(0, 0.25, 0.5, 1, 2, 4, 6, 8, 12, 16, 20, and 24 h) and one unsynchronized sample. A
subset of 517 genes whose expression levels changed substantially across the time
points have been chosen. The data is then log2-transformed. This data set is available
at http://www.sciencemag.org/feature/data/984559.shl.

All the data sets are normalized so that each row has mean 0 and variance 1.

11.4.2 Performance Metrics

For evaluating the performance of the clustering algorithms, Jm [12], I [16], and
the silhouette index s(C) [17] are used for four real-life gene expression data sets,
respectively. Also, two cluster visualization tools, namely, Eisen plot and cluster
profile plot, have been utilized.
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FIGURE 11.2 Yeast sporulation data clustered using the DEFC–SVM clustering method.
(a) Eisen plot and (b) cluster profile plots.

11.4.2.1 Eisen Plot In Eisen plot [22] [e.g., Fig. 11.2(a)], the expression value
of a gene at a specific time point is represented by coloring the corresponding
cell of the data matrix with a color similar to the original color of its spot on the
microarray. The shades of red represent higher expression levels, the shades of green
represent lower expression levels, and the colors toward black represent absence of
differential expression. In our representation, the genes are ordered before plotting
so that the genes that belong to the same cluster are placed one after another. The
cluster boundaries are identified by white colored blank rows.

11.4.2.2 Cluster Profile Plot The cluster profile plot [e.g., Fig. 11.2(b)] shows the
normalized gene expression values (light green) for each cluster of the genes of that
cluster with respect to the time points. Also, the average expression values of the
genes of a cluster over different time points are plotted as a black line together with
the standard deviation within the cluster at each time point.

11.4.3 Input Parameters

The population size and number of generation used for DEFC, GAFC, SAFC algo-
rithms are 20 and 100, respectively. The crossover probability (CR) and mutation
factors (F) used for DEFC is taken to be 0.7 and 0.8, respectively. The crossover and
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TABLE 11.1 Average Jm, I , and s(C) Index Values of > 50 Runs of Different
Algorithms for the Four Gene Expression Data Sets

Data Sets Algorithms Jm I s(C)

DEFC 203.0207 1.2353 0.5591
Yeast Sporulation GAFC 204.7375 1.0024 0.5421

SAFC 207.0706 0.9324 0.5372
FCM 211.5058 0.8447 0.5163

DEFC 1010.3717 1.0251 0.4184
Yeast Cell Cycle GAFC 1016.6305 0.9428 0.4006

SAFC 1014.0771 0.9573 0.4084
FCM 1020.5317 0.8562 0.3875

DEFC 205.5307 0.3118 0.3813
Arabidopsis Thaliana GAFC 209.7050 0.2703 0.3641

SAFC 207.6405 0.2975 0.3702
FCM 214.1337 0.2106 0.3351

DEFC 864.0755 0.9307 0.3628
Human Fibroblasts Serum GAFC 867.8371 0.9051 0.3443

SAFC 870.9063 0.8623 0.3307
FCM 877.5301 0.7885 0.3152

mutation probabilities used for GAFC are taken to be 0.8 and 0.3, respectively. The
parameters of the SA based fuzzy clustering algorithm are as follows: Tmax = 100,
Tmin = 0.01, r = 0.9, and k = 100. The FCM algorithm is executed till it converges
to the final solution. Note that the input parameters used here are fixed either follow-
ing the literature or experimentally. For example, the value of fuzzy exponent (m),
the scheduling of simulated annealing follows the literature, whereas the crossover,
mutation probability, population size, and number of generation is fixed experimen-
tally. The number of clusters for the sporulation, cell cycle, arabidopsis, and serum
data sets are taken as 6, 5, 4, and 6, respectively. This conforms to the findings in the
literature [18–21].

11.4.4 Results

Table 11.1 reports the average values of Jm , I, and s(C) indices provided by DEFC,
GAFC, SAFC, and FCM clustering of >50 runs of the algorithms for the four real-life
data sets considered here. The values reported in the tables show that for all the data
sets, DEFC provides the best Jm , I, and s(C) index score. For example, for the yeast
sporulation data set, the average value of s(C) produces by the DEFC algorithm is
0.5591. The s(C) value produced by GAFC, SAFC and FCM are 0.5421, 0.5372, and
0.5163, respectively. Figures 11.3 and 11.4 demonstrate the boxplot as well as the
convergence plot of different algorithms. However, the performance of the proposed
DEFC is best for all the data sets.
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FIGURE 11.3 Boxplot of s(C) for different clustering algorithms on (a) yeast sporulation,
(b) yeast cell cycle, (c) Arabidopsis Thaliana, and (d) human fibroblasts serum.

11.5 INTEGRATED FUZZY CLUSTERING WITH SUPPORT
VECTOR MACHINES

11.5.1 Support Vector Machines

Support vector machines (SVM) is a learning algorithm originally developed by
Vapnik (1995). The SVM classifier is inspired by statistical learning theory and
they perform structural risk minimization on a nested set structure of separating
hyperplanes [22]. Viewing the input data as two sets of vectors in d-dimensional
space, an SVM constructs a separating hyperplane in that space, one that maximizes
the margin between the two classes of points. To compute the margin, two parallel
hyperplanes are constructed on each side of the separating one, which are “pushed
up against” the two classes of points. Intuitively, a good separation is achieved by
the hyperplane that has the largest distance to the neighboring datapoints of both
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FIGURE 11.4 Convergence plot of different clustering algorithms on (a) yeast sporulation,
(b) yeast cell cycle, (c) Arabidopsis Thaliana, and (d) human fibroblasts serum.

classes. The larger margins or distances between these parallel hyperplanes indicate
a better generalization error of the classifier. Fundamentally, the SVM classifier is
designed for two-class problems. It can be extended to handle multiclass problems
by designing a number of one-against-all or one-against-one two-class SVMs. For
example, a K -class problem is handled with K two-class SVMs.

For linearly nonseparable problems, SVM transforms the input data into a very
high-dimensional feature space, and then employs a linear hyperplane for classifica-
tion. Introduction of a feature space creates a computationally intractable problem.
The SVM handle this by defining appropriate kernels so that the problem can be
solved in the input space itself. The problem of maximizing the margin can be re-
duced to the solution of a convex quadratic optimization problem, which has a unique
global minimum.

We consider a binary classification training data problem. Suppose a data set
consists of n feature vectors < xi , yi >, where yi ∈ {+1,−1} denotes the class label
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for the datapoint xi . The problem of finding the weight vector w can be formulated
as minimizing the following function:

L(w) = 1

2
‖ w ‖2 (11.12)

subject to

yi [w .φ(xi ) + b] ≥ 1, i = 1, . . . , n (11.13)

Here, b is the bias and the function φ(x) maps the input vector to the feature vector.
The SVM classifier for the case on linearly inseparable data is given by

f (x) =
n∑

i=1

yiβi K (xi , x) + b (11.14)

Where, K is the kernel matrix and n is the number of input patterns having nonzero
values of the Langrangian multipliers(βi ). In case of categorical data, xi is the i th
sample, and yi is the class label. These n input patterns are called support vectors,
and hence the name support vector machines. The Langrangian multipliers(βi ) can
be obtained by maximizing the following:

Q(β) =
n∑

i=1

βi − 1

2

n∑
i=1

n∑
j=1

yi y jβiβ j K (xi , x j ) (11.15)

subject to

n∑
i=1

yiβi = 0 and 0 ≤ βi ≤ C i = 1, . . . , n (11.16)

Where, C is the cost parameter, which controls the number of nonseparable points.
Increasing C will increase the number of support vectors, thus allowing fewer errors,
but making the boundary separating the two classes more complex. On the other
hand, a low value of C allows more nonseparable points, and therefore, has a simpler
boundary. Only a small fraction of the βi coefficients are nonzero. The corresponding
pairs of xi entries are known as support vectors and they fully define the decision
function. Geometrically, the support vectors are the points lying near the separating
hyperplane, where K (xi , x j ) = φ(xi ).φ(x j ) is called the kernel function. The kernel
function may be linear or nonlinear, like polynomial, sigmoidal, radial basis functions
(RBF), and soon. The RBF kernels are of the following form:

K (xi , x j ) = e−w |xi −x j |2 (11.17)

where xi denotes the i th datapoint and w is the weight. In this chapter, the above
mentioned RBF kernel is used. Also, the extended version of the two-class SVM
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Step1: Execute fuzzy clustering to obtain a best solution vector consisting of

cluster centers.

Step2: Select 50% of datapoints from each cluster which are nearest to the

respective cluster centres. The class labels of the points are set to the

respective cluster number.

Step3: Train a SVM classifier with the points selected in step 2.

Step4: Generatethe classlabelsfortheremaining points using thetrainedSVM

classifier.

FIGURE 11.5 Algorithm of integrated fuzzy clusteing with SVM.

that deals with the multiclass classification problem by designing a number of one-
against-all two-class SVMs, is used here.

11.5.2 Improving Fuzzy Clustering with SVM

This section describes the developed scheme for combining the fuzzy clustering
algorithm (DEFC, GAFC, SAFC, or FCM) described in Sections 11.2 and 11.3 with
the SVM classifier. This is motivated due to the fact that the presence of training points,
supervised classification usually performs better than the unsupervised classification
or clustering. In this chapter, we have exploited this advantage while selecting some
training points using the differential evolution-based fuzzy clustering technique and
the concept of proximity of the points from the respective cluster centers. The basic
steps are described in Figure 11.5.

11.5.3 Results

Table 11.2 show the results in terms of s(C) obtained by the integrated clustering
algorithm for the four gene expression data sets, respectively. It can be seen from this
table that irrespective of the clustering method used in the developed algorithm, the
performance gets improved after the application of SVM. For example, in the case

TABLE 11.2 Average Values of s(C) for the Integrated Fuzzy Clustering Algorithm
Over 50 runs

Data Sets Sporulation Cell Cycle Thaliana Serum

DEFC–SVM 0.5797 0.4217 0.4037 0.3803
GAFC–SVM 0.5517 0.4113 0.3802 0.3592
SAFC–SVM 0.5404 0.4206 0.3931 0.3504
FCM–SVM 0.5233 0.3907 0.3408 0.3274
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FIGURE 11.6 Yeast cell cycle data clustered using the DEFC–SVM clustering method. (a)
Eisen plot and (b) cluster profile plots.

of yeast sporulation, the s(C) values produced by DEAFC is 0.5591 while this gets
improved to 0.5797 when SVM is used. A similar result is found for another data set
also. The results demonstrate the utility of adopting the approach presented in this
paper, irrespective of the clustering method used.

To demonstrate visually the result of DEFC–SVM clustering, Figures 11.2, 11.6–
11.8 show the Eisen plot and cluster profile plots provided by DEFC–SVM on the
two data sets, respectively. For example, the six clusters of the yeast sporulation
data are very prominent, as shown in the Eisen plot [Fig. 11.2(a)]. It is evident from
this figure that the expression profiles of the genes of a cluster are similar to each
other and produce similar color patterns. The cluster profile plots [Fig. 11.2(b)] also
demonstrate how the expression profiles for the different groups of genes differ from
each other, while the profiles within a group are reasonably similar. A similar result
is obtained for the other data set.

11.5.4 Biological Significance

The biological relevance of a cluster can be verified based on the statistically sig-
nificant gene ontology (GO) annotation database (http://db.yeastgenome.org/cgi-
bin/GO/goTermFinder). This is used to test the functional enrichment of a group
of genes in terms of three structured, controlled vocabularies (ontologies), namely,
associated biological processes, molecular functions, and biological components. The
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FIGURE 11.7 Arabidopsis Thaliana data clustered using the DEFC–SVM clustering
method. (a) Eisen plot and (b) Cluster profile plots.
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FIGURE 11.8 Human fibroblasts serum data clustered using the DEFC–SVM clustering
method. (a) Eisen plot and (b) Cluster profile plots.
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degree of functional enrichment (p-value) is computed using a cumulative hyperge-
ometric distribution. This measures the probability of finding the number of genes
involved in a given GO term (i.e., process, function, and component) within a cluster.
From a given GO category, the probability p of getting k or more genes within a
cluster of size n, can be defined as [23]:

p = 1 −
k−1∑
i=0

(
f
i

)(
g − f
n − i

)

(
g
n

) (11.18)

where f and g denote the total number of genes within a category and within the
genome, respectively. Statistical significance is evaluated for the genes in a cluster
by computing the p-value for each GO category. This signifies how well the genes
in the cluster match with the different GO categories. If the majority of genes in a
cluster have the same biological function, then it is unlikely that this takes place by
chance and the p-value of the category will be close to 0.

The biological significance test for yeast sporulation data has been conducted at
the 1% significance level. For different algorithms, the number of clusters for which
the most significant GO terms have a p-value < 0.01 (1% significance level) are as
follows: DEFC - 6, GAFC - 6, SAFC - 6, and FCM - 6. Table 11.3 reports the three

TABLE 11.3 The Three Most Significant GO Terms and the Corresponding p-Values
for Each of the Six Clusters of Yeast Sporulation Data as Found by the IDEFC
Clustering Technique

Clusters Significant GO term p-values

Structural constituent of ribosome - GO:0003735 1.13E-40
Cluster1 Structural molecule activity - GO:0005198 1.22E-35

Translation - GO:0006412 1.73E-20

Glucose catabolic process - GO:0006007 3.13E-06
Cluster2 Fungal-type cell wall - GO:0009277 5.02E-06

Glucose metabolic process - GO:0006006 6.28E-05

Sporulation resulting in formation of a cellular spore - GO:0030435 9.04E-22
Cluster3 Ascospore wall assembly - GO:0030476 9.52E-20

Intracellular immature spore - GO:0042763 4.24E-8

Spindle - GO:0005819 2.44E-06
Cluster4 M phase - GO:0000279 3.31E-05

Microtubule cytoskeleton - GO:0015630 9.72E-05

Preribosome - GO:0030684 2.64E-20
Cluster5 Ribosome biogenesis - GO:0042254 2.79E-14

rRNA metabolic process - GO:0016072 2.03E-9

M phase of meiotic cell cycle - GO:0051327 3.53E-21
Cluster6 Meiotic cell cycle - GO:0051321 4.62E-22

Condensed nuclear chromosome - GO:0000794 4.17E-13
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most significant GO terms (along with the corresponding p-values) shared by the
genes of each of the six clusters identified by the DEFC technique (Fig. 11.2). As
is evident from the table, all the clusters produced by DEFC clustering scheme are
significantly enriched with some GO categories, since all the p-values are < 0.01
(1% significance level). This establishes that the developed DEFC clustering scheme
is able to produce biologically relevant and functionally enriched clusters.

11.6 CONCLUSION

In this chapter, a differential evolution-based fuzzy clustering technique has been
described for the analysis of microarry gene expression data sets. The problem of
fuzzy clustering has been modeled as one of optimization of a cluster validity mea-
sure. Results on different gene expression date sets indicate that DEFC consistently
performs better than GAFC, SAFC, and FCM clustering techniques. To improve the
performance of clustering further, a SVM classifier is trained with a fraction of gene
expression datapoints selected from each cluster based on the proximity to the re-
spective cluster centers. Subsequently, the remaining gene expression datapoints are
reassigned using the trained SVM classifier. Experimental results indicate that this
approach is likely to yield better results irrespective of the actual clustering technique
adopted.

As a scope of further research, the use of kernel functions other than RBF may
be studied. A sensitivity analysis of the developed technique with respect to different
setting of the parameters, including the fraction of the points to be used for training
the SVM, needs to be carried out. Moreover, the DE based algorithm can be extended
in the multiobject framework and the results need to be compared with other related
techniques [12, 20].
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12
IDENTIFYING POTENTIAL GENE
MARKERS USING SVM
CLASSIFIER ENSEMBLE

Anirban Mukhopadhyay, Ujjwal Maulik, and
Sanghamitra Bandyopadhyay

12.1 INTRODUCTION

An important task in modern data mining is to utilize advanced data analysis and
integration tools in gene expression pattern discovery and classification. These tools
include a number of machine learning techniques, which may help in identifying
relevant features for diagnostic and system biology studies. Furthermore, discovery
of novel automated techniques for intelligent information retrieval and knowledge
representation are crucial for biological data analysis. When a living cell undergoes a
biological process, not all of its genes are expressed at the same time. Function of a cell
is critically related to the gene expression at a given time and their relative abundance.
For understanding biological processes, it is usual to measure gene expression levels
in different developmental phases, body tissues, clinical conditions, and organisms.
This information of differential gene expression can be utilized in characterizing
gene function, determining experimental treatment effects, and understanding other
molecular biological processes. Traditional approaches to genomic research was
based on examining and collecting data for a single gene locally. The progress in
the field of microarray technology has made possible to the study of the expression
levels of a large number of genes across different time points or tumor samples
[1–5]. Microarray technology has its application in a wide variety of fields, including
medical diagnosis and cancer classification. Supervised classification is usually used
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to classify the tissue samples into two classes, namely, normal (benign) and cancerous
(malignant) or into their subclasses, considering the genes as classification features
[6–9]. For successful diagnosis and treatment of cancer, it is important to have a
precise and reliable classification of tumors. Classical methods for classifying human
malignancies rely on various morphological, clinical, and molecular variables. In spite
of recent progress, there are still uncertainties in diagnosis. Also, it is likely that the
existing classes are heterogeneous and comprise diseases that are molecularly distinct
and follow different clinical courses. Deoxyribonucleic acid (DNA) microarrays may
be used to characterize the molecular variations among tumors by monitoring gene
expression profiles on a genomic scale. This leads to a finer and more reliable
classification of tumors, which in turn helps to identify marker genes that distinguish
among these classes. Eventually this improves the ability to understand and predict
cancer survival. There are several classification approaches studied by bioinformatics
researchers, among which support vector machine (SVM) classifier [10, 11] has
been widely used for this purpose [12–18]. The SVMs are powerful classification
systems based on regularization techniques and provide excellent performance in
many practical classification problems.

In this chapter, we have employed a SVM classifier to analyze a microarray matrix.
The SVM classifiers use different kernel functions of which, four kernel functions,
namely, linear, polynomial, sigmoidal, and radial basis function (RBF) are used.
As different kernel functions can produce different classification results even when
they are trained by the same set of samples, in this study we have used a majority
voting ensemble technique to combine the classification results of the different kernel
functions. Subsequently, this classification result is utilized to identify relevant gene
markers based on SNR statistics followed by a feature selection method based on
multiobjective genetic algorithm [19–21].

The performance of the proposed technique has been demonstrated on three pub-
licly available benchmark cancer data sets, namely, leukemia, colon cancer, and
lymphoma data. The experimental results establish the utility of the proposed ensem-
ble classification technique. Moreover, relevant gene markers are identified from the
four data sets that are responsible for different types of cancer.

12.2 MICROARRAY GENE EXPRESSION DATA

A microarray is typically a glass (or some other material) slide, on to which DNA
molecules are attached at fixed locations (spots) [22]. There may be tens of thousands
of spots on an array, each containing a huge number of identical DNA molecules (or
fragments of identical molecules), of lengths from 20 to hundreds of nucleotides.
Each of these molecules ideally should identify one gene or one exon in the genome.
The chip is made of chemically coated glass, nylon, membrane, or silicon. Each grid
cell of a microarray chip corresponds to a DNA sequence. For a cyclic DNA (cDNA)
microarray experiment, the first step is to extract ribonucleic acid (RNA) from a tissue
sample and amplification of RNA. Thereafter two messenger RNA (mRNA) samples
are reverse transcribed into cDNA (targets) labeled using different fluorescent dyes
(red-fluorescent dye Cy5 and green-fluorescent dye Cy3). Due to the complementary
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nature of the base pairs, the cDNA binds to the specific oligonucleotides on the array.
In the subsequent stage, the dye is excited by a laser so that the amount of cDNA
can be quantified by measuring the fluorescence intensities. The log ratio of two
intensities of each dye is used as the gene expression profile.

gene expression level = log2
Intensity(Cy5)

Intensity(Cy3)
(12.1)

The spots are either printed on the microarrays by a robot, or synthesized by pho-
tolithography (as in computer chip productions), or by ink-jet printing. Many impor-
tant questions can potentially be answered by analyzing and interpreting microarray
data [23].

A microarray gene expression data consisting of s tissue samples and g genes
are usually expressed as a real valued s × g matrix M = [mi j ], i = 1, 2, . . . , s and
j = 1, 2, . . . , g. Here, each element mi j represents the expression level of the j th
gene in the i th sample.

M =

⎡
⎢⎢⎢⎣

m11 m12 . . . m1g

m21 m22 . . . m2g
...

...
. . .

...
ms1 ms2 . . . msg

⎤
⎥⎥⎥⎦

The raw gene expression data consists of noise, some variations arising from biolog-
ical experiments and missing values. Hence, the raw data is preprocessed before it is
used for any analysis. Two widely used preprocessing techniques are missing value
estimation and standardization. Standardization is a statistical tool for transforming
data into a format that can be used for meaningful analysis [4]. Normalization is a
useful standardization process by which each row of the matrix M is standardized to
have mean 0 and variance 1. The following preprocessing techniques are used here.
First, some filtering is applied on the raw data to filter out those genes whose expres-
sion levels do not change significantly over different time points. Next, the expression
values are log transformed and each row is normalized to have mean 0 and variance 1.

12.3 SUPPORT VECTOR MACHINE CLASSIFIER

Support vector machine classifiers are inspired by statistical learning theory and
they perform structural risk minimization on a nested set structure of separating
hyperplanes [10,11]. Viewing the input data as two sets of vectors in a d-dimensional
space, an SVM constructs a separating hyperplane in that space, which maximizes
the margin between the two classes of points. To compute the margin, two parallel
hyperplanes are constructed on each side of the separating one, which are “pushed up
against” the two classes of points (Fig. 12.1). Intuitively, a good separation is achieved
by the hyperplane that has the largest distance to the neighboring datapoints of both
classes. A larger margin or distance between these parallel hyperplanes indicates
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FIGURE 12.1 Example of maximally separating hyperplanes and support vectors for a
linearly separable classes

a better generalization error of the classifier. Fundamentally, the SVM classifier is
designed for two-class problems. It can be extended to handle multiclass problems
by designing a number of one-against-all or one-against-one two-class SVMs.

Suppose a data set consisting of n feature vectors < xi , yi >, where yi ∈ {+1,−1},
denotes the class label for the datapoint xi . The problem of finding the weight vector
w can be formulated as minimizing the following function:

L(w) = 1

2
||w ||2 (12.2)

subject to

yi [w .φ(xi ) + b] ≥ 1, i = 1, . . . , n (12.3)

Here, b is the bias and the function φ(x) maps the input vector to the feature vector.
The dual formulation is given by maximizing the following:

Q(α) =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

yi y jαiα jK(xi , x j ) (12.4)

subject to

n∑
i=1

yiαi = 0 and 0 ≤ αi ≤ C, i = 1, . . . , n (12.5)
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Only a small fraction of the αi coefficients are nonzero. The corresponding pairs of
xi entries are known as support vectors and they fully define the decision function.
Geometrically, the support vectors are the points lying near the separating hyperplane.
K(xi , x j ) = φ(xi ).φ(x j ) is called the kernel function.

Kernel functions are used for mapping the input space to a higher dimensional
feature space so that the classes become linearly separable. Use of four popularly
used kernel functions has been studied in this chapter. These are

Linear: K (xi , x j ) = xT
i x j ,

Polynomial: K (xi , x j ) = (γ xT
i x j + r )d ,

Sigmoidal: K (xi , x j ) = tanh(κ(xT
i x j ) + θ ), κ > 0, θ < 0,

RBF: K (xi , x j ) = e−γ |xi −x j |2 , γ > 0.

12.4 PROPOSED TECHNIQUE

The proposed method consists of two main phases. In the first phase, SVM classifier
and ensembling is used for classification purposes. In the subsequent phase, the
classification result is used to identify the gene markers.

12.4.1 Phase-I: SVM Classification and Ensemble

From the input preprocessed data set, 50% of the samples are chosen randomly as the
training samples. These samples are used to train the four SVM classifiers with four
kernel functions mentioned above, respectively. The remaining 50% of the samples
are then classified by the four trained classifiers. This process is repeated 50 times
resulting in 200 classification solutions. Finally, these solutions are combined through
majority voting ensemble to produce a single classification of the samples. The whole
process is repeated for 50 data sets created through bootstrapping of samples and
genes and the best classification of samples (in terms of classification accuracy) is
chosen finally for further processing.

12.4.2 Phase-II: Identification of Gene Markers

Phase two consists of two stages. First, most potential genes are selected based on
signal-to-noise ratio (SNR) statistic. Thereafter, a multiobjective genetic algorithm-
based feature selection method is employed in order to further reduce the number of
selected gene markers.

Stage-I. The final classification result obtained in the previous phase is used to
identify the relevant gene markers as follows: Each data set has two classes,
one corresponds to normal samples and the other corresponds to malignant
samples. For each gene, a statistic called SNR [8] is computed. The SNR is
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defined as

SNR = µ1 − µ2

σ1 + σ2
(12.6)

where µi and σi , i ∈ {1, 2}, denote the mean and standard deviation of class i
for the corresponding gene. Note that a larger absolute value of SNR for a gene
indicates that the gene’s expression level is high in one class and low in another.
Hence this bias is very useful in distinguishing the genes that are expressed
differently in the two classes of samples.

After computing the SNR statistic for each gene, the genes are sorted in
descending order of their SNR values. From the sorted list, the genes whose
SNR values are grater than the average SNR value are selected. These genes
are mostly responsible for distinguishing the two sample classes.

Stage-II. The set of genes obtained is further reduced by a feature selection tech-
nique based on multiobjective genetic algorithm. In this technique, each chro-
mosome is represented as a binary string of length equal to the number of genes
selected through the SNR method. The chromosomes encode the information
of whether a gene is selected or not. For a chromosome, bit ‘1’ indicates that
the corresponding gene is selected, and bit ‘0’ indicates that the corresponding
gene is not selected. Here, we have used the nondominated sorting genetic
algorithm-II (NSGA-II) [24], a popular multiobjective GA, as the underlying
optimization tool. The two objective functions are the classification accuracy
and the number of selected genes. The classification accuracy is computed by
training a SVM classifier by half of the samples selected randomly, while pre-
dicting the class labels of the remaining samples by the trained SVM classifier.
The same ensemble technique for combining the four different kernel solutions
is used. Note that SVM training and testing is done for the subset of genes
encoded in the chromosome. The goal is to maximize the first objective while
minimizing the second one simultaneously. The crowded binary tournament se-
lection method as used in [24] followed by conventional uniform crossover and
bit-flip mutation operators are used to produce child population from a parent
population. From the final nondominated front, the solution with the maximum
classification accuracy is selected and the corresponding gene subset is selected
as the final set of gene markers.

The different parameters of NSGA-II are selected as follows: number of
generations = 100, population size = 50, crossover probability = 0.8, muta-
tion probability = 0.1. All the parameters are set experimentally. Figure 12.2
summarizes the different steps of the two phases.

12.5 DATA SETS AND PREPROCESSING

Three publicly available benchmark cancer data sets, namely, leukemia, colon cancer,
and lymphoma data sets have been used for experiments. The data sets and their
preprocessing are described in this section.
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Input data set

Phase - I: SVM Classification Phase - II: Gene Marker Identification

Gene selection
based on

SNR statistic

Selection of
gene markers using

multiobjective method

SVM classification
using four

kernel functions

Majority voting
ensemble among

classification results

FIGURE 12.2 Summary of different steps of two phases of the proposed method

12.5.1 Leukemia Data

The leukemia data set [8] consists of 72 tissue samples. The samples consist of two
types of leukemia, 25 of AML and 47 of ALL. The samples are taken from 63 bone
marrow samples and 9 peripheral blood samples. There are 7129 genes in the data
set. The data set is publicly available at http://www.genome.wi.mit.edu/MPR.

The data set is subjected to a number of preprocessing steps to find out the
genes with most variability. The initial gene selection steps followed here are also
completely unsupervised. However, more sophisticated methods for gene selection
could have been applied. First, we have selected the genes whose expression levels
fall between 100 and 15,000. From the resulting 1015 genes, the 100 genes with the
largest variation across samples are selected, and the remaining expression values are
log-transformed. The resultant data set is of dimension 72 × 100.

12.5.2 Colon Cancer Data

The colon cancer data set [7] consists of 62 samples of colon epithelial cells from
colon cancer patients. The samples consists of tumor biopsies collected from tumors
(40 samples), and normal biopsies collected from healthy parts of the colons (22
samples) of the same patient. The number of genes in the data set is 2000. The data
set is publicly available at http://microarray.princeton.edu/oncology.
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This data set is preprocessed as follows: First the genes whose expression levels
fall between 10 and 15,000 are selected. From the resulting 1756 genes, the 100 genes
with the largest variation across samples are selected, and the remaining expression
values are log transformed. The resultant data set is of dimension 62 × 100.

12.5.3 Lymphoma Data

The diffuse large B-cell lymphoma (DLBCL) data set [6] contains expression mea-
surements of 96 normal and malignant lymphocyte samples each measured using a
specialized cDNA microarray, containing 4026 genes that are preferentially expressed
in lymphoid cells or which are of known immunological or oncological importance.
There are 42 DLBCL and 54 other cancer disease samples. The data set is publicly
available at http://genome-www.stanford.edu/lymphoma.

The preprocessing steps for this data set are as follows: As the data set contains
some missing values, we have selected only those genes that do not contain any
missing value. This results in 854 genes. Thereafter, the top 100 genes with respect
to variance are selected. Hence, the data set contains 96 samples, each described by
100 genes.

12.6 EXPERIMENTAL RESULTS

This section first demonstrates the utility of the proposed ensemble classifier method
on the three publicly available microarray data sets used for experiments. Thereafter,
we have discussed the gene markers identified in the second phase of the proposed
technique.

12.6.1 Classification Results

Table 12.1 reports the percentage classification accuracy obtained by individual kernel
functions, as well as by the majority voting ensemble method. It is evident from the
table that the ensemble classification provides better classification accuracy compared
to that provided by each of the kernel functions. This demonstrates the utility of the
proposed ensemble classification technique.

TABLE 12.1 Percentage Classification Accuracy Obtained
by Different Kernel Functions and Their Ensemble for All the
Data Sets

SVM kernel Leukemia Colon Lymphoma

Linear 76.2 75.0 71.4
Polynomial 80.9 87.5 86.3
Sigmoidal 85.7 90.3 82.6
RBF 90.4 89.4 84.6
Ensemble 95.2 92.5 89.5
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TABLE 12.2 Number of Gene Markers Selected for Different Data Sets and
Performance of Ensemble Classifier on the Set of all 100 Genes and on the Set
of Marker Genes in Terms of Classification Accuracy

Ensemble Ensemble
No. Gene Classifier Classifier

Data Set Markers on all 100 Genes on Marker Genes

Leukemia 11 95.2 100
Colon cancer 8 92.5 97.3
Lymphoma 9 89.5 93.8

12.6.2 Identification of Gene Markers

Table 12.2 reports the number of gene markers obtained as above for the three data
sets. The numbers of gene markers for the three data sets are 11, 8, and 9, respectively.
This table also reports the classification accuracy obtained by the proposed ensemble
classification technique on the complete preprocessed data sets (with 100 genes) and
on the reduced data set consisting of the marker genes only. It is evident from this
table that the performance of the proposed technique gets improved when applied to
the data set with the identified marker genes only. This indicates the ability of the
gene markers to distinguish the two types of samples in all the data sets.

12.6.2.1 Gene Markers for Leukemia Data In Figure 12.3, the heatmap of the gene
versus sample matrix, where the rows correspond to the top 30 genes in terms of SNR
statistic scores, and the columns correspond to the ALL and AML samples, is shown.
The cells of the heatmap represent the expression levels of the genes in terms of
colors. The shades of dark gray represent higher expression level, the shades of light
gray represent low expression level, and the colors toward black represent absence
of differential expression values. The eleven gene markers identified as discussed
are placed at the top 11 rows of the heatmap. It is evident from the figure that
these eleven gene markers discriminate the AML samples from the ALL ones. The
characteristics of the gene markers are as follows: The genes M92287 at, HG1612-
HT1612 at, X51521 at, Z15115 at, U22376 cds2 s at, X67951 at are upregulated
in the ALL samples and downregulated in the AML samples. On the other hand,
the genes M63138 at, X62320 at, HG2788-HT2896 at, U46751, at and L08246 at
are downregulated in the ALL samples and upregulated in the AML samples. In
Table 12.3, we have reported the eleven gene markers along with their description
and associated gene ontological (GO) terms. It is evident from this table that all the
eleven genes share most of the GO terms that indicating that these genes have similar
molecular functions (mainly related to cell, cell part, and organelle).

12.6.2.2 Gene Markers for Colon Cancer Data Figure 12.4 shows the heatmap of
the gene versus sample matrix for the top 30 gene markers of colon cancer data.
The eight gene markers identified as discussed are placed at the top eight rows
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ALL AML

FIGURE 12.3 Heatmap of the expression levels of top 30 gene markers distinguishing the
AML and ALL samples of leukemia data in terms of SNR statistic. Dark/light gray represent
up/down regulation relative to black. The selected eleven markers are put in the first eleven
rows.

TABLE 12.3 The Description and Associated Gene Ontological (GO) Terms for the
Eleven Gene Markers Identified in Leukemia Data

AFFY ID Gene Description Gene Function (GO Terms)

M92287 at cyclin d3 cell, macromolecular complex,
organelle, cell part

HG1612-HT1612 at marcks-like 1 cell, cell part
X51521 at villin 2 (ezrin) cell, organelle, organelle part, cell part
Z15115 at topoisomerase (dna) ii beta

180kda
cell, membrane-enclosed lumen,

organelle, organelle part, cell part
U22376 cds2 s at v-myb myeloblastosis viral

oncogene homolog
(avian)

cell, membrane-enclosed lumen,
macromolecular complex,
organelle, organelle part, cell part

X67951 at peroxiredoxin 1 cell, organelle, cell part
M63138 at cathepsin d (lysosomal

aspartyl peptidase)
extracellular region, cell, organelle,

cell part
X62320 at granulin extracellular region, cell, organelle,

extracellular region part, cell part
HG2788-HT2896 at s100 calcium-binding

protein a6 (calcyclin)
cell, envelope, organelle, organelle

part, cell part
U46751 at sequestosome 1 cell, organelle, cell part
L08246 at myeloid cell leukemia

sequence 1 (bcl2-related)
cell, envelope, organelle, organelle

part, cell part
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Tumor Normal

FIGURE 12.4 Heatmap of the expression levels top 30 gene markers distinguishing the
tumor and normal samples of colon cancer data in terms of SNR statistic. Dark/light gray
represent up–down regulation relative to black. The selected eight markers are put in the first
eight rows.

of the heatmap. It is evident from visual inspection that these eight gene markers
partitions the tumor samples from the normal ones. The characteristics of the gene
markers are as follows: The genes M63391 and Z24727 are downregulated in the
tumor samples and upregulated in the normal samples. On the contrary, the genes
T61609, T48804, T57619, M26697, T58861, and T52185 are upregulated in the
tumor samples and downregulated in the normal samples. In Table 12.4, the eight
gene markers are described along with the associated GO terms. It is evident from this
table that all eight genes are mainly take part in metabolic process, cellular process,
gene expression, and share most of the GO terms. This indicates that these genes
have similar molecular functions.

12.6.2.3 Gene Markers for Lymphoma Data In Figure 12.5, the heatmap for the top
30 gene markers for lymphoma data is shown. The topmost nine gene markers selected
using the proposed method are placed at the top nine rows of the heatmap. Visual
inspection reveals that these nine gene markers efficiently distinguish the DLBCL
samples from the non-DLBCL ones. The characteristics of the gene markers are as
follows: The genes 19335, 19338, 20344, 18344, 19368, 20392, and 16770 are upreg-
ulated in the non-DLBCL samples and downregulated in the DLBCL samples. On the
other hand, the genes 13684 and 16044 are downregulated in the non-DLBCL samples
and upregulated in the DLBCL samples. In Table 12.5, we have reported the nine gene
markers along with their description and associated GO terms. It is evident from this
table that all nine genes share most of the GO terms (mainly related to different kinds
of binding functions), indicating that these genes have similar molecular functions.
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TABLE 12.4 The Description and Associated GO Terms for the Eight Gene Markers
Identified in Colon Cancer Data

Gene ID Gene Description Gene Function (GO Terms)

M63391 desmin cellular process, multicellular organismal process,
biological regulation

Z24727 tropomyosin 1 (alpha) cellular process, multicellular organismal process,
localization biological regulation

T61609 ribosomal protein sa metabolic process, cellular process, gene expression,
biological adhesion

T48804 ribosomal protein s24 metabolic process, cellular process, gene expression
T57619 ribosomal protein s6 metabolic process, cellular process, gene expression,

biological regulation
M26697 nucleophosmin

(nucleolar
phosphoprotein b23,
numatrin)

metabolic process, cellular process, gene expression,
developmental process, response to stimulus,
localization, establishment of localization,
biological regulation

T58861 ribosomal protein l30 metabolic process, cellular process, gene expression
T52185 ribosomal protein s19 immune system process, metabolic process, cellular

process gene expression, multicellular organismal
process, developmental process, locomotion,
response to stimulus, localization, estabshment of
localization, biological regulation

Non DLBCL DLBCL

FIGURE 12.5 Heatmap of the expression levels top 30 gene markers distinguishing the
tumor and normal samples of colon cancer data in terms of SNR statistic. Dark/light gray
represent up–down regulation relative to black. The selected nine markers are put in the first
nine rows.
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TABLE 12.5 The Description and Associated GO Terms for the Nine Gene Markers
Identified in Lymphoma Data

Gene ID Gene Description Gene Function (GO Terms)

19335 rab23, member ras
oncogene family

Nucleotide binding, binding, GTP binding, purine
nucleotide binding, guanyl nucleotide binding,
ribonucleotide binding, purine ribonucleotide
binding, guanyl ribonucleotide binding

19338 rab33b, member of ras
oncogene family

Nucleotide binding, binding, GTP binding, purine
nucleotide binding, guanyl nucleotide binding,
ribonucleotide binding, purine ribonucleotide
binding, guanyl ribonucleotide binding

20344 Selectin, platelet Glycoprotein binding, binding, protein binding,
sugar binding, carbohydrate binding, sialic acid
binding, monosaccharide binding,
calcium-dependent protein binding

18344 Olfactory receptor 45 Rhodopsin-like receptor activity, signal transducer
activity, receptor activity, transmembrane receptor
activity, G-protein coupled receptor activity,
olfactory receptor activity, molecular transducer
activity

19368 Retinoic acid early
transcript 1, alpha

Receptor binding, binding, protein binding,
phospholipid binding, lipid binding,
phosphoinositide binding, natural killer cell
lectin-like receptor binding, GPI anchor binding

20392 Sarcoglycan, epsilon Binding, calcium ion binding, protein binding, ion
binding, cation binding, metal ion binding,

16770 Lactalbumin, alpha Catalytic activity, lactose synthase activity, binding,
calcium ion binding, UDP-glycosyltransferase
activity, galactosyltransferase activity, transferase
activity, transferase activity, transferring glycosyl
groups, transferase activity, transferring hexosyl
groups, UDP-galactosyltransferase activity, ion
binding, cation binding, metal ion binding,

13684 Eukaryotic translation
initiation factor 4e

Nucleic acid binding, RNA binding, translation
initiation factor activity, binding, protein binding,
translation factor activity, nucleic acid binding,
translation regulator activity

16044 Immunoglobulin heavy
chain sa2

Antigen binding, binding

12.7 DISCUSSION AND CONCLUSIONS

In this chapter, a cancer classification technique based on support vector machine
classifier is proposed. The classification solutions yielded by different classifiers are
combined through a majority voting ensemble to obtain the final solution. Further,
this classification result is utilized to identify potential gene markers using SNR
statistic followed by a multiobjective feature selection technique.
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Results on three publicly available benchmark cancer data sets, namely, leukemia,
colon cancer and lymphoma, have been demonstrated. The utility of the proposed
classification ensemble technique has been demonstrated. The proposed ensemble
classifier technique consistently outperformed the other kernel functions considered
individually. Finally, relevant gene markers are identified using the classification
result. The gene markers identified for different data sets are found to share many
GO terms and molecular functions.

As a scope of further research, performance of other popular classifiers and their
ensemble is to be studied. Moreover, the gene markers identified are needed to be
further investigated biologically.
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13
GENE MICROARRAY DATA ANALYSIS
USING PARALLEL POINT
SYMMETRY-BASED CLUSTERING

Ujjwal Maulik and Anasua Sarkar

13.1 INTRODUCTION

The advent of deoxyribonucleic acid (DNA) microarray technology has enabled sci-
entists to monitor the expression levels for many thousands of genes simultaneously
over different time points under multiple biological processes [1]. Since the diauxic
shift [2], sporulation [3] and the cell cycle [4] in the yeast were explored, many exper-
iments were conducted to monitor genes with similar expression patterns of various
organisms, which may participate in the same signal pathway or may be coregulated.

Clustering is an unsupervised pattern classification technique, while K-means is a
well-known partitional clustering approach. The present study focuses on the appli-
cation of the point symmetry-based clustering method for analyzing gene-expression
data sets, comprising either time-course type of data or expression levels under various
environmental conditions. The most widely used clustering algorithms for microar-
ray gene-expression analysis are hierarchical clustering [5], K-means clustering [6]
and self-organizing maps (SOM) [2]. Among these conventional clustering methods,
K-means is an effective partitional clustering algorithm that utilizes heuristic global
optimization criteria.

Thus clustering based on K-means is closely related to the recognition of vari-
ability in compactness of different geometrical cluster shapes, whereas symmetry is
considered as an inherent feature for recognition and reconstruction of shapes hidden
in any clusters. In [7], Su and Chou proposed a variation of K-means algorithm with
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a new symmetry-based distance measure (SBKM). However, it fails when symmetry
lies, with respect to some intermediate point, in a cluster. To overcome it in [8], a
point symmetry-based distance measure in clustering(PSBKM) has been proposed
with quadratic runtime.

Gene-expression microarray data is a form of high-throughput genomics data
providing relative measurements of expression levels for thousands of genes in a
biological sample. Analysis of such huge data is becoming a major bottleneck.
Kanungo et al. [9] defined parallel K-means to speedup timing. Following it, par-
allel implementation of both SBKM and PSBKM algorithms have been proposed
in this chapter for microarray data sets, in a distributed master–slave environment.
Its advantage lies not only in the scalability in timing, but also parallel ParPSBKM
(ParPSBKM) outperforms parallel K-means (PKM) and parallel SBKM (ParSBKM)
for symmetrical-shaped clusters as analyzed with four validity indices-Jm , X B, I , and
s(C). ParPSBKM also succeeds in correctly classifying symmetrical clusters even
when PSBKM fails, and increasing the number of nodes and parallel in ParPSBKM
leads to the production of better solutions.

13.2 SYMMETRY- AND POINT SYMMETRY-BASED
DISTANCE MEASURES

There are several measures for proximity of clusters like Euclidean, Pearson corre-
lation, and Spearman distances, but none of them can detect symmetry. Hence, Su
and Chou in [7] defined the symmetry-based distance between any pattern Xi , i =
1, 2, . . . , N and any reference centroid vector Ck, k = 1, 2, . . . , K as follows:

ds(Xi , Ck) = min
j=1,2,...,N and (i �= j)

‖ (Xi − Ck) + (X j − Ck) ‖
‖ (Xi − Ck) ‖ + ‖ (X j − Ck) ‖

The numerator is the distance between a point Xi and its first nearest neighbor
with respect to centroid Ck . In [8], Saha and Bandyopadhyay proposed a point
symmetry(ps)-based distance measure as follows:

dps(Xi , Ck) = (d1 + d2)

2
× de(Xi , Ck)

where dps(Xi , Ck) is the PS distance and de(Xi , Ck) denotes Euclidean distance
between Xi and Ck . If X∗

i represents the symmetrical point of Xi and is computed
as X∗

i = (2 ∗ Ck − Xi ), then d1 and d2 represent the Euclidean distances of first and
second nearest neighbors of X∗

i .

13.3 PARPSBKM CLUSTERING IMPLEMENTATION

Both partitioning and clustering phases of ParSBKM and ParPSBKM algo-
rithms have been implemented in a distributed master–slave paradigm. Among M
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FIGURE 13.1 Steps of parallel PSBKM algorithm.

distributed nodes, M0 acts as the master to ensure load balancing [10] and other
M − 1 nodes act as slaves. The ParPSBKM algorithm in Figure 13.1, composed
of three phases - initial horizontal partitioning of universal data set, parallely com-
puted local centroids updating using the K-means method and point symmetry-based
fine-tuning with validation. Initial random cluster assignment puts N elements in
K clusters. Each slave then performs centroids updating on partitioned data locally
and next returns its local cluster assignment to M0 [11]. The parameter M0 then
merges them into global cluster assignment, using the union-find data structure with
an average runtime of inverse Ackermann’s function. If optimization continues, M0

continues with redistribution of corrected cluster assignment. The fine-tuning phase
at M0 utilizes the PS distance in lieu of Euclidean distance. The point is reassigned to
a new cluster only if its symmetrical point resides inside the data set and the minimal
PS distance between the point and the new centroid is greater than the threshold
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value θ . This value is set to 0.18 for ParSBKM and for ParPSBKM it is calculated
as the maximum nearest-neighbor distance [8]. This leads to convergence and finally
validity indices are computed over final symmetry-corrected solution.

13.3.1 Complexity Analysis

Time complexity of ParPSBKM is analyzed below:

1. Initialization. As there are m = M − 1 slave nodes, horizontally partitioned
data set becomes N/m × C matrix, with N elements and C attributes. Hence,
partitioning time for one-to-all SEND/SCATTER operation and BROADCAST
operation of initial assignment leads to timing: Tpartition = O((N/m) ∗ (C +
1)) � O(N/m).

2. Parallel Centroids Calculation. If maxrepeat (� N ) is the number of repetition
to converge parallel centroid updation on m slaves, then complexity for K
clusters becomes: Tcluster = O(((N/m) ∗ K + K ) ∗ maxrepeat).

3. Fine-Tuning with PS Distance. In M0 with all N elements, time complexity
is O((N ∗ (N K )) ∗ maxrepeat symmetry) , where maxrepeat symmetry is the
number of repetitions required for point symmetry-based centroid correction
method to converge. N >> maxrepeat symmetry.

4. Point Symmetry-Based Centroids Updating. For K clusters, it also requires
O(K ) time on M0.

5. Continuation. A constant time in M0. The time complexity of sequential
PSBKM is O(N 2 K ). Yet timing of ParPSBKM reduces to O((N/m)2 K ), which
yields linear speedup. In ParPSBKM, ALL-GATHER and ALL-REDUCE oper-
ations for N/m rows from slave nodes in parallel clustering phase, incurs ad-
ditional maxrepeat * O(N/m + 1) � O(N/m) delay in communication cost.
So, for large M , communication overhead for collective operations undermines
linear speedup [12].

13.4 PERFORMANCE ANALYSIS

The algorithms PKM, ParSBKM, and ParPSBKM are implemented using MPI (mes-
sage passing interface) and C. Experiments are performed on IBM p690 Regatta
Server, with 16 Power 4+ processors with a 1.3-GHz clock speed. Execution times
are obtained using M P I W time() function in seconds (5 benchmark data sets, 1 ar-
tificial and 4 microarray, are used).

13.4.1 Data Sets

This section demonstrates the benchmark data sets used to measure the performance of
the parallel algorithms. It consists of 1 artificial data set and 4 benchmark microarray
data sets. Each data set consists of 5000 to 45,000 elements.
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13.4.1.1 Artificial Data Set
1. Data 2. This is a synthetic data set with 34, 468 points with a dimensionality of

10. This data set has Center–Corners distribution [13], in which one generated
hyper-rectangle is placed in the center and others in are in three different
corners of the space (origin, far corner, and one randomly selected corner).
All generated hyper-rectangles have uniform internal distributions and each
one represents a different class of data. Thus, each point is assigned to one of
four classes. This synthetic data set is produced by the program available at
http://www.cs.iit.edu/egalite/Data/GARDENHD/DataGenerator.zip.

13.4.1.2 Microarray Data Sets
1. Yeast Sporulation. This data set consists of 6118 genes measured across

seven time points (0, 0.5, 2, 5, 7, 9, and 11.5 h) during the sporulation pro-
cess of a budding yeast [3]. The data set is publicly available at the web-
site: http://cmgm.stanford.edu/pbrown/sporulation. Genes with no significant
change in expression levels during harvesting are eliminated during log2-
transformed normalization with 1.6 level threshold value for root mean squares.
The normalized set consists of 474 genes.

2. Mitochondrial Genome. This data set consists of the Telomerase expression,
which sensitizes the mitochondrial genome of mammalian cells to oxidative
stress through increased bioavailable Fe. There are 16,828 genes, each with
22 features. The data set is available at http://www.niehs.nih.gov/research /at-
niehs/core/microarrays/docs/santos.txt.

3. Lung Inflammation. This data set describes the modulatory role for retinoid-
related orphan receptor a (RORa) in allergen-induced lung inflammation. It
consists of 20,917 genes, each with 15 features. The data set is available
at http://www.niehs.nih.gov/research/atniehs/core/microarrays/docs/272jetten.
txt.

4. Colon Culture. This Interleukin-22 effect on colon cultures GEO data set
contains the analysis of C57BL/6 colon cultures treated with 10 ng/mL−1 (of
interleukin-22 (IL-22) for 24 h on Mus musculus. The IL-22, a member of
the IL-10 family of cytokines, can induce a marked antimicrobial response
in vitro. Results provide insight into the molecular basis of IL-22 induced
host defense mechanisms. This gene expression array-based ribonucleic acid
(RNA) type sample consists of log10 ratio values for 44,290 genes each with
six samples. The data set is publicly available at http://www.ncbi.nlm.nih.gov/
projects/geo/gds /gds browse.cgi?gds=3226.

13.4.2 Timing Analysis

Tables 13.1–13.5 reports the execution times of the sequential, as well as parallel
versions of SBKM and PSBKM algorithms. These include the partitioning, clustering,
and fine-tuning phases of those algorithms both for the artificial and gene microarray
data sets. The speedup S = Time(p = 1)/Time(p = P), is computed to show the
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TABLE 13.1 Time Comparison of ParSBKM and ParPSBKM Algorithms for Data 2

Execution Time

Partition Cluster Fine Tuning Total TG
Algorithms Methods P Time (s) Time (s) Time (s) Time (s) S (%)

SBKM Sequential 1 6.478 4842.397 4848.881 1.00 0.00
ParSBKM Parallel 2 1.772 6.416 2427.536 2435.724 1.99 49.77

4 1.507 5.458 1537.885 1544.849 3.14 68.14
8 1.484 5.043 988.973 995.500 4.87 79.47

12 1.407 4.134 914.791 920.332 5.27 81.02
PSBKM Sequential 1 6.335 2162.434 2168.776 1.00 0.00
ParPSBKM Parallel 2 1.568 6.214 901.899 909.680 2.38 58.06

4 1.473 5.152 453.626 460.251 4.71 78.78
8 1.464 4.497 367.880 373.841 5.80 82.76

12 1.404 4.066 305.523 310.993 6.97 85.66

scalability of parallel execution on each data set. Similarly, the percentage of time
gain (%TG) is computed as %TG = Time(p = 1) − Time(p = P)/Time(p = P) ∗
100 to show the performance time gain for increasing the number of processors
in the parallel execution. The clustering and fine-tuning phases are expected to take
quadratic runtimes for sequential execution. The decrease in runtime as the number of
processors(P) increases from 1 to 2, happens not only for the increase in the number
of processors, but also for the cache size limitation of individual nodes. Moreover,
parallel runtimes of both the algorithms are reduced further with the increase in
number of processors until the communication overhead arises.

TABLE 13.2 Time Comparison of ParSBKM and ParPSBKM Algorithms for
Sporulation

Execution Time

Partition Cluster Fine Tuning Total TG
Algorithms Methods P Time (s) Time (s) Time (s) Time (s) S (%)

SBKM Sequential 1 0.060 1.491 1.551 1.00 0.00
ParSBKM Parallel 2 0.019 0.050 0.975 1.044 1.49 32.71

4 0.018 0.044 0.549 0.610 2.54 60.67
8 0.010 0.040 0.457 0.506 3.06 67.37

12 0.005 0.038 0.353 0.395 3.92 74.51
PSBKM Sequential 1 0.052 1.399 1.451 1.00 0.00
ParPSBKM Parallel 2 0.011 0.042 0.854 0.907 1.60 37.50

4 0.008 0.036 0.436 0.480 3.02 66.93
8 0.004 0.025 0.370 0.398 3.64 72.55

12 0.001 0.024 0.307 0.332 4.37 77.13
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TABLE 13.3 Time Comparison of ParSBKM and ParPSBKM Algorithms for
Mitochondrial Genome

Execution Time

Partition Cluster Fine Tuning Total TG
Algorithms Methods P Time (s) Time (s) Time (s) Time (s) S (%)

SBKM Sequential 1 0.866 1670.036 1670.906 1.00 0.00
ParSBKM Parallel 2 0.879 0.848 982.306 984.033 1.70 41.11

4 0.874 0.803 721.535 723.211 2.31 56.72
8 0.854 0.698 484.767 486.320 3.44 70.89

12 0.837 0.642 458.354 459.833 3.63 72.48
PSBKM Sequential 1 0.862 1185.614 1186.479 1.00 0.00
ParPSBKM Parallel 2 0.873 0.838 438.614 440.325 2.69 62.89

4 0.862 0.784 320.481 322.128 3.68 72.85
8 0.837 0.672 269.480 270.990 4.38 77.16

12 0.827 0.641 197.118 198.587 5.97 83.26

Table 13.1 (for the large artificial data set Data 2) shows the speedup ranging
from 1.99 to 5.27 and 2.38 to 6.97, respectively, for the ParSBKM and ParPSBKM
algorithms. Noticeably, the speedup obtained by the ParPSBKM algorithm is better
than ParSBKM algorithm. For this artificial data set, the %TG for the ParSBKM
algorithm is ranging from 49.77 to 81.02% and for the ParPSBKM algorithm, the
range is from 58.06 to 85.66%.

Similarly, Table 13.2 provides the execution times for the sporulation microarray
data set. Note that the ParSBKM and ParPSBKM algorithms are able to achieve
speedup ranging from 1.49 to 3.92 and 1.60 to 4.37 respectively, when the number

TABLE 13.4 Time Comparison of ParSBKM and ParPSBKM Algorithms for Lung
Inflammation

Execution Time

Partition Cluster Fine Tuning Total TG
Algorithms Methods P Time Time Time Time S (%)

SBKM Sequential 1 – 0.878 2722.107 2722.989 1.00 0.00
ParSBKM Parallel 2 0.924 0.565 1552.107 1553.595 1.75 42.95

4 0.904 0.474 1163.528 1164.906 2.34 57.22
8 0.898 0.209 747.641 748.749 3.64 72.50

12 0.892 0.193 728.548 729.633 3.73 73.20
PSBKM Sequential 1 – 0.619 1543.691 1544.314 1.00 0.00
ParPSBKM Parallel 2 0.728 0.439 558.673 559.840 2.76 63.75

4 0.712 0.161 402.321 403.193 3.83 73.89
8 0.708 0.148 323.678 324.534 4.76 78.99

12 0.703 0.161 241.215 242.078 6.38 84.32
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TABLE 13.5 Time Comparison of ParSBKM and ParPSBKM Algorithms for Colon
Culture

Execution Time

Partition Cluster Fine Tuning Total TG
Algorithms Methods P Time (s) Time (s) Time (s) Time (s) S (%)

SBKM Sequential 1 – 0.688 5458.352 5459.044 1.00 0.00
ParSBKM Parallel 2 0.925 0.658 2609.891 2611.474 2.09 52.16

4 0.903 0.624 1651.973 1653.500 3.30 69.71
8 0.899 0.582 1129.397 1130.878 4.83 79.28

12 0.895 0.521 1008.047 1009.463 5.41 81.51
PSBKM Sequential 1 – 0.673 2610.532 2611.210 1.00 0.00
ParPSBKM Parallel 2 0.889 0.616 1002.944 1004.450 2.60 61.53

4 0.883 0.589 519.438 520.910 5.01 80.05
8 0.880 0.527 413.546 414.952 6.29 84.11

12 0.873 0.460 322.523 323.856 8.06 87.60

of processors (P) increases from 2 to 12. The %TG for the sporulation data set is in
the range of 32.71–74.51% for the ParSBKM algorithm, while for the ParPSBKM
algorithm, it ranges from 37.50–77.13%. Similar boosting in the speedup and %T G
can also be found for all other data sets.

For the largest microarray data set, colon culture with 44291 elements, the TG%
of ParPSBKM algorithm for P = 2, 4, 8, and 12 processors are, respectively, 61.53,
80.05, 84.11, and 87.60% and those of ParSBKM algorithms are, respectively, 52.16,
69.71, 79.28, and 81.51%. The speedup computation of the ParSBKM algorithm for
this data set results in the range of 2.09–5.41 times and the range for the ParPSBKM
algorithm is from 2.60–8.06 times. This finding shows an increasing order of speedup
and %TG with an increase in the number of processors, which proves the necessity
for parallelization of all those algorithms for even large microarray data sets.

Figures 13.2 and 13.3 show improvement in the execution times for ParSBKM and
ParPSBKM algorithms, respectively, as P is increased from 2 to 12 while keeping the
data size constant for four relatively large data sets, namely, mitochondrial genome,
lung inflammation, data 2, and colon culture. The speedups for P = 2, 4, and 8 tends
to increase even for P = 12, undermining the interprocessor communication cost
for all these large data sets. Moreover, the superiority of the ParPSBKM algorithm
over the ParSBKM algorithm can be noted from Figures 13.2 and 13.3. Figures 13.4
and 13.5 show the overall performance of ParSBKM and ParPSBKM, respectively,
in terms of total execution times for various problem sizes for P = 1, 2, 4, 8, and
12. It is evident from the figures that the performance gain of ParPSBKM algorithm
in comparison with the ParSBKM algorithm for the parallel execution times is in the
range of 2.60–3.12 times for P = 2.

The scalability of parallel execution on each data set is shown in bar charts in
Figures 13.6 and 13.7. As expected the scalability is high for large microarray data
sets. The largest microarray data set, colon culture, with 44,291 elements, shows the
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FIGURE 13.2 Performance of ParSBKM with varying data sizes and increasing number of
processors.
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FIGURE 13.3 Performance of ParPSBKM with varying data sizes and increasing number
of processors.
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FIGURE 13.5 Performance of ParPSBKM with varying number of processors and increasing
data sizes.

0 1 2 3 4 5
x 104

0

200

400

600

800

1000

1200

1400

Data Size

E
xe

cu
tio

n 
T

im
e 

(s
)

P=1
P=2
P=4
P=8
P=12

FIGURE 13.6 Scalability of ParSBKM with varying number of processors and increasing
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TABLE 13.6 Performance Comparisons of PKM and ParSBKM Algorithms
on Data Sets

Algorithms

PKM ParSBKM

Data Sets Jm XB I s(C) Jm XB I s(C)

Artificial Data 2 5,364.58 1.77E+6 2.42 0.49 5,229.58 1.71E+6 3.24 0.50
Microarray Sporulation 144.33 1329.44 7.53 0.69 143.59 1296.71 8.25 0.73

Mitochondrial 7,510.91 5.79E+6 3.62 0.53 7,483.55 4.52E+6 4.12 0.62
Genome

Lung 3.65E+7 287.56 1.49E+9 0.96 3.54E+7 220.41 1.91E+9 0.97
Inflammation

Colon 14,233.68 2.87E+5 0.82 0.66 12,987.14 1.99E+5 0.98 0.73
Culture

highest scalability of 8.06 times for the ParPSBKM algorithm with P = 12, forming
a linear curve of speedup with other data sets. However, the ParSBKM algorithm pro-
vides a scalability of 5.41 times for the colon culture data set. Similar results are also
observed for other data sets, which show that the ParPSBKM algorithm outperforms
the ParSBKM algorithm even in the scalability of parallel execution times.

13.4.3 Validity Analysis

The clustering results have been evaluated objectively by measuring four validity
measures Jm , X B, I index, and silhouette index s(C), as defined in [14–17], re-
spectively, for PKM, ParSBKM, and ParPSBKM algorithms on each data set to mea-
sure the goodness of the clustering solutions. The results are reported in Tables 13.6
and 13.7.

Note that for the microarray data set sporulation, ParPSBKM produces the best
minimized Jm index as 143.512, while ParSBKM and PKM produces Jm values

TABLE 13.7 Performance Comparisons of PKM and ParPSBKM Algorithms
on Data Sets

Algorithms

PKM ParSBKM

Data Sets Jm XB I s(C) Jm XB I s(C)

Artificial Data 2 5,364.58 1.77E+6 2.42 0.49 3,574.89 1.63E+6 5.86 0.50
Microarray Sporulation 144.33 1329.44 7.53 0.69 143.51 1127.26 9.68 0.74

Mitochondrial 7510.91 5.79E+6 3.62 0.53 7,206.19 4.34E+6 4.69 0.63
Genome

Lung 3.65E+7 287.56 1.49E+9 0.96 3.54E+7 209.87 2.10E+9 0.99
Inflammation

Colon 14,233.68 2.87E+5 0.82 0.66 11,834.42 1.04E+5 0.99 0.74
Culture



304 MICROARRAY ANALYSIS USING POINT SYMMETRY

as 143.591 and 144.332, respectively. The ParPSBKM algorithm also provides the
best X B index value of 1127.258, compared to 1296.71 and 1329.44 produced by
ParSBKM and PKM, respectively. The I index values produced by ParPSBKM,
ParSBKM, and PKM algorithms are, respectively, 9.681, 8.249, and 7.539, which
also shows the superiority of the ParPSBKM algorithm over the other two. Similarly,
the silhouette index s(C) produced by the ParPSBKM algorithm [maximizing s(C)]
is 0.739, but ParSBKM and PKM implementations provide smaller s(C) values of
0.733 and 0.693, respectively. Similar results are also found for other data sets.

13.5 TEST FOR STATISTICAL SIGNIFICANCE

A nonparametric statistical significance test called Wilcoxon’s rank sum for indepen-
dent samples has been conducted at the 5% significance level [13]. Three groups
corresponding to three algorithms PKM, ParSBKM, and ParPSBKM, have been cre-
ated for each data set. Each group consists of the performance scores s(C) produced
by 10 consecutive runs of corresponding algorithm on each data set. From the me-
dian values of each group for all data sets, as shown in Table 13.8, it is observed that
ParPSBKM provides better median values than both PKM and ParSBKM.

Table 13.9 shows the P- and H -values produced by Wilcoxon’s rank sum test for
comparison of two groups (one for ParPSBKM and another for some other algorithm,
either PKM or ParSBKM) at a time. As a null hypothesis, it is assumed that there are
no significant differences between the median values of the two groups. If H = 0,
one cannot reject the null hypothesis, while H = 1 means the null hypothesis can
be rejected at the 5% level. A larger value of P means the null hypothesis is more
significant. All the P-values reported in the table are < 0.005.

We see from Table 13.9, that for microarray data set sporulation, the comparative
P-value of rank sum test between PKM and ParPSBKM is 1.74E − 4, which is
very small. This indicates that the performance metrics produced by ParPSBKM is
statistically significant and has not occurred by chance. Similarly for that microarray
data set, H = 1 and P = 1.67E − 4 values between ParPSBKM and ParSBKM

TABLE 13.8 Median Values of Performance Parameters [s(C) for Microarray Data
Sets] over 10 Consecutive Runs on Different Algorithms

Median Values

Data Sets PKM ParSBKM ParPSBKM

Artificial Data 2 0.4924 0.4969 0.4999
Microarray Sporulation 0.5538 0.6140 0.7331

Mitochondrial 0.4314 0.5318 0.6220
Genome

Lung 0.9479 0.9673 0.9829
Inflammation

Colon Culture 0.6975 0.7258 0.7424
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TABLE 13.9 P-Values Produced by Rank Sum While Comparing ParPSBKM with
Other Algorithms

P-Values

PKM ParSBKM

Data Sets H P H P

Artificial Data 2 1 8.17E-5 1 1.09E-4
Microarray Sporulation 1 1.72E-4 1 1.67E-4

Mitochondrial Genome 1 1.55E-4 1 5.59E-5
Lung Inflammation 1 1.13E-4 1 4.55E-5
Colon Culture 1 1.59E-5 1 4.73E-5

algorithms means that the result is not casting of the null hypothesis. Similar results are
obtained for both PKM and ParSBKM algorithms over all other data sets. Hence, all
results established the significant superiority of ParPSBKM algorithm over ParSBKM
and PKM algorithms.

13.6 CONCLUSIONS

Gene-expression microarray is one of the latest breakthroughs in experimental molec-
ular biology. It provides a powerful tool by which the expression patterns for thou-
sands of genes across multiple conditions can be monitored simultaneously producing
large throughput data. Although the magnitudes may not be close, the patterns they
exhibit may be alike and symmetrical. The point-symmetry distance measure, as
presented in this chapter, proves the closure and difference symmetry properties even
on those intra and intercluster symmetrical patterns, as demonstarted with examples.
The contribution of this chapter lies in faster and more efficient discovery of such
symmetrical clusters of genes in large microarray data sets by the reformulation
of the SBKM and PSBKM to the time-efficient scalable high-performance parallel
symmetry-based clustering algorithms, namely, ParSBKM and ParPSBKM.

The primary contributions are as follows: to reduce the space requirement from
linear to be factored by the number of distributed nodes, to generate global centroids
updation without using an all-to-all communication pattern, and to reduce execution
time by a factor of quadratic value of number of slave nodes. Generally, it was
found that ParPSBKM outperforms PKM and ParSBKM not only in timing, but also
succeeds in detecting symmetrical-shaped clusters in gene microarray data analysis.
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14
TECHNIQUES FOR PRIORITIZATION
OF CANDIDATE DISEASE GENES

Jieun Jeong and Jake Y. Chen

14.1 INTRODUCTION

Gene prioritization is a new approach for extending our knowledge about diseases and
phenotypic information each gene encodes. We will review computational methods
that have been described to date and attempt to identify which are most successful
and what are the remaining challenges. The motivations and applications of this topic
been well described in [1]. Therefore, we focus on how to enable a biologist to select
the best existing method for a given application context. At the same time, we would
like to identify remaining open research problems for practitioners in bioinformatics.

The general notion of gene prioritization assumes that one has a set of candidates
and he wants to order the candidates from the most promising to the least promising
one. A primary motivation for prioritization of candidate disease genes comes from
the analysis of linkage regions that contain genetic elements of diseases. In this
setting, the notion of a disease gene is unambiguous: a genetic element that confers
disease susceptibility if its variants is present in the genome. For a particular disease
phenotype, researchers often have a list of candidate genes usually genes located in
a linkage interval associated with the disease. Finding the actual gene and candidate
can be a subject of expensive experimental validations; however, once identified as
real, these disease-associated genes or their protein products can be considered as a
therapeutic target or a diagnostic biomarker. Online Mendelian Inheritance in Man
(OMIM) is a representative database that links phenotypes, genomic regions, and
genes. Here, we refer to a “phenotype” as a disease phenotype. To make effective
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FIGURE 14.1 Different types of biological data provides the context for gene prioritizations.

use of biological resources, computational gene prioritization allows researchers to
choose the best candidate genes for subsequent experimental validations.

The ultimate goal of gene prioritization is to find therapeutic targets and diagnostic
biomarkers, the notion of a disease-related gene can be more general, i.e., a gene
or a protein involved in the disease process either directly or indirectly. In turn,
the list of candidates can originate from many data sources, e.g., genome-wide
association studies serial analysis of gene expression (SAGE), massively parallel
signature sequencing (MPSS) [2], or proteomic experiments. Such prioritization can
be applied to either a short list of genes or the entire genome [3].

Disease gene prioritization requires researchers to take advantage of prior knowl-
edge about both genes and phenotypes. We assume that “the truth is always there”,
which is embedded in large volumes of potentially relevant publications and various
tabulated results from high-throughput experiments. A computational disease-gene
prioritization method should be able to convert this data into insights about the rela-
tionship between candidate genes and interested disease phenotypes (see Fig. 14.1).

The first work on prioritization of candidate genes from linkage regions [4, 5]
used text mining to extract phenotype descriptions and establish similarities among
phenotypes and the relationships between phenotypes and genes. The underlying
assumption is that a good candidate gene with a strong connection to the query
phenotype, i.e., phenotype under investigation, can be identified by sifting through
biomedical literature. Text mining allows more high-throughput scanning of the
biomedical literature to develop credible content; therefore, it can be less costly than
curation-based database development, e.g., LocusLink and RefSeq [6], GO (Gene
Ontology) [7], and OMIM [8]. In Section 14.2, we will review gene prioritization
methods and related databases that are developed based on biomedical text mining.

Both literature curation and text mining based approaches extract relationships
between phenotypes and genes, all based on biological and biochemical processes
that have been already identified. Thus, a pontential drawback is that genes that are
less well characterized can be overlooked. Such “blind spot” can be targeted by
complementary methods that do not rely on properties of phenotypes, e.g., lists of
known disease genes or text-mined associations. One class of such complementary
methods reported was to identify general properties of genomic sequences of disease
genes [9–11] and relate genes from different loci (or linkage regions) of the same
phenotype [12]. These methods will be reviewed in Section 14.3.

With the arrival of systems biology, several recent emerging methods have used
data on biomolecular interactions among proteins and genes, most notably protein–
protein interactions, biological pathways, and biomolecular interaction networks
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(see [13–19]). In Section 14.4, we will review different ways of gene prioritization
based on interaction networks.

In Section 14.5, we describe how gene prioritization can be obtained with a
unified phenotype-gene association network in which gene–gene links are taken from
biomolecular interaction networks and phenotype–phenotype links are identified with
results from text-mining.

One difficulty in prioritizing disease genes is the lack of data on many possible
gene candidates. For example, among roughly 23,000 identified human genes, only
50–55% have GO annotations, which suggests that for the remaining genes we do not
know about their biological processes, cellular components, or molecular functions.
Networks of biomolecular interactions cover a similarly small percentage of genes.
Gene expression data, on the other hand, can cover many genes that are otherwise
uncharacterized genomic DNA. Using data of many types, especially high-throughput
experimental and computational-derived data, has the potential to improve the quality
of gene prioritizations that leads to new discoveries. However, the inherent “noisy”
nature of high-throughput experimental data and computationally derived data raise
the question how to combine different sources of data so that the integrated data
improves the predictive power of gene prioritizations. We refer to this problem as the
challenge of data fusion problems in gene participations and will describe different
solutions in Section 14.6.

14.2 PRIORITIZATION BASED ON TEXT-MINING WITH REFERENCE
TO PHENOTYPES

Perez-Iratxeta et al. [5] developed a method that uses the MEDLINE database and
GO data to associate GO terms with phenotypes. Then, they ranked the candidate
genes based on GO terms shared with the query phenotype. Later, they implemented
this strategy as a web application [20]. The phenotype-GO term association was de-
rived using MeSH C terms (medical subject headings from chemistry recognized in
MEDLINE queries): An article stored in MEDLINE that mentions both terms creates
an association pair. They measured the strengths of associations between phenotypes
and MeSH C terms and between MeSH C and GO terms, and used a “max-product”
rule from fuzzy logic to obtain the strength of the relationship between phenotypes
and GO terms. The relationship GO term gene also has “strength” (which takes
larger values for less frequent terms) and the same max-product rule can define the
strength of the gene-phenotype relationship. Then, this “strength” was taken as the
priority score (see Fig. 14.2). Clearly, this methods allow the aggregation of different

GO

Literature
associations

associations
Literature

Candidate gene

Query phenotype MeSH C terms

GO terms

FIGURE 14.2 Chains of associations used by Perez-Iratxeta et al. in a text-mining based
gene prioritization method [5].
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FIGURE 14.3 Chains of associations used by Freudenberg and Propping [4].

relationships between specific phenotypes and genes to identify additional informa-
tion absent in biomedical texts separately. For example, one article evaluates effec-
tiveness of a drug (MeSH C term) in the treatment of a phenotype, and another, the
impact of that drug on a metabolic process (GO term). The enrichment on “artificial
linkage regions” was approximately 10-fold, i.e., locating the correct candidate in the
top 5% half of the time.

Freudenberg and Propping [4] used an different version of chain of associations
(see Fig. 14.3). They defined between disease phenotypes a similarity score that
was based on five key clinical features and clustered the phenotypes from OMIM
according to the score. The OMIM also provides associations of phenotype-genetic
cause, and this defines the last step in their chain. The enrichment reported in this
article is similar to Perez-Iratxeta et al. [5].

van Driel et al. [21] developed a tool that could “data mine” up to nine web-based
databases for candidate genes and could be used to select “the best” candidates in a
linkage region. The user can specify a genomic region, which can be a linkage region,
and a set of anatomic terms that describe the localization of symptoms of a Mendelian
disorder provided by the user. The result gives two lists of genes from the genomic
region: those that were found in at least one tissue from the set (OR list) and those that
were found in all tissues from the set (AND list). The count of lists in which a gene
is present can be viewed as a priority with possible values, 0, 1, or 2; in ten examples
of diseases used in this chapter, they determined an average enrichment (the correct
candidate was always present in the OR list). The localization of disease symptoms
and the tissue localization of a disease-related protein is apparently an important part
of “prior knowledge”, but it is not apparent how to choose the best anatomic terms
for a particular phenotype. Tiffin et al. [2] developed a method to make this decision
“automatic”. They used eVOC vocabulary of anatomic terms that is hierarchically
organized like GO with only the “part of” relationships (e.g., retina is a part of eye).
Applying text-mining, they counted MEDLINE papers that mention both the disease
and the particular eVOC term. A term was counted as being present in a paper if its
hypernym was present. These measures were then used to represent the strength of
associations of phenotypes with anatomic terms. They obtained similar association
of eVOC terms with genes. Then, each phenotype and each gene had its list of “n
most significant eVOC terms.” Finally, the number of terms that occur both in the
list of a candidate gene and in the list of the query phenotype is the inferred priority
for genes.

Both Perez-Iratxeta et al. [5] and Tiffin et al. [2] used the concept of chains of
associations with different computational algorithmic flavors. Several recent papers
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FIGURE 14.4 Using profile vectors for gene prioritizations.

used Pearson correlation of profile vectors. For example, Aerts et al. [22] used the
MEDLINE database of abstracts in conjunction with the TXTGate vocabulary [23],
which was developed specifically for gene analysis. A profile of “subject” X is a
vector with an element for every term t and this element is the over-representation or
under-representation or of occurrences of term t in articles that mention X compared
with the frequency of occurrences of t in the entire database. Since both genes and
phenotypes are “subjects”, one can define the closeness of gene g to phenotype p as
the Pearson correlation coefficient of profile(p) and profile(g) (see Fig. 14.4). This
method was a component of a more complex prioritization system ENDEAVOUR
that will also be discussed in Section 14.6.

14.3 PRIORITIZATION WITH NO DIRECT REFERENCE
TO PHENOTYPES

Using literature to find associations between phenotypes and vocabulary terms was
successful, but rarely new disease genes can be discovered using those associations.
One reason is that many terms important for a given phenotype may not be discussed
in articles that mention the phenotype’ in addition, many new disease genes are yet
to be annotated.

The POCUS method of Turner et al. [12] addressed the first problem. They applied
two types of gene annotations, GO terms and InterPro domains for phenotypes that
are associated with multiple genetic loci (linkage regions). The idea is that for such
phenotypes one can discover important associations that were not yet reported in the
literature. Within a single locus associated with phenotype p, genes with a certain
term X (a type of protein domain or with a certain GO annotation) can be over-
represented because of tandem duplications that place similar genes next to each
other. Therefore, having term X does not identify a disease gene within that locus.
However, if a gene g from another locus that is associated with p has term X , it
raises the possibility that term X and gene g are significant for the query phenotype
p. More precisely, gene g obtains a score because of term X if X also occurs in other
loci of Phenotype p, and the score is based on the probability that two loci with a
particular number of distinct terms containing the term X .

Turner et al. [12] tested POCUS on 29 phenotypes with multiple loci contain-
ing known disease genes, and on one specific disease, autism, which had two new
genes discovered during the time of the research by Turner et al. In 11 cases, no
disease genes could be identified using this method, due to enforcement of a stringent
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significance threshold filter. However, but in the remaining 18 cases, the genes that
passed threshold filters were considerably enriched with disease genes. In the case
of autism, the newly discovered genes were ranked as the best or second best in their
artificial linkage region, confirming the future predictive power of such methods.

TOM by Rossi et al. [24] is a web-accessible tool with a “two-loci option” that has
exactly the same purpose as POCUS besides. In addition to GO annotations, TOM
also uses expression profile similarity.

While POCUS does not rely on prior literature to identify terms that are significant
for the query phenotype, it relies on existing GO annotations that are available for
approximately 60% of known human genes according to the GO annotation provided
by the SwissProt database as well as available InterPro domain annotations. This
motivates follow-up work that do not rely on any annotations of the candidate genes.
Lopez-Bigas et al. [9] and Adie et al. [10] developed a decision tree method that is
based solely DNA sequence features of the candidate gene, such as coding potential
for a signal peptide, the similarity with its mouse homolog, the number of exons, and
so on. The enrichment of PROSPECTR, the latter version of the approach, is close to
2-fold, i.e., the correct candidate appearing in the top 5% with a frequency of 10%.
While modest, this result does not rely on any knowledge except for a DNA sequence.
Further development in this direction can be promising in the context of interpretation
of results from genome-wide association studies, because in those cases we know not
only the DNA sequence, but also the exact type of variations.

14.4 PRIORITIZATION USING INTERACTION NETWORKS

Many methods using interactions in prioritizing candidate genes are fundamentally
counting and comparing “qualified” interactions under the following underlying as-
sumptions: 1) causative genes for a disease reside in the same biological module;
2) genes in the module have many interactions with other members within the module
and relatively few interactions with nonmembers outside the module.

The observation that disease genes share interactions at a much higher rate than
random gene pairs was made when protein–protein interaction (PPI) networks were
assembled [25]. In this discussion, we will use some graph terms. A network is a
graph composed of a set of nodes (genes as identified with their protein products)
and a set of pairs of nodes called edges (that indicate the existence of interactions).
If we have an edge {u, v}, we say that u and v are neighbors. For a node u, N (u) is
the set of its neighbors, and for a node set A, N (A) is formed from A by inserting
the neighbors of its elements. We will also use T to denote the set of known disease
genes for the query phenotype (the training set).

George et al. [26] tested whether a PPI network could be used to propose candi-
dates. They used the OPHID network [19] that consolidates interactions from HPRD,
BIND, and MINT, curated networks of interactions that were reported in the lit-
erature, as well as results of high-throughput experiments that were performed on
human proteins and proteins of four model species (baker’s yeast, mouse, nematode,
and fruit fly) that were mapped to their orthologous human proteins. Rather than
ranking candidates, George et al. [26] were simply making predictions: any gene in



PRIORITIZATION USING INTERACTION NETWORKS 315

N (T ) that is within the investigated linkage interval is a candidate. To test the quality
of these predictions, they used a set of 29 diseases with 170 genes, the same set
as the set used to test the POCUS method by Turner et al. [12] . This benchmark
showed very good performance: 42% of the correct candidates were identified and
no incorrect candidates were identified.

The work of Oti et al. [27] drew quite different conclusions. They compared the
gene prioritization results based on two networks: (1) HPRD (assembled by Gandhi
et al. [25]), a curated collection of 19,000 PPIs based on the literature and (2) a network
expanded with results of high-throughput experiments on human proteins and three
model species. They tested the same prediction method as George et al. [26] on 1114
disease loci for 289 OMIM phenotypes that shared at least two known disease genes.
This led to 432 predictions, 60% of which based on HPRD were correct as compared
with 12% of which based on high-throughput data were correct. These results revealed
the challenge even though biomolecular interactions may generate most trustworthy
predictions, the number of such high-quality predictions is dependent on the coverage
of PPI, which is still quite poor today. To make more predictions, we need to use
some combination of (a) a larger network, (b) indirect interactions, and (c) methods
that prioritize candidates that have these indirect connections. Otherwise, one must
explore how to use prior knowledge to expand set T . In tests conducted by Oti et al.
[27], the average size of T was 2, while in tests of George et al. [26], this size was
more than twice as large at 4, a major motivation for the methods that we will discuss
in Section 14.5.

Aerts et al. [22] used ranking based on PPI as one of the components of their
ENDEAVOR program. They used the BIND PPI network developed by Bader et al.
[28], which is similar to the expanded version of the network used by Oti et al. [27].
Using graph definitions, the priority score for a gene u is the count of its neighbors
in N (T ). They subsequently order the candidate list from the largest to the smallest
priority score. Here, each of the points (a–c) is addressed. However, the formula for
the priority value does not take into account of very high variability of numbers of
neighbors of nodes in the PPI graph, which varies between 1 and >1000. Clearly,
being a neighbor of a node with degree 1 provides a much more specific hint of
relatedness than being a neighbor of a node with degree 1000.

Franke et al. [29] used several data sources, but they also evaluated the use of
an interaction network that had a large majority of interactions from the BIND
PPI network, with a small number of coexpression-based “interactions” added (the
MA+PPI data set). Their priority function is described as an empirical p-value of
kernel scoring function of the shortest path distance from node u to T , but a much
simpler definition defines the same ranking. If d(u, T ) is the distance (defined as the
shortest path length) from u to T and there are k network nodes that are not further
from u than d(u, T ), then they effectively use k as the priority value of u and they rank
candidates from the smallest to the largest priority value. When they used MA+PPI
only, the correct candidates appeared at the top 5 (of 100) candidates 8% of the time,
hence they concluded that MA+PPI “lacks predictive performance”.

The above methods are based on basic graph concepts and all are rooted in the
notion of path distance in the network graph. However, measures derived from graph
distance can be misleading. As we mentioned, one issue is the wide range of the
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numbers of neighbors that different nodes have. Moreover, disease genes are not a
representative sample of all genes as they tend to have more interactions than the
average. To address these issues, Aerts et al. [22] have a priority formula that is
“much easier” for proteins with many interactions (network hubs) than for others,
conversely, the formula of Franke et al. [29] eliminates that advantage. Which is the
correct approach? Or perhaps there is a “third approach” that can avoid the pitfalls of
either extreme position?

Indeed, a much more successful method was introduced recently by Köhler et al.
[30]. They proposed a more elaborate network-based prioritization method based
on global distance measure in the application of finding disease genes from linkage
analysis. They also compared their methods with the methods based on local distance
measures [26,27] and ENDEAVOUR [22] to show that their own methods performed
better.

A physical example of global distance would be a resistance between two points
of an electric network; computing such resistance with Kirchoff’s circuit law requires
us to know the entire network. We can also talk about “closeness”: If we apply some
positive voltage to the first point and ground to the second point, the closeness would
be the resulting current. Köhler et al. [30] discussed two global distance measures,
random walk with restart (RWR) and diffusion kernel. In evaluation, diffusion kernel
leads to very similar results as RWR; computationally and conceptually, these meth-
ods are quite similar, so we will describe RWR only here. The general concept of
these methods is to start a random walk by selecting a node in set T and use the rules
of the walk to compute the stationary probability distribution of the position of the
walker. A good set of rules should assure that this probability measures closeness, or
relatedness, of various positions to set T , so we can rank the candidate genes based
on those closeness scores.

In RWR, the random walker first decides if it should continue the walk (with
probability 1 − r ) or to restart (with probability r ). In the former case, it changes
its position from the current node c to a randomly selected neighbor in N (c); in the
latter, it “jumps” to a random node in T .

To describe RWR more precisely, we will use W to denote the column-normalized
adjacency matrix of the network and pt to denote a vector in which the i th element
holds the probability of the walker being at node i at time step t . The walker starts
by moving to each disease gene (a node in T ) with probability 1/|T |, so the i th
element of p0 is 1/|T | if i is in T and 0 otherwise. Then, at each time step t , the
random walker has probability r to restart (i.e., to repeat the starting move) and with
probability 1 − r the random walker chooses to follow an edge from its current node,
each edge with the same probability. This defines the simple update rule of how to
change the probability distribution of the location of the walker, namely, p changes
to rp0 + (1 − r )W p (i.e., pt+1 = rp0 + (1 − r )W pt ). They repeat this update until
the sum of changes of the elements of p becomes <10−6, so that p becomes a good
approximation of the steady-state distribution. The final probabilities of each node
are the priority values and the ranking is from the largest to the smallest value.

For comparison with other methods, Köhler et al. [30] implemented direct inter-
actions (DI) with other known disease-family genes and single shortest path (SP) to
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any known disease gene in the family. They computed results for 110 phenotypes
with 783 known disease genes using a “1-out, artificial linkage region of 100” ap-
proach (the same approach as [22,26,29]). They tested the results on their screens of
candidate genes in an artificial linkage interval, i.e., the prediction of gene g tested
by removing g from T and considering a set S of 100 candidate genes that flank g in
two directions on the chromosome. They also ranked genes in S with PROSPECTR,
which is based on sequence-based features, and with ENDEAVOUR, which is based
on several different types of data. Both mean-fold enrichment and ROC analysis
showed that their methods perform much better than the other methods they were
compared with.

The shortest path method, was considered by George et al. [26], but as we men-
tioned before, they merely tested predictions made when the shortest path has length
1, i.e., they did not test the ranking based on SP length. Correct predictions were made
in 42% of the tested artificial linkage intervals where they did not observe incorrect
predictions. In 61% of the cases in the tests of Köhler et al., where the approach of
George et al. [26] and Oti et al. [27] yielded a correct prediction, some genes are also
predicted incorrectly. An analogous situation, multiple nodes having the best priority
value, is very rare for the RWR method: of the cases when the correct candidate had
the top score, only 1.4% had another node within the investigated linkage interval
with the same score. Moreover, RWR assigns a top score to the correct candidate more
often. Thus, one of the advantages of RWR is that when SP selects several genes with
the same score, RWR usually correctly picks a single good candidate. The measure
for the assessing the quality of a method developed by Köhler et al., mean enrichment,
can be explained as follows: if the evaluated candidate gets rank a, we score it as en-
richment 50/a, and we calculate the mean. For example, if the evaluated gene always
receives a rank between 1 and 5 (out of 100 possible ranks) with equal probability,
this gives mean enrichment of (50/1 + 50/2 + 50/3 + 50/4 + 50/5)/5 = 22.8. The
mean enrichment for RWR was 26, and for SP and DI it was 18. They also tested
various methods on seven recently identified disease genes and the mean enrichment
for RWR and SP was 25.9 and 17.2, respectively. They also obtained ENDEAVOUR
ranks for those genes and the resulting mean enrichment was 18.4. This is very
intriguing because ENDEAVOUR presumably considers many data sources and ob-
tained top evaluations in other papers. Apparently, many biases and coverage issues
can confound literature or data integration based gene prioritization methods but may
be addressed with the use of biomolecular interaction networks.

14.5 PRIORITIZATION BASED ON JOINT USE OF INTERACTION
NETWORK AND LITERATURE-BASED SIMILARITY
BETWEEN PHENOTYPES

One conclusion from the results of Köhler et al. [30] concerning the effectiveness of
their RWR ranking method could be that PPI interactions alone can provide the best
possible prediction of disease genes. This conclusion may be premature, because
RWR was tested on phenotypes that on average had seven known disease genes.
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The comparison of results of George et al. [26] and Oti et al. [27] suggests that the
reliability of a method based on PPI interactions may decrease as the number of
known disease genes decreases. Moreover, for roughly one-third of the phenotypes in
OMIM, there are no known disease genes, and in these cases PPI methods described
in Section 14.4 cannot be applied at all. However, even if no disease genes are
identified for a given phenotype, we have considerable prior knowledge in the form
of (1) knowledge that phenotypes are similar and (2) accumulated knowledge about
the similar phenotypes.

The notion of similarity of phenotypes was used first by Freudenberg and Propping
[4], who defined a measure of “closeness” for phenotypes and computed phenotype
clusters as the initial stage of their prioritization method. One could simply combine
that approach with, for example, RWR. Given a phenotype compute its cluster, and
then use the set T that consists of all known disease genes of all members of the cluster.
This requires making an arbitrary decision on whether to cluster the phenotypes or
avoid clustering with the use of phenotype–phenotype similarity.

Most gene prioritization methods integrate two different types of data: literature-
based data and interactome data [3, 31]. They use similarities between phenotypes
based on literature curation and the interaction network, and are guided by the
assumption that causative genes for the phenotypically similar diseases reside in the
same biological module. In turn, a biological module corresponds to a fragment of
the network that contains many interactions.

To justify that assumption, Lage et al. [31] described a situation when a protein
complex is vital to some biological process, while mutations of genes of the proteins
that participate in that complex have a negative impact on that process leading to
diseases with different, but related symptoms. Therefore, connections in PPI net-
work between the constituents of the complex are reflected in similarities between
phenotypes that are related to their genes. Alternatively, there can be biological path-
ways with similar consequences: disease proteins have many interactions among
themselves, which make up the basic assumption for all network-based prioritization
methods. Lage et al. [31] identified so-called “disease complexes” for each candidate
gene and each such disease complex can be seen as a small module (and a disease
pathway would be a larger module). They made a unified network of genes and
phenotypes where connections between genes were from a PPI network, each with
its reliability score, and disease genes were connected to their respective phenotypes
while phenotype–phenotype connections were annotated with similarity scores. Then
they converted the unified network into a Bayesian network by computing posterior
probability for each gene. Intuitively, those probabilities measure the strength of the
following tendency: If one moves from the network node of the candidate gene to its
network neighbors and then to the phenotypes (if any) associated with those neigh-
bors, he can arrive at a phenotype that is similar to the query phenotype. Consequently,
the posterior probabilities of genes define their priority values.

Following this work, Wu et al. [3] also proposed the prioritization method based
on the same assumption as Lage et al. [31], but much simpler. In addition to the
general assumption of all network-based prioritization methods, they made the fol-
lowing assumption for their method called “CIPHER,” in which members of a disease
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module have positive correlation of gene–gene relatedness and phenotype–phenotype
similarity while nonmembers lack such correlation. They also tested the levels of
these correlations to predict module members. Their method can be described as the
sequence of the following steps:

First, for the query phenotype p, collect similarity scores (described at the end of
this section) to all other phenotypes in the phenotype–gene network. This forms a
vector profile(p).

Second, for a pair of candidate gene g and phenotype q, define closeness(g, q) as
the number of neighbors of g that are disease genes of q. By collecting these values
for all q’s we obtain a vector profile(g).

Third, the priority value of g is the Pearson correlation coefficient of profile(g)
and profile(p). The gene with the highest value receives the rank of the top candidate.

They compared this method with other methods including those by Freudenberg
and Propping [4], Gaulton et al. [32], and ENDEAVOR. They determined that their
methods perform much better than the first two methods and have comparable per-
formance with ENDEAVOR. A direct comparison of CIPHER with RWR of Köhler
et al. [30] is not simple because Wu et al. use a different set of test cases and a
different definition of enrichment. In both methods, when applied to artificial link-
age intervals of size 100 (109 for CIPHER) in “leave-one-out” manner, the correct
candidate had the top rank roughly 50% of the time. The additional strength of CI-
PHER is revealed using “leave-all-out” tests in which we remove the knowledge
of all gene-disease associations for the query phenotype. The performance in those
tests was only somewhat weaker than in “leave-one-out” tests. The explanation is
that CIPHER uses the associations of genes with the remaining phenotypes and sim-
ilarities of those phenotypes with the query phenotype. A weakness of CIPHER is
its inability to prioritize genes with no known interactions with disease genes or
where there is no single connected interaction network. A modification of CIPHER
called CIPHER(SP) alleviated the limitation because it computes closeness(g, q) us-
ing profiles of disease genes of q and the shortest path distances from g to those
genes. However, CIPHER(SP) performs worse than CIPHER. This is not surprising
given the results of Köhler et al. [30], in which the shortest path distance should
probably be replaced with some version of global distance. Therefore, one can expect
that a “fusion” of RWR and CIPHER would have wider applicability and superior
performance to either of these methods.

Of special note is the concept of phenotype similarity, which was widely used
[3, 4, 31, 33]. Freudenberg and Popping [4] measured the similarity between disease
phenotypes from the OMIM database using five indices, i.e., episodic, etiology,
tissue, onset, and inheritance. They gave simple similarity scores for the pairs of
diseases by comparing the individual indices. van Driel et al. [33] developed a text
analysis technique to extract phenotypic features from OMIM to quantify the overlap
of their OMIM descriptions. They defined a vector of phenotypic features in OMIM
descriptions of phenotype p by mining terms from the MeSH vocabulary and for each
term they counted its occurrences (including its hypernyms) in the text. Thus each
term has a value in the feature vector and the similarity between two phenotypes is
computed as the cosine of the feature vectors of two phenotypes. Note that this type
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of feature vector of phenotype p is similar to the profile(p) used by Aerts et al. [22]
described in Section 14.2. This method was adapted and refined in Wu et al. [3] and
Lage et al. [31].

14.6 FUSION OF DATA FROM MULTIPLE SOURCES

Each prioritization method uses several data sources that allow us to define associa-
tions that connect genes, phenotypes and other objects, on which we can compute a
priority score. Adding more data sources might yield more reliable results. In partic-
ular, each source represents only a partial knowledge and potentially can complement
each other to piece together a global view of the knowledge context.

This creates two challenges. First, each data source has to be incorporated in a
coherent prioritization framework. Second, one need to develop an integrated formula.
Typically, a single prioritization formula uses several but rarely all of these data
sources, e.g., associations between genes and phenotypes from OMIM, associations
between phenotypes and scientific terms from text mining in MEDLINE abstracts,
and associations between genes or proteins from molecular interaction network.
However, when one add new data source and associations with another type of data
the problem of incorporating mixed data types looms large.

Rossi et al. [24] proposed solving this problem by defining “filters” for the candi-
date genes. They considered a set of candidate genes and another set of genes as the
training set T (as defined in Section 14.4). Genes in T are presumed to be related to
the query phenotype either by being explicitly provided by a database like OMIM or
obtained in the same way as in the POCUS method, which we discussed in Section
14.3. Then, they use a data source to compute the distance of candidate genes to
T . If the data source is GO, they measure the statistical significance of sharing GO
terms with the training set. If the data source is the transcriptome data from public
repositories, each gene has a vector of expression values, and a candidate gene has a
statistical significance of the closeness of its vector to the vectors of genes in T . In
this fashion, each candidate gene has two priority scores. Finally, they selected can-
didates for which both priority values exceed a certain threshold, and they describe
them as genes that passed through two filters. This certainly raises the concern that
a candidate could be identified by one data source and disqualified by the other due
to the incompleteness of the data. This problem is solved by allowing the user of the
system to select which filters they want to apply. Clearly, this would be inadequate if
we would consider a large number of data sources.

Aerts et al. [22] designed a modular prioritization system, ENDEAVOUR, which
uses a large number of data sources and produces a “synthetic” rank. They defined
10 priority scores based on a variety of data sources. Their prioritization process
consisted of four steps: (1) compute priority values according to each data source,
(2) convert these priorities to ratio ranks, (3) use vectors of 10 ratio ranks to compute
values of a summarizing statistic, and (4) use the values of the summarizing statistic
as the final priority score.

Several different methods are used in step (1). As we described in Section 14.2,
they used “literature” data to represent each gene as a “profile vector” of strengths
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of associations of a gene with scientific terms, and Pearson correlation coefficient
to measure the closeness of a candidate gene to the training set of genes. This
vector methodology was used with two other data sources. One type of vector gives
expression levels of a gene in 79 human tissues a the gene expression data set.
Another type gives for each position a weight matrix of a transcription factor from
the TRANSFAC database the best score recorded for that matrix in the cis-regulatory
region of the gene.

Four data sources were treated as attributes and in those cases they compute
p-values of sharing attributes with the training set in a similar manner to Rossi
et al. [24]. Some of the attributes were straightforward, including GO terms, InterPro
protein domains, and membership in KEGG pathways. Expression levels of a gene in
human tissues can also be treated as attributes because in a dbEST library of a partic-
ular tissue, a gene is categorized as present or absent (based on the levels of its ESTs).

Two data sources define priority scores rather directly. One is the minimum e-value
of a BLAST alignment of a candidate gene with the genes of the training set. The
second is based on the scores of positional weight matrices of transcription factors in
the cis-regulatory region of a candidate gene; however, rather than creating the profile
for all transcription factors, in this variant, five most significantly ranked transcription
factors are established for the training set and the total score that these five give for a
candidate gene are simply added up.

The third data source is the graph of a PPI network, which we described already
in Section 14.4.

Each candidate gene obtains a vector of 10 priority scores. In step (1), each priority
score is replaced with its ratio rank. If there are n candidate genes being evaluated
and a gene g has a bth best value, the ratio rank is b/n.

The summarizing statistic computed in step (3) is Q statistic proposed in the bio-
logical context by Stuart et al. [34]. Finally, the genes are ranked–ordered according
to their values of Q statistic.

A nonstatistician can be puzzled why the Q statistic of n ranks is superior to a
sum or a product of those ranks but the evaluation of the method is quite revealing. It
is difficult to translate the sensitivity–specificity curves of Aerts et al. to enrichment
measures described earlier, but Wu et al. [3] reported ENDEAVOUR to be the “best
other method”, based on their evaluations of CIPHER and a similar comparison
made by Köhler et al. [30]. Among all the data sources included in ENDEAVOUR,
literature profiles were most useful when tested on the OMIM phenotypes and GO
annotations were most useful when tested on KEGG pathways, but the results were
not significantly worse when the most useful data source was excluded. This suggests
that the data fusion based on the Q statistic is effective in combining relatively noisy
and incomplete data into reliable prediction.

Most compelling evaluation results were derived from the tests on 10 newly
discovered disease genes. In three cases, a very good rank (1 or 3) was obtained using
literature profiles alone and slightly worse (2, 3, and 4) using a synthetic rank. In both
cases, the synthetic rank was drastically better, 1 and 3 and in the remaining cases
the synthetic rank was also significantly better.

One can expect that ENDEAVOUR, being modular, will be improved in the
future. Its protein–protein interaction component was not reported by the authors as
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particularly successful and it can be replaced with a better network method like RWR
from Köhler et al. [30]. The application of expression data is limited to expression
in healthy human tissues and provides two priority scores. The main challenge is to
combine data fusion with the phenotype similarity because it would require larger
changes in the modular design; one possibility would be to have a fuzzy training
set where the disease genes of similar phenotypes would be available with different
degrees.

14.7 CONCLUSIONS AND OPEN PROBLEMS

Gene prioritization problems benefited from the development of systems biology. As
comprehensive online databases emerged, researchers used them to develop compu-
tational tools that offer practical advice to biologists. Apparently, any candidates for
genes responsible for a given phenotype or involved in a biological process should
be incorporated as prior knowledge (biological context). There has been significant
progress in the selection of the most relevant sources of data, in the development of
algorithms applied to various types of data, and finally, in the application of methods
to combine results derived from different data sources. Many of the resulting methods
are readily available to users either as standalone programs or as web services online.

This “success story” is clearly not yet complete. First, it is still an open question
what the best way is to handle different data sources. For example, literature data
can be text-mined with different controlled vocabularies. Second, one can try to give
better weights to different vocabulary terms or to different types of publications.
Using data on protein–gene interaction also raises a different set of questions. “What
are the best interaction networks to use”? “What are the best algorithms”? “Does the
answer depend on application”?

For other types of biological data, these questions are even more relevant for gene
prioritizations. How should we use data on transcription regulation? Aerts et al. [22]
did not comment how to practically pick “the best one”. While one debates how to
develop more effective methods in the future, there are plenty of questions to address
even today. How to use information about protein structure? How can we use gene
expression data and proteomics data? The list goes on. One thing for sure is that this
area will be a subject of many new developments in the near future.
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15
PREDICTION OF PROTEIN–PROTEIN
INTERACTIONS

Angshuman Bagchi

15.1 INTRODUCTION

Protein–protein interactions (PPI) play a major role in many biological processes
e.g., hormone receptor binding, protease inhibition, antigen–antibody interactions,
signal transduction, chaperone activity, enzyme allostery, to name a few [1–8]. The
associations of proteins may be transient or permanent. The interfaces of the interact-
ing proteins have specific different characteristics. The identification of the interface
residues may shed light on many important aspects, like drug development, eluci-
dation of molecular pathways, generation of protein mimetics, and understanding
of disease mechanisms, as well as development of docking methodologies to build
structural models of protein complexes. Before going into the details of the various
PPI prediction methodologies, a few basic definitions, which are frequently used in
the analysis of PPIs, need to be introduced.

15.2 BASIC DEFINITIONS [9, 10]

Monomer. A single unit of an assembly.

Polymer. An assembly of single monomeric units [i.e., Polymer = (Monomer)n].

If n = 2, the polymer is called a dimer

If n = 3, the polymer is called trimer, and so on.

Protomer. The monomeric constituent units of a protein having two or more
monomeric protein chains.
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Homomer. A protein with same monomeric constituents.

Heteromer. A protein with different monomeric constituents.

Obligate and Nonobligate Protein–Protein Complexes. A protein–protein com-
plex where the individual partners (protomers) are not stable by themselves
(e.g., the Arc repressor dimer). If the individual protomers can exist on their
own, the complex is then referred to as nonobligate. For example, antibody–
antigen complexes are nonobligate ones.

Transient and Permanent Complexes. If the associations between the protomers in
a protein–protein complex is weak and are in a dynamic equilibrium in solution
where it is broken and formed continuously, the complex is called a transient
complex (e.g., the nonobligate homodimer of sperm lysine).

On the other hand, if the associations between the protomers require molecular
switch to break, the complex is called a permanent complex. The heterotrimeric
G protein forms a permanent complex in the presence of GDP.

Note that PPIs cannot be distinctly classified as transient and permanent, rather
a continuum exists between them. The stabilities of all these complexes depend on
physiological conditions and cellular environments.

Accessible Surface Area. Accessible surface area (ASA) is the fraction of the
total van der Waal’s surface of an atom that can come in contact with other
atoms, specifically water. In the case of proteins, the accessible surface area is
calculated for each atom of each amino acid residue.

Interface Patch. The interface is the contact area of the proteins. It involves those
residues of the proteins that have the ASA of their side chains decreased by
>1 Å2 on complex formation.

Relative Accessible Surface Area. Relative accessible surface area (RSA) is de-
fined as the ratio of ASA to the maximal accessibility of each amino acid.

Gap Volume and Gap Index. The gap volume is defined as the volume enclosed
between any two protein molecules delimiting the boundary by defining a max-
imum allowed distance from both the interfaces. The Gap index is calculated
as Gap index = gap volume / interface ASA

Surface Patch. Surface residues are the amino acid residues of a protein with a
relative accessible surface area of >5%. A surface patch is the central surface
accessible residue and n nearest surface accessible neighbors, where n is the
size of the patch in terms of the number of residues. A mean relative ASA for
each patch is calculated as

Patch ASA (Å2) = sum of the RSAs of the amino acid residues in the patch / number
of amino acid residues in the patch

Solvation Potential. This is the measure of the propensity of an amino acid to get
solvated. It is used to quantify the tendency of a patch to be exposed to solvent
or buried in the interface of a protein–protein complex.
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Residue Interface Propensities. Residue interface propensities (RIPs) represent
the tendency of the amino acid residues of a protein to be on the interface of the
protein–protein complex. The patch interface propensity (PIP) is calculated as

PIP = Sum of the natural logarithms of the RIPs of the amino acid residues in the
patch / number of amino acid residues in the patch

Hydrophobicity. The surface patch hydrophobicities are defined as

Patch hydrophobicity = Hydrophobicity value of the amino acid residues in a
patch / number of amino acid residues in the patch

Planarity. This quantity of the surface patch is evaluated by calculating the root-
mean-square (rms) deviation of all the atoms present on the surface patch from
the least-square plane that passes through the atoms.

Protrusion Index. The protrusion index (PI) is a quantity that gives an idea of
how much a residue sticks out from the surface of a protein. The patch PI is
calculated as

Patch PI = Sum of the PIs of the amino acid residues in the patch/number of amino
acid residues in the patch

15.3 CLASSIFICATION OF PPI

According to Ofran and Rost (2003), the PPIs [11] can be grouped into six different
categories on the basis of their sequence features. They are

Intradomain. It represents the interfaces within one structural domain.

Domain–domain. It is the interface between different domains within one chain
of a protein.

Homo-obligomer. It is defined as the interface between permanently interacting
identical chains (having the same amino acid compositions) of proteins.

Hetero-obligomer. It is the interface between permanently interacting different
chains (having different amino acid compositions) of proteins.

Homo-complex. It is defined as the interface between transiently interacting iden-
tical chains (having the same amino acid compositions) of proteins.

Hetero-complex. It is the interface between transiently interacting different chains
(having different amino acid compositions) of proteins.

15.4 CHARACTERISTICS OF PPIs

The different PPIs have different characteristic features as determined by various
research groups. There are a number of databases having features of PPIs. A list of
web links of some important servers is given in Appendix I. A brief description of
the mechanism of the functionality of the servers is presented in Appendix II.
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As a whole, the following features hold good for most of the PPI.

Sequence Conservation. The PPIs have more or less conserved amino acid se-
quence patterns as compared to the noninterface regions of the proteins. This
may be due to functional or structural reasons [9–20].

Nature of the Interface. Generally, the PPIs are flat compared to the other surface
regions on the proteins. Enzymes are found to possess the largest cavities on the
surfaces to which the particular substrate with a complimentary surface binds
[9–20].

Distribution of Amino Acids. The PPI generally consists of hydrophobic amino
acid residues, but the number of conserved residues in interfaces is a function
of the interface size. Large interfaces have polar amino acids surrounded by
hydrophobic rings. Generally, the PPI are rich in aromatic amino acid residues,
Tyr, Trp, and to some extent Phe, as well as Arg and Met. However, in large
interfaces there are a preponderance of polar amino acid residues like His, Asn,
Gln, Thr, and Ser, which remain surrounded by hydrophobic shells [12,15,16].

Secondary Structure. β-Strands are the ones that are mostly found in the interfaces
while α-helices are disfavored. The interfaces are also found to contain long
loops.

Solvent Accessibility. The solvent accessibilities of the interfaces depend on the
interface type. In general, the interfaces of obligomers are less solvent acces-
sible than those of transient complexes. The reason is because of the ability
of the protomers of the transient complexes to exist on their own by getting
solvated in the cellular environments.

Conformational Entropy of Side Chains. To minimize the entropic cost upon
complex formation, the interface residues are found to have less side-chain
rotamers.

Interface Area. In general, the majority of the protein heterodimer interfaces are
> 600 Å2.
� The interfaces of homo-obligomers are larger and more hydrophobic than

their nonobligate counterparts. The individual monomers of the homo-
obligomeric complexes cannot exist on their own in cellular environments.
Thus they are able to form large, intertwined hydrophobic interfaces. On
the other hand, the monomeric components of hetero-obligomers are able
to exist individually in cells. This may be the cause of their having polar
interfaces to meet the requirements of individual existence and solubility.

� Protein–protein complexes with interfaces larger than ∼ 1000 Å2 may un-
dergo conformational changes upon complexation [9,10,12].

� The complexation ability of proteins, which form transient complexes, is
dependent on the cellular environments that trigger the biochemical processes
[12].

� The binding free energy �G between the protomers is not correlated with
the interface parameters (e.g., the size, polarity, and so on) [12].
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� Most proteins are very specific in choosing their partners. However, multi-
specific binding between protein families is also observed, such as in proteins
involved in regulatory pathways (e.g., RhoA-RhoGAP) [9–20].

15.5 DRIVING FORCES FOR THE FORMATION OF PPIs

The mechanism(s) by which a protein binds another protein is poorly understood.
However, a few aspects of the interactions may be generalized from the analyses of
the different protein–protein complexes.

The association of the proteins relies on an encounter of the interacting surfaces.
It requires colocalization and/or coexpression within a compartment. For en-
counter from different locations, diffusion or vascular transport of the proteins
is necessary [10–20].

Local concentrations of the interacting proteins also play important roles in their
binding. For example, the anchoring of proteins in a membrane helps in trans-
membrane protein oligomerization [10–20].

The mutual affinity of components of a protein complex may be altered by the
presence of an effector molecule (e.g., adenosine triphosphate, ATP), a change
in the physicochemical conditions (e.g., changes in pH, concentrations of ions,
and so on), or by the covalent modifications of the proteins (e.g., phosphoryla-
tion [10–20]).

The binding interactions that hold the protein molecules together are mainly non-
covalent interactions such as
� The clustering of hydrophobic residues in the interface.
� Hydrogen bonding and salt bridges between polar amino acids in the inter-

face.
� Interactions involving the π electron cloud of aromatic rings.
� Cation-π interactions between the guanidinium ring of Arg with the aromatic

π electron cloud of the amino acids (e.g., Tyr, Trp, and Phe) [12,15,16].

The only covalent interaction observed in PPIs is the disulfide bridges between
Cys residues of the two interacting protomers [12,15,16].

Hydrophobic–hydrophilic interactions are the dominant ones in intradomain,
domain–domain, and heterocomplex interfaces. Disulfide bridges are observed
in all types of interfaces with the exception of homocomplexes, which exhibit
a general preference for interactions between identical amino acid residues.
Hydrophobic interactions are found to be the more frequent in permanent
protein–protein associations than in transient ones.

In general, a necessary condition for high affinity interactions is the exclusion of
bulk solvent from the interacting interface residues. This is generally achieved by the
presence of hydrophobic amino acids in the interfaces, which causes a lowering of the
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effective dielectric in and around the interface, thereby favoring hydrogen bonding and
ion pair formation between the interacting amino acid residues in the interface region.
Thus, the effective interactions, which lead to the formation of PPIs, are both polar and
hydrophobic in nature. This justifies the abundance of Trp, Tyr, and Arg in the interface
regions, as these amino acids are capable of forming multiple types of interactions.
Both Trp and Tyr can contribute aromatic π interactions, hydrogen bonding, and
hydrophobic interactions. In addition Arg undergoes hydrogen bonding, salt bridges,
and cation–π interactions (with the help of its guanidinium ring). The methylene
carbon atoms of Arg contribute significant hydrophobicities [9–12,15,16,20,21].

15.6 PREDICTION OF PPIs

The PPI prediction methodologies can be broadly classified into two categories, viz,
the experimental determination and the computational techniques. In most cases, the
two types of methods are combined to complement each other.

15.6.1 Experimental PPI Prediction Methodologies

The prediction of PPIs requires the determination of the quaternary structures of
the proteins. This needs the knowledge of the subunit composition of the system.
The subunit composition of the proteins may be determined by introducing chemical
cross-links between the polypeptide chains. This may also be done by comparing
the molecular weights of the native protein and the constituent chains. The subunit
molecular weights are obtained using denaturing gel electrophoresis.

The most accurate and important method of PPI prediction is X-ray crystallog-
raphy. There are several other techniques such as, NMR spectroscopy, fluorescence
resonance energy transfer, yeast two-hybrid, affinity purification–mass spectrometry,
and protein chips to name a few.

X-ray crystallography [1–7 and references cited therein] is a method to determine
the arrangement of atoms within a crystal (Fig. 15.1). In this method, a beam of
X-rays strikes a crystal. Then, it scatters into many different directions. The electron
density map of the molecule can be generated from the angles and intensities of
these scattered beams to build a three-dimensional (3D) picture of the distribution of
electrons within the crystal. This leads to the determinations of the mean positions
of the atoms in the crystal, as well as their chemical bonds, the disorder, and various
other structural properties. A fully grown crystal is mounted on an apparatus called a
goniometer. After that, the crystal is gradually rotated and X-rays are passed through
it, which produce a diffraction pattern of spots regularly spaced in two dimensions
(2D). These are known as reflections. A 3D electron density model of the whole
crystal is then created from the images of the crystal that are taken by rotating it
at different orientations with the help of Fourier transforms (FT), as well as with
previous chemical data for the crystallized sample. Small crystals or deformities in
crystal packing lead to erroneous results. X-ray crystallography is related to several
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FIGURE 15.1 An example of a crystal structure. Helices are shown as ribbons and sheets
are presented as arrows. The rests are coils.

other methods for determining atomic structures. Similar diffraction patterns can be
produced by scattering electrons or neutrons, which are likewise interpreted as a FT.

The structure of hexamethylenetetramine was solved in 1923, and this happened
to be the structure of the first organic molecule. After that, structures of a number
of important bioorganic molecules (e.g., porphyrin, corrin, and chlorophyll) were
solved.

X-ray crystallography of biological molecules took off with Dorothy Crowfoot
Hodgkin, who solved the structures of cholesterol (1937), vitamin B12 (1945), and
penicillin (1954). In 1969, she succeeded in solving the structure of insulin.

15.6.1.1 Protein Crystallography. Crystal structures of proteins, which are irregular,
began to be solved in the late 1950s. The first protein structure that was solved by
X-ray crystallography was that of sperm whale myoglobin by Max Perutz and Sir
John Cowdery Kendrew. Since then, X-ray crystal structures of proteins, nucleic
acids, and other biological molecules have been determined. X-ray crystallography
has a widespread use in the elucidation of protein structure function relationship,
mutational analysis and drug design. The challenge lies in the prediction of structures
of membrane proteins (e.g., ion channels and receptors) as it is difficult to find
appropriate systems for them to crystallize. The reason is these proteins are integral
parts of the cell membranes and it is hard to get the protein part out from the membrane
component.
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15.6.1.2 Nuclear Magnetic Resonance Methodologies. Proton nuclear magnetic
resonance (HNMR) spectroscopy [1–6, 8 and References cited Therein] is a field of
structural biology in which NMR spectroscopy is used to obtain information about the
structure and dynamics of proteins. Structure determination by NMR spectroscopy
usually consists of several phases, each using a separate set of highly specialized
techniques. The sample is prepared, resonances are assigned, restraints are generated,
and a structure is calculated and validated.

15.6.1.3 Förster Resonance Energy Transfer–Fluorescence Resonance Energy
Transfer. Fluorescence resonance energy transfer (FRET) [1–7, 22 and References
cited Therein] is a mechanism describing energy transfer between two molecules, both
of which should be sensitive to light. This method is used to study protein dynamics,
protein–protein, and protein–deoxyribonucleic acid (DNA) interactions. For FRET
analysis of protein interactions, the cyan fluorescent protein (CFP)–yellow fluorescent
protein (YFP) pair, which is the color variants of the green fluorescent protein (GFP),
is currently the most useful protein pair that is being employed in biology. The
interactions between the proteins are determined by the amount of energy that is
being transferred between the proteins, thereby creating a large emission peak of
YFP obtained by the overlaps of the individual fluorescent emission peaks of CFP
and YPF as the two proteins are near to each other.

15.6.1.4 Yeast Two-Hybrid System. One of the important methods to analyze the
physical interactions between proteins or proteins with DNA is the yeast two-hybrid
screening [1–6, 23–26]. The basic principle behind the process stems from the fact that
the close proximity and modularity of the activating and the binding domains of most
of the eukaryotic transcription factors lead to the interactions between themselves
albeit indirectly. This system often utilizes a genetically engineered strain of yeast
that does not possess the biosynthetic machinery required for the biosynthesis of
amino acids or nucleic acids. Yeast cells do not survive on the media lacking these
nutrients. In order to detect the interactions between the proteins, the transcription
factor is divided into two domains called the binding (BD) and the activator domain
(AD). Genetically engineered plasmids are made to produce a protein product with
the DNA binding domain attached onto a protein. Another such plasmid codes for a
protein product having the AD tagged to another protein. The protein fused to the BD
may be referred to as the bait protein and is typically a known protein that is used to
identify the new binding partners. The protein fused to the AD may be referred to as
the prey protein and can either be a single known protein or a collection of known or
unknown proteins. The transcription of the reporter gene(s) occurs if and only if the
AD and BD of the transcription factors are connected bringing the AD close to the
transcription start site of the reporter gene, which justifies the presence of physical
interactions between the bait and the prey proteins. Thus, a fruitful interaction between
the proteins fused together determines the phenotypic change of the cell.

15.6.1.5 Affinity Purification. This technique studies PPIs [1–6]. It involves creating
a fusion protein with a designed piece, the tag, on the end. The protein of interest
with the tag first binds to beads coated with IgG. Then, the tag is broken apart by
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an enzyme. Finally, a different part of the tag binds reversibly to beads of a different
type. After the protein of interest has been washed through two affinity columns, it
can be examined for binding partners.

15.6.1.6 Rotein Chips–Protein Microarray. This method is also sometimes referred
to as protein binding microarray [1–6]. It provides a multiplex approach to identify
PPIs, to identify transcription factor protein–activation, or to identify the targets of
biologically active small molecules. On a piece of glass, different protein molecules or
DNA-binding sequences of proteins are affixed orderly at different locations forming
a microscopic array. A commonly used microarray is obtained by affixing antibodies
that bind antigen molecules from cell lysate solutions. These antibodies can easily be
spotted with appropriate dyes.

The aforementioned experimental tools are routinely used in laboratories to de-
tect PPIs. However, these methods are not devoid of shortcomings. They are labor-
and time-intensive expensive, and often give poor results. Moreover, the PPI data
obtained using these techniques include false positives, which necessitates the use
of other methods in order to verify the results. All these led to the development of
computational methods that are capable of PPI prediction with sufficient accuracies.

15.6.2 Computational PPI Prediction Methodologies

Computational PPI prediction methodologies can be classified broadly as numerical
value-based and probabilistic. Both of them involve training over a data set contain-
ing protein structural and sequence information [27–75]. Numerical methods use a
function of the form F = f (pi, pj ∈ ni , x), where, pi = input data for the residue i
under consideration, pj = the corresponding properties of the spatially neighboring
residues and j ∈ ni and x = the collection of coefficients to be determined by training.
The value of F determines the characteristics of residue i under consideration. It can
either be I for interface or N for noninterface. If F is above a certain threshold, i is
considered to be in I state otherwise it is in N state.

The value-based methods are classified as follows:

Linear Regression. This method [27, 31, 38, 67, 72, and References cited Therein]
predicts the values of the unknown variable from a set of known variables. It
also tests the relationship among the variables. In the case of PPI prediction
methods, solvent accessibilities of the amino acid residues of the proteins
are taken as inputs. The different amino acid residues have different solvent
accessibility values depending on whether they are exposed or buried. Based
on a collection of such values of known proteins, linear regression methods
may be used to predict the nature of amino acids in unknown proteins.

Scoring Function. This is a general knowledge-based approach [31, 36, 41, 47,
48, 67, 72, and References cited Therein]. Scoring functions are based on
empirical energy functions having contributions from various data. In this ap-
proach, information is generated from know protein–protein complexes present
in the protein databank (PDB). This approach takes into account various
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physicochemical parameters of the protein complexes, (e.g., solvation poten-
tial, solvent accessibilities, interaction free energies, and entropies). These data
are used to generate the scoring functions for the individual atoms of the amino
acids constituting the protein complexes. The functions can then be used in
case of unknown proteins to predict its mode of binding. The typical form of a
scoring function is as follows:

Utotal = Ubond + Uangle + Udihedral + Unonbonded

There are several methods available that use these. The significances of the indi-
vidual terms are listed below:

Utotal = Total energy of the system

Ubond = Bond energy of the molecules under considerations. In this case, the
molecules are protein molecules.

Ubond =
∑

Kb(r − req)2

Kb = Force constant associated with the bond in question

r = Actual bond distance in the molecule

req = Equilibrium bond distance
Uangle = Energy associated with change in bond angles from their usual

values

Uangle =
∑

Kθ (θ − θeq)2

Kθ = Force constant associated with the bond angle in question

θ = Actual bond angle in the molecule

θeq = Equilibrium bond angle

Udihedral = Energy associated with change in dihedral angles from their usual
values.

Udihedral =
∑

An(1 + cos(nφ − δ))

φ = dihedral angle

n = multiplicity (which gives the number of minimum points in the function as
the torsion angle changes from 0 to 2π )

δ = phase angle

An = force constant.

Unonbonded = Energy associated with various nonbonded interactions (e.g., H-
bonding, etc.). It consists of an electrostatic and a Lennard-Jones term.

Unonbonded =
∑∑

[(qi q j/4πε0ri j ) + 4εi j {(σi j/ri j )
12 − (σi j/ri j )

6}]
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The q terms are the partial atomic charges εi j and σi j are the Lennard-Jones well-
depth energy and collision-diameter parameters ε0 is the permittivity of free
space and ri j is the interatomic distance.

Support Vector Machines. Support vector machines (SVM) [17, 27, 30, 44, 54–59,
and References cited Therein] is a supervised learning method for classifica-
tion, function approximation, signal processing, and regression analysis. In this
method, the input data are divided into two different sets, normaly, the interface
(I ) and noninterface (N ) states. The SVM will create a separating hyperplane
that maximizes the margin between the two different types of data. The basic
principle of SVM is to first train it with a set of known data, which would create
a classifier. The classifier is then used to predict whether a residue is on a PPI
site or not by giving it a score. The SVM training is done by using a training
file consisting of feature vectors generated using various information about the
PPI complex. The typical information used for this purpose follow: hydropho-
bicities, accessible surface areas, electrical charges, sequence similarity and
sequence conservation scores of amino acids and so on. This information is
combined into feature vectors and used as input to train the SVM.

In terms of mathematics, the problem is defined as follows:

D = {(Xi , Ci )|Xi ∈ R p, Ci ∈ { − 1, 1}}n
i=1

where Ci is a class representing +1 or −1 to which the datapoints Xi (which are
nothing but some real vectors) belong. The datapoints are used to train a SVM that
creates the maximum-margin hyperplane dividing the points based on the class label.
Any hyperplane can be written on the basis of the datapoints (Xi) as

F.X − a = 0

where,“.” is the dot product, F = normal vector perpendicular to the hyperplane,
a/||F|| = offset of the hyperplane from the origin along the normal vector F, a and F
are chosen in such a way as to maximize the distance between the parallel hyperplanes
to enhance the chance of separation of the data.

The representations of the hyperplanes can be done using the equations:

F.X − a = 1 and F.X − a = −1

The training data are generally linearly separable, which enables us to select the two
hyperplanes of the margin in a way that there are no points between them. Then we try
to maximize their distance. Geometrically, the distance between the two hyperplanes
is 2 / ||F ||, so ||F || has to be minimized. In order to prevent datapoints falling into
the margin, the following constraints are added:

For each i either, F.Xi -a > 1 for Xi of the first class with label +1 and for the
second class (having a label of -1) F. Xi − a < 1. Thus, Ci (F.Xi − a) ≤ 1, for all
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1 ≤ i ≤ n. Combining everything the optimization problem looks like Minimization
of ||F || (in F, a), when (for any i = 1, . . . , n) Ci (F. Xi − a) ≥ 1. In order to simplify,
the above mentioned problem is converted to a quadratic one and the problem looks
like Minimization of ||F ||2 / 2 (in F, a), when (for any i = 1, . . . , n)

Ci (F.Xi − a) ≥ 1 (15.1)

Standard quadratic programming techniques can now be used to solve the problem.
The classification rule can be written in its unconstrained dual form. The dual

of the SVM can be shown to be the following optimization problem: Maximization
of 
wi − 0.5
ai a j Ci C j X T

i x j (in ai ), when (for any i = 1, . . . , n) ai ≥ 0 and

wi Ci = 0.

The w terms are a dual representation for the weight vector in terms of the training
set:

F = 
wi Ci Xi

For simplicity, sometimes the hyperplane is made to pass through the origin of the
coordinate system. Such hyperplanes are called unbiased. General hyperplanes that
are not passing through the origin are called biased. An unbiased hyperplane can be
made by a = 0 in Eq. (15.1). In that case the expression of the dual remains almost
the same without the equality.


wi Ci = 0

Another approach of SVM is called transductive support vector machines. This
is an extension of the aforementioned process in such a way that it can incorporate
structural properties (e.g., structural correlations) of the test data set for which the
classification needs to be done. In this case, the support vector machine is fed a test
data set with the test examples that are to be classified, in addition to the training set T ,

T * = {X*
i |X*

i ∈ R p}k
i=1

A transductive support vector machine is defined as follows: Minimization of ||F ||2
/ 2 (in F , a, C*), when (for any i = 1, . . . , n and any j = 1, . . . , m)

Ci (F.Xi − a) ≥ 1, C*
j (F.X*

i − a) ≥ 1 and C*
j ∈ { − 1,+1}

Neural Network. The neural network [60, 61, 67, 72, and References cited
Therein] is an interconnected group of artificial neurons (in biological perspec-
tive, neurons are connectors that transmit information via chemical signaling
between cells), which are basically an adaptive system. There are hidden layers
whose output is fed into a final output node. Protein information like the solvent
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accessibilities, free energy of interactions, and so on, are fed into the hidden
layers to train them. Next, the trained model can be used to produce the output
from a set of unknown data.

Random Forests. Random forests [40, 42, 63–66, 72, and References cited
Therein] are a combination of tree predictors. Each of the trees is depen-
dent on the respective values of a random vector that is sampled independently
following the same distribution for all the trees in the whole forest. The more
the number of trees the less is the error. Due to the law of large numbers there
are no overfitting problems.

The steps of the algorithm can be summarized as follows: Let X = Number of
samples in the training data set, Y = Total number of features or variables
of the training samples, and y = The number of input variables that are to
be employed to come to a decision at a node of the decision tree given that,
y << Y .

A training set is therefore chosen for the tree to be generated and it is done by
picking up the samples X times from the training data set with replacement. The
remaining samples are used as a test data set to estimate the error of the tree,
on the basis of the type of classes assigned to them by the classifier to be built
on the training data set. The decision at each node is determined by randomly
picking up y variables at that particular node and the best combination of the
variables is preserved.

Random forest has a number of advantages like:

1. The method can tackle a very large number of input variables in the data
sets.

2. It gives an idea of the variable importance to determine classification.

3. It gives an unbiased estimate of error.

4. If there are missing values for a particular variable, the random forests can
employ a method for estimating missing data to maintain accuracy.

5. The method can give an idea about the interactions between variables.

6. It does not over fit.
The probabilistic methods are employed to find the conditional probability

p(s|x1, . . . , xk), where s is either I or N for the range of input data x1, . . . , xk

for a residue under consideration. Interface is predicted if the value of p(s|
x1, . . . , xk) becomes greater than a threshold value. This method can be cate-
gorized as follows:

Naı̈ve Bayesian. Naı̈ve Bayesian [67, 72, and References cited Therein] is a
supervised learning method. It takes input data, which are assumed to be
independent. Naı̈ve Bayes is a well-known machine learning tool. This classifier
assumes no dependencies between the variables to predict the class of the object
under study. The mathematical formulation of the method is as follows:

P(H |X ) = P(X |H )P(H )/P(X )
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This equation calculates the probability of predicting the class of an object X,
the observed data based on some hypothesis H . The parameter P(H |X ) is the
posterior probability of H on X , P(X ) is the prior probability of X , P(H ) is
the a priori probability of H that X belongs to the class C , and P(X |H ) is the
posterior probability of X on H . In this case, the training data is used to build
the decision rule. Selection of the most probable class is the rule:

classify( f 1, f 1, . . .) = argmaxP(C = cj)P(Fi = f i |Ci = cj)

The class is therefore given the maximum probability based on the rules created
by training with known data. Protein sequence information can be used to
generate rules for the classification. The window selects a central target residue
and uses the neighboring residue information to train and predict the residues
involved in interactions.

Bayesian Network. In this case [45, 67, 69, 70, 72, and References cited Therein],
the input data are dependent on each other. So a joint probability is calculated.
For two dependent input data, x1 and x2, their joint probability P(S|x1, x2) is
calculated as P(x1, x2|S).
P(S) = fraction of state S in the training dataset. In case of PPIs S represents

whether an amino acid residue of the protein under study is in the interface
or not.

P(xi ) = probability density of input data xi in the whole data set.
P(xi |S) = probability density of input data in the subset with a given state S.

Hidden Markov Model. Hidden Markov models (HMMs) [46, 67, 71, 72, and
References cited Therein] are directed graphical models that define a fac-
tored probability distribution of p(x, y). The mathematical formulation of the
model is

p(x, y) =
∏

p(xi |yi )p(yi |yi−1)

This is often referred to as a generative model. The term p(xi |yi ) can be
considered to be the probability that the observed result xi is generated from
the feature yi . The second term, p(yi |yi−1), is actually the first-order Markov
assumption term. It represents the probability of a label variable yi that is not
related to the other label variables yi−1 used in the study.

In case of prediction of PPIs, this method takes into account a multiple
sequence alignment (MSA) of known proteins. The amino acid residues that
are found to be conserved in the MSA are used to construct a profile that is
used to predict the nature of the amino acids from the protein of interest.

Conditional Random Field. Conditional random field [67, 71–73, and References
cited Therein] is a comparatively new method for the prediction of PPIs. In
this method, each position along the protein chain is assigned to either a I or
N label depending on some feature functions. This method is quite similar to
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          C  D  Gene 1               A B    

Gene 2                          A B 

Gene 3                         D                        C   A   B 

          C   Gene 4               A B    

          D  Gene 5               A B    

FIGURE 15.2 Prediction of PPIs based on the whole genome analysis.

HMM, but as opposed to HMM during prediction, the conditional probability
of p(x |y) is calculated.

From a biological point of view, the PPI predictive methodologies may be
categorized in somewhat different ways.

Evaluation Based on Whole Genome Analysis. It has been observed that protein-
coding genes that are in close proximities in different genomes are known to be
interacting with each other [24–26, 67, 72, 74]. Sometimes two proteins fuse
together to form a new protein in another organism. They are also considered
to be interacting partners. Though the method seems interesting, but in reality
it fails to predict interactions between proteins encoded by genes located far in
the genome. This approach is not suitable for eukaryotes.

In Figure 15.2, the genes produce proteins A, B, C, and D. Since the distance
between the proteins A and B is very small in all the genes, they may be
considered to be interacting.

Evaluation Based on Evolutionary Relationships. This method is based on the
phylogenetic profiles of the proteins under observations [47, 67, 72, 74, and
References cited Therein]. Proteins with similar profiles exhibit functional
relationships. Incorporation of evolutionary relationships furthers the prediction
method.

The genome in Table 15.1 codes for Genes 1–5 with proteins A to E. Proteins
A, B, and E share the same phylogenetic profiles. Therefore we may conclude
that A, B, and E are interacting among themselves.

TABLE 15.1 Prediction of PPIs Based on Evolutionary Relationships

Proteins

Genome A B C D E

Gene 1 1 1 0 0 1
Gene 2 1 1 1 0 1
Gene 3 0 0 1 0 0
Gene 4 0 0 0 1 0
Gene 5 1 1 0 1 1
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Evaluation Based on Protein 3D Structures. This method relies on the solved
3D structures of proteins [17, 31, 33, 37, 40, 47, 67, 72, 74, and References
cited Therein]. Proteins having experimentally determined 3D structures can
be compared with other such structures for possible sequence identities. A suit-
able close homologous structure of a protein complex may indicate the possible
binding modes of the former with its partner. In general, interface residues are
known to be more or less conserved. Therefore, all possible protein pairs be-
tween those under observations can be predicted. In other words, the structures
of the interacting protein partners are analyzed to find the best possible mode
of binding and they are then compared to the existing protein complexes. The
possible structures are ranked based on their energy content or some other
statistical parameters. This method can also be used to find the putative binding
partner from a set of 3D structures of interest.

Evaluation Based on Protein Domains. This method relies on the presence of
similar domains in proteins [17, 31, 33, 37, 40, 46, 47, 67, 71, 72, and References
cited Therein]. A database of protein families based on protein domains, Pfam,
gives an idea about the domain structures in proteins. If the proteins of interest
have similar arrangements of domains as those of some other interacting protein
pairs, then these former proteins are also considered to have a similar kind
interaction pattern as the latter.

Evaluation Based on Primary Structure of Proteins. This method is based on
the assumption that PPIs are mediated through a specific number of short se-
quence motifs [61, 64, 69, 70, 72, 74, and References cited Therein]. Pro-
tein sequence information like a position specific scoring matrix (PSSM),
combined with other experimental evidences (known interactions, physico-
chemical properties of amino acids, and so on) can be used as descriptors to
train some machine-learning programs (support vector machines, random for-
est, etc.). The result would predict the probabilities of interactions between
protein pairs.

The different methods are applied for different types of input data sets. The
combinations of results for the different predictive methodologies may be used
to have a comprehensive result. Protein–protein binding modes are also used to
predict interfaces. The different computational methods are applied to different
data sets with varying degrees of success. The results depend on the type of
data used. Some methods are suitable for some specific kinds of data sets. The
SVM gives fairly good results if the data set is small and balanced, whereas
random forest can handle large data sets. Sometimes SVM can overfit the data,
but random forest never does. However, there are a number of challenging
problems that need be taken into account. They are

PPIs Associated with Large-Scale Conformational Changes. Large-scale confor-
mational changes, (e.g., those involving domain–domain rearrangements) are
difficult to analyze in terms of computation. In such cases, it might be possible
for the protein-binding residues in their native complex form to get scattered
when they are uncomplexed. This may lead to their elimination in the process
of clustering.
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One Protein, Many Partners. There are a number of proteins that have multiple
partners where the interactions are mediated through the different parts of
the surface. In such cases, it is possible that the different binding modes are
predicted, but they have to be validated by biochemical data to identify which
is for which partner protein.

15.7 DISCUSSION AND CONCLUSION

The PPIs are the central players in many of the vital biochemical processes. Cellular
metabolism is guided by the PPIs be it a bacterium, an archea, or complex multicellular
organisms. This made the prediction of PPIs so vital. Knowledge of PPI is useful in
all aspects of biology. Many of the diseases including cancer are results of improper
PPIs. Therefore prediction of PPIs has become important targets for therapy. There are
different approaches for the predictions and analyses of protein–protein interactions.
This chapter has made an attempt to review the different PPI prediction methodologies
that are available. The experimental approaches are more accurate and would give
more comprehensive and reliable results; but they are time consuming and labor
intensive besides being expensive. As alternatives to the experimental approaches,
computational methods have been developed. They are comparatively less accurate,
but often give an overall idea of the whole process. There are various computational
approaches with somewhat varying accuracies. The most important aspect is that
computational approaches are cost effective, and requires less time. A word of caution
is that none of the methods are cent percent accurate. To properly predict a PPI, much
information is needed. The best way to perform an experiment is first to use the
computational algorithms to find a PPI, and then test that via experimental means.

APPENDIX I

This appendix refers to the web links of some of the important servers used in the
study of protein–protein interaction. This is not an exhaustive list and the list keeps
on growing day by day. This is given for an easy reference of the computational tools
available to study protein interactions.

http://protein3d.ncifcrf.gov/∼keskino

http://dockground.bioinformatics.ku.edu/

http://www.ces.clemson.edu/compbio/protcom/

http://mips.gsf.de/proj/ppi/

http://mips.gsf.de/proj/yeast/CYGD/interaction/

http://dip.doe-mbi.ucla.edu/dip/Main.cgi

http://www.thebiogrid.org/

http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/

http://www.hprd.org/
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http://wilab.inha.ac.kr/hpid/

http://www.ihop-net.org/UniPub/iHOP

http://insilico.csie.ntu.edu.tw:9999/point/

http://point.bioinformatics.tw/

http://www.compbio.dundee.ac.uk/www-pips

http://www.jcvi.org/mpidb/about.php

http://www.molecularconnections.com/home/en/home/products/NetPro

http://www.proteinlounge.com/inter home.asp

http://itolab.cb.k.u-tokyo.ac.jp/Y2H/

http://mips.gsf.de/genre/proj/mpact/index.html

APPENDIX II

There are a number of techniques that culminate in the generation of numerous
software tools for the analysis of PPIs. Of which some of them are mentioned here

PATCHDOCK (http://bioinfo3d.cs.tau.ac.il/PatchDock/). PatchDock algorithm is
inspired by object recognition and image segmentation techniques used in
Computer Vision. Docking can be compared to assembling a jigsaw puzzle.
When solving the puzzle two pieces are matched by picking one piece and
searching for the complementary one.

ELM server (http://elm.eu.org/about.html). It is based on the recognition of short
linear sequence motifs on proteins (SLiM), which are considered to be the
binding regions.

ISEARCH [75]. This method uses known domain–domain interfaces stored in an
interface library to screen unbound proteins for structurally similar interaction
sites.

GRAMM (http://vakser.bioinformatics.ku.edu/resources/gramm/grammx/).
GRAMM is a program for protein docking. To predict the structure of a
complex, it requires only the atomic coordinates of the two molecules (no infor-
mation about the binding sites is needed). The program performs an exhaustive
six-dimensional search through the relative translations and rotations of the
molecules.

GWIDD (http://gwidd.bioinformatics.ku.edu/). GWIDD is a comprehensive
resource for genomewide structural modeling of protein–protein interactions.
It contains interaction information for multiple organisms. The structures of
the participating proteins are modeled or crystallographic coordinates are
retrieved, if available, and docked by GRAMM-X. The resource is not re-
stricted to interactions in the GWIDD database. Other sequences or structures
may be entered at various stages.

Dockground (http://dockground.bioinformatics.ku.edu/). Integrated system of
databases for protein recognition studies. The core Dockground data set consists
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of cocrystallized protein–protein structures. The data set is regularly updated
and annotated.

I-2-I Site engine (http://bioinfo3d.cs.tau.ac.il/I2I-SiteEngine). Interface-to-
Interface (I2I)-SiteEngine, is based on the structural alignment between two
protein–protein interfaces. The method simultaneously aligns two pairs of bind-
ing sites that constitute an interface. The method is based on recognition of
similarity of physico-chemical properties and shapes. It assumes no similarity
of sequences or folds of the proteins that comprise the interfaces.

INTERVIEWER (http://interviewer.inha.ac.kr/). Protein–protein interaction net-
works often consist of thousands of nodes or more, which severely limit the
usefulness of many graph drawing tools because they become too slow for in-
teractive analysis of the networks and because they produce cluttered drawings
with many edge crossings. Interviewer is based on a layout algorithm for visu-
alizing large-scale protein interaction networks. InterViewer3 (1) first finds a
layout of connected components of an entire network, (2) finds a global layout
of nodes with respect to pivot nodes within a connected component, and (3) re-
fines the local layout of each connected component by first relocating midnodes
with respect to their cutvertices and direct neighbors of the cutvertices and then
by relocating all nodes with respect to their neighbors within distance 2.

APID (http://bioinfow.dep.usal.es/apid/index.htm). APID is an interactive bioin-
formatic webtool that has been developed to allow exploration and analysis
of main currently known information about PPIs integrated and unified in a
common and comparative platform.

INTEGRATOR (http://bioverse.compbio.washington.edu/integrator/). Integrator
is a tool for graphically searching PPI networks across several genomes. The
database contains experimentally determined PPIs from various public repos-
itories (including the DIP, GRID, and PDB) and predicts PPIs based on these
collections.

PIPSA (http://projects.villa-bosch.de/mcmsoft/pipsa/3.0/index.html). PIPSA may
be used to compute and analyze the pairwise similarity of 3D interaction
property fields for a set of proteins.

con-PPISP (http://pipe.scs.fsu.edu/ppisp.html). It uses PSI BLAST sequence pro-
file and solvent accessibility as input to a neural network.

PROMATE (http://bioportal.weizmann.ac.il/promate). It is based on a Naı̈ve
Bayesian method, which takes secondary structure, amino acid grouping, se-
quence conservation, and atom distribution as input.

PINUP (http://sparks.informatics.iupui.edu?PINUP/). It is based on an empirical
scoring function that involves side chain energy terms, solvent accessible area,
and sequence conservation.

PPI-Pred (http://bioinformatics.leeds.ac.uk/ppi-pred). It is based on SVM that
considers six parameters.

SPPIDER (http://sppider.cchmc.org/). A neural network based technique. It takes
solvent accessibilities as inputs.
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SHARP2 (http://www.bioinformatics.sussex.ac.uk/SHARP2). It calculates solva-
tion potential, hydrophobicity, accessible surface area, residue interface propen-
sity, and planarity and protrusion. Each parameter is combined for each surface
patch and the patch with the highest value is given as the output.

This is not an exhaustive list. The list is growing day by day.
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16
ANALYZING TOPOLOGICAL
PROPERTIES OF PROTEIN–PROTEIN
INTERACTION NETWORKS:
A PERSPECTIVE TOWARD
SYSTEMS BIOLOGY

Malay Bhattacharyya and Sanghamitra Bandyopadhyay

16.1 INTRODUCTION

Biological systems are too complex to be represented with a stand-alone computa-
tional model [1, 2]. The intricacies involved in the genomic or proteomic level of an
organism, even in one of the simplest (e.g., amoeba), is hard to replicate. In spite
of the complexities involved in the biological systems, they abide by a set of pro-
tocols [3]. The systematic study of such complex protocols in biological systems is
the main concern in systems biology. In an analytical view, systems biology cares
about the emergence of phenotypic characteristics from the genotypes and figures
out the protocols behind the response to alterations of these characteristics in the
environment or in the system components.

Many high-throughput technologies evolved in recent decades have enabled the
analysis of various properties of the transcriptome and proteome of several organisms.
These properties are occasionally mapped to an interaction network structure [4]. The
identification of significant modules of genes and proteins, which have a high degree
of association with each other in these networks, can add potentials to this direction of
research. Individual or combined mining of gene and protein cointeraction networks is
a nascent area of research that has seen promise through such module-specific studies
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[5–7]. A set of genes has a high chance of participating in a common biological path-
way if they form a module in both the gene–gene and protein–protein interaction
networks (PPINs). Sometimes, these networks are constructed by combining multi-
ple sources of information by way of investigating associations between them [8–10].
Thus, we can obtain a robust and integrated view of the underlying biology. However,
one of the most notable properties of these biological networks explored very recently
is the whimsical dynamic behavior they exhibit corresponding to the network param-
eters [11]. Surprisingly, the dynamics produced by these networks are in some way
more reliant on the network topology. Therefore, biological network analysis at the
topological level is undeniably an important direction of research in systems biology.

In the perspective of systems biology, a biological organization has several levels
of abstraction, namely, genomic, proteomic, and cellular level, and so on. Unveiling
the interdependencies and intradependencies of the components in these levels is
a major challenge in systems biology. Of these levels of abstraction in a biological
system, the proteomic level acts as the dominant functional bridge between the others.
Proteins are essential components in a living being. What a protein does and how it
works defines the comprehensive activity within an organism. With the availability
of a large volume of protein level interaction information of various organisms from
multiple sources, a new challenge has been brought into the postgenomic era of
elucidating the cellular level protein functions. Unveiling the comprehensive protein
interactome of an organism provides a framework for understanding biology as
an integrated system [12]. Protein–protein interaction (PPI) information provides a
local as well as a global view of the interaction modules of proteins participating
in significant similar activities. Essentially, such PPI information can be obtained
via biological studies (X-ray crystallography, yeast two-hybrid, mass spectrometry,
etc.) [13] or can be predicted in silico (hidden Marcov model, neural network, random
forest, etc.) [14]. This chapter focuses exclusively on the topological properties of
interaction networks of proteins and their significance in the systems level. Instead of
pursuing a piecemeal study of the single components, we pay attention to the more
global analyzes of the structure, function, and dynamics of the networks in which
macromolecules work [12].

This chapter is organized as follows: In Section 16.2, we discuss various topolog-
ical properties and structures of interaction networks. In Section 16.3, the details on
state-of-the-art knowledge on the topology-based analysis of PPINs are provided. The
problem is presented formally with necessary precursory details are in Section 16.4.
Sections 16.5–16.6 include the algorithmic approach to the problem and its theo-
retical background. In Section 16.7, the empirical analysis along with the concern
of system level study is provided on the structures explored from the studied PPIN.
Finally, Section 16.8 concludes this chapter.

16.2 TOPOLOGY OF PPI NETWORKS

A network N = (V, A) is defined with a set of nodes V = {v1, v2, . . . , v|V |} and
a set of arcs A : (vi , v j ) (vi �= v j ,∀vi , v j ∈ V ) connecting these nodes. Generally,



TOPOLOGY OF PPI NETWORKS 351

we discard self-loops or parallel arcs from a simple network and consider it to be
undirected. Whenever a network is called directed, we distinguish between the two
arcs (vi , v j ) and (v j , vi ) (∀vi , v j ∈ V ). A subnetwork N ′ = (V ′, A′) is a part of the
network N = (V, A), such that V ′ ∈ V and A′ ∈ A. Again, by the term induced
subnetwork we restrict A′ to include only the comprehensive set of arcs existing
within the nodes of V ′ in N . A weighted network, N = (V, A, W ), is defined with a
set of nodes V , a set of arcs A, and a weight function W defined over the set of arcs,
such that W : A → R

+
0 .

A PPIN is a symbolization of PPIs in the form of a network. A PPIN is defined
by a doublet P = (P, I ), where P denotes the set of proteins {p1, p2, . . . , p|P|} and
I ⊆ P × P − ⋃|P|

i=1(pi , pi ) denotes the set of interactions. So, the set P is equivalent
to V , and I is equivalent to A. Frequently, a PPIN is generalized using a triplet
representationP = (P, I, W ), where W : I → R

+
0 is a weight function mapping each

interaction to a positive real value. These weights are used to rank the significance of
the interactions between protein pairs [9]. A PPIN is called weighted or unweighted
(sometimes termed as binary), depending on the inclusion or exclusion of the weight
function W . In the course of study presented in this chapter, undirected and weighted
PPINs will be studied throughout. Let us suppose that |S| represents the cardinality
of a set S and the other notations are customary, unless specified otherwise.

The physical or logical organization of the components (nodes, arcs, etc.) in a
network is known to be its topology. Topology of a particular type of network is
preserved through the contraction or expansion in its size. This section describes
some of the important topological properties and structures useful for the study of
biological interaction networks.

16.2.1 Topological Properties

Definition 16.2.1 (Degree [15]): The degree of a node defines the cardinality of its
first-order neighborhood set (i.e., the number of arcs connected to it).

In a directed network, the degree of a node can be separated into two distinct
categories, namely, the in and the out degrees. The in and out degrees of a node
defines the number of arcs directed to and directed from the node itself, respectively.
For such networks, the total degree of a node equals the sum of its in and out degrees.

Definition 16.2.2 (Degree distribution [16]): Given a network N = (V, A), its de-
gree distribution is defined as the probability distribution of the degree values of its
nodes.

For a directed network, there could be two types of degree distributions, namely,
the in degree and the out degree distributions.

Definition 16.2.3 (Clustering coefficient [17]): Given a network N = (V, A), the
clustering coefficient of a node in N is defined as the frequency of arcs within the
subnetwork induced by its first-order neighborhood.
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By the term frequency, we mean the fraction of the existing number arcs to that of
the maximum possible number of arcs. The clustering coefficient can also be defined
for a subnetwork as the frequency of arcs within the subnetwork itself. The clustering
coefficient of a subnetwork is sometimes defined as its density.

Definition 16.2.4 (Core clustering coefficient [18]): Given a network N = (V, A)
and a parameter k, the core clustering coefficient of a node in N is defined as the
clustering coefficient of the largest subnetwork of its first-order neighborhood with
minimal degree k.

The core clustering coefficient, in contrast to the standard clustering coefficient,
increases the weights of highly dense subnetworks while giving less weights to the
small degree nodes [18].

Definition 16.2.5 (Betweenness centrality [19]): Given a network N = (V, A), the
betweenness centrality of a node in N is defined by the fraction of all-pair shortest
paths in N that includes the specific node.

Definition 16.2.6 (Czekanowski–Dice (CD) distance [20]): In a network N =
(V, A), the CD distance between two nodes u, v ∈ V , is computed as

CD(u, v) = |N (u) ∪ N (v)| + |N (u) ∪ N (v)|
|N (u) ∪ N (v)| + |N (u) ∩ N (v)| (16.1)

where N (u) denotes the first-order neighbors of u and N (u) denotes the non-
neighbors of u.

The set of CD distances of all the node pairs provide important topological infor-
mation about the distribution of sharing of neighborhood within a network.

Definition 16.2.7 (Scale-free property [16]): A network N = (V, A) is said to follow
the scale-free property if its nodes follow a power law degree distribution [i.e., the
probability P(k) that a node in N is adjacent to k other nodes, decays as a power
law following P(k) ∼ k−γ (γ > 0)].

Now, we describe some of the topological structures used commonly in biological
network analysis in Section 16.2.2.

16.2.2 Topological Structures

Definition 16.2.8 (Clique [21]): Given a network N = (V, A), a clique is defined as
a complete subnetwork of N [i.e., K ∈ V is said to be a clique if the degree of all the
nodes in the subnetwork induced by K from N is (K − 1)].
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FIGURE 16.1 A 2
3 -quasi-clique induced by the set of proteins {p1, p2, p3, p4} in a 1

4 -quasi-
complete network.

Clique is one of the most exercised topological structures of a biological network.
It essentially represents the all-to-all association of the nodes within it, and thus, is
very useful to characterize cofunctional modules. Sometimes, the stringent all-to-all
association of a clique does not prove to be useful for real-life analyzes. Thus, the
concept of quasi-completeness has emerged in network analysis.

Definition 16.2.9 (γ -quasi-complete network [6]): A network N = (V, A) is a
γ -quasi-complete network (0 < γ ≤ 1) if every node in the network has at least
degree �γ.(|V | − 1).

Definition 16.2.10 (γ -quasi-clique [6]): In a network N = (V, A), a subset of nodes
V ′ ∈ V forms a γ -quasi-clique (0 < γ ≤ 1) if the subnetwork induced by V ′ is a
γ -quasi-complete network.

Figure 16.1 shows a 2
3 –quasi-clique in a 1

4 -quasi-complete network. The node
corresponding to the protein p5 attains the minimum degree value 1 in the net-
work, whereas the maximum degree value was possible up to 4. So, the complete
network is only 1

4 -quasi-complete. But in the subnetwork induced by the proteins
{p1, p2, p3, p4}, the minimum degree value is 2 (as the degree value is the same for
all the nodes), and therefore, it is 2

3 -quasicomplete. Certainly, a 1-quasi-complete
network is a complete network, whereas a 1-quasi-clique is a clique.

Definition 16.2.11 (γ -quasi-biclique [22]): In a network N = (V, A), a bipartite
subnetwork N ′ = (V 1, V 2, A) is said to be a γ -quasi-biclique (0 < γ ≤ 1) if the
subnetwork induced by these two sets of nodes contains at least �γ.|V 1|.|V 2|
number of arcs.

16.3 LITERATURE SURVEY

Proteomic research is one of the early initiatives in the domains of molecular and
systems biology. To date, it is one of the extensively studied domain of research.
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Many studies have been carried out in the last few decades on the exploration of
various topological structures from biological networks with various motivations
(function prediction, system level study, etc.). Exploring cliques from interaction
networks is the most studied topological problem in computational biology [21, 23].
Currently, we can find promising studies where maximum cliques have been merged
with overlapping neighboring cliques to find dense cores in the PPIN of Escherichia
coli [24]. In this study, strong correlation between cliques and essentiality of proteins
have also been established by studying the PPIN of Saccharomyces cerevisiae. Such
observed structure of essential cores have been found to take part in significant roles
in the protein networks.

Due to the noise-prone behavior of biologically evolved data, clique finding in
biological networks is a restrictive approach. Quasi-cliques are often suitable de-
scriptors of a coherent module in biological networks. A number of studies are in
the literature to explore quasi-cliques from networks. An earlier study presented a
greedy randomized adaptive search procedure (GRASP) for finding the set of large
quasi-cliques (for a given γ ) in large networks of order >105 [25]. Here, the defini-
tion of a quasi-clique is somehow equivalent to the definition of density. However,
the works carried out at that time neither found the complete set of quasi-cliques,
nor addressed how to mine the largest quasi-clique. A current study proposes an
efficient mining algorithm (Crochet) to explore the complete set of quasi-cliques [7].
Recently, the original algorithm has been improved (Crochet+) keeping a similar
motivation of joint mining of gene and protein interaction networks [6]. Such stud-
ies are indeed significant. However, the limitation of these approaches is that they
provide the complete set of maximal quasi-cliques. So, it is computationally hard to
sort out the largest quasi-clique using such an approach. In a recent study, an algo-
rithm for finding approximately largest quasi-cliques from the human PPIN has been
proposed [5].

Earlier, it was shown that quasi-cliques and quasi-bicliques are able to symbolize
groups of proteins associated with coherent biological activities in S. cerevisiae [26].
In several biological applications, quasi-cliques have been used to represent coherent
modules, whereas, the quasi-bicliques have been used to depict the cofunctionality or
coregulating nature between module pairs. Mining quasi-bicliques in such networks
provides an important direction toward the study of biological pathways, protein
complexes, and protein function. In [26], several quasi-cliques and quasi-bicliques
were identified from the PPIN of S. cerevisiae using spectral analysis and validated
using the annotation information. Again, in a later study quasi-bicliques were explored
using a branch and bound method based on second-order neighborhood information
[27]. In a recent study, maximum quasi-bicliques have been searched out from PPIN
of S. cerevisiae using a divide and conquer approach [28]. This approach has the
limitation of dependency on the selection of start splitting node, which restricts it
often in reaching the global optimum.

There are several network-based prediction methods of protein functions [15].
Several works have focused solely on the functional module identification from PPI
data. We describe some approaches that are based on the decomposition of the PPIN
into subnetworks based on some topological properties. The molecular complex
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detection algorithm (MCODE) [18] is one such approach. It consists of the consec-
utive stages of node weighting, complex prediction, and an optional postprocessing
step. This approach has motivated several successive improvements [29]. In a rela-
tively recent study, expression similarity information (obtained from microarray data)
has been integrated with topological information (obtained from high-throughput in-
teraction data) to explore significantly connected subnetworks [4] jointly active con-
nected subnetworks (JACS). A subnetwork is significant if it is highly connected in
the interaction data, and in addition, has high average internal coherence in the corre-
sponding gene coexpression network. These subnetworks are termed as jointly active
connected subnetworks JACS. The algorithm proposed in this work, MATISSE [4],
explores JACS by the successive steps of initializing dense subnetworks (seed) by
enumeration, expansion of the seed, and filtering based on their significance. Again,
the limitation of this approach lies in the prerequisite of network connectivity that is
influenced by the high rate of false-negative interactions.

Literature studies strongly emphasize that the locally dense regions (cliques–
quasi-cliques–subnetworks) of an interaction network represent protein complexes.
However, defining density in the locality of PPINs is itself a dynamic concept. Several
possible interpretations of dense regions are in existence and they mostly differ from
the motivation with which they are used. A k-core is a maximal subnetwork such
that each node in the subnetwork has at least degree k. A k-plex is a subnetwork
such that each node in the subnetwork has at least degree (O(N ) − k), where O(N )
is the order of the subnetwork. A k-block is a maximal subnetwork such that each
pair of nodes in the subnetwork is connected by k node-disjoint paths. An n-clan is
a subnetwork such that the distance between any two nodes is less than or equal to n
for paths within the subnetwork. These are some of the different representations of
dense regions (protein complexes) that are currently emerging in use for interaction
network analysis [30]. Here, we propose a heuristic algorithm to find the largest dense
k-subnetwork in large scale-free networks that are sparse. We construct a PPIN, by
integrating multiple topological properties, that is both sparse and scale-free. Finally,
we explore our defined dense protein modules (dense k-subnetworks) by mining the
network. The way we define a dense region in a weighted human PPIN is promising.
Again, this kind of approach is novel in the perspective of systems biology.

16.4 PROBLEM DISCUSSION

Suppose, a set of proteins and their corresponding PPIN is provided. Here, we address
the problem of searching the largest PPI modules that have a high degree of association
therein. First, the problem is given formally accompanying the necessary precursory
details. Then, the method of mining is presented in the later sections.

Definition 16.4.1 (k-subnetwork of a weighted network): A k-subnetwork of any
arbitrary weighted network, N = (V, A, W ), denoted by V k, is defined as an induced
subnetwork of N of order k ∈ [1, |V |].
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Definition 16.4.2 (Association density of a node): Given a weighted network
N = (V, A, W ), the association density of a node vi ∈ V with respect to a
k-subnetwork V k (vi /∈ V k), µvi /V k , is defined as the ratio of the sum of the arc
weights between vi and each of the nodes belonging to V k, and the cardinality of the
set V k. The association density of a node vi with respect to the k-subnetwork V k is
computed as

µvi /V k =
∑

v j ∈V k Wvi v j

k
(16.2)

where Wvi v j denotes the weight of the arc (vi , v j ).

Definition 16.4.3 (Dense node): We call a node vi within a k-subnetwork V k, dense
with respect to an association density threshold δ, if µvi /V k ≥ δ.

Definition 16.4.4 (Association density of a k-subnetwork): The association density
of a k-subnetwork, V k, is defined as the minimum of the association densities of all
the nodes in it with respect to the remaining (k − 1)-subnetworks. So, the association
density of a k-subnetwork V k is given by

µV k = min
∀vi ∈V k

(
µvi /V k−{vi }

)
(16.3)

Definition 16.4.5 (Dense k-subnetwork): We call a k-subnetwork, V k, dense with
respect to an association density threshold δ if µV k ≥ δ.

As mentioned in Section 16.2, the density of a network–subnetwork is defined as
the ratio of the total number of arcs existing in and the maximum number of arcs
that could possibly appear within them. Thus, it may so happen that a k-subnetwork
becomes dense although it contains some low degree values. In the network shown
in Figure 16.2, the density of the k-subnetwork {p1, p2, p3, p5}, in the conventional
sense, is 4.5/6. However, it is evident that the association of the node p5 is poor
as it has very low connectivity with the other nodes. A dense association should
not only satisfy a high overall density, but also a high participation density of each
member. Earlier studies also suggest that the computation of dense clusters should
include some minimum density threshold for each node [31]. So, the concept of min-
imum association density threshold (a cutoff participation factor) has been included
in Definition (16.4.4). Now, we present the problem of finding the largest dense
k-subnetwork in a PPIN formally.

Problem Statement Given a weighted PPIN, P = (P, I, W ), and an association
density threshold of a k-subnetwork δ, locate a dense k-subnetwork Pkmax in P that
has the maximum cardinality, that is, kmax ≥ k : ∀µPk ≥ δ,∀k = {1, 2, . . . , |P|}.
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FIGURE 16.2 A dense subnetwork within a PPIN of order 5.

16.5 THEORETICAL ANALYSIS

As in this chapter, we are focusing on PPINs and they are generally found to follow
the scale-free property [5]. We will concentrate on this special type of network to
explore the largest dense k-subnetworks. In this regard, some theoretical analysis has
been covered to devise the final algorithm.

Suppose N = (V, A) is an arbitrary undirected and connected scale-free network
with decay constant γ (γ > 0). Thus, the probability P(k) that a node in N is adjacent
to k (max(k) = |V | − 1) other nodes, decays as a power law following P(k) ∼ k−γ .
Evidently, this probability distribution of the discrete degree function adjoins the
additional constraint

∑|V |−1
k=1 P(k) = 1. In this case P(0) = 0, as we have assumed

the network N to be connected. Let the probability with which the arcs occur in N
be p(N ) and the probability with which an arbitrary node v attaches with the other
nodes be p(v). Then, we have the following theorem:

Theorem 16.5.1 Given, p(N ) and p(v) for any arbitrary network N and for a node
v within it, the probability with which v will appear in a clique selected randomly
from N is given as

P(v ∈ V k |V k ∈ C(k)) = k

|V |
[

1 + �p(v)

p(N )

](k−1)

Proof Suppose, C(k) denotes the set of all the cliques in N of size k. Then, the
probability that a k-subnetwork (a subnetwork with k nodes), V k , selected randomly
from N will be in C(k), if it contains v , is given by

P(V k ∈ C(k)|v ∈ V k) = p(v)(k−1) p(N )

(k − 1)(k − 2)

2 (16.4)
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The probability with which the node v will always belong to the set C(k) can be
computed using Eq. (16.4) as the conditional probability

P(v ∈ V k |V k ∈ C(k)) = P(v ∈ V k ∩ V k ∈ C(k))

P(V k ∈ C(k))

= P(v ∈ V k).P(V k ∈ C(k)|v ∈ V k)

P(V k ∈ C(k))

=

(|V |−1
k−1

)
(|V |

k

) .p(v)(k−1) p(N )

(k − 1)(k − 2)

2

p(N )

k(k − 1)

2

= k

|V |
[

p(v)

p(N )

](k−1)

= k

|V |
[

1 + �p(v)

p(N )

](k−1)

.

Let, vmax be the node having the highest degree value in N , and consequently,
p(vmax) be the probability with which it connects the other nodes. Then, we have

P(vmax ∈ V k |V k ∈ C(k)) = k

|V |
[

p(vmax)

p(N )

](k−1)

= k

|V |
[

1 + �p(vmax)

p(N )

](k−1)

(16.5)

Evidently, the probability value produced in Eq. (16.5) becomes higher with the
increasing value of �p(vmax) (= p(vmax) − p(N )). In the case of scale-free networks,
the probability with which the arcs occur (p(N )) rests at a very low value due to the
scale-free degree distribution. Thus, the nodes having comparatively higher degree
values have a higher probability to be selected in the largest dense k-subnetwork.
Therefore, selecting the nodes with higher association density values and merging
them heuristically might produce better approximation in the final result. Being
inspired from the aforementioned probabilistic intuition, we now discuss the solution
methodology in Section 16.6.

16.6 ALGORITHMIC APPROACH

The problem addressed here belongs to the NP complexity class. For this rea-
son, it cannot be solved deterministically in polynomial time, unless P = NP [32].
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Considering this, a heuristic solution method for providing an approximate solution
of the problem has been presented in the following algorithm:

Algorithm A heuristic solution approach for the problem

Input: A weighted PPIN P = (P, I, W ) and an association density threshold δ.
Output: The largest k-subnetwork Pkmax in P satisfying the association density
threshold δ.
Steps of the algorithm:

1. For each protein pi ∈ P , arrange the proteins in (P − {pi }) in the form of a
list, NList(pi ), such that any two entries p1, p2 satisfies Wpi p1 ≥ Wpi p2 , if p1

appears before p2 within NList(pi ).

2. Suppose, NList(pi , j) denotes the j th entry in the list NList(pi ). Select an arbi-
trary protein pmax from the set of proteins for which

∑k
n=1 WpmaxNList(pmax,n) < δk

is satisfied for the maximum k.

3. Initialize Pkmax with pmax

4. Let Connector(n) = NList(pmax, n),∀n ∈ {1, 2, . . . , |P| − 1}
5. while kmax ≤ |P| and µPkmax ≥ δ do
6. Pkmax ← Pkmax

⋃{Connector(1)}
7. Order(pi ) = Index(Connector(n), pi )(kmax − 1) +

Index(NList(Connector(1), n), vi ),∀pi ∈ P
/* Index(P, pi ) denotes the position of the element pi in set P */

8. Connector(n) ← pt , where pt ∈ P − Pkmax , such that Order(Connector(i)) ≤
Order(Connector( j)), for each i < j

9. end while

We reproduce the algorithm proposed in [33] with nominal modification. In the
beginning (step 1), a linked list is prepared for each protein pi ∈ P , which contains
all the remaining proteins, in the order of their descending weights with respect to the
corresponding protein pi . This is basically a neighboring list of proteins in the order
of closeness. After this (step 2), the protein that can associate the largest number of
proteins with it satisfying the association density threshold is determined. In case of
a tie, it is selected randomly, and finally is used to initialize the largest k-subnetwork,
Pkmax (step 3). Construction of the largest k-subnetwork then proceeds following
steps 4–9. To start with, a connector list is prepared from the list of neighboring
proteins of pmax, taken from the NList(pmax) (step 4). Then, the first member of
the connector list is attached with the current dense k-subnetwork, Pkmax (step 6).
This is in fact the closest neighbor of pmax and thus most similar in terms of the
interaction weight. Thereafter, the connector list of Pkmax is updated by taking a
weighted aggregation of the current connector list of Pkmax , contained in Connector
and NList(Connector(1)), the corresponding NList entry of Connector(1) (step 8). The
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weights in this aggregation depends on the cardinalities of the two sets Pkmax [before
the attachment of the protein in Connector(1)] and Connector(1) itself. Certainly, the
former one is of size (kmax − 1), whereas the later one is a singleton set. The iterative
process continues (steps 5–9) till either all the proteins are included in Pkmax or it falls
short of the association density threshold δ.

16.7 EMPIRICAL ANALYSIS

We have carried out the experimental analysis both in the directions of mining the
interaction networks and verifying the significance of the protein sets explored (within
the largest k-subnetworks) through a biological perspective. In order to prepare the
basic interaction network, PPI information of Homo Sapiens has been collected from
the Human Protein Reference Database (HPRD) [34]. The version of interaction data
we have collected reports 37, 107 interactions between 25, 661 human proteins. The
clustering coefficient of the entire network is ∼ 1.13E − 4 [5]. So, the network is
prominently a sparse one. To visualize the degree distribution in this network, we
have plotted the probability of attachment of the nodes against their degree values,
that is, P(k) denotes the probability of any arbitrary node of having a degree value of
k. Scale-free degree distribution is observed in the PPIN employed in this study [16].
This is shown in Figure 16.3.

We have incorporated a novel method of integration in this topological study. Two
kinds of topological information, the interaction between protein pairs and the sharing
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FIGURE 16.3 The degree of distribution in the human PPIN constructed from the HPRD
interaction resource.
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of first-order neighborhood between protein pairs, have been employed to build up a
unified framework for the topological structure analysis. First, a PPIN P = (P, I, W )
has been constructed from the up-to-date data collected from HPRD resource. Second,
the sharing of first-order neighborhood information of every protein pair has been
computed using the SimCD measure (inspired from the CD distance) to construct
a separate network PCD = (P, ICD, WCD). Recently, some existing approaches have
established the usefulness of accounting the common interacting partners between
two proteins as an estimate of their functional similarity [20]. This SimCD is said
to be the CD similarity and is computed between two proteins p1, p2 ∈ P using the
following final equation:

SimCD(p1, p2) = 1 − CD(p1, p2)

= 1 − |N (p1) ∪ N (p2)| + |N (p1) ∪ N (p2)|
|N (p1) ∪ N (p2)| + |N (p1) ∩ N (p2)|

= 2.|N (p1) ∩ N (p2)|
|N (p1) ∪ N (p2)| + |N (p1) ∩ N (p2)| (16.6)

Certainly, we have WCDp1 p2
= SimCD(p1, p2) ∈ [0, 1]. Therefore, PCD is a

weighted network, whereas in the former one, constructed from the HPRD data,
P , is a binary network. Finally, these two networks are combined to produce an
integrated network P+ = (P, I +, W +), where the weight function is defined as
W + = 0.5 ∗ (W + WCD). For those interactions absent in I in the network P , we
assume a weight of zero. Thus, P+ becomes a weighted and complete undirected
network.

On constructing the integrated network P+ for the topological study, we have
applied the algorithm described in Section 16.6 to investigate the largest dense
k-subnetworks. We have set the association density threshold to δ = 0.55. Fixa-
tion of δ to this value has been done to ensure that for any protein pair p1,p2,
(Wp1 p2 + WCDp1 p2

) is at least 1.1. Because both of the weight functions W and WCD

have an upper bound of 1, the tuning of δ to 0.55 will confirm that none of these are
individually zero for any protein pair. Thus, we can make it certain that the protein
pairs selected within the dense k-subnetwork have prior interaction support, and as
well, prior support of sharing a common neighborhood.

By applying the algorithm on the final network, we have obtained the largest dense
k-subnetwork (with respect to δ = 0.55) to contain 11 proteins. The biological anal-
ysis of this protein module is provided in the following sections. We have validated
the functional significance of the protein set using the resource of HPRD [34] and a
functional enrichment tool FatiGO [35].

16.7.1 Gene Ontology Studies from HPRD

The information regarding the biological process, molecular function, and molecular
class (cellular component) of the genes (corresponding to the proteins found in the
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TABLE 16.1 Biological Involvement of the Proteins
Found in the Largest k-Subnetwork as Annotated from
the Biological Process Information

Protein Name Biological Process

ALDH1A1 Aldehyde metabolism
CHRNA1 Transport
APEH Metabolism, Energy pathways
ADD2 Cell growth and/or maintenance
ADORA2A Cell communication, Signal transduction
ARF3 Cell communication, Signal transduction
FDX1 Metabolism, Energy pathways
ADM Regulation of physiological process
ALDOA Metabolism, Energy pathways
SAA1 Lipid transport, Inflammatory response
CD59 Immune response

k-subnetwork) collected from the HPRD provides an insight into the system level
participation of these proteins. We have accumulated the participation of the proteins
found in the largest k-subnetwork in these three categories of gene ontology. Complete
information is listed in Tables 16.1–16.3. As seen from Table 16.1, four proteins,
namely, ALDH1A1, APEH, FDX1, and ALDOA are responsible for the biological
process of metabolism (and often for the energy pathways) and their corresponding
molecular functions (observe in Table 16.2) are related to the activities of aldehyde
dehydrogenase, hydrolase, oxidoreductase, and lyase, respectively. In fact, these four
proteins are separate enzymes (see Table 16.3) associated with the common biological
activity of metabolism. Enzymes act as catalysts for many of the biochemical reactions

TABLE 16.2 Biological Involvement of the Proteins Found in
the Largest k-Subnetwork as Annotated from the Molecular
Function Information

Protein Name Molecular Function

ALDH1A1 aldehyde dehydrogenase activity
CHRNA1 Intracellular ligand-gated ion channel activity
APEH Hydrolase activity
ADD2 Cytoskeletal anchoring activity
ADORA2A G-protein coupled receptor activity
ARF3 GTPase activity
FDX1 Oxidoreductase activity
ADM Peptide hormone
ALDOA Lyase activity
SAA1 Transporter activity
CD59 Receptor activity
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TABLE 16.3 Biological Involvement of the
Proteins Found in the Largest k-Subnetwork
as Annotated from the Molecular Class
(Cellular Component) Information

Protein Name Molecular Class

ALDH1A1 Enzyme: Dehydrogenase
CHRNA1 Intracellular ligand gated channel
APEH Enzyme: Hydrolase
ADD2 Anchor protein
ADORA2A G protein coupled receptor
ARF3 G protein
FDX1 Enzyme: Oxidoreductase
ADM Peptide hormone
ALDOA Enzyme: Aldolase
SAA1 Transport/cargo protein
CD59 Cell surface receptor

organized within an organism. Usually, these enzymes are very specific to a certain
biochemical reaction [36]. In this regard, the four enzymes detected by the algorithm
within the module are very significant. Similarly, from Table 16.1, we can identify the
two proteins ADORA2A and ARF3, both of which are associated with the common
tasks of cell communication and signal transduction, and again from Table 16.3 the
later one is found to be a G protein, whereas the former one is its receptor. These
results, obtained by combining the information provided in the Tables 16.1–16.3
suggest that the explored dense k-subnetwork is indeed a strongly coherent module
of proteins. In Section 16.7.2, we produce the functional enrichment result produced
from the tool FatiGO [35].

16.7.2 Study of Functional Enrichment with FatiGO

We have prepared two protein sets for the analysis using FatiGO. The first is a ref-
erence set, containing the 11 proteins found in the largest dense k-subnetwork, and
the other one is a background set, containing the 25, 650 proteins remaining after
mining in the initial interaction network. We have performed a two-tailed statistical
test by removing the duplicates from the protein sets using the tool FatiGO [35].
The significant terms found in the functional enrichment test are provided in
Table 16.4.

As observed in Table 16.4, the three proteins (ADORA2A, SAA1, and CD59)
explored in the module are associated with the activities of coagulation, regulation
of body fluids, and response to external stimulus with very low p-values. Going
into a deeper analysis, it is found that these three proteins are responsible for blood
coagulation. This finding is significant in the sense that <1% of the total proteins in
the human protein set are related with this kind of biological activity. The p-value
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TABLE 16.4 Significant GO Terms Found in the Biological Process to be Associated
with the Proteins Found in the Largest k-Subnetwork

Level GO Term Module (%) Remain (%) p-Value

3 Coagulation 97.55 2.45 5.40E-05
3 Regulation of body fluids 97 3 9.92E-05
3 Response to external stimulus 89.45 10.55 8.87E-04
4 Hemostasis 97.43 2.57 6.28E-05
4 Response to wounding 92.09 7.91 2.69E-04
5 Wound healing 97.05 2.95 9.10E-05
6 Blood coagulation 97.73 2.27 4.02E-05

of this observation is as low as the order of 1E − 05. From the analysis of HPRD
repositories, as shown in Table 16.2, we have identified that the activities of the two
proteins SAA1 and CD59 are in the form of transporter and receptor in immune
response. Thus, they are responding to the immune system by participating in the
blood coagulation along with the protein ADORA2A. As a whole, we have obtained
six significant GO terms in the category biological process. In all of these cases,
>89% of the proteins found in the largest dense k-subnetwork are associated with the
corresponding GO term. The third column in Table 16.4 refers to the percentage of
proteins found in the module associated with the specific GO term (biological process,
molecular function, or cellular components) and in the fourth column the percentage
of match with the remaining set of proteins. In all of these cases the probability of
occurrence of these enrichment are not obtained by chance, as suggested by the very
poor p-values computed.

The complete set of gene ontology terms categorized into biological process,
molecular function, and cellular component form a directed acyclic graph structure
(DAG). We produce the DAG representation of the significant terms found the pro-
tein module in Figure 16.4. This representation depicts the relations between the
significant terms at the hierarchical level. Going into the lower levels in such DAG
representation signifies a function into more specific form. In this regard, we found
the most specific significant biological process of this protein module to be the regu-
lation of body fluid levels. Such specific findings are therefore very important in the
perspective of systems biology.

16.8 CONCLUSIONS

This chapter includes an integrated approach of analyzing topological characteristics
of PPINs. The approach used in this study for combining two topological properties
can also be extended for combining multiple properties at a time. We use a heuris-
tic mining algorithm to find out dense protein sets from the integrated interaction
network. Here, the denseness of a subnetwork has been defined in a novel way by
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FIGURE 16.4 The gene ontology directed acyclic graph for biological process as annotated
using the protein module (partial view of the significant terms).

thresholding minimum association of each node with the others in the weighted
subnetwork. The analytical studies provoke a new integrative approach of studying
biological systems as initiated in [4].

The success of such topological studies highly depend on the accuracy and quality
of the high-throughput interaction resources. Unfortunately, the enormous volume
of interaction information accumulated by various research groups worldwide prin-
cipally focus on positive interactions. Researchers are generally biased to finding
protein pairs that physically or functionally interact, not those having no provable
interactions. There is no doubt that casting aside the negative interaction data is a ma-
jor drawback of interactome analysis. Recently, it has been empirically validated that
negative training data sets can add potentials to the final outcome of computational
analysis on biological data [37]. Analyzing PPINs covering both validated positive
and negative interaction information will thus be a promising improvement in this
direction.
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