
“I read this book in one breath—it opens vistas on how the fields of computation
and biology can inspire each other. I particularly enjoyed the analogies between
immune systems and software that fights computer viruses.”
—Uri Alon, Weizmann Institute of Science, Rehovot, Israel, and author of An Introduction
to Systems Biology: Design Principles of Biological Circuits

“The book by Lamm and Unger methodically covers exciting developments
in biological computation, offering for the first time a broad perspective of this
important cutting-edge field of research.”
—Ehud Shapiro, The Harry Weinrebe Professorial Chair of Computer Science and
Biology, Weizmann Institute of Science, Rehovot, Israel

“This is a wonderful treatise on bio-inspired computation, written from a computer
science perspective. The authors are extremely knowledgeable about their subject,
and the material they cover is both broad and deep. The book should benefit
anyone interested in the connection between computer science and biology, a
connection that is poised to become dramatically central to the science of the 21st
century.”
—David Harel, The William Sussman Professorial Chair, Department of Computer
Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

A unified overview of computer science ideas inspired by biology, Biological
Computation presents the most fundamental and significant concepts in this area.
In the book, readers discover that bacteria communicate, that DNA can be used
for performing computations, how evolution solves optimization problems, that the
way ants organize their nests can be applied to solve clustering problems, and what
the human immune system can teach us about protecting computer networks.
The text focuses on cellular automata, evolutionary computation, neural networks,
and molecular computation. Each chapter explores the biological background,
describes the computational techniques, gives examples of applications, discusses
possible variants of the techniques, and includes exercises and solutions.

C7959

Biological Com
putation

Lam
m

 • Unger

Computational Biology/Bioinformatics

C7959_Cover.indd 1 12/14/10 2:09 PM

Biological
Computation

CHAPMAN & HALL/CRC
Mathematical and Computational Biology Series

Aims and scope:
This series aims to capture new developments and summarize what is known
over the entire spectrum of mathematical and computational biology and
medicine. It seeks to encourage the integration of mathematical, statistical,
and computational methods into biology by publishing a broad range of
textbooks, reference works, and handbooks. The titles included in the
series are meant to appeal to students, researchers, and professionals in the
mathematical, statistical and computational sciences, fundamental biology
and bioengineering, as well as interdisciplinary researchers involved in the
field. The inclusion of concrete examples and applications, and programming
techniques and examples, is highly encouraged.

Series Editors

N. F. Britton
Department of Mathematical Sciences
University of Bath

Xihong Lin
Department of Biostatistics
Harvard University

Hershel M. Safer

Maria Victoria Schneider
European Bioinformatics Institute

Mona Singh
Department of Computer Science
Princeton University

Anna Tramontano
Department of Biochemical Sciences
University of Rome La Sapienza

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
4th, Floor, Albert House
1-4 Singer Street
London EC2A 4BQ
UK

Published Titles
Algorithms in Bioinformatics: A Practical
Introduction
Wing-Kin Sung

Bioinformatics: A Practical Approach
Shui Qing Ye

Biological Computation
Ehud Lamm and Ron Unger

Biological Sequence Analysis Using the SeqAn
C++ Library
Andreas Gogol-Döring and Knut Reinert

Cancer Modelling and Simulation
Luigi Preziosi

Cancer Systems Biology
Edwin Wang

Cell Mechanics: From Single Scale-Based
Models to Multiscale Modeling
Arnaud Chauvière, Luigi Preziosi,
and Claude Verdier

Clustering in Bioinformatics and Drug Discovery
John D. MacCuish and Norah E. MacCuish

Combinatorial Pattern Matching Algorithms in
Computational Biology Using Perl and R
Gabriel Valiente

Computational Biology: A Statistical
Mechanics Perspective
Ralf Blossey

Computational Hydrodynamics of Capsules
and Biological Cells
C. Pozrikidis

Computational Neuroscience:
A Comprehensive Approach
Jianfeng Feng

Data Analysis Tools for DNA Microarrays
Sorin Draghici

Differential Equations and Mathematical
Biology, Second Edition
D.S. Jones, M.J. Plank, and B.D. Sleeman

Engineering Genetic Circuits
Chris J. Myers

Exactly Solvable Models of Biological Invasion
Sergei V. Petrovskii and Bai-Lian Li

Gene Expression Studies Using
Affymetrix Microarrays
Hinrich Göhlmann and Willem Talloen

Glycome Informatics: Methods and
Applications
Kiyoko F. Aoki-Kinoshita

Handbook of Hidden Markov Models in
Bioinformatics
Martin Gollery

Introduction to Bioinformatics
Anna Tramontano

Introduction to Computational Proteomics
Golan Yona

An Introduction to Systems Biology:
Design Principles of Biological Circuits
Uri Alon

Kinetic Modelling in Systems Biology
Oleg Demin and Igor Goryanin

Knowledge Discovery in Proteomics
Igor Jurisica and Dennis Wigle

Meta-analysis and Combining Information in
Genetics and Genomics
Rudy Guerra and Darlene R. Goldstein

Methods in Medical Informatics:
Fundamentals of Healthcare Programming in
Perl, Python, and Ruby
Jules J. Berman

Modeling and Simulation of Capsules and
Biological Cells
C. Pozrikidis

Niche Modeling: Predictions from Statistical
Distributions
David Stockwell

Normal Mode Analysis: Theory and Applications to
Biological and Chemical Systems
Qiang Cui and Ivet Bahar

Optimal Control Applied to Biological Models
Suzanne Lenhart and John T. Workman

Pattern Discovery in Bioinformatics:
Theory & Algorithms
Laxmi Parida

Python for Bioinformatics
Sebastian Bassi

Spatial Ecology
Stephen Cantrell, Chris Cosner, and
Shigui Ruan

Spatiotemporal Patterns in Ecology
and Epidemiology: Theory, Models,
and Simulation
Horst Malchow, Sergei V. Petrovskii, and
Ezio Venturino

Stochastic Modelling for Systems Biology
Darren J. Wilkinson

Structural Bioinformatics: An Algorithmic
Approach
Forbes J. Burkowski

The Ten Most Wanted Solutions in Protein
Bioinformatics
Anna Tramontano

Biological
Computation

Ehud Lamm

Ron Unger

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20110719

International Standard Book Number-13: 978-1-4200-8796-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

vii

Table of Contents

Preface, xv

Chapter 1  ◾  Introduction and Biological Background  1
1.1  BIOLOGICAL COMPUTATION  1

1.2  THE INFLUENCE OF BIOLOGY ON MATHEMATICS—
HISTORICAL EXAMPLES  4

1.3  BIOLOGICAL INTRODUCTION  7

1.3.1 The Cell and Its Activities 12

1.3.2 The Structure of DNA 14

1.3.3 The Genetic Code 16

1.3.4 Protein Synthesis and Gene Regulation 18

1.3.5 Reproduction and Heredity 23
1.4  MODELS AND SIMULATIONS  26

1.5  SUMMARY  33

1.6  FURTHER READING  34

1.7  EXERCISES  34

1.7.1 Biological Computation 34

1.7.2 History 35

1.7.3 Biological Introduction 35

1.7.4 Models and Simulations 37
1.8  ANSWERS TO SELECTED EXERCISES  37

Chapter 2  ◾  Cellular Automata  39
2.1  BIOLOGICAL BACKGROUND  39

viii    ◾    Table of Contents

2.1.1 Bacteria Basics 39

2.1.2 Genetic Inheritance—Downward and Sideways 40

2.1.3 Diversity and the Species Question 41

2.1.4 Bacteria and Humans 42

2.1.5 The Sociobiology of Bacteria 42
2.2  THE “GAME OF LIFE”  44

2.3  GENERAL DEFINITION OF CELLULAR AUTOMATA  48

2.4  1-DIMENSIONAL AUTOMATA  50

2.5  EXAMPLES OF CELLULAR AUTOMATA  54

2.5.1 Fur Color 54

2.5.2 Ecological Models 57

2.5.3 Food Chain 58
2.6  COMPARISON WITH A CONTINUOUS 

MATHEMATICAL MODEL  59

2.7  COMPUTATIONAL UNIVERSALITY  61

2.7.1 What Is Universality? 61

2.7.2 Cellular Automata as a Computational Model 65

2.7.3 How to Prove That a CA Is Universal 67

2.7.4 Universality of a Two-Dimensional Cellular
Automaton—Proof Sketch 68

2.7.5 Universality of the “Game of Life”—Proof Sketch 71
2.8  SELF-REPLICATION  73

2.9  SUMMARY  77

2.10  PSEUDO-CODE  78

2.11  FURTHER READING  79

2.12  EXERCISES  79

2.12.1 “Game of Life” 79

2.12.2 Cellular Automata 80

2.12.3 Computing Using Cellular Automata 82

2.12.4 Self-Replication 82
2.12.5 Programming Exercises 83

Table of Contents    ◾    ix

2.13  ANSWERS TO SELECTED EXERCISES  84

Chapter 3  ◾  Evolutionary Computation  87
3.1  EVOLUTIONARY BIOLOGY AND EVOLUTIONARY 

COMPUTATION  87

3.1.1 Natural Selection 87
3.1.2 Evolutionary Computation 93

3.2  GENETIC ALGORITHMS  94

3.2.1 Selection and Fitness 98
3.2.2 Variations on Fitness Functions 102
3.2.3 Genetic Operators and the Representation of

Solutions 104
3.3  EXAMPLE APPLICATIONS  108

3.3.1 Scheduling 108
3.3.2 Engineering Optimization 109
3.3.3 Pattern Recognition and Classification 109
3.3.4 Designing Cellular Automata 110
3.3.5 Designing Neural Networks 110
3.3.6 Bioinformatics 110

3.4  ANALYSIS OF THE BEHAVIOR OF GENETIC 
ALGORITHMS  111

3.4.1 Holland’s Building Blocks Hypothesis 115
3.4.2 The Schema Theorem 116
3.4.3 Corollaries of the Schema Theorem 118

3.5  LAMARCKIAN EVOLUTION  119

3.6  GENETIC PROGRAMMING  121

3.7  A SECOND LOOK AT THE EVOLUTIONARY PROCESS  126

3.7.1 Mechanisms for the Generation and Inheritance of
Variations 126

3.7.2 Selection 129
3.8  SUMMARY  130

3.9  PSEUDO-CODE  131

3.10  FURTHER READING  132

x    ◾    Table of Contents

3.11  EXERCISES  132

3.11.1 Evolutionary Computation 132
3.11.2 Genetic Algorithms 133
3.11.3 Selection and Fitness 133
3.11.4 Genetic Operators and the Representation of

Solutions 134
3.11.5 Analysis of the Behavior of Genetic Algorithms 135
3.11.6 Genetic Programming 136
3.11.7 Programming Exercises 136

3.12  ANSWERS TO SELECTED EXERCISES  140

Chapter 4  ◾  Artificial Neural Networks  143
4.1  BIOLOGICAL BACKGROUND  143

4.1.1 Neural Networks as Computational Model 146
4.2  LEARNING  146

4.3  ARTIFICIAL NEURAL NETWORKS  148

4.3.1 General Structure of Artificial Neural Networks 148

4.3.2 Training an Artificial Neural Network 151
4.4  THE PERCEPTRON  152

4.4.1 Definition of a Perceptron 152

4.4.2 Formal Description of the Behavior of a Perceptron 156

4.4.3 The Perceptron Learning Rule 158

4.4.4 Proving the Convergence of the Perceptron
Learning Algorithm 159

4.5  LEARNING IN A MULTILAYERED NETWORK  162

4.5.1 The Backpropagation Algorithm 162

4.5.2 Analysis of Learning Algorithms 170

4.5.3 Network Design 172

4.5.4 Examples of Applications 174
4.6	 ASSOCIATIVE MEMORY  180

4.6.1	 Biological Memory 180
4.6.2	 Hopfield Networks 181

Table of Contents    ◾    xi

4.6.3	 Memorization in a Hopfield Network 181
4.6.4	 Data Retrieval in a Hopfield Network 183
4.6.5	 The Convergence of the Process of Updating the

Neurons 185
4.6.6 Analyzing the Capacity of a Hopfield Network 186
4.6.7	 Application of a Hopfield Network 189
4.6.8	 Further Uses of the Hopfield Network 191

4.7	 UNSUPERVISED LEARNING  194

4.7.1	 Self-Organizing Maps 195
4.7.2	 WEBSOM: Example of Using SOMs for Document

Text Mining 198
4.8	 SUMMARY  200

4.9	 FURTHER READING  201

4.10  EXERCISES  202

4.10.1	 Single-Layer Perceptrons 202
4.10.2	 Multilayer Networks 203
4.10.3 Hopfield Networks 205
4.10.4	 Self-Organizing Maps 208
4.10.5 Summary 208

4.11	 ANSWERS TO SELECTED EXERCISES  210

Chapter 5  ◾  Molecular Computation  215
5.1  BIOLOGICAL BACKGROUND  217

5.1.1 PCR: Polymerase Chain Reaction 217

5.1.2 Gel Electrophoresis 219

5.1.3 Restriction Enzymes 219

5.1.4 Ligation 220
5.2  COMPUTATION USING DNA  220

5.2.1 Hamiltonian Paths 220
5.2.2 Solving SAT 230

5.2.3 DNA Tiling 233

5.2.4 DNA Computing—Summary 236

xii    ◾    Table of Contents

5.3  ENZYMATIC COMPUTATION  237

5.3.1 Finite Automata 238

5.3.2 Enzymatic Implementation of Finite Automata 242
5.4  SUMMARY  248

5.5  FURTHER READING  250

5.6  EXERCISES  250

5.6.1 Biological Background 250

5.6.2 Computing with DNA 250

5.6.3 Enzymatic Computation 253
5.7  ANSWERS TO SELECTED EXERCISES  254

Chapter 6  ◾   The Never-Ending Story: Additional Topics 
at the Interface between Biology and 
Computation  259

6.1  SWARM INTELLIGENCE  261

6.1.1 Ant Colony Optimization Algorithms 262
6.1.2 Cemetery Organization, Larval Sorting, and

Clustering 264
6.1.3 Particle Swarm Optimization 267

6.2  ARTIFICIAL IMMUNE SYSTEMS  270

6.2.1 Identifying Intrusions in a Computer Network 271
6.3  ARTIFICIAL LIFE  273

6.3.1 Avida 276

6.3.2 Evolvable Virtual Creatures 281
6.4  SYSTEMS BIOLOGY  284

6.4.1 Evolution of Modularity 287

6.4.2 Robustness of Biological Systems 289

6.4.3 Formal Languages for Describing Biological
Systems 290

6.5  SUMMARY  294

6.6  RECOMMENDATIONS FOR ADDITIONAL READING  297

6.6.1 Biological Introduction 297

Table of Contents    ◾    xiii

6.6.2 Personal Perspectives 298
6.6.3 Modeling Biological Systems 298
6.6.4 Biological Computation 299

6.6.5 Cellular Automata 299

6.6.6 Evolutionary Computation 300

6.6.7 Neural Networks 300

6.6.8 Molecular Computation 300

6.6.9 Swarm Intelligence 300
6.6.10 Systems Biology 301
6.6.11 Bioinformatics 301

6.7  FURTHER READING  301

6.8  EXERCISES  302

6.8.1 Swarm Intelligence 302
6.8.2 Artificial Immune Systems 303
6.8.3 Artificial Life 305
6.8.4 Systems Biology 306
6.8.5 Programming Exercises 306

6.9  ANSWERS TO SELECTED EXERCISES  307

xv

Preface

THE SPIRIT OF THIS BOOK
It is often said that biology is going to be the science of the 21st century as
physics was the science of the 20th. Fascinating discoveries about the liv-
ing world around us, as well as about our own bodies, are brought about
daily by molecular biology, neuroscience, and other biological disciplines.
In addition, biological understanding, whether on the molecular scale or
on the ecological level, is fast becoming the foundation of new engineering
disciplines, such as nanotechnology and bioengineering, which have the
potential to fundamentally change the way we live.

Computers, and computer science ideas and techniques, are of course an
important part of all these scientific and engineering activities. Computer
science and its concepts and methods are not only a servant of biologi-
cal research but also provide mental models used by a new generation of
biologists, who often refer to themselves as systems biologists, in think-
ing about the living world. Ideas and approaches, however, travel in both
directions: reflecting on biological ideas has inspired a wide range of com-
puter science questions and has led to the development of important new
techniques for solving hard computational problems. The result might be
called biological computation (or biologically inspired computing) and is
the subject of this book.

This book is written from the perspective of computer scientists who
are fascinated with biology. A large part of the excitement and fun of bio-
inspired computing, at least for us, is learning the amazing and quirky
details discovered by biologists. Among the biological stories that have
informed computer science you will find discoveries about how bacteria
communicate, how ants organize their nests, and the way the immune
system learns to recognize pathogens before actually encountering them.
All these, and more, are discussed in the chapters to come, along with the

xvi    ◾    Preface

computational techniques they led to. We hope the book manages to con-
vey the sense of wonder and fun that we feel about the field. It goes without
saying that it is impossible to go into all details of such varied phenom-
ena, and we concentrate on the aspects of the biological phenomena most
closely related to the computational approaches we discuss.

THE CONTENT OF THE BOOK
The term biological	computation encompasses quite a few approaches. In this
book we focus on the most fundamental and important ideas, and on the clas-
sic works in each of the subjects we discuss, in an attempt to give a unified
overview of computer science ideas inspired by biology. The four major topics
we focus on are cellular automata, evolutionary computation, neural networks,	
and	molecular computation. Each of these topics is the subject of a chapter
that begins by exploring the biological background and then moves on to
describe the computational techniques, followed by examples of applications
and a discussion of possible variants of the basic techniques introduced in
the chapter. Each chapter also includes exercises and solutions. Exercises with
solutions are marked with bold numbers. Important ideas and techniques are
presented through the example applications and exercises. In addition to the
chapters discussing these techniques, Chapter 1 provides a general biological
background, and Chapter 6 concludes the book by introducing, more briefly,
some of the new topics that are emerging within the field.

We made a special effort to make our explanation of molecular com-
putation accessible to readers who lack a background in molecular biol-
ogy, without sacrificing the details. In contrast to the other techniques
we discuss in the book that can be immediately used by programmers to
attack computational challenges, molecular computation is still mostly in
its infancy and requires equipment that can be found only in professional
laboratories. We feel, however, that thinking about the computational
power of molecular events is enlightening, and we predict that computer
scientists will enjoy the puzzle-like challenge of trying to represent com-
putational problems as sets of interacting molecules. With the possibility
of biological hacking and “Do It Yourself Biology” just around the corner,
the use of these techniques may become more widespread than can pres-
ently be imagined.

The topics we focus on, with the exception of molecular computing, are
already the subject of several good textbooks, which can be found listed
in the Recommendations for Additional Reading section of Chapter 6.
Most of these books, however, are dedicated to only one of the subjects we

Preface    ◾    xvii

discuss or are extremely detailed reference books. Our goal was to present
to you, the reader, an overview of the terrain, allowing you to then focus
your attention on the techniques that are most relevant for you. Each of
the approaches we cover exists in a multitude of variants and is covered
by a large amount of theoretical work—it is very easy to get buried in the
details. This book attempts to convey in an easily digestible form the gist
of each of the major approaches in the field and to bring you to the point
where you can produce a working implementation of each of the basic
techniques or to effectively use one of the many existing implementations
that can be found online. All the details can be easily found in the lit-
erature or by searching online once the basic ideas introduced here are
understood.

The techniques we discuss reflect fundamental principles whose appli-
cability goes beyond bio-inspired computing—for example, self-organiza-
tion, redundancy, using noise, asynchronicity, nondeterminism, and other
methods of parallelism and distributed computing. These ideas manifest
themselves in other areas of computer science and software engineering,
specifically in the development of very large-scale distributed systems, of
the sort underlying cloud and grid computing. While these fields are not
discussed here, we feel that getting acquainted with these fundamental
ideas and playing with simple computational models that exhibit them,
such as the ones presented throughout this book, can be rewarding.

FOR WHOM IS THIS BOOK INTENDED?
We wrote this book thinking primarily of readers with a computer sci-
ence background and we assume no previous background in biology. For
readers who feel they would benefit from a deeper understanding of the
biological context we provide references to several recommended books in
the Further Reading list in Chapter 1. This book is intended to be a gentle
introduction to the field and should be suitable for self-study as well as
for use in university courses. We assume the reader is familiar with basic
computer science terminology and basic algebra and probability theory
but provide detailed explanations of all derivations. There are program-
ming exercises at the end of each chapter, but it is possible to follow the
explanations and discussions without programming knowledge. We did
not include many formal proofs, but throughout the chapters and exercises
we give easy-to-follow examples of several important proof techniques.
This should make the book accessible to readers with biological or medical

xviii    ◾    Preface

backgrounds—those coming to the field of bio-inspired computing from
biology rather than from computer science.

USING THIS BOOK AS A TEXTBOOK
While the book can be used for self-study, its main purpose is to serve as
a textbook for a course on biological computation. Such a course can be
given to advanced undergraduate or early graduate students in programs
that combine biology and computer science (a double major in computer
science and biology or special bioinformatics tracks). For such students
a course on biological computation can complement a suite of courses
in bioinformatics, algorithms for computational biology, and systems
biology.

A course based on this book can also be given to students who major
in computer science and for whom a course in biological computation can
enrich the perspectives about alternative models of computation. The book
contains in the first chapter and in each one of Chapters 2–5 an accessible
biological introduction. Nevertheless, it is a good idea for these students
to take a basic course in biology prior to a course based on this book or,
as was done in Bar-Ilan University, to add lectures and teaching assistant
(TA) sessions giving a “crash course” in biology.

The material covered in this book can be delivered in a semester (13–14
weeks) with weekly two-hour lectures and weekly TA sessions. Thus, we
devote about three weeks to each one of the four main subjects we cover.
From our experience, students gain a lot from homework and especially
from the programming exercises, so we provide a good number of those.
As the book was written as a textbook, we tried not to overwhelm the
readers with footnotes and references.

 When we designed and delivered this course in the last several years,
no suitable textbook was available, and we felt its absence. Our course was
well received by students, and we hope that this book will encourage and
enable many teachers and universities to offer similar courses.

ACKNOWLEDGMENTS
Writing a book is a long and complicated process, and we could not have
done it without the help and support of many individuals and institutions.

The idea to collaborate on a book came to us while we worked on
the development of a course on bio-inspired computing for the Open
University of Israel. The structure of this book is based on courses taught
by Ron Unger at the Weizmann Institute of Science and for many years at

Preface    ◾    xix

Bar-Ilan University, and the course developed by the two authors for the
Open University of Israel. Our thanks go to these institutions.

Special thanks go to Edna Wigderson, who helped us transform a first
draft written in Hebrew into the book before you. Not only did she trans-
late our original material, but she also edited the material, pointed out
inconsistencies and mistakes, and helped us improve the presentation
immeasurably. Without her this book would never be.

We thank Assaf Massoud for the artwork resulting in the illuminat-
ing illustrations that accompany the text. Working with Assaf was a real
pleasure. Both Edna and Assaf had to endure the difficulties of dealing
with two authors who often disagreed; not only did both endure this with
grace, but their prodding also helped the two authors converge.

We also wish to thank all those who read the manuscripts or parts
of it, pointed out our mistakes, and made valuable suggestions. First
and foremost we thank Yair Horesh, who was involved in the courses
in Bar-Ilan and in the Open University and made important contribu-
tions to the manuscript. We would also want to recognize the assistance
we received from Tania Gottlieb in the biological aspects of the book
and Orly Noivirt-Brik, Yochai Gat, Nurit Zer-Kavod, Ariel Azia, Tirza
Doniger, Inbal Yomtovian, Ari Yakir, and Ilana Lebenthal for their valu-
able comments on the manuscript.

As is always the case, the responsibility for whatever errors remain is
ours alone.

On a personal note, Ron wishes to thank David Harel, Joel L. Sussman,
and John Moult, mentors and friends who helped him in his transition
from computer scientist to computational biologist, and his colleagues
at Bar-Ilan University and especially Elisha Haas and Shula Michaeli.
Special thanks go to my family—my parents Zipora and Ozer; my sister
Vered, who was so helpful in preparing the book; and my wonderful chil-
dren Amir, Ayelet, Hilla, and Inbal. I want to express special thanks to
my vibrant wife Tamar. Tami, without your support and love, this book
project could not have been undertaken, let alone completed.

Ehud wishes to thank Eva Jablonka for intellectual stimulation and
biological insight, in addition to friendship and moral support; his many
colleagues in the computer science department at the Open University
of Israel for encouragement and support; and Dror Bar-Nir and Sara
Schwartz for invaluable discussions. I wish to thank my family for their
love and support. I am especially grateful to my wife Ayelet whose love
and friendship are the greatest gift of all.

1

C h a p t e r 1

Introduction and
Biological Background

1.1  BIOLOGICAL COMPUTATION
This book presents topics on the border between biology and computer
science in an attempt to demonstrate how biological insights allow us to
deal with complex computational problems and, conversely, how com-
puter science insights enhance our understanding of biological processes
and help to identify problems worthy of research.

Most of the book presents the topics from a computer science perspec-
tive and deals with new computational models and techniques based on
ideas derived from biological research. Using these techniques, problems
are solved in ways that differ from “classical” computer programming, in
which programs can usually be described as a linear sequence of instruc-
tions. Chapter 2 deals with cellular automata, which are made up of many
independently operating cells embedded on a grid, each of which can affect
only its neighbors. This resembles a colony of simple organisms (e.g., bac-
teria) that can present amazingly complex behaviors or even the structure
of simple multicellular creatures that contain many cells working together.
Chapter 3 deals with evolutionary computation and demonstrates how to
solve optimization and search problems by mimicking the natural evolu-
tionary processes whereby organisms adapt to their environment. Chapter
4 presents models of neural networks that attempt to mimic the behavior
of the brain. These systems are capable of learning and generalizing from

2    ◾    Biological Computation

examples. Chapter 5 deals with molecular computation, in which compu-
tational problems are solved by a set of interacting biological molecules.
Finally, Chapter 6 presents brief descriptions of several other topics that are
on the cusp between computer science and biology, for example, ideas drawn
from animal behavior and from the operation of the immune system.

We will explore how to apply the models presented to a large variety of
computational problems. In particular, some of the problems discussed are
believed to be hard (e.g., we will discuss NP-complete problems, which are
problems for which no efficient algorithm is believed to exist), but using
ideas inspired by biology helps in finding practical solutions for many of
their instances.

We can consider the use of biological insights to solve computational
problems as a “translation” of biological phenomena into formal math-
ematical models. Obviously, we will not attempt an exact translation but
will merely use certain aspects of the biological phenomena as inspiration
for developing mathematical and computational methods. One could also
do the converse—develop formal mathematical tools to analyze biologi-
cal phenomena. This field is called theoretical biology and is beyond the
scope of this book. The discussion of systems biology in Chapter 6 briefly
notes how some of the theoretical ideas developed by computer science are
being applied to the study of biological systems.

As we discuss these new computational models we will naturally focus
on the differences between them and traditional computational models.
Table 1.1 outlines a few major differences between the biologically inspired
models and traditional, more conventional models. The table demonstrates
that nonstandard computational models differ from conventional models
in many significant aspects.

Note that, in addition to the biologically inspired computational mod-
els, other types of nonstandard computational models have drawn a lot of
attention recently. An interesting example is quantum computing, which
attempts to use physical properties described by quantum mechanics as
a powerful computational mechanism. As we concentrate on biological
ideas, these models will not be discussed in this book.

These new approaches to computation are both intellectually exciting
and present new engineering approaches to solving complex problems. It
almost seems as if the biologically inspired models were designed to deal
with difficulties and limitations that arise when building complex com-
puter systems. The engineering requirements arising from the attempts
to build increasingly complex computer systems that have to be reliable

Introduction and Biological Background    ◾    3

TABLE 1.1  Biologically Inspired Models versus Standard Models

Conventional Computation Biological Computation

Mode of
operation

Mainly sequential, even though
there exist parallel computers and
it is possible to write parallel code
that executes on standard
hardware. Usually the number of
parallel processes is very small.

Mainly parallel. Most biologically
inspired models are massively
parallel and are based on
thousands of local interactions
running in parallel.

Control There is a centralized global	control
of the entire system.

Computation is the result of
numerous local processes without
a global control mechanism.

Programming The programmer has to specify in
detail the behavior of the system,
by, for example, choosing
appropriate data structures or
algorithms.

In the models presented in
Chapters 3 and 4 central aspects
of the behavior of the system are
developed by the system
gradually and evolutionarily,
without human intervention.

Modifiability
and
adaptability

Depends on the design of the
system but usually requires
re-programming.

The systems are able to adapt to a
wide range of environmental
changes and changes in the
system itself, without external
intervention.

Robustness
and error
tolerance

Requires special treatment and
usually requires dedicated code or
hardware. Usually systems are
incapable of dealing with extensive
or prolonged failure (e.g., a
hardware failure), and such
failures usually end in catastrophic
behaviors (complete shutdown of
the system).

The model often leads to inherent
robustness. Some of the models
are capable of independent
gradual correction of widespread
failures.

Requirements
from
components

In general, a reliable system needs
reliable components, and the
system is reliable as the weakest
component it includes. Usually,
nondeterminism cannot be
tolerated.

It is possible to build a reliable and
fast system using unreliable, slow
and noisy components.
Nondeterminism at various levels
of the system can even contribute
to reaching the system’s
functional goals.

Hardware Electronic, usually silicon based. Usually implemented on standard
hardware. Chapter 5 describes
using organic (carbon-based)
materials for computations.

4    ◾    Biological Computation

and efficient (therefore often parallel and distributed) and to make use of
cheap components to reduce overall costs seem remarkably suited to the
properties of nonconventional models. Moreover, throughout the book
we will encounter insights gleaned from nonstandard models that can be
integrated into more conventional computer systems.

It is important to understand that many other techniques are employed
when developing complex computer systems to satisfy the aforementioned
criteria. Large systems such as those used by Google® and Amazon® have
to deal with huge datasets, to satisfy requests from all over the globe, and
to be very reliable and highly available. To achieve these goals they deploy
several large data centers, each of which houses a large number of clusters
of computers. This necessitates synchronizing a large number of serv-
ers while, for example, minimizing latency, performing computations
in parallel, distributing computations between machines and data cen-
ters, and automatically recovering from faults (e.g., using redundancy).
Such computing and storage architectures are becoming more and more
available to even smaller companies (e.g., Amazon® sells services on its
computing “cloud”). The architectural complexity of the system can be
hidden from the programmer so that only the infrastructure designers
and implementers need to worry about these details and the programmer
can concentrate on the details of the applications being developed.

In some instances we can find a similarity between the fundamental
principles being used in the development of large distributed systems and
the principles underlying biologically inspired computational models,
even though the systems themselves differ significantly. The similar prin-
ciples include self-organization, redundancy, use of noise, nondetermin-
ism, and other methods of parallelism and distributed computing. We will
demonstrate these general principles throughout the book.

1.2   THE INFLUENCE OF BIOLOGY ON 
MATHEMATICS—HISTORICAL EXAMPLES

Intellectual disciplines interact with each other in many different ways.
Some of these interactions have a direct effect on fields of study, while oth-
ers are more circumstantial. Examples of the direct interactions include
using techniques developed in one field of study to analyze phenomena
in another field or a research field splitting up into more specialized sub-
fields. The indirect interactions might arise when new ways of thought
affect multiple disciplines (e.g., with the rise of statistical thinking), when
new research directions open up, or when researchers switch fields.

Introduction and Biological Background    ◾    5

It would seem that biology cannot have much of an impact on mathe-
matics (and later on computer science), as these disciplines are fundamen-
tally so different. Mathematics is exact and deals with formal arguments
and proofs. Consider, for example, Euclidean geometry developed by
Euclid in the book Elements	 in the third century BCE. Ancient as this
mathematical field is, its results are still valid (and will be valid eternally),
as they are logically derived from the axioms Euclid laid down in his clas-
sical work. Biological research, on the other hand, evolves constantly.
New facts are discovered at a great pace, and a large chunk of our current
biological knowledge is derived from recent research. Moreover, biology
deals with a vast array of phenomena, which we understand only par-
tially and imprecisely, and this understanding also keeps changing and
evolving. Despite these difficulties, mathematical tools are often needed
for analyzing biological phenomena, and when no appropriate tools exist
they need to be developed. This, in turn, leads to the emergence of new
mathematical and computational fields. We present in this section some
examples of the influence of biological research on mathematics in the
past. The later chapters are indicative of current cross-influences and hint
at future developments.

In the years 1827–1828 the Scottish botanist Robert Brown (1773–1858)
published his findings about the motion of pollen in water. Using a micro-
scope (an advanced technology for his time), he discovered that the pollen
particles swirled about in a motion that could not be explained by the
water movement. Initially, after observing pollen derived from different
flowers, Brown believed that this motion is observable only in particles
derived from living matter. This conclusion was in step with accepted bio-
logical theories of the time. However, further research established simi-
lar behavior in tiny particles of inanimate matter, such as glass. Further
study of this “Brownian Motion” revealed its probabilistic nature. Today,
it is well known that this phenomenon arises due to the impact generated
by the random collisions of the observed particles with the many much
lighter water molecules surrounding them (a water molecule’s radius is
roughly 1.4 Å (1 Ångström = 10–10 meters), while the radius of a pollen
particle is of the order of 10 micrometers (1 micrometer = 10–6 meters)).
The mathematical analysis of this phenomenon had a large impact on the
development of probability theory (Albert Einstein was one of the con-
tributors to this analysis). This theory is heavily used today to analyze a
wide array of probabilistic processes that have nothing to do with biology
or molecular motion.

6    ◾    Biological Computation

The Brownian motion example is not unusual. There is a close link
between the development of statistics and the study of probabilistic (or
stochastic) processes and the pursuit of biological questions. One of the
reasons for this link was the endeavor to collect, tabulate, and analyze
human populations (e.g., conducting a census of a state’s population).

Adolf Quételet (1796–1874) collected and analyzed height and weight
data and was amazed to discover that their distribution was a normal dis-
tribution (a “bell curve”). Up to his time normal distributions were used
only to explain measuring errors, mainly of astronomical phenomena.
Some of Quetelet’s discoveries were that the height of French army recruits
was normally distributed, as were the chest measurements of Scottish sol-
diers. Quetelet denoted the center of these distributions by the term the	
average	man (“l’homme moyen”) and believed that one can study social
phenomena by observing the differences in distributions among different
groups of people (e.g., among different races).

Quetelet’s ideas had a profound influence on Francis Galton (1822–
1911), who was a cousin of Charles Darwin and a polymath. Among his
other contributions to statistics, Galton pioneered the use of regression
for finding a linear function best describing a set of data and the notion
of correlation. He used these tools when investigating the heritability
of properties such as height (i.e., the relation between the height of par-
ents and their children) and the size of peas. Galton also dealt with the
problem of the disappearance of certain family names over time. This
research had influence on the study of stochastic	processes, which in turn
are used, among many other things, for researching the propagation of
diseases (epidemiology).

As a last example we’ll mention Karl Pearson (1857–1936), who was
a student of Galton. He also dealt with biometrics (measuring biological
properties). Among his many contributions is the Pearson correlation
coefficient, which is used to describe the quality of the correlation between
two random variables. Current medical research is based to a large extent
on statistical tools, and its quality depends largely on the planning of clin-
ical trials and a careful analysis of their results, using the techniques we
mentioned among other tools. These tools form the basis for the modern
concept of evidence-based medicine.

In 1948, Norbert Wiener (1894–1964) defined the term cybernetics
to describe the study of control systems. A central element of regulatory
and control systems is feedback, which occurs when two parts of a system
interact in a bidirectional fashion so that they influence each other. For

Introduction and Biological Background    ◾    7

example, think of a system composed of components A and B, such that
A influences B’s behavior and B influences the behavior of A. The two
major kinds of feedback are positive feedback and negative feedback. In
a positive feedback loop the system responds to the perturbation by fur-
ther changes in the same direction as the perturbation, whereas in nega-
tive feedback the system responds in the opposite direction and attempts
to revert to the initial state. We will see that feedback mechanisms allow
systems to self-organize and adapt to their environment.

Living organisms are capable of retaining their internal states in
response to a wide range of perturbations in their environment. For
instance, internal body temperatures in warm-blooded animals do
not change with the temperature of the surroundings (as long as those
changes are not too extreme). Similarly, athletes who train at high alti-
tudes with lower oxygen concentration develop more red blood cells
to maintain the amount of oxygen reaching their cells. This ability to
maintain a steady internal state is called homeostasis (homeo = similar,
stasis = standing still). Feedback loops play a central role in maintain-
ing homeostasis.

Wiener defined cybernetics as the science dealing with control and
communication in man-made and biological systems and was influ-
enced by biological examples. Even though cybernetics is no longer
considered an independent research field, its concepts and the basic
problems it dealt with are still used in designing and analyzing dynami-
cal systems.

Another area that posed major mathematical challenges is demograph-
ics, which is the study of populations (human and otherwise). Demographic
tools are important for forecasting population sizes and for understand-
ing the influence of habitat changes on populations. The mathematical
description of demographic processes uses complex classes of differential
equations. The need to study and solve these equations gave rise to various
mathematical developments.

1.3  BIOLOGICAL INTRODUCTION
In this section we present a few topics in biology with the goal of providing
the basic vocabulary needed for discussing biological phenomena. We will
limit ourselves to discussing general background material necessary for
understanding the following chapters, and more specific biological topics
will be explained in later chapters.

8    ◾    Biological Computation

Biology deals with living organisms. When encountering an object, we
find it trivial to decide whether it is a living object, but are we capable of
defining the difference between an animate and inanimate object? Can
we explain the basis of the differences? The answer cannot be found at the
physical level since living organisms are composed of the same building
blocks as all other matter: atoms, which are made up of protons, electrons,
and neutrons. The atoms are combined to create larger building blocks
called molecules. For instance, a water molecule contains two hydrogen
atoms and one oxygen atom. Living organisms contain carbon based mol-
ecules, known as organic molecules. Organic molecules are encountered
almost exclusively in living objects and as products of living organisms.
The main types of organic molecules are proteins, carbohydrates (sug-
ars), lipids (fats), and nucleic acids—ribonucleic acid (RNA) and deoxy-
ribonucleic acid (DNA). These molecules play a major role in almost all
processes occurring in any living organism.

The basic unit of living organisms is the cell. Organic molecules are
created by cells, are used for cellular activities, and make up cells. Even
simple single-cell organisms such as bacteria and yeast display a large
spectrum of types and behaviors: for example, some survive better at
high temperatures; some prefer colder environments; some require oxy-
gen, and others do not; they have different nutrient requirements. More
complex organisms made up of more than one cell are called multicel-
lular organisms.

One of the first tools needed to understand and research living organ-
isms is the ability to systematically group and categorize organisms. The
classification system is based on observing similarities between different
organisms. For instance, cats are more similar to each other than they are
to dogs; cats, lions, and tigers present many similarities to each other and
are different from dogs and wolves. Therefore, it is reasonable to impose a
hierarchical structure on these animals: all cats belong to the “cat” group,
which is a subset of the “feline” group that also contains tigers and lions,
and so on. The biological disciplines of systematics and taxonomy deal
with these classification problems.

A species is the lowest rung of the biological hierarchy. A species is
commonly defined as a group of organisms capable of interbreeding and
producing fertile offspring. Cats raised as pets (“house cats”) all belong
to one species, while all the feline species share various similar charac-
teristics. For example, here are the main categories used to scientifically
identify house cats:

Introduction and Biological Background    ◾    9

Kingdom: Animalia (animals)
 Phylum: Chordata
 Sub-Phylum: Vertebrata (vertebrates)
 Class: Mammalia (mammals)
 Order: Carnivora (carnivores)
 Family: Felidae
 Genus: Felis
 Species: Felis	catus

Tigers and lions, like the house cat, belong to the Felidae family but not
to the Felis genus. Organisms that are more similar to the house cat such
as the jungle cat (Felis	chaus) do belong to the Felis genus.

Every species and every higher-order class contains organisms with
similar characteristics, and researchers specializing in each group can
recite a large body of scientific knowledge about the particular proper-
ties unique to each group. In our discussion here we will be mostly con-
cerned with universal characteristics that apply to all organisms or at least
to a large set of species. This chapter will describe some of these univer-
sal characteristics. In Chapter 4 we will discuss neural networks that are
inspired by general principles observed in the nervous systems of highly
developed organisms. Chapter 6 discusses computational models inspired
by the immune system, which is found only in a subset of species, and by
the behavior of social insects.

Similar characteristics may indicate either that different species evolved
from a common ancestor or that they had to deal with similar environ-
mental challenges. For example, bats and bees have wings used for flying,
but their wings do not come from a common ancestor. The term anal-
ogy is used to describe organs or structures with an identical function,
while a similarity due to shared common ancestry is called homology.
Homologous structures may differ significantly in function and shape.
For instance, the limbs of whales, bats, and humans are homologous.
Another interesting example is the homology between the inner ear bone
structure in mammals and the jaw bones of fish. The source of the univer-
sal characteristics of all living organisms with which we will deal in this
book is very early in the evolution of life.

It is now accepted that each living organism belongs to one of three
domains. A basic distinction is between organisms with cells that have
a nucleus, called eukaryotes, and those that do not. A nucleus is a com-
ponent in the cell that contains most of the cell’s genetic material, or

10    ◾    Biological Computation

genome (we will discuss the cell structure in greater detail in the next
section.) This distinction has been known for a long while as it is often
possible to observe the nucleus using a simple light microscope. With
the advance of technology and molecular tools it became evident that
two types of cells do not have nuclei—Bacteria and Archaea. The evolu-
tionary distance between Bacteria and Archaea is large and it is wrong
to view them as two subsets of the family of all nucleus-less cells. Rather
than that, they are two separate classes at the same hierarchical level:
Bacteria and Archaea are the domains of the prokaryotes (nucleus-
less cells), whereas all organisms whose cells have a nucleus belong to
the Eukarya domain. Multicellular organisms, including the species of
Animalia, belong to Eukarya, but there are also eukaryotic single-cell
organisms.

You might have wondered where viruses fall into according to this clas-
sification. Remember that we discussed the classification of organisms
made of cells, but viruses are not cells and do not have all the mechanisms
that allow a cell to use energy, to manufacture proteins, and to reproduce.
Lacking these capabilities, it is debatable whether viruses should be con-
sidered living organisms. Viruses contain only genetic material and repro-
duce by penetrating a cell and reprogramming it to execute the instructions
contained in the genetic material of the virus. As such, viruses may be
considered the ultimate parasites.

Single-cell organisms (whether they are eukaryotes or lack a nucleus)
need not live in isolation. Bacteria form colonies that may be millions
strong. The bacteria in a colony not only live in proximity but also assist
each other by creating organized sheets of cells, which make it easier for
the bacteria to attach to the surface on which they live. For instance, dental
plaque is made up of bacteria that form a biofilm. Bacteria colonies can even
behave in an organized manner as can be seen when an obstacle is put in
the way of bacteria in a petri dish and the colony circumvents it (we discuss
this topic again in Chapter 2, where you will find photographs showing this
remarkable process). Dictyostelium discoideum is a particularly interesting
example of cooperation among single-cell organisms. It is composed of soil
amoebae that usually live and reproduce independently. When their living
conditions deteriorate—for example, when there is a food shortage—they
become organized into a complex multicellular structure that can contain
up to 100,000 cells and is surrounded by an extracellular skeleton. This
slug-like structure can react to temperature changes and move as a single
entity. In the next chapter we will discuss a computational model that can

Introduction and Biological Background    ◾    11

be compared to a colony of simple organisms and will show how systems
exhibiting complex collective behavior can be created within the colony.

A fundamental difference between a multicellular organism and a col-
ony of single-cell organisms is the differentiation of the cells into differ-
ent cell types, each of which has unique properties and well-defined roles
in the system. Differentiation is mainly a unidirectional process, whereby
differentiated cells cannot change into a different kind of cell and can sur-
vive only within the multicellular organism. For example, a neuron cannot
turn into a muscle cell. Only the genetic material existing in specialized
cells (the gametes or germ cells) is used in the reproduction of the multi-
cellular organism, while all other cells forego independent reproduction.
Some cells (e.g., the human red blood cells) do not even contain a nucleus
and genetic material. Stem cells exist in many tissues and in contrast with
other cells have the capability to reproduce and differentiate into differ-
ent types of cells and therefore have obvious medical potential. They have
been heavily researched in recent years.

When observing the organization and division of labor within mul-
ticellular organisms, it is evident that there are many levels of organiza-
tion, from the single cell up to the whole organism. Cells are organized
in tissues, which have specific functions. For instance, muscle cells can
contract and thereby allow the organism to convert energy into motion,
allowing it to operate, for example, the respiratory muscles and the
heart. Neurons are used for internal communication and also make up
the central nervous system (brain) in organisms that have one. Blood
cells (notice that blood is considered a tissue) are used to transport oxy-
gen and nutrients to the cells and to support the immune system and
also have other functions. Fat cells are used to store energy for times
of need.

Cells belonging to different tissues are organized in organs, which
have a specific function in the organism such as the heart, lungs, or
brain. Organs that interact with each other closely to perform a certain
function essential for the organism’s survival are called a system, such
as the respiratory system, the nervous system, the immune system, and
the reproduction system. Finally, the systems build up the whole multi-
cellular organism. The origin of such a modular organization is a central
topic in our attempts to understand life (we will see in the next section
that even a single cell has a modular structure with different compo-
nents responsible for fulfilling specific tasks). We return to this issue in
the last chapter.

12    ◾    Biological Computation

1.3.1  The Cell and Its Activities

The cell is the basic unit of life, both structurally and functionally. Its
activities include the absorption of nutrients, energy production from the
nutrients (and from the sun in photosynthetic cells such as plant cells),
interaction with other cells, and reproduction. Many types of cells can
perform more specific functions and react to external stimuli.

The activity of cells is cyclical, following a procession called the cell	
cycle. The cycle begins when a new cell is created, progresses through liv-
ing and growing, and concludes when the cell divides producing two new
daughter cells. We will focus on the structure and functions of eukary-
otic cells. Eukaryotic cells divide using a process called mitosis or using
another process called meiosis, which produces the gametes that partici-
pate in reproduction.

As previously stated, eukaryotic cells contain a nucleus, which contains
the cell’s genetic material. The cytoplasm, which surrounds the nucleus,
is where most of the living processes of the cell not related directly to pro-
cessing of the genetic material occur (see Figure 1.1).

The bulk of genetic material is stored in molecules called DNA. The
data encoded in the DNA is used by the cell to build proteins. Proteins are
built up from sequences of smaller molecules called amino acids. To build
a protein, the cell first builds a chain of amino acids. The DNA codes both
the identity and the order of the amino acids in the protein. Enzymes are
an important group of proteins and are responsible for executing the cell’s

Ribosomes

Cell membrane

Nucleus

Mitochondria

Chromatin (DNA)
Nuclear envelope

FIGURE 1.1  The general structure of a eukaryotic cell.

Introduction and Biological Background    ◾    13

activities by participating in chemical reactions. They enable the cell’s
activities by acting as catalysts, that is, by increasing the rate at which
chemical reactions occur in the cell by reducing the amount of energy
needed for the reaction. A fundamental property of catalysts is that their
amount does not decrease due to the chemical reaction they enable, and
therefore they can continue participating in further chemical reactions. It
is often the case that without a catalyst the rate of reaction is so low that
the reaction is virtually nonexistent. As enzymes are organic catalysts, we
say that they “perform” the cell’s activities.

Chapter 5, which deals with molecular computation, shows how we can
make use of biological molecules to implement computational processes.
The computations involve, for example, the cutting and splicing of DNA
molecules performed by various enzymes. As we will see, some enzymes
perform general functions, while others are very specific in their activities
and exist only in certain organisms.

The cytoplasm contains organelles, which have a variety of func-
tions. One of the most important organelles is the mitochondrion (plural
mitochondria), which is the cell’s “power plant.” The mitochondrion is
responsible for producing energy from sugars by using oxygen. It builds
special molecules that are used as a source of chemical energy by the cell.
In plant and algae cells there exists another important organelle called the
chloroplast, which is responsible for photosynthesis. This is the process
whereby CO2 and water combine into sugar molecules containing energy
(e.g., glucose) by using solar energy. This process releases oxygen. Most
of the animal kingdom ultimately depends on this process as a source
of energy (eating sugars provides energy). Some bacteria also photosyn-
thesize; however, they do not have chloroplasts, and their photosynthesis
occurs directly in the cytoplasm.

Another essential role of plants in the living world is that of nitrogen	
fixation. Nitrogen is a building block of amino acids and is therefore
necessary for building proteins. Atmospheric nitrogen is relatively inert
and does not interact readily with other elements. There are bacteria
that fix nitrogen, mainly by a symbiotic process with plants in which
soil bacteria fix nitrogen in the roots of plants. The plants synthesize
amino acids, which are a source of nitrogen for organisms that feed on
plants.

Ribosomes are another important component of the cell. They are
responsible for creating proteins based on the genetic information. We
will expand on this fundamental process later.

14    ◾    Biological Computation

The cell is enclosed in a cell membrane, which is composed of many
organic molecules, among them proteins and lipids (fats). The mem-
brane is not just a sac containing the cytoplasm but is rather a com-
plex structure that deals with the passive and active transfer of material
to and from the cell and is involved in cell adhesion and intercellular
communication.

The cell’s cytoplasm contains other organelles that are responsible for
digesting molecules in the environment, that complete the building of
proteins after they are synthesized by ribosomes, that deal with cellular
division, and more. In the past the cytoplasm was considered to be a disor-
ganized “soup” in which the organelles and other cellular molecules live,
but today we know that it has a complex internal structure that deter-
mines the location of the different organelles, the regions where cellular
processes occur, and more. The internal skeleton of the cell is involved in
cellular motion, material transfer in the cell, organelle motion, and even
cell division, when the cell divides the cytoplasm and its contents are split
between the two daughter cells.

1.3.2  The Structure of DNA

DNA (deoxyribonucleic acid) is a complex chain-like molecule. Its struc-
ture was discovered by James Watson and Francis Crick in 1953 in a
major breakthrough in understanding the heredity processes and life in
general. We will focus on the properties that enable DNA to be used as
data storage used to code for proteins and on the properties of DNA that
enable its replication in cell division.

DNA is composed of a long sequence of bases or nucleotides. The back-
bone of the DNA molecule is formed by sugars and phosphates to which
the bases are attached. There are four types of bases: adenine (A); cytosine
(C); guanine (G); and thymine (T). One of the major roles of DNA is to
code for proteins. We will see later how the sequence of nucleotides deter-
mines the sequence of the amino acids that constitute proteins.

One of the first discoveries about DNA was that in every species tested
the amount of adenine was equal to the amount of thymine and that the
amount of cytosine was equal to the amount of guanine. This is a conse-
quence of the way DNA is organized, but it took a few more years until
its exact structure was determined. The model suggested by Watson and
Crick explains the equal amounts of adenine-thymine and cytosine-gua-
nine to be the result of DNA molecules being made up of two side-by-side
strands. Each strand is a sequence of nucleotides, and each nucleotide in

Introduction and Biological Background    ◾    15

one sequence matches (complements) a nucleotide in the opposite strand.
This base pairing is such that an A in one strand matches a T in the other
strand, and a C matches a G (Figure 1.2). The two strands spiral around each
other to form a structure called a double helix (Figure 1.3). Each strand has
a direction dictated by the orientation of its backbone, and the convention
is that each strand runs from the 5' end (pronounced “five prime end”) to
the 3' end (Figure 1.3).

The base pairing is due to chemical bonds (hydrogen	bonds) between the
A and T bases and between the C and G bases. If we suspend two comple-
mentary single DNA strands in a solution, they will anneal with each other
due to the base pairing and will form a double-stranded DNA molecule.

The exact DNA sequence of each organism is unique. Human DNA
contains roughly three billion bases; therefore, the number of possible
sequences is beyond imagination. The genetic differences between different
species such as humans, chimpanzees, mice, and the tetanus bacteria are
characterized by the length of their DNA sequences and the order of their
bases. Organisms of the same species also have unique DNA sequences,
but the similarity between any two individuals of the same species is very

A
H

H
H

H

H

H

H

H

H

C

C

C

C C

C

N

N
N

N

N O

C

C

O
C

C

C

C
N

N

T

G C

H
H

H

HN

C
C

N

C

C
C

C

C
N

N
N

C
C

C C

N

N
O

H

H

H
H

FIGURE 1.2  The structure of the nucleotides and their pairing.

16    ◾    Biological Computation

high (more than 99% for humans). Nonetheless, these small variations
account for the huge variability we encounter.

To summarize:

 1. The order of nucleotides in the DNA molecule codes the genetic
information stored in the molecule.

 2. The two DNA strands match according to the base matching rule: A
with T, C with G.

1.3.3  The Genetic Code

After discovering the structure of DNA, the next major challenge was to
understand the genetic	code, that is, to understand how the order of the
bases determines the sequence of amino acids in proteins. The research
undertaken to decipher the genetic code is a fascinating topic we cannot
delve into here, but its main result was that the identity of each amino acid
in a protein is determined by a sequence of three nucleotides in the DNA
molecule. Therefore, one has to read the DNA sequence as if it was made
up of words, each of which contains three nucleotides. Each such word

T

C

C

T A

A

G

G

H
H

H
H
H

H
H
H

H
H

Diameter is 2 nm

Distance between adjacent
base pairs is 0.34 nm

�e helix makes a turn
every 3.4 nm

Base pairing is the result of hydrogen
bonding between A and T and

between G and C.

3'

3'

5'

5'

FIGURE 1.3  The double helix structure.

Introduction and Biological Background    ◾    17

is called a codon. With minor exceptions, all living organisms use the
same genetic code, and given a codon we can identify the corresponding
amino acid. It is easy to see that there are 64 possible codons (4 × 4 × 4); as
there are only 20 amino acids, most amino acids correspond to more than
one codon. The mapping between codons and amino acids is called the
genetic	code and is shown in Figure 1.4.

The almost complete universality of the genetic code confirms its early
origin in the history of life, which is to be expected. On the other hand, one
may wonder why the genetic code did not continue to evolve and change
in different families of organisms. A possible explanation is that charac-
teristics necessary for survival are intolerant of change, and as a result
the original characteristics are preserved and cannot change or improve
even if they originated due to “historic accidents.” Arguing against this
answer is that some organisms have developed a few variations on the
genetic code and survived. For example, the mitochondria have their own
genome that is different from the genome of the nucleus. The genetic code
used by the mammalian mitochondrial genome deviates slightly from the
standard genetic code. This leads to the hypothesis that the universality of
the genetic code is not only because any change in it will be catastrophic

GG T
GG C
GG A
GGG

Gly
G A T
G A C
G A A
G AG

Asp

Glu

G T T
G T C
G T A
G T G

Val
G C T
G C C
G C A
G C G

Ala

AG T
AG C
AG A
AGG

Ser

Arg

A A T
A A C
A A A
A AG

Asn

Lys

A C T
A C C
A C A
A C G

A T T
A T C
A T A
A T G

Ile

Met

C G T
C G C
C G A
C GG

Arg
C A T
C A C
C A A
C AG

His

Gln

C T T
C T C
C T A
C T G

Leu
C C T
C C C
C C A
C C G

Pro

�r

Ser
T C T
T C C
T C A
T C G

T T T
T T C
T T A
T T G

Phe

Leu

T A T
T A C
T A A
T AG

Tyr

Stop
Stop

T G T
T G C
T G A
T GG

Cys

Trp
Stop

C GT

T
T
C
A
G

T
C
A
G

T
C
A
G

T
C
A
G

C

A

G

A

Fi
rs

t L
et

te
r

�
ird

 L
et

te
r

Second Letter

Ala = Alanine
Arg = Arginine
Asn = Asparagine
Asp = Aspartate
Cys = Cysteine

Gln = Glutamine
Glu = Glutamate
Gly = Glycine
His = Histidine
Ile = Isoleucine

Leu = Leucine
Lys = Lysine
Met = Methionine
Phe = Phenylalanine
Pro = Proline

Ser = Serine
�r = �reonine
Trp = Tryptophan
Tyr = Tyrosine
Val = Valine

FIGURE 1.4  The genetic code and the names of the amino acids.

18    ◾    Biological Computation

but rather because the genetic code in its current form has evolutionary
advantages. The jury is still out on this issue.

Not all of the DNA sequence codes for proteins. A sequence of DNA
nucleotides that codes for a specific protein is called a gene. We should
note that an exact definition of the notion of gene has proven elusive, and
the definition of the term has changed as more and more of the complexi-
ties of the control mechanisms involved in producing proteins have been
discovered. It is worth pointing out that the genes (i.e., the protein coding
sequences) are distributed in the genetic material and in higher species
constitute only a small fraction of the total genome. There is a lot of active
research on the functions of the rest of the genetic material. Sequences
that used to be called junk DNA and were thought to be useless turn out
to have roles in organizing the genome and determining which genes are
expressed in the cells. It has been discovered in recent years that many
RNA molecules are transcribed from DNA—the first step in protein syn-
thesis—but are not used to build proteins (protein synthesis is discussed
in the next section). These RNA molecules (called noncoding RNAs or
ncRNAs) have many roles, and it is already clear from what we know about
them that they have a major importance in the regulation of the genome.

1.3.4  Protein Synthesis and Gene Regulation

As previously discussed, the DNA is a double helix containing two
strands, and a protein is composed of a sequence of amino acids. When
a DNA molecule is to be “read” so that it can be decoded and a protein
can be synthesized, the helix is unwound, and the information is read
from one of the strands. Here again the base pairing is essential. In
the first stage an RNA molecule called messenger RNA (abbreviated
to mRNA) is created. RNA is similar to a single DNA strand—it also
contains four types of nucleotides: adenine, cytosine, guanine, and,
instead of thymine found in DNA, uracil (U), which pairs adenine.
We will ignore the chemical differences between mRNA and single-
stranded DNA.

To create an mRNA molecule the double helix of DNA is opened at
a certain point, and an RNA molecule is built on one of the separated
strands using base pairing. This transcription process is aided by enzymes
called RNA	polymerases (the process is schematically described in Figure
1.5). It is interesting to note that the transcription can happen on either
of the DNA strands, and it is erroneous to think that one strand contains
the genetic data and the other strand only complements it. In fact, both

Introduction and Biological Background    ◾    19

strands contain protein building instructions in different locations in
the genome. The mRNA transcription process starts at a region called a
promoter, which marks the beginning of the gene and terminates at a
sequence used as the termination signal. The promoter is in front of the
transcribed region but is not always directly adjacent to it.

In eukaryotes mRNA transcription happens in the nucleus. After
the mRNA is formed, it leaves the nucleus, and protein synthesis can
start. The process whereby the information stored in the RNA mol-
ecule is converted into a sequence of amino acids is called translation
and is performed by a cellular complex or machine called a ribosome.
The ribosome reads the RNA molecule codon by codon (recall that a
codon is a sequence of three nucleotides). The mapping of codons to
amino acids is represented in the cell by another kind of RNA, known
as transfer RNA (tRNA). A tRNA molecule is attached at one end to a
specific amino acid and at its other end to an anticodon—three bases
that are complementary to a codon. When a ribosome is to deal with a
particular mRNA codon, the appropriate tRNA molecule attaches to it
using base pairing with the anticodon, and the amino acid is detached
from the tRNA and attached to the growing sequence of amino acids
that will make up the protein. Now the ribosome moves on to the next

U
U

C
C

C
AA UU U GG

T
A

A

T
A

U
G GC

G

C
G

T
A

T
A

C
G

C
G C

G

AA T TT T GGG A G

TT A AA A CCC T C

Newly made RNA Template strand
of DNA

RNA nucleotides

Non-template
strand of DNA

FIGURE 1.5  The transcription process.

20    ◾    Biological Computation

mRNA codon and so on until the ribosome reaches the stop	 codon.
Stop codons do not have corresponding tRNA molecules. The stop
codon means that the sequence of amino acids is complete and that
the corresponding protein has been synthesized in its entirety. Since
protein production is crucial to cells, many thousands of ribosomes in
each cell are constantly synthesizing proteins.

Proteins are chain-like linear (nonbranching) sequences of amino acids.
Each amino acid (see schematic structure in Figure 1.6(a)) has a part called
the backbone, which is virtually identical for all amino acids and a part
called side chain (denoted here by R), which is different in each of the 20
amino acids and gives each amino acid its special characteristics. Proteins
are the machinery that operates the cell, and therefore most proteins have
a unique three-dimensional structure that allows them to perform their
function. The linear chain of amino acids folds and twists according to
chemical and physical laws after the protein has been synthesized (a sche-
matic structure of a protein can be seen in Figure 1.6(b)). In some cases
other proteins are involved in achieving the three-dimensional struc-
ture necessary for the protein to function. Some proteins consist of more
than one linear chain of amino acids that combine to create the complete
protein.

The three-dimensional structure determines the protein’s behavior in
the cell as proteins interact with each other and with other cellular mate-
rial according to their physical shape. For example, hemoglobin, which

(a) (b)

H

HH

H

O

CC

O
R

N

FIGURE 1.6  (a) A schematic structure of a single amino acid where R represents
the side chain that is different for each of the 20 amino acids. (b) A schematic
structure of a protein that is a folded linear chain of amino acids. The ribbon
represents the backbone of the amino acid chain with the various amino acids
branching from the backbone. (The protein is polymerase β consisting of 355
amino acids.)

Introduction and Biological Background    ◾    21

carries oxygen in the bloodstream to the muscles, has four cavities that
can be loaded with heme, an iron compound that can bind to oxygen.

Researchers distinguish between several levels in the organization of
proteins. The first, called the primary structure, refers to the sequence of
amino acids. The secondary structure describes local structures along the
amino acid sequence such as different kinds of helices, extended strands
that combine to create sheets, turns, and loops. These structures are
maintained by a network of chemical bonds (hydrogen bonds) between
neighboring amino acids. The three-dimensional structure of a protein is
referred to as its tertiary structure and describes the three-dimensional
location of each atom in the protein.

Determining the tertiary structure of proteins can provide important
clues about how they perform their function. Protein structure can be
determined using experimental methods such as crystallography using
x-rays and nuclear magnetic resonance (NMR). Finding the three-dimen-
sional structure of proteins is an expensive and complex undertaking, and
the exact structure of only a relatively small fraction of proteins is known.
As the tertiary structure is derived from the amino acids sequence, an
ongoing effort exists to build computational tools that will predict the spa-
tial structure for a given sequence. Although in recent years significant
progress has been achieved in several aspects of the problem, by and large
the current tools have only limited success in predicting the three-dimen-
sional structure of proteins.

To summarize, in the simplest case protein synthesis consists of the
following steps. An mRNA molecule is transcribed from the DNA mol-
ecule, and the information stored in the mRNA molecule determines the
sequence of amino acids in the synthesized protein (translation). The uni-
directional information transfer DNA → mRNA → proteins is called the
central dogma of molecular biology.

As research progressed it became obvious that the central dogma does
not cover all possible variations and processes. For example, the genetic
material of retroviruses (e.g., HIV) is stored in RNA and the virus injects
itself into the genome of the host cell. This RNA → DNA process is called
reverse	transcription.

One of the central research topics today is that of understanding the
processes that determine which genes will be expressed in the cell (i.e.,
will be translated into proteins) and at what point in time. Gene	regula-
tion requires different levels of control. At the most basic level, the DNA
molecule contains regulatory regions called promoters, which are usually

22    ◾    Biological Computation

close to the DNA region that codes for a protein. Recall that, for a gene to
be expressed, RNA polymerase has to transcribe it to an mRNA molecule.
The promoter allows the RNA polymerase to home in on the correct loca-
tion in the DNA. In eukaryotes, proteins called transcription	factors are
attached to the promoters and are responsible for attaching to the RNA
polymerase. Thus, the protein will not be expressed if the promoter is
inaccessible (e.g., due to a fold in the DNA). As different cells express dif-
ferent proteins, we find that different promoters are “active” in different
cells, and by experimentally attaching a gene to a particular promoter one
can cause it to be expressed in certain cells (e.g., in muscle cells or in nerve
cells). Cellular regulatory processes are of course much more complicated
and are different for bacteria and eukaryotes.

One of the first regulatory structures to be understood was that of
the operon in bacteria in which a few consecutive genes are jointly reg-
ulated (Figure 1.7). In addition to the promoter the operon contains
another DNA sequence before the gene or genes, called the operator.
Proteins, called repressors, influence gene expression by attaching to

Promoter Operator lacZ lacY lacA

lacZ lacY lacA

Lac repressor
(active)

RNA polymerase cannot
bind to promoter

Transcription repressed

Lactose sugar
binding site

lacZ lacY lacA

Inactivated
repressor

Transcription allowed

�e inducer
(Lactose)

FIGURE 1.7  A schematic structure of the lac operon which controls the metabo-
lism of the sugar lactose depending on the presence of glucose. Three genes lacZ,
lacY and lacA are under joint control. The lac repressor is attached to the operator
region and thus prevents the RNA polymerase from initiating transcription from
the promoter. Once a sugar is bound to the repressor it cannot attach to the DNA
and the polymerase can bind to the promoter and transcription is initiated.

Introduction and Biological Background    ◾    23

the operator and thereby preventing or reducing the transcription rate.
Repressors work in two major ways. In one mechanism the repressor
is constitutively bound to the DNA and prevents transcription. When
an inducer molecule is present in the cell it attaches to the repressor
molecule, changes its conformation, and prevents it from attaching to
the operator and thus enables transcription. In another mechanism, the
repressor is not regularly bound to the operon sequence. The repressor
protein may exist in the cell but may not be able to attach to the opera-
tor unless another molecule is attached to it and changes its conforma-
tion. When this happens the repressor can attach to the operator and
block transcription. In both mechanisms repressors implement negative
control, or inhibition, on gene expression. Other mechanisms imple-
ment positive control in which molecules called activators strengthen
the affinity of the transcription machinery to its target DNA and thus
increase the transcription rate of a gene or set of genes. Additional regu-
latory mechanisms operate on the mRNA and even at the protein level.

1.3.5  Reproduction and Heredity

One of the main characteristics of the living world is reproduction, a pro-
cess whereby parents create offspring and pass their characteristics on to
them. The information transfer from parent to offspring is called inheri-
tance. Inheritance exists already at the single-cell level as previously noted:
a cell can divide and generate two new cells. An important component of
inheritance is the passing on of genetic material in the DNA.

The term genotype is used to describe the heritable (or genetic) infor-
mation, and phenotype is used to describe the physical characteristics and
behaviors of the organism (which, of course, change over time). Generally
speaking, the phenotype is derived from the genotype under the envi-
ronmental conditions the organism encounters during development. It is
common to assume that changes to the phenotype (e.g., breaking a leg,
getting the flu) do not change the genotype and are not passed on to sub-
sequent generations (we expand on this issue in Chapter 3). Genetics is the
biological field dealing with inheritance.

Recall that the genetic information (the genotype) is stored as DNA
molecules. In eukaryotes the information is distributed among a few
DNA molecules. A DNA molecule together with a few attached protein
molecules form a unit called a chromosome. The cells of most species
contain several chromosomes. The number of chromosomes is the same
in all the cells of a multicellular organism, except for the gametes.

24    ◾    Biological Computation

Cells go through a number of stages that occur in a fixed order; this
constitutes the cell	cycle. The cycle starts with the formation of a new cell
and ends when the cell divides, and each of its descendents starts its own
life cycle. The last phase of the life cycle—mitosis—is the phase where
the cell actually divides. We first focus on the previous phase, in which
the DNA is replicated and the chromosomes get duplicated, known as the
replication	phase.

The structure of the DNA molecule as previously discussed lends itself
to the possibility of duplicating the genetic information. Just as the syn-
thesis of an mRNA molecule uses one of the DNA strands as a template, a
new DNA strand can be created from a previous one by base pairing. To
generate a double stranded copy of the DNA molecule, the two original
strands separate, a complementary strand is created from each of them,
two new double helixes are formed, and cell division can proceed. This
process involves many enzymes, of course. Among those are DNA	poly-
merases, which synthesize DNA fragments, and DNA	ligases, which join
together the DNA fragments. Errors in replication are one source of muta-
tions, random changes in the genetic information.

Not all species reproduce by the mating of male and female individuals.
Some species of plants, aphids, and other organisms can reproduce asexu-
ally in a process whereby a single parent passes a copy of its complete
genome to its descendents, similar to the way a single cell divides. Ignoring
mutations, these descendents have genetic information that is identical to
that of their parent. The situation is more complex in sexual	reproduction.
The genes in the cells of organisms that undergo sexual reproduction are
organized	in	pairs, where usually one comes from the father and the other
from the mother. We have already noted that different individuals may
have different versions of the same gene. A peculiar example is the texture
and color of earwax. Two types of earwax in humans are controlled by
a single gene (called ATP-binding cassette C11). One version of the gene
gives rise to an individual having brown-yellow wet earwax (the form that
predominates in Africa and Europe), whereas another leads to gray dry
earwax (common among East Asians). The different versions of one gene
are called alleles. As the two genes in each pair originate in different par-
ents, they may be different alleles. In other words, in sexual reproduction
new combinations of alleles are created, giving rise to diverse individuals,
and the offspring in a sexually reproducing population will be different
from their parents. The differences between the individuals are the raw
material for the evolutionary process discussed in Chapter 3.

Introduction and Biological Background    ◾    25

We now briefly discuss the cellular basis of sexual reproduction. The
cells of organisms that reproduce sexually contain pairs of chromosomes,
where one chromosome originates in the father and the other in the mother.
These cells are called diploid, and the number of chromosomes in them is
denoted by 2n. Both chromosomes in a pair are of the same length and
have genes for the same characters. They are called homologous chromo-
somes. Human cells contain 23 pairs of chromosomes (n	= 23) and there-
fore contain 46 chromosomes.

A noteworthy pair of human chromosomes is the sex	chromosomes.
They come in two forms, the X	 chromosome and the Y	 chromosome,
which have different lengths. In females the genotype is XX (i.e., each cell
contains two X chromosomes), whereas the male genotype is XY. As males
can inherit the Y chromosome only from their father, one can use genetic
markers on the Y chromosome to test for paternity and to establish pater-
nal lineage.

An obvious question arising from this discussion is what impact does
the difference between alleles in homologous pairs have on a phenotype?
The answer is complex and differs from situation to situation. For some
properties it suffices to receive the corresponding allele from one of the
parents (an allele having this property is considered to be dominant),
while other properties require getting the appropriate allele from both
parents (recessive alleles). Returning to the previous illustration, it turns
out, for example, that the wet earwax allele is dominant over the dry one.

As a diploid cell contains 2n chromosomes, it would seem that the
descendant’s cells, receiving the chromosomes of both parents, will con-
tain 4n chromosomes, and the number of chromosomes will double from
one generation to the next. This runaway process does not happen as the
genetic information is passed on by specialized cells called gametes (in
mammals, an egg or a sperm). These are created by a special division pro-
cess called meiosis or reductional	division and contain only one chro-
mosome from each pair. These cells are called haploid, and the number
of chromosomes in them is denoted by n. This allows the descendants to
have diploid cells, where each homologous chromosome pair contains one
chromosome from each parent.

From the current perspective one essential element of meiosis is of par-
ticular interest: the mixing of information between the homologous chro-
mosomes. This process is called crossover and happens by a pairing up of
the homologous chromosomes and exchange of corresponding sections of
DNA. The location of the exchange sites is random to a large extent.

26    ◾    Biological Computation

If each gene had only one possible molecular form (i.e., a single pos-
sible allele), the crossover would have no effect. But as many genes have
different alleles, the chromosomes in a homologous pair are not identical;
therefore, the crossover process gives rise to new combinations of alleles,
producing descendants that have different properties.

After the crossover the cells are still diploid, but their chromosomes
are a new combination of alleles. The reduction in the number of chro-
mosomes happens during meiosis when the cell divides into two haploid
cells, each of which contains only one copy of the genetic informa-
tion that has already undergone crossing over. (In reality, this process
is more complex. Before the reductional division the genetic informa-
tion is duplicated. Thus, meiosis can be described schematically as 2n
→ 4n (duplication) → crossover → 4 haploid cells.) Moreover, note that
the haploid cells contain one chromosome chosen randomly from each
pair of homologous chromosomes, which have already been recombined
using the crossover process. In humans this allows for more than 8 mil-
lion (223) possible combinations of 23 chromosomes.

The last stage of sexual reproduction is fertilization, when a male gam-
ete and a female gamete combine to create a new diploid cell. So in humans
the 23 chromosomes from the father combine with the 23 chromosomes
from the mother to create 23 homologous pairs of chromosomes. This
process again increases variation as two random gametes, picked from the
many gametes available to each parent, participate in the fertilization.

To summarize, sexual reproduction increases variation in the popula-
tion via several mechanisms:

 1. Random crossover.

 2. Random selection of one chromosome from each homologous pair.

 3. Random selection of the gametes that will undergo fertilization.

In Chapter 3 we will see how it is possible to mimic these various
mechanisms to solve search	problems, in which a solution to a problem is
sought from a large space of candidate solutions.

1.4  MODELS AND SIMULATIONS
We mentioned at the beginning of this chapter that using concepts from
the biological sciences in computer science can be viewed as “translating”
biological phenomena into formal mathematical models. The translations

Introduction and Biological Background    ◾    27

we will deal with in this book are not exact translations but rather the
usage of certain elements of the biological phenomena as an inspiration
for computational and mathematical ideas.

A mathematical model of a system describes the behavior of the sys-
tem using mathematical tools such as variables, equations, functions,
and rules. Historically, it was common to separate models to two types:
models described using differential equations that were used to explain
continuous deterministic systems and models defined by sets of rules
suitable for describing discrete systems that may be nondeterministic.
The first type of model might be appropriate for modeling the flow of
blood in the circulatory system by a set of equations, whereas models of
the second type might be more appropriate for modeling the immune
system. In recent years, however, many models are hybrids that combine
both techniques.

Many disciplines use mathematical models. They are particularly prev-
alent in the natural sciences, but mathematical models are also used heav-
ily in social sciences such as economics and sociology. A model focuses on
the properties of the system to be studied and describes them formally and
exactly. Ideally, this allows for a formal and exact analysis of the system,
or at least for gaining a better understanding of the system and its behav-
ior. Models can also be used for predicting the behavior of the system,
even when the reasons for the behavior are not well understood. This may
help when trying to intervene with a system in order to change its behav-
ior. A case in point is ecological models that can predict the outcome of
introducing a new species into an environmental niche and the complex
dynamics that might ensue.

After a system is described as a model, it can be handled in two ways:

 1. Finding analytical solutions of the model: This approach is appro-
priate when the model is described by equations or functions that are
amendable to analytic analysis.

 2. Simulating the behavior of the system: This is useful when the sys-
tem is described by a set of rules that are not necessarily determin-
istic or by equations that cannot be solved analytically. Simulations
do not analyze the system mathematically but rather use a math-
ematical description of the system to simulate its behavior, usually
with the aid of computer programs. The simulation calculates the

28    ◾    Biological Computation

changes in the variables describing the system according to the
rules specified by the model. This is usually done iteratively as a
step-by-step process.

When building a model the most important decisions are identifying
the variables that characterize the system and its behavior. The model is
usually a simplified representation of the system which is tractable; for
this purpose, only the properties necessary for describing the particular
behavior being studied should be represented in the model.

Here are a couple of examples of models arising in different fields:

• Consumer behavior: A simple model of consumer behavior stipu-
lates that the consumer has to choose among n products denoted 1, 2,
…,	n whose prices are p1,	p2,	…,	pn respectively. The consumer is rep-
resented by a utility function U,	which determines the consumer’s
satisfaction and is a function of the quantities of each of the items
the consumer buys. The larger the value of U the more satisfied the
consumer is. Note that the function U reflects the particularities of
an individual consumer, who might, for example, be an individual
who feels the highest satisfaction when owning a small number of
necessary worldly goods or a greedy individual who wants the high-
est quantity of each product he can afford. Each consumer has a bud-
get M, which is used to buy the products. The goal of the consumer
is modeled as an optimization	problem, where U is to be maximized
under the constraint that the money spent cannot surpass M.

• Growth of a bacteria colony: The next chapter presents a simple
mathematical model of the growth of a bacteria colony in the lab.
That model does not attempt to be completely precise biologically.
The reproduction law we will describe states that the colony grows at
a rate proportional to the colony’s size at every point in time. If we
denote the number of bacteria at time t as y(t), we can derive a simple
differential equation that describes the exact behavior of the func-
tion y(t). (The solution to such an equation is described in the next
chapter.) This function allows us to calculate the size of the bacteria
colony without having to resort to simulations. Note that this model
is oversimplified and ignores many parameters such as the influence
of the amount of available nutrients on the colony’s size, the influ-

Introduction and Biological Background    ◾    29

ence of its density on its growth rate, the minimal amount of time
needed for bacterial reproduction, and more.

• L-systems, or Lindenmayer systems, are a mathematical formal-
ism based on term rewriting proposed by the biologist Aristid
Lindenmayer for modeling the growth and development of plants.
More recently, L-systems have found several applications in com-
puter graphics. An L-system is specified by a set of rewrite rules of
the form X → Y, meaning that every occurrence of the symbol X is
replaced with the string Y. The rules of the L-system grammar are
applied iteratively starting from an initial state. As many rules as
possible are applied simultaneously, per iteration. For example, start-
ing with the string A and the rules A → AB, B → A, the resulting
strings are AB, ABA, ABAAB, ABAABABA and so on (keep in mind
that all possible replacements are done simultaneously, so each time
the rules are applied the result is a new string that will be the seed
of the next iteration). When the strings produced by L-systems are
interpreted as graphic commands they can be used to produce strik-
ing fractal images, some of them reminiscent of biological patterns.

 For example, starting with the string F the system composed of the
rule F → F + F − F − F + F, produces the strings F, F + F – F – F + F, F
+ F – F – F + F + F + F – F – F + F – F + F – F – F + F – F + F – F – F +
F + F + F – F – F + F, and so on. If F is interpreted as the instruction
“draw forward” and + and – as a turn of 90° left or right, respectively,
the strings can be executed and result in drawings of a variant of
the Koch snowflake (see Figure 1.8). By adding more symbols, it is
possible to model more complex patterns, for example, patterns of
branching growth.

Generation 1:

Generation 2:

Generation 3:
etc.

FIGURE 1.8  The first three generations in the evolution of the Koch snowflake.

30    ◾    Biological Computation

 The L-system starting with the symbol X and the rules X → F – [[X]
+ X] + F[+FX] – X, F → FF leads to complicated tree structures. The
strings are interpreted as before, with + and – specifying turns of 25°.
The symbols [and] are the magic behind the branching structure.
When executing the string, [is interpreted as a command to store
the current position and angle on a stack, and] is a command to
return to the position and angle of the last push. Finally, note that
the symbol X does not affect the drawing. When the string is inter-
preted as drawing instructions, we can simply ignore the X’s. Their
role in the string is to serve as placeholders, allowing the L-system
to keep track of the structure of the curve. Figure 1.9 shows the first
two iterations of this L-system.

These examples of models demonstrate how assumptions about the
behavior of a given system are used to build a model and how they are
formalized during that process. Sometimes these assumptions will allow
only a single outcome, whereas in other cases the hypotheses allow for
a family of common behaviors, all of which adhere to the constraints of
the model. The model allows us to analyze the system and come up with
hypotheses that are used to further investigate the system, either by test-
ing them on the model (e.g., using additional simulations) or by studying
the system directly, back in the lab or in the field. The crucial question of
course is whether the model gives a faithful representation of the system.
This is a complex question for a number of reasons. First, the model sim-
plifies the system and therefore may not allow for a direct comparison of
its variables with the parameters and data that can be measured directly
from the system. Also, when building the model we neglect many of the
system’s components, and therefore, even if it behaves in a similar fashion
to that of the system, it is unclear whether the neglected components are

FIGURE 1.9  A simulation of plant growth by an L-system.

Introduction and Biological Background    ◾    31

crucial for understanding the behavior of the real system. Furthermore,
the model may behave accurately in some cases and deviate from the sys-
tem’s behavior in other circumstances, say when the initial conditions are
varied. These and other questions all have to be considered when building
a formal model that attempts to describe a natural system.

An important point to consider is whether the fact that a model pres-
ents a behavior matching the behavior of the system it models provides
an explanation	of that behavior. If our goal is to understand the causes of
a particular behavior, a simple simulation will not necessarily suffice. On
the other hand, if we aim to find the minimal requirements needed for a
system to present a particular behavior, a model may present a satisfactory
answer and be considered explanatory. In Chapter 4, dealing with neural
networks, we will see that it is easy to build models that present useful and
complex behaviors, even though gaining an insight into how the system
achieves these goals can be extremely difficult. These models act as black
boxes: we define the initial conditions and the rules of behavior and allow
the system to self-organize accordingly, thereby often losing the ability to
analyze the role of each component in the system, or at least making this
task very difficult.

The use of formal mathematical tools to build faithful models of bio-
logical phenomena is outside the scope of this book. That field is called
theoretical biology or systems biology and makes use of a wide range
of mathematical and computational tools (systems biology is discussed
briefly in Chapter 6). It is interesting to note that experimental biologists
also take advantage of a completely different kind of models: they perform
research on species called model organisms, which are easy to use in the
lab, in an effort to understand processes also occurring in other species
or even across the living world. Often used model organisms are yeasts:
particularly the baking yeast (which is a single-cell eukaryote); the micro-
scopic roundworm C.	elegans, for which the developmental trajectory of
each of its 1031 cells has been worked out to amazing detail; the fruit fly
Drosophila, which has easily observable chromosomes and was used in
groundbreaking work in genetics; and mice, which as mammals are closer
to humans. Model organisms for plants include Arabidopsis and tobacco,
which have relatively simple genomes, and maize (corn), whose separate
kernels allow for easy observation of the effect of genetic changes on the
development of the organism.

This book focuses on attempts to use biological knowledge to develop
new methods for solving problems using computers. Clearly, we will need

32    ◾    Biological Computation

to choose some minimal characteristics of the biological systems that can
be used for this purpose. For example, we will see in Chapter 4 how to
build a computer system that is capable of independent learning, thereby
eliminating the need to reprogram it to solve new problems. In Chapter 3
we will harness some basic insights into the evolutionary process to create
computer programs that solve difficult optimization problems (i.e., prob-
lems of finding a maximal value of a multivariable function that is not dif-
ferentiable or does not have a simple formal description) by generating a
collection of possible solutions and applying evolutionary like processes to
promote the best ones. The main consideration in building such models is
their usefulness as computational tools and not necessarily their precision
as descriptions of biological systems or processes. This is the reason this
field is often referred to as biologically inspired computing.

Building and using such models allows us to develop an intuition about
biological processes, even though the biological systems are much more
complex, contain many interacting mechanisms, and behave in diverse ways
in different species under different conditions. This is apparent even when
looking at the previously described biological systems. The general under-
standing of the biological systems that is the starting point of the techniques
we describe does not necessarily match the real behavior of the biological
processes, nor is our goal to achieve a better understanding of the biological
behavior. Having said that, using the models may help us in understanding
general biological principles rather than specific processes. In the next chap-
ter we will see how mathematicians and computer scientists attempted to
construct models that explain the amazing ability of living things to self-rep-
licate, that is, to generate offspring similar or identical to themselves. These
researchers were trying to understand which requirements are necessary to
build a self-replicating system and were not attempting to understand how
self-replication occurs in nature. Surprisingly, after the discovery of DNA
and its behavior it turned out that the abstract model studied by theoreticians
was similar in fundamental respects to what happens in living cells.

We have stated already that other computational tools, not inspired by
biology, make use of the basic principles discussed in this book. These
principles include self-organization, local interactions between compo-
nents, asynchronicity, redundancy, use of noise, and nondeterministic
and parallel and distributed systems. The reader who studies the models
we describe in this book and the ways to analyze, implement, and test
them (e.g., varying parameters and determining their influence, attempts
to combine different models, analyzing the models’ fault tolerance) will

Introduction and Biological Background    ◾    33

gain important insights and intuition about the relative merits of these
principles that are also used in the development of large software systems
not necessarily based on biological models.

In Chapter 5 we will discuss the usage of biological molecules (DNA
and proteins) to perform computations. This obviously does not involve
modeling a biological system but can be rather seen as the opposite—using
biological molecules to model the computational process.

1.5  SUMMARY
The chapters ahead discuss several paradigmatic computational models
and techniques that were inspired by observing the living world or by bio-
logical knowledge. In each chapter we try to give the relevant biological
background and intuition and to present the fundamental aspects of the
computational approaches we discuss. We do not assume any prior bio-
logical knowledge, and each chapter is self-contained.

In Chapters 2–5 we describe topics that by now are considered well estab-
lished and form the core of the emerging field of biological computation. In
the concluding chapter, Chapter 6, we provide a survey of additional topics
like swarm intelligence, artificial immune systems, artificial life, formal lan-
guages to describe biological systems, and system biology. These approaches
interact with the approaches described in the previous chapters and expand
on them and show which directions this field may develop in the future.

The techniques discussed in Chapters 2 through 4 and in Chapter 6 can be
applied immediately to solving practical problems, whereas at the moment
the notion of molecular computing discussed in Chapter 5 is of less immedi-
ate use to programmers. All the models discussed, however, provide insight
about biology, about the nature of computation, and about how the two
fields relate to each other.

Each of the techniques we discuss exists in many varieties and can be
extended in various ways for different purposes. Each chapter includes ref-
erences to further reading, and the final chapter includes a list of recom-
mended books. We hope that, after studying the material presented in this
book, the interested reader will be well prepared to independently explore
the wealth of useful and related material available online.

Our goal in each chapter is to present the fundamental concepts behind
the techniques and examples of types of applications for which it may be
relevant. We hint at some of the directions in which each technique may
be modified, often via the exercises that appear at the end of each chapter.
We intentionally refrain from presenting most of the material formally

34    ◾    Biological Computation

in order for the text to be accessible and readable. Several fundamental
theorems, however, are presented formally along with a proof or a sketch
explaining how the proof of the theorem is constructed.

The techniques presented in the following chapters are powerful and
easy to implement, and many free implementations (in both senses of the
term) exist online. We encourage readers to “play along” and experiment.

Enjoy the ride!

1.6  FURTHER READING

The following introductory textbooks in biology can be used to supple-
ment the short introduction to biology we present in this chapter.

Campbell, Neil and Jane B. Reece. 2009. Biology, 8th ed. San Francisco: Pearson
Benjamin Cummings.

Solomon, Eldra, Linda Berg, and Diana W. Martin. 2007. Biology, 8th ed.
Florence, KY: Thomson Brooks/Cole.

Starr, Cecie, Ralph Taggart, Christine Evers, and Lisa Starr. 2008. Biology:	 The	
Unity	and	Diversity	of	Life, 12th ed. Florence, KY: Thomson Brooks/Cole.

1.7  EXERCISES

Exercises with solutions are marked with bold numbers.

1.7.1  Biological Computation

 1. When building a system one tries to avoid the existence of single
points of failure, a failure which will cause the system to crash.
Use this notion to discuss why the control mechanisms of the non-
standard computational models (as summarized in Table 1.1) may
account for the systems’ robustness.

 2. Try to use your answer to the previous question to discuss how self-
organization can contribute to robustness. What are the dangers in
relying on such a mechanism?

 3. Discuss which of the properties of nonstandard computation enu-
merated in Table 1.1 will make standard programming techniques
more difficult. Consider all the stages of building software systems:
analysis, design, programming, testing, and maintenance.

Introduction and Biological Background    ◾    35

1.7.2  History

 4. Which of the following constitute positive feedback and which con-
stitute negative feedback?

 a. Feeling cold, the body reacts by shivering designed to raise its
temperature.

 b. Global warming causes the glaciers to melt. As glaciers reflect a
lot of sunlight, their existence reduces warming.

 c. Fat cells secrete the hormone leptin. When the amount of fat
decreases, less leptin is secreted, and that causes brain cells to
send hunger signals. Cells in the gastrointestinal tract can deter-
mine how much food has been consumed and can signal other
brain cells to stop the eating. The newly replenished fat cells
resume the leptin secretion, and the feeling of hunger passes.

1.7.3  Biological Introduction

 5. How many bits are needed to code the information contained in a
single nucleotide?

 6. Does the double-stranded DNA molecule contain more information
than each of the separate strands?

 7. Some regions of DNA contain repeating long sequences of the nucle-
otides AT (i.e., regions of the form ATATAT). Explain why these
sequences are believed to have a role different from that of storing
genetic information.

 8. Try to come up with biological reasons that could explain why the
genetic code is not a one-to-one mapping (i.e., why there are multiple
codons that code the same amino acid). Does your hypothesis lead
to any predictions that can be tested either by examining the genetic
code or experimentally?

 9. Where is the genetic code stored? Try to figure out how the genetic
code becomes expressed in the cell.

 10. We have noted in Section 1.3 that it is believed that a change in a
phenotype does not imply a corresponding change in the genotype.
How is this assumption manifested in the formula “DNA → RNA →
protein” (the central dogma of molecular biology)?

36    ◾    Biological Computation

 11. In the following table, match the items in column A (biological terms)
with items in column B (computational terms). Note that not all terms
need necessarily be matched, and more than one term can be matched
to some of the items.

Column A Column B
DNA Hardware
Protein Software
Enzyme Programming language
Genetic code Compiler
Ribosome Machine language

 How successful is the analogy between the two domains?

 12. Assume eye color has two possible alleles: A for brown eyes; and
a for blue eyes. An individual with the alleles A and a (denoted by
Aa) will have brown eyes (i.e., a does not affect the eye color in this
case). We say that in this situation A is dominant relative to a, and
a is recessive relative to A. Assume two parents are both Aa. Every
child will get one gene from each parent (A or a) with probability of
one half. Calculate the probability of each possible genotype for the
descendents and the probability of each phenotype (i.e., eye color).

 13. Assume the gene for leaf color has two possible alleles: A for red
leaves; and a for white leaves. An individual with both the A and a
alleles (denoted as Aa) has pink leaves (which is the combination of
red and white). Assume two parents are both Aa. Every child will
get one gene from each parent (A or a) with probability one half.
Calculate the probability of each possible genotype for the descen-
dents and the probability of each phenotype (i.e., leaf color).

 14. We discussed two processes that use DNA as a template for creating a
new molecule: creating mRNA and creating new DNA. In both pro-
cesses, errors can occur, as is expected in any chemical process. The
cell deals with such errors by having error correction mechanisms.

 a. In which of the two processes are errors more critical? What
hypothesis can you deduce from this regarding the error correc-
tion mechanisms?

Introduction and Biological Background    ◾    37

 b. Most proteins are generated in the cell in many copies and thus
are transcribed again and again. Does this change your previous
answer?

 15. We have discussed the fact that most cells in multicellular organ-
isms, except for the gametes and a few types of specialized cells, con-
tain the same genetic information. Cells go through a specialization
process and have different roles. Discuss how	regulatory	mechanisms
could be employed toward this end and how regulation has to inte-
grate with cell division.

1.7.4  Models and Simulations

 16. You may have encountered queueing	 theory in the past (e.g., in
a computer networks course). Which of the types of models we
discussed is most similar to the models of queueing theory? How
does queueing theory allow for analytical solutions, despite the
fact that the models are based on random behavior (i.e., they are
probabilistic models)?

 17. You may have encountered game	 theory in the past. Which of the
models we discussed is most similar to the models of game theory?

1.8  ANSWERS TO SELECTED EXERCISES
 2. If the programmer foresaw the possibility of a particular fault that can

crash the system and determined how to deal with it, the system may
be able to recover from it. Alternatively, a self-organizing system may
be able to recover from many kinds of faults. The more complex the
system and its possible set of problems, the odds of planning for all
faults in advance decreases, and therefore self-organizing capabilities
may become more important. This gives rise to the danger of the sys-
tem recovering (self-organizing) in an inappropriate way. The best way
of dealing with this is testing how the system reacts to an array of prob-
lems and adjusting the system if it reacts inappropriately to problems.

 4.

 a. Negative feedback: shivering raises the body’s temperature,
which decreases the feeling of cold, which causes the shivering to
stop and the system to revert to its initial state.

38    ◾    Biological Computation

 b. Positive feedback: the glacier melting reduces the solar reflection,
and therefore Earth’s temperature rises. This causes more gla-
ciers to melt, and the warming trend increases.

 7. Easily compressible data cannot contain much information (as the
same data can be represented in a more concise fashion). The more
compressible the data, the less information it carries. A long repeat-
ing sequence can be easily compressed (“repeat AT 200,000 times”).
Therefore, it would seem that repeat sequences contain very little
information. If such sequences exist and do not disappear during
the course of evolution (see Chapter 3), it might suggest that they
have a role other than that of storing information (e.g., a structural
role).

 9. The genetic code is stored by the set of tRNA molecules in the cell—
molecules whose one end presents an anticodon and whose other
end is linked to the appropriate amino acid. The tRNA molecules
are coded for in the DNA of the cell. Loading the tRNA molecules
with the appropriate amino acid for the anticodon is the function
of specific enzymes called tRNA	synthetases, which themselves are
coded for by DNA genes, of course. Try to figure out how the genes
involved in this process can themselves become expressed: how does
the process get started?

39

C h a p t e r 2

Cellular Automata

Cellular automata (CA) were proposed in the 1950s by the famous
mathematician John von Neumann as a model for studying the abil-

ity of organisms to self-replicate. Since then, the CA model has been used
to describe many phenomena in diverse research areas. Some of these
areas are biological and include models for the spreading of diseases and
the behavior of bacteria colonies (see Section 2.1), but CA are also used in
nonbiological fields, for instance for creating physical simulations. CA can
be enjoyed as purely recreational mathematics, but we will use this model
to discuss deep topics in biological computation.

2.1  BIOLOGICAL BACKGROUND

2.1.1  Bacteria Basics

The vast majority of living organisms are the prokaryotes of which
there are two types, Bacteria and Archaea.	The prokaryotes are char-
acterized by the absence of a nuclear membrane and consequently the
noncompartmentalized nature of their single cell. All organisms syn-
thesize proteins on molecular complexes called ribosomes, and there-
fore the need to accommodate a large number of these relatively large
molecular machines means that the minimum size of autonomous
organisms is generally a few hundred nanometers (1 nm = 10–9 of a
meter) across; however, they can be as small as 200 nm in diameter.
Figure 2.1(a) shows an electron microscope image of a colony of the
Vibrio	cholerae bacteria, which infect the digestive system; a schematic
description of bacteria’s structure is given in Figure 2.1(b).

40    ◾    Biological Computation

Bacteria exhibit an amazing range of sizes, metabolic capacities, and life-
styles, with the largest characterized representative exceeding 500 microm-
eters (1 µm = 10–6 of a meter) in diameter. This remarkable bacterial diversity
not only is fascinating for bacteriologists but also is crucial to the contin-
ued existence of our world. For example, various species of bacteria release
oxygen into the atmosphere, whereas others, living inside the human body,
influence the delicate balance between health and disease.

The most notorious property of bacteria is their capacity to reproduce
rapidly. In a rich medium (containing sugars and amino acids), the oft-
studied Escherichia	coli divides every 20 minutes to produce 72 generations
per day. Such growth, if left unchecked, would generate a mass of bacteria
equal to the mass of the earth in two days. In general, bacterial growth
involves replication of genetic material followed by binary fission into two
identical daughter cells, each containing one copy of the genome.

2.1.2  Genetic Inheritance—Downward and Sideways

In contrast to the linear chromosomes of eukaryotes, the essential com-
ponent of a bacterial genome is typically a single, closed circle of dou-
ble-stranded DNA, 4–5 megabases (Mb) long, called the bacterial
chromosome, which is compacted inside the cell to form a structure called
a nucleoid. In addition, the genomes of some bacteria also contain smaller
circles of double-stranded DNA, known as plasmids, which range in size
from 1000 bases to several megabases. Essential bacterial genes, those
required for growth and reproduction, are generally encoded within the
chromosome, whereas genes needed only under exceptional conditions
are encoded within a plasmid. For example, genes encoding resistance
to antibiotics are often encoded in plasmids. A very large fraction of the

Plasmid

Ribosomes

Cell wall
Cytoplasm

DNA (nucleoid)

Bacterial flagellum

1 µm

(a) (b)

FIGURE 2.1  (a) A colony of Vibrio	cholerae bacteria; (b) A schematic structure
of a bacterium.

Cellular Automata    ◾    41

bacterial chromosome DNA (about 85% in Escherichia	coli) encodes for
proteins, whereas for humans less than 5% of DNA encodes proteins (see
Chapter 1).

The replication and equal partitioning of the bacterial genome that
occurs during bacterial growth underlies the classical vertical inheritance
of traits from one generation to the next. However, bacteria can acquire
genes in another manner, termed horizontal gene transfer or lateral gene
transfer (LGT), whereby genetic material is received by one bacterium
from an unrelated bacterium. Comparative genomic analysis indicates
that LGT impacts bacterial evolution in the long-term and additionally
serves as a pathway for acquiring transitory traits, such as the reduced
susceptibility to antibiotics, a worrying and increasingly prevalent phe-
nomenon since the 1960s.

2.1.3  Diversity and the Species Question

Classifying bacteria into species and strains has been a challenge since
they were first visualized and is even more so presently, despite the ava-
lanche of genomic information becoming available each day. This prob-
lem is particularly pertinent as millions of bacterial species are thought
to exist in our environment that have not yet been sampled or grown
successfully in a laboratory.

It is becoming clear that bacterial genomes are composed of core	
sequences, such as essential genes; dispensable	sequences characterized
by their erratic appearance and nucleotide variability across a panel	of	iso-
lates (the same bacterial species sampled repeatedly and independently);
and strain-specific genes that are unique to a given isolate. These observa-
tions have created the notion that a bacterial species cannot be represented
by a unique genomic sequence but instead is defined by a pan-genome,
which is the core sequences plus the collection of dispensable and strain-
specific sequences. Moreover, since bacteria exist in nature in a particular
environmental niche, such as inside our guts or in the ocean, an initially
radical research approach is to study the niche community as an entity and
to call the genetic repertoire of the diverse microbes therein a metagenome.
In recent years, metagenomics has become a mainstream field. Within such
an environment, events of LGT are expected to occur quite often. Currently,
more than 100 metagenomic projects are under way for which novel bio-
informatics tools are being developed. Together with the insights gained
from about 700 fully sequenced microbial genomes, our understanding of
what really defines a bacterial species is likely to improve.

42    ◾    Biological Computation

2.1.4  Bacteria and Humans

Currently, researchers are analyzing the metagenome of the human gut,
estimated to contain some 10 trillion individual bacteria that are mem-
bers of more than 1000 different species. Bacteria are found also in other
human habitats, including the female reproductive tract, the skin, and the
mouth. Together, all the bacteria in the human body constitute the human
microbiome. Bacteria living inside the body that do not cause disease are
known as commensals, whereas those associated with human disease are
called pathogens. Bacteria play crucial roles in the life of higher organ-
isms like humans. Many bacteria develop symbiotic relationships with
their hosts. For example, bacteria participate in key stages of food diges-
tion in humans. Furthermore, the mere existence of the “good” bacteria
keeps at bay the number of the pathogenic bacteria because they compete
for the same environmental resources. However, the distinction between
harmless or even beneficial bacteria and pathogens is becoming blurred
as emerging studies reveal that many recognized pathogens, such as the
bacteria responsible for pneumococcal diseases, are commonly carried
asymptomatically. Such studies highlight the gaps in our present under-
standing of pathogenicity and of the interplay between different species
and strains of bacteria that cohabit at the same niches.

A better understanding of pathogenicity is urgently needed to expand
our ability to combat bacterial diseases. Antibiotics have changed the
outcome of the everlasting war between humans and bacteria dra-
matically in the last 60 years. However, the excessive use of antibiot-
ics brought about the emergence of “superbugs,” such as the multidrug
resistant Klebsiella	pneumoniae	and	methicillin-resistant Staphylococcus	
aureus	(MRSA), which do not respond to antibiotics and pose a major
public health risk.

2.1.5  The Sociobiology of Bacteria

A growing body of studies demonstrates that bacteria produce and secrete
signaling molecules that other bacteria detect and to which they respond,
for example, by changing gene expression. These signals enable bacteria
to exhibit advantageous communal behavior, which appears to under-
lie several key phenomena, such as biofilm formation, whereby bacteria
organize into a particular architecture. Another phenomenon is quorum	
sensing, a mechanism by which bacteria can estimate the density of their
colonies by monitoring the amount of signal molecules secreted by the

Cellular Automata    ◾    43

community members. In fact, a colony of bacteria can be regarded almost
as a multicellular organism rather than a collection of individual cells.

An impressive example of such collective behavior is seen in Figure 2.2:
an expanding colony of bacteria encounters a fragment of glass wool on
the surface of the petri dish, causing the individual cells in the colony to

FIGURE  2.2  A series of pictures showing how a fiber approached by a bacte-
ria colony is being surrounded by an individual cell that leaves the colony and
engulfs the fiber. Eventually, the coated fiber is being absorbed into the colony.
(From Shapiro and Dworkin, Eds., Bacteria	as	Multicellular	Organisms, Oxford
University Press, 1997. With permission.)

44    ◾    Biological Computation

change behavior in such a way that the colony manages to engulf the glass
wool fragment.

Another example concerns pattern formation by bacteria colonies.
Eshel Ben-Jacob has shown (Ben-Jacob, 2007) that a colony of the same
bacteria can grow in a very different patterns under different conditions
like food availability (Figure 2.3). Furthermore, it was shown that a colony
of bacteria has the ability to “learn,” and therefore its response to a first
course of antibiotics may be very different from its response to successive
courses. The details of the mechanisms involved in these processes are
only beginning to unravel.

The “social” processes occurring within a bacterial colony are so rich
that ongoing studies are investigating whether certain forms of cooperative
multicellular behavior even lead to the emergence of “cheaters,” individual
bacteria that reap the benefits of cooperation without contributing to the
community. In general, the recent coining of various phrases by bacteriolo-
gists (e.g., the sociobiology of bacteria, microbial multicelluarity, quorum
sensing) illustrates the extent to which this area has become a focus of cur-
rent bacterial research. The following description of cellular automata deals
with artificial systems, but we are sure that the analogy with bacterial colo-
nies and their self-organization will be evident to the reader.

2.2  THE “GAME OF LIFE”
We will start our discussion of cellular automata by describing an example
of a two-dimensional CA known as the “Game of Life.” A more general
and formal definition of CA will be presented later.

(a) (b) (c)

FIGURE 2.3  Branching patterns exhibited by Paenibacillus	dendritiformis bacte-
ria: (a) shows the pattern at higher food levels; (b) shows the typical pattern with
intermediate levels of food depletion; (c) shows the growth for a very low level of
food. These forms of bacterial self-organization provide the colony with the abil-
ity to make an efficient use of the available resources. (From Ben-Jacob, Eshel,
European	Physical	Journal	B	–	Condensed	Matter	and	Complex	Systems	65, no. 3,
315–322. With permission.)

Cellular Automata    ◾    45

A two-dimensional cellular automaton is a square grid of cells, each
of which is in one of a finite number of states. The automaton progresses
from one generation to the next using the following procedure: each cell
inspects its state and the states of its neighbors and updates its state using
a simple rule. The same rule is used by all the cells. A configuration is a
collective state of the automaton, that is, a description of the state of each
cell in a given generation.

The best-known cellular automaton is the “Game of Life” (or Life for
short) presented by John Horton Conway in 1970. In Life, the grid is infi-
nite in both dimensions. Each cell can be in one of two states: alive or dead
(equivalently, full or empty). The update rule depends on the number of
live cells in the immediate neighborhood of each cell (i.e., how many of the
eight cells around a given cell, including diagonals, are alive):

Birth rule: a dead cell with exactly three live neighbors comes to life; in
any other case a dead cell remains dead.

Survival rule: a live cell with two or three live neighbors stays alive.

Death rule: a live cell with four or more live neighbors dies of overcrowd-
ing; a live cell with at most one live neighbor dies of loneliness.

Note that the states of the cells are inspected before the update. That means
that first all the cells needing to be updated are identified, and then the
updates happen simultaneously for all of the automaton’s cells. The rules
are demonstrated in Figure 2.4.

�e lower gray cell’s
neighborhood consists of 4
live cells so it will die in the
next generation.
�e upper gray cell’s
neighborhood consists of 3
live cells so it will change to
live in the next generation.

�e gray cell’s neighborhood
consists of 2 live cells so it
will stay alive in the next
generation.

�e gray cell’s neighborhood
consists of 3 live cells so it
will stay alive in the next
generation.

FIGURE 2.4  Examples of the execution of the transition rule of the “Game of
Life” (a live cell is marked with a filled circle).

46    ◾    Biological Computation

Typically, we will use a computerized simulation to follow the evolution of
cells in the “Game of Life,” but we could also run the simulation manually:

 1. Start with an initial configuration where live cells are represented on
a checkerboard using the black pieces.

 2. Find all the cells that will die in the next generation. Mark each such
cell by adding another black piece on top of the one in the cell.

 3. Find all the cells that will be born in the next generation. Mark each
such cell by placing a white piece on it.

 4. Make sure that you did not miss anything; then update the board
by removing all pieces from the dead cells (those with two black
pieces), and execute the birth rule by replacing all the white pieces
with black pieces.

 5. Now that you have the next generation; repeat from step 1.

Figure 2.5 shows a few configurations that lead to interesting patterns you
may want to follow for several generations.

Studying these examples demonstrates that although the rules are sim-
ple, the system’s behavior can be complex and hard to predict. Some ini-
tial configurations never change when the rules are applied; other initial
configurations cycle between a finite number of configurations (i.e., these
configurations are called oscillators); still others preserve their shape but
move over the board.

Observing Life can have a hypnotic effect, but it also raises many ques-
tions such as the following:

• Can we predict the board’s configuration in n generations without
executing the game for n generations?

�e clock �e glider

FIGURE 2.5  Initial configurations that lead to interesting behavior.

Cellular Automata    ◾    47

• Do all initial configurations lead to a steady state, after which there
are no further changes?

• Do all initial configurations lead to a state with a fixed number of live
cells, that is, a state after which the automaton will not grow further?

Conway’s goal was to find simple rules for cellular automata with the
following elusive properties:

• There will be no initial configuration for which it will be easy to prove
that the population of live cells will grow indefinitely without bounds.

• There will be initial configurations for which it will seem as if the
population of live cells grows without bounds.

• Some initial configurations will change during many generations,
but eventually they will settle into one of three situations: (1) extinc-
tion (due to overcrowding or loneliness); (2) periodic oscillation
between several configurations; or (3) achieving a steady state.

In this regard, one of the most interesting examples is the “R-Pentomino,”
which is an innocent-looking pattern of five cells shown in Figure 2.6. It
takes 1103 generations for it to stabilize. Readers are encouraged to try it
on their favorite Life applet (e.g., at http://www.ibiblio.org/lifepatterns/)
and be amazed by the richness of the final pattern. No wonder this pat-
tern is known as one of the Methuselah patterns, named after the biblical
Methuselah who lived for 969 years.

From this, and many other such examples, it became clear that indeed,
as Conway intended, predicting the behavior of the system is extremely
complicated. In fact, it turns out that it is impossible to predict the evolution
of the system from its initial configuration, and its evolution can be deter-
mined only by simulating the game. This can be proved mathematically

FIGURE 2.6  The R-Pentomino. This simple pattern takes 1103 generations to set-
tle down into a complicated “community” of blocks, blinkers, gliders and more.

48    ◾    Biological Computation

by showing that Life can function as a computer (in formal terms, it is
equivalent to a universal Turing	machine	[TM]). Therefore, predicting the
fate of an initial configuration in the “Game of Life” is equivalent to decid-
ing whether a computer program will halt for a given input or what its out-
put will be, which are known to be undecidable problems. We will return
to this important point later in the chapter.

2.3  GENERAL DEFINITION OF CELLULAR AUTOMATA
So far, we have discussed a very specialized case of a cellular automaton.
We will attempt now to generalize the properties of a CA.

The cells may be in one of a larger set of states (not just “live” or “dead”
as in Life). The set of states has to be finite (typically the set is rather small
and contains no more than 10 states). The set of states is usually denoted
by the letter ∑ and the number of states by k.

The cells consulted for each cell by the behavior rules are called the cell’s
neighborhood. The neighborhood may be different from one automaton
to the other. Sometimes the neighborhood is defined to be the cells per-
pendicular to the cell (four cells in the two-dimensional case, called the
von Neumann neighborhood). In other cases the neighborhood contains
all the adjacent cells (eight in the two-dimensional case, called the Moore
neighborhood). In general the neighborhood may include cells that are
not directly adjacent neighbors and may have any shape.

An automaton need not be two-dimensional; it may be one-dimensional
(a linear formation of cells) or three-dimensional (a cube of cells) or have
higher dimensionality. The cells need not be on a square, chess-like grid.
Any regular tiling of the automaton space such as triangular or beehive
shaped tiling will do. We will assume that the automaton space is infinite.
When implemented by a computer program, we will usually enlarge the
board when necessary. But we may also assume other boundary condi-
tions, such as a two-dimensional surface on a sphere where the edges meet
or a board laid out on a torus.

Taking all of this into account, we see that the elements needed to define
a particular CA are as follows:

• The layout of the board (e.g., a two-dimensional board, a beehive)
and its boundary conditions.

• The set of states ∑. At any instance every cell is in one of these states.
We will denote the state of cell i at time t by Sti . A configuration is a

Cellular Automata    ◾    49

collective state of the automaton’s cells, that is, a description of the
state of each cell in a given generation.

• The neighborhood of every cell. The states of all cells in a cell’s neigh-
borhood are used as input when calculating the state of the cell in the
next generation. The neighborhood is denoted by Ni

t , which specifies
the states of the cells in the neighborhood of cell i at time t. When
we are not interested in a specific time period the t may be omitted.

• The transition rule determines the state of each cell in the next gen-
eration, based on its current state and the current states of the cells
in its neighborhood. For simplicity we will assume that a cell’s neigh-
borhood contains the cell itself. We will denote the transition rule
by δ(Ni

t). Note that the transition rule may not consider the location
of a specific cell on the board (e.g., its x and y coordinates). Using
such information would violate the principle that each cell can get
information only from its neighbors and cannot make use of “sys-
tem-wide” properties (i.e., a cell can use only local rather than global
information). This is the basis of the cellular automata model.

So, a particular automaton is defined by four properties: (1) the board;
(2) the set of states; (3) the definition of a cell’s neighborhood; and (4) the
transition rule.

All the cells’ neighborhoods have the same shape and this shape does
not change with time. For now we will also assume that all the cells tran-
sition at the same time to their next state. This is called a synchronous	
transition. Accordingly, the time in the system can be divided into dis-
tinct and discrete time units, a regime called discrete time.

Note that discrete time is very different from the notion of time
as continuous, and the incompatibilities between these two notions
of time can lead to paradoxical behavior as in Zeno’s arrow paradox.
Imagine an arrow in f light. Now suppose time is divided into a series
of indivisible moments. At any given moment, the arrow is at an exact
location, so it is not moving. But if at any moment in time there is no
motion, we must conclude that movement cannot happen—that the
arrow is motionless. The paradox actually stems from the idea that
time can be divided into discrete units. Thus, we must be careful when
we model dynamic systems using CA not to get into situations when
the discrete nature of time might be a confusing factor in the behavior

50    ◾    Biological Computation

of the simulation or to assume that a discrete time model necessarily
captures all the important elements of a continuous phenomenon (or
vice versa, of course).

A state s for which δ(s,…,s) = s is called a quiescent state: a neighbor-
hood where all the cells (including the cell itself) are in a quiescent state
and will remain in a quiescent state at the next time step. The quiescent
state of cells in the “Game of Life” is “dead”: the rules of the game will not
result in a creation of any living cell if the entire board is empty.

We summarize this section with a formal definition of a CA as follows:

2.4  1-DIMENSIONAL AUTOMATA
A one-dimensional (1-D) automaton is a tape or sequence of cells. For
example:

1 0 0 1

is an instance of a 1-D automaton with the state set {0,1} where the tape is
of length 4. We often assume that the tape is circular (i.e., the right-hand
neighbor of the rightmost cell is the left cell and vice versa). Typically,
a cell’s neighborhood will be described by the radius r around the cell.
Therefore, the number of cells in the neighborhood is 2r	+ 1 (r cells on each
side of the cell and the cell itself).

If we keep the number of states and the size of the neighborhood mod-
erately small, the number of different possible neighborhoods also remains
relatively small, and we will be able to describe the automaton using a
simple table that holds the next state of a cell as a function of the states in

FORMAL DEFINITION OF A CELLULAR AUTOMATON

A d-dimensional cellular automaton A is a 4-tuple (Zd , ∑, N, δ) where:

•  Zd is the description of the space defining the automaton’s layout.
•  ∑ is a finite set of the possible cell states.
•  N is an ordered subset of Zd of size n+1 called the neighborhood of 

A. For a cell x	∈ Zd, the neighborhood of x is defined to be the cells 
in positions x	+ ri for i	= 0,1,…,n. where ri is a vector in the d-dimen-
sional space (i = 0 represents the cell x itself).

•	 δ: ∑n+1→∑ is a function called the transition rule of A.

This  is  a  standard definition of  a cellular  automaton. Some variations 
later in this chapter do not adhere to this definition.

Cellular Automata    ◾    51

its neighborhood. For example, an automaton where k	= 2	and r	= 1 is an
automaton in which each cell can be in one of two states and the next state
is determined by the states of the cell and its two neighbors.

Table 2.1 describes a possible transition rule for such an automaton.
Note that the entire table represents a single transition rule. Also note that
this table enumerates all possible states of the environment.

If the automaton’s initial configuration is as previously described

1 0 0 1

After applying the transition rule, its state in the next generation will be

1 0 1 1

Observe that all tables describing transition rules for 1-D automata with
k	= 2	and r	= 1	have eight rows. Note that the number of rows in the table
is determined by the number of possible neighborhoods (here 23 = 8) and is
not dependent on the size of the automaton, namely on how many cells it
contains. For simplicity, the following notation has been devised: the next
state of cells as a function of the neighborhoods will be written as a sequence
of bits (read bottom to top from the “Next State” column in Table 2.1). So the
transition rule in Table 2.1 can be described by the sequence 01101110. This
sequence is the binary representation of the decimal number 110, so this
transition rule is known as Rule	110	(Table 2.2). This shorthand for describ-
ing the transition rules is known as Wolfram	 numbers, after Stephen
Wolfram (2002), who first proposed and used this notation.

TABLE 2.1  Rule 110

Neighborhood

State of Left
Neighbor

Current State
of Cell

State of Right
Neighbor Next State

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

52    ◾    Biological Computation

As every eight-digit binary number can represent an automaton’s
transition rule, we see that the number of possible automata is 28 =
256. This is a significant observation since it means that we have now
a systematic way to address all possible transition rules for binary 1-D
automata. Furthermore, practically speaking, we can reduce this num-
ber significantly. There is an obvious symmetry between the digits 0 and
1. In addition, we will usually consider only automata with a quiescent
state (i.e., for the configuration where all the cells in the neighborhood
are 0, the next state of a cell in state 0 remains 0). A further simplifica-
tion may arise from allowing only rules that are symmetrical around the
middle cell in the neighborhood. In this case, we will want the neighbor-
hoods 100 and 001 to have the same value as well as neighborhoods 110
and 011.

The first simplification reduces the number of possible automata by half.
The second simplification implies that the binary representation of a tran-
sition rule ends with a 0, since this represents the transition 000 → 0. The
third simplification allows us to look only at the values of five neighbor-
hoods to infer all the other values of the transition rule. Taken together,
we see that the interesting transition rules are of the form α1α2α3α4α2α5α40
(note that α2 and α4 appear twice due to symmetry), and the number of
rules to consider for automata with k	= 2 and r	= 1 has been reduced from
256 to 32.

We can visualize the behavior of a 1-D automaton as a function of time
with a space–time diagram.	Every row of the diagram will describe the
automaton’s state at a particular generation, with time progressing down
the chart. For example, Figure 2.7 shows the progression of rule 18 for an
automaton that starts with a single cell with value 1 on a long tape for 20
generations (cells with the value 1 are denoted by a circle and cells with
value 0 by a space).

TABLE 2.2  Rules and Their Decimal Names

Converting a Rule to Its Decimal Name
Neighborhood as a binary
number

111 110 101 100 011 010 001 000

2 to the neighorhood’s
state

128 64 32 16 8 4 2 1

Next state 0 1 1 0 1 1 1 0

01101110b=128•0+64•1+32•1+16•0+8•1+4•1+2•1+1•0=110d

Cellular Automata    ◾    53

One of the interesting advantages in the Wolfram notation is that we
can go systematically through all automata and qualitatively characterize
their behavior. It turns out that roughly 85% of the automata behave in a
uniform and uninteresting way (Figure 2.8(a)), 10% in a way that seems
ordered and complex (Figure 2.8(b)), and 5% in a seemingly random and
chaotic way (Figure 2.8(c)) although they follow deterministic rules. From
experiments with other CA it seems that this observation is quite general.
In most systems, most sets of rules will lead to uniform and uninteresting
behavior (similar to the behavior in Figure 2.8(a)), whereas only in a minor-
ity of cases the system will show either a complex behavior (like in Figure
2.8(b)) or random-like behavior (like in Figure 2.8(c)).

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

FIGURE  2.7  Space–Time Diagram. This representation enables one to follow
the behavior of a 1-dimensional automaton over time. In this example rule 18 is
followed for 20 generations starting from a single non-empty cell.

(a) (b) (c)

FIGURE  2.8  The different general behavior of 1-dimensional automata. (a)
Trivial order (this specific pattern was created by rule 250); there are 222 autom-
ata that show this type of behavior. (b) Complex order, (this specific behavior
comes from rule 90); there are 24 such automata. (c) Chaotic-like behavior (cre-
ated by rule 30); there are 10 automata that show chaotic like behavior among the
total of 256 automata. (From Wolfram, Stephen. A	New	Kind	of	Science, Wolfram
Media, 2002. With permission.)

54    ◾    Biological Computation

2.5  EXAMPLES OF CELLULAR AUTOMATA
Cellular automata have properties that are useful for modeling cer-
tain classes of phenomena. By definition, time progresses discretely for
CA, which therefore makes them appropriate for models where time
is naturally divided into generations and where the progress from one
generation to the next is synchronous. In a cellular automaton, the state
of every cell is a function of its neighborhood, and this is appropriate
for describing phenomena where the neighborhood affects behavior and
the interaction between the components of the model is local. Another
important feature of CA is that all the cells obey the same rule, making
CA appropriate for modeling homogeneous systems. On the other hand,
CA are less useful for modeling systems where time is not discrete or
when the behavior of each cell is difficult to define by discrete states.

A few examples will give us a better understanding of the phenomena
that can be modeled by CA. Some of these models are based on the pre-
viously given CA definition, and in other cases we will modify the CA
definition to allow an easier description of the phenomena we are try-
ing to model. Some of the modifications are merely technical; however,
some modifications, like introducing randomness into transition rules,
are more fundamental.

2.5.1  Fur Color

Mammals’ hair color is determined by pigment cells called melanocytes
in the basal layer of the epidermis (skin). These cells produce melanin,
which determines the hair color. In general, mammal hair color is a sin-
gle color or a template containing two colors (e.g., a zebra; unlike fish and
birds, no mammals display an array of colors). Actually, producing the
two-color pattern is a binary process: either no (or very little) melanin is
produced, in which case the “background” color is displayed, or melanin
is produced, in which case the “foreground” color is displayed. The fore-
ground color might appear in two tones, such as black–brown for zebras
and orange–yellow for tigers. But the main question remains as to how a
particular cell knows whether to produce melanin or not.

It is important to realize that this is a developmental decision.
Genetically, all the epidermis cells are identical, and there is no a priori
determination of what color each cell will display. Therefore, each cell
has to determine its melanin-producing behavior based on its neighbors’
states. Clearly, the amount of time available for this decision-making

Cellular Automata    ◾    55

process is limited, and at its end each cell has to decide whether to pro-
duce melanin. Once this has been determined, the decision cannot be
reversed. This process is an example of the more general mystery: the
process of embryonic	development. In general, the embryonic develop-
ment process depends not only on the organism’s genetics but also on
many other factors. Understanding the process by which the genetic
information is deployed during development in a robust way not affected
by irrelevant changes in the environment and resulting in a functioning
organism is one of the main challenges of modern biology.

One of the mysteries of this process is that the embryo starts out as a
single cell that constitutes a completely homogeneous and symmetrical
system. This system develops into a small set of identical cells and then
evolves into an asymmetrical system where cells have differentiated such
that each may fulfill its unique function (e.g., blood cells differ from skin
cells). So the question is how does a homogeneous symmetrical system
lose its symmetry? The symmetry-breaking question shows up in other
scientific fields as well, and although we will not discuss it in detail we will
note that Alan Turing, the father of the Turing machine and one of the
main figures in the history of computer science, was also puzzled by the
symmetry-breaking phenomenon in embryonic development. In 1952 he
suggested a theoretical model for this problem (Turing, 1952). This model,
just like the model we will present next, is not faithful to the biological
details, yet both models show how symmetrical laws of nature that act
on a symmetrical system can in principle lead to symmetry breaking. In
contrast to Turing’s complex model, we will describe two simple models
that give rise to symmetry breaking.

Let us start with a very simple model that describes the decision process
governing melanin secretion. The cells are located on a grid and can be
in one of two colors (e.g., black or white), which are initially chosen ran-
domly. In every generation, each cell chooses one cell in its neighborhood
randomly and takes on its color. This process repeats itself for a number
of generations. Note that this process does not adhere to our previous CA
definition. Here, states are determined stochastically and not by a deter-
ministic rule.

What kind of hair pattern do we expect to see using this model?
Obviously, we cannot give an exact answer due to the random behav-
ior of the system. It is important to note that the initial distribution of
the black cells is of paramount importance: if the initial number of black
cells is very small, the probability that they all disappear after a number

56    ◾    Biological Computation

of generations increases. In fact, the percentage of cells that start out
being black is a	parameter of the model, and we may change its value and
observe its impact on the system’s behavior. Once we let the system run
for enough generations, we will see the color distribution as spots on the
grid; if we limit the neighborhoods to be only the cells to the right and
left of every cell or only to the cells above and below it, we will get stripes.

This model demonstrates that we can get complex color distributions by
using a simple and local rule for each cell’s behavior. This absolutely does
not mean that this is the way animals’ hair color is determined. When we
created this model, we did not take into account what we know about the
details of the biological process but concentrated on the abstract problem
of symmetry breaking. We could obviously go now and see if the model we
came up with corresponds to what is known about the generation of hair
color patterns. In this way simple models can be used to guide us toward
the relevant properties of the biological system of interest.

On the other hand, the model is too simple to describe the formation
of more specific color patterns, such as that of the various tails we see in
animals. The limited surface area and the cyclic surface make the color
formation on tails more elaborate and specific than the rest of the body.

A slightly more complex model (Young, 1984) considers the weighted
average of the cells’ colors in a radial neighborhood around each cell. As
before, each cell has one of two colors (0 for white, 1 for black), and the
transition rule is

= − −
∈
∑C H w i i j j Ci j i j

i j N

, ,

(,)

(,)

where C ' is the value of the cell in the next generation, w is a weight
matrix (note that the matrix is centered around (0,0)) used to compute the
weighted average, and N describes the radial neighborhood. The function
H(u) has value 1 if u	≥ 0 and 0 if u	<0.

Although this system is deterministic, by starting from different ran-
dom configurations and varying the weights and the neighborhood size
(these are the model’s parameters) many different color distributions can
be obtained. Note that the weights may be either positive or negative. A
negative value will result in a phenomenon where a black cell in the cell’s
neighborhood will prevent or delay the cell turning black.

Cellular Automata    ◾    57

2.5.2  Ecological Models

CA are extremely useful in simulating ecological systems composed of
predators and prey that share a confined habitat.

Consider an automaton with cells in one of eight possible states: 0 for
an empty cell, 1 for prey, 2–6 for stages (or ages) in a predator’s life, and
7 for a reproducing predator. Predators depend on prey to progress to
their next stage, as they die of starvation if there is no prey in their neigh-
borhood. Prey that are adjacent to predators disappear (are “eaten”). The
prey reproduce and inhabit adjacent cells in their neighborhoods, but
when a predator in state 7 reproduces it fills its adjacent empty cells as
well as adjacent cells that have previously contained prey. The cells that
have been thus inhabited will contain a young predator in stage 2, while
the old parent dies and leaves its cell empty (Ermentrout and Edelstein-
Keshet, 1993).

If one starts with a square grid of dimensions 50 × 50 cells, with an
initial random distribution of prey, and a few cells containing predators,
the system exhibits complex population dynamics. The size of the preda-
tors and prey populations fluctuates widely with time. Depending on the
specific parameters used, the population can become extinct, show some
regular fluctuations, or evolve into a complex prey and predator popula-
tions, which interact in unpredictable ways. As we noticed before, most
sets of parameters will lead to uninteresting behavior, whereas some will
lead to surprisingly rich behavior.

A different ecological model that yields interesting behavior is Wator
(Dewdney, 1984). In this model, the universe is torus-shaped, filled with
water, and contains fish and sharks that hunt and eat them. The fish swim
randomly into one of the vacant cells that are adjacent to their cell, either
horizontally or vertically. If the fish survives for a few generations and has
an adjacent empty cell, it will reproduce into that cell. A shark eats a fish
in an adjacent cell or swims into an empty adjacent cell if there are no fish
in his neighborhood. A shark that has not eaten for a few generations dies
of starvation. The sharks also reproduce in a manner similar to the way
the fish reproduce.

This model has five parameters: (1) the initial number of fish; (2) the
initial number of sharks; (3) the time it takes fish to reproduce; (4) the
time it takes sharks to reproduce; and (5) the time it takes the sharks
to starve to death. These parameters can be tweaked so that the system
achieves a steady state, but this is a difficult task especially when the game

58    ◾    Biological Computation

board is small. Typically, this model gives rise to a widely fluctuating sys-
tem or to the extinction of the population. Note that similar to the color
formation automata, Wator uses random moves, and thus the automaton
is not deterministic.

It may also seem that Wator is not CA per our definition since the
fish and sharks move on the board, while we did not define any motion
in a CA and discussed only the way the cells’ states change. Actually,
this is not a fundamental extension of the original definition. A move-
ment of an organism from one cell to its neighbor can be implemented
in the standard model by adding states and rules by which an organism
to be moved dies in its original cell and an identical copy is created in a
neighboring cell.

2.5.3  Food Chain

This model describes a universe in which different species feed off one
another. For example, consider a universe containing grass eaten by
zebras, which in turn are hunted by tigers. We will try to model some
characteristics of such a food chain using CA.

Every cell in the CA can be in one of N states: 0,1,…,N – 1. A cell in
state k will eat any of its four perpendicular neighbors, which are in state
k	– 1, by changing the neighbor’s state to k. The food chain is circular so
that cells in state N	– 1 are eaten by cells in state 0. For example, Figure 2.9
shows a transition of a particular configuration of the CA (N = 6, and
the states are 0,…,5). Such automata are called circular cellular automata
(CCA) (Dewdney, 1989). Can you guess how this particular system will
behave?

0

2

1

3

2

1

4

2

1

4

2

3

3

2

3

5

1

5

4

0

0

2

2

3

2

2

4

3

2

4

3

3

3

3

4

0

1

5

5

0

FIGURE 2.9  An example of one generation of the food chain automaton. A cell
in a particular state will be “eaten” by a neighboring cell (only the four perpen-
dicular neighbors are considered) with a state higher by 1. The order is cyclic,
so a cell in state 5 can be eaten by a cell of state 0. In this automaton spherical
boundary conditions are not imposed, and cells on the boundaries have fewer
neighbors than interior cells.

Cellular Automata    ◾    59

2.6   COMPARISON WITH A CONTINUOUS 
MATHEMATICAL MODEL

For comparison, we present a continuous mathematical model that de-
scribes the growth of a bacteria colony in ideal lab conditions. Obviously,
this model does not exactly describe the real biological processes.

The reproduction rule we want to implement states that the bacteria
population grows at a rate proportional to its size at any point in time. We
will denote the number of bacteria at time t	by y(t). The rate of growth at
time t is

lim

() ()
t

y t t y t

t→

+ −
0

In other words, this is the derivative of y(t) which we denote y’(t). So now
we can express the reproduction rule as

	 y’(t) = λy(t) (2.1)

where λ is a positive constant that characterizes the reproduction rate.
Note that (2.1) describes properties of functions, and we are looking for a

function that obeys this equation—in this case, a function whose derivative
at any point is equal to the value of the function at that point times a con-
stant λ. Such equations belong to a mathematical field called ordinary dif-
ferential equations. Solving (2.1) is quite straightforward, as described next.

To determine the function y(t) which gives the number of bacteria at
time t, we rewrite (2.1) as

 y’(t) – λy(t) = 0

Multiply the equation by −λt
e to get

 −λt
e (y’(t)–λy(t)) = 0 (2.2)

The function −λt
e is never equal to 0; therefore, a function y(t) will satisfy

the reproduction function (2.1) if and only if it satisfies (2.2).

The left-hand side of (2.2) is the derivative of the function −λt
e y(t);

therefore, (2.2) can be written as

60    ◾    Biological Computation

e y tt−() =λ ()

,
0

The only functions with derivative 0 are constant; therefore, the func-

tion
−λt

e y(t) is a constant, that is,

− =λt

e y t C()

where C is a constant. To solve for y(t), we divide by −λt
e to get

	 y t Ce t()= λ

 (2.3)

This derivation shows that only the exponential functions described in
(2.3) satisfy the reproduction rule (2.1); in other words, (2.3) describes the
(infinite) set of all solutions to (2.1) and is called the general solution to
(2.1).

The reproduction rule described by (2.1) does not provide us with
enough information to determine the size of the bacteria colony at time t,
as there exists an infinite number of solutions to the equation. This is not
surprising since the reproduction rule describes the rate of growth, and
the initial number of bacteria has not been specified.

Assume, for example, that the number of bacteria at time t	= 0 is y0,
that is,

	 y(0) = y0

Substitute into (2.3) to get

	 y Ce y()0 0
0= =λi

Therefore, C	= y0.

So of all the possible solutions given by (2.3) only one function satisfies
the initial conditions: y(t) = y0eλt. This function is called the particular
solution of equation (2.1) with the initial condition y0.

This model differs in a few key aspects from the other models we
explore in this chapter. In this model time is continuous, as t may be any
real number. Furthermore, the mathematical analysis used depended
on the change in the number of bacteria over time periods that are

Cellular Automata    ◾    61

arbitrarily short to compute the total number of bacteria. These kinds
of models use calculus as their main mathematical tool. The model we
just presented is a very simple example: the reproduction rule is an easily
solved first-order differential equation. Some models need to use much
more complicated differential equations that often are not amenable to
analytical solution and require numerical solutions.

The assumptions underlying this model are unrealistic from a biological
point of view (e.g., in reality the rate of bacteria reproduction is nonuni-
form), but they allowed us to focus on the main characteristic of a bacteria
colony: that its growth rate is proportional to its size. To build an exact
biological model we would have had to also allow for the availability of
food, the density of the colony, and so forth. At best, our model describes
a bacteria colony during a limited period of its existence. However, using
analytical mathematical tools allowed us to derive an exact formula that
gives the colony size at any given moment without having to simulate the
colony’s development during discrete time periods. We can use differential
equations to describe more complex processes, for example, processes that
deal with multiple organisms competing over resources. This is beyond
the scope of this book, but it is important to remember that these tools are
available for modeling.

Discrete and continuous models each have their advantages and disad-
vantages. Some systems are inherently continuous (like blood flow), and
some are inherently discrete (e.g., modeling DNA mutations where there are
only four types of nucleotides). In many situations, though, the modeler can
choose which type of model to use for the task at hand. Often, discrete mod-
els are appropriate for populations of fixed size where finite size effects are
important, whereas continuous models are more appropriate for analyzing
asymptotic behavior. When the equations that govern the continuous model
can be solved analytically, the analysis is usually more efficient than the
lengthy simulations needed for discrete models. On the other hand, when the
equations do not have analytical solution, a discrete model may be preferred.

2.7  COMPUTATIONAL UNIVERSALITY

2.7.1  What Is Universality?

At first glance it seems that the question of whether a computer can be
used to solve a particular problem is fundamentally different from the
question if an initial state of the “Game of Life” can be found such that a
particular behavior may be observed. It would seem that the complexity

62    ◾    Biological Computation

of the first problem results from the many variables that might affect the
answer (e.g., which computer are we referring to, how large is its memory),
whereas the analysis of Life does not depend on any such parameters.

Surprisingly, when we analyze what operations computers can perform
(i.e., which algorithms can be implemented by them) or even when we try to
analyze computing devices that work in diverse and unusual ways, it turns
out that in a deep sense all computing devices are able to implement the
same class of algorithms. This does not mean that simple computers have
the exact capabilities as high-end supercomputers. The supercomputers will
arrive at solutions faster, for example, but in spite of the technical differences
the fundamental computing capabilities of all computers are the same.

This amazing insight was achieved by researchers who defined different
computational	models and compared them. A computational model is a sim-
ple but exact description of the principle characteristics of the operation of a
computational device. As we already saw, a model is a simple presentation of a
complex system that captures the important characteristics of the system.

The founders of computer science came up with a set of computational
models to standardize and formalize the description of algorithms. After
carefully defining the models, the researchers attempted to investigate
many different questions these models brought up. One such class of ques-
tions deals with comparing the different models: determining whether
one model is more powerful than another (i.e., given a problem that is
solvable by one model, can it always be solved with the other?). Are two
models equivalent; that is, are the same sets of problems solvable using
both models (even if they might differ in speed or efficiency)?

Studying these problems led to the formulation of a fundamental
hypothesis of computer science, the Church–Turing thesis. This hypoth-
esis asserts that we can describe formally and precisely the set of prob-
lems that may be solved algorithmically. This hypothesis emerged when it
turned out that many computational models, which were mostly developed
in the 1930s using very different ideas and techniques, were all equivalent:
any problem that is solvable using one of the models is also solvable in the
others. This equivalence led researchers to believe that all the models fun-
damentally describe the same intuitive idea known nowadays as “effective
computation.” Any computational model that is equivalent to these mod-
els is called a universal computational model.

The most famous such model is the Turing machine	(TM). This model,
developed in 1936 by Alan Turing, is of a state machine that reads an infi-
nite 1-D tape composed of characters. At any point in time the machine is

Cellular Automata    ◾    63

in one of a finite set of states (hence the name state machine), which deter-
mines its actions for any input character it reads off the tape. According
to the state and the current character on the tape, the machine writes a
new character to the tape and moves the read/write head one position to
the right or the left of its current position on the tape. The model assumes
that any piece of information may be described as a sequence of characters
on the machine’s tape. A different model was described by the logician
Alonzo Church. His model is called Lambda Calculus and is similar to
a minimal computer language and therefore is particularly useful in pro-
gramming language research.

As already stated, these two models were proven to be computation-
ally equivalent; that is, any algorithm may be translated from one model
to the other, and we may always select the model that is easier to work
with for proving a particular statement. Nonetheless, the models differ to
such an extent that describing a problem in one model might be mean-
ingless in the other; therefore, we need to translate between the models.
For example, when describing a computation using a Turing machine we
need to describe how the data are encoded on the tape and determine the
machine’s behavior in every state. But in the lambda calculus there is no
tape and no predetermined set of states.

The current state of affairs is that we have a number of models that
are computationally equivalent, and no stronger computational model
has been found during the decades that have passed since they were first
developed. Thus, the current hypothesis in computer science is that a
Turing machine can, in principle, perform any computation. Furthermore,
Turing proved that some computational problems cannot be solved using
a Turing machine. According to the Church–Turing thesis, these problems
are algorithmically intractable, and no computer will ever be able to solve
them, regardless of any future technological development.

One of the interesting and important characteristics of a Turing
machines is that it is relatively easy to build one Turing machine that
can simulate the behavior of any other Turing machine. Such a machine
is known as a universal Turing machine. To build such a universal TM,
we need to find a way to describe any other TM on the input tape of the
universal TM. This description must contain all the data necessary for a
complete description of the TM—that is, its states and the transition rules
from state to state upon reading the tape of the simulated TM. Other com-
putational models also allow us to build a universal machine or program
that can simulate any other computation under the model.

64    ◾    Biological Computation

A universal TM is similar to a modern general purpose computer in the
sense of being able to perform a wide range of computations by executing
many different programs. Note, however, that in any real computer the
memory is finite, as opposed to the idealized infinite tape of a TM.

The fact that we can construct a universal Turing machine, U, is of
major importance since this is a single machine with maximal computing
power. The existence of universal TMs allows us to replace the question
“Does a TM X with the following properties exist?” with “Is there an input
for which the universal TM U will behave in the following manner?” Note
that the existence of a universal TM implies that for a universal comput-
ing model it is impossible to distinguish between the data used as input to
the computation and the program that controls the computational process.
The data can be used as the program and vice versa.

Turing showed a well-defined computational problem that cannot be
solved by any TM. To understand his counterexample, let us consider a
computer program that contains loops. For example, we might implement
(in pseudo-code) a program that computes the sum of the integers from 1
to 10 (1 + 2 + 3…+ 10) as

sum := 0

for i := 1 to 10

 sum := sum + i

At the end of the execution of the loop the variable sum will contain
the result we wanted to compute. Obviously the statement in the body of
the loop is executed exactly 10 times, but for other loops determining the
number of iterations that will take place may be much harder. Consider,
for example, the following code segment:

	 	 sum :=0

L1: if i=0, exit.

	 	 sum := sum+i

 i:=i–1

 goto L1

Here the situation is more complicated. If the variable i contains the
value 10 at the beginning of the execution of the code segment, the loop
will be executed exactly 10 times and will calculate exactly the same value
as before. If i starts out with any other positive integer value, the loop
will be executed i	times; however, if i starts out as a negative integer, the

Cellular Automata    ◾    65

condition in statement L1 will never be satisfied, and the computation will
be in an infinite loop and will never stop. Since the value of i is determined
earlier in the program, it is not clear what its value will be.

It is interesting to ask if we can design an algorithm that will be able to
look at a code of a computer program and its input and decide whether it
will result in an infinite loop. In simple cases, like the first one we showed,
the problem is easy and even trivial to solve. However, for the general case
Turing showed that it is impossible to construct a computer program that
takes as its input another computer program and its input and determines
whether the other program will halt or go into an infinite loop. In other
words, it is impossible to determine in a finite time whether a particular
program will halt on any particular input. This is called the halting prob-
lem, and it is unsolvable using our strongest computational model (i.e., in
universal computational models). Such problems are called undecidable.

We will see that a cellular automaton is a computational model and will
analyze it in comparison with other computational models. Moreover, we
will show that the “Game of Life” with its simple rules is a universal com-
putation model. As a corollary, we will see that some questions about the
behavior of CA are undecidable and cannot be answered algorithmically.

2.7.2  Cellular Automata as a Computational Model

To discuss CA as a computational model, we first need to explain how the
operations of CA can be thought of as performing a computation. Let us
look at a particular cellular automaton. At every generation the transition
rule of CA determines the state of the cells in the next generation. In other
words, we compute for every cell its next state, taking into consideration
its current state and the states of the cells in its neighborhood.

If we think, for instance, on the Game of Life, we can rephrase its rules
using the following pseudo-code:

If the cell is alive

Then

 If the number of live cells in its neighborhood is

 either 2 or 3

 Then

 The cell’s state in the next generation is “alive”

 Else

 The cell’s state in the next generation is “dead”

If the cell is dead

66    ◾    Biological Computation

Then

 If the number of live cells in its neighborhood is 3

 Then

 The cell’s state in the next generation is “alive”

It is important to note that the CA executes this computation simulta-
neously on all cells and therefore that the computation it executes is differ-
ent from the computation of a single cell’s next state. However, a standard
computational model (e.g., computer program) can execute this computa-
tion cell by cell. Actually, this direction of the proof should be self-evi-
dent, as we usually implement CA using a regular computer program. It
is harder to show that CA can be used to perform standard computations.
To answer this kind of question we have to show how a computation in
another model can be simulated by CA.

For instance, let us look at the addition of two numbers. First, we have
to represent the numbers in a cellular automaton. Let us consider a 1-D
cellular automaton and assume the numbers are represented as unary
numbers (i.e., the number n	 is represented as a sequence of n cells con-
taining 1). The two numbers will be written one after the other, with an
empty cell (represented by zero) between them. So an initial state of a cel-
lular automaton

1 1 1 1 1

represents the problem of adding 2 and 3.
Now we need to define the set of states and define the neighborhood so

that the CA will eventually achieve the state

1 1 1 1 1

which represents the number 5.
The problem with finding a transition rule that will apply to any addi-

tion problem and not just to the problem 2 + 3 is that the rule has to be
applied simultaneously to all the cells of the CA. Moreover, the fixed
neighborhood size (in this example it is 3; i.e., each cell sees only its imme-
diate neighbor on each side) makes every cell ignorant of the states of cells
outside of its neighborhood. However, in this example we can take advan-
tage on the particular observation that there is only one cell whose local
neighborhood is 101, so we can set rules that will be applicable only to cells

Cellular Automata    ◾    67

with this neighborhood. This neighborhood should change to 110. Thus,
in the next generation the neighborhood to its right will be 101 and will
be treated the same way; after three generations the computation will be
correctly executed, no more 101 neighborhood would exist, and thus the
computation will end.

More complicated questions can be addressed using CA. Consider a
cellular automaton using rule 132 (see Section 2.4), and observe that it
can determine whether a number is odd or even. If its initial state is com-
posed of an even number of live cells, then after some generations all the
cells will be empty. Conversely, if the initial state is composed of an odd
number of live cells, after some generations the automaton will arrive at
a steady state where exactly one cell is alive. In other words, this automa-
ton is a special-purpose computer that can determine if a number is odd
or even. By adding more states and changing the transition rule, we can
build CA that can perform more complex operations, such as squaring
any integer and finding prime numbers. The important point here is that
we can transform a computational problem so that it can be described by
CA, and we can create transition rules that will allow the CA to execute
the computation.

In the next section we will see that this can be done in the general
case—that is, any computation can be carried out in the CA model.

2.7.3  How to Prove That a CA Is Universal

As already noted, to prove that a computational model is universal we
have to prove it is computationally equivalent to another universal com-
putational model such as Turing machines or the lambda calculus. To
prove this equivalence we have to prove two claims: (1) that any TM
can be simulated by CA; and (2) that any CA can be simulated by a TM.
If we proved only one of these two claims, we would have shown that
one model is at least as strong as the other and not that the models are
equivalent.

The latter direction is simple: while we describe our cellular automata
as set of rules we actually run them using a conventional computer pro-
gram. Since all computer programs can be executed on Turing machines
it follows that every automaton can be simulated by a TM.

To prove the other direction—that we can simulate a TM by a cellular
automaton—recall that a TM is characterized by the initial state of its tape,
the set of states, and the transition rules that determine for every state how
the current tape cell has to be modified and how to move the read/write head.

68    ◾    Biological Computation

Therefore, we have to determine how to represent the TM’s tape and states on
the automaton’s grid and to write the transition rules such that the automa-
ton mimics the TM’s behavior at any point in time. Such a construction is
sketched in Section 2.7.4 and proves that we can build a CA for any TM.

Note that this proves only that we can construct a cellular automaton for
a given TM. It does not help us to determine for a given automaton whether
it is equivalent to any specific TM. Thus, proving, for example, that Life is
itself a universal computational model is a bit more complicated, as the
transition rules for Life are fixed, and we cannot define the transition rules
to simulate the behavior of a particular TM.

The creative solution to this predicament is showing that certain pat-
terns (like the glider described in Figure 2.5) can be made to interact and
collectively behave like digital circuits. In particular we can show that we
can perform logical AND and NOT operations, which turn out to be suf-
ficient for a universal computation (more about this in Section 2.7.5).

Note that the most general definition of a cellular automaton consists of
an infinite number of cells, and therefore the equivalence between a TM
and a cellular automaton is relevant only when we limit ourselves to a finite
number of nonempty cells in the CA. Remember that a TM performs its
computation sequentially and thus cannot access or simulate an infinite
number of cells in finite time, whereas a cellular automaton can address
an infinite number of cells due to the locality of the transition rule.

2.7.4   Universality of a Two-Dimensional Cellular 
Automaton—Proof Sketch

We will present a construction of a two-dimensional (2-D) cellular auto-
maton Ms that simulates a given TM M. Showing that any TM can be
transformed into a 2-D CA demonstrates that 2-D CA are a universal com-
putational model; the sketch follows the proof in Mitchell (1998).

The automaton Ms simulates a TM M in “real time” (i.e., any step taken
by M is simulated in one time unit by Ms). Let M be a TM with n states and
an alphabet of size m, and assume without loss of generality that n	<	m.

We note the following properties of Ms:

• The CA Ms operates in an infinite 2-D space. A certain number of its
cells will represent the TM and be active, and all other cells are in the
quiescent state that will be denoted by 0.

Cellular Automata    ◾    69

• We will denote by k the number of possible states for each of Ms’s
cells. Let k	= 1	+	max(m,n)	=	m	+ 1. The state numbered m	+ 1 is the
quiescent state 0.

• Four cells (h, a, b, s) play a central role in the operation of Ms
(Figure 2.10(a)). The cell corresponding to the TM’s read/write head
is denoted as h and is at state P. The cells adjacent to it to the right
and left are denoted as a and b, respectively. The cell currently being
read on the tape is denoted by s	 and is in state S0. We define the
neighborhood of each cell as the seven cells around them arranged
in the shape shown in Figure 2.10(b). Note that when each of the
four previously mentioned cells is the center of the shape in Figure
2.10(b) it can be identified by unique properties of its neighborhood.
For example, the cell s is distinguishable because it has an occupied
cell above it and empty cells below it.

The cellular automaton is constructed as follows. One row of the grid is
used to represent the tape of M. At each time step t	of the operation of	Ms

the cells in this row are in states corresponding to the characters on the
tape of M.	Although Turing machines use infinite tape, the size of their
input must be finite. In the automaton Ms this is implemented by using a

P

cell h

cell s

S0S–1S–2S–3 S1 S2 S3

(b)(a)

cell a cell b

FIGURE 2.10  A CA that simulates a TM. (a) A schematic description of the CA’s
operation. The cell corresponding to the TM’s read/write head is denoted as cell
h and is at state P. The cells adjacent to it to the right and left are denoted as a and
b, respectively. The cell currently being read on the tape is denoted by s and is in
state S0. The other cells depicting nonempty tape cells are denoted by i, and their
states are Si. (b) Description of the neighborhood defined for each cell (marked
in gray) in the universal CA. (Adapted from Mitchell, Melanie, In T. Gramss, S.
Bornholdt, M. Gross, M. Mitchell, and T. Pellizzari, Nonstandard	Computation,
pp. 95–140, Weinheim: VCH Verlagsgesellschaft, 1998. With permission.)

70    ◾    Biological Computation

special state that denotes the leftmost and rightmost cells of the input. All
the cells outside of this finite active region are set to the quiescent state 0.

The row above the row representing the tape simulates the read/write
head of M,	which is denoted as cell	h in Figure 2.10. Cell h is exactly above
the cell s, whose state S0 will be read at time t. The cells to the right and left
of h are denoted as a and b, respectively. All the cells in this row other than
h are in the quiescent state 0. We will not write the transition rules of the
CA in a formal way, but we will follow the execution of the CA that simu-
lates the following generic rule of the TM M	(Figure 2.11): “If the head is in
a state P and sees the input symbol u, change u to v, switch to state Q, and
move the head one place to the right.”

To understand the translation we have to remember that the main
problem is that in the CA Ms all the cells act simultaneously according to
the transition rules, but to implement M we want to change only the cell
that corresponds to the current tape position and the cells that correspond
to the read/write head containing the information about the state of the
machine.

Since the four previously described cells (s, h, a, b)	each sees a different
kind of neighborhood (Figure 2.12), the CA rules can be made to uniquely
reflect the required changes for each cell.

P

0

w

0

u

0

ts

0

w

0

u

P

t

0h

0

u

P

t

0

r

0a

0

y

0

w

0

u

Pb

FIGURE 2.12  The unique seven cells environment of the cells s, h, a, b.

0

r

0

0

0

t

0

0

0

u

P

0

0

w

0

0

0

y

0

0

0

r

0

0

0

t

0

0

0

v

0

0

0

w

Q

0

0

y

0

0

FIGURE 2.11  The CA before and after executing the following rule: If the head is
in state P and sees the input symbol u, change u to v, switch to state Q, and move
the head one place to the right.

Cellular Automata    ◾    71

Notice that the cell corresponding to the read/write head has to “move”
relative to the tape, in accordance with transition table of M, but cells do
not move in the standard CA model. As usual when designing CA, this
problem is solved not by having the cell move but rather by updating the
cell values in accordance with the transition rule in a way that simulates
information flow between cells. Note that the cell corresponding to the
read/write head and the two cells adjacent to it are configured in a way
that makes them identifiable by their neighborhoods, and h is the only cell
among them whose value is not 0. Therefore, it is possible to choose transi-
tion rules that update the states of these cells so that the cell describing the
read/write head can replace either a or b (depending on the direction of
the head’s movement). The state of the new cell representing the read/write
head—either a or b—changes to the state of Ms corresponding to the new
state of M according to transition table of M.

We have thus shown how it is possible to construct a 2-D cellular autom-
aton Ms that simulates any TM M	thereby proving that 2-D CA are a uni-
versal computation model.

2.7.5  Universality of the “Game of Life”—Proof Sketch

The computation universality of Life is proven by showing how to build
state configurations that behave as digital circuits that perform logical
operations.

We will use the “glider” (shown in Figure 2.5) to build such “digital cir-
cuits” composed of logical gates that perform the standard logical opera-
tions AND, OR, and NOT.

The rules of Life allow the glider to travel “autonomously” on the board.
After four time steps the glider moves one cell diagonally down and to the
right. Configurations called glider guns “shoot out” new gliders periodi-
cally and then return to their initial configuration, which guarantees they
will continue to create new gliders indefinitely. Figure 2.13(b) shows the
well-known Gosper glider	gun, named after its discoverer. The Gosper
glider gun shoots out a new glider after every 30 time steps (i.e., its period
is 30).

The logical circuits are based on using glider guns that shoot out
sequences of new gliders representing bits. As an example we will show
how to implement the NOT operator. It acts upon a sequence of bits rep-
resented by a stream of gliders. The bit 1 is represented by a glider, and the
bit 0 is represented by the absence of a glider—a gap in the glider sequence
advancing along the board. We place a glider gun that shoots out new

72    ◾    Biological Computation

gliders continuously perpendicular to this glider stream. It turns out that
two perpendicular gliders colliding in a particular way annihilate each
other. Therefore, in the stream of gliders being shot out of the gun only
the gliders that do not intersect the gliders representing the input will sur-
vive. Put differently, only the gliders that intersect the gaps in the input
stream (corresponding to the 0 bits) will survive. Therefore, the surviving
stream represents exactly the NOT value of the input stream, as depicted
in Figure 2.14.

Notice that, for a glider from the input stream and a glider from the
glider gun to annihilate each other, they have to be precisely positioned
relative to each other. Different relative positions during a collision can
have different outcomes: for instance, a four-cell block or a “blinker” that
lights up periodically may be created. Figure 2.15 shows two gliders posi-
tioned in an annihilating configuration (verifying this is left as an exercise
to the reader).

The operations AND and OR are implemented by employing similar
techniques, that is, creating two input streams of gliders (with 1 represented
by a glider and 0 by its absence) and letting them interact so that the out-
put stream of gliders will have a glider only if both input streams had a
glider (when implementing AND) or when at least one stream had a glider
(in the case of OR). To combine these logical operators into more complex
logical circuits, which are necessary to show that Life has universal com-
puting power, we need to create more machinery, such as the capability of
copying glider streams, moving glider streams, and halting them. We also
have to be able to store information (represented as a glider stream) and
to retrieve it.

The existence of ways for performing all of these tasks, together with
the implementation of the logical operations on glider sequences, shows

(a)

(b)

FIGURE 2.13  (a) A glider that can travel autonomously across the board. (b) The
Gosper glider gun that releases a glider every 30 generations.

Cellular Automata    ◾    73

that it is possible to implement logical circuits that can perform an arbi-
trary computation within the “Game of Life” framework, which proves
that the “Game of Life” is a universal computational model.

2.8  SELF-REPLICATION
Without delving deeply into the problem of defining life, we can say that
one of the distinguishing characteristics of life is the ability of living
organisms to reproduce. In other words, living organisms can create new

FIGURE  2.15  Two gliders in a configuration that will lead to their mutual
elimination.

Input
stream

From
glider gun

Output
stream

FIGURE 2.14  The configuration of Life that describes the NOT operation on a
stream of bits represented by the existence or absence of gliders. Since gliders
from the glider gun will survive only if there is a gap (i.e., 0) in the input stream,
the output stream will be the logical complement of the input stream.

74    ◾    Biological Computation

organisms that are very similar or even identical to themselves. Recall that
von Neumann’s purpose when inventing the CA model (together with the
famous mathematician Stanislaw Ulam) was to investigate the phenom-
enon of self-replication.

It is easy to find CA that exhibit what looks like self-replication. For
instance, a 1-D cellular automaton where a cell with value 1 causes the
cells in its neighborhood to also change their values to 1. But this is not an
interesting example of self-replication since copying the value 1 from cell
to cell is very different from the complex processes of self-replication in
the living world which we are trying to investigate, such as cell division, or
the creation of a human baby. Therefore, we want to construct a self-repli-
cating cell automaton that is complex enough to convince us that its self-
replication mechanism is somewhat similar to replication or procreation
in complex biological systems. The cell automaton that copied the value
1 is no more interesting than a rock that splits into two similar-looking
smaller rocks during an earthquake, and neither can teach us much about
self-replication.

Another domain where self-replication can be experimented with is
programming, where the challenge is to have a program whose output
is the original program itself. This is clearly a programming challenge
since Print (‘A’) will output A and the output of Print (‘Print (‘A’)’) is not
identical to the original (and in addition might be considered as a syn-
tax error depending on the way the particular programming language
handles quotation marks). The recursive nature of the challenge is clear.
Surprisingly, such programs were written in almost all programming
languages. These programs, nicknamed “quines” after the American phi-
losopher Willard Van Orman Quine, operate mainly by tinkering with
the printing commands of the particular languages. The following is a
Quine program in C:

char*f=”char*f=%c%s%c;main()
{printf(f,34,f,34,10);}%c”;
main(){printf(f,34,f,34,10);}

While such programs are fun for programming aficionados, they hardly
give us general insight into self-replication.

One way of making the CA models of self-replication more relevant is
by looking only at CA that possess a certain minimal level of complexity.
This is what von Neumann did. An alternative way would be to look at

Cellular Automata    ◾    75

many CA that exhibit self-replication and then to select those with inter-
esting characteristics. Many researchers chose this path, using models
with varying levels of complexity.

The basic difficulty in constructing a self-replicating system is that
the system seems to need to contain its own description and the recipe
for constructing the next generation, which must contain the recipe for
constructing the generation after that, and so on ad infinitum. This is
patently impossible.

Von Neumann’s insight was that the self-description can have two
roles: (1) as a recipe for controlling the construction of another copy of
the system; and (2) as data	that will be copied verbatim and attached to
the new copy of the system, which in turn will enable it to continue self-
replicating.

This approach allows us to solve the infinite regress problem that ini-
tially seemed unsolvable. Our current understanding of biology shows
that self-replication in living organisms works in a similar fashion, as the
DNA that contains the genetic data is read as a recipe for creating pro-
teins and is replicated as data during the replication process. It is amaz-
ing that von Neumann had this insight about self-replication already in
the 1940s, since the DNA structure was discovered in 1953, and it took
a few more years until an understanding of its fundamental properties
was achieved.

The self-replicating cellular automaton von Neumann constructed was
so complex that he never finished its design completely. The cells could
be in one of 29 states, and the automaton had a universal construction
capability—that is, it could construct essentially any configuration of cell
states based on the description in its input (Mitchell, 1998). Moreover, von
Neumann’s automaton had universal computing capabilities, that is it can
compute any computable function, which as we already saw is highly sig-
nificant. Further studies were able to complete simpler, but still very com-
plicated, versions of universal self-replicating CA.

It turns out that one can construct relatively simple self-replicating
CA if these CA are not required to have universal construction capabili-
ties (i.e., these systems can replicate only specific configurations). Moshe
Sipper and James Reggia (2001) suggested one such elegant system, which
was implemented on a 2-D square lattice. Each cell can be in one of five
states. It may contain a rook, a bishop, a knight, or a pawn or can be empty.
The transition rules for each state are given in Figure 2.16.

76    ◾    Biological Computation

FIGURE 2.17  The initial configuration of the self-replicating automaton. Every con-
figuration in the marked square will be duplicated. (Adapted from Sipper, Moshe
and James A. Reggia, Scientific	American 285, no. 2, 34, 2001. With permission.)

Knight
If there is a bishop just
behind or to the left of the
knight, replace the knight
with another bishop.

Bishop or Rook
Replace it with a pawn.

Empty square
If there are two
neighboring knights and
either faces the empty
square, fill the square with
a rook.
If there is only one
neighboring knight and it
faces the square, fill the
square with a knight
rotated 90 degrees
counterclockwise.
If there is a neighboring
knight and its left side
faces the square, and the
other neighbors are
empty, fill the square with
a pawn.
If there is a neighboring
rook, and the other
neighbors are empty, fill
the square with a pawn.

If there are three
neighboring pawns, fill
the square with a knight
facing the fourth, empty
square.

Otherwise, if at least one
of the neighboring squares
is occupied, remove the
knight and leave the
square empty.

Pawn
If there is a neighboring knight, replace the pawn
with a knight with a certain orientation, as follows:

If a neighboring knight is
facing away from the
pawn, the new knight
faces the opposite way.

Otherwise, if there is
exactly one neighboring
pawn, the new knight
faces that pawn.

Otherwise, the new knight
faces in the same direction
as the neighboring
knight.

FIGURE 2.16  Rules that describe a self-replicating automaton. Each cell can be in
one of five states: rook, bishop, knight, pawn, or empty. (Adapted from Sipper, Moshe
and James A. Reggia, Scientific	American 285, no. 2, 34, 2001. With permission.)

Cellular Automata    ◾    77

The initial conformation is given in Figure 2.17, where the square at the
left is the “genome” and the two pawns to the right form the “replication
arm” used in the replication process. We leave it as an exercise to the reader
to start from the initial configuration in Figure 2.17 and see how it dupli-
cates. We also leave open the question if such specific self-replicating autom-
ata can be used to study the general properties of self-replicating systems.

Note, however, that living organisms are not universal “replicators”
either. Bacteria can be used to replicate other foreign or even synthetic
DNA, and in fact many applications of biotechnology are based on such
capabilities; nonetheless, some genes cannot be replicated in this way as
they may be lethal to the host. In higher multicellular organisms there is a
much tighter regulation on what can be replicated, and in this sense their
replication system is not universal at all.

An interesting alternative way for constructing self-replicating CA
is via an evolutionary process. Here we start with a large collection
of randomly created CA and then search for the ones closest to being
self-replicating, that is, the CA that create copies closest to their initial
configuration. At the next stage, one starts with the previously identi-
fied set, mutates them slightly, and repeats the process. By iterating this
process we may eventually find CA that replicate exactly. This search
process is similar to biological natural selection, which is the engine
of the evolutionary process. We will deal with this search procedure in
more detail when we discuss genetic algorithms (Chapter 3) and Avida
(Chapter 6), a programming environment that enables experiments
related to artificial life and can be used, among other purposes, to study
self-replication.

2.9  SUMMARY
We have seen that CA originated in an effort to model biological processes
(e.g., cells, bacteria colonies), but they are useful in other contexts as well.

Models based on CA also abound in physics, chemistry, and other areas
in which there is a need to build models based on discrete time and space. An
interesting application is discussed in Rosin (2006) where cellular automata
were trained to perform image processing tasks like noise filtering, thin-
ning, and finding convex hulls. The purpose of the training was aimed to
automatically select, using a technique similar to genetic algorithms, a set of
rules that can perform the task at hand. CA are also useful where research
on the origin of complex behavior from simple local rules is being done.

78    ◾    Biological Computation

The main lesson of this chapter is that a small number of simple rules
repeatedly applied can create a wide spectrum of complex behavior that often
seems as if it were the result of a detailed plan and nonlocal coordination.

Considering CA as a nonstandard computational model enabled us to use
fundamental concepts and theorems from computer science to gain deeper
insights into CA. One such aspect is our study of universality. We should
note that universality is interesting as a theoretical question that determines
the theoretical capabilities of cellular automata. Models of specific phenom-
ena do not depend on universality, and, furthermore, no one would use a
cellular automaton as a practical universal computational device.

In our theoretical studies of CA we were able to use the undecidabil-
ity of the Halting problem to learn that the fate of initial configurations
in the “Game of Life” cannot be predicted without actually following the
simulation all the way through. In more grandiose terms, Life cannot be
predicted; it must be lived!

2.10  PSEUDO-CODE

// Generic code to run a 2-D cellular automata

// Initia
INIT_MAT(mat)

lizing the matrix to the starting set-up

WHILE not END_CONDITION(mat)
 BEGIN
 // The end condition can be met by either reaching a pre-determined
 // number of generations, or by reaching a certain state of the matrix.

 FOR i:=1 TO n
 FOR j:=1 TO n

// Calculate the new state of each cell based on its current
 // state, the states of its neighbors, and the transition rules
 // which constitute the function NEW_STATE.
 // To emulate simultaneous update of the main matrix a temporary
 // matrix is used.

 temp_mat[i,j] := NEW_STATE(NEIGHBORHOOD(mat,i,j))

 // Update the main matrix

FOR i:=1 TO n
 FOR j:=1 TO n

mat[i,j] := temp_mat[i,j]
 END

Cellular Automata    ◾    79

2.11  FURTHER READING
Ben-Jacob, Eshel. 2008. Social behavior of bacteria: From physics to complex

organization. European	Physical	 Journal	B-Condensed	Matter	and	Complex	
Systems 65, no. 3, 315–322.

Dewdney, Alexander K. 1984. Sharks and fish wage an ecological war on the toroi-
dal planet Wa-Tor. Scientific	American 251, no. 6, 14–22. See implementation
at: http://wator.panmental.de.

Dewdney, Alexander K. 1989. Computer recreations: a cellular universe of debris,
defects and demons, Scientific	American 261 no. 2, 102–105.

Ermentrout, G. Bard, and Leah Edelstein-Keshet. 1993. Cellular automata
approaches to biological modeling. Journal	of	Theoretical	Biology, 160, no.
1, 97–133.

Mitchell, Melanie. 1998. Computation in cellular automata: a selected review. In T.
Gramss, S. Bornholdt, M. Gross, M. Mitchell, and T. Pellizzari, Nonstandard	
Computation, pp. 95–140. Weinheim: VCH Verlagsgesellschaft.

Rosin, Paul L. 2006. Training cellular automata for image processing. IEEE	
Transactions	on	Image	Processing 15, no. 7, 2076–2087.

Shapiro, James Allen and Martin Dworkin (Eds.). 1997. Bacteria	as	Multicellular	
Organisms. Oxford: Oxford University Press.

Sipper, Moshe and James A. Reggia. 2001. Go forth and replicate. Scientific	
American 285, no. 2, 34.

Turing, Alan M. 1952. The chemical basis of morphogenesis. Philosophical	
Transactions	of	the	Royal	Society	B (London), 237, 37–72.

Wolfram, Stephen. 2002. A new kind of science, Wolfram	 Media. Available at:
http://www.wolframscience.com/

Young, David A. 1984. A local activator-inhibitor model of vertebrate skin pat-
terns. Mathematical	Biosciences 72, no. 1, 51–58.

2.12  EXERCISES

2.12.1  “Game of Life”

 1. Given the initial state of the board in Figure 2.18, compute the state
of the board in the next five generations. Assume the grid is large
enough not to encounter boundary conditions.

(a) (b) (c)

FIGURE 2.18

80    ◾    Biological Computation

 2. Why did we need pieces in two colors for the manual execution of
Life as described in the text?

 3. Does the orientation of the live cells on the board affect the sys-
tem’s outcome? That is, if, for example, we rotated the boards
in exercise 1 by 90° clockwise, would the future of the system
change? How?

 4. Try to find an initial configuration for Life that will result in an
oscillator with period 3 (i.e., returns to its initial state after three
generations).

 5. True or false: If the board is finite, one would eventually return to
states that have occurred previously in a periodic fashion. Prove your
claim.

2.12.2  Cellular Automata

 6. In the standard CA model, how would you build an automaton
where every cell at every instant belongs to one of two types of cells,
for which there are different transition rules (the neighborhoods are
the same for both types)?

 7. There are 256 one-dimensional automata with k	= 2 and r	= 1. Find a
formula for computing the number of automata as a function of the
parameters k and r.

 8. Describe rule 146 using a table.

 9. Choose a random starting position, and create a space–time diagram
10 generations long for executing rule 146 from this initial state.

 10. Identify the similarity in behavior between rules with binary repre-
sentation α1α2α1α2α20α20 (rules 0, 90, 160, 250).

 11. We discussed automata where cells can determine the state of their
neighbors in the next generation. Explain why this does not contra-
dict the basic model where each cell determines only its own state in
the next generation.

 12. Explain how it is possible to simulate a CA with any neighborhood
using a CA with a nearest neighbor’s neighborhood.

Cellular Automata    ◾    81

 13. Given a deterministic CA operating on a finite board, prove the fol-
lowing: If it has a configuration that can be reached in one step from
two previous configurations, a configuration of the CA can be found
that has no previous configuration. Such a configuration can there-
fore exist only as an initial configuration of the system and is called
a “Garden of Eden” configuration.

 14. It is possible to change the CA model to a model with asynchro-
nous time by randomly choosing only one cell at each time step and
applying the transition rule only to that cell. Does this change the
properties of the model significantly?

 15. We have defined the transition rule in a way that is independent of
the cell’s location on the board. What is the importance and the goal
of this property? What would happen if we removed it?

 16. Construct a 1-dimensional CA with three states (0,1,2). The initial
state of the automaton is composed of a pair of 1s, and all the other
cells are in the quiescent state (state 0). See the space–time diagram
in Figure 2.19. The transition rule should change the states of the cells
between the two 1s from left to right from state 0 one after the other
to state 2 over time. After changing the rightmost 0 to 2, the CA will
not change anymore. Ignore what happens outside the boundaries
marked by the two 1s.

12221
10221
10021
10001

FIGURE 2.19

 17. Construct a 1-dimensional CA using Exercise 16 as a refer-
ence point; however, state 2 will now progress from left to right
between the 1s, with the provision that at any generation only one
cell will be in state 2 (Figure 2.20), and state 2 will disappear in
the last generation. Hint: You may need to add extra states to the
automaton.

82    ◾    Biological Computation

12001
10001

10201
10021
10001

FIGURE 2.20

 18. Construct a 1-dimensional CA using Exercise 17 as a reference point;
however, state 2 should now move right and left indefinitely. That is,
when the automaton reaches the final state of Exercise 17, it will then
make state 2 move left until it will meet the cell in state 1 on the left and
then will turn right again, thereby creating an indefinite oscillator.

2.12.3  Computing Using Cellular Automata

 19. Why could we discuss the undecidability of the halting problem for
computer programs and Turing machines as if it was one claim, even
though the two computational models are different?

 20. The following problem is undecidable: Given a computer program
and an input string, determine whether the program will output a
specific character during its execution. Show how we may use the
halting problem to prove the undecidablility of this problem.

 21. List the main differences between a computational model based on
Turing machines and a model based on cellular automata.

 22. We have claimed that we can construct a two-dimensional CA that
simulates any TM. Is this enough to prove that CAs are a universal
computational model, or do we need to apply the construction for a
universal TM and find a CA equivalent to it?

 23. We have claimed that we can construct a CA for a given TM. From this
claim we can deduce that we can construct a CA that can accept on its
grid a description of a TM and can simulate it. Why?

2.12.4  Self-Replication

 24. Von Neumann’s automaton has a universal construction capability.
What input does it need to construct a self-replicating automaton?

 25. Based on the results given in Section 2.8, is a universal construction
capability necessary for self-replication? Is it enough?

Cellular Automata    ◾    83

2.12.5  Programming Exercises

 26. Program an “engine” to execute any CA. When designing your pro-
gram try to allow maximum flexibility in defining the CA’s universe
(the grid on which it computes) and the transition rules.

 27. Using the engine created in Exercise 26, implement the automata
mentioned in this chapter.

 28. Construct a cellular automaton that, when given a board containing
cells that form all kinds of shapes, will leave only shapes that look
like a symmetric cross of any size (i.e., lines of the same size that
cross each other in the middle) and will eliminate all other shapes
(see Figure 2.21). (A single cell is not considered a cross.)

Initial conformation Final conformation

FIGURE 2.21

 29. An N	 ×	 N board where each cell has a random numerical value
between 0 and N2 is given (assume that N is known to the cells). Find
the rules for a cellular automaton that will keep only the cells with
the highest value on the board and will eliminate (set to 0) the values
of all other cells (see Figure 2.22).

01200
0000
00120
0000

01243
5785
99123
2460

Before After

FIGURE 2.22

84    ◾    Biological Computation

2.13  ANSWERS TO SELECTED EXERCISES
 4. Many patterns can be found with three generations periodicity. One

such example is given in Figure 2.23.

FIGURE 2.23

 5. If the board is finite, the number of configurations is finite. (For an
N	× N	board it is 2(N×N)). Thus, for any initial configuration, its evolu-
tion must eventually hit a configuration that already occurred. Since
the rules are deterministic, the cycle between these configurations
will repeat itself forever.

 7. The number of possible automata is Kk(2r+1).

 10. In all of these rules the state of a given cell in the next generation is
dependent on the state of its two neighboring cells but not on its own
state.

 13. Since the automaton is deterministic, every configuration is fol-
lowed by a unique consequent configuration. If there is a configu-
ration that is reachable from two different previous configurations,
it means that the number of consequent configurations is smaller
than the total number of configurations of the system. Therefore,
the system must have some configurations that are not the con-
sequents of any configuration and are thus “Garden of Eden”
configurations.

 15. The requirement that a cell cannot use its location (e.g., its x,y coor-
dinates) in calculating its next state is essential to the concept of cel-
lular automata as it allows each cell to communicate only with its
local neighborhood and requires that all cells will follow the same

Cellular Automata    ◾    85

rules. It thus ensures homogeneity and locality and ensures that the
computation of the CA is not a simple translation of programs that
use addressable memory.

 16. The key here is to notice that the new state of the cell is determined
by its current state and the current state of its neighbor from the left
according to the following table. Note that there are other combina-
tions of the two relevant bits (i.e., the current cell and the cells to
the left) but they will not occur inside the boundaries marked by the
two 1s.

Left Current New State
0 0 0
1 0 2
2 0 2
0 1 1
2 1 1
2 2 2
1 2 2

 17. The solution requires changing the current 2 into 0 and changing
the 0 to the right into 2. However, the leftmost 0 cell must use an
additional flag to prevent it from starting another wave of 2 after the
first one.

 20. Add a print command for the required character immediately before
any stop command (or termination point) of the program. (If that
character is part of any other output of the program replace the
character for that output.) Now, if this printing problem was decid-
able, then we would have a solution to the Halting problem, which is
known to be undecidable and, therefore, this is impossible.

 24. To construct a self-replicating automaton the input tape should con-
tain a coded description of the automaton.

87

C h a p t e r 3

Evolutionary Computation

3.1   EVOLUTIONARY BIOLOGY AND 
EVOLUTIONARY COMPUTATION

3.1.1  Natural Selection

Charles Darwin opened his famous book, The	Origin	of	Species, in which
he presented the theory of evolution by natural selection, with a discus-
sion aimed at showing that a far-reaching hereditary change in organisms’
characters is possible and that such changes can be achieved by selective
breeding. Darwin explained the mechanism for such evolutionary changes
by presenting the example of domesticating animals and crops. By selec-
tive breeding based on small variations in hereditary characteristics, one
can gradually create different strains according to the breeder’s prefer-
ences. Figure 3.1 gives as an example Brassica	 oleracea and the variety
of crops cultivated from it. Domestication and artificial selection often
result in extensive hereditary changes. Consider, for example, the differ-
ent dog breeds or the many edible and decorative plants created by man.
Domestication is an example of evolution in action, albeit on a small scale.
Darwin argued that under natural conditions the environment takes on
the role of the breeder, as individuals who are better adapted to the envi-
ronment reproduce more than others.

The industrial melanism of the peppered	moth	provides a famous exam-
ple of this process. An increase in air pollution has been shown to give a
camouflage advantage to darker moths that were rare before the industrial
revolution, so that the dark form of the moth became the more prevalent
form, replacing the previously more common light form. Antipollution

88    ◾    Biological Computation

legislation, which led to reduced pollution, reversed the trend. Scientists have
observed a more disturbing example of evolutionary change: various strains
of bacteria have developed resistance to antibiotics, often very rapidly.

The theory of natural selection has far reaching implications, but it is
based on simple basic assumptions:

 1. There is variation between the individuals in the population, each
individual having a unique combination of characteristics.

 2. A large part of this variation is hereditary.

 3. The world has limited resources, and some of the variants in the
population can make better use of these resources. These individuals
will produce more offspring than other individuals.

These simple and widely accepted assumptions necessarily lead to natural
selection. In other words, the principle of natural selection is an unavoid-
able result of the conditions that exist in the living world.

Brassica oleracea

Broccoli

Cabbage

Kohlrabi

Cauliflower

Brussel sprouts

Artificial
selection

FIGURE 3.1  Some of the cultivated varieties of wild cabbage (Brassica	oleracea).

Evolutionary Computation    ◾    89

One of biggest obstacles to Darwin’s natural selection theory was
understanding the source and nature of the hereditary variations. When
Darwin published The Origin of Species in 1859 there was no established
theory explaining heredity. It is interesting to note that in 1866 Gregor
Mendel, the father of modern genetics, discovered the basis for hereditary
laws, but his research was ignored and forgotten until the beginning of
the 20th century. At the beginning of the 21st century, we now have a much
more complete picture of the mechanisms of heredity based on our under-
standing of DNA and the processes related to it, as we saw in Chapter 1.
Darwin assumed blending inheritance, in which the characteristics of
both parents blend to produce the corresponding organ in the offspring.
Darwin believed that tiny particles he called gemules allow for heredity.
The gemules represent characteristics, are present in all organs, and are
sent from the organs to the reproductive cells so that during reproduction
the gemules from both parents mix together to create the offspring, who
usually has the average of the parents’ characteristics. In turn, the off-
spring’s gemules will be sent to their reproductive cells, and so on.

Darwin’s blending inheritance theory, also known as pangenesis, had
severe theoretical problems since selection (natural or artificial) cannot
affect blended characteristics. Repeated blending will “dilute” the charac-
teristics, and selection cannot preserve them. In the same way that when
we mix red and white paints we cannot separate the resulting pink back
into its white and red components by more mixing, it is impossible to sep-
arate the parents’ characteristics after blending. As discussed in Chapter 1,
we know now that the alleles of both parents are preserved in the offspring
and are not blended. This was one of Mendel’s most important findings.

Another important problem with Darwin’s inheritance model is that
it allows the inheritance of acquired characteristics, which the individual
developed during his or her life. If an ostrich developed calluses on its knee
due to the knee rubbing the ground when it runs and passed this property
on to its descendants so that they will have calluses on their knees even
before they start running, this would be the inheritance of acquired char-
acteristics. Since young ostriches really do have calluses before running,
this idea seems plausible, but we know now that ostriches have calluses on
their knees at a young age because of natural selection and the reproduc-
tive advantage of individuals with this property and not due to the inheri-
tance of acquired characteristics. Or consider the long necks of giraffes.
According to the inheritance of acquired characteristics model, ancient
giraffes with necks of normal length were compelled to feed on leaves

90    ◾    Biological Computation

of tall trees and thus had to stretch their necks. This acquired trait was
passed on to their offspring, resulting in the long neck of modern giraffes.
According to pangenesis when a particular organ is affected by the envi-
ronment, its gemules are affected in the same fashion and are passed to the
reproductive cells in this new form and therefore the acquired character-
istics are passed on to the individual’s descendants. Inheriting acquired
characteristics is often referred to as Lamarckian evolution, named after
Jean Baptiste Lamarck. He predated Darwin and suggested an evolution-
ary model that relied on the inheritance of acquired characteristics.

Note that there are two types of information flow according to this
model of inheritance of acquired characteristics. First, the change caused
by the environment (e.g., the callus caused by the knee hitting the ground)
has to be stored as information in the gemules. As the reproductive cells
do not contain a copy or “image” of the organs but rather instructions that
control the gradual and complex development of the embryo and the indi-
vidual under the environmental influences, it is unclear how to automati-
cally translate back an external change in an organ to a change in these
instructions. August Weismann, one of the most influential scientists to
have worked on evolution, described this problem as follows: believing
that information can be translated in such a manner is similar to believ-
ing that an English telegram sent to China will arrive already translated to
Chinese. The second information transfer, according to the model of the
inheritance of acquired characteristics, is the passing of the gemules from
the organs to the reproductive cells. This would require that reproductive
cells do not exist early on but rather are produced during the organism’s
adult life from the gemules sent from the various organs. This information
transfer is not supported by modern understanding of the major heredi-
tary processes. For example, we know now that all human female eggs, or
oocytes (about 500,000) already exist when a baby female is born. Male
sperm cells are being continuously produced in the testis, but we don’t
know of a mechanism that enables transfer of arbitrary information from
the rest of the body into the testes. Weismann actually tried to check the
validity of the model by repeatedly breeding mice whose tails have been
cut off and discovered (of course) that the offspring were born with tails
of regular length.

Interestingly, recent discoveries may open the door to the return of
Lamarckian ideas (of course not in their naïve version), operating at the
molecular level. Mechanisms like reverse transcription, which enables
reverse flow of information from RNA to DNA in contrast to the central

Evolutionary Computation    ◾    91

dogma (see Section 1.3.4), and inherited regulatory changes in gene
expression (a form of inheritance referred to as epigenetic inheritance)
paint a richer picture of hereditary information flow than was previously
assumed.	 In any case, even though Lamarckian evolution differs from
our modern genetic model, it can be used in evolutionary computation
(genetic algorithms, or GAs). We will see in Section 3.5 how this idea is
implemented and to what effect.

Modern evolutionary theory (known as neo-Darwinism) denies the
troublesome ideas of blending inheritance and the inheritance of acquired
characteristics. It is intimately related to the modern understanding of
heredity provided by genetics, based on distinguishing between inherited
genetic information and the organism’s characteristics. The transfer of
genetic information is schematically described in Figure 3.2. The individu-
al’s genetic information is called its genotype (multiple units of inheritance
called genes make up the genotype). The individual’s expressed character-
istics are called its phenotype. For example, the information in the DNA
molecules (see Chapter 1) that is responsible for eye color is part of the
genotype, whereas the eye color itself is a phenotype. Hereditary changes
impact the genotype, whereas natural selection selects between the differ-
ent phenotypes created under the combined influence of the genotype and
the environment. We return to the distinction between genotype and phe-
notype in the discussion of the use of Lamarckian inheritance by genetic
algorithms.

The origin of variations in the genotype is random mutations. In asex-
ual	 reproduction a single parent passes a copy of all his or her genetic
information to the offspring. Therefore, each descendant is an exact genetic
copy of the parent, except for rare mutations. On the other hand, in sex-
ual	reproduction each individual usually contains two copies of genetic
information—one from each parent—which are not necessarily identical,
since each parent may pass on a different form of the gene. The differ-
ent forms of a gene are called alleles. Additionally, during meiosis new
combinations of alleles taken from the two parental chromosomes are cre-
ated (see Chapter 1). Therefore, in sexual reproduction, the progeny have
new combinations of alleles and thereby different characteristics. This is
the source of the power of sexual reproduction, as found in animals and
humans. Asexual reproduction is found in bacteria, plants (which exhibit
both types of reproduction), and some other simple organisms.

To summarize, neo-Darwinism, which is the common evolutionary the-
ory held today, denies the passing on of acquired characteristics and explains

92    ◾    Biological Computation

evolutionary change by natural selection of nondirectional (random) varia-
tions. For our discussion it is important to emphasize the following points:

 1. Genetic change can result from one of two events: A mutation,
which is a discrete random change in the genetic material that causes
a change in a trait (e.g., color change), or, in sexually reproducing
organisms, via a new	combination of alleles.

Germline cells Development

Mature form

Heredity

Events occurring
in the phenotype

Mutation

FIGURE 3.2  Information transfer in asexual reproduction. The hereditary con-
tinuity is based on reproductive (germ line) cells. The information in the repro-
ductive cells is transferred to the next generation. Only changes in the genetic
makeup of the reproductive cells (i.e., mutations, which are rare) impact the next
generation. Changes to the nonreproductive cells of the organism (somatic cells),
which are caused by the environment, will change the mature form but will not
impact the offspring. The information transfer in multicellular organisms with
sexual reproduction is also mediated by germ line cells, but the situation is more
complicated, as each offspring is endowed with a unique combination of genes
from its parents.

Evolutionary Computation    ◾    93

 2. Natural selection is not a creative force in evolution; it can elimi-
nate deleterious variations in the population and can increase the
frequency of successful variations.

3.1.2  Evolutionary Computation

The term genetic algorithm in its most general sense refers to a family
of computational models inspired by biological evolution. The different
models are based on various conceptions of the biological evolutionary
processes and do not necessarily faithfully represent current biological
understanding. Moreover, genetic algorithms allow researchers to experi-
ment with different evolutionary mechanisms in order to analyze their
behaviors and outcomes.

Any evolutionary computation is based on representing pos-
sible solutions to a computational problem as “genetic” information
passed from one generation to the next. The evolutionary process is
initialized with a (usually random) population of “solutions,” which
correspond to individual organisms. Each solution is examined to
determine how successful it is in solving the computational problem;
this defines its fitness and determines how well represented it will be
in the next generation’s population. Furthermore, new solutions may
be created by introducing random changes (similar to mutations) or
by combining elements of different solutions (similar to sexual	repro-
duction). Therefore, better solutions become more prevalent from one
generation to the next, and the probability of finding a satisfactory
solution to the computational problem increases. The computational
process is halted when a good enough solution to the problem is found.
Evolutionary computation is often described as a function optimiza-
tion process, since the computation can be viewed as a search for the
maximal value of the fitness function.

Genetic algorithms are used for a variety of applications, prominently
optimization problems. Typically the problems are hard to attack using
standard mathematical tools (e.g., the functions are noncontinuous, the
set of equations is nonlinear), and the set of candidate solutions is very
large. An important advantage of genetic algorithms is that it is a very
generic method, and a genetic algorithms engine can be utilized for solv-
ing a wide variety of different types of problems by modifying or supply-
ing a few functions. A good review of evolutionary computation can be
found in Mitchell and Taylor (1999).

94    ◾    Biological Computation

3.2  GENETIC ALGORITHMS
Solving a computational problem using an evolutionary process depends
on answers to a few fundamental questions:

 1. How is the genetic data passed from generation to generation
represented?

 2. How is the fitness of each individual determined?

 3. How does fitness affect the makeup of the next generation?

 4. Which genetic changes will be performed on individuals when pro-
ducing the next generation?

 5. When should the evolutionary computation terminate?

The classical genetic algorithms model, which we will use during most
of this chapter, is based on the model first suggested by John Holland in
1975 (Holland, 1975). In this model, the answer to the first question is
that the genetic information is represented as a fixed-length sequence of
binary bits. We refer to every such sequence as a genotype or sometimes
as a chromosome. It is important to understand that, while this par-
ticular representation is the most familiar one, there is nothing sacred
about this representation. Other representations such as a sequence of
numbers rather than a sequence of bits, arrays, matrices, linked lists,
or other data structures may be used as representations when they are
more suitable. The important thing is to preserve the principle that ran-
dom changes in the solutions will change their fitness, which in turn will
change the impact of each solution on the population of solutions in the
next generation of solutions, and with that will give rise to the possibility
of generating better and better solutions.

In the algorithm we will present, the offspring are generated by com-
bining the chromosomes of two parents. The offspring, which like all
individuals are made up of a single chromosome (i.e., the organisms are
“haploids” and carry only one chromosome), contain genetic information
derived from both parents by a crossover process similar to the biologi-
cal process of exchanging genetic information between chromosomes.

The crossover process of two chromosomes is done by randomly pick-
ing a location in the sequences and exchanging the corresponding parts of
both chromosomes:

Evolutionary Computation    ◾    95

10110 \/ 0101011

01010 /\ 1100100

After exchanging the corresponding parts, the following two chromo-
somes will be generated:

101101100100
010100101011

The general structure of a genetic algorithm is as follows:

 1. Start with a random population of n chromosomes.

 2. Compute the fitness of each chromosome in the population.

 3. Repeat until n offspring are created in the new population:

 a. The selection phase: Pick a random pair of chromosomes from
the current population. The probability of picking a particular
chromosome has to be an increasing function of fitness.

 b. The crossover phase: Crossover the parent chromosomes with
probability pc (the crossover probability), and then choose arbi-
trarily one of the resulting chromosomes as the offspring (if there
was no crossover, choose one of the parents).

 c. The mutation phase: For every bit in the offspring, flip it (if 0 then
change to 1; if 1 then change to 0) with probability pm (the mutation	
probability).

 d. Insert the offspring into the new population (note that the pro-
cess in steps a through c generated a single offspring).

 4. The new population becomes the current population forming the
next generation.

 5. If a predefined end criterion has been reached then stop; otherwise
repeat from step 2.

There are many valid variants within this scheme, some of which will
be discussed later in this chapter. The general description shows that the
behavior of a genetic algorithm is influenced by a few central param-
eters. The general structure of the algorithm does not dictate how the

96    ◾    Biological Computation

fitness of each individual is computed and how the differences in fitness
determine how the parents, who will mate and create the next genera-
tion, are chosen. These two components, as well as the probabilities pc
and pm, have a major influence on the behavior of the algorithm, that
is, on the changes in the population from one generation to the next.
Another important parameter is the population size n, which deter-
mines how many individuals will be tested in each generation out of all
the possible solutions or chromosomes.

ExamplE

Let us demonstrate how a genetic algorithm behaves using a very simple exam-
ple where the goal is to find the integer x in the range [0,..,31] that maximizes 
the function g(x)	=	31x	–	x2.

Clearly,  this  is a very simple problem that  is easily solved analytically  (or 
by exhaustive search), but it will serve to demonstrate how to solve a problem 
using a genetic algorithm (Table 3.1a and Table 3.1b).

Solution representation: we will represent every possible solution by a five-
bit  sequence  (chromosome).  Five  bits  suffice  exactly  to  represent  the 
integers 0 (00000) to 31 (11111) as binary numbers.

Initial population: we will choose the population size to be 4 (just for the 
sake of the example, as this population is much smaller than commonly 
used). The initial population will be random.

Score: the score of an individual i in the population, fi, will be the value of 
the function g; that is, we will look at each chromosome as the binary 
representation of a number x and will compute g(x).

The probability of selecting a chromosome as a parent: the probability of 
picking individual i as a parent is correlated to its score and is defined as 
the ratio between its score and the sum of the scores of all organisms in 
the population, that is,

	

P i
f

f
i

k

() =
∑

all solutions k

Sample run: Table 3.1 shows the execution of the algorithm for a population 
of four individuals.

•  The sequences 10011 and 11000 are chosen as parents. For the cross-
over phase,  the point after  the  fourth bit was  randomly picked as  the 
crossover point to produce 10010 and 11001. We pick the first chromo-

Evolutionary Computation    ◾    97

some and select it as the first individual in the next generation (note that 
we are not demonstrating mutations in this example).

•  This process is repeated until we have the next generation, that is, the 
four offspring shown in Table 3.1b.

•  The  entire  process  (i.e.,  score  calculation,  selection,  and  crossover)  is 
repeated to produce subsequent generations.

When will the execution of the algorithm halt? We can choose among a few 
strategies, depending on the problem:

•  If we know what the score of the optimal solution should be, we can halt 
when it is reached.

•  If we know what the score of the optimal solution is, we can halt when an 
individual with sufficient score has been found (e.g., 90% of the optimal).

•  We can halt when the variance  in scores  in  the population is small  (a 
special case is to halt when all the individuals have the same score).

•  We can decide to halt  if  the fitness of  the best solution found has not 
improved for a certain number of generations.

•  We can decide to halt after a certain number of generations (e.g., halt 
after 1000 generations) and then choose an individual with the maximal 
score as the solution. Since it is in general possible that the computation 
will  not  converge  to  an optimal  solution,  this  technique can be com-
bined with any of the others to ensure termination.

Based on prior knowledge of g(x) we might choose to halt the evolutionary 
process once an x	with g(x) ≥240 is reached or at most after 1000 generations.

It  is probable  that after some generations  the  individuals 10000 or 01111 
which have  the score 240 will be generated and the system will halt  (in  the 

TABLE 3.1a  Initial Generation of Genetic Algorithm Optimizing g (see text for details)
Initial population 10011

(x = 19)
01000
(x = 8)

11000
(x = 24)

01101
(x = 13)

Score 228 184 168 234
Probability of being selected
as parent (rounded)

0.28 0.23 0.20 0.29

TABLE 3.1b  Population of the Second Generation of Genetic Algorithm Optimizing g
(see text for details)
Next generation 10010

(x = 18)
01101

(x = 13)
11001

(x = 25)
01011

(x = 11)
Score 234 234 150 220
Probability of being selected as
parent (rounded)

0.29 0.29 0.18 0.27

98    ◾    Biological Computation

range [0,…,31], g(x) reaches a maximum value of 240.25 for x	= 15.5; however, 
in this example we considered only integer values for x).

The beauty and strength of the genetic algorithm is that we did not need 
to understand and analyze the function g, so we could use exactly the same 
algorithm to maximize other, much more complex functions, for example,	g(x) 
= 15 – (x – 2)2 or g(x) = sin(x)3 – cos(x).

3.2.1  Selection and Fitness

The phrase survival	of	 the	fittest is often used to describe the process of
natural selection. This term, which was first used by Herbert Spencer and
not by Darwin, means that, on average, the individuals best adapted to
their environment survive and reproduce the most in nature. For exam-
ple, animals that make good use of their food resources or that can escape
from their predators by running fast are adapted to their environment and
have increased chances of survival. Assigning a precise meaning to the
phrase survival of the fittest is elusive, however, as it seems to be making a
circular claim: survival is the result of being adapted, while being adapted
is defined as survival in the environment. According to this interpreta-
tion it would seem that survival of the fittest boils down to survival of
those that survive. Biologists have argued frequently about the meaning
of the claim that evolution works by the principle of survival of the fittest.
Most biologists today prefer to use the original term natural selection to
describe the evolutionary processes.

Natural selection of course does not compute a numerical fitness value
for each individual that in turn determines how many descendants he or
she will have. It is the other way around: the number of offspring defines
the fitness of the individual. In general, if an organism has many offspring
we can deduce that it is better adapted.

Genetic algorithms are obviously very different, as the fitness func-
tion (called the score in the previously given example) chosen by the
programmer has a direct impact on the number of offspring. The choice
of fitness function can cause the algorithm never to converge to a solu-
tion or to do so very slowly. The values of the fitness function are the
inputs of the selection process, so the fitness function and the selec-
tion method have to be compatible for the genetic algorithm to perform
successfully.

It is important to distinguish between computing a measure of the suc-
cess of a particular solution in the population (a single chromosome) and
the relative	success of a solution in relation to other solutions in the popu-
lation. In the previous example, fi	was computed without taking the other

Evolutionary Computation    ◾    99

chromosomes in the population into account, whereas the values P(i) were
computed by taking all the scores of the population into account. To cap-
ture this distinction we introduce the following definitions:

• Evaluation Function: a function used to determine the success
(score) of a single solution, based on the requirements of the problem.

• Fitness Function: a function which translates the value of the evalu-
ation function to the value which will determine how likely the solu-
tion is to reproduce (that is, how frequently it will participate in the
reproduction and crossover operations).

The values of the evaluation function for each individual in the popu-
lation are independent of each other. On the other hand, the value of the
fitness function is always defined relative to a given population (usually
relative to the values of the evaluation function for all other individuals in
the current generation).

The fitness of individual i is usually defined to be f fi / where fi is the
value of the evaluation function and f is its average value over all the
individuals in the population. This normalization allows us to consider
the relative quality of individuals in the population when selecting the
individuals that serve as parents of the next generation.

Recall that after computing the fitness values, the next phase is the
selection phase in which individuals are selected as parents according
to their fitness. Before discussing various selection regimes, we define a
term that will help us analyze the difference between different selection
mechanisms.

The selection pressure is the degree by which the genetic algorithm
prefers selecting individuals with a high-fitness value as parents for the
next generation over individuals with an average or low-fitness values.
Intuitively, a selection method with high selection pressure creates more
copies of the better individuals, thereby hastening the removal of the indi-
viduals with lower fitness values. In other words, when the selection pres-
sure is low the maximum number of offspring for high-fitness individuals
is low, so low-fitness individuals are almost as capable of reproducing as
individual with high-fitness. When the selection pressure is high, low-fit-
ness individuals are less likely to reproduce and have fewer descendants.
Thus, a careful balance should be maintained. If the selection pressure is
too high, the genetic algorithm will converge quickly to a small number

100    ◾    Biological Computation

of high-fitness individuals. This phenomenon is called premature	conver-
gence, and we will see that it is one of the main obstacles to the success of
a genetic algorithm. Premature convergence means that we may have given
up too quickly on individuals with low-fitness who still could have made
positive contributions to the gene pool. On the other hand, if the selection
pressure is too low, we might encounter slow convergence, or the algo-
rithm may not converge to a solution at all.

When a genetic algorithm starts executing, we expect to find a small
number of successful individuals in a population of average and below-
average individuals. It is important not to lose the better solutions at this
stage. Later on, it is likely that there will still be a variance in the popula-
tion, but the average fitness of the population may be close to the maxi-
mal fitness. Nonetheless, we would like the higher-fitness individuals to
have a larger influence on the next generation than the average-fitness
individuals.

The standard selection mechanism used most often by genetic algo-
rithms is called roulette wheel selection and emulates the game of rou-
lette, where each individual is represented by a set of consecutive slots on
the roulette wheel with a size relative to its fitness, as seen in Figure 3.3.
Choosing this roulette system to select parents gives every individual a
probability to become a parent, which is the ratio between its fitness and
the sum of all the individual fitness values.

Note that with the roulette mechanism there is a danger of early con-
vergence. The higher the fitness value of an individual, the more often it
will be selected as a parent and therefore will have more descendants. If
the initial population has too many high-fitness individuals, they will be
selected as parents most of the time, and we may lose solutions.

ik

j

FIGURE 3.3  Roulette wheel selection. Here individual j has the highest fitness,
while individual k has the lowest fitness. Therefore, when the wheel spins, the
probability that j is selected as a parent is the highest, k has the lowest chance to
become a parent, and i has an intermediate probability.

Evolutionary Computation    ◾    101

Several alternative selection mechanisms may be more suitable in cer-
tain cases, including the following:

• Rank selection: In this technique individuals are sorted by their
fitness and chosen as parents based on their ranking rather than
directly by their fitness. This method helps to avoid early conver-
gence since the selection pressure is low, and low-fitness individu-
als may be selected quite often as parents. The disadvantage of this
mechanism is that an individual might have a significantly higher
fitness than the next ranked individual, yet ranking hides such dif-
ferences in fitness and may cause slow convergence. Conversely,
ranking works well when the fitness differences are small but
believed to be significant. The roulette mechanism will select each
individual with a similar probability, but the ranking mechanism
can give rise to more significant differences between the selection
probabilities.

• Tournament selection: In its most naïve form this mechanism works
as follows. Two individuals are randomly chosen from the popula-
tion. The one with the higher fitness is then chosen to serve as parent
(the two individuals may or may not be returned to the population
so they can be reselected). There are more general variants of this
mechanism where the number of individuals compared (the tourna-
ment size) is larger than two. One advantage of tournament selection
is that it is somewhat easier to implement than more complicated
selection regiments while still allowing the adjustment of selection
pressure (by choosing different tournament sizes). Another advan-
tage is that there is no need to precompute the fitness values, which
require evaluating of the entire population, since the contestants can
be compared based on the evaluation function. This eliminates the
need for two passes through the population to compute fitness or
the cost of sorting the population (in rank selection). Eliminating
the need for global population statistics makes tournament selection
better suited to parallel implementations. Similarly, there are cases
in which it is easier to compare solutions, as done in tournament
selection, rather than to compute an evaluation function for indi-
vidual solutions (e.g., if solutions represent different game playing
strategies, pitting them against each other may be the best way to
evaluate their quality).

102    ◾    Biological Computation

• Steady-state selection: In this mechanism only a small fraction of
the population is replaced at every generation, whereas most indi-
viduals continue to live from one generation to the next. Usually
the low-fitness individuals are replaced, of course. After deciding
which individuals are to be replaced, the next generation’s parents
have to be selected using one of the selection mechanisms so that
new individuals can be created to replace the ones to be eliminated.
In this method the turnover between generations is much more
gradual. It is interesting to note that with this mechanism better
solutions survive from generation to generation without the danger
of crossover.

Each of these mechanisms has many variants that are appropriate when
solving specific problems.

3.2.2  Variations on Fitness Functions

We have assumed up to now that the values of the evaluation and fitness
functions are positive (or at least nonnegative) and that higher fitness val-
ues represent better solutions, that is, that the goal of the genetic algorithm
is to maximize the fitness function. For many problems these assumptions
are not appropriate.

Sometimes fitness values are not necessarily positive. For instance,
when we search for the maximal value of the function g(x,y) = x2 – y2, for
some ranges of x and y the function has only negative values. In this case,
if we use the roulette mechanism the fitness values will give us incorrect
roulette cell sizes.

Moreover, many problems are represented as minimization problems
rather than maximization problems. In most of the problems we dis-
cussed, the evaluation function represented the level of success of the solu-
tion; therefore, our goal was to find a solution of the highest evaluation
value. In many other problems the evaluation function represents the cost
of a solution; therefore, we want to minimize its value.

We describe a couple of techniques that allow us to use genetic algo-
rithms in cases where the natural fitness measure is not suitable for the
selection mechanisms in their standard form. In all such cases the solu-
tion is to map the values of the evaluation function to values that are better
suited to serve as fitness values.

Evolutionary Computation    ◾    103

• Minimization problems: The common solution is to subtract the
value of the evaluation function from some constant:

	
f x

C g x g x C
()

() ()max max
=

− <

0 otherwise

 We can select Cmax in advance (as an input to the system), or as the
largest value of g observed so far, or as the largest value of g in the
current generation, or in the last k generations.

• Negative evaluation function values: Here the solution is to add to
the evaluation function g(x) a large positive value

f x

g x C g x C
()

() ()min min
=

+ + > 0

0 otherwise

	 As in the previous case,	 Cmin may be selected in advance (as an
input to the system), as the absolute value of the worst g observed so
far, or observed in the current generation, or observed in the last k
generations.

• Dynamic range: In the implementation we presented so far we
used the same mapping of evaluation function to fitness func-
tion for the entire duration of the algorithm. This may not always
be suitable. Consider the following example. Assume that the
evaluation values are distributed between 1 and 10, and thus the
best solution (10) will have a huge advantage over the worst (1)
when using roulette wheel selection. Now assume that all solu-
tions were improved by a constant value, and the range is now
between 1001 and 1010. Now, the best solution (1010) will have
only marginal advantage over the worst (1001). To avoid this
problem and to keep supplying the impetus to continue to push
the better solutions further, we transform the evaluation values
into the range between the best and the worst values by the fol-
lowing normalization:

104    ◾    Biological Computation

 f x
g x C

C C
()

() min

max min

=
+ −

−
ε

 where Cmin and Cmax are the current minimal and maximal values
in the population, respectively; the ε is added to make sure that even
the solution with the minimal value will still have a nonzero prob-
ability to be selected.

These techniques help with some of the more common situations. More
sophisticated mappings are also possible, but they need to be evaluated to
see how well they really improve the behavior of the algorithm (e.g., how
well they help avoid early convergence and slow termination).

For the most part we assume that individual fitness (i.e., the value
of the evaluation function) is computed independently for each indi-
vidual. There are, however, situations in which it is either necessary or
profitable to compute the fitness of individuals based on how they inter-
act with other individuals. An interesting technique is based on allow-
ing individuals from two populations to compete with one another. For
example, if the goal is to evolve a mechanism that handles arbitrary
data in an appropriate way, it might be useful to evolve two popula-
tions: one consisting of candidate mechanisms, and another consist-
ing of datasets that attempt to cause the mechanisms to fail. These two
co-evolving populations will then find themselves in an evolutionary
arms race—of the sort that can be found between predator and prey
in nature—that may improve the solutions the genetic algorithm will
manage to find. More generally, the fitness function does not have to
be a fixed and simple function specified in advance but may in fact be
a complex algorithmic function whose result changes depends on the
population of solutions or on other factors. See the exercises at the end
of this chapter for examples. We return to this topic in the discussion of
Artificial Life in Chapter 6.

3.2.3  Genetic Operators and the Representation of Solutions

The two genetic operators we have used—mutation and crossover—
expand the set of solutions tested by the algorithm. Mutations change the
chromosomes in a random fashion, and their influence on the fitness of
individuals is determined in the following generations. Crossover is more

Evolutionary Computation    ◾    105

significant, as it allows the genetic algorithm to combine elements of
already reasonably good solutions to create better solutions. Other genetic
operators for improving the performance of genetic algorithms for certain
problems have been suggested over the years.

It is important to realize that one of the crucial factors determining
how well a genetic algorithm performs is the representation of the solu-
tions as chromosomes—that is, the way the evaluation function interprets
the chromosome—and how well this representation is compatible with
the genetic operators. As the representation of solutions is such a central
issue, it is sometimes called the representation problem.

Consider the example of designing a genetic algorithm for finding val-
ues for x	∈ [31,…,62] and y	∈ [0,…,31], which maximize the value of the
function g(x)	=	x2	–	y2. In this case it is clear that, given a possible solu-
tion (x,y), any change that will increase x will yield a better solution, as
will any change that will decrease y. Thus, the changes in x and y	should
be independent and the representation should provide this independence.
The “natural” way to achieve this is to represent the variables as a chro-
mosome of length 10, where the first five bits represent the first gene x (as
x	– 31) and the last five bits represent y (the second “gene”). How will this
representation behave when the genetic operators are applied? Mutations
(which change a single bit) will obviously operate on x and y indepen-
dently. What about crossover? Look at the example in Figure 3.4: assume
crossover happens at the mark in Figure 3.4(a), and the result of the cross-
over is shown at Figure 3.4(b). In both possible offspring x is changed,
while the y’s remain as they were in the parents’ generation. Note that for
all possible crossover points x and y are never both affected by a single
crossover.

If we had chosen a different representation for x and y we could
have created a situation in which a crossover could affect the values of

Chromosome 1
Chromosome 2

Chromosome 1
Chromosome 2

(a)

(b)

FIGURE 3.4  Effect of crossing over on two chromosomes.

106    ◾    Biological Computation

both variables simultaneously. Consider, for example, a representation
of solutions in which the bits representing the two variables are inter-
laced (Figure 3.5). What will happen when we cross over two solutions
under this representation? By changing the representation we created
a situation in which the crossover operator changes the values of both
genes. Therefore, we have increased the rate of generating new solu-
tions, but we may pay for this by damaging parts of the solution (e.g.,
y	= 0) that may have been found by the algorithm earlier. In fact, note
that offspring may not carry any significant property of either of their
parents. Is such a payoff worthwhile? Usually we can assume that the
answer to this question will be negative (this is clearly the case for the
function g) and will result in lengthening the search process, often
significantly.

Another example of the difficulty of choosing a representation is
manifested by the genetic algorithm solution to the following clustering
problem. Given a set of N elements (vectors in Rn), arrange them in K sets
(where K	<<	N), and define one of the elements in each set as its center,
such that over the K sets the sum of the distances between the elements
and the centers of the clusters they belong to is minimized. There are two
natural ways to represent the solutions:

 1. Every solution is represented as a vector of length N, where every
element denotes to which of the sets 1,…,K the corresponding ele-
ment belongs. The center of each set can be calculated by looking for
the element whose sum of distances to all other elements in its set is
minimal. Note that in this representation the membership of each
element is explicitly represented but that the identity of the centers is
implicit and must be calculated in each generation.

 2. Alternatively, each solution can be represented by a vector of length
K that holds the identity of the center of each set. An element
belongs to set k if its distance from the center of the set is minimal
compared with its distances to all other centers. Here, the identity
of the centers is explicit, but the membership of the elements has to
be calculated in each generation.

FIGURE 3.5  Interlaced representation of two variables.

Evolutionary Computation    ◾    107

In this case it is harder to determine which representation leads to a more
effective evolutionary search without implementing both representations.
It turns out the second representation is significantly more efficient.

Various genetic operators were proposed to improve the performance
of genetic algorithms for specific problems. Many of these were general-
izations of the crossover operator. An example is increasing the number of
break points along the chromosome: for example, taking the first segment
of the chromosome from one parent, then the second from the other par-
ent, and then the last part again from the first parent. In the limit, each bit
can be taken independently from either parent. Another suggestion was
to use the information from more than two parents in generating each
offspring. In the exercises at the end of the chapter we describe other rep-
resentation methods and the corresponding genetic operators.

So far we have presented the classical genetic algorithm, but the generic
evolutionary algorithm can be implemented using different representa-
tions and different operators. For instance, the genetic information may
be represented as a vector of real numbers rather than bits; mutations may
be implemented by adding a random number (chosen from some distribu-
tion, say, the normal distribution); the rate of mutations, Pm, may change
during the evolutionary process; and other genetic operators in addition to
crossover may be used. Among these operators we will mention the inver-
sion operator, which selects two points on the chromosome and inverts the
bit sequence between them (e.g., 11101 becomes 10111 when the underlined
sequence is inverted). This operator is inspired by chromosomal inversions
that happen in nature. For this operator to be useful, the “meaning” of
the bits has to be independent of their location on the chromosome; that
is, every bit has to have an identity. Given such an identity, inversion will
change the order of the “genes” on the chromosome causing a change in
the distance between genes, which might impact crossovers significantly.
For example, if the problem has 10 parameters a,b,..,j, each of which can
be 0 or 1, we can think of each bit in the chromosome as the “gene” for
one of the parameters. It might be that ordering the genes on the chro-
mosome abcfedghij will lead to better performance than abcdefghij, since
abcf might tend to vary together because values for these genes represent
a component of good solutions in the search space. In other words, differ-
ent regions of the chromosome will become building blocks for generating
solutions. Inversion is particularly useful when the representation of indi-
viduals is richer than a simple string of bits.

108    ◾    Biological Computation

It is of course possible to come up with other genetic operators, either
by imitating other biological processes or based on theoretical consider-
ations. The appropriateness of the operators to particular problems should
then be evaluated by gauging their success in improving the solutions
found by the evolutionary search process and by examining the behavior
of the algorithm (e.g., its speed, the number of generations it takes it to
converge, the risk of converging to local maxima).

We can see from the previous examples that it can be very difficult to
guess in advance how well a particular crossover method will work for a
given evaluation function, and the decision is based to a large extent on
intuition, understanding of the problem, and trial and error. Note that in
the true biological context the “evaluation function” (i.e., the success and
adaptation of an organism) is not a simple mathematical function, and
therefore the corresponding problem of how nature finds good represen-
tations is even harder. For example, it would be interesting to understand
how evolution determines how many genes are needed to represent a cer-
tain characteristic (e.g., one gene with a few functions as opposed to several
independent genes), how close to each other in the genome should related
genes be located, and how evolution “decides” whether to preserve one copy
of a gene or a few copies in different locations to protect against a change in
one of the copies (on this issue see also the discussion of robustness of gene
networks in Chapter 6).

3.3  EXAMPLE APPLICATIONS
This section presents a few domains in which genetic algorithms have
been used successfully.

3.3.1  Scheduling

Scheduling problems, from arranging a weekly course schedule for college
students to designing the production floor of a car factory, are multiob-
jective optimization problems with multiple inputs, multiple constraints,
and limited resources. Such problems are very difficult to solve using
standard optimization methods. Genetic algorithms can address, in a
single framework, various subtypes of optimization problems. The algo-
rithm maintains a population of alternative schedules, and mixing and
matching improves their overall performance. Thus, genetic algorithms
have become a popular method to address such problems (Bagchi, 1999).
More generally, an important question about genetic algorithms and sim-
ilar techniques is how best to approach problems that require optimizing

Evolutionary Computation    ◾    109

several objectives simultaneously (Coello, 2000). A naïve way of working
with multiple objectives, and hence multiple fitness functions, is to aggre-
gate them into one multi-objective function using a weighted sum. Note
that for this to work all functions should be approximately in the same
numerical range, or they must be normalized appropriately. In another
interesting technique, called the vector evaluated genetic algorithm
(VEGA), for a population of size M, k subpopulations (where k is the
number of objectives) of size M/k are evaluated. Individuals are selected
in each subpopulation according to a fitness function that is based on a
single objective. The populations are then mixed and the regular opera-
tions of mutations and crossing over are performed and finally the pro-
cedure is iterated for the next generation. Both the weighted sum and the
VEGA techniques are easy to implement but are severely limited in the
type of cases they handle successfully (Coello, 2000).

3.3.2  Engineering Optimization

In an application of genetic algorithms to an engineering problem
(Goldberg, 1989) the goal was to optimize the structure of an oil pipe,
which consisted of stretches of pipe and compressor units used to maintain
pressure, so that energy needed to operate the compressors is minimized
under the constraints of the minimal and maximal allowed pressure in
each pipe segment.

3.3.3  Pattern Recognition and Classification

A very early system (Cavicchio, 1970) used genetic algorithms to find good
feature detectors for an image classification device. The images are com-
posed of 25 × 25 black and white pixels and are divided into various named
classes. During the training stage, images belonging to known classes are
presented to the device, and the states of subsets of pixels (which serve as
detectors) are recorded. In the recognition phase an unknown image is
presented to the device, which then ranks the classes to which the image
may belong based on the responses of the feature detectors to the new
image and the information learned during the training stage. The goal of
the genetic algorithm is to find subsets of pixels (i.e., detectors) that can
be used to improve the classification success. Clearly, the set of detectors
(each being a set of pixels inspected by that detector) determines how well
the system performs in the classification. Genetic algorithms, in which the
population consisted of sets of detectors, were used to search for successful
detector sets.

110    ◾    Biological Computation

3.3.4  Designing Cellular Automata

Genetic algorithms are often combined with other models such as cel-
lular automata and neural networks. Genetic algorithms can be used,
for example, to find transition rules for cellular automata that lead to a
desired behavior. In an interesting experiment (described in Mitchell,
1998) a genetic algorithm was used to find a transition rule performing
the “density classification task” on a one-dimensional cellular automa-
ton with two states and radius 3 (k = 2, r = 3). The goal in this task is that
the automaton decides whether the initial configuration of a long array
contains a majority of 1's, in which case the system should settle to a fixed-
point configuration of all 1's, or not, in which case it should settle to a
fixed-point configuration of all 0s. Recall from the discussion of Wolfram
numbering (Section 2.4) that for the automaton under discussion there are
2 22 1282 1r+

= different rules, a huge number making it impossible to search
for appropriate rules exhaustively. The genetic algorithm operated with
a population of 100 possible solutions each representing a rule and mea-
sured their fitness by checking how well they preformed the density clas-
sification task on a random set of initial configurations (in each generation
a new set of initial configurations was used). Most of the time the genetic
algorithm was unsuccessful in finding a good transition rule, but in 3% of
the runs it was able find transition rules that significantly outperformed
naïve strategies for solving the density classification task.

3.3.5  Designing Neural Networks

In another application that combined the use of genetic algorithm and
another biologically inspired computation model, a genetic algorithm was
used to evolve a neural network that is able to learn to recognize handwrit-
ing well. As will be explained in Chapter 4, neural networks have internal
mechanisms to modify the connection between elements once the net-
work has been laid out. However, they do not have an internal mechanism
that can help in designing the network layout itself. Genetic algorithms
can be used to make a selective competition between different layouts and
thus evolve better networks (Miller, Todd, and Hegde, 1989).

3.3.6  Bioinformatics

In a typical situation, a researcher is faced with a set of DNA sequences that
share a biological function and another set of sequences that do not. The
challenge is to find a sequence motif (which we assume can be represented

Evolutionary Computation    ◾    111

as regular expression) present in all (or most) of the sequences from the
first set and none (or very few) from the second set. Several researchers
have used evolutionary computation techniques to find regular expressions
that represent shared properties of sets of related nucleotide sequences.
In these systems the fitness of solutions depends on how well the regular
expressions match the set of sequences and possibly also how well they fail
to match a control set of irrelevant sequences. In Section 3.6, which deals
with genetic programming, we discuss this computational task in more
detail. Langdon and Harrison (2008) provide a clear explanation of one
such system.

3.4  ANALYSIS OF THE BEHAVIOR OF GENETIC ALGORITHMS
We have to ask ourselves why genetic algorithms so often succeed in find-
ing good solutions to difficult problems. We can reformulate this ques-
tion and ask which problems can be solved efficiently by using genetic
algorithms, as there are problems for which genetic algorithms fail to find
good solutions. To answer these questions we have to understand how
genetic algorithms behave as search strategies.

Search algorithms, including genetic algorithms, search for an optimal
solution to a problem in a search space. The search space defines the pos-
sible values of the parameters that characterize a solution. Any point in
the search space represents one solution. For example, if a solution is a
2-tuple of real numbers x and y, then the search space is a two-dimesional
plane, where each point in the plane is a 2-tuple (x,y) representing a par-
ticular solution.

For every point in the search space we can associate a value that indicates
how successful this point is (we called this value the value	of	the	evaluation	
function). So, if, for example, the solution is the 2-tuple (x,y), we can associ-
ate it with the value h	=	f(x,y). We can think of this value as another dimen-
sion or another axis depicting the height (i.e., the evaluation function’s
value) for each point in the domain. Plotting these values will display the
values of the evaluation function for all the solutions in the search space.
This graph (obviously not limited to the two-dimensional case) is called a
fitness landscape. Figure 3.6 provides examples of fitness landscapes.

Think of a genetic algorithm’s search process as a walk on the fit-
ness landscape aiming at getting to the highest point. This exposes the
greatest problem faced by any algorithm that “walks” or “climbs” on a
landscape from one point to a close point—it can become “stuck” in a
local maximum.	That is, it can reach a point that is not the highest in

112    ◾    Biological Computation

the entire search space; however, since it is higher than all its immediate
neighbors, moving away in any direction entails going downhill. The
shape of the fitness landscape in Figure 3.6(c) clearly demonstrates the
problem.

To better understand the behavior of genetic algorithms, we will
compare them with a more basic algorithm, called hill climbing, which
is based on climbing a fitness landscape. This algorithm is similar to a
genetic algorithm with a population of size 1, which uses only the muta-
tion operator:

 1. Start with a random chromosome x in the search space, and com-
pute its fitness.

 2. Choose the best change for x:

 a. Compute the fitness of every possible 1-bit mutation of x.

 b. Let x be the chromosome with the best fitness among all the
mutations.

 3. Repeat Step 2 until no 1-bit mutation improves the fitness. Return x
(which is the “summit” reached by the algorithm).

It is obvious that this algorithm will halt when it reaches a local maximum,
even if the search space contains better solutions (solutions with higher
fitness). There are many ways to address this problem. A simple solution
would be to apply hill climbing from a set of different starting points (just
like a genetic algorithm) rather than from a single starting point. This is
called iterated hill climbing and is defined by adding the following to the
hill-climbing procedure:

(a) (b) (c)

FIGURE 3.6  Different types of fitness landscapes. (a) Smooth landscape with a
single maximum. (b) A structured landscape with many equivalent local maxima
and a single global maximum. (c) A rugged landscape with several local maxima
and a global maximum that is difficult to identify.

Evolutionary Computation    ◾    113

 4. Return to the previous Step 1, and choose another starting point.

 5. After a number of repetitions of the previous Steps 1–3, return the
highest summit achieved.

The advantage of the iterated hill-climbing algorithm is clear, but note
that even in this case all the climbs might end in local maxima (look again
at Figure 3.6, and observe how this danger depends on the shape of the
fitness landscape).

The main difference between the hill-climbing algorithms and genetic
algorithms that also climb the fitness landscape toward better solutions
is that genetic algorithms make use of crossovers to combine elements of
two successful solutions. This helps when different segments of the chro-
mosomes can be used as elements that can be combined in different ways
to create new solutions. Thus, the search process performed by the genetic
algorithm does not follow a single path, and the danger of local maxima
is diminished.

However, genetic algorithms face a related problem—early conver-
gence. The selection pressure causes the frequency of better solutions to
increase with time. As a result, a situation where a single solution (or a
very small set of solutions) comes to dominate the population in a rel-
atively short time arises quite often. In fact, a population may end up
containing N copies of the same solution. This might seem to be a good
outcome showing that the algorithm found a successful solution. But, in
fact, because we are dealing with hard problems, the probability that this
is an optimal solution is small, and it is more likely that the algorithm
found a local maximum. It is important to note that computationally
there is no point in continuing to execute the algorithm once a single
solution dominates the population. Most crossovers will be crossovers
with identical copies that are of course meaningless, and changes will
come mainly from mutations.

If early convergence occurs during the execution of the algorithm and
we want to be able to overcome it, we first have to detect the problem.
One possibility is to directly measure the variability in the current set of
solutions. However, this may be time-consuming as it necessitates O(N2)
comparisons between all pairs of solutions. This problem can be mitigated
by randomly sampling a few individuals and comparing them.

Alternatively, we could compute the difference between the values of
the evaluation function, as these values are computed in any case. If the

114    ◾    Biological Computation

difference between the best and worst solutions in a population is small
and does not change over a few generations, it is probable that an early
convergence has occurred.

It would seem that one could combat early convergence by lowering
the selection pressure (i.e., the preference for better solutions); however, as
we already mentioned, without preferring better solutions the algorithm
cannot advance toward a solution, and maintaining the delicate balance
between these two goals is almost unachievable.

Several approaches have been proposed for dealing with this problem.
One could halt the algorithm every time early convergence is detected and
start afresh with a new set of initial random solutions. After a predefined
allocated running time, the algorithm is halted and the best solution found
so far is returned.

Another approach is to raise the rate of mutations significantly when
early convergence has been detected. The mutations “shake” the system up
and break up the clustering of solutions. After a few generations the rate of
mutation is turned back down to the original lower rate.

An interesting approach is niching. The population is initially divided
into a few subpopulations, and the genetic operations take place only
within subpopulations. After a period of such segregation, we allow cross-
over among all the individuals in the population for a short period, and
then the population is again divided into subpopulations and the proce-
dure repeated. Assuming that each subpopulation will converge to a dif-
ferent local optimum, the periodic mixing of the subpopulation may create
new solutions with the hope that some of them will combine better parts
that have risen independently in different subpopulations.

A frequently arising issue when implementing a genetic algorithm is
the simple linear trade-off between the size of the population and the
number of generations. If you can allocate 100,000 computational steps
(where a step is the evaluation of one candidate solution), you can have,
for example, a population of 1000 solutions that runs for 100 generations
or a population of 100 solutions that runs for 1000 steps. Clearly, we do
not want to go to the limits: evaluating a population consisting of a single
solution for 100,000 steps or a population of 100,000 solutions for one step
makes no sense. Selecting the actual optimal trade-off point is tricky and,
as many other decisions in genetic algorithms, requires trial and error.
However, our experience suggests that it is often better to go with a larger
population for a smaller number of generations as this decreases the prob-
ability of premature convergence.

Evolutionary Computation    ◾    115

3.4.1  Holland’s Building Blocks Hypothesis

What is the source of the strength of the genetic algorithm paradigm?
The main idea is that segments of the chromosome code for favorable fea-
tures of the desired solution. The algorithm succeeds, from time to time,
to combine such favorable segments. This is done by the crossover opera-
tion, which can take two favorable segments, each residing on a separate
chromosome, and can create a single chromosome containing both seg-
ments, thereby creating a much better solution. John Holland called these
segments building blocks. Holland expanded this notion with his notion
of schema, a set of solutions in the search space that have a common struc-
ture. For chromosomes represented as a sequence of bits, a schema will be
a template that determines only a subset of the values of the bits. The bits
not determined are denoted by the character * (a wild	card	or don’t	care).

We call the bits defined by the schema (i.e., the bits that are not wild
cards) defined bits.	The number of defined bits for a schema H is called
the order of the schema (e.g., a schema of order 1, a schema of order 2) and
is denoted o(H). The length of a schema, denoted by d(H), is the distance
from the first to the last defined bits in the schema. For example, for H =
**10*10*, o(H) = 4 and d(H) = 5.

Observe two individuals in a population of chromosomes consisting of
four bits:

	 A = 1010

	 B = 1001

These chromosomes have a few mutual characteristics that can be denoted
as schemas: 1*** (a schema representing the fact that both chromosomes
have a 1 as their first bit), 10**, or *0**. When a chromosome fits a schema,
we say it is an instance of the schema.

Obviously, a genetic algorithm acts on chromosomes and not on sche-
mas, but we can think of the computational process as sampling specific
instances of different schemas. This allows us to view the progress of the
algorithm as a process where the values of the fitness function in conjunc-
tion with selection, and the mutation and crossover operators, divert the
algorithm from schemas with low average fitness values toward schemas
with high average fitness values.

Holland’s building blocks hypothesis states that genetic algorithms
tend to start out by identifying fitness differences defined by schemas of

116    ◾    Biological Computation

low order (i.e., schemas with a small number of defined bits). In successive
generations the algorithm becomes more focused and succeeds in locating
fitness values for schemas of higher orders (i.e., schemas with more and
more defined bits), until it converges to the optimal region in the search
space, which is highly enriched with high-order schemas with high val-
ues of the fitness function. The reason for this behavior is that low-order
schemas will in general have more instances in the population. In other
words, they will be better sampled. Low-order schemas, according to this
perspective, provide coarse-grained estimates but serve as building blocks
for more complicated high-order schemas (which are created mainly
through crossing over), as the algorithm is drawn to regions of the search
space characterized by schemas that have on average higher fitness values.
According to the building blocks hypothesis this process is the source of
the strength of genetic algorithms as a means for searching for solutions
and optimization.

The genetic algorithm computes, indirectly, the average fitness of all
schemas that have instances in the population and increases or decreases
the number of instances accordingly. The concurrent evolution of a large
number of schemas in a population consisting of a much smaller number
of individuals is called implicit	or intrinsic parallelism. This is one of the
explanations for the effectiveness of genetic algorithms.

3.4.2  The Schema Theorem

In this section we prove Holland’s schema theorem, also known as the
fundamental theorem of genetic algorithms. The theorem formally char-
acterizes the behavior of genetic algorithms.

Let m(H,t) be the number of instances of schema H	at time t, and let
u(H,t) be the average fitness of individuals who are instances of H at time
t. We would like to compute m(H,t	+ 1), the number of instances of H	in
the population at time t	+ 1.

Assume that the parents are chosen using the roulette mechanism.
Recall that the expected number of children of individual x in the popula-
tion is

	

f x

f t

()

()

where f(x) is the fitness of x, and f t() is the average fitness of the popula-
tion at time t.

Evolutionary Computation    ◾    117

Let x denote individuals in the population at time t, which are instances
of the schema H. If we ignore mutations and crossovers for the time being,
we get

E m H t

f x

f t

u H t

f t
m H t

x H

(,)
()

()

(,)

()
(,)+ = = ⋅

∈

1 ∑∑

Thus, the expected number of instances of a schema in the whole pop-
ulation grows by the ratio of the average fitness of individuals who are
instances of the schema to the average fitness of all individuals in the
population. The number of instances of a schema with a high average fit-
ness will rise in the next generation, whereas the number of instances of
a schema with a low average fitness will decrease. Note that although the
algorithm does not explicitly compute the average fitness of a schema the
value u(H,t) appears in the previous formula.

Next we analyze how the crossover and mutation operators affect the
behavior of the algorithm. It is enough to consider only the destructive
actions of these operators because our goal is to derive a lower bound on
the successfulness of a schema. We will compute the probability Sc(H)
that a schema H will still exist in the population after a crossover (at a
single point)—that is, the probability that at least one of the descendants
of instances of H will also be an instance of H. Let l be the length of the
chromosome, d(H) be the length of the schema as previously defined, and
pc be the probability of a crossover:

S H p

d H

l
c c()

()
≥ −

−
1

1

To understand this inequality note that there are l–1	possible crossover
points, d(H) among them are inside H,	so there is a d(H)/(l–1) probability
that a crossover will cut and potentially destroy the schema. The prob-
ability that at least one such event occurs is pc(d(H)/(l–1)). Therefore, the
schema will be conserved with probability 1–pc(d(H)/(l–1)).

We stress again that this is a lower bound as there is a possibility that
the bits coming from the other parent will recreate the schema.

Let us now consider the mutation operator. A schema H will be con-
served after a mutation if and only if all its fixed bits were not mutated. A

118    ◾    Biological Computation

bit will not mutate with probability 1 – pm. As the probability of mutation
in any bit is independent of all the other bits, the probability that schema
H will be conserved after mutation is (1 – pm)o(H).

Combining these results (i.e., multiplying the expected number of
instances by the probability of the schema being conserved) produces
Holland’s schema theorem, which gives a bound on the expected number
of instances of H in the population at time t	+ 1 which is

E m H t

u H t

f t
m H t p

d H

l
c(),)

(,)

()
(,)

()
+ ≥ −

−
1 1

1
−() ()1 pm

o H

3.4.3  Corollaries of the Schema Theorem

The schema theorem allows us to compute the rate of growth of the num-
ber of instances of H:

m H t

m H t

u H t

f t
p

d H

l
c

(,)

(,)

(,)

()

()
(

+
≥ −

−
1

1
1

11− pm
o H) ()

Observe that if H is short and of a low order and if its fitness stays higher
than the average fitness of the population, this expression is larger than 1,
and the number of instances of H will grow, roughly at the rate of u(H,t)/ f (t)
every generation. This is an exponential rate of growth (and we are discuss-
ing only a lower bound). This is of course compatible with Holland’s building
block hypothesis previously presented.

However, this argument assumes that the population on which a genetic
algorithm operates is a representative sample of the set of all possible chro-
mosomes in the search space. This assumption is needed to conclude that
an exponential progress rate toward	an	optimal	solution will indeed hap-
pen. It is easy to see how problematic this assumption can be. For binary
chromosomes of length 20 there are 220 (which is more than a million)
possible sequences. We usually restrict the algorithm to a much smaller
population (say, 50 to 500 individuals). Obviously, the longer the chromo-
somes, the more critical this problem becomes.

On the positive side, recall that the schema theorem deals with only
one aspect of the behavior of genetic algorithms. Given that some schemas
have fitness advantage, the theorem shows that crossovers and mutations
will not disrupt the growth in the number of instances of these schemas.

Evolutionary Computation    ◾    119

However, the power of genetic algorithms is also derived from the fact that
crossovers and mutations can create even better new schemas from exist-
ing good schemas.

3.5  LAMARCKIAN EVOLUTION
Recall that Lamarckian inheritance is the inheritance of acquired char-
acteristics. Neo-Darwinism denies the possibility of inheriting acquired
characteristics, based on our knowledge of biological inheritance mecha-
nisms, but this need not deter us from using this mechanism as a com-
putational tool. Obviously, we first must consider how to incorporate the
inheritance of acquired characteristics into the evolutionary computa-
tional model and second evaluate whether this mechanism improves the
behavior of the algorithm.

In the standard genetic algorithms model every individual in the pop-
ulation is represented as a chromosome, and a fitness value is computed
for every chromosome using the evaluation function. This means that
usually we compute the fitness directly from the genetic information (i.e.,
the genotype), and we do not have a notion of an explicit phenotype. For
example, we interpret the bits in the chromosome as binary numbers that
directly represent the numbers we are trying to optimize. Recall that in
nature the phenotype is generated in a complex way involving the geno-
type as well as the influence of the environment. This process can involve
various forms of interactions between genes (recall the discussion of reg-
ulation in Chapter 1), the influence of the environment on which genes
become active and to what extent, environmental influence independent
of gene action, and more. To consider the inheritance of acquired charac-
teristics it is helpful to distinguish between the phenotype and the geno-
type, since the inheritance of acquired characteristics amounts to having
changes that occur in a phenotype reflected in the genotype that is passed
to the next generation.

An example of a situation in which the distinction between genotype
and phenotype is inviting is the design of learning systems, like the neural
networks that were mentioned in Section 3.3.5 and will be discussed in
detail in Chapter 4. The structure of the network (i.e., the number of ele-
ments and the way they are connected) is predesigned, but the strength of
the connections (called weights) is adjusted in the learning phase of the
network. If we use genetic algorithms to design such systems, we can rep-
resent the structure of the system as the genotype and can add a learning
stage that can improve the performance of each network by changing the

120    ◾    Biological Computation

weights of the connections between the elements, and generates the mature
phenotype. The fitness of the individuals in the population (i.e., the differ-
ent networks) will be computed only after the learning stage. In the basic
structure of genetic algorithms discussed thus far the fitness values are
calculated for solutions immediately after they are formed, whereas here
we calculate the fitness values after the solutions have been optimized.
This is somewhat similar to Darwinian evolution where the phenotype of
individuals, and hence their fitness, is affected by their life experience.

Recall that Weismann noted that it is unclear how a change caused
by the environment can be coded as a genetic change. One can consider
various systems where this problem will manifest itself (in Chapter 6, for
example, we will see systems whose behavior is a complex result of the
behavior of their components, making it difficult to find a change to the
components that would lead to a phenotypically specified target behavior).
However, in some computational cases this problem does not arise. For
example, in neural networks all that is needed to implement Lamarckian
evolution is to use the updated weights after	the	learning	stage (“pheno-
types”) as the parent genotypes instead of the weights prior to the learning
stage.

Now that we see how to incorporate the inheritance of acquired char-
acteristics into the genetic algorithms model, we can address the second
question and see what computational benefits may arise from this modi-
fication. The two outcomes we may hope for are better behavior of the
algorithm (e.g., faster convergence to a solution, avoiding local maxima)
and finding better solutions. In some cases that researchers studied, both
these goals were achieved, but as usual there is no way to predict a priori
if inheriting acquired characteristics will give rise to a better or worse sys-
tem. Nonetheless, one aspect that was studied is worth mentioning.

When we allow learning to impact not only the fitness of solutions but
also the genotypes of the individuals passed to the next generation, the
role of the environment in which the solutions “learn” becomes impor-
tant. Returning to biological systems, the inheritance of acquired char-
acteristics allows directed changes caused by the environment, which are
presumably adaptive, to be passed on directly to the next generation. This
is in contrast to the natural selection scenario in which mutations are ran-
dom and are selected when they happen to be appropriate for the environ-
ment. In the previously given neural network example, the inheritance of
acquired characteristics means that a change in weights caused by learn-
ing in the current generation is passed on to the next generation. As the

Evolutionary Computation    ◾    121

learned weights were adjusted to the challenges of the parents’ generation,
the offspring will have an advantage over randomly generated individuals
in learning the same	 tasks. However, this advantage comes with a cost:
researchers who analyzed the inheritance of acquired characteristics in
the evolution of neural networks discovered that, when the environment
changed rapidly from one generation to the next, neo-Darwinian inheri-
tance worked better than the inheritance of acquired characteristics.

3.6  GENETIC PROGRAMMING
We end this chapter by presenting another evolutionary computational
model that uses a different representation of solutions rather than the
sequence of bits commonly used by genetic algorithms. As we have men-
tioned several times, it is sometimes easier and more natural to use repre-
sentations other than binary chromosomes.

In genetic	 programming (Koza, 1992; Poli, Langdon, and McPhee,
2008), solutions are represented directly as computer programs that imple-
ment the different solutions to a problem. The fitness of each solution is
determined by executing the program, usually on a number of different
inputs, and by analyzing its success.

Despite the name genetic programming and its link to computer pro-
grams, genetic programming does not really deal with objects that are
computer programs and with operators that change lines of code. In prac-
tice, the programs are represented as expression trees, and the genetic
operators operate on trees.

Note that, although genetic programming has become a subfield in
itself, the representation of the genetic information does not significantly
affect the structure of the genetic algorithm itself, and it is always simi-
lar to standard genetic algorithms as previously described. The elements
affected by the representation of solutions are those dealing directly with
the genetic information, that is, the genetic operators like mutations and
crossovers.

As a simple example of genetic programming, consider the problem of
finding a simple mathematical function (or arithmetical expression) over
x in [0..31] that most closely matches the points (0,0), (10,210), (31,0).

We will try to find a function of x composed of the four basic arithmetic
operators (+, –, *, /) and real numbers in the range [0..31]. We will define
the result of division by 0 as 0 (rather than an error), so we do not have to
handle separately situations in which division by zero occurs during the
evaluation of an expression.

122    ◾    Biological Computation

• Solution representation: Each solution will be represented as a com-
bination of the elements specified above as expression trees, such as
the trees shown in Figure 3.7.

• Initial population: As with other evolutionary algorithms, the com-
putation begins with a random population of candidate solutions. To
generate this population we need to generate a set of random expres-
sion trees. The maximal depth of the trees is usually specified in
advance and guides the process. In the full method, randomly cho-
sen operator nodes are added to the tree successively until the maxi-
mum depth is reached, and beyond that only nonoperator nodes are
added (in the current case these would be the numbers between 0
and 31 and the variable x). In the grow method both operator and
nonoperator nodes are added until the maximum depth is reached
(from that point on until the tree is completed, only nonoperator
nodes are added). A commonly used technique called ramped half-
and-half combines these two techniques by generating half the pop-
ulation using full and the other using grow. To ensure a variety of
trees, various tree depths are used.

• Evaluation function: Every function f	that is a candidate solution is
evaluated by computing the values going over the list of points the
function is expected to match and summing the distances between the
values generated by the function and the desired results. The smaller
this sum of distances, the more successful is the solution f. Note that,
in contrast to most other examples in this chapter, we deal here with a
minimization problem rather than a maximization problem.

• Crossover: Once the two parents are selected, we randomly select a
node in the expression tree for each parent and exchange the sub-
trees of each node (Figure 3.8).

10 x

5

+ +–

* *

x x

0 10 21

FIGURE 3.7  Trees corresponding to the arithmetic expressions 10x + 5, 0 – x2,
10 + 21.

Evolutionary Computation    ◾    123

• Mutation: This is even simpler than crossover. Select a random node in
the expression tree, and replace its subtree with a randomly generated
subtree using the same distribution used to create the initial popula-
tion. A second type of mutation, called node	replacement	mutations	(or
point	mutations), is similar to single-bit mutations in genetic algorithms
and consists of a random change to a single node. In mutations of this
kind a function can be replaced only by a function with the same num-
ber of arguments, and leaf nodes can be replaced only by leaf nodes.

As usual in evolutionary computation, this process continues until an
individual with sufficient fitness is found. In this case, for instance, we
may decide to continue the processing until an individual with fitness
error of at most 0.5 is found.

To summarize, the following components need to be decided in order
to attack a computational problem using genetic programming:

 1. The set of constants and variables that may appear in expressions—
in the example we used the values [0..31] and the variable x. This set
is called the set of terminals and is denoted by T.

 2. The set of functions that are composed to create solutions (we used
the four arithmetic operators). This set is called the set of functions
and is denoted by F.

10

*

* *

*

+ –

–

x

5

x x

0

10 x x x

FIGURE 3.8  The crossover operation on trees. In this case 10x + 5 and 0 – x2 are
crossed to yield 10x – x2.

124    ◾    Biological Computation

 3. The evaluation function, the selection mechanism, and when will the
system halt (as in standard genetic algorithms).

As a second example of the use of genetic programming, consider the
following bioinformatics application. A set of DNA sequences that presum-
ably have something in common (e.g., they may all come from regions in
the DNA affected by a specific cellular mechanism) is given, and the goal
is to find a regular expression (RE) that captures their similarity. To reduce
the number of irrelevant answers, a control set of sequences that should not
be identified as belonging to the original set is also given. Genetic program-
ming is used to evolve regular expressions that match as many sequences in
the original set and as few of the sequences in the control set.

For the sake of this example, we allow regular expressions consisting
only of the four nucleotides (this is the terminal set) and the concatena-
tion (.), alternation (|), and Kleene star (*) operators, without parenthe-
ses. The order of precedence of these operators is, from highest to lowest,
Kleene star, concatenation, and alternation. We often omit the concatena-
tion operator and write r1r2 instead of r1.r2, thus at is the same expression
as a.t. Examples of regular expressions from this language are a*t, which
accepts any string of a’s (including the empty string) followed by a t, and
a*t|t*a, which accepts strings that belong either the previously described
set of strings or strings of t’s (including the empty string) followed by an
a. Because of the lack of parentheses, the expression (a.t)*, which accepts
any string consisting of repetitions of at, is not included in the specified
regular expression language.

As before, solutions are represented as expression trees, crossing over is
done by subtree crossing over, and mutations are done by replacing nodes
with random nodes or subtrees. Clearly, a reasonable threshold has to be set
for the maximal size of the tree to avoid solutions where many sequences
are explicitly stored in the tree. To evaluate the quality of the different
solutions, each regular expression is matched against all the sequences in
each set. The quality of the solution depends on the number of true posi-
tives and true negatives as well as on the number of false positives (i.e.,
sequences that match the suggested regular expression but belong to the
control set) and false negatives (i.e., sequences with the biological function
that do not match the regular expression). To factor these four attributes
in a way that takes into account the possibility that the two sets may be dif-
ferent in size, the Matthews correlation coefficient	(MCC) can be used.

Evolutionary Computation    ◾    125

	
MCC

tp tn fp fn

tp fp tn fn tp fn tn fp
=

⋅ − ⋅

+ + + +()()()()

where tp and tn	are the number of true positives and true negatives, respec-
tively, and fp and fn are the number of false positives and false negatives.

The MCC is a value between –1 and +1, with +1 being a perfect predic-
tion and –1 being an inverse prediction.

Note that crossing over may produce expression trees for which there
is no corresponding expression in the language we specified. A crossover
of g* and a|t that replaces the g node of the star expression with the entire
tree of the second expression results in the tree shown in Figure 3.9.

The corresponding expression in the language would presumably be
(a|t)*, which is disallowed by the syntax of the previously defined lan-
guage. There are various solutions to situations such as this. In some cases
the problem emerges because the language is too restricted. A possible
solution in this case would be to use the full-standard definition of regular
expressions, assuming that in the full language such problems do not exist
(or are very rare). However, there may be cases in which such a change to
the language is impossible. For example, we might be using an external
regular expression engine whose syntax we have to match. Alternatively,
the constraints of the language may not be artificial but rather be neces-
sary for producing expressions that make sense; for example, the language
may include if statements in which the condition expression has to be a
Boolean expression. In cases such as these we can ensure valid trees when
producing the initial population and during mutation by following the
syntax of the language. When doing crossover we may allow crossing over
only between nodes having the same type (e.g., only a Boolean expression
node can replace a Boolean expression node), or we can identify invalid

a

|

t

*

FIGURE  3.9  A tree depicting an expression disallowed by the syntax of the
language.

126    ◾    Biological Computation

offspring after crossover and redo the crossing over again to give the par-
ents a chance to produce valid offspring.

This discussion should make it clear why genetic programming is for-
mulated in terms of expression trees rather than textual source code. When
textual representations are needed, parsing or unparsing to and from the
tree representation may be necessary. Classically, genetic programming
is formulated in terms of S-expressions, which underlie the syntax of the
programming languages Lisp and Scheme. S-expressions use a prefix nota-
tion and explicitly encode the tree structure; for example, the S-expression
equivalent to the arithmetical expression (2 + 3)*4 is (* (+ 2 3) 4). Since Lisp
code is written using this tree notation, it is a natural candidate for genetic
programming.

3.7  A SECOND LOOK AT THE EVOLUTIONARY PROCESS
In this chapter we presented the standard genetic algorithms model,
which is widely used and is a basis for understanding other evolution-
ary algorithms. In the previous two sections we presented a few exam-
ples of using other evolutionary models for computational purposes
and saw how evolutionary computation can use mechanisms such as
the inheritance of acquired characteristics regardless of whether they
operate in nature and to what effect. Not only are these models useful
in practice, but they also provide useful intuition about cases where it is
difficult to observe biological processes and thereby can help biological
research by raising new questions and hypotheses (see the discussion of
artificial life in Chapter 6) . In this way biology and computer science
influence and enrich one another.

For this and other reasons it is useful to expand here on our knowledge
of evolutionary processes. This allows us to see the genetic algorithms
model we discussed in a wider perspective.

3.7.1  Mechanisms for the Generation and Inheritance of Variations

The neo-Darwinian theory presented at the beginning of this chapter stip-
ulates that two mechanisms generate evolutionary changes: mutations and
sexual reproduction. Both these processes are inherently nondirected (i.e.,
cannot create targeted genetic changes in response to environmental chal-
lenges faced by the organism). Mutations are random and independent of
the environment. Sexual reproduction creates new combinations of existing
genes and might give an advantage to certain characteristics in the popula-
tion (e.g., because their carriers are more attractive sexually and therefore

Evolutionary Computation    ◾    127

will have more mates and offspring) but does not create new genes, only
gene combinations. The roles of the organism and the environment are very
clear: the organism presents a possibly new genetic constitution, and the
environment selects among individuals. This paradigm is encapsulated by
the slogan, “The organism proposes and the environment disposes.”

One could deduce from this that the genes uniquely determine the
characteristics of the organism, and therefore the environment really
selects between genes. But, as we all know, biological systems are much
more complex; even identical twins—who share the same set of genes—
are not completely identical. The development of an organism is a long and
complex process, and the environment plays a role in most of its stages.
Rather than considering development as an inputless computer program,
we must at least realize that input from the environment can affect the
development process significantly. For example, some critical develop-
mental stages necessitate environmental stimuli or specific environmental
conditions (e.g., sunlight, gravitational pull). Changes in the environ-
ment caused by the organism can affect it later on, so the relationship is
interactive. No less important is the developmental flexibility exhibited
by most organisms that allows them to thrive despite certain environ-
mental conditions or constraints. The observations made by Slijper in the
1940s of a goat born without its front legs, a situation that would usually
spell imminent death, are a particularly instructive example. Amazingly,
the goat learned to walk on its hindquarters. After it got killed in a road
accident, an autopsy was performed, and substantial changes were found
in the goat’s skeletal structure, its musculature, and joints: all its systems
had adapted to walking upright, although it is clear that no prior genetic
information in the goat’s genotype was waiting to take over in such a situ-
ation, since it is unlikely that evolution had to deal with this predicament
frequently enough and for enough generations.

Such examples demonstrate that the role of the environment is not lim-
ited to selecting individuals and that it has a significant impact on the
development of organisms. The capability of organisms to adapt to chang-
ing conditions is called developmental plasticity, and, as the goat story
suggests, can have a major impact on the fitness of individuals (and hence
on their evolutionary success). Developmental plasticity is a mechanism
for creating variations. However, it is important to note that in the absence
of other mechanisms these changes are not inherited, and therefore devel-
opmental plasticity is not a mechanism for creating heritable	variability.

128    ◾    Biological Computation

Having compared the genetic information with a computer program, it
is important to keep in mind that biological control is rather more com-
plicated than the analogy with a sequential computer program would
have us believe. Instead of a master control program, each cell and system
operates semi-independently of others, and indeed so do the proteins and
gene networks within each cell. The control is distributed and reactive to
stimuli on a variety of levels of organization, and the resulting behavior is
a complicated outcome of many localized interactions. This fact is relevant
for understanding many of the phenomena we discussed, from develop-
mental plasticity to the difficulties in the notion of inheriting acquired
characteristics. In Chapter 2 we saw how simple local rules can lead to
complicated and coordinated behavior. We return to this topic again in
Chapter 6.

The genetic algorithms model discussed in this chapter is based on our
understanding of the evolutionary process founded on genetic inheritance.
Other mechanisms allowing information passing between generations are
used in many situations. A fundamental example is the capability of cells
in multicellular organisms to differentiate into different cell types such
as nerve cells and blood cells. Recall that, since all cells carry the same
genetic information, the differences between the cell types occurs because
a different set of genes is expressed in each type. In general, the decision of
which genes will be expressed in each cell in any given time is not based on
changes in the genetic information itself (the DNA sequence) and is there-
fore called epigenetic. The epigenetic variations that create the phenotypic
differences between the cells are dependent on developmental conditions
for each family of cells. The changes can remain stable for long periods of
time in the life of the cell and can be passed on via various processes col-
lectively called epigenetic inheritance to the next generation of cells: for
example, liver cells will create new liver cells. Another way for one genera-
tion to impact the next generation is by creating environmental changes.
For instance, the dams a beaver builds impact the environment of its
descendants and thereby the selection pressure and developmental cues
they will have to deal with. It is interesting to observe that such environ-
mental changes (called niche construction) impact not only the descen-
dants of a particular individual but also the offspring of other individuals
and even of other species. In this way the shared environment allows dif-
ferent species to mutually affect each other over many generations and for
sustained periods of time.

Evolutionary Computation    ◾    129

Another route for passing information between generations is social
learning and imitation. Social animals, including humans, imitate and learn
from one another, which allows variations to spread within and between gen-
erations. As a final example, note that another way of passing information
between generations is inheriting immunity to pathogens from the mother.
In many species of mammals the mother passes antigens via the placenta and
milk. Passing on this information (which has mainly been acquired by the
mother during her life as a reaction to infections and is thus similar to pass-
ing acquired characteristics), allows the descendants to gain protection from
pathogens in the environment without the dangers associated with infection.

Eva Jablonka and Marion Lamb proposed that the existence of such
inheritance processes in addition to genetic inheritance suggests that in
some cases heritable variations of these kinds are more advantageous than
genetic variations (Jablonka and Lamb, 2005); we should ask ourselves
how we can adopt similar processes for evolutionary computation.

3.7.2  Selection

Selection is the mechanism that turns random variation into cumulative
evolutionary change. Throughout this chapter we assumed that selection
is the main mechanism for evolutionary change that leads to individuals
adapted to their environment. The question as to whether this really is
the main mechanism leading to evolutionary change in nature and how
important other processes, such as the previously described variational
mechanisms, are to the direction of evolution is a major area of debate
between researchers. A related debate is on the importance of processes
in which members of a random subset of a population, not determined by
fitness, become parents to the next generation. We can consider such pro-
cesses as sampling processes, since only a random sample of the population
becomes the genetic source of the next generation. A simple example of this
occurs when the environment changes significantly enough so that no indi-
vidual is better adapted to the new conditions than other individuals and
most of the population perishes. The remaining population is composed
of the “luckier” individuals and not necessarily those with a better genetic
makeup. Another example is the situation where a small random sample of
the population moves to a distant and isolated location (e.g., an island) and
continues reproducing there (the technique of niching introduced above is
somewhat similar to this situation). If the original and new environments
are different, then the resulting differences between the two populations
may be due to selection. However, even if the two habitats are identical,

130    ◾    Biological Computation

differences between the two populations may appear because genetic vari-
ability that exists in the island population is small relative to the genetic
variability in the original population. Sampling processes such as these are
called drift. Their role in evolution and relation to selection remain contro-
versial. Clearly, the smaller the population, the higher the risk that random
drift will affect the evolution of the population. To simplify analysis, many
theoretical models of evolution assume an infinite population, but in many
real-life situations population sizes are in fact small. Experience shows that
population size is also an important factor in evolutionary computation.

Finally, note that the fitness landscape in nature is not fixed, in con-
trast to the way we portrayed it throughout this chapter. In fact, it changes
due to changes in the environment, the impact of other organisms in the
environment, and even due to changes in the environment that are the
result of the activities of the organism (e.g., beaver dams). All these fac-
tors may be incorporated into evolutionary computational techniques or
arise there because of unforeseen interactions between elements of the
computational model. It is not a simple climb on the fitness slope since
the slope shifts and changes under the organisms’ feet!

3.8  SUMMARY
We discussed computational strategies inspired by biological evolution
and in particular by natural selection. Most of the discussion in this
chapter was devoted to the classic genetic algorithm developed by John
Holland. We described a range of variations on the basic algorithm, which
in some cases show superior performance. As we saw, the representation
of solutions can have a significant impact on the success of the evolution-
ary search, and many problems are naturally represented in formats other
than binary chromosomes.

We showed how the behavior of genetic algorithms can be analyzed for-
mally and explained the proof of Holland’s schema theorem. This discus-
sion elaborated on Holland’s building block hypothesis and the implicit
parallelism that characterizes genetic algorithms.

The generic structure of evolutionary computation lends itself naturally to
many variations. We discussed two major ideas—Lamarckian evolution and
genetic programming—but many other models are described in the literature.

The chapter concluded with a short digression about evolution in
nature, with the goal of showing the richness of the evolutionary processes
in nature, large parts of which are not represented directly in the classic
genetic algorithm model.

Evolutionary Computation    ◾    131

3.9  PSEUDO-CODE

// Generic code for implementing a simple genetic algorithm

INIT_POPULATION(pop) // Create initial population

WHILE not END_CONDITION(pop)
 BEGIN
 // The end condition can be any of the conditions described in
 // section 3.2

REPORT(pop) // report properties of current population

 new_pop:=NEXT_GENERATION(pop) // create next generation
 pop:=new_pop
 END
REPORT(pop) // report properties of final population

NEXT_GENERATION()

CALCULATE_FITNESS_OF_INDIVIDUALS()

 WHILE FULL()
 BEGIN

SELECT()
SELECT()
CROSSOVER()
MUTATE()

INSERT()
 END

RETURN

rand()

SELECT()

:=SUM_FITNESS()
:=rand() *

:=
:= FITNESS()

WHILE
BEGIN

FITNESS()
 END

RETURN

132    ◾    Biological Computation

3.10  FURTHER READING
Bagchi, Tapan P. 1999. Multiobjective	Scheduling	by	Genetic	Algorithms. Norwell,

MA: Kluwer Academic Publishers.
Cavicchio, Daniel Joseph. 1970. Adaptive search using simulated evolution. Ph.D.

thesis, University of Michigan.
Coello, Carlos A. 2000. An updated survey of GA-based multiobjective optimiza-

tion techniques. ACM	Computing	Surveys 32, no. 2, 109–143.
Doerr, Benjamin, Nils Hebbinghaus, and Frank Neumann. 2007. Speeding up evo-

lutionary algorithms through asymetrical mutation operators. Evolutionary	
Computation, 15, no. 4 (December 1): 401–410.

Goldberg, David E. 1989. Genetic	Algorithms	in	Search,	Optimization	and	Machine	
Learning. Reading, MA: Addison-Wesley.

Holland, John H. 1975. Adaptation	 in	 Natural	 and	 Artificial	 Systems:	 An	
Introductory	 Analysis	 with	 Applications	 to	 Biology,	 Control,	 and	 Artificial	
Intelligence. Cambridge, MA: MIT Press.

Jablonka, Eva and Marion J. Lamb. 2005. Evolution	 in	Four	Dimensions:	Genetic,	
Epigenetic,	 Behavioral,	 and	 Symbolic	 Variation	 in	 the	 History	 of	 Life.
Cambridge, MA: MIT Press.

Koza, John R. 1992. Genetic	Programming:	On	the	Programming	of	Computers	by	
Means	of	Natural	Selection. Cambridge, MA: MIT Press.

Langdon, William B. and Andrew P. Harrison. 2008. Evolving regular expressions
for GeneChip Probe performance prediction. In Proceedings	 of	 the	 10th	
International	Conference	on	Parallel	Problem	Solving	from	Nature:	PPSN	X,
1061–1070. Dortmund, Germany: Springer-Verlag.

Miller, Geoffrey F., Peter M. Todd, and Shailesh U. Hegde. 1989. Designing neu-
ral networks using genetic algorithms. In J. Schaffer (Ed.), Proceedings	of	
the	 Third	 International	 Conference	 on	 Genetic	 Algorithms, 379–384. San
Francisco: Morgan Kaufmann.

Mitchell, Melanie. 1998. Computation in cellular automata: A selected review. In T.
Gramss, S. Bornholdt, M. Gross, M. Mitchell, and T. Pellizzari, Nonstandard	
Computation, 95–140. VCH Verlagsgesellschaft.

Mitchell, Melanie and Charles E. Taylor. 1999. Evolutionary computation: An
overview. Annual	Review	of	Ecology	and	Systematics, 30, 593–616.

Poli, Ricardo, William B. Langdon, and Nicholas F. McPhee (with contributions
by John R. Koza). 2008. A	 Field	 Guide	 to	 Genetic	 Programming. Available
at: http://lulu.com and freely available at http://www.gp-field-guide.org.uk.

3.11  EXERCISES
3.11.1  Evolutionary Computation

 1. Discuss how a genetic algorithm should deal with the situation
where, after a large number of generations, no good enough solu-
tion for a problem has been found. Try to suggest ways for a system
designer to attempt to increase the probability of finding a solution
when such a situation occurs.

Evolutionary Computation    ◾    133

3.11.2  Genetic Algorithms

 2. Is it a good idea to choose a large pm (close to 1)?

 3. In the general algorithm we described, pm determined whether to
flip a bit. In another description of genetic algorithms, pm determines
whether to replace the bit with a new bit, and if so the new bit is cre-
ated as a 1 with probability 0.5 and as a 0 with probability 0.5. Are
these two algorithms fundamentally different, or are they the same
up to simple adjustments of parameters?

 4. Describe in detail how to find the values of x	∈ [31,..,62],	y	∈ [0,..,31],
which minimize the function g(x,y) = x2 + 2xy – y2 using a genetic
algorithm. Consider how the selection method and population size
may affect the rate of convergence and minimize the dangers of pre-
mature convergence.

 5. An ant walks on a rectangular two-dimensional grid containing
obstacles. All steps are of length 1 on the grid. Before each step the
ant can change its direction to one of the four possible directions
(north, south, east, or west). A path is composed of ten such steps
(consisting of a turn and a move). When an ant hits an obstacle it
cannot move further and remains stuck in place.

 a. Propose a way for representing possible paths as a chromosome
of bits.

 b. Show how to use a genetic algorithm to find the maxi-
mal Euclidean distance from the beginning of the path (i.e.,
the maximal distance between the start and end points of a
path) an ant may reach in ten steps.

3.11.3  Selection and Fitness

 6. After an individual is chosen to serve as parent, it may either be dis-
carded or returned to the population so that it can be selected again.
How does this choice affect selection pressure (for concreteness, con-
sider each selection mechanism separately)?

 7.

 a. Express the probability P(i) of choosing individual i as a parent
using	fi (i=1..n), for roulette wheel selection.

134    ◾    Biological Computation

 b. Using (a) derive the expected number of offspring for individual
i assuming the size of the population is n.

 8. Show that the values of the probability function P(i) derived for rou-
lette wheel selection are between 0 and 1 and that their sum is 1.

 9.

 a. In Tournament selection does the selection pressure increase or
decrease when the size of the set k is increased?

 b. If two individuals are selected to be compared and the individ-
ual with the higher fitness is chosen as parent with probability
p while the individual with the lower fitness is chosen as par-
ent with probability 1 – p, will the use of a smaller p increase or
decrease the selection pressure?

 10. We can add an elitism mechanism to any of the selection methods,
whereby in each generation a number of individuals with high fitness
are chosen and passed as is to the next generation (similar to what
happens to most individuals in steady-state selection). One of the
advantages this offers is that it guarantees the monotonicity of the
maximal fitness in the population (as it clearly can only increase).
Does this raise or lower the selection pressure?

 11. Try to find biological examples analogous to each of the selection
techniques presented. Try to speculate whether these techniques
were developed based on biological observation or as an attempt to
improve the performance of genetic algorithms.

3.11.4  Genetic Operators and the Representation of Solutions

 12. A chromosome is composed of two consecutive genes A and B, each
of which is represented by five bits. There are two values (alleles) of
A and two alleles of B in the population. The two alleles differ in
every bit. Each allele of each gene appears in 50% of the population.
What is the probability that a crossover between two chromosomes
will give rise to a new allele of A that did not exist in the original
population?

 13. Repeat the analysis in question 12 for chromosomes of length 100,
where A is on the left end of the chromosome, B on its right and there

Evolutionary Computation    ◾    135

are the 90 bits between them all with value 0 for every individual in
the population.

 14. One can change the “rate” of mutations pm during the execution of a
genetic algorithm. What would be the advantage of doing so? How
should one change pm as the execution progresses?

3.11.5  Analysis of the Behavior of Genetic Algorithms

 15. Given the schema H	=	1***01*, compute o(H) and	d(H). How many
possible instances are there of H?

 16. Compute the number of schemas for which a given chromosome of
length l can be an instance.

 17. Prove that not every subset of chromosomes of length l is uniquely
defined by a schema.

 18. Assume a genetic algorithm or hill-climbing algorithm that repre-
sents the solutions as a real number x rather than a chromosome
made up of bits. How would you implement mutations in this repre-
sentation? (Hint: think of the definition of the derivative.)

 19. Explain why the niche method lowers the risk of early convergence.

 20. The following observation lowers the bound given by the schema
theorem: a crossover cannot destroy a schema if both parents are
instances of the schema, regardless of the crossover point. Refine the
bound we derived using this observation. Hint: derive an expression
that computes the probability that at time t the second parent will
belong to H, under the assumption that the first parent belongs to H.
We are interested in the complement of this situation. Combine this
expression with the expression dealing with crossovers in the proof
we presented for the schema theorem.

 21. We can deduce from the schema theorem that the success of a par-
ticular schema is independent of the success of other schemas in the
population and depends only on its average fitness and the average
fitness of the population as a whole. Explain this statement and why
it supports the idea of implicit parallelism. Based on the discussion
of the schema theorem in the chapter, qualify this conclusion.

136    ◾    Biological Computation

3.11.6  Genetic Programming

 22. Consider a case in which genetic programming is used for a problem
of finding a mathematical function that goes through a given set of x,y
points (numerical regression). Suppose additionally that the solution
must be of the specific form such as a*sin(x) + b*cos(x), where a and
b may be any arithmetic expressions not involving x. Suggest ways to
use genetic programming to find solutions that have the desired form.

3.11.7  Programming Exercises

 23. Given 10 cards numbered 1 through 10, divide them into two piles,
such that the sum of the card values in the first pile will be as close
as possible to 36 and the product of the card values in the second pile
will be as close as possible to 360.

 a. Suggest a way to solve this problem using a genetic algorithm, and
describe all its components. It is recommended to write a whole
computer program to implement the evolutionary computation.

 b. Do you think that genetic algorithms are suitable for solving this
problem? Did you change your mind after you experimented
with the program?

 24. Given x,y	coordinates of 10 cities and assuming an Euclidian dis-
tance between each pair of cities, use a genetic algorithm to find
the shortest path through all of the cities (the traveling salesman
problem).

 25. Sorting networks are hardware components used to sort sequences
of numbers. Their advantage is their simplicity and their high par-
allelism. They operate as follows. Every number in the sequence

FIGURE 3.10

Evolutionary Computation    ◾    137

is put in a channel (the number of channels equals the sequence
length). Every two channels are connected with a comparator ele-
ment, a component that compares two numbers and exchanges
them as needed so that the number in the lower-indexed channel
is the smaller one. The numbers in the sequence move along the
channels and are exchanged if need be. The goal is that at the end of
execution the channels will contain a sorted sequence. The network
in Figure 3.10 sorts 10 elements (the horizontal lines are the chan-
nels, and the vertical lines are the comparators). The depth of the
network is defined by the number of nonparallel exchanges, so in
this example the network contains 29 comparators and has a depth
of 16. A good network will use a small number of comparators and
will have a low depth. In this exercise we will attempt to find a net-
work that will correctly sort any possible input and will have a small
number of comparators using a genetic algorithm (you can ignore
the low depth requirement).

 a. Design and implement a genetic algorithm for designing a sort-
ing network of sequences of numbers of length 12. Analyze the
behavior of the algorithm in relation to the following points:

 i. How did you deal with the huge number of possible input
sequences? How did you determine when to stop searching
for a solution?

 ii. How did you represent the solution? What were the genetic
operators, and the evaluation function, and how did these
decisions impact the behavior of the algorithm?

 iii. How would you modify the representation if you were trying
to also minimize the depth of the network?

 iv. What did you do to avoid local maxima?

 b. To escape from local optimums, we can use the following tech-
nique: in addition to the population networks, we will run in par-
allel an evolutionary process for a population of test sequences
that the networks have to sort correctly (the more sequences are
sorted correctly, the higher the fitness of the sorting network).
The “goal” of the sequences is to hinder the performance of the
sorting network, so a fitness of a sequence will be higher if net-
works fail in sorting it. Implement this idea, and test its impact

138    ◾    Biological Computation

on the performance of the sorting networks. How would you
describe this change in terms of what it does to the fitness land-
scape of sorting networks?

 26. Given 100 points on the plane represented as 2-tuples (x,y), use a
genetic algorithm to sort them into five clusters. Use the two repre-
sentations described in Section 3.2.3 and compare the behavior of
the algorithm and the quality of the results.

 27. Given an undirected connected graph G = (V,E), compute a cycle
(a path that starts and ends on the same vertex) such that every
edge is used exactly once (such a cycle is called an Eulerian cycle if
such a cycle exists). Let m be the number of edges. We want to solve
this problem using two evolutionary algorithms, with no crossover
operations—that is, only the mutation operator is involved. A solu-
tion is represented as a permutation of the edges of G (and not as a
binary chromosome). The fitness is defined to be the length of the
longest prefix of the solution that is connected (adjacent edges that
share a vertex). If the fitness equals the number of edges then the
solution represents an Eulerian cycle. It was claimed that an asym-
metric mutation operator may be more effective than a symmetric
one (Doerr et al., 2007). In this exercise we will investigage this
claim.

 Solution 1—Asymmetric mutation operator:

 i. Choose a random permutation of edges π as the initial solution.

 ii. Choose 1 ≤ i	≤ m uniformly at random. Let π’ be the result of
moving the element at position i of π to position 1 and shifting
the elements between position 1 and position i one position
to the right. For example, jump(5) applied to (6,4,3,1,7,2,5)
produces (7,6,4,3,1,2,5).

 iii. Replace π by π’ if π’ has higher fitness.

 iv. Repeat Steps 2 and 3 forever.

 Solution 2—Symmetric mutation operator:

 i. Choose a random permutation of edges π as the initial
solution.

Evolutionary Computation    ◾    139

 ii. Choose 1 ≤ i,j	≤ m	uniformly at random. Let π’ be the result
of jump (i,j) applied to π, where the element at position i	 is
moved to position j	while the other elements between posi-
tion i	and position j	are shifted in the appropriate direction.
For example, jump(5,2) applied to (6,4,3,1,7,2,5) produces
(6,7,4,3,1,2,5).

 iii. Replace π by π’ if π’ has higher fitness.

 iv. Repeat Steps 2 and 3 forever.

 Implement both solutions and compare their performance.

 28. Use a genetic algorithm to solve sudoku puzzles, and analyze the
effect of Lamarckian evolution of the performance of the algorithm.
Given a sudoku board, choose a population of solutions randomly
(the population can be of any size, but a size between 50 and 100
seems most appropriate), which will comprise the first generation.
The algorithm will generate the subsequent generations. You have to
decide on the following elements of the genetic algorithm:

 a. Solution representation.

 b. The evaluation function.

 c. How to perform crossover between solutions.

 d. What mutations will consist of.

 e. How to select the individuals which will be passed on to the next
generation.

 The main objective of this exercise is to determine the influence of
Lamarckian evolution on the performance of the genetic algorithm—
that is, determine the effects of allowing the inheritance of acquired
characteristics. To this end, we will allow every solution to optimize
its fitness and the passing of the improved solutions from one gen-
eration to the next. Optimization can be implemented, for example,
by the following procedure: assume you chose to represent the solu-
tion using a 9 × 9 matrix. A solution is modified by exchanging two
cells in the matrix. Optimization can be performed by finding the
pair of cells that when exchanged will give rise to the best improve-
ment in the evaluation function. We will allow 100 optimization

140    ◾    Biological Computation

steps for each solution. The representation and the optimization sug-
gested here are only examples, and you are free to choose other rea-
sonable approaches; however, the number of optimization steps for
each individual has to be to the same. Compare the following three
policies:

 a. The usual genetic algorithm.

 b. A genetic algorithm where each solution is optimized directly,
the fitness is evaluated after the optimization step, but the solu-
tions used for generating the next generation are the original,
nonoptimized solutions.

 c. A complete Lamarckian algorithm, where each solution is fully
optimized, fitness is evaluated after the optimization step, and the
optimized solutions are used to generate the next generation.

Game boards can be found at http://www.sudokupuzz.com and many
other places. The program has to deal with boards classified as easy,
medium, and hard.

Compare the algorithm’s performance under the different inheritance
policies and different levels of difficulty of a sudoku game.

3.12  ANSWERS TO SELECTED EXERCISES
 2. Usually not. If the mutation rate is too high, the properties of the

good solutions will not be preserved from one generation to the next.

 3. There is no significant difference. The second algorithm behaves
exactly like the original for a pm twice as small.

 7. If we denote by fi the evaluation value of i and by f̂i the fitness value
of i, then

P i
f

f

f

f

f

f

f
f

f
f

i

k

k

n

i

k

k

n

i

k

k

n
()

ˆ

ˆ
= = = =

= = =
∑ ∑ ∑

1 1 1

1

1

ff

f

i

k

k

n

=
∑

1

Evolutionary Computation    ◾    141

 Therefore, we deduce that with this selection mechanism and defini-
tion of fitness we can use the evaluation function directly when cal-
culating the probability of reproduction without first computing the
fitness value separately. Using the probability P(i) we can estimate the
expected number of descendants for i: in the population of size n as

nP i
nf

f

nf

nf

f

f
i

k

k

n
i i()= = =

=
∑

1

 This is exactly the fitness value!

 9.

 a. The selection pressure increases as k increases.

 b. Lowering p will decrease the selection pressure.

 10. As elitism maintains the solutions with the highest fitness and
reduces the number of new offspring it raises the selection pressure.

 15. d(H) = 6,	o(H) = 3. There are 16 (= 24) instances of the schema.

 16. A chromosome of length l belongs to 2l schemas since a matching
symbol in the schema can be either the same symbol as in the chro-
mosome or *.

 17. There are 22l

subsets and only 3l possible schemas.

 20. A refined expression for the schema theorem:

E m H t
u H t

f t
m H t p

d H

l

m
c[(,)]

(,)

()
(,)

() (
+ ≥ −

−
−1 1

1
1

HH t u H t

nf t
pm

o H,) (,)

()
() ()−1

 where n is the size of the population.

 21. The formula we derived shows that the rate of growth of the number
of instances of a schema depends only on the schema’s average fitness
and on the average fitness of the population. So we can consider the
evolutionary process as dealing with schemas rather than individuals
(i.e., the fitness of schemas rather than the fitness of individuals). But

142    ◾    Biological Computation

in practice the algorithm tests the fitness of individuals and only indi-
rectly the fitness of schemas; therefore, a small number of individuals
represent a larger number of possible schemas, and we have implicit
parallelism. On the other hand, if the population is too small, the
sampling of schemas it provides may be insufficient and hence prob-
ably biased.

 23.

 a. The natural way is to represent solutions as binary chromosomes
of length 10. If a bit has value 1, the card belongs to the first pile
and otherwise to the second pile. To compute the fitness of a solu-
tion we will construct an error function and attempt to minimize
it. The function has to take into account both piles relative to
their target values (the absolute value of the difference from the
targets), making this a multiobjective optimization problem. The
products are bigger than the sums, so the function has to account
for this when combining the values (by multiplying the term for
the sum by an appropriate factor).

 b. The search domain is small (1024 possibilities), and the fitness
landscape is not smooth and hard to climb due to the dependence
between the components of the problem. Therefore, it is probable
that on average a genetic algorithm will be less efficient than an
ordered search or even a random search (this can be tested by
increasing the rate of mutations).

 24. A possible way to represent the path to the genetic algorithm is by
using a chromosome containing 10 numbers that determine the order
of traveling between the cities. For example: 10 1 5 3 2 6 4 7 9 8 is a
path starting at city 10, then city 1, then city 5 and so forth until it ends
at city 8. A mutation would be a swap of two cities, and a crossover
will be cut and paste of two permutations. Note that such a crossover
does not guarantee that only valid paths (i.e., a real permutation) will
be produced; thus, there is a need to go over each offspring, to check its
validity, and where necessary to correct it (e.g., by randomly replacing
cities that appear twice by cities that did not appear at all).

143

C h a p t e r 4

Artificial Neural Networks

Up to now we have dealt with computational models inspired by
biological systems, and our discussions have been focused on their

computational capabilities, that is, their abilities to solve difficult compu-
tational problems. In this chapter we will again look at a model inspired by
a biological system (the brain and the nervous system), but we will focus
on a specific capability of this model, namely, its learning capability.

Artificial neural networks (ANN) are a family of computational models
inspired by various aspects of the nervous system and the brain. A neu-
ral net is a set of interconnected simple computational units, similar to
the brain, which is composed of a large number (on the order of 1011) of
neurons that are interconnected. Artificial neural nets are interesting in
part due to the large number of technological applications they have and
in particular because neural nets are extremely useful tools for solving
problems that require learning or generalizing from examples.

4.1  BIOLOGICAL BACKGROUND
The atomic units of the nervous system are nerve cells, also known as neu-
rons. Neurons come in many different forms, but they all share some char-
acteristics: they have components called dendrites that act as “antennas”
and are composed of extensions that receive signals from various sources
(mainly from other neurons) and another component called an axon that
transmits output signals (Figure 4.1). A single neuron has many inputs,
averaging between 1000 and 10,000 dendrites, but only a single output
axon, which splits up at its end to allow it to connect to the dendrites of
several other neurons. The dendrites are relatively short, but axons can be

144    ◾    Biological Computation

very long. For instance, in humans, the axon in neurons connecting the
spinal cord to the foot is about 1 meter long.

When neurons are activated, certain physical changes happen in them,
and an output signal is generated. For example, photo-sensitive cells in
the eye react to light by creating neural signals that are then acted upon
by the nervous system and the brain. How are the signals inside a neuron
and between neurons transmitted? Signals propagating along the axon
are electric, whereas the signals received by the dendrites are chemical in
nature. These signals are translated into electric signals by using a com-
plex array of gates and pumps that control the ionic balance in the cell
and generate electric signals. When the sum of signals in the dendrites
surpasses a certain threshold, the cell body (or soma) generates an electric
signal that propagates along the axon. This is called a nerve impulse. One
of the reasons the signal does not decay along the axon is that the axon
is sheathed by an insulating material called myelin. In patients suffering
from multiple sclerosis, the myelin sheath is defective; therefore, in these
patients the nervous system is severely impaired.

In contrast to this electrical conductivity, signals are passed between
one neuron’s axon to other neurons’ dendrites using chemical molecules
called neurotransmitters that cross the gap between the axon and the den-
drite, called a chemical synapse, or just synapse. The sending neuron is
called the presynaptic neuron, and the receiving neuron is the postsyn-
aptic neuron. Vesicles containing neurotransmitters are at the end of the
axon. The electrical impulse triggers the fusion of the vesicles to the outer
membrane and changes the permeability of the vesicles, thereby causing
the release of the neurotransmitters into the synapse. The neurotransmit-
ters then defuse to the other side of the synapse, bind onto receptors on the

Dendrite

Nucleus

Axon

Myelin sheath

Axon Terminal

FIGURE 4.1  A schematic description of the structure of nerve cell. The dendrites
are the inputs of the cell, and the long axon is the output.

Artificial Neural Networks    ◾    145

dendrites, and cause them to activate and start the electrical signaling in
the neighboring cell, or modulate it. About 100 different molecules acting
as neurotransmitters have been identified in the human brain.

This complex signaling mechanism has several advantages. The transla-
tion from an electrical signal to a chemical signal and back again allows
for signal amplification and prevents signal decay. Moreover, different
neurotransmitters have different affinities to the postsynaptic receptors,
leading, for example, to different rates of signal transmission, and as a
result affect postsynaptic neurons in a differential way. Thus, the vast
array of neurotransmitters allow for fine-tuned control over the function
of the nervous system.

The brain size of animals varies widely—from the 0.001 gr brain of
honeybees to the 10 kg brain of whales. Generally, there is a good correla-
tion between the size (either mass or volume) of the brain and the size of
the body of animals; the human brain, which typically weighs around 1.2
to 1.4 kg, stands out with a high brain-to-body ratio. However, although it
is common in comparative studies to normalize the size of the brain to the
size of the body, the absolute size of the brain must also play a role, as there
might be a limit to how much the brain circuitry can be miniaturized.
Thus, it is fascinating that honeybees, whose brain size is only about 0.001
gr (compared with a body mass of about 0.1 gr) are capable of sophisti-
cated social behavior. Readers interested in this subject are referred to a
recent review (Chittka and Niven, 2009). In general, the sophistication of
the brain depends not only on its size but also on its structure and level of
interconnectivity.

We already mentioned that neurons are highly connected. A neuron
can receive input from tens of thousands of neurons and output signals to
hundreds of other neurons. The strength of the system is due to its high
connectivity. The human brain is highly connected; it consists of the order
of 1011 neurons interconnected by the order of 1014 synapses, thereby allow-
ing for complex collective computations.

The development of the nervous system can be understood as consist-
ing of two components. First, neurons are created, and their axons grow
in various directions. This determines the overall topology of the neural
network. Next, the strength of connections at each synapse is refined due
to the signals passing between adjacent neurons. Neurons live for a long
time, and in a certain sense the brain continues to develop as long as the
organism is alive. Thus, synapses are generated, strengthened, weakened,
or eliminated. We do not understand all these processes in full detail, but

146    ◾    Biological Computation

it is known that these processes are at the core of the amazing ability of the
human brain to learn and remember.

Artificial neural nets are a simplification of the biological system. We
will use very simple “neurons” that can sum up their inputs and can pro-
duce a corresponding output. In these artificial networks, like real neural
networks, the system gains its strength from the connections between the
single cells, and the challenge is to design a system that can learn, remem-
ber, and perform complex computations.

4.1.1  Neural Networks as Computational Model

In addition to scientific curiosity, researchers try to mimic the brain when
designing computational systems for many practical reasons. The brain
presents many desirable properties that are hard to achieve in standard
digital computational systems:

• Fault tolerance and robustness: Individual nerve cells can die with-
out affecting the functionality of the system. In fact, the brain can
withstand damage that is rather widespread.

• The ability to deal with inconsistent, noisy, or unreliable data: Our
daily experience shows that the brain is capable of reaching correct
decisions, at least most of the time, under conditions where the rel-
evant data are far from being complete and entirely reliable.

• Parallelism: Computation in the brain happens simultaneously in
different regions and is based on the local interaction between neu-
rons connected to each other.

• Asynchronous: The brain does not contain a clock that synchro-
nizes the different computational processes and nonetheless can
compute effectively.

• Learning ability: The human brain, as well as brains of simpler
organisms, can adapt the organism’s behavior to changing environ-
ments. This is in stark contrast to computers, which have to be repro-
grammed when computational challenges change.

4.2  LEARNING
One of the main characteristics of animals is their ability to learn. One
can see this ability even in simple bacteria (which are simpler than the

Artificial Neural Networks    ◾    147

simplest animals) that can adapt to their environment both as individu-
als and as colonies (see Chapter 2). Higher organisms can perform different
types of learning based on either their own experiences or by learning
from teachers, such as young animals imitating their mothers, dogs
being trained, or learning abstract ideas through reading as is happening
between the readers of this book and its authors. Realizing the advantages
of learning, scientists were motivated to design artificial systems that can
learn, and this gave rise to various approaches to machine learning. It is
customary to distinguish between two types of machine learning:

• Supervised learning: Animals tend to learn by example, such as
when a cub learns from its mother to distinguish between danger-
ous and benign animals. In this case the mother is the “supervisor”
that supplies the correct answers. Similarly, in a supervised learning
system, the system’s output is compared with answers known to be
correct, and then the internal parameters are tweaked in an effort to
make its output correspond better to the correct answers. The obvi-
ous goal is for the system to internalize and generalize the answers
so that eventually it will be able to give correct answers to questions
that are not in the training set. Supervised learning comes in two
flavors: either the trainer provides the correct answer to the trainee,
or the trainer merely indicates whether the solution is correct and
grades it.

• Unsupervised learning: In addition to supervised learning, higher
animals and in particular humans are capable of independent learn-
ing. In this process there is no trainer to grade the answers, and in
fact there is no a priori definition of correct and incorrect answers.
Still, humans learn by attempting to discover consistent patterns
in phenomena they encounter. Similarly, in unsupervised learning
a computational system is tasked with discovering interesting pat-
terns in its input that have statistical significance. Discovering such
patterns allows, for example, the machine to make correct decisions
based on the input data and to successfully forecast future inputs.

Most of this chapter will deal with supervised learning, but we will pro-
vide one example of unsupervised learning, self-organizing maps (SOMs).

Machine learning can be implemented using standard computational
techniques, but as artificial neural networks are computational models

148    ◾    Biological Computation

emulating natural learning systems, they are particularly well suited to
such tasks. This chapter deals with such artificial neural networks and
their usage as learning systems.

4.3  ARTIFICIAL NEURAL NETWORKS

4.3.1  General Structure of Artificial Neural Networks

The atomic unit of the simplest artificial neural network is an idealized
neuron called the McCulloch–Pitts neuron, shown in Figure 4.2. The
neuron can be in one of two states: (1) the firing state (denoted by the
value 1); and (2) the nonfiring state (denoted by the value 0). The state
of the neuron changes according to signals it receives from the neurons
feeding into it: The value ni of neuron i at time t	+ 1 is calculated by the
following formula:

n t w n ti ij j i

j

() ()+ = −∑1 Θ θ

where the function Θ is defined as follows:

Θ()X

X

X
=

≥

<

1 0

0 0

The step function Θ	 is called the threshold function or the activation
function of the neuron.

The value θ defines the threshold required to activate the neuron,
and wij are the weights that define how strongly the input from neuron j

wik

wij

wil

i
θi

j

k

l

FIGURE 4.2  A simple artificial neuron. The neuron sums the inputs (each mul-
tiplied by the relevant weight). If the weighted sum is larger than the threshold θ
then the neuron will have output of 1; otherwise the output will be 0.

Artificial Neural Networks    ◾    149

influences neuron i.	(Note that the common convention is to denote the
weight leading from j to i by wij). The weighted sum of the input signals
arriving at time t has to be above the threshold θi for neuron i to fire at
time t	+ 1. The outputs of the neurons are binary values, but as these val-
ues are multiplied by the weights, which are real numbers, the inputs of
the neurons are real numbers. The binary values are usually 1 and 0 (as
indicated in the previous formula), although for some of the analysis that
we will show it will be simpler to use the sign function instead of the Θ	
function	and represent the output by 1 and –1.

A neural network is a collection of neurons that are connected to each
other. Simple networks are single layered, and we will discuss them first. In
these networks the neurons representing the input are connected directly
to the neurons representing the output. Other networks are multilayered,
which means there are one or more layers of neurons between the inputs
and the outputs. Other networks have a topology that is not layered at
all, for instance, a network where each neuron is connected to all other
neurons. In every network every connection (often called an edge) has a
weight that determines how active this connection is, and these weights wij	
determine how the neurons’ states will change after setting the network’s
initial conditions.

It is easy to see that the network shown in Figure 4.3 computes the
majority function: if two or more of the inputs are of value 1, the weighted
sum of the inputs to the neuron will be larger than the threshold value (θ
= 1), and its output will be 1. For instance, if X1 = 1,	X2 = 0,	X3 = 1 then the
weighted sum of these values is 0.8 × 1 + 0.7 × 0 + 0.6 × 1 = 1.4, which is
larger than the threshold value of 1. If only one input has the value 1, or
all of the inputs are 0, the weighted average will be less than 1, and the
neuron’s output will be 0. In this example, the weights were chosen so
the network computes the desired function, but as we will see one of the

θ = 1

0.8
0.7

0.6

x2

x1

x3

FIGURE 4.3  A very simple network comprised of one neuron that implements
the majority function. If two inputs or more have the value 1 then the output will
be 1; otherwise it will be 0.

150    ◾    Biological Computation

main challenges in working with neural networks is to find a way for the
network to self-adjust the weights so as to compute a given function.

This simple model of neurons simplifies away most of the complexity
of biological neurons, but it allows us to build useful neural networks.
Despite the simplicity of the single neuron, the theoretical analysis of
networks of these neurons poses complicated challenges. This approach
to artificial neuronal networks was suggested in 1943 by McCulloch and
Pitts. They showed that it is possible to build a universal computer using
such neurons, thereby demonstrating that simple units such as these are
computationally strong when combined in networks.

A few of the differences between biological neurons and the abstract
McCulloch–Pitts neurons are as follows:

• McCulloch–Pitts neurons follow a step function and thus have a dis-
continuous reaction (i.e., they don’t react below the threshold and
then switch to full activity). The response of real neurons is con-
tinuous although they may have rapid change of activity at some
point. Some artificial neurons use continuous functions, and we will
describe them and their properties when we talk about multilayer
networks.

• Some real neurons address their input in a sophisticated manner
rather than simple linear summation. For example, if the input from
a certain source rises above a certain threshold, then this input is
no longer taken into account. Examples of differential treatment
can be found in the sensory system. For example, some neurons are
responsible for distinguishing between sounds that reach both ears
simultaneously. The neurons can distinguish between an increased
volume in one ear (one input) and the same increase into both ears,
even when the sum of the inputs is the same in both cases (Segev,
1998). One can model such properties of single neurons by a collec-
tion of McCulloch–Pitts neurons.

• The output of real neurons is a sequence of pulses (spikes) rather
than an output of a constant level. Biological neurons can represent
information not only by the level of the output but also by the rate
in which the pulses are emitted. Recently artificial neural networks
using such spike neurons as their basic elements have been proposed,
but we will not discuss these networks here.

Artificial Neural Networks    ◾    151

4.3.2  Training an Artificial Neural Network

In neural networks, learning is achieved by updating the values of the
weights. As the weights determine the result of the computation, we have
to set the weights so that they produce the correct output for the learning
samples. In most situations this is achieved by setting initial random val-
ues for the weights and then modifying them so that the network will pro-
duce the required results. We will discuss how this process is performed
in different kinds of neural networks.

In supervised learning we assume that there exists a training set of
inputs for which the desired result of the computation is known. Although
neural nets can produce numerical results (e.g., multiply two numbers),
we will usually deal with networks whose computational goal is classi-
fication. Therefore, it is common to deal with input with a known clas-
sification into subsets, and the goal of the training phase is to teach the
network to classify the input patterns by adjusting its weights. To demon-
strate the relevant ideas, it often suffices to discuss a network that outputs
a single bit, which classifies the data into two subsets. Obviously, by using
more output neurons the data can be separated into more classes.

During the training phase, each input item from the training set is pre-
sented to the network, and the network computes the output. If the result
differs from the correct answer, the weights are updated in an attempt to
fix the error. This process is executed repeatedly. One pass through all
the training data is called an epoch. As the weights are constantly being
updated, there is no guarantee that input data producing a correct result
will continue doing so at the end of the epoch. Similarly, there is no guar-
antee that the updated weights will result in a correct result when applied to
an input set that had originally produced an error. Therefore, more passes
through the training set may be needed. If the network produced the correct
answers for all the input elements, then the training phase is completed.

We will see that there are problems and learning algorithms for which
one can prove that this process converges and produces the correct weights.
Nonetheless, in most cases we have no guarantee that the process will con-
verge, so deciding when to terminate the training phase and make do with
a network that does not always produce the correct classification is of the
utmost importance.

It is important to realize that in the learning stage the system can sim-
ply “memorize” the input rather than extracting features that character-
ize the input. There are existing networks, such as the Hopfield network

152    ◾    Biological Computation

discussed later, whose main task is to memorize. However, learning net-
works are judged by their ability to give correct answers to new inputs
for which no solutions were given. For example, assume that the training
set consists of two sets of binary strings of fixed length. One set con-
tains strings all having an even number of 1’s, and the other contains
strings all having an odd number of 1’s. Our goal is that, after the train-
ing phase on the training data including specific strings, the network
will be capable of classifying correctly as many strings that were not part
of the training set.

To determine how well a network has learned we define a test set
containing input items not presented to the network during the train-
ing phase but for which the correct answer is known. The success (i.e.,
comparing the network’s result with the correct answer) of the network
in classifying these items is the metric for evaluating the success of the
network.

4.4  THE PERCEPTRON
One of the simplest types of a neural network that has learning capabili-
ties is called the perceptron and was among the first to be studied (Minsky
and Papert, 1969). Perceptrons are used to solve classification problems—
that is, given an input, the network has to determine the class to which the
input belongs. We will present a learning rule used to update the weights
as more classification samples are presented to the network, and we will
prove that this rule allows the network to converge to correct weights, if a
set of correct weights exists.

4.4.1  Definition of a Perceptron

In a simple perceptron the input cells are directly connected to the
output cells as seen in Figure 4.4 (we will describe more complex archi-
tectures later). In Figure 4.4(a) a number of input cells (marked as X1,
X2,…,X5) are connected to a number of output cells (O1,O2,O3). For
simplicity we will usually consider perceptrons with a single output
cell as seen in Figure 4.4(b). Such a network can obviously classify only
into two sets, but it is not hard to extend the discussion to larger num-
ber of output neurons and a correspondingly larger number of classes
since output neurons are independent. Note that in a network with a
single output neuron, it suffices to index the weights using a single
index, wi.

Artificial Neural Networks    ◾    153

The	Perceptron’s	Computation
The weighted input of the neuron in Figure 4.4(b) is the difference between
the weighted sum of the incoming edges and the threshold value:

w xi i

i

p

−
=
∑ θ

1

The value of the output neuron will be

O w xi i

i

p

= −
=
∑Θ θ

1

where

Θ()X

X

X
=

≥

<

1 0

0 0

Note that a threshold level of θ can be achieved by a neuron with a thresh-
old level of 0 by adding another input whose value is the constant –1 and
the weight of the edge between it and the output neuron is θ. Adding the
additional input without fixing the weight that connects it to the neuron
allows the network to determine the threshold level according to the same
learning procedure used for adjusting the network weights.

wp

w2

w1

Output

�reshold
θ

Inputs

(a) (b)

w11
w21

w35

x2

x3

x4

x5

x1

x2

x1

xp

FIGURE 4.4  A simple perceptron. The general model (a) shows several inputs
and outputs. However, since each output is independently calculated, we will
analyze the behavior of a simple perceptron with a single output (b).

154    ◾    Biological Computation

If we consider each input set as a point in an p-dimensional space,
where each dimension represents one of the inputs 1,2,…,p, we see that the
simple preceptron divides the space into two separate regions separated by
a hyperplane of p	– 1 dimensions defined by

w xi i

i

p

−
=
∑ θ

1

In Figure 4.5 we can see how the network behaves with two inputs x1
and x2. If the point (x1,x2) is above the separating line then it belongs to
Class 1; otherwise it belongs to Class 2. The boundary line is defined by
w1x1 +	w2x2	–	θ	= 0. The slope of the boundary line is –w1/w2, and θ	deter-
mines the distance from the origin. In particular, if θ	= 0, the boundary
line passes through the origin.

In the two-dimensional (2-D) case depicted in Figure 4.5 the boundary
is a one-dimensional (1-D) line. In the three-dimensional (3-D) case the
boundary is a 2-D plane, and for more than three dimensions (i.e., more
than three inputs), the boundary is a hyperplane. Note that the dimension
of the hyperplane is always one less that the dimension of the input space.
Separation by a hyperplane is called a linear separation.

Let us investigate using a simple perceptron to compute the values
of Boolean functions, starting with the AND and OR functions. Their
truth values appear in Table 4.1. If we consider X1 and X2 as coordinates
on a two-dimensional plane and want to separate the points by their
truth values we will get the situation depicted in Figure 4.6. This fig-
ure demonstrates the existence of a line separating the points with the

0 x1

x2

Decision boundary
w1x1 + w2x2 – θ = 0

Class 1
Class 2

FIGURE 4.5  The weights of the perceptron define a line (in the two-dimensional
case) that separates the data into two classes.

Artificial Neural Networks    ◾    155

value 0 from the points with the value 1. For instance, the line x1 +	x2

–	1.5 (i.e., w1 =	w2 =	1,	θ	= 1.5) describes the function AND, and the line
x1 + x2 – 0.5 describes the OR function. An infinite set of lines achieves
each separation.

Consider now the XOR function, which outputs 1 if exactly one of its
inputs is a 1. The truth table for XOR is given in Table 4.2, and Figure 4.7
shows it graphically. It is impossible to find a straight line with the black
points on one side of it and the white points on the other side. In other
words, the values of the XOR function cannot be linearly separated.

x1

x2x2

OR

x1

AND
0 01

1.1 1.1

1

11

FIGURE 4.6  For the Boolean functions AND and OR, the coordinates (x1,x2) of
each point represent the input values, and the color of the point represents the
output (black circle for 1 and white circle for 0). It is easy to see that there are lines
separating the 1’s from the 0’s.

TABLE 4.1  Truth table of AND and OR

X1 X2 Result X1 X2 Result
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

AND OR

TABLE 4.2  Truth Table of XOR

X1 X2 Result
0 0 0
0 1 1
1 0 1
1 1 0

XOR

156    ◾    Biological Computation

4.4.2  Formal Description of the Behavior of a Perceptron

To make the description simpler we will use the sign function instead of the
Θ	function	and represent the output by 1 and –1 instead of 1 and 0.

Let p be the number of input neurons in the network. We describe
the weights of all the connections of the inputs to the output neuron as a
p-dimensional vector w. Each input pattern x(i) will also be described as a
p-dimensional vector (i	is the ordinal number of the pattern). In vector nota-
tion, the value of the output neuron is

 O =	sign(w . x(i))

where w . x(i) is the inner product of the two vectors,

ww xxj j

j

p

()i
=
∑

1

Recall that even though it would seem we have fixed the threshold
value θ of the neuron to be 0, we can assume that one of the p inputs was
included to take care of the threshold level.

Let O(i) be the correct output for x(i), that is, it is +1 if the input
pattern belongs to the first class, and –1 if it belongs to the second

x2

x1

XOR
0

1,1

1

1

FIGURE 4.7  A simple perceptron cannot compute the XOR function. Note that
it is impossible for a straight line to separate the 1 values (black circles) from the
0 values (the white circles).

Artificial Neural Networks    ◾    157

class. Therefore, we are looking for weight vector w that will satisfy
O(i)=sign(w·x(i)).

The boundary between the positive and negative classes is the multi-
dimensional plane described by the equation w·x(i) = 0 which passes
through the origin and is perpendicular to w. The product w·x(i) is equal
to ||w||||x(i)||cosϕ and has the value 0 when the two vectors are perpendic-
ular, that is, when the angle ϕ between them is 90 degrees. As can be seen
in Figure 4.8, the weight vector w has to be perpendicular to the separat-
ing line (or in the higher-dimensional case, the hyperplane) so that it can
separate between the inputs whose output is +1 and those whose output
is –1.

The geometrical meaning (Figure 4.8) is that one has to choose the
weight vector w such that the projection of all input vectors x(i) on w has
the same sign as O(i).

Recall that the projection of the vector x(i) on w is:

|| |||| (i)||
|| ||

w x
w

cosφ

where ϕ is the angle between the vectors and ||v|| denotes the norm of the
vector v. The norm or vector length is defined as

|| ||vv =

=
∑vi

i

n

2

1

x1

x2

A

C

G

E

H

F

D

W

B

FIGURE 4.8  The weight vector w is perpendicular to the separation line
between the two classes.

158    ◾    Biological Computation

Note that even when the network has more than one output neu-
ron, the computation for each output neuron is independent from the
computations for the other output neurons (as each output neuron has
a separate weight vector w), and therefore one can generalize the discus-
sion of a perceptron with a single output neuron to perceptrons with a
higher number of output neurons, such as the perceptron described in
Figure 4.4(a).

4.4.3  The Perceptron Learning Rule

We have seen that if the input can be linearly separated a weights vector
achieving the separation is present. In this section we limit our discus-
sion to problems that are linearly separable and present a learning rule
for a perceptron with a single output neuron, that is, a perceptron clas-
sifying the inputs into one of two possible classes. The rule will allow
us to determine, iteratively, weights achieving the desired classification.

Since we are dealing with supervised learning, there is a training set
containing samples for which the classification is known. Learning is
achieved by feeding these examples to the network iteratively. If the
network outputs the correct classification (where +1 represents the first
class and –1 the second class), the weights are not changed. If the output
is wrong, the weights leading from the inputs to the neuron are slightly
modified to achieve the desired output.

As previously discussed we consider the threshold value θ as another
input neuron with a value of –1, and for convenience this neuron will
always appear first in the vectors, so all our input patterns will start with
–1. The training set will be denoted by X. Let X’ be the set of patterns
belonging to the first class and X’’ the set of patterns belonging to the sec-
ond class (X	=	X’	∪ X’’). The goal of the training phase is to find a weight
vector w such that

 w·x ≥ 0	for every vector	x ∈	X’

and

 w·x < 0	for every vector x ∈	X’’

Let w(i) be the weight vector at the i-th iteration of training, and let w(0)
= 0.	(In practice, it is advantageous to start with a weight vector consist-
ing of small random weights rather than with an all 0 vector). We denote
by x(i) the i-th training input pattern, and t(i) is the target output (i.e., the
required correct output) for this pattern.

Artificial Neural Networks    ◾    159

The training is performed as follows for i	= 0,1,2,…:

 1. Compute the output of the perceptron for pattern i:

 o() () ()i sign i i= ()ww xx

 2. Determine the updated weight vector w(i	+1), as follows:

 ww ww xx() () () () ()i i i i i+ = + −1 α t o

 where 0 ≤	α	≤ 1 is a constant that determines the learning rate.

 3. Continue to pattern i	+ 1.

 4. The training terminates if the weights are not updated during an
entire epoch; otherwise, return to step 1 for another epoch.

When the pattern x(i) is classified correctly, the difference t o() ()i i− is 0,
and therefore w(i	+ 1) = w(i).	If the pattern is misclassified, the weights are
updated by adding or subtracting the quantity α t o() () ()i i i− xx .

The learning rate constant α determines how big the weight changes
are. If α is too large, the learning might be too “jagged”: a low weight
can increase to a value that will be too high and will misclassify the
next pattern, and then the weight will decrease too sharply, causing more
misclassifications, and so on. On the other hand, if α is too small, the
training may be too slow and ineffective. There are no good rules for
determining the value of α, and one has to resort to trial and error in
each particular case.

To use a perceptron with more than one output neuron, the same train-
ing algorithm is applied to each output neuron separately. If the output is
linearly separable for each output neuron, this will result in an appropriate
set of weight vectors.

4.4.4  Proving the Convergence of the Perceptron Learning Algorithm

In the previous section we presented the algorithm for updating the weights
of the perceptron. It is not clear that this algorithm always converges; in
principle we can envision a situation in which the weights will be updated

160    ◾    Biological Computation

indefinitely, sometimes undershooting and sometimes overshooting the
desired output. Fortunately, a mathematical proof is available to show that
when the input is linearly separable the algorithm will converge. We will
prove convergence for w(0) = 0 and α	= 1.

The idea behind the proof is to follow the changes to the size of the
weight vector w during the updates made by the perceptron learning rule.
We will show that the size ||w|| of the weight vector grows faster than or
equal to a term dependent on n2, where n is the number of learning itera-
tions (note that n may be larger than the number of patterns). On the other
hand we will show that size of the weight vector grows slower than or
equal to a term dependent on n. Since asymptotically a term dependent on
n2 will surpass a term dependent on n, there must exist an iteration where
these two bounds meet, and the weight vector will not change further.

We note that the algorithm will behave identically for the problem of
finding a vector w separating X’ and X’’ and the problem of finding a vec-
tor w that satisfies w . x(i) ≥ 0 for all the vectors x(i) belonging to the set
consisting of X’ and all the negatives (i.e., –x(i)) of the vectors belonging
to the set X’’. Thus, we can assume for the proof that all the n inputs that
were misclassified are misclassification of the form w(i) · x(i) < 0 for i	=
1,2,…,n, where x(i) ∈	X’.

Given that we have started with w(0) = 0, according to the learning rule

 w(n	+ 1) = x(1) + x(2) + … + x(n) (4.1)

Since we assume that the input is linearly separable, there exists a
weights vector w* such that w*·x ≥ 0 for x ∈	X’, and w*·x < 0 for x ∈ X’’.

Multiply equation (4.1) by w*	(the products are inner products):

 w*·w(n	+ 1) = w*.x(1) + w*.x(2) + … + w*.x(n) (4.2)

Pick the minimal term on the right-hand side of (4.2) and denote it by p:

==p nmin

()
ww xx⋅

∈
()

x n X

So, from equation (4.2)

 ww ww* ⋅ (+1)n ≥np

Artificial Neural Networks    ◾    161

Squaring, we get

 ww ww* ⋅ (+1)n ≥
2 2 2n p (4.3)

Recall that the product of the norms of two vectors is at least as large as
their inner product (Cauchy–Schwartz inequality) and thus

 || * || ||ww ww ww ** ww||2 2 2(+1) (+1)n n≥ ⋅ (4.4)

Combining (4.3) and (4.4) we get

 || * || ||ww ww|| (+1)2 2 2 2n n p≥

or

 || ||
|| *||

ww
ww

(+1)n 2
2 2

2
≥

n p
 (4.5)

Now we turn to show an upper bound on the growth of w.
For every k	= 1,…,n

 w(k + 1) = w(k) + x(k)

Therefore, after taking the square of the Euclidian norm, we get

 || ()|| || ()|| || ()|| () ()ww ww xx ww xxk k k k k+ = + + ⋅1 22 2 2 (4.6)

We assumed that the perceptron misclassified x(k), that is, w(k) . x(k) < 0
and therefore (4.6) implies that:

 || ()|| || ()|| || ()||ww ww xxk k k+ ≤ +1 2 2 2

or

 || ()|| || ()|| || ()||ww ww xxk k k+ − ≤1 2 2 2

If we sum these inequalities for k	= 1,…,n,	assuming w(0) = 0, we see
that most terms of the left-hand side cancel each other, and we are left with

162    ◾    Biological Computation

 || ()|| || ()||ww xxn k
k

n

+ ≤
=
∑1 2

1

2 (4.7)

Pick the maximal term of the summation on the right-hand side of (4.7)
and denote it by q:

q x k()

()
=

∈
max

2

x k X (4.8)

From (4.7) and (4.8) we get

 || ()||ww n nq+ ≤1 2 (4.9)

From (4.9) we see that the growth of the length of the vector w is bounded
from above by a term linear in	n.	Recall from (4.5) that the length of the
vector is bound from below by a term dependent on n2. Since asymptoti-
cally a term dependent on n2 will surpass a term dependent on n, it is clear
that there exists an iteration nmax for which

n p
n qmax

max
||

2 2

ww*||2
=

or

n

q

p
max

||
=

ww*||2

2

Therefore, we have shown that for w(0) = 0 and α	= 1, and under the
assumption that there exists a solution vector w* the learning algorithm
has to terminate after at most nmax iterations.

4.5  LEARNING IN A MULTILAYERED NETWORK

4.5.1  The Backpropagation Algorithm

We turn now to study multilayer networks in which layers of internal neu-
rons exist between the input and the output layers. Such layers are often
called hidden layers, since they are not “visible” from outside the network.

Artificial Neural Networks    ◾    163

We have seen the limited computational powers of the simple single-
layered perceptron: it can classify only patterns that are linearly separable.
In their book Minsky and Papert (1969) showed that multilayered neural
networks can compute functions that cannot be computed by a single-layer
preceptron. For instance, it is enough to add one hidden layer to com-
pute the XOR function, which is not computable by a simple perceptron.
Multilayered networks’ greater computing power is an attractive property,
but they are much harder to engineer. Designing a suitable layout for a
multilayered network and finding the appropriate network weights can be
difficult. Finding an efficient learning rule for updating the weights of a
multilayered network automatically was thus an important goal, but find-
ing such a learning rule proved to be a real challenge. The challenge was
solved by Rumelhart et al. (1986), who proposed an algorithm called feed-
forward–backpropagation. Feedforward is an obvious property of multi-
layered networks where the computation results are fed forward layer after
layer from the input layer to the hidden layers and from them to the output
layer. The term backpropagation characterizes Rumelhart et al.’s learning
procedure, which is based on percolating the weight updates from the out-
put level back to the input layer. For short, this algorithm is often called
backpropagation.

The algorithm is based on examining the error in the output neuron by
comparing it with the target value. If the value is incorrect, and hence the
network weights need to be adjusted, the adjustments are backpropagated
from one intermediate level to the previous one. At every level, we can
define an error function for each node and try to minimize it. This can be
done by a gradient descent algorithm. This algorithm uses the derivatives
of the error function to calculate the change in the direction and magni-
tude of the weight vector that will minimize the error.

Recall that the activation function Θ we used to define the behavior of
the output neuron in the simple perceptron is a threshold function and
as such is neither continuous nor differentiable. We would like to replace
it with a differentiable function with similar characteristics, that is, a
function that returns one value (e.g., 0) for inputs that are smaller than
the threshold value and another value (e.g., 1) for inputs larger than the
threshold value with the added stipulation that the transition between the
two values is as abrupt as possible, yet continuous. A function with such
properties is the sigmoid function:

164    ◾    Biological Computation

y f x

e
sigmoid x

= =
+ −

()
1

1

Figure 4.9 plots the sigmoid in the range [–5,5], and it is easy to see that
it has the desired properties

We could adjust its slope by looking at the more general sigmoid

y

e
=

+ −

1

1 βx

where β is a parameter.
A useful property of the sigmoid function is that its derivative can eas-

ily be expressed using the value of the function itself. This property will
be useful later on:

y

e e
y y

x x
' () ()=

+
⋅ −

+
= −

− −

1

1
1

1

1
1

Other functions such as the hyperbolic tangent function

y

e

e

x

x
=

−

+

2

2

1

1

0 1–1 2–2 3–3 4–4 5–5

1

FIGURE 4.9  The sigmoid function has the property of a sharp transition between
0 and 1.

Artificial Neural Networks    ◾    165

that returns values between –1 and +1 can be used, but the sigmoid func-
tion is most commonly used.

The output neurons will be denoted by the vector O (a single neuron
will denoted by Oi). The output value of the hidden neurons in layer k will
be denoted by Vk (and a single neuron byVi

k), and the weight of the edge
between neuron j in layer k–1 to neuron i in layer k	will be denoted by Wi, j

k

(so the weights between the inputs and the first hidden layer are Wi, j
1). The

vector X will denote the inputs. The values of the output neurons can be
either binary or any real numbers. We assume N	inputs, L patterns in the
training set, and M layers (in addition to the input layer, designated as
layer 0) in the network (Figure 4.10).

We set initial random values for all the weights and the network com-
putes in a feedforward fashion similar to the operation of the single-
layer perceptron, where each layer is evaluated after the evaluation of the
previous layer except that the activation function is now the previously
described sigmoid.

The input to a neuronVi
k is

W Vi j
k

j
k

,

all edges that
enter the node

j
i

∑ −−1

Therefore, the output value of that neuron will be

x
w1

1,1

w2
2,3

v1

v2

o

Level 0 Level 1 Level 2 Level 3

FIGURE 4.10  Artificial multilayer neural network.

166    ◾    Biological Computation

V f Wi
k

sigmoid i j
k= ,

all edges that
enter the

j
node i

∑ − =
+ −∑

Vj
k

Wi j
k

j
Vj

k
1 1

1 exp(,
−−1)

While the computation of a multilayered network is quite similar to the
computation of a simple perceptron (with the notable change of using the
sigmoid function), the learning procedure (i.e., the way the weights are
adjusted) is quite different.

The weights update stages are as follows:

 1. Define the error function e for the output layer by

ei

M
i iT O= −

1

2
2()

 where Oi is the actual output and Ti is the required output in the out-
put i.

 2. The derivative of the error function is used to compute the correc-
tion values that will be used to update the weights. Note that this
involves taking partial derivatives, since the error function depends
on the output of the nodes, which in turn depend on their input,
which depends on the weights, and we are interested in the effect of
each weight. As these derivations require application of the chain
rule and are somewhat involved mathematically, we will not get into
the details here and present only the final formulas, which are as
follows:

 a. For the edges going into an output neuron compute the required
corrections values as follows

 δi
M

i i i iT O O O= − −() ()1

 b. To compute the correction values δ for previous layers, recall that
the correction percolates down from the output layer; therefore, the
correction for a neuron in a particular layer m–1 should take into
account the corrections already calculated for neurons in layer m.

Artificial Neural Networks    ◾    167

j
m

j
m

j
m

i j
m

i
mV V W

− − −= −()1 1 1
1δ δ,

all edges
th

i
aat leave j

∑

 for m = M–1,M–2,…,1.

 An example of the calculation for a specific neuron is shown in
Figure 4.11.

 3. The needed changes to the weights are then

 i j
m

i
m

j
m

W V, =
−αδ

1

 Note that the correction for a weight is proportional to the activity of
the previous node and the correction value reflecting the propagated
error as computed by the formulas above. Like in the simple percep-
tron algorithm, α is a constant that determines the rate of learning.

 4. The final update of all the weights in the network is simply

 i j
new

i j
old

i jW W W, , ,= +

 See an example in Figure 4.12.

1

0

1

0.5

–0.2 0.3

0.4
0.7

–0.5

–0.1

–0.5

0.4
0.3

0.6
0.4

0.5

0.7

O = 0.672
δ = 0.0723

V1
3 = 0.476

δ = 0.00898

V2
3 = 0.683

δ = 0.01096

V1
2 = 0.69

δ = (0.69*(1 – 0.69))[– 0.5*0.00898 + 0.3*0.01096] = –0.000257

FIGURE 4.11  An example of the backpropagation algorithm. Assume that the
output value should have been 1 but the network computed the value of 0.672.
The algorithm calculates back (i.e., from the output layer at the right) the cor-
rection values δ	for each node in the network according to the formulas given
in Stage 3. In the example we detailed the computation of the correction needed
for the top node in the first hidden layer, based on its output activity V and the
δ	values that propagate back from the two nodes in the second hidden layer.

168    ◾    Biological Computation

 5. Repeat all the previous steps for the next input pattern in the training
set.

 6. Repeat all the previous steps for the whole training set for the next
epoch.

Unlike in the simple perceptron case, for the backpropagation algo-
rithm we don’t have guaranteed convergence. Thus, the obvious ques-
tion is when we should stop training the network—or how many epochs
to run. We can choose among several halting criteria: halt when the
error on the training set is small enough; halt when the size of the
weight updates for each epoch is small enough; halt when the network
gives satisfactory results on the test set. The latter is usually the pre-
ferred criterion.

We have presented the simplest and most popular version of the back-
propagation algorithm. This learning algorithm is probably the most
common and most studied algorithm in the field of artificial neural net-
works. Thus, many variations of this basic algorithm have been suggested
over the years such as using a method different from gradient descent for
determining the weights or changing the parameters of the algorithm
during the run—for example, accelerating the rate of weight change for
edges whose weights has grown consistently over the previous iterations
and slowing the rate of changing the weights of edges whose weights have
oscillated during the last iterations.

1

0

1

–0.2 0.3

0.4
0.7

–0.5

–0.1

–0.5

0.4
0.3

0.6
0.4

0.5

0.7

O = 0.672
δ = 0.0723

V1
3 = 0.476

δ = 0.00898

V1
2 = 0.69

δ = –0.000257

V2
3 = 0.683

δ = 0.01096

0.5+0.5*1*(-0.000257)=0.4998715

FIGURE 4.12  Updating the value of the weight between the top input node to
the top node of the hidden layer according to the formula given in Stage 5 when
α = 0.5.

Artificial Neural Networks    ◾    169

As with other optimization algorithms (e.g., genetic algorithms), we
have to consider the possibility of hitting a local minimum (or maximum)
when using backpropagation, a situation where the weights cannot be
changed further by applying the learning algorithm even though a better
weight vector exists. If we focus on the error function of the output neu-
ron, we can think of these situations as being trapped in a local minimum
of the output neuron error function instead of finding the global mini-
mum for which the learning algorithm searches.

Several techniques can be used to address this problem. One reason for
local minima might be choosing bad initial weights. If they are too large,
the function will tend to consistently overshoot and produce a value of 1,
which may make training difficult. Therefore, it is advantageous to choose
initial weights such that a typical neural input will have a value smaller
than 1.

An important approach for avoiding local minima is to increase ran-
domness. This increases the region of all possible weights sampled during
training and can be achieved in different ways:

• Train the network by selecting randomly the order in which the
input patterns from the training set are presented to the network.
This decreases the probability that patterns close to each other in the
training set will cancel each other’s influence.

• Modify the algorithm so that during training it will occasionally
(but rarely) change the weights to increase the error function. While
it seems that this would decrease the probability that the network
will converge to the correct values, it turns out that this technique
can prevent the algorithm from being trapped in a local minimum.
Clearly, such uphill moves should be performed infrequently. It is
reasonable to reduce the probability of performing this operation as
the learning progresses to minimize the damage such moves make
to the learning that has been already achieved.

• Add noise to the system. In this method, the weights are occasion-
ally changed randomly. The random change is small to avoid dis-
turbing the learning that has already been achieved. On the other
hand, a small change in weights may be enough to move away from a
local minimum. Another way of adding noise is randomly changing
the value of the input patterns presented to the network. Experience
shows that adding noise in either way can improve the ability of the

170    ◾    Biological Computation

network to generalize (i.e., produce good results on the patterns in
the test set).

4.5.2  Analysis of Learning Algorithms

It is important to note that learning is an unusual algorithmic problem. It
may even be viewed as an ill-defined problem. The reason is that the input
(i.e., the training set) does not necessarily define a single solution. Often
many solutions perform well on the training set, but it is impossible to
forecast how well they will do on the test set and in the real world. The
goal of learning is to find a model that will represent the input data well,
but many such models may perform well on the training set. Different
learning algorithms will give rise to different results for the same training
set in accordance with the properties of the algorithms.

It is useful to consider two types of learning errors: (1) training
errors, which are errors in dealing with patterns in the training set;
and (2) generalization errors, which are errors in dealing with new
patterns from the test set. Despite the fact that the goal is to minimize
both kinds of errors, it turns out that minimizing one type can increase
the prevalence of the other type, so in fact one has to find a way to bal-
ance these goals. The reason for this trade-off is that one can build a
model that fits the training set members well, at the cost of creating
a model that is very specific to this set and does not perform well on
new samples. In general, at the beginning of the learning process both
the training error and the generalization error will decrease, but after
a certain point, as members from the learning set are learned again
and again the network performs better on them, thereby decreasing the
training error but at the price of increasing the generalization error as
can be seen in Figure 4.13.

A simple example of this situation is finding a curve to fit a dataset.
Look at the two situations depicted in Figure 4.14. Both graphs attempt to
describe the four points, but while the left curve passes exactly through
the points, the right one does not pass through any of them. Nonetheless,
it is reasonable to believe that it will model better new data points. On the
other hand, while a straight line seems to be a good approximation for the
current points, we do not know if the sample set is a good representative
of the data, and introducing more points might lead us to prefer a more
complex model that is not a straight line.

Artificial Neural Networks    ◾    171

In general, the closer we get to the desired answers for the training set,
the larger the danger of overfitting, that is, a situation where the model
describes the training set exactly, yet lacks generality (as is the case in
the left panel of Figure 4.14). The opposite case where the model contains
too little data to describe the training set is called underfitting. Due to
the danger of overfitting it is typical not to continue to train the network
until it is very successful on the training set but to stop training before
that to increase the chances of obtaining good results on the test set.

Training error

Generalization error

Number of epochs

OverfittingUnderfitting

Error rate

FIGURE 4.13  Increasing the length of training improves the performance on
the training set but may adversely affect the performance on the test set as the
network starts to overfit the data.

(a) (b)

FIGURE 4.14  Two types of lines that describe the given data points. The line on
the left (a) goes through all the points, and the line on the right (b) does not go
through any of them. Nevertheless, in many situations the description provided
by the straight line on the right is more informative as it captures the trend in the
data and allows a better prediction of the value of additional points.

172    ◾    Biological Computation

Increasing the number of neurons in the network (and in particular
the number of neurons in the hidden layers) can also cause overfitting.
This puts the designer of the network in a delicate position: the network
cannot be too small, since this may cause underfitting, or too large, in
which case it can learn the training set too well, leading to overfitting.
Adding noise, which we previously described as a way to avoid the con-
vergence of the weights to local minima, can also be useful tool to reduce
the risk of overfitting. For example, one can, on occasion, supply the
learning process with a wrong classification for a member of the train-
ing set. By reducing the probability of converging to an exact solution
for the training set, this seemingly strange tactic can actually improve
generalization.

4.5.3  Network Design

So far we have assumed that the architecture of a network is given and
the goal of the learning process was to determine the weights of the edges.
An obvious question is how to design the network—that is, how to decide
how many hidden layers it will have and which pairs of neurons to con-
nect with one another. Experience shows that usually it is not beneficial
to deal with networks with too many layers of hidden neurons, and in
fact that might harm performance. In practice it seems that two or three
layers suffice for most problems that can be solved by the backpropaga-
tion method.

As for connectivity, recall that in these networks neurons can commu-
nicate only if they are in consecutive layers, but it is not always necessary
to connect every neuron in one layer with every neuron in the consecu-
tive layer. Obviously, the more connections, the more weights have to be
determined, a situation which may hinder the network’s ability to learn in
a reasonable time and may also cause overfitting. One way of dealing with
this situation is to train the network for a relatively short period of time
and then to sever the connections that have weights close to 0. Next, the
network is retrained, and the other weights are updated. This process can
be repeated until the network has a “reasonable” number of edges.

Another way to design a network is by using an external algorithm that
will design the network optimally. For instance, one could use a genetic
algorithm that deals with a population of neural network of different archi-
tectures. At every generation of the genetic algorithm, the performance of
the neural nets will be assessed (e.g., by testing how well they do on the test
set), so that selection will prefer the more successful networks.

Artificial Neural Networks    ◾    173

Another important question is that of data representation. The net-
work designers have to decide how to represent the data as an input to the
network, and even more importantly they have to decide which data to
present the network so that it succeeds in learning. This is true for both
the input and the output. This is similar to the situation we encountered in
the discussion of genetic algorithms where it is important to consider how
to represent each solution as a chromosome. In both cases there are no
recipes for solving these issues, and the designer has to rely on experience
and understanding of the problem domain.

We will start with a simple example. Assume that we want to classify a
set of data points into n subclasses. In principle we can use log2n output
bits to represent the output. Thus, if we want to classify data into eight
subclasses, we can use binary representation of three bits. However, this
requires the network to “learn” the binary code in addition to solving
the particular classification problem it encounters. Often, especially
when the number of input examples in not very large, this is beyond the
capabilities of the network. Thus, when the goal is to classify a dataset
into n subsets, it is better to work with n output neurons and a unary
representation, so that if neuron k has the value 1 and all other n–1 neu-
rons have the value 0, the result of the classification is k.

Another more fundamental example for the importance of repre-
sentation comes from image processing. If the image consists of 1000 ×
1000 24-bit values pixels, it would seem one should use a network with
24,000,000 inputs. This is often not practical because of the size of the net-
work and the time required to learn the weights. Therefore, it is reasonable
to preprocess the data and try to extract features required for the com-
putation. For example, one can locate lines, corners, and changes in the
density of color. Actually, this is similar to the way the human brain which
contains a large set of sensors that extract such features operates (Marr,
1982). It turns out that the retina contains cells whose electrical activ-
ity depends on identifying a particular pattern of boundaries between
light and darkness; that is, some cells are sensitive to lines and react only
when the field of vision contains lines but not surfaces of uniform color.
Similarly, some neurons are sensitive to the movement of objects in the
field of vision and can even distinguish the direction of motion. Such bio-
logical mechanisms suggest that similar ideas should be used by artificial
neural networks as well.

174    ◾    Biological Computation

4.5.4  Examples of Applications

We now present a few classic examples of using neural networks. Most
of these are of multilayered networks trained using backpropagation.
Nonetheless, in many of the examples we discuss, some deviations from the
standard algorithm were used to adapt the network to the requirements of
the problem.

NetTalk
The goal of this project (Sejnowski and Rosenberg, 1987) was to build a
network that translates written text into speech. The input was seven char-
acters from the text, and the network had to determine the pronunciation
of the middle character. The seven-character window through the text is
used to allow the network to determine the pronunciation based on the
context of each character, as seen in Figure 4.15. Two forms of data were
considered. In the first, the text in fact came from a transcript of recorded
continuous speech that was moved along the window such that more than
one word could be included at the same time in the window (as can be seen
in Figure 4.15). In the second dataset, dictionary words were fed into the
system one at a time.

For every seven characters, the network determined what sound (pho-
neme)	 to make out of a set of 26 possible phonemes. The network con-
tained 29	×	7 = 203 inputs: seven characters in the sliding window, where
each character may be one of the 26 letters of the language and three punc-
tuation marks; each character is represented by 29 neurons, one with the
value 1 and all other neurons set to 0. The network contained 80 hidden
neurons in one layer and 26 output neurons that specify the output sound.
After 50 passes over the training set the network was 95% and 98% precise
in its output for the first and second datasets, respectively.

\z\

Hidden units

Output units
(phoneme code)

S i m p l e a s t h a t

FIGURE 4.15  A schematic representation of the network used by NetTalk to
identify phonemes in a “text to speech” translation system.

Artificial Neural Networks    ◾    175

The self-organization of the network was quite interesting. It turns
out that the network learned how to identify certain components of the
input. It began by learning very general properties (e.g., the transition
from word to word), and progressed to more subtle properties. After
training, some of the hidden neurons were capable of identifying well-
known properties, such as the distinction between vowels and conso-
nants. The network was 78% accurate on new text (generalization)—a
result that, while not very high, was still high enough to make the speech
understandable.

Another interesting test of the network was determining its fault toler-
ance. We discussed already that fault tolerance is one of the main differ-
ences between the brain and digital computers. And indeed, in this case
a local fault in the network (the removal of some neurons) or a random
change in weights caused a gradual degradation in the quality of the out-
put rather than a catastrophic complete failure. Moreover, after such fail-
ures, retraining quickly enabled the network to recover.

Handwriting	Recognition
In this example, a neural network was used for automatically reading zip
codes off envelopes, as part of a system to automatically sort mail for the
U.S. Postal Service (LeCun et al., 1989). The system made use of many tech-
nologies, but we will discuss only the aspects related to the topics discussed
in this chapter.

The training set consisted of about 10,000 handwritten digits. Finding
the zip code on the envelope and separating it into distinct digits are com-
plex tasks that will not be discussed here. The task we will discuss is the
final stage of the process: identifying each separate digit.

The input to the neural network was a 16	 ×	 16 matrix of pixels rep-
resenting the image of a digit. The characters were scaled as needed so
that they were all the same size, regardless of the particular handwriting.
Every pixel in the matrix was represented by an input neuron. The values
of the inputs were continuous rather than binary (black or white) because
the scaling may cause every pixel in the matrix to represent more than
one pixel in the original image. Figure 4.16 shows examples of the kind of
handwritten digits presented to the neural network.

The network contained three hidden layers and an output layer con-
taining 10 neurons representing the digits 0–9. The output of the network
was determined by the output neuron with the highest value. The organi-
zation of the network can be seen in Figure 4.17.

176    ◾    Biological Computation

The first two hidden layers are used to identify recurring features in the
input images:

• The first hidden level contains 12 groups of 8	×	8 = 64 neurons each,
which represent an 8 × 8 matrix tasked with identifying a specific
feature. The input for each neuron in each group is a 5	×	5 neigh-
borhood on the input matrix; the corresponding neurons in each of
the feature detectors “observe” the same neighborhood on the input
matrix. Adjacent neurons deal with neighborhoods that are two pixels

FIGURE 4.16  Example of handwritten digits. The task of the neural network is
to identify such digits in spite of the large variability in how people are used to
writing the different digits.

Artificial Neural Networks    ◾    177

apart in the input matrix. All the neurons in each group have the
same weights. (Interestingly, even though the weights are the same,
the threshold could differ from neuron to neuron.) Functionally, this
means that all neurons in the group identify the same image feature,
but in different regions of the input. This weight-sharing property
decreases the number of weights the network has to learn, allowing
the training set to be smaller.

• The second hidden layer is quite similar to the first layer. It contains 12
groups of 4	×	4 = 16 neurons that observe a region of 5 × 5 cells in the
previous layer. The neurons receive their inputs from corresponding

10 output units

30 units

12 feature defectors
(4 by 4)

12 feature defectors
(8 by 8)

16 by 16 input

9876543210

FIGURE 4.17  A schematic representation of the neural network’s architecture
used to identify handwritten digits. (Adapted from LeCun, Yann, et al., IEEE	
Communications	Magazine 27, no. 11, 41–46, 1989. With permission.)

178    ◾    Biological Computation

regions from 8 of the 12 groups in the first layer. (Every group of 4 × 4
neurons observes a different combination of eight groups.)

• The third hidden layer contains 30 neurons, all of which are con-
nected to all the neurons in the previous layer.

• The output layer contains 10 neurons representing each of the digits,
all of which are connected to all the neurons in the previous layer.
The identity of the input digit is determined by the identity of the
most active output neuron.

The network contained 1256 neurons, 64,600 edges and 9760 weights
that had to be learned. The network was trained on 7300 digits and tested
on 2000 images. The error rate was 1% on the training set and 5% on the
test set. The latter could be reduced to 1% by rejecting cases where the
value of the most active neuron is very close to that of the runner-up.
These cases would then have to be read by a human operator. This solution
gave rise to 12% of the test inputs being rejected.

After training, the system was implemented on standard signal pro-
cessing hardware. The resulting system was capable of processing more
than 10 digits per second (from photographing the image to identifying
the digit by the neural network).

Backgammon
To play well, a computer system must be able to determine which of the
next possible moves in a game is the most advantageous. The ranking of
moves is usually based on two elements: (1) a good function for static eval-
uation of a given configuration of the board; and (2) an algorithm that can
simulate the progression of the game a few moves ahead and can decide
which move to select such that the position of the board will be, after the
next few moves, the best possible for the player the computer represents
(the minimax algorithm is an example of how this idea is implemented).
Writing good backgammon-playing software poses a computational chal-
lenge since the number of possible moves after the die are tossed is usually
rather large (about 20 moves on average), and there are 21 possible out-
comes of the die toss. Therefore, the space of possible moves grows expo-
nentially fast—faster than chess.

The approach we mention here (Tesauro and Sejnowski, 1989) does not
explicitly look ahead: Given a position on the board and the dice value, the
task of the network is to judge the quality of the possible moves.

Artificial Neural Networks    ◾    179

A neural network was used to grade each possible move. The network
was trained to grade each triplet of the from {current board configura-
tion, dice values, possible move} with values between –100 (bad) and 100
(excellent). The network was trained using about 3000 such triplets, where
the grading provided by the training set was determined by a skilled back-
gammon player. The inputs were the triplets and a few specific properties
calculated from the state of the board (e.g., the number of blots, which are
single checkers that can be hit). Altogether, 459 neurons were needed to
represent the input. The network contained two hidden layers of 24 neu-
rons each and one output neuron whose value was a real number between
0 and 1 that could be transformed to values in the range of –100 to 100
used to grade moves.

An important element in training the network was the use of noisy
input. The input contained a few moves whose grades were determined
randomly to reduce the danger of overfitting. This is critical for backgam-
mon as the number of possible backgammon moves is much larger than
the size of any reasonable training set. Cases where the network graded an
input particularly badly were identified and rectified by adding correct-
ing samples to the training set with the aim of reducing the occurrence of
similar problems.

When the trained network played against another computer program
(not implemented using a neural network), it won in 59% of the games.
Interestingly, when only the triplets of {current board, dice, move} were
used as input to the network, without the additional information calculated
from the board, the machine won only 41% of the games. This significant
drop in performance highlights the importance of preprocessing of the
data presented to neural networks, since all of the additional features that
were used could in principle be extracted automatically from the board,
but apparently the system was not powerful enough to find them. In addi-
tion, it was noticed that, if no noisy data were included in the training set,
the success rate dropped from 59% to 45%, indicating that noisy data are
indeed useful in preventing overfitting.

The	Bottleneck	Technique
Neural networks and backpropagation can be used for finding efficient
representations for large sets of patterns and for identifying common
properties. This can be achieved by training a network with N input and
N output neurons and only one hidden layer with M neurons where M is

180    ◾    Biological Computation

significantly smaller than N. The goal of training is to find weights for the
hidden neurons so that each input pattern presented to the network will
be reproduced as output. At first glance this may seem a strange task. Why
should we want to reproduce our input? The answer lies in the observa-
tion that the hidden layer has to represent the input pattern so the output
layer can reproduce it. Thus, if M is smaller than N and the training is
successful, then we have actually found a way of representing the N input
bits of information by a smaller set of M bits. In other words, if we have
“squeezed” the data through a narrow bottleneck and were able to repro-
duce it back, then the hidden layer must have found properties and inter-
relationships in the dataset. This technique can be used for text or image
compression or more generally for identifying features of a dataset.

4.6	 ASSOCIATIVE MEMORY

4.6.1	 Biological Memory

Our discussion so far has centered on using the computational capabilities
of neural networks for solving problems such as classification. The human
brain (as well as the brains of other species from mollusks to elephants)
has another important role, namely, memory. Brains can remember and
retrieve a huge number of data items. Despite the fact that conventional
computers have very large memories, their memory capabilities are very
different from those of animals. After many years of research and many
insights that have been gained, many aspects of the memory capabilities
of the brain are still not well understood. We will see how to implement
some of the biological principles in a simple neural network architecture.

As far as we know, in the brain there is no explicit distinction between
the neurons used for computations and those used for memory. We know
of no type of neurons whose specific function is memory. Nonetheless,
certain brain regions are dedicated to memorizing, and patients who suffer
from damage (due to injury or illness) to these regions experience various
types of memory loss while other cognitive functions are not impaired.
It is common to classify memory to short-term memory (a few seconds
long), which can store a very limited amount of data (the common claim
is that it can store up to about seven data items), and long-term memory,
which can potentially be retained for a lifetime (though obviously not all
long-term memories are retained).

It is common to discuss three facets of the memory system: (1) encod-
ing; (2) storage; and (3) retrieval. Here, we will not discuss the encoding

Artificial Neural Networks    ◾    181

(i.e., the way the information from the senses is converted into neural
information that can be further analyzed by the brain), since it is specific
to the biology of the brain and is less relevant to our discussion of artificial
neural networks.

The brain’s storage system is distributed; that is, no single cell stores a
particular data item. A centralized arrangement would have caused mem-
ories to disappear with the natural death of the individual cell storing a
particular datum of information. Thus, brains must have mechanisms to
ensure robustness. One way of achieving robustness is to keep multiple com-
plete copies of the data in different locations (similar to computer backups).
However, evidence suggests that memories are stored in the brain in a dis-
tributed fashion. For example, data items seem to be broken up into smaller
units that can be reassembled, even if a few of the pieces are missing.

From daily experience we know that memories are often retrieved by
association. For instance, we recall a person’s name when seeing his or
her face, or a tune gives rise to memories of an event during which the
tune was played. The retrieval can be instantaneous and not conscious,
but occasionally we have to explicitly search our databanks to recall a data
item. Associative memory allows us to recall data not by accessing a par-
ticular location in memory (the way digital computers deal with memory)
but rather by using partial content to access the rest of the data. This prop-
erty is called content addressability.

4.6.2	 Hopfield Networks

In 1982, John Hopfield described an artificial neural network that pro-
vides associative memory. Rather than being organized in layers like the
networks we discussed in previous sections, each neuron in a Hopfield net-
work is connected to all other neurons. Moreover, there is no explicit dis-
tinction between input and output neurons. We will see how the network
remembers by updating the weights and how data retrieval is executed by
an iterative process of updating the values of neurons connected by these
weights. As no neurons represent the output, retrieval ends when all the
neurons reach a steady state where their values no longer change.

4.6.3	 Memorization in a Hopfield Network

Let us start by defining the storage process and understanding the retrieval
process. Assume we have to remember p strings U of N	bits each. Let Ui

k

182    ◾    Biological Computation

be the i-th bit of the k-th string. The values of the memory table will be
computed as follows:

T U Ui j i

k
j
k

k

p

, (,)=
=
∑δ

1

 (4.10)

where

 δ(,U U
U U

U U
i
k

j
k i

k
j
k

i
k

j
k

)
1

=
=

− ≠

1

Formula (4.10) allows us to compute the weights for a network used
to store a set of samples. Each neuron in the network corresponds to
one of the p bits. The value Ti,j represents the strength of the connec-
tion between the two neurons. If we are supplied with the set of sam-
ples ahead of time, we can use formula (4.10) to compute the weights.
Alternatively, the same value can be computed iteratively by consider-
ing sequentially each sample and updating the strength of the connec-
tions as required.

Let us look at the following example. Suppose the goal is to memorize
five binary strings of length six: 001010, 111100, 101110, 010001, 011000
(Figure 4.18).

The strings will be stored in “associative memory,” which is a 6 × 6
matrix (6 is the length of the strings), where the value in cell (i,j) reflects
in how many of the strings bit i and bit j	are identical (Figure 4.19). For
instance, the value of cell (1,2) reflects the fact that the first and second
bits are equal in two of the five samples and not equal in the other three,
and therefore its value is 2 – 3 = –1. The rest of the table is filled up in a
similar way. By definition the diagonal cells (i,i) are set to zero. The matrix

000110
100010
011101
001111
010100

FIGURE 4.18  An example of input strings presented in the Hopfield network.

Artificial Neural Networks    ◾    183

represents the data in a distributed fashion since each cell contains infor-
mation which is affected by all the data samples. Note that the learning
rule (4.10) ensures that the weights between neurons that typically have
the same value will be high.

This learning procedure is called Hebb’s rule, named after the psy-
chologist Donald Hebb who postulated that in the brain the connection
strength between cells is correlated with the frequency of them being
active together. This idea is often summarized by the slogan “Neurons that
fire together wire together.” Obviously, the simple learning rule in (4.10)
cannot adequately model the complicated process happening in the brain
(which, moreover, is not well understood). For instance, in our model two
inactive cells (bits with value 0) will have a strong connection, which is
probably not the case in a biological system.

4.6.4	 Data Retrieval in a Hopfield Network

Retrieval is initiated by setting the value of the neurons in the network
to the values of the corresponding bits in the string. The retrieval process
should be such that, if the system is presented with one of the samples in
memory the values of the neurons in the network will not be altered. If a
slight variation is presented (i.e., a string where only one or two bits have
been altered relative to the original), we want the network to come up with
the appropriate (i.e., most similar) sample string. If an entirely new sample
is presented, we usually have no expectations from the system.

The retrieval of the memorized patterns is based on the fact that the
weight matrix represents the strength of the connection between all pairs
of bits. Thus, when we want to retrieve the value of a specific bit, we can
look at the values of the other bits and see what their “recommendation”
is. For example, if the values of other bits that are strongly coupled with

0–1–1–5–1–1
–1011–51
–1101–15
–5110–11
–1–5–1–10–1
–1151–10

6
5
4
3
2
1

654321

FIGURE 4.19  The weight matrix that is calculated for the input strings shown in
Figure 4.18.

184    ◾    Biological Computation

the given bit is 1, then we should set its value to 1. The actual calculation is
achieved by the formula given in (4.11).

U

U T

U T

i
NEW

j i j

j

j i j

j

=

≥∑

∑

1 0

0

,,

, << 0,

(4.11)

We will now repeat the process for other randomly chosen neurons
until the process stabilizes, that is, until no neuron is updated. Intuitively,
at every step the chosen neuron “adopts” the value “recommended” by the
other bits. For instance, consider the string 1 1 1 1 1 0 (which is similar to
the string 1 1 1 1 0 0 in Figure 4.18). Assume that we want to compute the
value of the fifth bit:

	 SUM5 = U1×T5,1 + U2×T5,2 + U3×T5,3 + U4×T5,4 + U5×T5,5 + U6×T5,6 =

 1×1 + 1× (–5) + 1×1 + 1×1 + 1×0 + 0×(–1) = –2

Therefore

 U NEW
5 0=

This correction is indeed what we are hoping for, but it is only a step
in the process. In general, we have to show that the process does indeed
converge; that is, no infinite loop can arise where the values of a cell will
oscillate between 0 and 1, and the process will eventually halt and retrieve
the correct value.

Note that the process we have described is asynchronous, where at each
time unit one cell is updated and its new value will be used to update the
values of cells updated in subsequent time steps. This property is believed
to be relevant to the situation in the brain where there is no master clock;
therefore, the activity is not tightly synchronized. However, in principle
one can also explore synchronous systems where all the values are changed
simultaneously (similar to the synchronous updates in cellular automata

Artificial Neural Networks    ◾    185

discussed in Chapter 2). Clearly, a synchronous system would require aux-
iliary memory to prevent updating bits before they affected the other bits.

4.6.5	 The Convergence of the Process of Updating the Neurons

We will prove the convergence of the process of updating the values of the
neurons by defining a quantity called the total energy of the network:

E

T U Ui j j i

i i jj= − ≠
∑∑ ,

()

2

We prove that the total energy is monotonic decreasing as the weights
are updated. As the energy is additive, we can consider its component
derived from bit j:

E T U U U T Uj i j j i

i j

j i j i

i j

= − =−
≠ ≠
∑ ∑1

2

1

2
, ,

When the value of Uj changes, all the other bits remain as they were, so
the difference in energy can come only from change in Uj. Therefore,

	
E E E U T Uj j

new
j
old

j i j i

i j

= − = −
≠
∑1

2
,

Note that if there was no correction to the value of Uj then ΔUj=0.
Otherwise, the value of Uj has been changed by the update rule in one

of the following two cases:

 if T Uij i

i j

≥
≠
∑ 0 then ΔUj	≥ 0

 and if T Ui j i

i j

, <
≠
∑ 0 then ΔUj	< 0

In either case the product

186    ◾    Biological Computation

U T Uj ij i

i j≠
∑

will be positive; therefore, the total energy will decrease. As the system
is finite, the energy cannot decrease ad infinitum, so the network has to
converge. Next, we need to show that the values the network converges on
will be those strings the network is tasked with storing.

4.6.6  Analyzing the Capacity of a Hopfield Network

Why and under what conditions will the system give the expected results
and be able to retrieve the input? We begin by examining a network
designed to store a single input sample. In this case the weights of the
network will be

T U U

U U

U U
i j i j

i j

i j
, (,= =

=

− ≠
δ)

1

1

Applying the neuron update rule and computing

U Tj i j

j i

,

≠
∑

for every bit in the sample does not cause any updates.
In fact, the weights define an energy surface as depicted in Figure 4.20

where the saved string is an attractor for the network such that points
close to the attractor will converge to the attractor. Obviously, if we start
at the attractor (i.e., present a memorized sample to the network), the sys-
tem will remain at the same point. Notice that, because of the symme-
try between the 0 and 1 bits, the strength of all the connections will not
change if we replace every 0 with 1 and every 1 with 0. Therefore, when
one pattern is memorized its complement is memorized too, as can be
seen in Figure 4.20.

What happens when more than one string is to be memorized? The
energy surface will be much more complex and may contain multiple
minima. Intuitively, there must be a limit to the capacity of the network,
so that if we attempt to memorize too many samples the attractors will
overlap and patterns will be attracted to the wrong attractors.

Artificial Neural Networks    ◾    187

Let us determine how many patterns can be memorized such that small
perturbations will be corrected by the dynamics of the network. To make
the analysis more convenient we will discuss neurons with the values +1
and –1 rather than 0 and 1, so the sign of the product of two bits indicates
whether the bits are equal (when their product is 1) or different (when
their product is –1). Moreover, we will normalize the weights in (4.10) by
multiplying by 1/N, where N	is the number of bits in a string:

T

N
U Ui j i

k
j
k

k

p

, =
=
∑1

1

 (4.12)

Note that by this definition the main diagonal of the weight matrix is 1
and not 0 and that the normalization achieved by multiplying by the con-
stant 1/N may affect the retrieval rate but not its result.

We now consider one pattern U	v and check if it is stable. It will be stable
if no neuron changes due to the update rule; that is, for every i it holds that

i
v

i j j
v

j

U T U= ∑sign ,

X0

X1

FIGURE 4.20  The energy surface of a Hopfield network that stores a single input.
The energy surface (reflecting the energy function) is shaped such that the input
data point will be at the minimum of the surface (X0) and nearby points will be
attracted to the minimum. Note that for binary strings the symmetrical treat-
ment of 1 and 0 bits results in a “shadow” minimum (X1) corresponding to a
string where the bits are flipped.

188    ◾    Biological Computation

where the sign() function returns 1 for positive values and –1 for nega-
tive values.
By inserting the expression for Ti,j:

i
v

i j j
v

j

i
k

j
k

k

U T U
N

U U= =∑ ∑sign sign,

1∑ j
v

j

U

Isolating the k	=	v	term and manipulating the equation gives

U
N

U U U U Ui
v

i
k

j
k

i
v

j
v

k v

j

j

= +
≠
∑∑sign

1 ν

U
N

U U U
N

U U Ui
v

i
k

j
k

k v

j i
v

j
v

j
v= + ()

≠
∑sign

1 1ν

jjj

∑∑

U U
N

U U Ui
v

i
v

i
k

j
k

k v

j

j

= +
≠
∑∑sign

1 ν (4.13)

If the second term is 0, U	v is clearly stable. It will also be stable if the
second term is small enough: if Ui

v is 1, then if the second term is greater
than or equal to –1 it cannot flip the sign of Ui

v. Similarly, if Ui
v is –1 then

the second term will have to be greater than 1 to change the sign. Since the
sum of random (+1/–1) bits will tend to be around 0, in most cases the sum
will not be larger than N and the pattern will be stable, but the probability
of this depends on the number of strings p and their length N.

Let us determine the probability that

1
1

N
U U Ui

k
j
k

k v

j

j ≠
∑∑ < −ν

since in this case the sign of the expression in (4.13) will change. As
a first approximation, let us assume that the patterns and the weights

Artificial Neural Networks    ◾    189

are random, so the question boils down to the question of what is the
probability that the product of 1/N and the sum of Np random numbers
whose values are –1 or +1 is less than –1. In other words, what is the
probability that sum of Np random numbers whose values are –1/N or
+1/N is less than –1?

Assuming that p and N are large, by the central limit theorem this sum
is distributed normally with a mean of 0 and variance of p/N, and the
probability that it is less than –1 (as a function of p/N) appears in Table 4.3.
For example, to achieve a retrieval error smaller than 1%, we have to store
less than 0.185N patterns. Note that this is only an upper bound. In reality
the storage capacity may be lower.

Indeed, Hopfield did not analyze the network capacity formally in his
original paper but reported that empirical results show that the capacity
of the network is about 0.15N, similar to the theoretical capacity we have
derived. Further, more careful, theoretical analysis shows that the best
achievable lower bound is about 0.138N.

This analysis indicates a relatively low capacity. If we assume strings of
length 100, the network can memorize at most 15 strings using 100	×	100
= 10,000 weights, whereas the data can be represented by 15	×	100 = 1500
bits. This means that in practice the Hopfield network is of limited use for
storing patterns, but it is an interesting model of distributed memory and
associative recall.

4.6.7	 Application of a Hopfield Network

We now describe how a Hopfield network is used to memorize the shape
of digits (Haykin, 1998). The digits are represented as patterns of size 10
× 12 as can be seen in Figure 4.21. The network contains 120 neurons,
where a black pixel is represented by the value +1 and an empty pixel by

TABLE 4.3  Error Probabilities and Network Capacity

P

N
max Perror

0.105 0.001
0.138 0.0036
0.185 0.01 (= 1%)
0.37 0.05 (= 5%)
0.61 0.1 (= 10%)

190    ◾    Biological Computation

the value –1. The weights are computed according to the network learn-
ing rule (4.10).

In the first phase of the experiment the memorized patterns were
presented to the system, and as expected it remained in the stable con-
figurations. In the second phase, altered patterns were presented to the
system to see how it dealt with input errors. The value of each pixel in
the pattern was flipped with probability 0.25. For instance, Figure 4.22
shows how the network dealt with the pattern of the digit 6, which has
been altered in this fashion: it managed to converge to the memorized
pattern.

Similar behavior was observed in other cases. Nonetheless, the network
does fail occasionally in converging to the correct shape. For instance, in

Pattern “0” Pattern “1” Pattern “2”

Pattern “3” Pattern “4” Pattern “6”

Pattern “9”Pattern “ ”

FIGURE 4.21  Example of digits memorized by the Hopfield neural network.
(Adapted from Haykin, Simon, Neural	Networks:	A	Comprehensive	Foundation,	
2nd ed. Upper Saddle River, NJ: Prentice Hall, 1998. With permission.)

Artificial Neural Networks    ◾    191

the example shown in Figure 4.23 the network starts with an altered rep-
resentation of the digit 2 and converges erroneously to 6. A more surpris-
ing problem is the existence of stable erroneous states, that is, attractors
that are not memorized patterns. These are called spurious attractors.
This situation can be seen in Figure 4.24 where the network converged
to a pattern similar to the pattern it was presented with (the digit 9 with
alterations). The pattern it converged on was similar to the memorized 9
but not identical to it.

4.6.8	 Further Uses of the Hopfield Network

Up to now we have dealt with the memorizing and retrieval capabilities
of Hopfield networks. However, Hopfield networks have additional uses.

Initial corrupted 6 After 5 iterations After 10 iterations

After 15 iterations After 20 iterations After 25 iterations

After 37 iterationsAfter 30 iterations

FIGURE 4.22  Example of the digit 6 where pixels were flipped with probability
0.25 that is gradually retrieved by the network. (Adapted from Haykin, Simon,
Neural	Networks:	A	Comprehensive	Foundation,	2nd ed. Upper Saddle River, NJ:
Prentice Hall, 1998. With permission.)

192    ◾    Biological Computation

Assume that we present the input patterns shown in Figure 4.25(a) to the
network, and it produced the weight matrix depicted in Figure 4.25(b).

Observe the patterns to notice that the three rightmost and leftmost
bits in each pattern are mirror images, while the two middle bits are inde-
pendent of any other bits in the pattern. When we initialized the network
with the string 0 1 0 1 1 0 0 0, after 3 update steps, computing bits from left
to right, we come up with 0 0 0 1 1 0 0 0 which is the retrieval of one of the
memorized patterns.

On the other hand, if we start with 1 1 0 0 0 1 1 1 we will encounter an
interesting situation. After three updates steps, the string 1 1 1 0 0 1 1 1 will
be generated—a string that has not been memorized but has the properties

Initial corrupted 2 After 5 iterations After 12 iterations

After 18 iterations After 24 iterations After 30 iterations

After 41 iterations
Wrong answer!!

After 36 iterations

FIGURE 4.23  An example of erroneous retrieval. The network starts with a noisy
version of the digit 2 (with 25% flipped pixels) and ends up retrieving the digit 6.
(Adapted from Haykin, Simon, Neural	Networks:	A	Comprehensive	Foundation,	
2nd ed. Upper Saddle River, NJ: Prentice Hall, 1998. With permission.)

Artificial Neural Networks    ◾    193

we identified in the set of strings that was memorized. In other words, as
the weights reflect the types of relations between the bits, the network has
succeeded in	learning the rule governing the samples. Obviously, regular-
ity can also be learned by the feedforward networks described earlier.

Hopfield networks can also be used for optimizations. We saw in the
proof of the convergence of the retrieval process that a set of weights corre-
sponds to an energy function. This function is minimized by the process of
updating the values of the neurons such that at the end of the process neu-
rons connected by an edge with a positive weight will tend to have similar
values, whereas neurons connected by an edge with a negative weight will
tend to have opposite values. One can use a Hopfield network in the opposite

Initial corrupted 9 After 4 iterations After 8 iterations

After 12 iterations After 16 iterations After 20 iterations

After 28 iterations
Wrong answer!!

After 24 iterations

FIGURE 4.24  An example of retrieval to a spurious attractor. The network
converged to the digit 9, but note that this is not exactly the same digit pre-
sented in the input data. (Adapted from Haykin, Simon, Neural	 Networks:	 A	
Comprehensive	Foundation,	2nd ed. Upper Saddle River, NJ: Prentice Hall, 1998.
With permission.)

194    ◾    Biological Computation

fashion: start with an energy function to be minimized, and build a network
around it with weights derived from the function (a nontrivial task). If we
perform a process similar to the retrieval process on this network, we will
get values that are good solutions to the minimization problem. Hopfield
and Tank (1986) implemented this idea for the traveling salesman problem
(TSP). In this problem the input is a map of cities with known distances
between them. A traveling salesman has to find the shortest route allowing
him to visit all the cities and each city exactly once. This problem is known
to be an NP-complete problem, and therefore it is commonly believed that
no algorithm can compute an optimal solution in a reasonable amount of
time (i.e., in time that is not exponential in the number of cities). Hopfield
and Tank represented the solution as a matrix representing the order of vis-
iting the different cities (see Figure 4.26). Since the representation does not
ensure that the route is legal (e.g., two cities are designated as visited sec-
ond in the route in Figure 4.26(a)), the energy function penalized for illegal
routes as well as for routes that are long. The challenge was to derive a weight
matrix such that the computation will end in the shortest legal route (e.g.,
Figure 4.26(b)). Hopfield and Tank reported good results for examples of 10
and 30 cities. Interested readers are referred to the paper for further detail.

4.7	 UNSUPERVISED LEARNING
Up to now we have discussed different forms of learning in which the neu-
ral network is trained using example data to which the required output is
known, and network learning is driven by comparing the output the net-
work produces and the required output. Can learning be achieved with-
out supplying the network with examples of previously classified data?
Such learning can be achieved by analyzing the input and attempting to

0

(a) (b)

1001010
00110100
01100110
00010000
00011000
10110101
11000011
01001010

0
20
0‒82

‒22‒4‒2
2082‒4
08‒2‒820
8000‒2200

0
2

‒2
0
0
0
8

0
0
2

‒8
‒2
8
0

0
‒4
2
8
0
2

0
‒2
‒4
2

‒2

0
2

‒8
0

0
0
2

0
0 08

7
6
5
4
3
2
1

87654321

FIGURE 4.25  An example of input patterns (a) and weight matrix (b) for a
Hopfield network.

Artificial Neural Networks    ◾    195

find patterns, connections, and correlations between the data points. The
standard approaches to unsupervised learning are statistical in nature
and attempt to single out important features of the input. We now dis-
cuss a technique based on a neural network called self-organizing maps
(SOMs), or Kohonen networks, named after Teuvo Kohonen (2001), who
was the first to describe such a network.

4.7.1	 Self-Organizing Maps

Self-organizing maps are used to produce a discrete low-dimensional rep-
resentation of a set of input samples. The SOM network is based on com-
petitive learning, where neurons compete with each other in an attempt
to represent the input. The neurons are usually organized on a 2-D grid
with a hexagonal structure. If each input pattern is of length N, then each
neuron will hold a vector of length N. For example, if each input is a vec-
tor of three numbers representing a point in 3-D space, then each neuron
will contain a vector of three numbers. The initial values of the vectors
held by the neurons are random, and the network seeks the neuron that
best represents each input item. When a particular neuron is selected to

J
I
H
G
F
E
D
C
B
A

10987654321

J
I
H
G
F
E
D
C
B
A

10987654321

City

Position in path
Path = DHIFGEAJCB

(a) (b)

FIGURE 4.26  The representation used by Tank and Hopfield to address the TSP
problem using a Hopfield network. In this binary matrix representation the first
column represents which city is visited first, the second column represents the
city visited second, and so forth. Note that the representation does not ensure a
legal path; that is, one city can be visited multiple times, or the route can visit in
two cities simultaneously. The matrix in (a) depicts such an illegal route in the
beginning of the optimization process, and the matrix in (b) shows the final legal
route, which happens to be the optimal route. (Adapted from Hopfield, John J.
and David W. Tank, Science 233, no. 4764, 625–633, 1986. With permission.)

196    ◾    Biological Computation

represent an input point, its value is further updated to be more similar
to that input point. This process is iterated many times such that, when it
ends, all the input points are mapped to neurons so that adjacent neurons
will represent similar input points.

The process is demonstrated schematically in Figure 4.27. Assume that
each input sample on the left contains values for five properties and is there-
fore represented as a vector of length 5. At the beginning of the process all
the neurons in the hexagonal grid contain vectors of length 5 with random
initial values. For each input sample we search for the neuron whose value
is the most similar to that sample. “Similar” can be defined in different
ways, but often the Euclidean distance is used; that is, for the input sample
Vj we will search for the neuron Ni that minimizes the expression

V Nj

m
i
m

m

V

−()
=
∑

2

1

| |

whereVj
m denotes the m-th component of the vector Vj.

Clearly, we do not expect to find a good fit at the beginning of this
process as the initial values of the neurons are random; nonetheless, we
can pick the neuron for which the value of the previous expression is the
smallest. Assume this is the neuron Ni, colored black in Figure 4.27. At this
point, the value of neuron Ni is changed to be more similar to the sample
Vj (see following formula). We define a neighborhood for each neuron—in

FIGURE 4.27  A schematic description of the process of creating a self-organizing
map. Each input vector is mapped to a neuron of the network (which usually has
the layout of a two-dimensional hexagonal grid). In an iterative procedure, the
values of the target neuron as well as neurons in its neighborhood are adjusted
to reflect the values of the input. Thus, the procedure achieves reduction in the
dimensionality of the input—in this example, from five to two.

Artificial Neural Networks    ◾    197

this example the neighborhood was chosen to be two layers deep. All neu-
rons in the neighborhood of Ni are also updated to be more similar to Vj	

but to a lesser extent. So Ni is changed the most (marked in black), the
neurons in the layer closest to it are changed in a weaker way (dark gray),
and the neurons in the second layer are changed the least (light gray). The
changes are given by the following formula:

 N t N t t h t V N tk k ki j k() () () ()[()]+ = + −1 α

We see that the value of a neuron in iteration t	+ 1 is the sum of its pre-
vious value and a change term that is the product of three factors: (1) the
difference between its previous value and the input sample [Vj–Nk(t)]; (2)
the learning rate function α(t), which is similar to the learning constant
we have encountered previously but is represented as a function since it
can be changed during the computation; and (3) hki(t), which determines
if neuron Nk is in the neighborhood of Ni and if so how close they are to
each other. Note that this factor is also time dependent and it is common
to decrease the size of neighborhoods as the learning process progresses
in order to refine it. Variations of this algorithm define the neighborhood
and the way neighborhood sizes change with time in different ways.

After the neurons are updated, the next input point is selected, and the
process is repeated. Note that the same neuron can represent more than
one sample. In fact, if the number of samples is larger than the number
of neurons this must be the case. This learning process, like the other
learning procedures previously discussed, requires many learning epochs
before it converges.

We say that the network has converged when the mapping (i.e., which
sample is represented by which neuron) does not change during an
entire epoch. The learning process just described leads to a clustering of
the input data. Since neurons are arranged on a 2-D grid, we can think of
the algorithm as a way to reduce the dimensionality of the data from N	
to 2. In contrast to some of the networks we discussed earlier, we cannot
prove mathematically that this network does indeed converge, but expe-
rience shows that this process usually ends up with a stable mapping of
the input samples to neurons such that similar inputs are represented
by the same neuron or by adjacent neurons. Clearly, every execution of
the learning algorithm will give rise to different solutions as the initial
values of the neurons are chosen randomly. Each input point will be

198    ◾    Biological Computation

mapped to different neurons upon different choices of the initial val-
ues, but we do expect the network to be similarly organized for different
initial values. As it is common to repeat this process many times, we
would like to be able to identify the best mapping. For this purpose two
error metrics are used: (1) the quantization error; and (2) the topologi-
cal error. The first computes the average distance between each input
vector and the neuron most similar to it, and it is obvious that we will
prefer the maps with the smallest quantization error. The topological
error computes the percentage of input samples for which the two most
similar neurons are not adjacent on the grid. If the map self-organized
into clusters, we expect that for most input vectors the neuron closest in
value and the neuron second closest in value are adjacent on the grid,
and therefore the topological error will be small. The combination of
these two metrics allows us to identify the best mapping.

4.7.2	 WEBSOM: Example of Using SOMs for Document Text Mining

One of the most impressive examples of using self-organizing maps is
WEBSOM, a system for mining very large document collections (Lagus,
Kaski, and Kohonen, 2004). The largest implementation of the system so
far contains 7 million patent abstracts mapped to a network of about 1
million nodes. In this system, each document is represented by a very long
binary vector where each position in the vector represents one word in
a predefined vocabulary. The vector contains 1 in cells that correspond
to words that appear in the document and 0 for words that do not. To
reduce the huge size of such vectors, the vocabulary is made smaller by
aggregating words of similar meaning. Each neuron in a 2-D SOM starts
with a random vector, and the input vectors are mapped to neurons in
an iterative process. When selecting the best match for a given input, the
similarity between the vector representing the input and the vector rep-
resented by the neuron is calculated by counting the matches between
corresponding positions in the two vectors or in mathematical terms by
calculating the inner product of the two vectors. Different weights can
be given to different words to reflect their relative importance to the text.
Such a weighting scheme is achieved, for example, by the “inverse docu-
ment frequency” measure that gives higher weights to words appearing a
lot in a specific document but that are otherwise rare. The actual imple-
mentation of WEBSOM includes several shortcuts enabling the system to
handle efficiently the large amount of data.

Artificial Neural Networks    ◾    199

The system maps similar documents to neurons in the same region of
the map. To make the map a useful text-mining tool, the system selects
and automatically labels map regions. A search can start by finding docu-
ments mapped to regions whose labels match best with the search expres-
sion. Then, further relevant search results can be found by moving to
documents mapped to neighboring regions even if they did not match
exactly the search criteria. Figure 4.28 shows an example of such search
in a WEBSOM built for 68,000 articles from the Encyclopedia	Britannica.

Descriptive words:
bird, yellow, species, black, king bird,
Hawaiian, bill, inch, family, have
Articles:
cacique
guira
Hawaiian honeycreeper
siskin
kingbird
chickadee

Descriptive words:
insect, adult, lay, other, water

Articles:
homopteran : Formation of galls
strepsipteran
mantispid
neuropteran : Natural history
lacewing
damselfly
caddisfly : Natural history
bagworm moth
glowworm

Descriptive words:
shark, fish, species, ray, many, water, feed, have,
attack, use
 Articles:

fox shark
chondrichthian : General features
leopard shark
soupfin shark
shark
chondrichthian : Economic value
of rays
bull shark
Cambyses I chondrichthian : Natural history
blacktip shark
shark : Description and habits
shark : Hazards to humans

FIGURE 4.28  A close-up of the map of Encyclopedia	Britannica articles. The user
has clicked a map region with the label “shark,” obtaining a view of a section of the
map with articles on, for example, sharks, various species of fish, and eel (middle
and left); insects and larvae (lower right corner); and various species of birds (upper
right corner). Searches performed on the map confirm that whales and dolphins
can be found nearby (not shown). A topic of interest is thus displayed in a context
of related topics. The three inserts depict the contents of three map regions, that is,
the titles of articles found in the region. By clicking a title, the user can access the
article. The “descriptive words” contain a concise description of the contents of
each map region. (Adapted from Lagus, Krista, Samuel Kaski, and Teuvo Kohonen,
Information	Sciences 163, no. 1–3, 135–156, 2004. With permission.)

200    ◾    Biological Computation

4.8	 SUMMARY
In this chapter we have concentrated on the pioneering examples of neural
networks developed more than two decades ago. Since then, neural networks
have become practical tools in several areas including image processing and
medical decisions. Probably the most popular area of application is finance,
where neural networks are used to evaluate loan applications, to forecast
foreign currency exchange rates, and to predict stock market behavior.
One remarkable recent application of neural network is 20Q, a computer-
ized version of the popular children game of guessing what the opponent
is thinking about in 20 yes/no questions. The system uses a neural network
structured as a matrix of weights that represents the strength of the associa-
tion between objects and questions. This weight matrix is used to dynami-
cally choose the next question based on previous answers, and the weights
are updated when the system guesses the correct answers, reinforcing the
weights involved in the successful computation. The game is available in an
online version (http://www.20q.net/) with about 10,000,000 synaptic con-
nections that keep learning from the answers of the participants and also
as a small handheld device using far fewer weights and without the ability
to learn. Try it and you will be amazed by the performance of the system.

We have focused on the classical models of neural networks: the per-
ceptron, the multilayered feedforward–backpropagation network, and the
Hopfield network. Many variants of these models as well as several new
models have been suggested. Among them are recurrent networks, where
the network includes not only forward edges but also backward connec-
tions; stochastic neural networks, where the output of the neurons is not
deterministic and includes random noise; dynamic neural networks,
where the network exhibits time-dependent behavior such as transient
phenomena and delay effects; and spiking neural networks, where the
output of the neurons is a sequence of pulses (spikes) rather than an out-
put of a constant level. Spiking neural networks are inspired by biological
neurons that can represent information not only by the level of the output
but also by the rate in which the pulses are emitted. It is too early to tell
if any of these models or other emerging models will achieve the promi-
nence of the models we discussed in this chapter.

In this chapter we discussed learning and memory. We demonstrated
how similar principles to those used by the central nervous system can
be implemented by simple computational systems. Clearly, the biological
systems are different and much more complex than the artificial systems

Artificial Neural Networks    ◾    201

we dealt with, but we hope we have succeeded in highlighting the similar
principles, first and foremost of which is the importance of high connec-
tivity between the basic building blocks of the systems. This connectivity
is at the core of the capabilities of the human brain and is the common
basis of all the artificial neural networks we have described.

Will future artificial networks be as capable as the human brain? The
jury is still out on this issue. Many researchers believe that there is a vast
difference between the two kinds of systems. They believe that we are inca-
pable of building and controlling systems with a similar number of com-
ponents and level of connectivity as exists in the human brain. According
to this view not only is the limitation technological; we also simply do
not understand well enough the actual data processing mechanisms
that occur in the brain and the principles governing these mechanisms
to enable us to simulate them in an artificial system. On the other hand,
some researchers believe that most of the difference between the biological
and artificial processing capabilities is merely quantitative, and when we
consider the rate of growth of computational systems (as measured by, e.g.,
the number of components, their speed and complexity, memory size) we
see that the rate of technological advancement is so fast that it will soon
catch up with biological systems. In the bibliography you will find a refer-
ence to one of the leaders of this school of thought, Ray Kurzweil (2005).

4.9	 FURTHER READING
Chittka, Lars and Jeremy Niven. 2009. Are bigger brains better? Current	Biology

19, no. 21, R995–R1008.
Haykin, Simon. 1998. Neural	Networks:	A	Comprehensive	Foundation,	2nd ed. Upper

Saddle River, NJ: Prentice Hall.
Hopfield, John J. 1982. Neural networks and physical systems with emergent collec-

tive computational abilities. Proceedings	of	the	National	Academy	of	Sciences
79, no. 8, 2554.

Hopfield, John J. and David W. Tank. 1986. Computing with neural circuits: A
model. Science 233, no. 4764, 625–633.

Kohonen, Teuvo. 2001. Self-Organizing	Maps, 3rd extended ed. New York: Springer.
Kohonen, Teuvo, Samuel Kaski, Krista Lagus, Jarkko Salojarvi, Vesa Paatero,

and Antti Saarela. 2000. Self organization of a massive document collec-
tion. IEEE	Transactions	on	Neural	Networks 11, no. 3, 574–585. Available
at: http://websom.hut.fi/.

Kurzweil, Ray. 2005. The Singularity	 Is	 Near:	 When	 Humans	 Transcend	 Biology.
New York: Viking.

202    ◾    Biological Computation

Lagus, Krista, Samuel Kaski, and Teuvo Kohonen. 2004. Mining massive docu-
ment collections by the WEBSOM method. Information	 Sciences 163, no.
1–3, 135–156.

LeCun, Yann, L.D. Jackel, B. Boser, J.S. Denker, H.P. Graf, I. Guyon, et al. 1989.
Handwritten digit recognition: Applications of neural network chips and
automatic learning. IEEE	Communications	Magazine 27, no. 11, 41–46.

Marr, David. 1982. Vision:	A	Computational	Investigation	into	the	Human	Represent-
ation	and	Processing	of	Visual	Information. New York: W. H. Freeman and Co.

Minsky, Marvin and Seymour Papert. 1969. Perceptrons. Cambridge, MA: MIT Press.
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning

internal representations by error propagation. In D. E. Rumelhart, J. L.
McClelland, and the PDP Research Group (Eds.), Parallel	Distributed	Processing.	
Explorations	in	the	Microstructure	of	Cognition.	Volume	1:	Foundations, 318–
362. Cambridge, MA: MIT Press.

Segev, I. 1998. Sound grounds for computing dendrites. Nature 393, no. 6682,
207–208.

Sejnowski, Terrence J. and Charles R. Rosenberg. 1987. Parallel networks that
learn to pronounce English text. Complex	Systems 1, 145–168.

Tesauro, Gerald and Terrence J. Sejnowski. 1989. A parallel network that learns to
play backgammon. Artificial	Intelligence 39, no. 3, 357–390.

4.10  EXERCISES

4.10.1	 Single-Layer Perceptrons

 1. Study the OR function learned by a simple perceptron with three
inputs x0,x1,x2 and threshold of 0. Fill out the values of the weights in
Table 4.4 using the learning rule. Let the value x0 always be –1. The
patterns are presented to the perceptron in the order in which they
appear in the table. The learning rate is α	= 0.5. Repeat as needed
until the weights converge.
TABLE 4.4

X0 X1 X2 W0 W1 W2 Output
Desired
Output

–1 0 0 1.3 0.4 –0.2
–1 0 1
–1 1 0
–1 1 1
–1 0 0
–1 0 1
–1 1 0
–1 1 1
–1 0 0

Artificial Neural Networks    ◾    203

 2. Design a perceptron for the following problem: the inputs to the net-
work are strings of six bits (i.e., there are six input neurons), and the
perceptron has six output neurons that count the number of bits,
which are 1 in the input strings as follows:

 The output is 000000	if the input contains no 1’s.

 The output is 100000	if the input contains a single 1 (its position is
unimportant).

 The output is 110000	if the input contains two 1’s.

 …

 …

 The output is 111111	if the input is all 1’s.

 3. Can you design a perceptron for Exercise 2 if the output is represented
by the position of a single 1 in the output neurons? For instance:

 100000	represents an input string containing a single 1.

 010000	represents an input string containing two 1’s.

 000010	represents an input string containing five 1’s.

 Justify your answer.

4.10.2	 Multilayer Networks

 4. Design a network that deals with images of the format shown in
Figure 4.29. Every image contains N	 cells that are either white or
black. The network has to determine whether the image contains
more than N0 contiguous black regions. The images are circular
(the first and last cells are considered to be adjacent). For instance,
in Figure 4.29, the top image contains two black regions, and the
other images contain one black region each. Suggest a topology for
the network, and determine its weights. Your solution can disregard
the special case where all cells are black.

204    ◾    Biological Computation

FIGURE 4.29

 5. Design a multilayered network that implements the XNOR function.
(XNOR is Not XOR; that is, it returns 0 when XOR returns 1 and 1
when XOR returns 0).

 6. Given the network in Figure 4.30, determine the weights W1,…,W9
so that the network computes correctly the XOR function on binary
inputs A and B. (Note that each hidden neuron has a control input
with the fixed value –1.) To simplify matters, you may assume that
all the neurons compute using a threshold function (as in percep-
trons) rather than a sigmoid function.

−1

−1

−1

A

B

A

B

W1
W2

W3

W4

W8

W9

W7

W5

W6

FIGURE 4.30

 7. The network in Figure 4.31 is to be used to compute the XOR func-
tion. The learning rate is α	 = 0.5, and the activation function is a
sigmoid. Perform a full epoch of weight updates for the inputs (0,1)
and (1,1)	where the initial weights are	w1 = –0.1,	w2 = 0,	w3 = 0.1,	w4 =
0.2,	w5 = 0.1,	w6 = –0.2,	w7 = 0.1,	w8 = –0.3, and	w9 = 0.

Artificial Neural Networks    ◾    205

x1

x2

–1

W1

W7

W8

W9

W2
W3

W4

W5

W6

FIGURE 4.31

 8. In the NetTalk network:

 a. What are the advantages and disadvantages of a larger window?

 b. How can the optimal window size be determined?

 9. In the handwriting recognition example:

 a. Why was such a large training set needed?

 b. Calculate the number of connections between the neurons in the
first hidden layer and the neurons in the input layer (consider the
threshold level as input) and the number of weights needed to
specify these connections.

 10. Consider a multilayered network with seven input neurons, seven
output neurons, and n neurons in a single hidden layer. For simplic-
ity, assume that the neurons in the hidden layer function accord-
ing to step function and not the sigmoid function. The network is
designed to map unary representations of the digits 0 to 7 to identi-
cal outputs (the bottleneck method). In this representation the input
patterns 0 is represented as 0000000, the input 1 as 10000000, 2 as
01000000, and 7 as 00000010.

 a. What is the minimal number of neurons in the hidden layer?

 b. Design a network to solve this problem.

4.10.3  Hopfield Networks

 11. Consider the Hopfield network shown in Figure 4.32 where the thresh-
old values of the neurons are 0.

206    ◾    Biological Computation

2
3–

2
3–

2
3–

2
3–

2
3+

2
3+

32

1

FIGURE 4.32

 a. Display the weights as a matrix T where the cell in position (i,j)
holds Ti,j.

 b. Show that the weights in T adhere to the requirements on weights
in a Hopfield network.

 c. The network contains three neurons, allowing for eight possible
patterns. The stored states are (1,–1,1) and (–1,1,–1). Compute the
behavior of the network on these patterns, and show that they are
stable.

 d. For each vector obtained by changing the value of a single neuron
in the stored patterns (e.g., changing (1,–1,1) to (–1,–1,1), (1,1,1) or
(1,–1,–1), determine the vector to which the network will con-
verge. Does the network deal well with errors?

 12. A Hopfield network containing five neurons has to store the fol-
lowing patterns:

U

U

U

1

2

3

= ()
= ()
=

1, 1, 1, 1, 1

1, –1, –1, 1, –1

–11, 1, –1, 1, 1()

 a. Determine the 5	×	5 weight matrix for the network.

 b. Show that the stored patterns are stable states of the network.

Artificial Neural Networks    ◾    207

 c. Check the network’s behavior when presented with a noisy ver-
sion of U1 where the second element is –1.

 d. Show that the following patterns are also stored in the network.
What is the relationship between these patterns and the original
patterns?

U

U

1

2

= ()
= ()

–1, –1, –1, –1, –1

–1, 1, 1, –1, 1

UU3 = ()1, –1, 1, –1, –1

 13. Design and implement a Hopfield network that memorizes dig-
its and retrieves them. Every digit will be represented as a 10	×	10
matrix containing 0’s and 1’s. The network will memorize the digits
and will retrieve a digit when presented with its image with a few
flipped bits. For instance, in Figure 4.33 the network will retrieve the
digit 3 on the left when presented with the image on the right, which
has several altered bits. Explore a few aspects of this network:

(a) (b)

FIGURE 4.33

 a. Determine how many different digits the network can memorize.
A digit is considered memorized if the network can retrieve it
correctly in 90% of the cases in which 10% of the bits are flipped.

 b. Explore the trade-off between the number of memorized digits
and the number of altered bits. Plot a three-dimensional graph
where X is the digit axis, Y is the percentage of errors axis, and
the Z	axis is the success percentage.

208    ◾    Biological Computation

 c. Repeat the tests where every digit is memorized using several
similar but not identical input patterns (create the patterns first).
Does this improve the learning?

 d. Repeat the experiments by representing the digits using 1 and –1
(rather than 1 and 0). Does this improve the success rate or the
convergence rate? Why?

 e. The network can fail in one of two ways: it can converge to a digit
that was learned but that is not the correct digit, or it can con-
verge to a state that was not part of the input samples (a spurious
attractor). Count the number of errors from each type, and print
out a few samples of states that are not part of the input samples.
Try to classify those patterns.

4.10.4	 Self-Organizing Maps

 14. Download a red/green/blue (RGB) color table. In it each color is
coded using three numbers that represent the strengths of its red,
green, and blue components. For instance, navy blue is represented
as (65,105,225) and pink as (255,192,203). Such tables can be found
on many Web sites. Make sure your table contains about 100 colors
(choose a sampling of the table if it is too large). Build a self-organiz-
ing map that will classify the colors on a map of size 9 × 9 and display
the results graphically.

4.10.5  Summary

 15. In supervised learning the size of the dataset is often limited. Thus,
dividing the data into a training set and a test set might render the
training set too small. Suggest a way to handle such situations.

 16. Due to the complexity of designing multilayer neural networks (e.g.,
the need to determine the number of layers, the number of neurons
at each level, weight sharing), it has been suggested that genetic algo-
rithms can be used to find good network architectures. Discuss how
to implement this idea (consider the components required to char-
acterize the genetic algorithm, such as data kept in chromosomes, as
well as the components required to characterize the network, such as
the learning process).

Artificial Neural Networks    ◾    209

We presented several potential applications of neural networks (of all
types). For Exercises 17–22 discuss how to represent the input for each
problem in an appropriate way and which network should be used to solve
the problem. Note that these problems can be approached in different ways
and that no single correct solution or method can be found that guaran-
tees finding a successful network without using trial and error.

 17. Optimization problems:

 a. The map coloring problem: given N countries and K colors, color
the countries such that no two adjacent countries (countries
sharing a border) have the same color. Countries may remain
uncolored, and the goal is to minimize the number of uncolored
countries.

 b. The N queens problem: place N queens (or less) on an N×N chess-
board such that no queen can attack another queen. The goal is to
minimize the number of unplaced queens.

 18. Design a network that suggests reasonable past forms for English
verbs when given the present tense of the verbs. Keep in mind that
many English verbs have irregular past tenses (e.g., run–ran, speak–
spoke, draw–drew, die–died). Consider data representation, network
design, and expected deficiencies in the network’s learning and gen-
eralization capabilities.

 19. Image processing:

 a. Face recognition: the goal is for the network to identify a person
from a photograph. Assume the photograph is a headshot.

 b. Image reconstruction: the network is presented with images that
have some missing regions (e.g., parts were torn off) and some
regions that are out of focus. The network is to reconstruct the
originals from these partial images.

 20. Suggest a design for a network to forecast failures in a large engine in
a power plant. The network uses sensors that report the temperature,
number of rotations per minute, fuel flow, and vibrations as well as a
microphone that captures the engine’s sound. Under normal circum-
stances the engine operates continuously (and the network design has

210    ◾    Biological Computation

to take this into account). For training purposes, however, the engine
may be stopped, and started; failures can be induced, etc.

 21. A bank uses an expert system to determine which clients are credit-
worthy. The system is based on parameters such as the clients’ age and
gender, their balance sheets, number of operations per month, and the
type of requested credit (i.e., whether it is for small, medium, or large
loans). The system has been in use for a few years, and the bank has
data on its performance (i.e., the cases where loans were approved and
turned out to be bad loans.) Will a neural network be able to improve
the loan approval process? Suggest an appropriate architecture.

 22. Identifying unusual credit card usage. Design a network for a single
customer (one credit card). Note that under normal circumstances
there are no unusual usage patterns of the sort the network needs to
identify that can be used for training the network.

4.11	 ANSWERS TO SELECTED EXERCISES
 2. A perceptron where each one of the six inputs is connected to all of

the six output neurons and the threshold of the first output neuron
is 1, the threshold of the second output neuron is 2, and so forth
accomplishes the given task.

 3. This is impossible to do with a simple perceptron. Look at a smaller
example of two inputs and two outputs. The behavior we require for
the first output bit is to be 1 if and only if one of the two input bits is
1; this is the XOR function that cannot be calculated with a simple
perceptron.

 4. The black cells will be represented by the value 1 and the white cells
by 0. The network has a single hidden layer as shown in Figure 4.34.
For the hidden layer a simple step function with a threshold of 0 is
used. Thus, a node in the hidden layer will fire only when it recog-
nizes a switch from a white cell to a black cell. Note that because of
the circular nature of the problem we have a node that connects the
first cell and the last cell. The output neuron will have a threshold of
N0, so it will output 1 only if there are at least N0 contiguous black
regions.

Artificial Neural Networks    ◾    211

–1

–1
–1

–1
–1

–1
–1

–1

1
1

1
1

FIGURE 4.34

 8.

 a. The network has more data the larger the window and there-
fore can pronounce the letter better. If, for example, there was
no window around the letter, the network would be unable to
distinguish between the k’s in “kill” and “know.” On the other
hand, a larger window means that the network is more complex
and has to learn a larger number of weights. That will cause the
training phase to be longer, require a larger training set, and may
result in an impractical convergence rate.

 b. The decision has to be based on the network’s performance: can
it achieve a low enough percentage of errors to be useful?

 9.

 a. The variety of different shapes is very large, and the number of
neurons and weighs grows proportionally. Moreover, the large
variability in the ways the same digit can be written necessitates
the use of a large training set to decrease the danger of overfit-
ting, where the network would be well trained on the training set
but incapable of generalizing.

 b. The hidden layer contains 768 neurons (8	×	8	×	12), which have
19,968 connections. The number of weights is only 1068 (768
threshold values + 12	 ×	 25 weights). This means that the net-
work has to learn ~5% of the weights it would have had to learn
if weight sharing was not employed. The second hidden layer is
similar to the first. It contains 12 groups of 4	×	4 neurons that
are “in charge” of a region of size 5	×	5 in the first hidden layer.
The neurons get input from corresponding regions in 8 of the 12

212    ◾    Biological Computation

groups in the first hidden layer (every 4	×	4 group is “in charge”
of a different combination of eight groups).

 10

 a. Since the network actually needs to count the numbers 0 to 7,
three neurons are enough to capture the data using a binary
representation.

 b. A possible design for the network is shown in Figure 4.35. The
input nodes are connected to the hidden layer nodes in a way
that represents the binary coding; for example, every second
input bit is connected to the upper hidden node that repre-
sents the parity (rightmost) bit in the binary representation.
The weight of all edges from the input to the hidden layer is 1
(to prevent overloading the figure not all of these weights are
shown). The threshold values of all the hidden layer neurons
are 1. The hidden layer neurons are fully connected to the out-
put neurons (again, to prevent overloading the figure, not all
of these edges are shown). The reconstruction is achieved by
setting the appropriate values for the weights on the edges and
by the threshold of the output units. The weights are set accord-
ing to the binary representation of the number; for example,
the three edges going into the fourth neuron, which represents
the number 4 with the binary representation 100 should have
weights of (1,–1,–1). The threshold value for each neuron is
the number of 1’s in the corresponding binary representation,
which is 1 in the case of 100.

1

1

1
–1

–1

–1
–1

1
1

1
1

1

1

1

3

2

2

1

2

2

1

FIGURE 4.35

Artificial Neural Networks    ◾    213

 11.

 a.

T =

− +

− −

+ −

1

3

0 2 2

2 0 2

2 2 0

 b. We have to test for two conditions: (1) that the weights Tii are
equal to 0; and (2) that the weights satisfy Hebb’s rule (i.e., for-
mula (4.10)). Verify that T satisfies both of these conditions.

 c. We will demonstrate this using matrix multiplication notation.

Tvv =

− +

− −

+ −

+

−

+

1

3

0 2 2

2 0 2

2 2 0

1

1

1

=

+

−

+

1

3

4

4

4

 Applying the sign() function yields:

sign()Tvv vv=

+

−

+

=

1

1

1

 which means that v is stable. The calculation for the other vector is
similar.

 15. A possible solution is to use all the available data for training, leav-
ing out only a single example to be used for testing. To evaluate the
performance of the network in this way, one needs to repeat the
procedure many times, each time leaving out a different example
for testing, and then evaluate the performance over all trials. This
is known as the “jackknife” method. Note, however, that the data
points have to be independent and different from each other in order
for this technique to work. If many data points are duplicated, then
when one copy is presented as the test case, the other copy is included
in the training test and would taint the result of the test

215

C h a p t e r 5

Molecular Computation

This chapter deals with solving computational problems using
chemical and biological processes. Problems to be solved using molec-

ular computation are usually presented as a collection of molecules that
are mixed together and undergo a series of biological processes. These pro-
cesses produce a new collection of molecules that represent the solutions to
the computational problem. This approach to solving computational prob-
lems is interesting in several ways:

• Practical motivation: Molecular computation may allow us to build
computational devices from biological molecules and possibly to
build general-purpose “biological computers.” As we will discuss in
this chapter, such devices may have several advantages over classical
computers for certain applications. An interesting example might be
in medicine where such devices may be able to make autonomous
real-time decisions inside the patient’s body.

• Theoretical motivation:	 The observation that biological molecules
can carry out computations should help us realize that many bio-
logical processes involved in information processing and biological
control should be viewed as computational processes. The computa-
tional perspective can help us gain better insight into these biological
processes. Furthermore, this viewpoint opens the way to employ the
tools and methodologies of computer science to analyze biological
processes.

216    ◾    Biological Computation

• Parallelism: Molecular computations are inherently parallel pro-
cesses, as they involve a large number of molecules that collide and
interact with each other. Thus, molecular computational models are
potentially very powerful and may be able to solve hard computational
problems.

• Analog computation: Molecular computation is analog computa-
tion rather than digital computation. Historically, the first com-
puting machines were mechanical and were used for astronomical
computations. They made use of gears, cams, levers, drums, and
other mechanical components to perform complex computations
such as computing integrals. The heyday of the mechanical com-
puting machines was during World War II when electromechanical
machines called BOMBE were used to crack the Enigma code used
by the Germans. This era came to an end when electronic computers
using binary logic took over and replaced the mechanical machines.
The term analog computation, however, encompasses a wider range
of computational processes based on making use of other physical
phenomena like hydraulics, optics, and biological phenomena to
solve computational problems. In other words, analog computers
use the physical behavior of a system to solve computational prob-
lems. Consider, for example, the following. When two boards con-
nected by rods are dipped in soap water, bubbles with a minimal
surface area will be created between the rods, because closed physi-
cal systems will reach an equilibrium state of minimal energy, and
thus, in this example, the system will minimize the surface of the
bubbles. We could harness this phenomenon to solve the following
computational problem. Given a set of vertices, interconnect them by
edges such that the total length of the edges (the sum of the lengths
of all the edges) is minimized. You may add vertices and edges to
the graph to reduce the total length. (The added vertices are called
Steiner vertices, and the problem is known as the Steiner tree prob-
lem and is an NP-complete problem.) The soap bubbles self-organize
by adhering to the laws of physics to find the Steiner tree defined by
the location of the rods between the boards (Figure 5.1).

 To date, analog computations are hardly considered by computer
scientists, but they do raise very interesting algorithmic, complexity,
and computability questions such as how to measure the complex-
ity of an analog system, what can and cannot be computed using an

Molecular Computation    ◾    217

analog computer, and to what extent the analog and digital computa-
tional models are equivalent. We believe that the new computational
models described in this chapter, along with quantum computing
(out of the scope of this book; a computational model based on
qubits, which can be in a state of one, zero, or quantum superposi-
tion of zero and one) will raise interest in analog computation.

5.1   BIOLOGICAL BACKGROUND
In this section we describe a number of laboratory techniques used in the
molecular computations discussed later in this chapter.

5.1.1  PCR: Polymerase Chain Reaction

Polymerase chain reaction (PCR) is a major player in biological lab work
and has a central role in the molecular algorithms described in this chap-
ter. PCR is used to amplify a DNA segment of interest multiple times.
Kary Mullis developed this technique in the 1980s and was awarded the
1993 Nobel prize in chemistry for this accomplishment.

PCR makes use of the enzyme DNA polymerase (Figure 5.2), which
completes a single strand of DNA, which is used as a template for a

FIGURE 5.1  Soap bubbles self-organize to create the optimal Steiner tree on a
four-vertex graph. (Picture courtesy of Scott Grandison.)

218    ◾    Biological Computation

double-stranded DNA molecule. To perform its function, the enzyme has
to encounter single-stranded DNA that terminates with a double-stranded
segment at one end. The DNA polymerase elongates the double strand
to the entire molecule. When DNA is heated to a high temperature
(around 95°C), the strands separate from each other, whereas they attach
to each other at lower temperatures in a process called hybridization or
annealing.

The combination of strand complementation, separation, and anneal-
ing allows the PCR process to turn into a chain reaction. A DNA sequence
to be amplified is selected, and short sequences of DNA called primers are
prepared. The primers complement the beginnings of each selected DNA
strand and must be roughly 20 bases long for the PCR to succeed. The
PCR process starts when DNA, the primers, the bases used to create new
strands, and the DNA polymerase are mixed together in a test tube. The
complete process is described in Table 5.1.

A thermal cycler, or a PCR machine, is used to automatically heat
and cool the solution in the test tubes. Note that the solution should
contain enough “raw material” so that the process can go through all its

DNA
polymerase

A T

T A

G G GA A T T A T G G GA A T T

T A C C CT T A A

FIGURE 5.2  The DNA polymerase reaction.

TABLE 5.1  The PCR Process

1. �e DNA strands are separated by
 heating them to around 95°C.

2. �e mixture is cooled to around 55°C
 and the primers attach themselves to
 the beginnings of the corresponding
 strands (base pairing).

3. �e mixture is warmed to 72°C which
 is optimal for the functioning of the
 Polymerase. �e enzyme complements
 the bases on each strand, thereby
 doubling the number of DNA molecules.

4. �e whole process is repeated from
 Step 1 as often as needed. �e number
 of available DNA molecules is doubled
 at each iteration.

Molecular Computation    ◾    219

phases. PCR allows researchers to start from a very small amount of DNA
(obtained, e.g., from fossils or found at a crime scene) and to amplify it
quickly. For example, if we want to know whether a sample of DNA con-
tains a particular DNA sequence, we can prepare unique primers that
surround the sequence and start a PCR reaction. If the sequence is pres-
ent in the sample it will be amplified; otherwise, the two primers will not
attach, and the reaction will not take place.

5.1.2  Gel Electrophoresis

Gel electrophoresis is a technique for separating molecules such as DNA
and proteins using an electric field applied to a gel. Different molecules
move differently in the gel according to their size and electrical charge,
so smaller and higher-charged molecules will be more affected by the
electric field and therefore will move faster. Since DNA molecules have
a similar charge to mass ratio, the main difference between molecules is
their size, which determines their ability to migrate through the pores
of the gel. Thus, running DNA molecules on a gel sorts the molecules
according to their size and allows researchers to determine the size of
new DNA molecules by comparing them with DNA molecules of known
sizes (which form a DNA ladder when run on the gel).

5.1.3  Restriction Enzymes

Restriction enzymes cut double-stranded DNA molecules. They oper-
ate by binding to the DNA at a specific restriction site (a short sequence
usually four to eight bases long) and incising the DNA at the site or
close to it. Some enzymes perform a blunt incision, and others leave
behind sticky	 ends that allow the ends to join other DNA molecules
(Figure 5.3). The first restriction enzyme was discovered by Werner
Arber, Dan Nathans, and Hamilton Smith, who were awarded the Nobel
prize in medicine in 1978. It is believed that these enzymes evolved in
bacteria to protect them against viruses with double-stranded DNA.
Restriction enzymes have turned into essential molecular biology tools,

A A GC T T
T T CG A A

A A GC T T
T T CG A A

(a) (b)

FIGURE 5.3  Restriction enzymes. (a) Blunt edge. (b) Sticky end.

220    ◾    Biological Computation

since they allow cutting DNA for many purposes such as introducing
new sequences into existing DNA molecules. Hundreds of restriction
enzymes are currently available commercially.

5.1.4  Ligation

Ligase enzymes can repair breaks in one of the strands of a DNA mol-
ecule (provided that the molecule is held together by its double-strand
structure). This is done by bonding (ligating) adjacent nucleotides, thereby
recovering the original structure of the molecule (Figure 5.4). Ligase
enzymes are used by cells both in DNA repair and in DNA replication. In
molecular biology, ligase and restriction enzymes are often used in con-
cert to introduce new sequences into DNA molecules.

5.2  COMPUTATION USING DNA

5.2.1  Hamiltonian Paths

Molecular computation seemed almost like science fiction until Leonard
Adleman published his paper “Molecular Computation of Solutions to
Combinatorial Problems”	 in	 1994. In the paper, Adleman presented an
implementation of a molecular process to solve the classical computer sci-
ence problem of finding Hamiltonian paths in a directed graph:

Let G	=	(V,E) be a directed graph and vin	and vout	be two of its ver-
tices. A Hamiltonian path is a path starting at vin and terminating
at vout	that goes through every vertex exactly once. Given G, vin,	and
vout,	determine whether there exists a Hamiltonian path in G.

The Hamiltonian path problem is known to be NP-complete; therefore,
solving it using DNA was an exciting development.

We first present an abstract nondeterministic algorithm to solve the
problem, which we will then use as an outline for the molecular algorithm.

Ligase

T TG G GC CC A A A

A AC C CG GG T T T

T TG G GC CC A A A

A AC C CG GG T T T
(a) (b)

FIGURE 5.4  The ligation process. (a) Before. (b) After ligation the double-strand
structure is complete.

Molecular Computation    ◾    221

The algorithm generates random paths, which are tested to determine if
they are Hamiltonian. The algorithm follows these steps:

 1. Generate a large set of random paths in the graph, where a path is a
set of one or more edges where the starting vertex of an edge has to
match the ending vertex of the previous edge in the path.

 2. Discard all paths that do not start at vin	and do not terminate at vout	as
they cannot be a solution to the given Hamiltonian path problem.

 3. Discard all paths whose length (the number of vertices they traverse)
is not equal to the number of vertices in the graph, as they cannot
be a solution to the given Hamiltonian path problem. Note that this
stage may retain paths that do not solve the problem as they may visit
some vertices more than once and never visit other vertices.

 4. Discard all paths that do not visit every vertex as these paths can-
not be solutions to the Hamiltonian path problem. Note that we do
not need to check separately if the remaining paths visit some nodes
more than once, as this follows from Steps 3 and 4.

 5. If the resulting set is nonempty, return “yes.” Otherwise, return “no.”

This algorithm has two main stages: (1) generate a set of candidates; and
(2) sieve out all the candidates that do not solve the problem. This is called
a generate and test algorithm, and the molecular algorithm operates in a
similar way.

The main trick in implementing the algorithm using molecules is the
way vertices and edges are represented. We represent the graph as a collec-
tion of single-stranded DNA molecules, where the vertices and edges are
represented as follows (Figure 5.5):

TATAGGGGTAGCGCTTTTGC

TATCGGATCGGTATATCCGA

GCTATTCGAGCTTAAAGCTA

ATATCCCCATCGCGAAAACG

O0

O2

O3

O0

GTATATCCGAGCTATTCGAGO2 3

TATAGGGGTAGCGCTTTTGCGCTATTCGAGO0 3

FIGURE 5.5  Molecular representation of vertices and edges in a graph.

222    ◾    Biological Computation

• Vertices: Every vertex is represented by an arbitrary sequence of 20
bases (we could have chosen another arbitrary number of bases). The
sequence associated with each vertex is arbitrarily chosen, but we will
see that these sequences may not be identical, similar, or complemen-
tary to sequences associated with other vertices. There are 420 possible
such representations, which is assumed to be much larger than the
number of vertices in the graph. The molecular representation of vertex
i will be denoted as Oi. The complementary sequence, where A comple-
ments T and C complements G, will be denoted as Oi .

• Edges: Each edge is also represented by a sequence of 20 bases. The
edge between vertices i,j is composed of the last 10 bases of i’s rep-
resentation followed by the first 10 bases of j’s representation. We
will see how this allows us to connect the edges to create paths. The
molecular representation of the edge i	→	j will be denoted as Oi →	j.

 The edges starting at vin or ending at vout have a slightly different
representation. They use the complete representation of these special
vertices, so these edges will be represented by sequences of length 30.
An edge from vertex vin to vertex	j	will be represented by the entire
representation of vin followed by the first 10 bases of	j. Similarly, edge
from vertex i to vertex vout will start with the last 10 bases of the rep-
resentation of	i followed by the entire representation of vout.

The significant property of this representation is that it enables the con-
nection of adjacent edges into a sequence that represents a path. This is
achieved by putting together, in a solution, molecules representing edges
and molecules representing the complements of the vertices. So if, for
example, we introduce the representation of the edges O2 →	3 and O3 →	4 and
the complement of O3 denoted as O3, O3 will combine with the second half
of the edge O2 →	3 and with the first half of the edge O3 →	4 to create a	double-
stranded	sequence, as can be seen in Figure 5.6.

When such double-stranded sequences are created in the presence of the
enzyme ligase, the two separate molecules O2 →	3 and O3 →	4 will be ligated to
form a single molecule representing the path 2 →	3 →	4. In this manner all
possible paths in the graph are generated from the molecules representing the
edges of the graph; then, they can be sieved such that only the Hamiltonian
paths (if they exist) remain. Another example, representing the path 0 →	
3 →	 4, appears in Figure 5.7. Note that this process can create sequences
representing paths that are not legal Hamiltonian paths. The molecular

Molecular Computation    ◾    223

GTATATCCGA GCTATTCGAG

CTTAAAGCTA CGCTAGGTAC

CGATAAGCTC GAATTTCGAT

O3 4

O3

O2 3

O2 3 O3 4

GTATATCCGA GCTATTCGAG CTTAAAGCTA CGCTAGGTAC

CGATAAGCTC GAATTTCGAT

O3

Ligase

(a)

(b)

FIGURE 5.6  Building the path 2 →	3 →	4. (a): The participating molecules: two
edges, and the complement of a vertex. (b): The segment of the path that can be
created by these molecules.

CGATAAGCTC GAATTTCGAT

CTTAAAGCTA CGCTAGGTAC

TATAGGGGTA GCGCTTTTGC GCTATTCGAG

ATATCCCCAT CGCGAAAACG

O3 4

O0 3

O0

O3

GAATTTCGAT

CTTAAAGCTACGCTAGGTACTATAGGGGTAGCGCTTTTGCGCTATTCGAG

ATATCCCCATCGCGAAAACGCGATAAGCTC

O0 O3

O3 4O0 3
Ligase

(a)

(b)

FIGURE 5.7  Building the path 0 →	3 →	4. (a): The participating molecules: two
edges, and two complements of vertices. (b): The segment of the path that can be
created by these molecules. Note that, because of the longer structure of the edge
O0→3, the beginning of the path has a blunt shape that cannot be extended.

224    ◾    Biological Computation

algorithm was implemented in Adleman’s paper on the seven-vertex graph
in Figure 5.8, where vertex 0 is the starting vertex vin, and vertex 6 is vout.
Figure 5.9 depicts a legal Hamiltonian path in the graph, whereas Figure 5.10
shows a path through the graph that is not a legal Hamiltonian path.

Let us now go over all the steps required for executing the molecular
algorithm for the seven-vertex graph, using the same steps we used to
describe the nondeterministic algorithm:

 1. Insert multiple copies of the representations of all the edges and the
complements of all the vertices into a solution that also contains the
enzyme ligase. The molecular processes should then generate the
molecular representations of all the paths in the graph.

 2. At this point, a process that creates many copies of the paths start-
ing and ending at the appropriate vertices is applied to the solution.
This is achieved by doing a PCR with primers that are the molecular
representations of vin (O0) and the complement of vout (O6).

O5 O6O2 O5O0 O2

O0 O2 O5 O6
––– –

FIGURE 5.10  An illegal Hamiltonian path in Adleman’s graph.

1

0

2

3

4

5

6

FIGURE 5.8  The graph used by Adleman to compute a Hamiltonian path. A pos-
sible Hamiltonian path in this graph is depicted by the darker arrows.

O5 O6O4 O5O3 O4O2 O3O1 O2O0 O1

O0 O1 O2 O3 O4 O5 O6
–––––––

FIGURE 5.9  A legal Hamiltonian path in Adleman’s graph.

Molecular Computation    ◾    225

 3. The DNA molecules are separated based on their length, and only the
molecules of length 140 (20n, where n is the number of vertices in the
graph) are kept. As each edge is represented by a molecule of length
20 and a Hamiltonian path has to traverse each vertex exactly once, a
Hamiltonian path will contain n	– 1 edges. But as the edge starting at
vin and the edge ending at vout are of length 30, the total length of the
representation of the Hamiltonian path is 20n. The molecules that
were kept are amplified again so that enough copies exist to continue
with the algorithm.

 4. The paths that visit every vertex in the graph are selected. This is
achieved by first selecting from the solution all the molecules that
contain the sequence O1. The selection of such molecules is achieved
by first heating the solution to separate the DNA strands and then
applying magnetic beads attached to sequences that are complemen-
tary to those being searched for and thus anneal with them. Next,
the selected molecules are further processed to select only the ones
containing O2 and so on, up to O5.	The molecules we are left with at
the end of this process represent paths that visit each vertex.

 5. PCR is applied again to the solution (using the same primers) to make
sure that even a small number of appropriate DNA molecules will be
detectable.

 6. Gel electrophoresis is performed to test whether any DNA molecules
of the appropriate length are found. If such molecules exist in the
solution, this proves that a Hamiltonian path exists in the graph, and
the algorithm outputs yes; otherwise the output is no.

Figure 5.11, taken from Adleman (1994), shows the gel used to read out the
composition of the DNA molecules found. The gel shows the final step of the
algorithm (Step 6). To produce the image in Figure 5.11, a number of PCR
processes were applied to the molecules, each of which contained O0 as one
of its primers; the complements of O1 through O6 were used consecutively as
the other primer. The resulting DNA was then run on a gel. Each lane in the
figure shows the result of the amplification of a specific subsequence of the
Hamiltonian path. This process allows us to see the formation of the mol-
ecules for all partial paths and to prove that the resulting Hamiltonian path
is 0 →	1 →	2 →	3 →	4 →	5 →	6. Alternatively, it is possible to sequence the
resulting molecule and actually read out the sequence of the vertices.

226    ◾    Biological Computation

In Adleman’s experiment the implementation of the molecular algo-
rithm for a seven-vertex graph took about a week of lab work. Some of the
steps can be automated, and the time to implement such an algorithm may
be shortened to a matter of hours; indeed, in subsequent works Adleman
presented apparatuses that can do this. Nonetheless, some of the processes
are time-consuming; for example, the PCR steps cannot be significantly
shortened. Clearly, for a seven-vertex graph the computation time is much
shorter on a regular computer. However, computer scientists are interested
in analyzing how the time to execute an algorithm changes as a function
of the problem’s size. The molecular algorithm was run on a small graph,
and we would like to know how its speed would vary as the size of the
graph is increased. This allows us to neglect “fixed costs” and focus on the
execution speed as a function of the input size (the number of vertices in
the graph). The complexity of the algorithm is analyzed by counting the
change in the number of basic operations the algorithm goes through as
a function of the input size (usually denoted by n). Note that counting
basic operations is better than measuring actual running time, as it is not
dependent on the speed of the machines used to execute the algorithm.

The number of lab steps needed for implementing the molecular algo-
rithm grows linearly with the size of the input. That means that if the
number of vertices is doubled, the number of lab steps will also double
(ignoring fixed costs that do not change as a function of n). This can be
seen by looking at all the steps taken by the molecular algorithm and ana-
lyzing how they depend on the size of the graph. For most of the steps
it seems that the amount of time is constant regardless of the size of the
graph. For example, the hybridization performed in Step 1 would take
roughly the same time whether 7 or 7000 molecules are involved. The only
step that is directly dependent on the size of the graph is Step 4 where the

1 2 3 4 5 6 7

150
100
50

FIGURE  5.11  The experiment proving the existence of a Hamiltonian path:
Graduated PCR of the final product of the experiment revealing the Hamiltonian
path (lanes 1 through 6); the molecular weight marker is in lane 7. (From
Adleman, Leonard M., Science 266, no. 5187, 1021–1024, 1994. With permission.)

Molecular Computation    ◾    227

number of selection operations is the same as the number of vertices in the
graph, so obviously the number of selection operations will double when
the number of vertices is doubled. If at every step of the algorithm the
increase in the number of operations is equal (or is a constant multiple) to
the increase in the number of vertices, the total increase is linear, and the
algorithm is called a linear algorithm.

All the conventional Hamiltonian path algorithms require a number of
operations that grows very fast—in fact, exponentially—as a function of
the size of the graph. This is very different from the behavior of the molecu-
lar algorithm, which is more and more cost-effective as graphs gets larger.

Counting the number of steps needed to execute the algorithm in the
lab allows us to estimate the efficiency of the algorithm but hides the num-
ber of concurrent operations caused by the collisions of the molecules in
the test tube. As already stated, parallelism is the secret behind the power
of the molecular algorithm, and to appreciate its strength it is important
to try to determine how many molecular operations are performed at each
stage. This will allow us to estimate the number of basic operations and
to facilitate the comparison between the performance of the molecular
computation and regular digital computations.

Let us estimate the number of ligation operations performed in Step 1 of
the molecular algorithm to evaluate the number of operations performed
per time unit, which is the common metric of the speed of a computa-
tional device. This approach provides a way of quantifying the advantage
a molecular algorithm has relative to a sequential computation using a
digital computer. Adleman (1994) estimated that the number of ligation
operations performed in Step 1 was on the order of 1014 and that it would
be relatively easy to increase this number to at least 1020. Dividing this into
the length of time it takes to perform Step 1 (about an hour) shows that
the molecular computation operations are about as fast as basic operations
performed on a supercomputer.

It is common in computer science to evaluate algorithms by looking
at the time and memory needed to execute them (as a function of input
size). One could also look at other resources. For molecular algorithms we
might want to look at the cost of resources, such as the number of mole-
cules needed to perform the algorithm or the amount of energy consumed
by the process, again as a function of the graph size.

The number of distinct molecule types needed for implementing the
algorithm (i.e., representing the vertices and edges), grows only linearly
with the graph size. However, this is not the case for the total number of

228    ◾    Biological Computation

molecules. It is important to realize that the algorithm has to generate all
possible paths in the graph to make sure that each one is tested for being
Hamiltonian. Since the number of possible paths of length N in the graph
is roughly dN (where d is the average degree of nodes in the graph), the
amount of DNA (i.e., the total number of molecules) needed will grow
exponentially with the number of vertices. Assume a graph with 80 ver-
tices and an average degree of 10. We will then need more than 1080 DNA
molecules. This number is larger than the estimated total number of atoms
in the universe, which obviously indicates that this and similar algorithms
are not practical for large problems. Thus, these types of molecular algo-
rithms do not really offer us a magic bullet to shatter the limits of solving
large exponential problem. Nevertheless, these algorithms may be useful
in addressing medium-size problems that are not amenable to conven-
tional computation.

Another disadvantage of the molecular algorithm, compared with digi-
tal computation, is that it is susceptible to errors. As we will see, errors can
arise in various stages of the algorithm and can adversely affect the success
of the algorithm. This is particularly dangerous in Step 4 of the molecu-
lar algorithm. If a single valid path fails to be selected and is removed
due to an error, the algorithm may return a false	negative, even though
a Hamiltonian path does exist. That is the reason for repeating the PCR
at each step—amplifying the number copies representing each solution
reduces the probability that all the copies will be lost due to an error. The
danger of a false	positive is not as problematic, as the molecules that gave
rise to the positive answer are validated at the final step to verify that they
indeed represent a Hamiltonian path in the graph. If it turns out that the
molecule does not represent a Hamiltonian path, other molecules from
the final batch can be tested.

A major source of errors during the molecular computation is due to
the potential creation of wrong double-stranded molecules. For instance,
a sequence s might hybridize with a sequence that is similar but not iden-
tical to its complement s because of a partial match. Another possibility is
that single strands that are complementary on a subsequence will create
a double-stranded molecule even though they are not complementary on
the full length of the sequence: a sequence xy	can create a partially dou-
ble-stranded molecule with the strand yz by pairing the sub-sequences	y	
and y . Another case is when two regions in the single strand happen to
complement each other, thereby losing the linear structure and creating
loops in the molecule.

Molecular Computation    ◾    229

The more similar is the representation of a vertex to the complement of
another vertex, the larger is the probability of creating erroneous double-
stranded sequences. To lessen this danger, it is better to choose molecular
representations that minimize the probability of creating such errors, that
is, choosing representations that are different enough from each other.
This can be achieved by using longer molecular representations and select-
ing the sequences so that the number of complementing bases between
any two representations will be minimal.

Note that the hardware of digital computers is also prone to various
errors, which might occur because of electromagnetic induction between
components of the electronic circuits or because of electrical noise in the
vicinity of the circuit. The errors may affect the computation of the logical
circuits, but the main danger lies in the fact that they may change the con-
tent of stored data bits. Various techniques are applied to minimize these
risks, and digital computers are usually considered so trustworthy that
programmers and users tend not to consider the possibility of hardware
errors. Nonetheless, when building computers that have to be extremely
reliable (e.g., aircraft control systems), system architects do address the
possibility of hardware errors—both at the physical design and at the logi-
cal design (e.g., algorithmic) levels.

To conclude, let us compare the molecular algorithm with a digital
computer:

 1. Speed: Personal computers currently operate at speeds of Gflops (109

floating-point operations per second). The fastest supercomputers are
close to achieving speeds of Petaflops (1015 floating-point operations
per second). Adleman (1994) estimated that one can achieve a simi-
lar number of 1015 ligation operations per second. In other words, the
number of basic operations per second (which are not particularly
expensive or complex) of the molecular algorithm is similar to that
of a digital supercomputer.

 2. Memory (space efficiency): A single bit of information is stored in a
molecular representation with a volume of about 1 cubic nanometer.
Modern disks can store 1011 bits in a cubic centimeter that translate
to one bit in 1010 cubic nanometers; that is, the molecular representa-
tion offers a dramatic improvement.

 3. Energy: One joule of energy is enough for 2 × 1019 ligation opera-
tions, which is 1010 more efficient energy-wise than a supercomputer.

230    ◾    Biological Computation

(A joule is a physical unit of energy equaling roughly the amount
of energy required to lift a 1 kilogram object 10 centimeters off the
Earth’s surface.)

 4. Flexibility: The biggest problem is that the use of molecular algo-
rithms requires a radically different design of the algorithm for each
problem (in terms of, e.g., representation, logical operations, and labo-
ratory procedures) and that in each case the algorithm needs to be cre-
ated from very basic molecular operations. Contrast this with solving
problems using digital computers where modern high-level program-
ming languages and software design tools enable solving computa-
tional tasks in fairly straightforward ways (at least most of the time).

5.2.2  Solving SAT

We now present a molecular algorithm for solving another computation-
ally hard problem called the satisfiability problem, or SAT for short. This
is also an NP-complete problem, like the Hamiltonian path problem. The
solution described here was presented by Richard Lipton in 1995 and uses
Adleman’s (1994) technique for constructing all possible paths in graph as
part of its construction (Lipton, 1995).

The particular case of SAT known as 3SAT has an illustrious com-
puter science history, as it was the original problem proven directly to
be NP-complete. All the subsequent NP-completeness proofs are based
on reducing 3SAT to the problem or reducing another problem that was
reduced directly or indirectly from 3SAT. The molecular solution we pres-
ent here is not as “elegant” as Adleman’s Hamiltonian path solution (even
though it is based on it) and exposes a brute-force characteristic that is
much more subtle in Adleman’s work.

Definition	of	the	SAT	Problem
Let U	= {u1,u2,…un} be a set of logical variables. A logical variable’s value
can be either “true” or “false.” An assignment is a function t	that deter-
mines for every element in U a value, either “true” or “false,” denoted
from now on by 1 and 0, respectively. If u is a variable from the set U,
then u and u’	(meaning “not u,”	also denoted by ¬u) are called literals.
The literal u has the value “true” under the assignment if and only if the
variable u was assigned the value “true.” Similarly, the literal u’ has the
value “true” if and only if the variable u was assigned the value “false.”

The SAT problem is defined as follows:

Molecular Computation    ◾    231

Given a logical formula of the form C	= C1 ∧	C2 ∧…∧	Cm, where
every clause Ci is of the form v1 ∨	v2 ∨…∨	vh , and each vi is a literal,
determine whether there exists an assignment for the variables in
C for which the logical formula C is true (i.e., its value is 1). We say
that such an assignment satisfies the formula C.

Examples
• Let C	=	(p). This formula contains one clause and one variable, and

the assignment {p	= 1} satisfies it.

• Let C	= (p	∨	q). This formula contains one clause and two variables,
and any assignment where either p or q assumes the value 1, such as
{p	= 1,	q	= 0}, satisfies it.

• Let	C	= (p)∧ (q). This formula contains two clauses and two variables.
In this case the assignment has to be {p	= 1,	q	= 1} for both clauses
to be satisfied.

• Let C	= (p	∨ q) ∧ (p’	∨	q’). Here we have two clauses: (p	∨	q)	and	(p’	
∨	q’). To satisfy the formula, both clauses have to be satisfied simul-
taneously. The two assignments {p	= 1,	q	= 0}	and {p	= 0, q	= 1} both
satisfy the formula.

• Let C	= (p) ∧ (p’). It is easy to see that an assignment cannot exist
that satisfies C because it is impossible for both p and p’ to be true at
the same time.

• Let C = (x	∨	y	∨	z) ∧ (x	∨ y	∨ z’) ∧ (x’	∨ y’	∨ w) ∧ (x	∨ z’	∨ w’). For C
to be true, we have to assign values to the variables x,	y,	w,	and z such
that for each clause there exists at least one literal with the value 1.
Here {x	= 1,	y	= 1,	w	= 1,	z	= 0) is one such an assignment. This for-
mula is an instance of a 3SAT problem, where each clause contains
exactly three literals.

To solve SAT we have to represent all possible assignments for the variables
in the formula. To do so, DNA sequences representing all the binary strings
of a given length are prepared. For instance, if the formula contains three
logical variables x,	y, and z, all the eight possible Boolean assignments have
to be evaluated.

In general, 2n representations of sequences have to be gener-
ated for n variables. To do this efficiently we make use of the power of

232    ◾    Biological Computation

molecular computation using similar techniques to those used for solving
the Hamiltonian path problem. We will build a graph in which each path
from the initial node a1 to the last node an represents a binary string. The
graph for n	= 3 is shown in Figure 5.12.

An example of a path in the graph is a1xa2y’a3za4. This represents the
string 101: at each node ai	one can choose between the upper and lower
edges. The upper edge corresponds to choosing 1 as the assignment of
one variable, whereas the lower nodes represent the bit 0. Each path rep-
resents an assignment of the set of variables. So the path a1xa2y’a3za4
represents the assignments {x = 1, y = 0, z = 1}. As in Adleman’s (1994)
algorithm, we choose random DNA sequences for the vertices a1, a2, a3,
and a4 and for the vertices representing the variables x,	 y, and z and
their negations x’,	y’, and z’. Note that the representations of x,	y,	and z
and their negations x’,	y’,	and z’ are not complementary DNA sequences
(e.g., the representation of x	does not complement the representation of
x’). Using these representations for the vertices, the edges are then built
as described in Adleman’s algorithm. All the possible paths in the graph
will be generated in a test tube containing all of these molecules together
with the enzyme ligase, similar to the way the paths were generated in
the Hamiltonian path problem. Each path represents one distinct truth
assignment for the n variables in the formula.

Note that in such a graph Adleman’s technique will create all the paths
representing exactly all the 2n combinations of the variables’ values. After
they are generated it is possible to select all sequences with the value 1 in
the i-th bit or all sequences without 1 in that bit, that is, sequences with
the value 0 in the i-th bit. This can be achieved by using magnetic beads
attached to the complements of the sequences of interest. The general strat-
egy is to prepare all possible assignments as previously described and then
to select the sequences that satisfy the formula (clause by clause) and to dis-
card sequences that do not satisfy the clauses. If (and only if) any sequences
remain, we know that a satisfying assignment exists for the formula.

x y z

x́ ý ź

a1 a2 a3
a4

FIGURE 5.12  The graph generating all binary sequences of length three.

Molecular Computation    ◾    233

We start with a test tube marked T0 containing all possible assignments
to the variables. The computation proceeds to create a set of T1,T2,…,Tm	
of test tubes (where m is the number of clauses in the formula) such that
Ti contains only the sequences that satisfy the clauses C1,C2,…,Ci.

Algorithm	Structure
• Prepare a test tube T0 containing all possible variable assignments.

• For all 1 ≤	i	≤ m	perform the following:

• Generate the test tube Ti from the molecules in the test tube Ti-1
by selecting the sequences representing assignments that satisfy
the clause Ci (the exact way of doing it is left as an exercise; see
Exercise 5.10).

 Recall that the sequences in tube Ti-1 contain only sequences sat-
isfying all the clauses C1,…,Ci-1; thus, this process will iteratively
eliminate sequences that do not match the clauses of the logical
formula.

• Test the tube Tm to see if it contains any DNA (there are many simple
ways for doing this). If so, the algorithm returns “yes.” If not, the for-
mula is not satisfiable, and the algorithm returns “no.”

Performance	Analysis
If the formula contains m clauses and is made up of a total of l literals,
then the number of operations the molecular SAT algorithm performs is
linear in l. If the number of literals per clause is fixed (as in the 3SAT case),
then the performance of the algorithm is linear in m. We leave the proof
of these assertions as exercises for the reader (see Exercises 5.11 and 5.12).

5.2.3  DNA Tiling

In the 1960s Hao Wang suggested using tiling as a computational mecha-
nism. This model seems simple but turns out to be very challenging. In
the tiling model there is a finite number of types of tiles and an infinite
number of tiles of each type. Each tile has four labeled sides (e.g., the sides
may be colored), and tiles may be laid next to each other only if any two
touching sides are labeled the same. The tiles may not be rotated. Given
such a set of tiles, the computational task is to determine if it can be used
to tile the entire plane (Figure 5.13). In some cases the answer is trivial.
For instance, if all tiles are of the same kind and the opposite sides share

234    ◾    Biological Computation

a color (Figure 5.13(a)), then it is possible to use them to tile the plane. In
other cases (Figure 5.13(b)) it is obvious that they cannot be used to tile
the plane. But in many cases (Figure 5.13(c)) the answer is far from obvi-
ous. In fact this problem is equivalent to the halting problem we discussed
in Chapter 2. In other words, in general it is impossible to find an algo-
rithm that will decide if the tiling problem has a solution in finite time.
Moreover, it is possible to build the equivalent of a Turing machine using
such tiles; therefore, the tiling model can be used to solve any problem
solvable using a Turing machine; that is, it is computationally universal.

Erik Winfree (Winfree et al., 1998) suggested that DNA molecules can
be used to represent “tiles.” Winfree demonstrated the power of the til-
ing model by using it to build a binary counter (Barish, Rothemund, and
Winfree, 2005) as demonstrated in Figure 5.14.

Winfree used seven types of tiles, depicted at the top of Figure 5.14. The
tile labeled S is the starting tile. The two shaded tiles are used to build the
frame in which the computation occurs, and the remaining four tiles are
used for the computation. (This time, in contrast to Figure 5.13, we match

Bit = 0

Bit = 1

No rollover

Rollover

1

0 1

0

1

1
1
1

1

00

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

00000000
0000000
000000

00000

0000

000

00

S S

FIGURE  5.14  A binary counter using tiles. (Adapted from Barish, Robert D.,
Paul W. K. Rothemund, and Erik Winfree, Nano	Lett 5, no. 12, 2586–2592, 2005.
With permission.)

(a) (b) (c)

FIGURE 5.13  Tile samples. (a): Single tile that can be used for tiling the plane.
(b): A pair of tiles that cannot tile the plane. (c): Three tiles for which the problem
is difficult.

Molecular Computation    ◾    235

shapes instead of colors.) The computing tiles represent binary values—
two represent the value 0, and the other two represent the value 1.

The computation starts by laying down the starting tile S (this is the
only time it is used). Subsequently, the framing tiles necessarily have to be
laid out as depicted in Figure 5.14. Using this frame, the local rules speci-
fying how tiles match will lead the computing tiles to self-organize in a
way that creates a binary counter where the first row represents the value
1, the second row the value 10, followed by 11, and so forth. The computa-
tion can be understood by studying Table 5.2: a tile has the same value
as that of the tile directly underneath it if there is no carry (denoted by a
smooth face) and has the opposite value if there is a carry (the face has a
protrusion). So whenever a carry causes the value to change from a 1 to a
0, the corresponding tile will have a protrusion, thereby passing the carry
bit to the tile on its left.

As mentioned already, it is theoretically possible to use tiling to perform
any computation; thus, if we can implement tiles by using DNA molecules,
we will be able to use DNA to perform any computation. However, achiev-
ing this in practice presents many technical challenges. DNA molecules are
usually viewed as having binary recognition capabilities; that is, the two
strands can recognize each other. If we can construct DNA molecules such
that four strands can mutually recognize each other, then we can directly
implement the tile model. By coding the molecules correctly we can expect

TABLE 5.2  The Matching Rules of Tiles

Right

Bottom

1

1

0

0

0

0

1

1

1

1

00

0

0

1 1 0 0

236    ◾    Biological Computation

that they will self-organize in a way that will solve the tiling problem. For
instance, in the previous example we would like the DNA molecules to
recognize each other if and only if two recognition surfaces (on the bottom
and on the right) match.

Winfree et al. (1998) created complex DNA structures that implement
four-way recognition (Figure 5.15). Each structure contains four DNA mol-
ecules that are partly single stranded and partly double stranded. Using
these molecules, Winfree designed a relatively simple tiling representing
a two-dimensional periodic template and implemented it in the lab. Later
he also implemented the binary counter as well as other complex computa-
tions. Nonetheless, the necessary self-assembly processes have a low yield
(i.e., not all molecules self-organize when they should) and a high error
rate (i.e., molecules are matched even if they should not match).

5.2.4  DNA Computing—Summary

We have discussed Adleman’s (1994) technique for solving computa-
tional problems using DNA. This technique is useful when attempting
to solve NP-complete combinatorial optimization problems such as the
Hamiltonian path problem. We also saw how to use this technique to solve
another NP-complete problem, SAT.

In both cases the generate-and-test algorithms have two main phases:

 1. “Possible solutions” are created randomly.

 2. The solution set is refined so that only true solutions to the problems
are kept.

The first phase uses the fact that single-stranded DNA molecules create
double-stranded sequences according to the base-pairing rules. So, for
instance, in Adleman’s Hamiltonian path algorithm the edges combine

T

T T T T TA A AA A AG GG G G GGC
C C C CCA A A AT T T TGG G

C C

T T TC C CC C CG GG G
G GG G G G G GG GG T CGTC CC CC CA A A

A A A A AT T T T TTG G GG G GC C C
CCCC C AAA GGG TTTT T

C

T T T T TA A AGGCC CC CC C CCAG
A A AT T TT T

CA A A A AA

FIGURE 5.15  A schematic DNA structure for creating “tiles” that can join other
tiles. (Adapted from Barish, Robert D., Paul W. K. Rothemund, and Erik Winfree,
Nano	Lett 5, no. 12, 2586–2592, 2005. With permission.)

Molecular Computation    ◾    237

to create paths. These molecules, which represent possible solutions to the
problem, are generated randomly and in parallel as a result of collisions
between molecules in the test tube.

The second phase is based on a sequence of molecular operations. Each
operation is performed simultaneously and in parallel on all possible solu-
tions in the test tube. This is reminiscent of parallel computing technique
called single instruction,	multiple data (SIMD).

It is useful to catalog the set of basic molecular operations used to build
this kind of algorithm (Boneh et al., 1996) and to understand their logical
purpose (see Table 5.3). So far this toolbox of molecular operations has not
allowed us to create a practical high-level language to facilitate easy con-
struction of molecular algorithms for solving many diverse computational
problems.

Winfree presented another way of computing using DNA; he created
tiles that can be matched in ways that implement complex computations.
As tiling is a universal computational model, this approach should allow
us to solve any solvable computational problem using molecular compu-
tation. In practice, the translation of computational problems into til-
ing problems is nontrivial, and this approach is fraught with technical
difficulties.

5.3  ENZYMATIC COMPUTATION
In Adleman (1994) we saw how to represent a computational problem as
a collection of DNA molecules and to compute using a sequence of lab
operations. In Winfree et al. (1998) we saw how to use DNA to implement
a molecular computation that proceeds in the test tube without the need
for external manipulation. The approach we describe next, developed by
Ehud Shapiro’s group (Benenson et al., 2001) is similar in this respect.

TABLE 5.3  The Basic Molecular Operations

Operation Logical Meaning
Extraction Extract all molecules containing a given sequence.
Length Separate the molecules according to their length (using gel

electrophoresis).
Pour Combine the content of two test tubes without changing the

molecules.
Amplify Create many copies of molecules or segments using PCR.
Anneal (base pairing) Create double-stranded molecules from single-stranded

molecules using base pairing.

238    ◾    Biological Computation

The fact that a molecular computation is autonomous is of major impor-
tance as it may allow us to build “molecular computers” that will operate
independently as components in biological and chemical processes not
requiring external manipulations. An example of such a process may be a
biological device for drug release inside the body. Moreover, this approach
allows us to regard autonomic biological processes as computational pro-
cesses, a point of view that has theoretical importance when considering
life as a computation.

5.3.1  Finite Automata

This section presents a molecular computing device that implements a finite	
automaton. A finite automaton is a model of a system that reacts to a
sequence of inputs. At any given time period the machine is in one of a
finite set of states, and the transitions from state to state depend on the
next input being read.

The automaton’s set of states is denoted as Q, and the states are qi,
where i	is between	0	and n. The input tape contains an input word that is a
sequence of symbols from a finite alphabet denoted by ∑. The automaton’s
“read head” reads this sequence of symbols, and the automaton changes its
state accordingly. At any given point during the computation the reading
head is located on a particular input symbol (current	input). After the sym-
bol is read, a basic computation step composed of two actions is performed:

 1. The automaton proceeds to the next state (which may be the same as
the current state).

 2. The input tape advances so that the read head is placed on the next
input symbol.

The automaton repeats this basic computation step until the tape has
been read entirely. The final state, which the automaton reaches after read-
ing the complete tape, is defined as the result of the automaton to the input
word. The states of the automaton are of two kinds: (1) accepting; and (2)
nonaccepting. If the last state the automaton reaches after reading the com-
plete word is an accepting state, we say that the automaton has accepted
the input word. Otherwise, the automaton rejects the input. We denote the
set of accepting states by F. The set of all words accepted by the automaton
is called the formal	language	accepted	by	the	automaton.

Molecular Computation    ◾    239

To ensure a unique computation outcome, one of the states is defined to
be the	initial	state and is denoted as q0.

The formal definition of a deterministic finite automaton is as follows:
Let ∑	= {a1,a2,…,an} be a finite alphabet. A deterministic finite automaton

A	= (Q,q0,δ,F) over ∑	is characterized by the following four parameters:

	 1.	Q is a finite set of states.

	 2.	q0 ∈	Q is the initial state of the automaton.

	 3.	δ:	Q	×	∑	→	Q	is a deterministic function that defines the transition
between the automaton’s states.

	 4.	F	⊆	Q is a finite nonempty set of terminal (or accepting) automaton
states.

The automaton is an abstract state machine that changes its state as
dictated by the function δ	when reading an input string with symbols
in ∑ .

If the automaton is in state qj	∈	Q and it reads the symbol ai	∈	∑, it will
transition to the state δ(qj,ai).	If a a ai i ik1 2

... is a sequence of length k of sym-
bols over ∑	then δ δ δ(, ...) ((,), ...)q a a a q a a aj i i i j i i ik k1 2 1 2

= .
A language L is defined by an automaton A over an alphabet ∑	as the set

of all strings over ∑	 for which the automaton transitions from the initial
state q0 to some terminal state q	∈	F, that is, L(A) = {x|δ(q0,x) ∈	F}.

It is customary to distinguish between two kinds of finite autom-
ata. In a deterministic finite automaton there is a single transition
for any combination of the current state and the current input symbol.
In contrast, for a nondeterministic finite automaton there is a set of
possible next states for any combination of the current state and the
current input symbol. The set may be empty, in which case the autom-
aton cannot continue reading the input. A nondeterministic automa-
ton accepts all words for which there exists any path from the initial
state to an accepting state. It is also common to allow transitions that
do not advance the reading head on the input tape—these are called
ε-transitions. Surprisingly, it turns out that the set of languages defined
by deterministic finite automata is identical to the set of languages
defined by nondeterministic finite automata.

The following examples show that finite automata can be represented
in several ways:

240    ◾    Biological Computation

• In the automaton described in Figure 5.16, q0 is both the initial and
the only accepting state. The arrows indicate that upon reading either
a or b the automaton transits from	q0 to q1 and back upon reading
the next symbol. The automaton accepts all even-length words and
no odd-length words.

• A finite automaton that accepts strings with an even number of the
symbol b (Figure 5.17).

• A formal description of a finite automaton:

Σ =

=

=

=

=

{ , }

{ , , }

{ }

(,)

(,)

a b

Q q q q

F q

q a q

q b

0 1 2

1

0 0

0

δ

δ qq

q a q b q a q b q

1

1 1 2 2 2δ δ δ δ(,) (,) (,) (,)= = = =

 The language defined by this description is

 L A a b kk() { | }= ≥ 0

 So the automaton accepts all words of the form b,	ab,	aab,	aaab, and
so forth.

b

b

aa q0 q1

FIGURE  5.17  An automaton that accepts all strings over ∑ = {a,b}, where the
symbol b appears an even number of times.

a/b

a/b

q0 q1

FIGURE 5.16  An automaton that accepts all strings over ∑	=	 {a,b} of an even
length.

Molecular Computation    ◾    241

• The automaton in Figure 5.18 is nondeterministic as there are two
possible transitions for q0 upon reading the symbol b, and there is no
possible transition from state q1, regardless of the next symbol. If this
state is visited before reaching the end of the input word, the automa-
ton gets stuck and the word is rejected. When the automaton is in
state q0 and reads the symbol b, it has to “guess” whether to make the
transition to q0 or to q1. If the automaton guesses that this is the last
input symbol it makes the transition to the accepting state q1; oth-
erwise, it stays in state q0. For every word in the language (i.e., every
word ending with b), there is a computation that accepts it (i.e., where
the guess is correct), although alternative computations may exist that
do not terminate in an accepting state. Conversely, for words that are
not in the language, there is no possible computation that will end in
an accepting state. Note that if the automaton reaches state q1 before
reading the complete word, it halts in this state (as there are no transi-
tions out of it), and the word is not accepted (to accept a word it has to
be read in its entirety).

• One can also view the computation performed by a finite automaton
as an execution of a set of derivation or rewrite rules on strings as
follows. Assume that we are given the string q0bab, which contains
the initial state, and we are given the following rules:

 q0a → q0

 q0b → q1

 q1a → q1

 q1b → q0

a/b

b q1q0

FIGURE  5.18  A nondeterministic automaton that accepts all strings over ∑	 =
{a,b} that end with the symbol b.

242    ◾    Biological Computation

 where each rule encodes a given state and the left-most symbol of the
string and specifies what to do in that combination. For example, the
first rule states that if the string starts with q0a it should be replaced
with the symbol q0. For the string q0bab we start by applying the
second rule to obtain the string q1ab. Now we can apply the third
rule to derive the string q1b and finally the string q0 by using the
fourth rule. At this point there are no rules we can apply, so q0 is the
final product of the chain of derivations. Note that this is exactly the
same automaton we saw in Figure 5.17. If we define q0 to be a termi-
nal state, the automaton will accept all strings containing an even
number of occurrences of the symbol b. The string in the example
contains an even numbers of b’s, and indeed the computation ended
in the state q0. We will soon see how molecular computations can
implement finite automata described by derivation rules.

5.3.2  Enzymatic Implementation of Finite Automata

The analogy between automata with a read head that traverse an input
tape and the biological process of a DNA sequence being “read” during
operations such as transcription is the reason many researchers attempt
to connect the two models. Here we describe one of these attempts done
by Shapiro’s group—implementing finite automata using molecular tech-
niques. The automata described here are simple two-state automata oper-
ating on an alphabet containing two symbols.

Shapiro’s computation is performed on DNA molecules sequentially
cleaved by enzymes until the final result of the computation is obtained.
The restriction enzyme allowing for this automatic cutting without the
need for external manipulation is called FokI.

The FokI enzyme is a restriction enzyme (see Section 5.1.3); that is, its
function is to cleave a DNA molecule. It operates by recognizing a particular
sequence of nucleotides (called a restriction site) and by cutting the DNA
at a location a few bases from the recognition site. Let us look at the DNA
molecule in Figure 5.19. The enzyme recognizes the sequence GGATG and
cleaves that strand 9 bases away and the other strand 13 bases away. As a
result of this particular type of cut, the resulting double-stranded DNA
molecule has a single-strand end that is four bases long (i.e., a sticky end).
The result is depicted in Figure 5.20.

The finite automaton is implemented by representing each transition
rule as a DNA molecule. These molecules are called transition	 mol-
ecules and are similar to the derivation rules previously described. The

Molecular Computation    ◾    243

input string is represented as a DNA molecule chosen such that the FokI
enzyme will cleave it and expose the appropriate sticky ends. A transition
molecule attaches to the sticky end in accordance with both the current
symbol in the input string and the current state of the automaton, and is
ligated to the molecule. This representation is the basis of the automaton’s
molecular implementation.

The computational process follows these steps:

 1. Representing the input string as a double-stranded DNA molecule
containing the FokI recognition site.

 2. The FokI enzyme cleaves the molecule and exposes the sticky end.

 3. A transition molecule representing one of the transition rules
attaches to the sticky end and determines the next state of the
automaton. It is important to make sure that only one molecule
can attach, thereby implementing the required transition rule. As
we discuss later, if more than one molecule is allowed to attach
to the sticky end, a nondeterministic automaton is in effect
implemented.

 4. Repeat from Step 2.

GGATGNNNNNNNNN
CCTACNNNNNNNNNNNNN

(5’) (3’)

(3’) (5’)

FIGURE 5.19  FokI recognition site and cutting pattern (N can be any nucleotide).

(a)

(b)

(5’)

(3’)

9 bases

13 bases

Sticky end

GGATGATATATTCTGGCTCGCAGC...
CCTACTATATAAGACCGAGCGTCG...

GGCTCGCAGC...
GCGTCG...

(3’)

(5’)

FIGURE 5.20  The result of a FokI restriction. (a) Binding of FokI. (b) The result-
ing molecule.

244    ◾    Biological Computation

Steps 2 through 4 continue to take place as long as the FokI enzyme can
find a restriction site and as long as the appropriate transition mole-
cules exist. If the transition molecules are depleted, the automaton halts
and does not reach an accepting state. The molecular representation
of the automaton described in Figure 5.17 is depicted in Figure 5.21.
Following the molecular computation in this example is left as an exer-
cise (Exercise 5.17).

The key idea of the molecular implementation of the finite automaton is
finding a molecular representation that combines the automaton state and
the next input symbol. This representation allows one DNA molecule both
to represent the automaton’s input and to implement its memory during
the computation. First, we choose representations for each symbol in the
alphabet, namely, for a and b, as well as for a special terminator symbol
that will signal the end of the input string. Each representation is six bases
long. A possible representation is shown in Table 5.4.

The current state of the automaton is stored in the DNA molecule by
having each of the automaton states represented by exposing a different

Start

Input

Output

Software

Fok I
Ligase

a
GGATGT CTGGCT CTGGCT CGCAGC CTGGCT CGCAGC TGTCGC
CCTACA GACCGA GACCGA GCGACG GACCGA GCGTCG ACAGCG

GGATGTAC

GGATGACG
CCTACTGCGACC

GGATGG
CCTACCGCGT

CCTACATGCCGA
GGATGACGAC
CCTACTGCTGGTCG

a b a b

q0 q0 q0 q1
ba

q1 q1
a q1 q0

b

FIGURE 5.21  Molecular computation. The figure shows the molecular represen-
tation of the input string, the transition molecules, and the two enzymes needed
to implement an automaton that accepts binary strings with an even number of
b’s. (Courtesy of Ehud Shapiro.)

Molecular Computation    ◾    245

sticky end of the representation of the next input symbol. The sticky ends
depend on the representation of the symbol and the current state of the
automaton. For state q1 we use the first four bases of the symbol’s rep-
resentation, and for q0 we use the last four bases of the representation.
The displacement from the beginning of the symbol’s representation is
denoted by ∆ and is in one-to-one correspondence with the state of the
automaton. In Table 5.5 the sticky end is underlined for every symbol–
state combination.

Recall that the state transition function determines the next state as
a function of the current symbol and state: δ	:	Q	×	∑	→	Q. Thus, when
FokI cleaves the last added transition molecule, it will expose a sticky
end representing the new state of the automaton. The next transition
molecule will attach itself to this sticky end as dictated by the new state
and the next input symbol and so on until the input has been read in
its entirety.

Each transition molecule has three components (see, e.g., the four tran-
sition molecules in Figure 5.21):

 1. The FokI recognition site.

 2. The region identifying the current state and symbol.

 3. The spacer region determining the next state. This component is the
key for the proper implementation of the automaton, as its length
determines the automaton’s next state (Table 5.6).

TABLE 5.4  Representation of the Automaton’s Alphabet

A B Terminator (t)
CTGGCT CGCAGC TGTCGC

TABLE 5.5  Representation of Symbol–State Combinations
State Symbol

A
CTGGCT

B
CGCAGC

T
TGTCGC

q0
Δ = 2

<q0,a>
CTGGCT

<q0,b>
CGCAGC

<q0,t>
TGTCGC

q1
Δ = 0

<q1,a>
CTGGCT

<q1,b>
CGCAGC

<q1,t>
TGTCGC

246    ◾    Biological Computation

How does the length of the spacer achieve the desired result? Recall that
FokI removes nine bases after the recognition site and that each symbol is
represented by six bases. These, together with the current displacement ∆,
determine what will be the displacement from the beginning of the next
symbol arising after the FokI cleavage. This displacement uniquely deter-
mines the identity of the next state of the automaton.

	 ∆new	= 9 – (6 – ∆current) –	spacer	= 3 + (∆current	– spacer)

Plugging the result of this formula into each of the transition states
produces the displacements shown in Table 5.7. The table confirms that,
given the displacement of the current state, the displacement produced
after the cleavage matches the new state as required. So by choosing the
spacer length it is possible for the transition molecules to encode the state
transitions. This construction allows us to create molecules describing all
eight possible transition rules for a two-state automaton over a two-sym-
bol alphabet (Figure 5.22). When interested in recognizing a particular
language (e.g., all strings containing an even number of occurrences of
the symbol b), one can select the appropriate subset of rules (as illustrated
in Figure 5.21).

The input molecule also includes a “terminator” sequence that is attached
to the right of the input sequence. The input is scanned as long as recogni-
tion sites for FokI to cleave still exist and as long as appropriate transition

TABLE 5.6  Spacer Length Representation of the Automaton’s State Transitions

Spacer
Length State Transition
1 q1 →	q0

3 State unchanged
5 q0 →	q1

TABLE 5.7  Analysis of the Effect of Different Spacer Lengths

State Transition Spacer Length ∆current ∆new

q1 → q0 1 0 2

Do not change states 3 0 0
2 2

q0 → q1 5 2 0

Molecular Computation    ◾    247

molecules exist. When the required transition molecules are missing (i.e.,
no transition molecule exists that matches the current sticky end), the
automaton halts and does not reach a final state. If the automaton scans the
input string to its end, the final sticky end will be that of the terminator,
which reflects the final state reached by the automaton.

To determine whether the automaton accepts the string (i.e., to deter-
mine whether the string belongs to the language recognized by the autom-
aton), one has to determine if the final state is an accepting state. The last
time FokI cleaves the sequence, it cleaves the terminator sequence, and the
resulting sticky end depends on whether the final state is q0 or q1.

Output	 detectors, which are double-stranded DNA sequences with a
sticky end that complements the terminator sequences representing either
q0 or q1, can be used to identify the final state. In Shapiro’s method this was
done by using output detectors of different sizes for each of the two autom-
aton states. In this way gel electrophoresis, which allows us to ascertain
the length of the DNA molecules in the solution, can be used to discover
the final state of the automaton.

It is interesting to note that the molecular implementation allows the
implementation of both deterministic and nondeterministic finite autom-
ata. This nondeterminism is manifested by allowing more that one type of
transition molecule to attach to a given sticky end and thus the computation
to proceed in alternative routes. Using nondeterminism permits a reduc-
tion in the number of states necessary for identifying a particular language

GGATGTAC
GGATGTACCCGA

T1:q0 q0
a

GGATGACGAC
C C TA CT G C T GC C G A

T2:q0 q1
a

GGATGACG
C C TA CT G CG T C G

T3:q0 q0
b

GGATGACGAC
C C TA CT G C T GG T C G

T4:q0 q1
b

GGATGA
C C TA CAG A C C

T5:q1 q0
a

GGATGACG
C C TA CT G CG A C C

T6:q1 q1
a

GGATGG
C C T A CCG C G T

T7:q1 q0
b

GGATGACG
C C TA CT G CG C G T

T8:q1 q1
b

FIGURE 5.22  The eight molecular rules for implementing all two-state automata
over a two-symbol alphabet. (Courtesy of Ehud Shapiro.)

248    ◾    Biological Computation

relative to a deterministic automaton that recognizes the same language. So
it would seem that using the molecular mechanism to implement nondeter-
ministic automata may offer an advantage. However, in practice Shapiro’s
group noted that increasing the number of nondeterministic decisions
decreases the yield (i.e., the number of molecules that complete the com-
putation) exponentially; therefore, this approach was not deemed practical.

5.4  SUMMARY
This chapter demonstrated two main approaches to using biological mol-
ecules for computational processes: (1) computations implemented by
applying lab techniques to DNA molecules; and (2) independent computa-
tion performed by proteins (i.e., the enzymatic computation discussed in
Section 5.3). Both approaches depend on choosing an appropriate repre-
sentation of the data as DNA molecules so that the computation can make
use of the complementarity of DNA strands.

DNA computing allows us to harness the inherent power of parallel-
ism, as molecular operations occur simultaneously in a huge number of
molecules in the test tube. This property is promising for solving com-
putationally hard problems, such as NP-complete problems. Independent
computations performed by enzymatic reactions lead to the possibility
of using computational processes for medical purposes. For example,
systems have been proposed that can identify DNA sequences typical of
cancerous processes (i.e., cancer markers). Such systems can identify the
combination of such sequences that the patient has (e.g., identify the exis-
tence of marker A and marker B and the lack of marker C) and can decide
on treatment, such as releasing a DNA molecule appropriate for treating
a specific condition (Benenson et al., 2004). The treatment might involve
turning off genes that promote the cancerous process using various molec-
ular techniques. This approach has been demonstrated in the lab in an in	
vitro setting but is not yet ready for medical use. It is conceivable that such
techniques may be used in the future for medical applications.

Note that computations using DNA are “artificial” in the sense that
they are not based on natural processes and make use of DNA for applica-
tions that are not natural to DNA molecules. Enzymatic computation is
based on reactions occurring in nature, but even so the procedure pre-
sented by Shapiro in which a sequence of DNA is iteratively digested can-
not be regarded as a natural biological process. This raises the question as
to whether one can use biological processes and molecules for computing
in a manner more similar to their natural activities. This would allow us

Molecular Computation    ◾    249

to make better use of the potential of these molecules, which have been
optimized to perform their function over millions of years of evolution.

In Dennis Bray’s (1995) insightful paper, he claims that a central func-
tion of proteins is to transfer information and to perform computations and
that proteins are therefore the most useful platform for molecular compu-
tations. Particularly useful is the capability of proteins to recognize each
other and to attach to each other very specifically. In fact, we can think of
the signal transduction mechanism in the cell as a computational process
and can harness it for general-purpose computations. Signal transduction
is the process whereby a combination of signals received by the cell mem-
brane causes a specific chain of reactions to occur (making use of proteins
that recognize each other), which results in the expression of genes in the
nucleus of the cell. Several such computational models have already been
proposed. For example, Unger and Moult (2004) suggested a way (so far
only as a theoretical model) to implement logical NAND (not and) gates by
molecules built from proteins tagged by DNA sequences. These molecules
are diffused in solution and can phosphorylate each other. Phosphorylation
is a process by which a phosphate is added to a protein molecule. This phos-
phate causes the protein molecule to undergo structural modification, in
essence creating two versions of the protein—phosphorylated and nonpos-
phorylated. Phosphorylation is a common modification used in biological
signaling. Unger and Moult suggested that phosphorylation reactions can
implement the logic of NAND gates so that when two molecules collide
they create a complex that phosphorylates the target molecule unless they
both are already phosphorylated. The model includes additional ingredi-
ents required for the model to directly implement any logical circuit, sug-
gesting a way for universal computation by proteins.

In conclusion we can say that the potential of molecular computation
of various types is large, yet it is important not to forget that molecular
computation has two main obstacles preventing it from currently being a
realistic alternative to digital computing:

 1. The difficulties in designing molecular algorithms relative to the
ease and flexibility of programming digital computers.

 2. Physical and experimental limitations making dealing with large,
multiphased molecular systems difficult and error prone. Taking a
molecular algorithm and turning it into a practical system is far from
straightforward.

250    ◾    Biological Computation

5.5  FURTHER READING
Adleman, Leonard M. 1994. Molecular computation of solutions to combinatorial

problems. Science 266, no. 5187, 1021–1024.
Barish, Robert D., Paul W. K. Rothemund, and Erik Winfree. 2005. Two computa-

tional primitives for algorithmic self-assembly: Copying and counting. Nano	
Lett 5, no. 12, 2586–2592.

Benenson, Yaakov, Binyamin Gill, Uri Ben-Dor, Rivka Adar, and Ehud Shapiro.
2004. An autonomous molecular computer for logical control of gene expres-
sion. Nature 429, no. 6990, 423–429.

Benenson, Yaakov, Tamar Paz-Elizur, Rivka Adar, Ehud Keinan, Zvi Livneh, and
Ehud Shapiro. 2001. Programmable and autonomous computing machine
made of biomolecules. Nature 414, no. 6862, 430–434.

Boneh, Dan, Christofer Dunworth, Richard. J. Lipton, and Jiri Sgall. 1996. On the
computational power of DNA. Discrete	Applied	Mathematics 71, no. 1, 79–94.

Bray, Dennis. 1995. Protein molecules as computational elements in living cells.
Nature 376, no. 6538, 307–312.

Lipton, Richard J. 1995. DNA solution of hard computational problems. Science
268, no. 5210, 542–545.

Unger, Ron and John Moult. 2006. Towards computing with proteins. Proteins.
63, 53–64.

Winfree, Erik, Furong Liu, Lisa A. Wenzler, and Nadrian C. Seeman. 1998. Design
and self-assembly of two-dimensional DNA crystals. Nature 394, no. 6693,
539–544.

5.6  EXERCISES

5.6.1  Biological Background

 1. The DNA polymerase enzyme continues complementing the tem-
plate strand to its end. Assume we started with long double-stranded
DNA molecule and primers that complement regions not at the ends
of the molecule. Which molecules will result after the PCR? Hint:
draw the molecules, and follow the PCR steps.

 2. What will happen if the first phase of PCR is applied to single-
stranded DNA molecules? What molecules will result at the end of the
process?

5.6.2  Computing with DNA

 3. Explain why a graph of N	vertices has at most N! paths of length N.

 4. Determine whether the graph shown in Figure 5.23 contains a
Hamiltonian path (for any vin and vout).

Molecular Computation    ◾    251

FIGURE 5.23

 5. Follow all the steps in Adleman’s algorithm, and show that it runs in
time that is linear in the number of vertices in the graph.

 6. Analyze the probability for errors in Step 4 of Adleman’s algorithm
where the goal is to select molecules containing a specific subse-
quence. Let P(X,s) be the “positive” test tube resulting from selecting
from a test tube X all sequences containing the subsequence s, and let
N(X,s) be the “negative” test tube (i.e., the remaining molecules after
taking out all the sequences containing s). Let εp be the probability
a molecule that should be in P(X,s) ends up instead in N(X,s), and
let εn be the probability a molecule that should be in N(X,s) ends up
in P(X,s)	instead. To decrease εp, s can be selected by the following
repeating selection cycles from the initial population T:

Step 1: P1 = P(T,s),   N1 = N(T,s)
Step 2: P2 = P(N1,s),   N2 = N(N1,s)
Step 3: …
Step 4: …
Step n: Pn = P(Nn – 1,s),   Nn = N(Nn – 1,s)
Final step: P = P1 ∪ P2 ∪ … ∪ Pn,   N	= Nn

 a. Explain the logic of this procedure. Why is there a high probabil-
ity that the molecules in final test tubes P	and N are indeed the
correct molecules?

 b. What is the probability that after n steps a molecule that should
be P is indeed in that test tube?

 c. What is the probability that after n steps a molecule that should
be in N is in P?

252    ◾    Biological Computation

 d. Given an initial estimate of εp	= 1/10	and εn	= 1/106, what value of
n	guarantees final probabilities of εp ≈	εn ≈ 1/106?

 7. Solve the following problem using DNA-based computing: given a
map of cities and roads between them where every road has a given
length (the map is connected, but not all cities are necessarily directly
connected), compute the circular route of shortest total length that
visits each city. You can asume that it is possible to distinguish experi-
mentally between circular and non-circular DNA molecules, and sort
circular DNA by size.

 8. Suggest a way to solve the vertex cover problem using DNA-based
computation. The vertex cover problem is defined as follows:
given a graph, find a minimal subset of the vertices that “covers”
all the edges in the graph; that is, every edge has to touch at least
one of the vertices in the subset. Refer to Figure 5.24 for an exam-
ple where the dotted circles indicate the vertices in the minimal
cover set.

FIGURE 5.24

 9. Solve the maximal clique problem using DNA: given a graph, find
the largest subset of vertices in which every two vertices are con-
nected to each other by an edge.

 10. Show how to use molecular operations to extract only the sequences
representing assignments for which Ci	is true from the Ti-1 test tube
in the SAT algorithm. Hint: consider as an example the clause Ci	= p	
∨ q’. The sequences making this clause true are those where p	= 1 and
those where q	= 0.

 11. Show that the number of operations for the molecular algorithm for
SAT is linear in l (the number of literals in the formula).

Molecular Computation    ◾    253

 12. Show that if the number of literals in each clause is constant then the
number of operations for the molecular algorithm for SAT is linear
in m (the number of clauses in the formula).

 13. Explain the role of the right frame column in Winfree’s binary coun-
ter (Figure 5.14).

 14. Explain how each of the generic operations in Table 5.3 is carried out
molecularly and where each operation is used in the Hamiltonian
path and SAT algorithms.

5.6.3  Enzymatic Computation

 15. Find the language accepted by the automaton in Figure 5.25.

q2q1

b/c

a

a/b/c

q0

b/c

a

FIGURE 5.25

 16. Construct a nondeterministic automaton over the alphabet {a,b} that
accepts all the words containing aa or bb. Hint: construct automata
for each of the sequences, and combine them using an initial state
that guesses which of the two sequences has to appear in the input.

 17. Step through the computations performed by the molecules in
Figure 5.21, writing down all the partial results.

 18. Given the automaton in Figure 5.26, determine the molecules required
to represent it, and follow the algorithm’s operations on the input
bbaab.

a/ba

bq0 q1

FIGURE 5.26

254    ◾    Biological Computation

5.7  ANSWERS TO SELECTED EXERCISES
 1. Molecules comprising only the sequence between the two primers

will be amplified.

 2. There will be no difference from PCR that starts with double-stranded
DNA (assuming that both correct primers were used). After the
primer attaches to the single-stranded DNA, the DNA polymerase
will complete the complementary strand. Then the situation is back to
that described in the presentation of the PCR method.

 4. The graph in the question does not contain a Hamiltonian path, but
note that by adding a single edge we do get a graph (Figure 5.27)
containing a Hamiltonian path.

FIGURE 5.27

 6. Analysis of the probability using repeated extractions:

 a. Since εp is much larger than εn the goal is to reduce the prob-
ability that a molecule that should be selected is not selected.
Thus, at every step we extract the molecules containing s from
the remainder of the previous extraction; that is, in every step
we select the positive molecules from the negative test tube of the
previous step.

 b. The probability is the sum of the probabilities that the molecule
is in the positive test tube for each of the n steps; that is,

1 1 1

1

1
11−() + + + = −() −

−
= −−ε ε ε ε

ε

ε
εp p p

n
p

p
n

p
p� nn

 (this is a sum of a geometric series).

Molecular Computation    ◾    255

 c. 1 – (1 – εn)n.

 d. For n	= 6, εp = 1/106, εn ≈ 6/106, which is close enough to be con-
sidered equal for practical purposes.

 7. The solution is similar to the Hamiltonian path solution, with the
following changes:

 a. As the path is circular, there is no need to distinguish between
edges starting at the first vertex or ending at the last vertex.

 b. We will add an arbitrary sequence of the length of the edge into
the representation of each edge. For example, an edge of length 5
between the vertices i	and j is built as shown in Figure 5.28.

Representing the length of the edge i j

Representing the suffix of node i Representing the prefix of node j

T

A A A A A A A A A AT T TC G G G G G

T T T T

FIGURE 5.28

 c. Mix as before all the edges and the complements to the vertices
to create all the circular paths. Note that, since the first and last
edges are no longer distinct, all possible circular paths will be
generated. Note that circular DNA runs in a particular way on
a gel (circular DNA migrate more slowly on electrophoresis gels
and their migration rate is determined by their radius of gyra-
tion), a fact that can be used to extract only circular molecules.

 d. As in Adleman’s algorithm, we will use n test tubes to extract
the sequences containing the complementary sequences to the
sequences representing all the cities.

 e. The remaining molecules (i.e., those containing all the ver-
tices) will undergo gel electrophoresis, and the shortest mol-
ecule will be selected as it represents the circular path of
minimal length.

256    ◾    Biological Computation

 8. Represent the given graph’s vertices and edges as in Adleman’s algo-
rithm. Then create sequences representing all subsets of the set of
vertices. This can be achieved using a graph similar to the one we
used when solving SAT where each vertex is represented in the upper
edges and one dummy vertex in all the lower edges (Figure 5.29).
The total length of all dummy nodes should be less than the length
of the representation of a real vertex. This will produce sequences
containing all the subsets of the vertices, where all missing vertices
from the set are represented by the dummy vertex. We are interested
in only the subsets whose vertices cover the whole graph, that is, in
which every edge touches at least one vertex in the subset. Recall
that the representation of each edge contains half of the representa-
tion of the two nodes it connects. Thus, for a sequence representing
a subset of nodes to be a solution to the vertex cover problem it must
contain bases that are complementary to at least half of each edge.
To achieve this we will compare the subsets with all edges in the
graph, an operation that may require n2 test tubes for a graph with n
vertices. In each test tube we will test whether the edge hybridizes to
the sequence (we can create the representations so that the hybrid-
ization occurs if half of the edge’s length matches the sequence). At
the end of the process the remaining sequences represent covering
subsets. By performing gel electrophoresis we will identify the short-
est sequences corresponding to minimal cover set.

a1
a2 a3

a4

Representation
of node S1

Representation
of node S2

Representation
of node S3

Representation
of a dummy node

Representation
of a dummy node

Representation
of a dummy node

FIGURE 5.29

 10. Let Ci	= p ∨	q’. Represent Ci	as v1 ∨	v2,	where v1 is the variable p, and
v2 is the negation of the variable q.

Molecular Computation    ◾    257

 a. Since v1	represents a variable, let t1 be a test tube containing all
the sequences extracted from Ti-1 where v1 is assigned the value
1. Extraction can be done using magnetic beads that are comple-
mentary to sequence of v1 . Let t1 be the remainder of sequences
left in Ti-1..

 b. t2 is created from sequences in the reminder test-tube, t1 . Since v2
represents a negation of a variable, select from t1 all the sequences
where v2 is assigned the value 0, that is, that include the q’	sequence.

 Now mix together the contents of the test tubes t1 and	t2. This creates
the Ti test tube because in the first step we extract all sequences sat-
isfying v1. From the remainder we extract all sequences satisfying v2,
so the result is all the sequences satisfying v2 but not satisfying v1 (it is
trivial to generalize this example to clauses containing any number of
literals). The mixing step gives us the union of the sets, so we end up
with all the sequences satisfying v1 or v2. (If the clause contains three
literals like in 3SAT problem we need to create in a similar way a third
test tube t3 and mix the three test tubes to create Ti.)

 11. The first step of the algorithm requires the preparation of raw material
(representations) that depends linearly on n (calculate the exact num-
ber of required molecule types), followed by mixing the molecules and
waiting for the ligation to finish. The next steps require a number of
extraction operations that is linear in the number of literals (Step 2) and
one identification step to test whether any DNA remains in the test tube
(Step 3).

 13. The role of the right frame column is to add 1 to the value computed in
the previous row; therefore, it is implemented using a tile with a pro-
trusion causing the computation in the next row to start with a carry.

 16. See Figure 5.30.

258    ◾    Biological Computation

q4q3
b

a,bq0

a,b q2q1
a

b

a

a,b

FIGURE 5.30

 18. The four rules needed to implement the automaton are as follows:

 q0,a → q0

 q0,b → q1

 q1,a → q1

 q1,b → q1

 Thus, we need to use molecules T1, T4, T6, and T8 from Figure 5.22.

259

C h a p t e r 6

The Never-Ending Story
Additional Topics at the Interface
between Biology and Computation

In this book we have discussed a wide spectrum of ideas in computer
science that were inspired by our understanding of biological processes.

We focused on four main areas that introduced new computational mod-
els based on ideas and insights arising from biological research. Chapter 2
dealt with cellular automata in which computation is performed on a grid
of cells, and every cell affects only its neighbors. This model is somewhat
reminiscent of a colony of single-cell organisms (e.g., bacteria), which
presents a complex collective behavior, even though each cell’s behavior
is based on a set of relatively simple local rules. We saw how to prove that
a nonstandard computational model is universal (in the sense of being
equivalent to Turing machines). We also saw how cellular automata allow
us to formally study the conditions that are sufficient for self-replication, a
fundamental aspect of living systems.

Chapter 3 dealt with evolutionary computation, which involves solving
computational problems such as optimization and search problems by mim-
icking the evolutionary process in nature. The focus of Chapter 3 was mainly
on genetic algorithms; even this specialized model presents the system
designer with a wide scope of choices, such as how to represent the genetic
data or the precise properties of the genetic operators. Moreover, we saw that
one can formally prove theorems about properties of the evolutionary com-
putation (Holland’s Schema theorem) that are valid under a wide variety of
assumptions. We also discussed genetic programming in which the indi-
viduals undergoing evolution are representations of computer programs.

260    ◾    Biological Computation

Chapter 4 presented several models of neural networks. These models
are based on an attempt to mimic the way a brain operates in order to facili-
tate machine	 learning. The first three models were based on supervised	
learning, where networks are presented with a set of examples for which
the expected output is known, which are used to train the network. The first
model was that of a simple	perceptron, and we saw how simple it is to prove
the inherent limitations of such networks. Then we discussed multilayered	
neural	networks and developed a learning algorithm based on backpropa-
gation, which adjusts the network weights automatically and sequentially.
Then, using the Hopfield model, we studied the issue of associative mem-
ory and discussed the strength and the weaknesses of this model. Finally,
we gave an example of self-organizing maps, which are neural networks
capable of unsupervised	learning.

Chapter 5 dealt with molecular	 computation. Here we saw another
kind of link between computer science and biology: the use of biological
techniques and organic molecules to implement computational processes.
In this chapter the biological material was used as “hardware.” The inher-
ent parallelism of molecular processes was harnessed to improve the effi-
ciency of expensive computations such as finding Hamiltonian paths in
graphs. We showed how DNA can be used as a computational medium
as well as how to harness enzymatic reactions to implement autonomous
computational processes.

Each of these four areas is an extensive field of study, and we pre-
sented only basic concepts—enough to give a sense of each topic to help
the reader identify which approaches may be useful for solving a given
problem, and to provide the basic tools and concepts needed for the fur-
ther study of each topic. The reader interested in more in-depth knowl-
edge will find references to further reading at the end of each chapter
and in the list of recommended books that appears at the end of this
chapter.

The summary of the previous chapters shows how combining ideas
from biology and computer science leads to a variety of results: from
technological and engineering applications to theoretical conclusions
and formal proofs of theorems. In this chapter we will discuss briefly
additional topics that are in the intersection of computer science and
biology that further demonstrate the rewards that can come from “cross-
fertilization” between the two fields. We will try to relate the new topics
to ideas discussed in the previous chapters and to highlight the similari-
ties and differences.

The Never-Ending Story    ◾    261

We will not discuss the important field of bioinformatics, which
focuses mainly on computational analysis of biological sequences such as
RNA, DNA, and proteins. This analysis is achieved to a large extent by
using methods developed in the computer science fields of pattern match-
ing and machine learning. This is a central topic in computational biol-
ogy requiring a separate discussion, and many recent textbooks have been
dedicated to this subject (see Further Reading section).

6.1  SWARM INTELLIGENCE
Swarm intelligence is a set of computational approaches influenced by
observing the living world from a computational perspective that views
the behavior of organisms as problem-solving processes. Swarm intel-
ligence approaches are derived from observations showing how cooper-
ating organisms solve problems collectively. The classic example of such
behavior is that of an ant colony. Anybody who has observed a row of ants
marching toward a food source must have wondered how the ants know
where to go and how to return to their nest. It turns out that an ant that
has discovered a food source can signal the preferred direction to other
ants, which repeat the process and mark the way for even more ants.

Swarm intelligence is based on the observation that colonies of sim-
ple organisms can present a behavior that seems planned and goal ori-
ented even though each individual is simple and lacks the skills to solve
the problem independently. We have discussed this observation in other
contexts, particularly when discussing the emergent behavior of cellular
automata in Chapter 2. In this respect, the discussion can be considered
as an extension of the topics described there. The set of simple organisms
that are capable of developing mutual interactions and interact with the
environment is known as the swarm	or the swarm	system. The collective
goal-directed behavior is an emergent	property (a topic we return to in
Section 6.3) of the swarm system and is referred to as swarm intelligence.
We present three computational methods based on swarm intelligence.

Ants leave chemical markers called pheromones on their trails, which
allow them to pass information between individuals. Communication
between individuals by locally changing the environment is called stig-
mergy. The scent of the pheromones is picked up by the olfactory organs
of other ants, allowing the pheromones to mark the way back to the nest
and the way to food sources. When more ants use a particular path, the
stronger its markings will become. Conversely, pheromones evaporate over
time, so a trail that has been neglected will disappear after a certain period

262    ◾    Biological Computation

of time. Note that ants do not always follow the trail and may turn in ran-
dom directions from time to time. This guarantees that ants will discover
new food sources and new trails.

The combination of these two properties—individuals with simple com-
putational abilities and communication using the environment—makes
swarm computation appropriate for distributed computing and for solving
coordination problems for robots that operate cooperatively.

6.1.1  Ant Colony Optimization Algorithms

The pheromones mechanism gave rise to the development of a class of
optimization algorithms known as ant colony optimization	(ACO) algo-
rithms. Such an algorithm was first presented by Marco Dorigo in the
1990s (Bonabeau et al., 1999, 2000). The goal of the algorithms is to find
an optimal solution to a computational problem by using the method that
allows ants to find food quickly and efficiently by not wasting energy on
long trails. The problems are usually presented as finding good paths in
graphs, and the algorithm proceeds by creating a set of virtual ants that
walks the graph with the goal of constructing appropriate paths. A typical
application is the traveling salesperson problem (TSP). The solution to
this problem is the shortest path traversing a given set of cities where each
city is visited exactly once.

To solve the TSP, several ants are placed in each city. At each time step,
a random ant is selected and has to travel on the graph according to the
trails marked by pheromones. Thus, the probability that an ant will go to
an adjacent city (an adjacent node in the graph) is directly proportional
to the amount of pheromones deposited on the edge between the current
and adjacent cities.

The following random	proportional transition rule is the formula one
of the algorithms uses to determine the probability that an ant at vertex i
will go to the adjacent vertex j:

i j

ij ij

ik ik

k

p ,
=

()()
()()∑
α β

α β

τ η

τ η

where τij is the amount of pheromones on the edge (i,j), and ηij is the heuris-
tic value assigned as the value of the edge	(i,j) a priori. This heuristic value
serves to estimate the quality of the ants’ choices in advance of building

The Never-Ending Story    ◾    263

the path. Such heuristic functions exist also in algorithms for game play-
ing where the different game states are evaluated as part of evaluating the
game tree. In problems such as TSP the heuristic value is determined by
the distance between the cities d and may be, for example, 1/d, to give a
higher weight to closer cities. As expected, the heuristic value is computed
using local information only. α is a positive constant that determines how
the quantity of pheromones influences the algorithm, and β is a positive
constant determining the influence of the heuristic value. The sum in the
denominator is over all the neighboring vertices k among which the ant
has to choose.

After building a path between n nodes, the ant updates the amount of
pheromones on the graph edges it traversed in accordance with the qual-
ity of the complete path (the better the path, the more pheromones will
be deposited). For simple graphs, this mechanism suffices for finding the
shortest paths. For complex graphs or when searching for paths with other
properties, additional mechanisms are added to the algorithm, such as
having only the ant that found the best path during an iteration of the
process leave a pheromone trail behind it; having a certain percentage of
pheromones evaporate at every time step; fixing minimum and maximum
values for the amount of pheromones deposited on each edge; or keep-
ing a list of visited cities for each ant to avoid multiple visits to the same
city. Researchers have successfully used ACO to solve the TSP and other
similar combinatorial problems, which can be represented as problems of
finding paths in graphs.

Another interesting use of swarm intelligence is for planning routing
tables in a communication network. The basic premise is simple: commu-
nication packets update the routing tables based on the quality of the path
they were routed to. For slow routes, the corresponding table entries will
be updated by a small value, whereas a faster path will be updated with a
higher value. In this fashion the packets act as ants leaving a trail of phero-
mones behind them as well as carrying the information in the network.
This application of swarm intelligence is called ant colony routing (ACR)
and has two important engineering advantages:

 1. Using the many packets sent in the network allows for an efficient
mapping of the network which may be large and complex.

 2. The mapping happens in real time and allows for route changes
based on the changing characteristics of the network. Since the load

264    ◾    Biological Computation

in certain parts of the network may vary greatly over time, this prop-
erty is highly important.

6.1.2  Cemetery Organization, Larval Sorting, and Clustering

Observing ant behavior also leads to techniques for solving clustering
problems. In these problems the goal is to find a good partition of a
(usually large) set of data into subsets or clusters. The goal is to have the
elements of each cluster be closer or more similar to each other than to
members of other clusters. The number of clusters may be an input to the
algorithm or may be determined by it. A typical example is the problem
of partitioning customers into sets of customers with similar charac-
teristics, for example, “customers who buy expensive kitchenware” ver-
sus “customers who buy expensive appliances and cheap kitchenware.”
The types are not known a priori—they are found by the algorithm that
attempts to identify clusters minimizing the distance between the data
points inside each cluster.

Observation of certain species of ants has demonstrated that they
arrange “cemeteries” for dead ants in the nest. Initially, the dead ants are
distributed randomly over a certain area, but after some time the area is
partitioned into subregions containing dead ants and others that are free
of them; in other words, one can observe clusters of ant carcasses. Other
ants have been shown to arrange their larvae by size, such that the smaller
larvae are placed in the center of a cluster and the larger larvae at the clus-
ter’s periphery. These observations gave rise to the idea of using stigmergy
to solve clustering problems similarly to the ants’ techniques for clustering
carcasses. Here the data to be partitioned and sorted play the role of the
“carcasses” to be clustered.

The basic idea of the algorithm is to place the data on a two-dimen-
sional grid, similar to the one found in cellular automata. For best
results the data are initially placed on the grid randomly using a uni-
form distribution. Ants are also placed on the grid and may move from
one grid cell to another and carry with them the data when they move.
At each time step an ant decides whether to move the datum in the
cell according to the distribution of data in the local neighborhood,
and it may do so only if it is not already carrying some other data. The
sparser the data in the neighborhood, the higher the probability the
ant will “pick up” the datum and start carrying it. Conversely, an ant
may put a data item it carries down in a new cell at any time step, and

The Never-Ending Story    ◾    265

the probability of this event increases the more data items there already
are in the local neighborhood. Iterating this process over a number of
generations causes the data to cluster, as more distant data are brought
into existing clusters.

When calculating the probability of an ant picking up or putting
down data, one has to take into account both the placement of the data
on the grid and the distance between the datum in the current cell and
the data in the local neighborhood. Going back to our example, the dis-
tance between two customers might be defined as the number of items
one customer has bought and the other has not (i.e., the size of the sym-
metric difference between the sets of items each customer has bought).
Using this definition, customers who bought similar items will be con-
sidered “close” for the purpose of clustering. Note that in most cases the
data are characterized by a rather large set of properties, so they can be
considered as points in an n-dimensional space Rn (where n is the num-
ber of properties for each data point). The algorithm we described not
only attempts to discover clusters but also does so while projecting the
n-dimensional property space onto the two-dimensional grid (or more
generally on a space with less than n	 dimensions). It is convenient to
implement this approach using “ants” moving on a discrete grid, so in
fact the n-dimensional space Rn is projected onto a discrete two-dimen-
sional space (Z2) similarly to what is achieved by self-organizing maps
(Chapter 4).

The structure of the clustering algorithm is as follows:

// Generic code for clustering using ants (Lumer-Faieta Algorithm)
// Each ant remembers its current location on the grid, and the item
// it is carrying.

PLACE_ITEMS_ON_GRID()

PLACE_ANTS_ON_GRID()

WHILE no END_CONDITION t
 BEGIN

FOR i:=1 TO number of ants
BEGIN

 IF not(CARRYING(ant)) and not(EMPTY(LOCATION(anti i)))THEN
 p := PICKUP_PROBABILITY(anti) // see below
 PICKUP(ant) with probability pi

 ELSE IF CARRYING(ant) and EMPTY(LOCATION(anti i)) THEN
 p := PUTDOWN_PROBABILITY(anti) // see below
 PUTDOWN(anti) with probability p
 END IF
 MOVE(anti) // randomly move ant

END
 END

266    ◾    Biological Computation

To complete the presentation of the algorithm we have to specify how
to compute the probability that an ant will lift up a piece of data and the
probability that an ant will deposit a data item at a particular grid point.
These probabilities have to be based on the number of similar points in the
ant’s neighborhood.

First, we define the function f(i,r), which computes the local	density of
objects similar to object i located at position r:

f(i,r)= s

d(i, j)

j

1
1

2
−∑ α

if positive

0 otherwise

where d(i,j) is the distance (or dissimilarity) between objects i and j, s is the
neighborhood’s radius, and the sum is over all items in the neighborhood
around r. f(i,r) measures the average similarity between item i and the
items in its neighborhood. The parameter α determines the sensitivity of
the comparison: if the value of α is high, then the comparison is less sensi-
tive and items that differ by much may be clustered together. Conversely,
when α is low, even similar items will be viewed as different and will not
be clustered together.

Using f(i,r) we can define the probabilities for picking up and putting
down data using the following formulas:

 Pickup_Probability(anti)= k

k + f(Item(ant),Location(ant))i i

1

1

2

										Putdown_Probability(anti)=

2f(Item(ant),Location(ant)) ifi i f()< k

1
2Item,Location

iif f() kItem,Location 2≥

where k1	and	k2 are constants. If f(i,r)	<<	k1, the pickup probability will be
close to 1. This describes a sparse neighborhood. If f(i,r,)	>>	k1 the neigh-
borhood is rich in similar items, and the pickup probability will be close to
0. k2 plays a similar role in computing the putdown probability.

The Never-Ending Story    ◾    267

To summarize, the probability of a pickup decreases with the density of
similar items, whereas the probability of an item being put down increases
with the density of similar items in the neighborhood. In this way the
algorithm achieves the desired goal.

We saw in previous chapters how the interaction with the environment
can often affect the behavior of the computational organism. It is interest-
ing to note that this is also the case with swarm intelligence: the system is
governed by the feedback the ants receive from the environment, which is
used both for representing the input to the algorithm and for communica-
tion between the organisms in the swarm.

6.1.3  Particle Swarm Optimization
Swarm behavior—particularly the behavior of schools of fish and flocks of
birds—has led to another computational technique, called particle swarm
optimization (PSO). In this technique optimization problems are solved by
a set of particles distributed on the search space (which is represented as an
n-dimensional space Rn) where each point (an n-tuple of real numbers) rep-
resents the n characteristics of a possible solution. The particles move around
attempting to reach the extreme points (optimal solutions) identified at each
time step. In the basic algorithm, every particle is aware of the following:

• The quality of the solution represented by the point at which it is located.

• The quality and location of the best solution it has ever visited (per-
sonal	best).

• The quality and location of the best solution the population has ever
encountered (global	best).

The particles are initially randomly distributed on the search space, and
each has a velocity (which initially may be 0 or some random value). At each
iteration the location and velocity of the particles are updated as follows:

 1. The change in velocity (“acceleration”) is determined so that it cre-
ates movement toward the personal best and global best. The acceler-
ation is computed as a weighted average of the distance between the
particle and the personal best and global best; the location and veloc-
ity of particles are vectors in the n-dimensional space (i.e., vectors

268    ◾    Biological Computation

of n real numbers). The new velocity is calculated using the current
velocity and acceleration.

 2. The new position of particle i is determined by the current position
and the new velocity (xi,t is the vector location of particle i at time t):
xi,t = xi,t-1+vi,t. (Figure 6.1).

As usual, the algorithm executes until it converges or some other halting
condition is satisfied.

Most of the parameters allowing for fine-tuning the system involve the
way the new velocities of the particles are calculated in Step 1. The new
velocity of particle i is determined as follows:

 vv vv xxi,t i,t 1 1 i,t-1 2= +c rand() globalbest - +cω − () rrand() personalbest -
i i,t-1xx()

where:

• xi,t is the location of the particle at time t.

• globalbest	is the location of the best solution the population has encoun-
tered so far.

• personalbest is the location of the best solution particle i has encoun-
tered so far.

• ω denotes the inertia of each particle. It is usually chosen to be close
to 1.

Current
position

Personal best

Global best
x

v

FIGURE 6.1  New position calculation. The actual trajectory of a particle is deter-
mined by its own position and velocity and also by biasing the trajectory toward
the best position visited by the particle and the best position found by the entire
population.

The Never-Ending Story    ◾    269

• The constants c1 and c2 determine the influence of personalbest and
globalbest, respectively. The larger c2, the larger the influence of the
particle’s “private” data, whereas the larger c1, the larger the influ-
ence of the whole population on the behavior of each particle (the
social	influence). Initially, one could use c1 =	c2 =	2.

• rand() is a random number between 0 and 1. Note that a different
random value is used for each dimension (to simplify notation this is
not reflected in the formula above).

The calculation of the velocity in each dimension is done separately
and takes into account the corresponding dimensions of globalbest and
personalbest.

Note that, in contrast to the cellular automata described in Chapter 2
where each cell has only local knowledge, in PSO, the system keeps track
of the global data—the location of all particles and the properties for the
optimal solution globalbest. It is possible to reduce the role of global infor-
mation by having each particle be aware only of a limited group of neigh-
boring particles, where the neighbor relation is defined in advance and
does not depend on the current locations of particles.

The structure of the PSO algorithm is as follows:

INIT_POPULATION()
WHILE END_CONDITION
 BEGIN

FOR := TO
 BEGIN

 IF THEN
:=

 END IF

 :=

MAX_FITNESS_LOCATION(
)

 FOR := TO
BEGIN

v := c rand() x
c rand() x

x := x v

 END // FOR d
 END // FOR i
 END

270    ◾    Biological Computation

In an impressive demonstration, particle swarm optimization was used
to find weights for a neural network whose goal was to report the charge
of an electrical car’s batteries. The network consisted of five input neu-
rons, three hidden neurons and one output neuron, and it took around 3.5
hours to train using backpropagation. It took merely 2.2 minutes to find
weights achieving the same level of success (the same sum-squared error)
using PSO (Kennedy and Eberhart, 2001, p. 318).

6.2  ARTIFICIAL IMMUNE SYSTEMS
Immunology is the research field dealing with the immune system, which
defends the organism against a wide variety of pathogens such as bacte-
ria, fungi, and parasites. The immune system is a complex system whose
description is beyond the scope of this book. We will present a few appli-
cations that employ insights gained from knowledge of the biological
immune system to solve problems arising in computer science and while
doing so will introduce the relevant properties of the biological immune
system.

The immune system is fascinating from a computational perspective as
it operates in a consistent fashion, “reaches” conclusions, exhibits “mem-
ory,” and performs various activities while being totally distributed and
without a central control mechanism or even “wiring.” Thus, it is radically
different from the nervous system discussed in Chapter 4. Two central
properties of the immune system are immune specificity and immune
memory. Immune specificity refers to the capability of certain immune
system cells to identify specific pathogens, to target them, and to destroy
them. Immune memory is based on the fact that some of the cells gener-
ated during the initial contact with a pathogen remain in the organism and
allow for a faster reaction to subsequent attacks by the same pathogen (this
property is the basis of vaccinations). Artificial immune systems, which
mimic biological immune systems, attempt to recreate these properties to
achieve computational needs. We will describe one such task—securing a
computer system against unauthorized users.

To achieve its immunological task, the immune system has to distin-
guish between elements belonging to the organism and external elements.
This is called the distinction between self and nonself. To achieve this goal
the system has to contain cells that recognize and react to new elements
invading the system. This raises an interesting question: how can one cre-
ate cells that can identify elements the organism has never encountered
previously? We can conceive of various ways for creating detectors for

The Never-Ending Story    ◾    271

certain known properties, but how can one detect invaders with unknown
properties? Another requirement from the immune system, which is of
equal importance, is that the detectors do not react to the organism’s own
cells (the self), because such a reaction will cause the organism to attack
itself (autoimmune	diseases, such as multiple sclerosis and lupus, occur
due to an immune response to the organism’s own proteins). It turns out
that even healthy people have autoimmune activity but to a lesser extent.
This raises the question of whether the immune system is geared only
toward identifying the nonself or whether it has other functions unrelated
to dealing with external elements. For instance, it might have additional
regulatory functions. This fundamental question gives a completely dif-
ferent perspective to the immune system’s function, whereby the immune
system actually defines	and	maintains the	self	rather than just identifying
it. In our artificial applications we will ignore this question and focus on
the task of distinguishing the self from the nonself.

One way the immune system attempts to distinguish between self and
nonself is negative selection. A large set of detectors are created randomly,
and the ones that react to the self are sieved out. To implement this, many
detectors are generated and allowed to live for a certain period of time in
an environment exposed to the organism’s own molecules. If the detec-
tors fire, there is a high probability they are reacting to the organism itself
and have to be removed. Detectors that have not fired during this training
period have the potential to react only to external elements and therefore
should be activated in the hope that they identify attackers. In this way the
system can be said to “learn” to identify nonself elements. In the immune
system this process happens mainly in the thymus gland where white
blood cells known as T-cells are “trained” to distinguish between self and
nonself targets. It is easy to see that this method is useful for identifying
not only attackers but also any anomalies in a system.

This process is called negative selection because the detectors react-
ing against the organism’s own proteins are removed. This is not the only
mechanism employed by the immune system, and other mechanisms
have inspired various learning algorithms; however, in this section we will
focus only on negative selection.

6.2.1  Identifying Intrusions in a Computer Network

It seems very natural to use ideas derived from immunology to defend
computer systems against unwelcome intruders, as the biological immune
system attempts to solve a similar problem. The LISYS system we will

272    ◾    Biological Computation

describe (Hofmeyr and Forrest, 2000) is based on the negative selection
mechanism. In addition, the system makes use of other ideas inspired by
the immune system.

The goal of the system is to defend a local area network (LAN). The
system monitors the communication in the network constantly and learns
to distinguish between normal communication (self) and unusual com-
munication (nonself). The system makes use of the fact that in a LAN
every computer sees the entire communication passing in the network.
This allows for detectors to be distributed on many computers on the net-
work and for all the communication passing through the network to be
monitored from each one of them.

The monitoring system observes the network connections between dif-
ferent computers. Each connection is represented by a 3-tuple composed
of the Internet Protocol (IP) address of the sending computer, the IP
address of the receiving computer, and the requested service (the port).
Each 3-tuple is represented by a string of 49 bits. The goal of the system is
to distinguish between 3-tuples representing normal connections between
computers and those that are atypical and may indicate unauthorized
entry into the network. For this purpose the system has to compare strings
representing detectors with strings representing active connections
between two computers. The strings are compared using the r-contiguous	
bits criterion, which	considers two strings as matching if there exists in
both strings an identical contiguous substring of at least r bits.

Negative selection plays a role in the creation of new detectors. A detec-
tor, which like the network connections is represented as a string of 49
bits, is generated randomly. The detector is considered immature during
a training period of length T called the tolerization phase. If during that
time the detector fires, the assumption is that it reacts to self strings and
the detector is eliminated. A detector surviving this initial phase is con-
sidered mature and is used to identify invaders. A mature detector identi-
fying at least τ strings in a time interval is considered to have identified an
invasion, and its state changes to active (and its match counter m is reset
to 0). τ is called the activation	threshold. The match counter decays with
time, so if not enough strings are identified during a time interval the
detector slowly reverts to a less active state.

When a new 3-tuple is observed it can cause a few detectors to fire. Those
identifying an intrusion best (i.e., with the largest number of adjacent
identical bits with the 3-tuple) are selected to be	memory	detectors.	These
detectors clone themselves, and the clones are distributed to neighboring

The Never-Ending Story    ◾    273

computers in the network. In this way the identity of the atypical 3-tuple
is distributed in the network and it will be quickly identified at its next
occurrence as detectors identifying it will exist on many computers in
the network. Moreover, the activation threshold of memory detectors is
lower than that of regular detectors (e.g., τ = 1), which causes them to react
faster. The memory detectors provide the intrusion detection system with
an immune memory.

Similar to a biological immune system, one of the greatest dangers is of
the system being overly sensitive and reacting strongly to innocent occur-
rences. A way of minimizing this is by co-stimulation,	which involves gen-
erating an immune reaction only when a number of different mechanisms
detect a problem. The LISYS architects chose a simple method for co-stimu-
lation: when a detector is activated by identifying a string s, the string is sent
to a human operator, who has to confirm to the detector within a fixed time
Ts that this indeed is an abnormal occurrence. Only then does the detector
become active and an immune response is initiated. If the operator does not
respond within this time period, the assumption is that the detector identi-
fied a valid string (self), and the detector is removed from the system and
replaced with a new immature detector. The life cycle of a detector is shown
in Figure 6.2. The system developers tested the immune system on a set of
data obtained from a live communication network by stimulating 20 days of
real network use. Tables 6.1 and 6.2 list the immune system parameters they
chose and the performance achieved by the system.

6.3  ARTIFICIAL LIFE
The borderline between using biological ideas to solve computational
problems (bio-inspired computing) and attempting to build systems that
behave like biological organisms (artificial life) is fine and often hard to
define. Throughout the book we have mainly addressed bio-inspired com-
puting, but we will now attempt to differentiate between various approaches
to artificial life (ALife) and will discuss a few well-known systems.

Discussing artificial life immediately raises the question of defining
what life is in an exact way (the definition of life problem). Life manifests
itself in a vast number of different living organisms with their different
properties. Our large but limited knowledge of biological systems and the
philosophical depth of the question “what is life” combine to make the
definition of life a question many scholars prefer to avoid. The scientists
and philosophers who did discuss the problem have suggested an array of
definitions focusing on the many properties found in living organisms.

274    ◾    Biological Computation

Randomly created

Immature

Mature & Naive

Death

Activated

Memory

No match during
tolerization period

Match anything during
tolerization period

Don’t exceed activation
threshold during lifetime

Exceed activation threshold

CostimulationNo costimulation Match

011010110101100...110101

FIGURE 6.2  The life cycle of a detector. (Adapted from Hofmeyr, Steven A. and
Stephanie A. Forrest, Evolutionary	Computation 8, no. 4, 443–473, 2000. With
permission.)

TABLE 6.1  LISYS Parameters

Parameter Value
String length 49 bits
Number of contiguous bits to match (r) 12 bits
Activation threshold (τ) 10 matches
Decay period of match counter (m) 1 day
Decay period of local sensitivity (see Exercise 6.13) 0.1 days
Telorization period of immature detector (T) 4 days
Waiting period for costimulation (Ts) 1 day
Detector life expectancy 14 days
Number of detectors per node 100 detectors

TABLE 6.2  LISYS Performance
Percentage of immature detectors in detector population
(average over 20 days) 23%

Average number of false positives per day 1.76
Number of correctly identified intrusions into system 7 of 7

The Never-Ending Story    ◾    275

Among these properties we may find self-replication and heredity, adapt-
ability to the environment and homeostatis, and metabolic behavior (i.e.,
the capability to use matter and energy in the environment for the organ-
ism’s existence and functioning).

The challenge of providing such definitions is twofold: (1) the definition
has to match all the varied objects we consider as living organisms and not
match objects such as chairs, rocks, and digital computers that we do not
consider to be live organisms; and (2) we have to avoid using too narrow a
definition that will match only the living organisms found on Earth. We
should aim to reflect on the fundamental properties of life, so that when-
ever we encounter an object that falls within the definition, we will agree
it is alive, whether it is on another planet or even on a computer system.
Due to these and other difficulties, there is no one definition everyone
agrees on, and it is doubtful that such a definition is possible. Researchers
who work in the field of artificial life do not necessarily define the term
explicitly, but we can nonetheless characterize the assumptions underly-
ing many of their projects.

The fundamental premise underlying artificial life is that life is not lim-
ited to phenomena we necessarily know already. Artificial life researchers
thus deal with questions of life-as-it-could-be	as well as	 life-as-we-know-
it. This means that man-made systems are not ruled out (at least in prin-
ciple) as living systems. The reasoning behind this assumption is that life is
a dynamic process with universal characteristics that are independent of the
life’s medium. In other words, life is a characteristic of the way the medium
is organized and not of the medium itself: for instance, life does not have to
be based on organic molecules. This allows us to accept the possibility that
a computerized simulation of living processes should be considered as being
alive.

Given the scientific and philosophical difficulties of defining life,
it is common among researchers to distinguish between two types of
approaches to artificial life: (1) the strong ALife approach, which postu-
lates that virtual “creatures” on a computer screen can be considered to
be alive if they fulfill the definition of life used by the researchers; and
(2) the weak ALife approach, whereby computerized creatures displaying
characteristics of living systems are only models used in research and are
not really alive.

Most ALife systems have common characteristics, based on general ideas
derived from biology and the study of complex systems. As expected, these

276    ◾    Biological Computation

characteristics are similar to the main characteristics of the biology-inspired
models which we have discussed throughout this book:

 1. The systems are composed of a large collection of simple programs
or other simple entities (a “population”).

 2. There is no central control mechanism.

 3. Every program or object reacts to local phenomena in its immediate
environment. The environment may of course contain other objects
with which the object has to interact.

 4. Any property of the system that extends beyond the local behavior
of the objects (i.e., an emergent property) is the result of the local
simple behaviors.

As expected from this list, many ALife systems use the computational
models described in Chapters 2, 3, and 4.

We will describe a few representative examples of ALife systems. While
studying them, try to determine how well these examples adhere to any of
the previously given characteristics and whether they deal with the chal-
lenge of strong ALife or the simpler but still challenging weak ALife.

6.3.1  Avida

Avida (Lenski et al., 2003) is a software environment for studying
and evaluating the evolution of self-replicating computer programs.
(Following the lead of the system’s developers, we will call such pro-
grams computational organisms.) Using Avida allows researchers to
perform experiments on artificial evolutionary processes relatively easily
and to follow all the stages in the evolution of the computational organ-
isms “living” in the computer’s memory. Computerized experiments are
of course simpler than experiments in the laboratory, especially when
the experiments involve following many generations of organisms.
Many researchers use mathematical simulations to analyze evolution-
ary processes, but this approach is inherently biased as the simulations
are based on the researchers’ already held assumptions about the evolu-
tionary process (the computer simulations simply use pseudo-random
numbers to explore probabilistic models of evolutionary processes). The
Avida developers chose a different route—the computer is used not to
perform the computations defined by a mathematical model but as an

The Never-Ending Story    ◾    277

environment in which autonomous organisms operate. These organisms
are responsible for their own reproduction and interaction with the envi-
ronment and create an evolutionary process that does not necessarily
operate according to a predefined mathematical model. The main task of
an Avida organism (which is a computer program) is to generate as many
copies of itself as possible (i.e., to self-replicate). Note the fundamental
difference between this approach and the way the genetic algorithms we
studied in Chapter 3 work. In Avida the organism is responsible for its
self-replication; replication is not provided by a separate mechanism.
The success in self-replication is the fundamental metric for an indi-
vidual’s fitness in Avida, and the success of an organism is measured by
the number of its copies in the final population.

The Avida software system implements a virtual computer and oper-
ating system, on which different programs comprising the population of
organisms in the virtual environment are run. The computer runs as a par-
allel system, using	time	slicing, so that every artificial organism is allocated
a time slice during which the computer program comprising the organism
is executed. Avida was inspired by an earlier system for studying artificial
evolution of self-replicating entities called Tierra, which was developed
by the ecologist Thomas S. Ray. One of the main differences between
Avida and Tierra is that in Avida organisms may be assigned computa-
tional tasks, and if they fulfill them successfully they are rewarded with
extra running time as a bonus. For example, we may challenge the organ-
ism with the task of accepting two numbers as input and of producing
their sum as output upon completion of the program. Organisms that are
successful at this task will get extra running time, which they can use to
create copies of themselves. In this fashion one can study the evolution
of different computational capabilities. For example, one of the experi-
ments conducted using Avida was to compute logical operations, and the
highest bonus was given to the organisms implementing the EQU opera-
tion, the operation that tests whether the bits of both input strings are
equal (see Lenski et al., 2003). The goal of this work was to study how the
evolution of complex traits depends on the evolution of simpler building
blocks. Another feature Avida added to Tierra is that it implements a two-
dimesional universe on which the organisms live. It additionally supplies
a large spectrum of configuration and monitoring mechanisms for evolu-
tion of the computational organisms.

Ray already observed interesting evolutionary phenomena using
Tierra (Ray, 1992). In his first experiment the only success criterion was

278    ◾    Biological Computation

the rate of self-replication. Ray noticed that the organisms became suc-
cessively shorter—since the shorter the program the less time it needs to
replicate—therefore for a fixed execution time, shorter programs will gen-
erate more copies. Another interesting phenomenon Ray discovered was
that some organisms succeeded so well in decreasing their size that they
removed critical parts of themselves and used parts of other programs
that resided in the computer’s shared memory. This is reminiscent of the
biological phenomenon of parasitism, whereby a parasite benefits at the
expense of another organism. The creation of parasites led to an arms
race: the abused organisms developed methods to confuse the parasites
and gain immunity; the parasites developed methods to overcome the
immunity; and the cycle would repeat. Eventually, organisms evolved that
seemed to be potential victims but that actually had mechanisms allowing
them to fool the parasites and cause them to clone the victim rather than
themselves!

We now describe the Avida system in more detail and discuss how it
can be used as a system for investigating evolutionary processes. An Avida
run starts by the execution on the virtual machine of an initial organism
that is capable of self-replication. This organism is the initial input pro-
vided by the user. For example, the initial organism described in Table 6.3
is capable of self-replication. The program is written in the machine lan-
guage implemented by the Avida system. There is no need to try to under-
stand the details of the machine language, as we just want to give a general
notion of what the digital organisms look like. What follows is a high-level
description of the organism’s operation.

The program starts out by allocating memory for the future descen-
dant. Then the program seeks its end, which is marked by the two
commands nop-A (“nop” stands for no operation) and nop-B (these
commands do not do anything). The new copy will be written to this
memory location, where the newly allocated memory resides. Note that
the template nop-A, nop-B is represented for the h-search command by
the template nop-C, nop-A, which appears in the next two lines of code
(this is how the machine language of Avida uses nop operations to rep-
resent labels). After this initial step the copy loop starts executing and
will execute as long as the template nop-A, nop-B (represented again
for the if-label as nop-C, nop-A), which marks the end of the program,
has not been copied. For every loop cycle one command is copied (by
h-copy) from the read	head	 (which is at the beginning of the code at

The Never-Ending Story    ◾    279

the beginning of execution) to the write	head (which the program posi-
tioned at after the template nop-A, nop-B). At the end of the loop (after
copying the whole program), the h-divide command is executed and
causes the program in the new memory region to turn into an indepen-
dent organism. The experimenter using Avida defines the probability
that h-copy will misbehave, and, instead of copying the command it is
supposed to copy, a random command will be copied into the descen-
dant. This creates mutations.

Note how Avida’s machine language uses the nop commands, whose exe-
cution has no effect, to seek memory locations (h-search) and to check which
commands have been copied (if-label). It is worth reflecting on how this
design influences the ease of writing self-cloning programs compared with
addressing memory in the standard ways used in other machine languages.

TABLE 6.3  A Description of an Organism in the Avida System

— Setup —
h-alloc # Allocate extra space at the end of the genome to copy the offspring into.
h-search # Locate an A:B template (at the end of the organism) and place the

Flow-Head after it.
nop-C #
nop-A #
mov-head # Place the Write-Head at the Flow-Head (which is at beginning of offspring-

to-be).
nop-C # [Extra nop-C commands can be placed here w/o harming the

organism!]
— Copy Loop —

h-search # No template, so place the Flow-Head on the next line (to mark the
beginning of the copy loop).

h-copy # Copy a single instruction from the read head to the write head (and
advance both heads!)

if-label # Execute the line following this template only if we have just copied an A:B
template.

nop-C #
nop-A #
h-divide # ...Divide off offspring! (note if-statement above!)
mov-head # Otherwise, move the instruction pointer (IP) back to the Flow-Head at

the beginning of the copy loop.
nop-A # End label.
nop-B # End label.

Source: Courtesy of Charles Ofria.

280    ◾    Biological Computation

The Avida developers mention a few factors demonstrating the appeal
of digital organisms for evolutionary research. Here are two of the most
important ones:

• Researching artificial life allows us to generalize about systems with
self-replication capabilities. This allows us to study other evolutionary
systems in addition to the biological ones based on DNA and RNA.

• Studying digital organisms allows us to discuss questions that can-
not be researched using biological systems. For instance, a certain
type of mutations can be canceled, or certain evolutionary stages can
be pinpointed so that changes can be made to them.

Among the topics studied using Avida are the importance of the fitness
of intermediate evolutionary steps in the evolution of complex properties,
the factors causing the coexistence of multiple species rather than the cre-
ation of a single dominant species, and the evolution of cooperation.

Clune, Ofria, and Pennock (2007) studied the evolution of plasticity
and made an interesting use of Avida (see Chapter 3 for a further dis-
cussion of plasticity). They tried to test whether frequent changes in the
demands made by the environment will cause the digital organisms to
evolve an ability to adapt to the changing environment, that is, to evolve
behavioral plasticity. Recall that in Avida the organisms may be required
to fulfill some tasks, and success at the tasks gives them additional run-
ning time (failure may result in a decrease in the allotted running time).
The researchers added a mechanism allowing the organism to determine
if the task was accomplished successfully (using the return value from the
output command). The aim was to test if this input from the environment
will be used by the organisms to adapt their behavior to the demands of the
environment, which was changed cyclically between requirements for two
different computations on the input values. The researchers hoped that the
system will create organisms which check the return value of the output
command and use it (using a conditional statement) to choose a compu-
tational path providing for more running time. Dramatically, something
else happened: the artificial evolution managed to find an organism with
one computation path that did not use the return value in any conditional
statement yet remained adapted to the changing environment. The organ-
ism achieved this by using the return value as one of the numbers used in
the computation of the next output value, in a way that assured the new

The Never-Ending Story    ◾    281

output generated matched the environmental requirements represented
by either one of the two return values. In other words, evolution man-
aged to create an organism that did not need plasticity at the level of the
computation paths (while the output it produced obviously had to dem-
onstrate the required plasticity). To force the system to develop organisms
with developmental plasticity of the type they were hoping to find, the
researchers had to avoid the creation of such a static solutions by chang-
ing the conditions of the problem in a subtle way aimed at undermining
solutions with a single computation path. The variety of environmental
demands in nature may not allow for the creation of “sneaky” solutions
such as those initially created.

From a scientific perspective it is important to note that similar results
about the evolution of plasticity and its relation to environmental demands
were also obtained in studies looking at the evolution of neural networks
under changing environmental conditions. The fact that similar evolution-
ary phenomena arose in models that are fundamentally different from each
other allowed the researchers to draw from the results of the different exper-
iments general conclusions about the behavior of evolutionary processes.

6.3.2  Evolvable Virtual Creatures

Karl Sims (1994) presented a way to use ideas derived from artificial life to
create three-dimensional graphical creatures for animated movies. These
creatures had to be mobile in their environment and to react to external
stimuli. Their shape and the “brain” controlling their musculature and
reacting to the environment are generated in the Sims system by a genetic
algorithm of the sort described in Chapter 3. The evolution of the creatures
can be directed toward certain behaviors by choosing different fitness
functions. Sims presented a large collection of creatures that have evolved
in the system and were able to walk, swim, jump, and follow light sources.

The genotype of the creatures determined both their physical structure
and their control mechanism. The control mechanism was not a standard
neural net as described in Chapter 4 but rather contained more complex
elements capable of performing operations such as addition, multiplica-
tion, conditional statements, and mathematical functions such as sin,	log,	
and abs. The genotype was a graph representing the rules for building the
creature (as can be seen in Figure 6.3). The graph contains both the rep-
resentation of the creature’s physical structure and the description of the
neural net and sensors allowing it to sense its environment. As seen in
Figure 6.3, a creature is constructed from a collection of connected blocks.

282    ◾    Biological Computation

Its brain reacts to environmental stimuli and determines how to move the
different blocks, similar to the way a live organism moves its limbs. This
movement of various body parts allows the creatures to move around its
living space.

Sims performed experiments on the evolution of creatures under dif-
ferent conditions, such as walking on a flat terrain, swimming in water,
or following a moving light source (see Figure 6.4). Fitness was com-
puted taking the simulation’s goal into account. For instance, for the
evolution of walking, the fitness function took into account the dis-
tance of the creature from its starting point and its final velocity. Like
in other genetic algorithms, individuals were selected for reproduction
(either sexually or asexually). During the offspring creation phase, cer-
tain mutations could occur as well as chromosome crossover (in sexual
reproduction).

Genotype: Directed graph

(segment)

(body
segment)

(leg
segment)

(body) (limb
segment)

(head)

Phenotype: Hierarchy of 3D parts.

FIGURE 6.3  Sims’s virtual creatures. (Adapted from Sims, Karl, in Proceedings	
of	the	21st	Annual	Conference	on	Computer	Graphics	and	Interactive	Techniques,	
15–22, ACM, 1994. With permission.)

The Never-Ending Story    ◾    283

An important part of the system was the simulation of the properties
of the environment: the evolution of walking and jumping was affected by
gravity, whereas the evolution of swimming was affected not by gravity
but by water viscosity and its influence on mobility. Moreover, the velocity
of each creature was computed by taking into account the movement of its
muscles and physical laws. All of this had a significant impact on the real-
ity of the simulation. Indeed, when one watches a video of the creatures,
their movement seems extremely realistic and reminiscent of the move-
ment of animals.

Not only did Sims’s simulations emulate the physical environment; the
creatures existed in an environment that could contain more than one crea-
ture, and the creatures could interact with each other. For example, one of
the simulations demonstrated competition between two creatures, where a
creature “won” (evolutionarily) if at the end of the competition it was closer
to a cube located in the environment. The creatures could look for the cube,
move it, disturb each other, and so forth. Dealing with the environment in
all its richness is of course a central factor in biological evolution, but many

FIGURE  6.4  Creatures adapted to walking. (Adapted from Sims, Karl, in
Proceedings	of	the	21st	Annual	Conference	on	Computer	Graphics	and	Interactive	
Techniques,	15–22, ACM, 1994. With permission.)

284    ◾    Biological Computation

of the evolutionary computation models we have discussed thus far do not
address this at all or address it only in a very limited fashion.

6.4  SYSTEMS BIOLOGY
Systems biology is a new research area attempting to apply modern tech-
niques to the study of whole living systems rather than individual elements
such as genes, proteins, or single cells. It might seem strange given how
much we do not know about the basic components of biological systems to
attempt to study how they combine and interact. For example, given that we
do not fully understand how single genes function, how can it make sense
to try to look at the next level up and study how large group of genes func-
tion together? This approach might be less ridiculous than it first sounds.
In many cases, studying the interaction between components sheds light
not only on the system behavior but also on the behavior of the individual
components.

While not complete, the vast knowledge accumulated about the biologi-
cal building blocks allows for the usage of mathematical tools and simula-
tions to try to understand how these components interact to create complete
biological systems. As we saw throughout the book, complex systems can
present properties that are generated by the way the different components
interact and influence each other and that do not exist at the level of the
separate components.

Systems biology, then, is the attempt to construct models describing
biological systems in order to investigate the interactions between the ele-
ments of biological systems, to study the behavior of these models, and
to use them to explain the systemic properties of the biological systems.
Many types of modeling techniques are used, and models range from
mathematical models consisting of equations describing the relation-
ships between various quantities in the system to computational models
attempting to describe the step-by-step operation of the biological system
being modeled (see, e.g., the discussion of statecharts later in the chapter).

An important example of a systemic property is tolerance to disturbances
and “noise” (robustness). System robustness manifests itself in a variety
of ways: adaptability to changing environmental conditions, insensitivity
or low sensitivity of the system to certain changes, or gradual reaction to
damage to the system rather than a catastrophic shutdown. Robustness is
discussed in more detail later in this section.

A “systemic” approach to system-level properties such as robustness
requires an understanding of both the structure and organization of a

The Never-Ending Story    ◾    285

system (i.e., the components and their interconnectivity) and an under-
standing of its dynamics (i.e., how the system behaves through time and
how it reacts to different conditions and forces applied to it). A systemic
understanding of the organization and behavior of systems in the human
body may, for example, be helpful in the development of new drugs and
medical treatments that can change the behavior of these systems. It is
important to note a fundamental problem in studying the dynamics of a
system: the data we collect are mostly static and describe (partially) the
state of the system at a given moment. Even when discovering connec-
tions between some components of the system, one still has to discover
how these connections generate the observed dynamics. The mechanisms
responsible for controlling a system’s dynamics are called control mecha-
nisms. Reasoning about their behavior based on observations is not at all
simple and makes use of, for example, statistical tools and simulations.
This analysis can be likened to reverse engineering: the attempt to under-
stand the operation of a technological system such as a computer program
or complex machine by observing its behavior. The goal is to be able to
describe the biological system’s behavior in a precise quantitative manner
so that we can analyze it analytically or simulate it and thereby discover
answers to questions about the system, some of which may be very expen-
sive or even impossible to study directly on the system itself. For instance,
using simulations of biological processes in drug design can reduce the
need for animal experimentation and can shorten the development cycle,
thereby reducing the development cost while also allowing the research-
ers to test how the drug will behave in rare conditions. For the simulation
to be useful, it has to be as precise as possible and take as many factors as
possible into account. All of these difficulties are examples of the chal-
lenges facing systems biologists.

As mentioned in Chapter 1, biological systems present a wide array of
hierarchical organization levels—starting with organic molecules such as
DNA and RNA, moving on to the organelles that build up the cells, then
the cell, which is a basic unit capable of surviving and reproducing inde-
pendently, and then on, in multicellular organisms, to tissues, organs, and
the whole multicellular individual. Multiple individuals create populations
and communities that are complex dynamical systems.

Systems biology builds models for different levels of organization. Some
models focus on whole subsystems (e.g., the processes responsible for
managing blood sugar), whereas others focus on one process built up from
a few interconnected stages. As of now, most models limit themselves to

286    ◾    Biological Computation

subsystems. There is an interesting and important project to simulate all
the molecular life processes in a minimal cell (i.e., a nonspecialized cell).
The goal of the project is to present in a quantitative and exact way the
set of basic life processes necessary to maintain a cell (see http://www.e-
cell.org for more information). Another kind of systems biology model
being developed is the whole	patient model, which attempts to simulate a
patient for drug development purposes (e.g., Entelos®	provides a technol-
ogy called “Virtual Patients”). Such models have to address the different
organizational levels of the patient (e.g., the links among genes, chemical
processes, intercellular communication, and the organization of tissues,
organs, and finally the whole patient). Each structural level may operate at
different scales of size and time rates and present different types of behav-
ior. To be true to life and useful, a model has to capture the interactions of
the different organization levels.

One of the research goals is to identify and characterize modules or bio-
logical “circuits” with well-defined roles that are used as building blocks
in the assembly of the more complex biological systems, similar to the
way electronic circuits are used to build computer systems. Researchers
have been successful in identifying the control mechanisms that deter-
mine the properties of many such modules. The modules contain pro-
teins that act together as an organized system with a well-defined goal or
are made up of cooperating gene (or protein) networks. Examples of such
modules and their control mechanisms include positive feedback loops,
negative feedback loops with delay mechanisms, mechanisms that imple-
ment temporary storage of data (memory), noise-reducing and noise uti-
lization mechanisms, and various oscillators (Kitano, 2002). Identifying
the biological and chemical ways these control mechanisms must be
implemented to create the required behavior allows us to understand
the biological systems at a high level of abstraction based on engineering
descriptions of the characteristics common to different processes sharing
the same control mechanisms. The engineering approach allows us to use
the same mathematical tools used in system engineering (e.g., differen-
tial equations). Obviously, the same control mechanism may be imple-
mented in several ways at the chemical level; nonetheless, understanding
the control mechanisms and the ways the different modules interconnect
to create a whole biological system gives us a new perspective on biologi-
cal systems.

It is interesting to note that, in contrast to engineered control mecha-
nisms, which are designed to implement desired behavior, the biological

The Never-Ending Story    ◾    287

control mechanisms evolved as a result of various evolutionary needs over
long periods of time. It is natural to wonder about the chances that evolu-
tion will give rise to modules that exactly match the control mechanisms
developed by engineering disciplines. To answer this question, different
biological control mechanisms have to be identified and analyzed, and
their evolution must be investigated. There is no doubt that our ability to
perform large-scale studies and to analyze data from many sources pres-
ents large challenges to systems biology and high expectations for new
biological insights. Time will tell whether computational systems biology
is up to this challenge.

We now discuss two examples of questions asked by systems biology: (1)
the origin and nature of biological modularity; and (2) the robust architec-
ture of gene networks. We conclude this section with a discussion of the
application of formal languages to the description of biological systems.

6.4.1  Evolution of Modularity

The modular and hierarchical structure of organisms (which contain cells,
tissues, and organs) raises the obvious question about the evolutionary ben-
efits of such a structure, and this question is the focal point of many studies.
Herbert Simon, one of the central figures of artificial intelligence during its
heyday, offered one famous explanation in his paper titled “The Architecture
of Complexity”	(1962). He defined the term nearly completely decompos-
able system (ND) to describe systems made up of separate components in
which there is much more interaction within each component than between
different components. It is easy to see that many biological and physical
systems fall into this category. ND is not the same as modularity, as can
be seen from the variety of properties of the previously mentioned biologi-
cal “circuits,” but it does define a central property of modular systems. So
the question is how evolution leads to ND systems. Simon answered this
using a parable about two watchmakers, named Hora and Tempus. The
watchmakers build almost identical watches, each of which contains 1000
components. The difference is that Hora builds his watches out of 10 sta-
ble modules, each containing 10 stable submodules with 10 elements each.
Tempus, on the other hand, does not use such stable substructures, and the
only stable structure he comes up with is the whole watch made up of 1000
pieces. Assume both watchmakers are distracted frequently by phone calls
from their customers. Clearly, Hora, who has to assemble only 10 mod-
ules between interruptions, will be much more productive than Tempus,
who needs an uninterrupted period of time long enough to assemble 1000

288    ◾    Biological Computation

elements and has to restart from the beginning after each phone call. Hora,
Simon tells us, prospered, while Tempus grew poorer and poorer and finally
lost his shop. While Simon’s parable is told about watchmakers, it is in fact
concerned with the organization of the watches, as examples of two ways
complex systems might be organized, rather than with the role of the watch-
makers or the origin of the different organizations.

Simon concluded from the parable that in an evolutionary scenario ND
watches (e.g., Hora’s watches), or in general ND systems, would be fitter
than their non-ND counterparts and therefore will have the upper hand
in the evolutionary race (the reader is encouraged to understand how the
conclusion about fitness arises from the parable).

As already noted and acknowledged by Simon, this model is very gen-
eral and allows for different conclusions about the evolutionary process
(note, in particular, that the model does not address the evolution of
modularity of watches per se, but only deals with its advantages if it
exists). Simon also has a stronger claim about ND systems: such sys-
tems will improve their fitness faster than non-ND systems with similar
complexity (the property of how well a system can undergo evolution-
ary changes is called its evolvability). The reason is that an ND system
allows for local changes and therefore raises the probability that a change
in one of the components improving fitness will not compromise other
components (Simon, 2002).

The watch discussion seems to have dealt with the phenotype of a
system, but the evolvability claim actually suggests that the genome may
be ND in some sense and is reminiscent of Holland’s building block
hypothesis (see Chapter 3). Biological systems present both genotypic
and phenotypic modularities. For instance, each of our two arms is a
defined organ, and an arm injury does not directly affect other organs;
therefore, in this sense each arm is a module. On the other hand, both
arms reflect the same genetic template and not two different genetic
modules. However, we did see in the previous discussion of biological
circuits that we can identify sets of genes operating as separate modules
in an ND-like fashion. Simon uses the notion of ND to discuss both
these aspects of modularities, which do not necessarily arise due to the
same reasons and the same evolutionary pressures. ND is useful in dis-
cussing modularity but does not explain the difference between these
two kinds of modularity.

The Never-Ending Story    ◾    289

6.4.2  Robustness of Biological Systems

An important property of living organisms is their robustness to various
internal or external mishaps occurring before and during their lifetime,
including genetic mutations, developmental perturbations, and accidental
events. We will not define robustness here, and it is clear that too many
accidents will cause an organism to fail and eventually to die; however,
our daily experience convinces us that organisms are generally robust to
many such events.

Engineering has taught us a variety of methods for achieving robust-
ness. The central ones are as follows (Kitano, 2002):

• Control mechanisms: In particular, negative feedback.

• Modularity:	 Allows for the containment of failures so that a failure
affecting one module will not spread and cause a total system failure.

• Redundancy: A few components with identical functions can serve
as backup for each other.

• Structural stability: A physical structure can provide stability.

These methods are also available to biological systems. A simple exam-
ple is the redundancy achieved by having many different cells with identi-
cal functionality (consider the huge number of blood cells, which is the
reason a minor injury does not cause a significant physiological problem).
The engineering knowledge of these methods for achieving robustness can
help with the understanding of biological processes or at least can aid in
creating exact mathematical models that will be the basis for new research.

Robustness	of	Gene	Networks
One can perform large-scale experiments on simple organisms such as
bacteria, worms, and yeasts where a single gene is removed from the
genome or deactivated and the effect on the phenotype is studied. For
instance, it turns out that 82% of the 6000 genes of yeast are not strictly
necessary, and removing each of them leaves viable strains (Giaever et al.,
2002). Moreover, only 15% of these genes affected the organisms’ rate of
growth. In other words, 70% of the yeast’s genes do not seem to adversely
affect its functions when missing. Clearly, we cannot judge the quality
of life of these organisms, and probably this research has to be repeated
under various environmental conditions where the affects of the loss of

290    ◾    Biological Computation

the genes may be more pronounced. In any case it is clear that a very large
fraction of the yeast’s genes are not absolutely necessary. Similar results
were obtained when removing a single gene from organisms of varied
complexity, from bacteria to mice.

It would seem that these results suggest a simple mechanism that can
explain the robustness of organisms. Genes may have backups that become
operational when their counterpart is missing; therefore, removing a single
gene at a time is not likely to cause any harm. This is similar to the engi-
neering practice of increasing robustness by redundancy, for instance, by
having dual wheel retraction systems in passenger jets.

However, this simplistic explanation raises two issues. The first is that
evolution can almost never preserve a gene whose sole purpose is to pro-
tect against mutations. This is because mutations are rare events, so there
is no obvious advantage in having a redundant gene; as a result the backup
gene will accumulate mutations over time and eventually lose the ability
to produce the backup protein. The second problem is due to results of
recent large-scale studies where pairs of genes were deactivated. If deacti-
vating each of the genes separately would not seem to affect the system but
mutual gene-pair deactivation had catastrophic results, then this could
indicate that the two genes act as backups for each other. The results of
the experiments present a much more complex picture (Tong et al., 2004).
Very few pairs that back each other up have been identified, and most
genes are members of modules interacting to create complex webs of func-
tional modules.

As a result, the current view is of partial backup among genes (or mod-
ules) that have some functional overlap. In this way, each gene has a specific
role that affects the fitness of the organism; thus, it would be valued and
preserved by evolution. On the other hand, the gene can at least partially
substitute another gene if that gene fails (Kafri et al., 2005). For example,
there might be two enzymes that digest different types of sugars and can
stand in for each other in a partial fashion (e.g., in lesser efficiency) in case
one enzyme fails.

6.4.3  Formal Languages for Describing Biological Systems

Research in systems biology uses advanced computational capabilities
to build simulations and to test hypotheses using models. To be able to
describe the models in a consistent and uniform way and to share data
between different research groups, formal languages for describing the
biological models were developed. Currently, biological information is

The Never-Ending Story    ◾    291

described (e.g., in textbooks and most scientific papers) in natural lan-
guage accompanied by figures and pictures, but these descriptions can
be ambiguous and unclear. Hence, the need for formal languages with
precise semantics to describe biological models. Such languages are very
important when we want to make sure that information collected by mul-
tiple research groups is consistent. In addition, they can be used as input
languages for programs that simulate a model and describe its behav-
ior graphically and as output of programs for visual building of models.
Another important usage of formal languages is the ability to publish in
conjunction with a traditional scientific paper an exact description of the
model in a standardized language allowing other researchers to evaluate
the results more easily. To these ends a few languages based on Extensible
Markup Language (XML) have been defined. The best-known among
those languages is Systems Biology Markup Language	 (SBML). Using
SBML one can describe biochemical networks, that is, systems composed
of a collection of chemical objects (e.g., molecules) linked to each other by
chemical reactions. Using standard languages such as SBML allows data
repositories containing a large collection of models from the scientific lit-
erature to be created making them available to the research community.

One can also go a step further and use tools developed for modeling
computer systems to build “active” biological models. An example of this
is the use of statecharts to build formal models of biological systems.
The statecharts language is a visual language developed in 1984 by David
Harel to aid in developing complex reactive systems (this language was
originally intended to be used in the development of aeronautical systems).
The behavior of a system is described using states and events that cause
transition between states. The states in statecharts may be composed from
substates, allowing the specification of systems at different levels of orga-
nization, and for easy transitions between levels of description. Moreover,
using statecharts one can allocate states to components acting in paral-
lel and thereby can describe systems containing parallel and interacting
processes. In contrast to a verbal description, a system described by a stat-
echart is defined exactly and therefore allows for automatic execution.

Researchers have used statecharts to describe different biological
mechanisms, including major processes of the immune system. These
models were used to integrate the data obtained from many decades of
research and to test by simulation whether these data are consistent and
whether the models agree with the observed behavior of the immune sys-
tem. To understand a system described using statecharts, one can use the

292    ◾    Biological Computation

simulation tools originally developed to interact with models of computer
systems. These tools allow viewing animations that visualize the behavior
of the system in order to observe the state of each object during the execu-
tion, and to change objects’ states. All of these are, of course, necessary to
verify a model and to understand its behavior.

Figure 6.5 (from Setty et al., 2008) is a statechart of a eukaryotic cell in a
multicellular organism, which is specified by using three distinct objects,
namely, the nucleus, membrane, and cell. The cell includes the specifica-
tion of the different stages in the life cycle of the cell. The nucleus object
specifies gene expression in a discrete fashion, whereas the membrane
object specifies the response to external stimulations. The statechart of
the cell object contains two concurrent components: the proliferation and
differentiation processes. The proliferation component defines a state for
each stage of the cell cycle, whereas the differentiation component specifies

Cell

Nucleus

Membrane

Proliferation

M

G2 G1

S

G0

Differentiation

Endoderm

Pdx1-

Pancreas
progenitor

Exocrine Endocrine

ActR
Unbound

Bound

FGFR
Unbound

Bound

Motion Unit

Sense

X

Left Right Y

Left Right

Z

Left Right

Shh
Unexp.

Exp.

Ptc
Unexp.

Exp.

Pdx1
Unexp.

Exp.

FIGURE  6.5  Statechart description of a eukaryotic cell. (Adapted from Setty,
Yaki, Irun R. Cohen, Yuval Dor, and David Harel, Proceedings	of	 the	National	
Academy	of	Sciences 105, no. 51, 20374–20379, 2008. With permission.)

The Never-Ending Story    ◾    293

a state for each developmental stage of the organism. The nucleus and the
membrane objects are located inside the cell to indicate the (strong) com-
position relation among the three objects, that is, that the nucleus and
the membrane cannot exist without the cell containing them. The stat-
echart for the nucleus specifies each gene as an independent component
that can be either in an expressed or an unexpressed state (denoted by Exp.
and Unexp., respectively). Three genes—Sonic hedgehog (Shh), Patched
(Ptc), and Pdx1—involved in pancreatic organogenesis are shown in this
example. Similarly, the statechart for the membrane specifies the cell’s
reactions to possible external stimulations. Two subcomponents within
the membrane statechart specify two receptors in the membrane—activin
receptor (AcrR) and fibroblast growth factor receptor (FGFR)—that can
be in a bound or an unbound state. The third component in the membrane
statechart depicts the motion unit that continuously scans over six pos-
sible directions to find the optimal move. The states contain behavioral
instructions for the cell. For example, in the membrane, the state bound of
a receptor defines the specific genes it activates. Similarly, in the nucleus,
the expressed state contains instructions for genes to activate the expres-
sion of other genes.

While we cannot go into a full description of the semantics of statecharts
here, it is important to realize that this graphical representation carries
a precise meaning. For example, a cell is presented from two orthogonal
views (i.e., proliferation and differentiation) marked by dotted lines. In the
proliferation view, the statechart tells us that a cell can be either in a resting
state G0 or in the active part of the cell cycle that must start in G1.

The language we just described is based on states. One of the problems
with this notation is that we often do not have enough biological data (or
the data are not precise enough) to describe all the states and transitions of
a complicated biological systems. Thus, other projects used languages and
formal notations that are scenario based—for example, a list of rules that
described what a cell does in a certain situation given a certain stimulus.
Then, given a set of such rules, the system allows for execution of many
scenarios from different initial conditions. Such languages can better cope
with partial knowledge. For this reason they may be better suited at the
present time for describing biological processes.

In addition to statecharts a variety of formalisms developed by computer
science have been adopted for the description and analysis of biological
systems. Among these are Petri nets, process calculi (e.g., the pi-calculus),
and Boolean networks (Fisher and Henzinger, 2007).

294    ◾    Biological Computation

The last few years have seen many initiatives for creating languages for
describing biological systems. Paradoxically, this multitude of initiatives
is problematic. It seems that it would be better to select one language (or
a small number of languages) and to focus on the monumental task of
translating the vast array of biological knowledge to this formal language.
Only when there is a critical mass of biological knowledge described in a
few common formal languages will we be able to gain the full scientific
benefit promised by standardized formal languages.

Given the current difficulties in adapting and using a common formal
language to describe biological systems, there is an ongoing effort to extract
biological knowledge from natural language texts, that is, from biomedical
journal articles. While regular text searches use exact word matching and
keyword annotations, more sophisticated methods aim to use natural lan-
guage processing (NLP) techniques combined with machine-learning algo-
rithms using biological ontologies and dictionaries to extract knowledge
from biomedical articles. While far from perfect, such text-mining systems
bring hope to the endeavor of retrieving at least some of the vast amount of
knowledge that has been published and converting it to machine-readable
form. Having the data specified in formal languages with precise semantics
will ease the goal of building systems to store, manage, and mine biological
knowledge.

6.5  SUMMARY
We have outlined in this chapter a few of the varied directions taken by
researchers who study computational approaches motivated by biology.
Each of the topics we described is an active research area with new ideas
and applications being developed constantly. The topics we presented in
this chapter are newer than the “classic” areas we described in previous
chapters, and it is safe to assume they will develop in varied and surpris-
ing directions.

We have attempted throughout the book to emphasize the computa-
tional aspect of nature, particularly the study of biological processes as
computational processes (i.e., as information processing and problem-
solving processes). This outlook made us consider which computational
problems can be solved using biological mechanisms, looking at the spec-
trum of biological mechanisms from molecular processes to the behav-
ior of animal populations. To this end we inspected the information the
processes consume and how it is saved and manipulated; the control
mechanisms responsible for various processes; the roles of parallelism and

The Never-Ending Story    ◾    295

distribution; and the methods for dealing with faults, noise, and missing
information. This perspective obviously does not address all the different
ways of researching and studying biological processes, but it does allow us
to observe aspects of the biological systems that might be obscured oth-
erwise and to use computer science and engineering tools to help under-
stand biological phenomena.

On the flip side, viewing biological phenomena with “computational
eyeglasses” allowed computer scientists to develop new computational
models inspired by biology and new methods for solving computational
problems. These included optimization and search problems, clustering
and classification problems, pattern recognition, and machine learning.
Most of these new models are not exact representations of biological pro-
cesses (which are only partially understood for the most part) but rather
are new models developed by computer scientists inspired by the knowl-
edge gained from the study of biological systems. The computational per-
spective that guided the discussion in this book provided insights about
basic computer science ideas, including computational universality, the
fundamental inability of distinguishing between programs and data, ways
to build parallel and distributed systems, and dealing with and utilizing
noisy data. An important property of many of the methods we discussed
is that they are based on using local data and control (this is especially
manifest in cellular automata, neural nets, computational immunology,
and swarm intelligence). Obviously, locality is of major importance in
building parallel and distributed systems.

Another recurring theme was that a system containing a large number of
simple components may be much more complex than each of its components.
For example, in the “Game of Life” we derived a system that is equivalent to
a digital computer using very simple birth and death laws. The existence of
a population of different solutions and a simple selection process allows for
optimizations that cannot be achieved by a single solution. The learning and
computing capacity of a neural system is much greater than that of a single
neuron. Molecular computation was another example; as we saw, a large set of
simple molecules can effectively solve complicated computational problems.

An important aspect of these new models is that they rely to a large
extent on learning and self-organization rather than on conventional
programming. Modern computer systems have to contend with more
and more complex computational problems, failures of various kinds,
and complex and changing environments; to adapt to input changes and
sometimes even to required changes in output; and also to deal with

296    ◾    Biological Computation

huge amounts of data in an effort to find patterns and statistical links.
These requirements are only part of the challenges faced by developers of
large computer systems, and these challenges make the programming of
these systems harder and harder. It is difficult to believe we will be able
to avoid in the near future the need for system analysis, software design,
and programming. Hopefully, we may be able to hand some of the tasks
faced by the computational system to mechanisms that can deal inde-
pendently with them by machine learning and self-organization.

Not only do the topics we explored in this book have a major research
interest; they are also used for a wide variety of practical technological
applications. The models we presented (in particular genetic algorithms
and neural nets) allow us to deal with complex optimization and plan-
ning problems and with problems that involve very large amounts of data,
therefore requiring huge computational resources. Using the tools we pre-
sented often helps in reducing the amount of resources needed to more
manageable levels. Some of the problems do not have other feasible solu-
tions, whereas using self-organization characteristic of biological models
allows us to cope with them, either by using an evolutionary process simi-
lar to genetic algorithms or by a learning process of the kind implemented
by neural networks. Examples of such problems are handwriting recogni-
tion, image recognition, and data mining.

In recent years buzzwords such as complex systems,	 nonlinear sys-
tems,	self-organization, and emergence are often used in technological
discussions to describe the behavior of dynamical distributed systems
that do not employ hierarchical control. It is also common to associate
properties such as learning ability, adaptability, and robustness with such
systems. Often it is unclear what the exact meaning of these properties is
and how to discuss them formally. We have presented in this book spe-
cific examples of systems with these properties in an effort to make them
clearer and more tangible. We attempted to show how such properties
manifest themselves and how they can be analyzed and made useful. We
avoided theoretical definitions of these terms, and we tried to steer clear
of vague generalizations. Computer scientists have dealt with the different
aspects of these topics in a formal mathematical manner, and we provide
suggestions for relevant further reading at the end of this chapter. In this
book we preferred to focus on the diversity of biological examples while
emphasizing their common properties on one hand and the richness of
each biological example on the other hand.

The Never-Ending Story    ◾    297

Solving technological problems using the ideas we presented in this book
often requires a combination of different methods and the use of the new
models in conjunction with standard methods. For example, we can use
genetic algorithms to discover a neural net with a useful topology allowing it
to learn a training set efficiently and to achieve a required behavior and good
generalization. Another example of a combination of several models is the
simulation of a population of neural nets embedded on a grid that pass infor-
mation to each other, similar to the implementation of a cellular automaton.
The set of possible combinations is obviously infinite. Just as solving a new
problem using standard algorithms necessitates using existing algorithms
and adapting them to the new problem, the same is true when using the new
methods and models.

When using the ideas presented in this book, do not hesitate to make
changes to the solutions we presented. Often trial and error is the way to
find successful new solutions. Sometimes a solution is possible only after
preprocessing the data so it is better adapted for a particular computational
model (we saw examples when discussing neural networks). Technological
applications often require some changes to fine-tune the system. Do not
neglect the exciting possibility of observing the world, be it the physical,
chemical, biological, or human aspects of the world, borrowing ideas and
turning them into computational models. There is great opportunity to
develop new ideas and new applications of existing ideas!

6.6  RECOMMENDATIONS FOR ADDITIONAL READING
We recommend the following books, which deal with the topics we dis-
cussed in this book. They may be used to deepen the understanding of
topics we discussed, to find more examples, and to become familiar with
other computational models inspired by biology.

6.6.1  Biological Introduction

The following are some textbook suggestions for readers who are unfamil-
iar with basic biology or who want a deeper biological introduction than
provided in Chapter 1. Many other fine textbooks are available.

Solomon, E., L. Berg, and D. Martin. 2007. Biology, 8th ed. Florence, KY: Thomson
Brooks/Cole.

Campbell, N. and J. Reece. 2008. Biology, 8th ed. Pearson Education.
Starr, C., R. Taggart, and C. Evers. 2008. Biology:	The	Unity	and	Diversity	of	Life,

12th ed. Florence, KY: Thomson Brooks/Cole.

298    ◾    Biological Computation

6.6.2  Personal Perspectives

Crick, F. 1988. What	 Mad	 Pursuit:	 A	 Personal	 View	 of	 Scientific	 Discovery.
Jackson, TN: Basic Books.

Watson, J.D. 1968. The	Double	Helix:	A	Personal	Account	of	 the	Discovery	of	 the	
Structure	of	DNA. New York: Atheneum.

 The autobiographical accounts of the co-discoverers of the structure of the
DNA molecule provide enjoyable background to some of the topics discussed
in Chapter 1. Francis Crick was also involved in the efforts to decipher the
genetic code, and his book provides a personal account of this research as
well.

Hofstadter,	D.R.	1979.	Gödel,	Escher,	Bach:	An	Eternal	Golden	Braid.	Jackson,	TN:	
Basic	Books.

 A personal book about the role of self-reference in explaining life and cog-
nition. Paradoxes, music, logic, and computation are some of the themes
woven together in this unique book. The book won a Pulitzer prize and
enjoys what might be called a cult following.

6.6.3  Modeling Biological Systems

The following books present various approaches to mathematical model-
ing of biological systems.

Thompson, D.W. 1992. On	Growth	and	Form. Mineola, NY: Dover.
 A famous and inspiring exploration of the living world, focusing on the role

played by physical forces in determining the shapes of animals, this book is
a treasure trove of magnificent examples of biology viewed mathematically.
Originally published in 1917.

Mandelbrot, B.B. 1982. The	Fractal	Geometry	of	Nature. New York: W.H. Freeman.
A detailed analysis of a large number of examples from the living and nonliv-
ing world, by the man who invented fractal geometry.

Murray, J.D. 2002. Mathematical	Biology:	 I.	An	 Introduction, 3rd ed. Heidelberg:
Springer-Verlag.

 This book presents the classical approach of mathematical modeling of bio-
logical phenomena using differential equations.

 Nowak, M.A. 2006. Evolutionary	Dynamics:	Exploring	the	Equations	of	Life. Boston:
Harvard University Press.

 A contemporary perspective on the application of mathematical techniques
to a variety of biological questions.

Prusinkiewicz, P. and A. Lindenmayer. 1990. The	Algorithmic	Beauty	of	Plants. New
York: Springer-Verlag. Available at: http://algorithmicbotany.org/papers/#abop.
The book shows how the L-systems formalism can be used to model the growth
patterns of plants.

The Never-Ending Story    ◾    299

6.6.4  Biological Computation

While many books have been written on the various topics we discuss, not
too many integrative books tackle the emerging field of biological compu-
tation. The following books, which vary a lot in their technical level and
scope, survey the entire field.

Flake, G.W. 1998. The	Computational	Beauty	of	Nature:	Computer	Explorations	of	
Fractals,	 Chaos,	 Complex	 Systems,	 and	 Adaptation. Cambridge, MA: MIT
Press. (See also: http://mitpress.mit.edu/books/FLAOH/cbnhtml/.)

 A delightful book emphasizing the aesthetic aspects of natural phenomena
of self-organizing systems.

Sipper, M. 2002. Machine	 Nature:	 The	 Coming	 Age	 of	 Bio-Inspired	 Computing.
Columbus, OH: McGraw-Hill.

 A well-written book describing in a nontechnical way many aspects of bio-
logical computation.

De Castro, L.N. 2006. Fundamentals	 of	 Natural	 Computing:	 Basic	 Concepts,	
Algorithms,	and	Applications. Boca Raton, FL: Chapman & Hall/CRC Press.
A comprehensive book covering many aspects of biological computation as
well as other natural computational models such as quantum computation.
The book can be used as reference book for many of these topics.

Floreano, D. and C. Mattiussi. 2008. Bio-Inspired	Artificial	Intelligence. Cambridge,
MA: MIT Press.

 A recent book covering in depth a wide range of topics related to bioinspired
computing. The book is written with an engineering orientation and covers
many biological systems.

6.6.5  Cellular Automata
Schiff, J.L. 2008. Cellular	Automata:	A	Discrete	View	of	the	World. Hoboken, NJ: John

Wiley & Sons.
 A readable introduction to cellular automata and their applications.
Wolfram, S. 2002. A	New	Kind	of	Science. Champaign, IL: Wolfram Media.
 A very ambitious book trying to demonstrate in detail (the book contains

1197 pages) that the entire universe around us (e.g., biological, physical, and
computational phenomena) could be and should be considered as cellular
automata. While the approach of the author is a matter of heated discussion,
the book is thought-provoking and contains many interesting examples.

Ilachinski, A. 2001. Cellular	 Automata:	 A	 Discrete	 Universe. Hackensack, NJ:
World Scientific Publishing.

 A detailed (approximately 800-page) and technical exposition of cellular
automata. Includes detailed discussions of various theoretical techniques for
studying cellular automata behavior. The proof of the universality of Life is
presented in detail. Among the topics covered are probabilistic CA, the rela-
tionship between CA and physics models, and a comparison between CA
and neural networks.

300    ◾    Biological Computation

6.6.6  Evolutionary Computation
Holland, J.H. 1975. Adaptation	in	Natural	and	Artificial	Systems:	An	Introductory	

Analysis	 with	 Applications	 to	 Biology,	 Control,	 and	 Artificial	 Intelligence.
Cambridge, MA: MIT Press, 1992.

 Written by the father of genetic algorithms, this book is short but deep and
complex and presents a wide and rich perspective on the subject.

Goldberg, D.E. 1989. Genetic	 Algorithms	 in	 Search,	 Optimization,	 and	 Machine	
Learning. Reading, MA: Addison-Wesley Professional.

 A detailed and clear introduction, including code samples.
Koza, J.R. 1992. Genetic	 Programming:	 On	 the	 Programming	 of	 Computers	 by	

Means	of	Natural	Selection. Cambridge, MA: MIT Press.
 The classic book about genetic programming (not genetic algorithms).

Describes how programs can be evolved to solve various problems.
Mitchell, M. 1998. An	Introduction	to	Genetic	Algorithms. Cambridge, MA: MIT

Press.
 A short and readable exposition of the research on genetic algorithms.

6.6.7  Neural Networks

There are many dozens of books and Internet sites dealing with all types
of neural nets. Two “classic” and recommended texts are

Hertz, J.A., A.S. Krogh, and R.G. Palmer. 1991. Introduction to the Theory of
Neural Computation. Reading, MA: Addison-Wesley. (See also http://www.
phy.duke.edu/~palmer/HKP/.)

 Comprehensive and detailed book with a mathematical focus. The book
emphasizes the connection between neural nets and mathematical models
derived from physics.

Haykin, S. 2008. Neural Networks and Learning Machines, 3rd ed. Upper Saddle
River, NJ: Prentice Hall.

 Covers many topics, written from an engineering/applicative perspective.

6.6.8  Molecular Computation

Not many books deal with this topic, and most of the information can be
found in research papers, which are published at a fast rate. The following
is one of the few introductory texts and presents varied models:

Calude, C. and G. Paun. 2000. Computing	with	Cells	and	Atoms:	An	Introduction	to	
Quantum,	DNA	and	Membrane	Computing. Boca Raton, FL: CRC Press.

6.6.9  Swarm Intelligence
Dorigo, M. and T. Stützle. 2004. Ant Colony	 Optimization. Cambridge, MA:

MIT Press.

The Never-Ending Story    ◾    301

 The book discusses ant colony optimization (ACO) algorithms and includes
chapters dedicated to ACO algorithms for the traveling salesman problem,
ACO for NP-hard problems, and ACO for data network routing. Each chap-
ter ends with a short section enumerating the main points raised in the chap-
ter. Pseudo-code and exercises are provided.

Bonabeau, E., M. Dorigo, and G. Theraulaz. 1999. Swarm Intelligence: From
Natural to Artificial System. New York: Oxford University Press.

 The book presents techniques for building artificial systems derived from the
analysis of social insect behavior. Each chapter focuses on a specific biologi-
cal example, which is described, modeled, and from which an algorithm is
then derived. Pseudo-code for each of the algorithms is provided.

Kennedy, J., R.C. Eberhart with Y. Shi. 2001. Swarm Intelligence. San Francisco,
CA: Morgan Kaufmann.

 A readable and thorough discussion of swarm and collective intelligence, as
well as related areas. Includes detailed discussions of applications and philo-
sophical and theoretical implications.

6.6.10  Systems Biology
Alon, U. 2006. An	Introduction	to	Systems	Biology:	Design	Principles	of	Biological	

Circuits. Boca Raton, FL: Chapman & Hall/CRC Press.
 A recent book by one of the pioneers of the field. The book concentrates on

several well-known biological examples and demonstrates how mathemati-
cal treatment can be used to gain insight into the way biological systems
work.

6.6.11  Bioinformatics

In the last few years many books dealing with bioinformatics from every
possible aspect were published.

Mount, D.W. 2004. Bioinformatics:	 Sequence	and	Genome	Analysis,	2d ed. Cold
Spring Harbor, NJ: Cold Spring Harbor Press.

 This frequently used book goes beyond listing bioinformatic tools and data-
bases and tries to explain, often in detail, the computational and biological
background for the main tools developed in the field. The book is used as a
textbook in many bioinformatics courses but is also suitable for self-study.

Lesk, A. 2002. Introduction	to	Bioinformatics.	New York: Oxford University Press.
Another comprehensive book by one of the founders of the field. The book
gives special emphasis to the structural aspects of biological molecules.

6.7  FURTHER READING
Bonabeau, Eric, Marco Dorigo, and Guy Theraulaz. 1999. Swarm	 Intelligence:	

From	Natural	to	Artificial	System. Oxford: Oxford University Press.
Bonabeau, Eric, Marco Dorigo, and Guy Theraulaz. 2000. Inspiration for optimi-

zation from social insect behaviour. Nature 406, no. 6791, 39–42.

302    ◾    Biological Computation

Clune, Jeff, Charles Ofria, and Robert Pennock. 2007. Investigating the emergence
of phenotypic plasticity in evolving digital organisms. In F. Almeida e Costa,
L. Rocha, E. Costa, I. Harvey, and A. Coutinho (Eds.), Advances	in	Artificial	
Life, 74–83. New York: Springer.

Fisher, Jasmin and Thomas A. Henzinger. 2007. Executable cell biology. Nature	
Biotechnology 25, no. 11, 1239–1249.

Giaever, Guri, Angela M. Chu, Li Ni, Carla Connelly, Linda Riles, Steeve
Veronneau, et al. 2002. Functional profiling of the Saccharomyces cerevisiae
genome. Nature 418, no. 6896, 387–391.

Hofmeyr, Steven A. and Stephanie A. Forrest. 2000. Architecture for an Artificial
Immune System. Evolutionary	Computation 8, no. 4, 443–473.

Kafri, Ran, Arren Bar-Even, and Yitzhak Pilpel. 2005. Transcription conrol repro-
gramming in genetic backup circuits. Nat.	Genet. 37, no. 3 (March), 295–299.

Kennedy, James, Russell C. Eberhart, with Yuhui Shi. 2001. Swarm	Intelligence. San
Francisco: Morgan Kaufmann.

Kitano, Hiroaki. 2002. Computational systems biology. Nature 420, no. 6912,
206–210.

Lenski, Richard E., Charles Ofria, Robert T. Pennock, and Christoph Adami. 2003.
The evolutionary origin of complex features. Nature 423, no. 6936, 139–144.

Ray, Thomas S. 1992. Evolution, ecology and optimization of digital organisms. Santa
Fe Institute working paper 92-08-042. Available at: http://life.ou.edu/pubs/tierra/.

Setty, Yaki, Irun R. Cohen, Yuval Dor, and David Harel. 2008. Four-dimensional
realistic modeling of pancreatic organogenesis. Proceedings	of	 the	National	
Academy	of	Sciences 105, no. 51, 20374–20379.

Simon, Herbert A. 1962. The Architecture of Complexity. In Proceedings	 of	 the	
American	Philosophical	Society 106, 467–482.

Simon, Herbert A. 2002. Near decomposability and the speed of evolution.
Industrial	and	Corporate	Change 11, 587–599.

Sims, Karl. 1994. Evolving virtual creatures. In Proceedings	 of	 the	 21st	 Annual	
Conference	on	Computer	Graphics	and	Interactive	Techniques,	15–22. ACM.

Tong, A. H., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., Young, J., Berriz,
G. F., Brost, R. L., Chang, M. et al. 2004. Global mapping of the yeast genetic
interaction network. Science 303, no. 5659, 808–813.

6.8  EXERCISES

6.8.1  Swarm Intelligence

 1. Is the pheromones mechanism based on positive or negative feedback?

 2. To determine how ants discover paths to a food source, a device
similar to the one in Figure 6.6 was created. The ants walk along the
circular corridor. The bottom vertical line defines the ants’ starting
point and the top vertical line the location of the food source. The
ants start out as depicted on the left. Initially, they distribute them-
selves uniformly between the short and long paths as can be seen in

The Never-Ending Story    ◾    303

the middle. After a while they concentrate on the short path as seen
on the right. Try to explain the development of this organization.

Food Food Food

FIGURE 6.6

 3. How will increasing the number of ants in the ants colony optimiza-
tion affect the results of the algorithm?

 4. Raising the rate of evaporation of pheromones (i.e., the decrease in
the amount of pheromones at every iteration) can help avoid a too
rapid convergence into a suboptimal region of the search space and
can also help avoid premature convergence. Why?

 5. Developers who built a PSO-based system discovered that if ini-
tially ω is large (close to 1) and then is decreased after a few itera-
tions to ω ≈ 0.5, the system performs better. Try to explain this
observation.

 6. Why is rand() used in the PSO rate update formula?

 7. In a well-known variation of PSO, the particles are not affected by all
the other particles in the population but only by a subset of “neigh-
bors” (the set of neighbors for each particle is defined ahead of time).

 a. What changes to the PSO algorithm we presented have to be
made to implement this mechanism?

 b. Discuss possible advantages of this mechanism compared with
the standard PSO algorithm.

6.8.2  Artificial Immune Systems

 8. Immunological detectors that react to the organism are dangerous,
but on the other hand detectors that do not react at all are useless.
How would you balance between these two requirements when using
a negative selection algorithm?

304    ◾    Biological Computation

 9. How will increasing the activation threshold τ and the training
period impact the frequency of false alarms?

 10. Why is it important for the match counter to decay over time?

 11. Ideally, the immune system should not react at all in any situation
that does not pose a real risk. If that is impossible, one would want
the severity of the reaction to be proportional to the probability that
the situation poses a real risk. Suggest ways to achieve this in an arti-
ficial immune system.

 12. Discuss the possible disadvantages of the co-stimulation method used
by LISYS.

 13. LISYS also uses another mechanism (not described in the text) that
allows each computer on the network to have a different sensitivity
level ωi (i	 =	 1,2,..,n) to immunological events. The local activation
threshold for the detectors in computer i is defined to be τ – ωi	(the
higher the local sensitivity, the lower the required activation thresh-
old). Whenever a detector’s counter changes from 0 to 1, the relevant
ωi	increases by 1. Just like the other counters,	ωi decays with time.
What role does the local sensitivity mechanism play? How does it
contribute to the behavior of the system?

 14. The self set may change over time (e.g., the normal communication
patterns in the network may change over time). How can an immune
system of the kind described deal with this? A good solution will
minimize both the number of false positives and false negatives.

 15. Another mechanism used by the immune system and not discussed
so far is rapid “evolution” of detectors, based on their similarity to
a suspicious element. The only detectors that partake in this process
identify the suspicious element with high enough confidence. They
are quickly cloned, allowing for a high mutation rate. The mutation
rate for each detector depends on how well it detected the suspect
element—the more closely it matches the intruder, the lower its
mutation rate. How can we integrate this mechanism in the detec-
tion system, and what are its possible contributions to the system?

 16. The immune system naturally has to be robust. Identify the proper-
ties of artificial immune systems that contribute to their robustness.

The Never-Ending Story    ◾    305

 17. We have mentioned that the biological immune system may have reg-
ulatory functions. Try to suggest possible regulatory functions for the
immune system, and assess their likelihood (keep in mind the obser-
vation that the distinction between self and nonself may be the result
rather than the reason for the existence of such functions). Suggest
observations or experiments to test your hypotheses.

6.8.3  Artificial Life

 18. Try to find a counterexample for each of the properties used to define
life that were mentioned in the text; that is, describe a system that
has that property but that is not considered to be alive.

 19. Check to see whether the dictionary definition of the word life can
serve as the definition of life.

 20. Which of the properties we enumerated to define life presents the
most difficulties to the proponents of strong ALife?

 21. Both Avida and genetic programming (see Chapter 3) deal with evolv-
ing computer programs. What are the fundamental differences between
the two approaches?

 22. Download Avida’s source code from the Internet, and study the
Divide_DoMutations subroutine (which is part of the implementa-
tion of Hardware_CPU). This subroutine is executed after the organ-
ism executes the h-divide function. For which types of mutations is
this subroutine responsible?

 23. In Avida the basic cloning mechanism (i.e., command copy) is imple-
mented by the virtual computer, as opposed to biological systems in
which the replication mechanisms are part of the organism. Can
organisms that are able to correct copying errors exist in Avida? The
basic copying mechanism in Avida cannot improve evolutionarily
since it is not part of the organism. Suggest a way to overcome this
limitation to make Avida more faithful to biological systems. Why
do you think the Avida developers preferred not to implement such
a mechanism?

 24. Which of the two approaches to fitness—Avida’s or Sims’s virtual crea-
tures simulation—is closer to the meaning of fitness in natural selection?

306    ◾    Biological Computation

6.8.4  Systems Biology

 25. Find more examples of robustness, and determine whether the
robustness stems from positive feedback, negative feedback, or
some other mechanism.

 26. Explain the impact that understanding of control mechanisms may
have on applications such as drug design and development.

 27. Suggest situations in which the mechanisms giving the organisms their
robustness helps disease processes in becoming robust and hard to treat.

 28. A heating system controlled by a thermostat operates by compar-
ing the room temperature to the target temperature and adjusting
the heating level accordingly. The obvious goal is for temperature to
reach a steady state. Describe in detail the system’s algorithm. Does
the system implement positive or negative feedback?

6.8.5  Programming Exercises

 29. Implement a solution to the traveling salesman problem using ACO.
Test on a variety of graphs. For which graphs does the system fail to
find a good solution? Try to add mechanisms that will improve the
behavior of the system in these cases. Try to minimize the number
of additional mechanisms, and avoid using global information.

 30. An interesting usage of clustering using ants is for plotting graphs.
Let G	= (V,E) be an undirected graph. The goal is to embed the nodes
in the Euclidean plane such that the connections are as clearly drawn
as possible. In particular:

 a. Clustered nodes will be placed close together on the plane.

 b. The distances inside clusters will be minimal.

 c. Different clusters will be far enough away from each other.

 Use the clustering algorithm we presented, in which the distance
between two nodes is defined to be

d v v

D v v

v v
i j

i j

i j

(,)
((), ())

() ()
=

+

ρ ρ

ρ ρ

The Never-Ending Story    ◾    307

 where ρ(vi) is the set of neighboring nodes of vi (including vi itself)
D is the symmetrical difference between the sets, and |...| denotes
the number of elements in the set. Test this solution on a few graphs
(observe how the nodes move as the algorithm progresses). Has the
algorithm found presentations that seem visually successful for the
graphs you tested?

 31. How can one use PSO to discover weights for a multilayered neu-
ral net with full connectivity, assuming a training set composed of
(input, output) pairs is known? Try to use this method for one of the
neural nets described in Chapter 5 (without learning), and analyze
the quality of the PSO algorithm’s results for varying parameters.

 32. Design an artificial immune system that will alert about unusual
data in a software system’s output files. Assume that the software
system runs a complicated computation in batch mode every night
(e.g., a payroll). The immune system will be used to inspect the out-
put files and will alert if the output differs enough from the norm
to indicate a possible error (or deliberate attack) in the system.
Note: the goal is to be able to identify suspicious result, not merely
corrupt output files.

 33. Install Avida, and program a new self-replicating organism. (Use Avida’s
documentation for details of the machine language.)

6.9  ANSWERS TO SELECTED EXERCISES
 2. Initially there are no pheromones, and the ants choose a random

path. As the left path is shorter, the ants traversing it will reach the
food quicker, and when they look for a path back to the nest they will
go back on the same path, following the pheromone trail they laid
down. (As the other ants have not reached the food source yet, there
is no pheromone trail on it close to the food source.) This choice
makes the left path even more attractive, and more ants will choose
it in the future.

 3. Adding ants allows for better scanning of the graph and therefore may
improve the algorithm’s results. On the other hand, too many ants
will cause the entire graph to be covered with pheromones, which will
obfuscate the paths and will impact the algorithm’s results negatively.

308    ◾    Biological Computation

 9. Increasing τ and T (up to reasonable values) lowers the rate of false
positives.

 17. Inflammation is a complex biological process involving the immune
system. It was suggested that immune systems have a regulatory role
in the inflammatory process.

 21. The most significant difference is that in Avida the organism is
responsible for self-replication and that no external selection mecha-
nism controls the process. A related difference is that in genetic pro-
gramming one has to define a fitness function a priori to evaluate
the different solutions, while in Avida the evaluation is based only
on the individuals’ self-replication ability, though it is important to
note that in Avida one can reward individuals for performing exter-
nal tasks. Another difference is in the representation of individuals:
in genetic programming the individuals are usually represented as
expression trees to allow an easy crossover between the genotypes of
different individuals (sexual reproduction). In Avida the individuals
are represented as computer programs written in the Avida machine
language.

 26. Drugs may work by direct interference with control mechanisms;
thus, understanding these mechanisms might help in designing
treatment strategies. For example, if part of a process is controlled by
positive feedback, one may affect the whole process using minimal
intervention, such as by using a small amount of medication whose
affect will be amplified by the feedback mechanism. Conversely, a
process regulated by negative feedback may require large, potentially
harmful doses of medication to overcome the negative feedback. In
this case, finding drugs that modify the behavior of the negative
feedback loop and can be administrated together with the original
drug might be a solution.

 27. The normal robustness processes of the healthy individual are par-
tially responsible to the resistance of cancer cells to interferences in
their reproduction and survival processes. An organism employs
many negative feedback loops to adapt to changes in its environment.
Cancer cells take advantage of these and other cellular mechanisms to
resist the attacks the body may launch against them. In addition, anti-
cancer drugs may become less effective because of the ability of cancer
cells to adjust and become less sensitive to them. A second example

The Never-Ending Story    ◾    309

involves the lowered efficacy over time of psychiatric drugs, many of
which achieve their effects by mimicking the structure of naturally
occurring neurotransmitters (e.g., by attaching to the receptors of
neurotransmitters and effectively blocking them). The body reacts in a
variety of ways, including changes in the number and density of neu-
rotransmitters receptors expressed, which cause the brain to readjust
to the changing levels of neurotransmitters and to return over time to
its activity state prior to the administration of the drug.

 30. A relevant discussion and references can be found in Bonabeau et al.
(1999). The discussion in this book explains why drawing graphs is a
hard problem and why using clustering is not successful for all graphs.

	Front Cover
	Title Page
	Copyright
	Table of Contents
	Preface
	Chapter 1 - Introduction and Biological Background
	1.1 BIOLOGICAL COMPUTATION
	1.2 THE INFLUENCE OF BIOLOGY ON MATHEMATICS—HISTORICAL EXAMPLES
	1.3 BIOLOGICAL INTRODUCTION
	1.3.1 The Cell and Its Activities
	1.3.2 The Structure of DNA
	1.3.3 The Genetic Code
	1.3.4 Protein Synthesis and Gene Regulation
	1.3.5 Reproduction and Heredity

	1.4 MODELS AND SIMULATIONS
	1.5 SUMMARY
	1.6 FURTHER READING
	1.7 EXERCISES
	1.7.1 Biological Computation
	1.7.2 History
	1.7.3 Biological Introduction
	1.7.4 Models and Simulations

	1.8 ANSWERS TO SELECTED EXERCISES

	Chapter 2 - Cellular Automata
	2.1 BIOLOGICAL BACKGROUND
	2.1.1 Bacteria Basics
	2.1.2 Genetic Inheritance—Downward and Sideways
	2.1.3 Diversity and the Species Question
	2.1.4 Bacteria and Humans
	2.1.5 The Sociobiology of Bacteria

	2.2 THE “GAME OF LIFE”
	2.3 GENERAL DEFINITION OF CELLULAR AUTOMATA
	2.4 1-DIMENSIONAL AUTOMATA
	2.5 EXAMPLES OF CELLULAR AUTOMATA
	2.5.1 Fur Color
	2.5.2 Ecological Models
	2.5.3 Food Chain

	2.6 COMPARISON WITH A CONTINUOUS MATHEMATICAL MODEL
	2.7 COMPUTATIONAL UNIVERSALITY
	2.7.1 What Is Universality?
	2.7.2 Cellular Automata as a Computational Model
	2.7.3 How to Prove That a CA Is Universal
	2.7.4 Universality of a Two-Dimensional Cellular Automaton—Proof Sketch
	2.7.5 Universality of the “Game of Life”—Proof Sketch

	2.8 SELF-REPLICATION
	2.9 SUMMARY
	2.10 PSEUDO-CODE
	2.11 FURTHER READING
	2.12 EXERCISES
	2.12.1 "Game of Life”
	2.12.2 Cellular Automata
	2.12.3 Computing Using Cellular Automata
	2.12.4 Self-Replication
	2.12.5 Programming Exercises
	2.12.1

	2.13 ANSWERS TO SELECTED EXERCISES

	Chapter 3 - Evolutionary Computation
	3.1 EVOLUTIONARY BIOLOGY AND EVOLUTIONARY COMPUTATION
	3.1.1 Natural Selection
	3.1.2 Evolutionary Computation

	3.2 GENETIC ALGORITHMS
	3.2.1 Selection and Fitness
	3.2.2 Variations on Fitness Functions
	3.2.3 Genetic Operators and the Representation of Solutions

	3.3 EXAMPLE APPLICATIONS
	3.3.1 Scheduling
	3.3.2 Engineering Optimization
	3.3.3 Pattern Recognition and Classification
	3.3.4 Designing Cellular Automata
	3.3.5 Designing Neural Networks
	3.3.6 Bioinformatics

	3.4 ANALYSIS OF THE BEHAVIOR OF GENETIC ALGORITHMS
	3.4.1 Holland’s Building Blocks Hypothesis
	3.4.2 The Schema Theorem
	3.4.3 Corollaries of the Schema Theorem

	3.5 LAMARCKIAN EVOLUTION
	3.6 GENETIC PROGRAMMING
	3.7 A SECOND LOOK AT THE EVOLUTIONARY PROCESS
	3.7.1 Mechanisms for the Generation and Inheritance of Variations
	3.7.2 Selection

	3.8 SUMMARY
	3.9 PSEUDO-CODE
	3.10 FURTHER READING
	3.11 EXERCISES
	3.11.1 Evolutionary Computation
	3.11.2 Genetic Algorithms
	3.11.3 Selection and Fitness
	3.11.4 Genetic Operators and the Representation of Solutions
	3.11.5 Analysis of the Behavior of Genetic Algorithms
	3.11.6 Genetic Programming
	3.11.7 Programming Exercises

	3.12 ANSWERS TO SELECTED EXERCISES

	Chapter 4 - Artificial Neural Networks
	4.1 BIOLOGICAL BACKGROUND
	4.1.1 Neural Networks as Computational Model

	4.2 LEARNING
	4.3 ARTIFICIAL NEURAL NETWORKS
	4.3.1 General Structure of Artificial Neural Networks
	4.3.2 Training an Artificial Neural Network

	4.4 THE PERCEPTRON
	4.4.1 Definition of a Perceptron
	4.4.2 Formal Description of the Behavior of a Perceptron
	4.4.3 The Perceptron Learning Rule
	4.4.4 Proving the Convergence of the Perceptron Learning Algorithm

	4.5 LEARNING IN A MULTILAYERED NETWORK
	4.5.1 The Backpropagation Algorithm
	4.5.2 Analysis of Learning Algorithms
	4.5.3 Network Design
	4.5.4 Examples of Applications

	4.6 ASSOCIATIVE MEMORY
	4.6.1 Biological Memory
	4.6.2 Hopfield Networks
	4.6.3 Memorization in a Hopfield Network
	4.6.4 Data Retrieval in a Hopfield Network
	4.6.5 The Convergence of the Process of Updating the Neurons
	4.6.6 Analyzing the Capacity of a Hopfield Network
	4.6.7 Application of a Hopfield Network
	4.6.8 Further Uses of the Hopfield Network

	4.7 UNSUPERVISED LEARNING
	4.7.1 Self-Organizing Maps
	4.7.2 WEBSOM: Example of Using SOMs for Document Text Mining

	4.8 SUMMARY
	4.9 FURTHER READING
	4.10 EXERCISES
	4.10.1 Single-Layer Perceptrons
	4.10.2 Multilayer Networks
	4.10.3 Hopfield Networks
	4.10.4 Self-Organizing Maps
	4.10.5 Summary

	4.11 ANSWERS TO SELECTED EXERCISES

	Chapter 5 - Molecular Computation
	5.1 BIOLOGICAL BACKGROUND
	5.1.1 PCR: Polymerase Chain Reaction
	5.1.2 Gel Electrophoresis
	5.1.3 Restriction Enzymes
	5.1.4 Ligation

	5.2 COMPUTATION USING DNA
	5.2.1 Hamiltonian Paths
	5.2.2 Solving SAT
	5.2.3 DNA Tiling
	5.2.4 DNA Computing—Summary

	5.3 ENZYMATIC COMPUTATION
	5.3.1 Finite Automata
	5.3.2 Enzymatic Implementation of Finite Automata

	5.4 SUMMARY
	5.5 FURTHER READING
	5.6 EXERCISES
	5.6.1 Biological Background
	5.6.2 Computing with DNA
	5.6.3 Enzymatic Computation

	5.7 ANSWERS TO SELECTED EXERCISES

	Chapter 6 - The Never-Ending Story
	6.1 SWARM INTELLIGENCE
	6.1.1 Ant Colony Optimization Algorithms
	6.1.2 Cemetery Organization, Larval Sorting, and Clustering
	6.1.3 Particle Swarm Optimization

	6.2 ARTIFICIAL IMMUNE SYSTEMS
	6.2.1 Identifying Intrusions in a Computer Network

	6.3 ARTIFICIAL LIFE
	6.3.1 Avida
	6.3.2 Evolvable Virtual Creatures

	6.4 SYSTEMS BIOLOGY
	6.4.1 Evolution of Modularity
	6.4.2 Robustness of Biological Systems
	6.4.3 Formal Languages for Describing Biological Systems

	6.5 SUMMARY
	6.6 RECOMMENDATIONS FOR ADDITIONAL READING
	6.6.1 Biological Introduction
	6.6.2 Personal Perspectives
	6.6.3 Modeling Biological Systems
	6.6.4 Biological Computation
	6.6.5 Cellular Automata
	6.6.6 Evolutionary Computation
	6.6.7 Neural Networks
	6.6.8 Molecular Computation
	6.6.9 Swarm Intelligence
	6.6.10 Systems Biology
	6.6.11 Bioinformatics

	6.7 FURTHER READING
	6.8 EXERCISES
	6.8.1 Swarm Intelligence
	6.8.2 Artificial Immune Systems
	6.8.3 Artificial Life
	6.8.4 Systems Biology
	6.8.5 Programming Exercises

	6.9 ANSWERS TO SELECTED EXERCISES

