
“I read this book in one breath—it opens vistas on how the fields of computation 
and biology can inspire each other. I particularly enjoyed the analogies between 
immune systems and software that fights computer viruses.”
—Uri Alon, Weizmann Institute of Science, Rehovot, Israel, and author of An Introduction 
to Systems Biology: Design Principles of Biological Circuits

“The book by Lamm and Unger methodically covers exciting developments 
in biological computation, offering for the first time a broad perspective of this 
important cutting-edge field of research.”
—Ehud Shapiro, The Harry Weinrebe Professorial Chair of Computer Science and 
Biology, Weizmann Institute of Science, Rehovot, Israel

“This is a wonderful treatise on bio-inspired computation, written from a computer 
science perspective. The authors are extremely knowledgeable about their subject, 
and the material they cover is both broad and deep. The book should benefit 
anyone interested in the connection between computer science and biology, a 
connection that is poised to become dramatically central to the science of the 21st 
century.”
—David Harel, The William Sussman Professorial Chair, Department of Computer 
Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

A unified overview of computer science ideas inspired by biology, Biological 
Computation presents the most fundamental and significant concepts in this area. 
In the book, readers discover that bacteria communicate, that DNA can be used 
for performing computations, how evolution solves optimization problems, that the 
way ants organize their nests can be applied to solve clustering problems, and what 
the human immune system can teach us about protecting computer networks. 
The text focuses on cellular automata, evolutionary computation, neural networks, 
and molecular computation. Each chapter explores the biological background, 
describes the computational techniques, gives examples of applications, discusses 
possible variants of the techniques, and includes exercises and solutions.
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Preface

THE SPIRIT OF THIS BOOK
It is often said that biology is going to be the science of the 21st century as 
physics was the science of the 20th. Fascinating discoveries about the liv-
ing world around us, as well as about our own bodies, are brought about 
daily by molecular biology, neuroscience, and other biological disciplines. 
In addition, biological understanding, whether on the molecular scale or 
on the ecological level, is fast becoming the foundation of new engineering 
disciplines, such as nanotechnology and bioengineering, which have the 
potential to fundamentally change the way we live.

Computers, and computer science ideas and techniques, are of course an 
important part of all these scientific and engineering activities. Computer 
science and its concepts and methods are not only a servant of biologi-
cal research but also provide mental models used by a new generation of 
biologists, who often refer to themselves as systems biologists, in think-
ing about the living world. Ideas and approaches, however, travel in both 
directions: reflecting on biological ideas has inspired a wide range of com-
puter science questions and has led to the development of important new 
techniques for solving hard computational problems. The result might be 
called biological computation (or biologically inspired computing) and is 
the subject of this book.

This book is written from the perspective of computer scientists who 
are fascinated with biology. A large part of the excitement and fun of bio-
inspired computing, at least for us, is learning the amazing and quirky 
details discovered by biologists. Among the biological stories that have 
informed computer science you will find discoveries about how bacteria 
communicate, how ants organize their nests, and the way the immune 
system learns to recognize pathogens before actually encountering them. 
All these, and more, are discussed in the chapters to come, along with the 
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computational techniques they led to. We hope the book manages to con-
vey the sense of wonder and fun that we feel about the field. It goes without 
saying that it is impossible to go into all details of such varied phenom-
ena, and we concentrate on the aspects of the biological phenomena most 
closely related to the computational approaches we discuss.

THE CONTENT OF THE BOOK
The term biological computation encompasses quite a few approaches. In this 
book we focus on the most fundamental and important ideas, and on the clas-
sic works in each of the subjects we discuss, in an attempt to give a unified 
overview of computer science ideas inspired by biology. The four major topics 
we focus on are cellular automata, evolutionary computation, neural networks, 
and molecular computation. Each of these topics is the subject of a chapter 
that begins by exploring the biological background and then moves on to 
describe the computational techniques, followed by examples of applications 
and a discussion of possible variants of the basic techniques introduced in 
the chapter. Each chapter also includes exercises and solutions. Exercises with 
solutions are marked with bold numbers. Important ideas and techniques are 
presented through the example applications and exercises. In addition to the 
chapters discussing these techniques, Chapter 1 provides a general biological 
background, and Chapter 6 concludes the book by introducing, more briefly, 
some of the new topics that are emerging within the field.

We made a special effort to make our explanation of molecular com-
putation accessible to readers who lack a background in molecular biol-
ogy, without sacrificing the details. In contrast to the other techniques 
we discuss in the book that can be immediately used by programmers to 
attack computational challenges, molecular computation is still mostly in 
its infancy and requires equipment that can be found only in professional 
laboratories. We feel, however, that thinking about the computational 
power of molecular events is enlightening, and we predict that computer 
scientists will enjoy the puzzle-like challenge of trying to represent com-
putational problems as sets of interacting molecules. With the possibility 
of biological hacking and “Do It Yourself Biology” just around the corner, 
the use of these techniques may become more widespread than can pres-
ently be imagined.

The topics we focus on, with the exception of molecular computing, are 
already the subject of several good textbooks, which can be found listed 
in the Recommendations for Additional Reading section of Chapter 6. 
Most of these books, however, are dedicated to only one of the subjects we 
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discuss or are extremely detailed reference books. Our goal was to present 
to you, the reader, an overview of the terrain, allowing you to then focus 
your attention on the techniques that are most relevant for you. Each of 
the approaches we cover exists in a multitude of variants and is covered 
by a large amount of theoretical work—it is very easy to get buried in the 
details. This book attempts to convey in an easily digestible form the gist 
of each of the major approaches in the field and to bring you to the point 
where you can produce a working implementation of each of the basic 
techniques or to effectively use one of the many existing implementations 
that can be found online. All the details can be easily found in the lit-
erature or by searching online once the basic ideas introduced here are 
understood.

The techniques we discuss reflect fundamental principles whose appli-
cability goes beyond bio-inspired computing—for example, self-organiza-
tion, redundancy, using noise, asynchronicity, nondeterminism, and other 
methods of parallelism and distributed computing. These ideas manifest 
themselves in other areas of computer science and software engineering, 
specifically in the development of very large-scale distributed systems, of 
the sort underlying cloud and grid computing. While these fields are not 
discussed here, we feel that getting acquainted with these fundamental 
ideas and playing with simple computational models that exhibit them, 
such as the ones presented throughout this book, can be rewarding.

FOR WHOM IS THIS BOOK INTENDED?
We wrote this book thinking primarily of readers with a computer sci-
ence background and we assume no previous background in biology. For 
readers who feel they would benefit from a deeper understanding of the 
biological context we provide references to several recommended books in 
the Further Reading list in Chapter 1. This book is intended to be a gentle 
introduction to the field and should be suitable for self-study as well as 
for use in university courses. We assume the reader is familiar with basic 
computer science terminology and basic algebra and probability theory 
but provide detailed explanations of all derivations. There are program-
ming exercises at the end of each chapter, but it is possible to follow the 
explanations and discussions without programming knowledge. We did 
not include many formal proofs, but throughout the chapters and exercises 
we give easy-to-follow examples of several important proof techniques. 
This should make the book accessible to readers with biological or medical 



xviii    ◾    Preface

backgrounds—those coming to the field of bio-inspired computing from 
biology rather than from computer science.

USING THIS BOOK AS A TEXTBOOK
While the book can be used for self-study, its main purpose is to serve as 
a textbook for a course on biological computation. Such a course can be 
given to advanced undergraduate or early graduate students in programs 
that combine biology and computer science (a double major in computer 
science and biology or special bioinformatics tracks). For such students 
a course on biological computation can complement a suite of courses 
in bioinformatics, algorithms for computational biology, and systems 
biology.

A course based on this book can also be given to students who major 
in computer science and for whom a course in biological computation can 
enrich the perspectives about alternative models of computation. The book 
contains in the first chapter and in each one of Chapters 2–5 an accessible 
biological introduction. Nevertheless, it is a good idea for these students 
to take a basic course in biology prior to a course based on this book or, 
as was done in Bar-Ilan University, to add lectures and teaching assistant 
(TA) sessions giving a “crash course” in biology.

The material covered in this book can be delivered in a semester (13–14 
weeks) with weekly two-hour lectures and weekly TA sessions. Thus, we 
devote about three weeks to each one of the four main subjects we cover. 
From our experience, students gain a lot from homework and especially 
from the programming exercises, so we provide a good number of those. 
As the book was written as a textbook, we tried not to overwhelm the 
readers with footnotes and references.

 When we designed and delivered this course in the last several years, 
no suitable textbook was available, and we felt its absence. Our course was 
well received by students, and we hope that this book will encourage and 
enable many teachers and universities to offer similar courses.

ACKNOWLEDGMENTS
Writing a book is a long and complicated process, and we could not have 
done it without the help and support of many individuals and institutions.

The idea to collaborate on a book came to us while we worked on 
the development of a course on bio-inspired computing for the Open 
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by Ron Unger at the Weizmann Institute of Science and for many years at 
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immeasurably. Without her this book would never be. 

We thank Assaf Massoud for the artwork resulting in the illuminat-
ing illustrations that accompany the text. Working with Assaf was a real 
pleasure. Both Edna and Assaf had to endure the difficulties of dealing 
with two authors who often disagreed; not only did both endure this with 
grace, but their prodding also helped the two authors converge.

We also wish to thank all those who read the manuscripts or parts 
of it, pointed out our mistakes, and made valuable suggestions. First 
and foremost we thank Yair Horesh, who was involved in the courses 
in Bar-Ilan and in the Open University and made important contribu-
tions to the manuscript. We would also want to recognize the assistance 
we received from Tania Gottlieb in the biological aspects of the book 
and Orly Noivirt-Brik, Yochai Gat, Nurit Zer-Kavod, Ariel Azia, Tirza 
Doniger, Inbal Yomtovian, Ari Yakir, and Ilana Lebenthal for their valu-
able comments on the manuscript.
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C h a p t e r  1

Introduction and 
Biological Background

1.1  BIOLOGICAL COMPUTATION
This book presents topics on the border between biology and computer 
science in an attempt to demonstrate how biological insights allow us to 
deal with complex computational problems and, conversely, how com-
puter science insights enhance our understanding of biological processes 
and help to identify problems worthy of research.

Most of the book presents the topics from a computer science perspec-
tive and deals with new computational models and techniques based on 
ideas derived from biological research. Using these techniques, problems 
are solved in ways that differ from “classical” computer programming, in 
which programs can usually be described as a linear sequence of instruc-
tions. Chapter 2 deals with cellular automata, which are made up of many 
independently operating cells embedded on a grid, each of which can affect 
only its neighbors. This resembles a colony of simple organisms (e.g., bac-
teria) that can present amazingly complex behaviors or even the structure 
of simple multicellular creatures that contain many cells working together. 
Chapter 3 deals with evolutionary computation and demonstrates how to 
solve optimization and search problems by mimicking the natural evolu-
tionary processes whereby organisms adapt to their environment. Chapter 
4 presents models of neural networks that attempt to mimic the behavior 
of the brain. These systems are capable of learning and generalizing from 
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examples. Chapter 5 deals with molecular computation, in which compu-
tational problems are solved by a set of interacting biological molecules. 
Finally, Chapter 6 presents brief descriptions of several other topics that are 
on the cusp between computer science and biology, for example, ideas drawn 
from animal behavior and from the operation of the immune system.

We will explore how to apply the models presented to a large variety of 
computational problems. In particular, some of the problems discussed are 
believed to be hard (e.g., we will discuss NP-complete problems, which are 
problems for which no efficient algorithm is believed to exist), but using 
ideas inspired by biology helps in finding practical solutions for many of 
their instances.

We can consider the use of biological insights to solve computational 
problems as a “translation” of biological phenomena into formal math-
ematical models. Obviously, we will not attempt an exact translation but 
will merely use certain aspects of the biological phenomena as inspiration 
for developing mathematical and computational methods. One could also 
do the converse—develop formal mathematical tools to analyze biologi-
cal phenomena. This field is called theoretical biology and is beyond the 
scope of this book. The discussion of systems biology in Chapter 6 briefly 
notes how some of the theoretical ideas developed by computer science are 
being applied to the study of biological systems.

As we discuss these new computational models we will naturally focus 
on the differences between them and traditional computational models. 
Table 1.1 outlines a few major differences between the biologically inspired 
models and traditional, more conventional models. The table demonstrates 
that nonstandard computational models differ from conventional models 
in many significant aspects.

Note that, in addition to the biologically inspired computational mod-
els, other types of nonstandard computational models have drawn a lot of 
attention recently. An interesting example is quantum computing, which 
attempts to use physical properties described by quantum mechanics as 
a powerful computational mechanism. As we concentrate on biological 
ideas, these models will not be discussed in this book.

These new approaches to computation are both intellectually exciting 
and present new engineering approaches to solving complex problems. It 
almost seems as if the biologically inspired models were designed to deal 
with difficulties and limitations that arise when building complex com-
puter systems. The engineering requirements arising from the attempts 
to build increasingly complex computer systems that have to be reliable 
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TABLE 1.1  Biologically Inspired Models versus Standard Models

Conventional Computation Biological Computation

Mode of 
operation

Mainly sequential, even though 
there exist parallel computers and 
it is possible to write parallel code 
that executes on standard 
hardware. Usually the number of 
parallel processes is very small.

Mainly parallel. Most biologically 
inspired models are massively 
parallel and are based on 
thousands of local interactions 
running in parallel.

Control There is a centralized global control 
of the entire system.

Computation is the result of 
numerous local processes without 
a global control mechanism.

Programming The programmer has to specify in 
detail the behavior of the system, 
by, for example, choosing 
appropriate data structures or 
algorithms.

In the models presented in 
Chapters 3 and 4 central aspects 
of the behavior of the system are 
developed by the system 
gradually and evolutionarily, 
without human intervention.

Modifiability 
and 
adaptability 

Depends on the design of the 
system but usually requires 
re-programming.

The systems are able to adapt to a 
wide range of environmental 
changes and changes in the 
system itself, without external 
intervention.

Robustness 
and error 
tolerance

Requires special treatment and 
usually requires dedicated code or 
hardware. Usually systems are 
incapable of dealing with extensive 
or prolonged failure (e.g., a 
hardware failure), and such 
failures usually end in catastrophic 
behaviors (complete shutdown of 
the system).

The model often leads to inherent 
robustness. Some of the models 
are capable of independent 
gradual correction of widespread 
failures.

Requirements 
from 
components

In general, a reliable system needs 
reliable components, and the 
system is reliable as the weakest 
component it includes. Usually, 
nondeterminism cannot be 
tolerated.

It is possible to build a reliable and 
fast system using unreliable, slow 
and noisy components. 
Nondeterminism at various levels 
of the system can even contribute 
to reaching the system’s 
functional goals.

Hardware Electronic, usually silicon based. Usually implemented on standard 
hardware. Chapter 5 describes 
using organic (carbon-based) 
materials for computations. 
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and efficient (therefore often parallel and distributed) and to make use of 
cheap components to reduce overall costs seem remarkably suited to the 
properties of nonconventional models. Moreover, throughout the book 
we will encounter insights gleaned from nonstandard models that can be 
integrated into more conventional computer systems.

It is important to understand that many other techniques are employed 
when developing complex computer systems to satisfy the aforementioned 
criteria. Large systems such as those used by Google® and Amazon® have 
to deal with huge datasets, to satisfy requests from all over the globe, and 
to be very reliable and highly available. To achieve these goals they deploy 
several large data centers, each of which houses a large number of clusters 
of computers. This necessitates synchronizing a large number of serv-
ers while, for example, minimizing latency, performing computations 
in parallel, distributing computations between machines and data cen-
ters, and automatically recovering from faults (e.g., using redundancy). 
Such computing and storage architectures are becoming more and more 
available to even smaller companies (e.g., Amazon® sells services on its 
computing “cloud”). The architectural complexity of the system can be 
hidden from the programmer so that only the infrastructure designers 
and implementers need to worry about these details and the programmer 
can concentrate on the details of the applications being developed.

In some instances we can find a similarity between the fundamental 
principles being used in the development of large distributed systems and 
the principles underlying biologically inspired computational models, 
even though the systems themselves differ significantly. The similar prin-
ciples include self-organization, redundancy, use of noise, nondetermin-
ism, and other methods of parallelism and distributed computing. We will 
demonstrate these general principles throughout the book.

1.2  �THE INFLUENCE OF BIOLOGY ON 
MATHEMATICS—HISTORICAL EXAMPLES

Intellectual disciplines interact with each other in many different ways. 
Some of these interactions have a direct effect on fields of study, while oth-
ers are more circumstantial. Examples of the direct interactions include 
using techniques developed in one field of study to analyze phenomena 
in another field or a research field splitting up into more specialized sub-
fields. The indirect interactions might arise when new ways of thought 
affect multiple disciplines (e.g., with the rise of statistical thinking), when 
new research directions open up, or when researchers switch fields.
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It would seem that biology cannot have much of an impact on mathe-
matics (and later on computer science), as these disciplines are fundamen-
tally so different. Mathematics is exact and deals with formal arguments 
and proofs. Consider, for example, Euclidean geometry developed by 
Euclid in the book Elements in the third century BCE. Ancient as this 
mathematical field is, its results are still valid (and will be valid eternally), 
as they are logically derived from the axioms Euclid laid down in his clas-
sical work. Biological research, on the other hand, evolves constantly. 
New facts are discovered at a great pace, and a large chunk of our current 
biological knowledge is derived from recent research. Moreover, biology 
deals with a vast array of phenomena, which we understand only par-
tially and imprecisely, and this understanding also keeps changing and 
evolving. Despite these difficulties, mathematical tools are often needed 
for analyzing biological phenomena, and when no appropriate tools exist 
they need to be developed. This, in turn, leads to the emergence of new 
mathematical and computational fields. We present in this section some 
examples of the influence of biological research on mathematics in the 
past. The later chapters are indicative of current cross-influences and hint 
at future developments.

In the years 1827–1828 the Scottish botanist Robert Brown (1773–1858) 
published his findings about the motion of pollen in water. Using a micro-
scope (an advanced technology for his time), he discovered that the pollen 
particles swirled about in a motion that could not be explained by the 
water movement. Initially, after observing pollen derived from different 
flowers, Brown believed that this motion is observable only in particles 
derived from living matter. This conclusion was in step with accepted bio-
logical theories of the time. However, further research established simi-
lar behavior in tiny particles of inanimate matter, such as glass. Further 
study of this “Brownian Motion” revealed its probabilistic nature. Today, 
it is well known that this phenomenon arises due to the impact generated 
by the random collisions of the observed particles with the many much 
lighter water molecules surrounding them (a water molecule’s radius is 
roughly 1.4 Å (1 Ångström = 10–10 meters), while the radius of a pollen 
particle is of the order of 10 micrometers (1 micrometer = 10–6 meters)). 
The mathematical analysis of this phenomenon had a large impact on the 
development of probability theory (Albert Einstein was one of the con-
tributors to this analysis). This theory is heavily used today to analyze a 
wide array of probabilistic processes that have nothing to do with biology 
or molecular motion.
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The Brownian motion example is not unusual. There is a close link 
between the development of statistics and the study of probabilistic (or 
stochastic) processes and the pursuit of biological questions. One of the 
reasons for this link was the endeavor to collect, tabulate, and analyze 
human populations (e.g., conducting a census of a state’s population).

Adolf Quételet (1796–1874) collected and analyzed height and weight 
data and was amazed to discover that their distribution was a normal dis-
tribution (a “bell curve”). Up to his time normal distributions were used 
only to explain measuring errors, mainly of astronomical phenomena. 
Some of Quetelet’s discoveries were that the height of French army recruits 
was normally distributed, as were the chest measurements of Scottish sol-
diers. Quetelet denoted the center of these distributions by the term the 
average man (“l’homme moyen”) and believed that one can study social 
phenomena by observing the differences in distributions among different 
groups of people (e.g., among different races).

Quetelet’s ideas had a profound influence on Francis Galton (1822–
1911), who was a cousin of Charles Darwin and a polymath. Among his 
other contributions to statistics, Galton pioneered the use of regression 
for finding a linear function best describing a set of data and the notion 
of correlation. He used these tools when investigating the heritability 
of properties such as height (i.e., the relation between the height of par-
ents and their children) and the size of peas. Galton also dealt with the 
problem of the disappearance of certain family names over time. This 
research had influence on the study of stochastic processes, which in turn 
are used, among many other things, for researching the propagation of 
diseases (epidemiology).

As a last example we’ll mention Karl Pearson (1857–1936), who was 
a student of Galton. He also dealt with biometrics (measuring biological 
properties). Among his many contributions is the Pearson correlation 
coefficient, which is used to describe the quality of the correlation between 
two random variables. Current medical research is based to a large extent 
on statistical tools, and its quality depends largely on the planning of clin-
ical trials and a careful analysis of their results, using the techniques we 
mentioned among other tools. These tools form the basis for the modern 
concept of evidence-based medicine.

In 1948, Norbert Wiener (1894–1964) defined the term cybernetics 
to describe the study of control systems. A central element of regulatory 
and control systems is feedback, which occurs when two parts of a system 
interact in a bidirectional fashion so that they influence each other. For 
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example, think of a system composed of components A and B, such that 
A influences B’s behavior and B influences the behavior of A. The two 
major kinds of feedback are positive feedback and negative feedback. In 
a positive feedback loop the system responds to the perturbation by fur-
ther changes in the same direction as the perturbation, whereas in nega-
tive feedback the system responds in the opposite direction and attempts 
to revert to the initial state. We will see that feedback mechanisms allow 
systems to self-organize and adapt to their environment.

Living organisms are capable of retaining their internal states in 
response to a wide range of perturbations in their environment. For 
instance, internal body temperatures in warm-blooded animals do 
not change with the temperature of the surroundings (as long as those 
changes are not too extreme). Similarly, athletes who train at high alti-
tudes with lower oxygen concentration develop more red blood cells 
to maintain the amount of oxygen reaching their cells. This ability to 
maintain a steady internal state is called homeostasis (homeo = similar, 
stasis = standing still). Feedback loops play a central role in maintain-
ing homeostasis.

Wiener defined cybernetics as the science dealing with control and 
communication in man-made and biological systems and was influ-
enced by biological examples. Even though cybernetics is no longer 
considered an independent research field, its concepts and the basic 
problems it dealt with are still used in designing and analyzing dynami-
cal systems.

Another area that posed major mathematical challenges is demograph-
ics, which is the study of populations (human and otherwise). Demographic 
tools are important for forecasting population sizes and for understand-
ing the influence of habitat changes on populations. The mathematical 
description of demographic processes uses complex classes of differential 
equations. The need to study and solve these equations gave rise to various 
mathematical developments.

1.3  BIOLOGICAL INTRODUCTION
In this section we present a few topics in biology with the goal of providing 
the basic vocabulary needed for discussing biological phenomena. We will 
limit ourselves to discussing general background material necessary for 
understanding the following chapters, and more specific biological topics 
will be explained in later chapters.
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Biology deals with living organisms. When encountering an object, we 
find it trivial to decide whether it is a living object, but are we capable of 
defining the difference between an animate and inanimate object? Can 
we explain the basis of the differences? The answer cannot be found at the 
physical level since living organisms are composed of the same building 
blocks as all other matter: atoms, which are made up of protons, electrons, 
and neutrons. The atoms are combined to create larger building blocks 
called molecules. For instance, a water molecule contains two hydrogen 
atoms and one oxygen atom. Living organisms contain carbon based mol-
ecules, known as organic molecules. Organic molecules are encountered 
almost exclusively in living objects and as products of living organisms. 
The main types of organic molecules are proteins, carbohydrates (sug-
ars), lipids (fats), and nucleic acids—ribonucleic acid (RNA) and deoxy-
ribonucleic acid (DNA). These molecules play a major role in almost all 
processes occurring in any living organism.

The basic unit of living organisms is the cell. Organic molecules are 
created by cells, are used for cellular activities, and make up cells. Even 
simple single-cell organisms such as bacteria and yeast display a large 
spectrum of types and behaviors: for example, some survive better at 
high temperatures; some prefer colder environments; some require oxy-
gen, and others do not; they have different nutrient requirements. More 
complex organisms made up of more than one cell are called multicel-
lular organisms.

One of the first tools needed to understand and research living organ-
isms is the ability to systematically group and categorize organisms. The 
classification system is based on observing similarities between different 
organisms. For instance, cats are more similar to each other than they are 
to dogs; cats, lions, and tigers present many similarities to each other and 
are different from dogs and wolves. Therefore, it is reasonable to impose a 
hierarchical structure on these animals: all cats belong to the “cat” group, 
which is a subset of the “feline” group that also contains tigers and lions, 
and so on. The biological disciplines of systematics and taxonomy deal 
with these classification problems.

A species is the lowest rung of the biological hierarchy. A species is 
commonly defined as a group of organisms capable of interbreeding and 
producing fertile offspring. Cats raised as pets (“house cats”) all belong 
to one species, while all the feline species share various similar charac-
teristics. For example, here are the main categories used to scientifically 
identify house cats:
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Kingdom: Animalia (animals)
	 Phylum: Chordata
		  Sub-Phylum: Vertebrata (vertebrates)
			   Class: Mammalia (mammals)
				    Order: Carnivora (carnivores)
					     Family: Felidae
						      Genus: Felis
							       Species: Felis catus

Tigers and lions, like the house cat, belong to the Felidae family but not 
to the Felis genus. Organisms that are more similar to the house cat such 
as the jungle cat (Felis chaus) do belong to the Felis genus.

Every species and every higher-order class contains organisms with 
similar characteristics, and researchers specializing in each group can 
recite a large body of scientific knowledge about the particular proper-
ties unique to each group. In our discussion here we will be mostly con-
cerned with universal characteristics that apply to all organisms or at least 
to a large set of species. This chapter will describe some of these univer-
sal characteristics. In Chapter 4 we will discuss neural networks that are 
inspired by general principles observed in the nervous systems of highly 
developed organisms. Chapter 6 discusses computational models inspired 
by the immune system, which is found only in a subset of species, and by 
the behavior of social insects.

Similar characteristics may indicate either that different species evolved 
from a common ancestor or that they had to deal with similar environ-
mental challenges. For example, bats and bees have wings used for flying, 
but their wings do not come from a common ancestor. The term anal-
ogy is used to describe organs or structures with an identical function, 
while a similarity due to shared common ancestry is called homology. 
Homologous structures may differ significantly in function and shape. 
For instance, the limbs of whales, bats, and humans are homologous. 
Another interesting example is the homology between the inner ear bone 
structure in mammals and the jaw bones of fish. The source of the univer-
sal characteristics of all living organisms with which we will deal in this 
book is very early in the evolution of life.

It is now accepted that each living organism belongs to one of three 
domains. A basic distinction is between organisms with cells that have 
a nucleus, called eukaryotes, and those that do not. A nucleus is a com-
ponent in the cell that contains most of the cell’s genetic material, or 



10    ◾    Biological Computation﻿

genome (we will discuss the cell structure in greater detail in the next 
section.) This distinction has been known for a long while as it is often 
possible to observe the nucleus using a simple light microscope. With 
the advance of technology and molecular tools it became evident that 
two types of cells do not have nuclei—Bacteria and Archaea. The evolu-
tionary distance between Bacteria and Archaea is large and it is wrong 
to view them as two subsets of the family of all nucleus-less cells. Rather 
than that, they are two separate classes at the same hierarchical level: 
Bacteria and Archaea are the domains of the prokaryotes (nucleus-
less cells), whereas all organisms whose cells have a nucleus belong to 
the Eukarya domain. Multicellular organisms, including the species of 
Animalia, belong to Eukarya, but there are also eukaryotic single-cell 
organisms.

You might have wondered where viruses fall into according to this clas-
sification. Remember that we discussed the classification of organisms 
made of cells, but viruses are not cells and do not have all the mechanisms 
that allow a cell to use energy, to manufacture proteins, and to reproduce. 
Lacking these capabilities, it is debatable whether viruses should be con-
sidered living organisms. Viruses contain only genetic material and repro-
duce by penetrating a cell and reprogramming it to execute the instructions 
contained in the genetic material of the virus. As such, viruses may be 
considered the ultimate parasites.

Single-cell organisms (whether they are eukaryotes or lack a nucleus) 
need not live in isolation. Bacteria form colonies that may be millions 
strong. The bacteria in a colony not only live in proximity but also assist 
each other by creating organized sheets of cells, which make it easier for 
the bacteria to attach to the surface on which they live. For instance, dental 
plaque is made up of bacteria that form a biofilm. Bacteria colonies can even 
behave in an organized manner as can be seen when an obstacle is put in 
the way of bacteria in a petri dish and the colony circumvents it (we discuss 
this topic again in Chapter 2, where you will find photographs showing this 
remarkable process). Dictyostelium discoideum is a particularly interesting 
example of cooperation among single-cell organisms. It is composed of soil 
amoebae that usually live and reproduce independently. When their living 
conditions deteriorate—for example, when there is a food shortage—they 
become organized into a complex multicellular structure that can contain 
up to 100,000 cells and is surrounded by an extracellular skeleton. This 
slug-like structure can react to temperature changes and move as a single 
entity. In the next chapter we will discuss a computational model that can 
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be compared to a colony of simple organisms and will show how systems 
exhibiting complex collective behavior can be created within the colony.

A fundamental difference between a multicellular organism and a col-
ony of single-cell organisms is the differentiation of the cells into differ-
ent cell types, each of which has unique properties and well-defined roles 
in the system. Differentiation is mainly a unidirectional process, whereby 
differentiated cells cannot change into a different kind of cell and can sur-
vive only within the multicellular organism. For example, a neuron cannot 
turn into a muscle cell. Only the genetic material existing in specialized 
cells (the gametes or germ cells) is used in the reproduction of the multi-
cellular organism, while all other cells forego independent reproduction. 
Some cells (e.g., the human red blood cells) do not even contain a nucleus 
and genetic material. Stem cells exist in many tissues and in contrast with 
other cells have the capability to reproduce and differentiate into differ-
ent types of cells and therefore have obvious medical potential. They have 
been heavily researched in recent years.

When observing the organization and division of labor within mul-
ticellular organisms, it is evident that there are many levels of organiza-
tion, from the single cell up to the whole organism. Cells are organized 
in tissues, which have specific functions. For instance, muscle cells can 
contract and thereby allow the organism to convert energy into motion, 
allowing it to operate, for example, the respiratory muscles and the 
heart. Neurons are used for internal communication and also make up 
the central nervous system (brain) in organisms that have one. Blood 
cells (notice that blood is considered a tissue) are used to transport oxy-
gen and nutrients to the cells and to support the immune system and 
also have other functions. Fat cells are used to store energy for times 
of need.

Cells belonging to different tissues are organized in organs, which 
have a specific function in the organism such as the heart, lungs, or 
brain. Organs that interact with each other closely to perform a certain 
function essential for the organism’s survival are called a system, such 
as the respiratory system, the nervous system, the immune system, and 
the reproduction system. Finally, the systems build up the whole multi-
cellular organism. The origin of such a modular organization is a central 
topic in our attempts to understand life (we will see in the next section 
that even a single cell has a modular structure with different compo-
nents responsible for fulfilling specific tasks). We return to this issue in 
the last chapter.
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1.3.1  The Cell and Its Activities

The cell is the basic unit of life, both structurally and functionally. Its 
activities include the absorption of nutrients, energy production from the 
nutrients (and from the sun in photosynthetic cells such as plant cells), 
interaction with other cells, and reproduction. Many types of cells can 
perform more specific functions and react to external stimuli.

The activity of cells is cyclical, following a procession called the cell 
cycle. The cycle begins when a new cell is created, progresses through liv-
ing and growing, and concludes when the cell divides producing two new 
daughter cells. We will focus on the structure and functions of eukary-
otic cells. Eukaryotic cells divide using a process called mitosis or using 
another process called meiosis, which produces the gametes that partici-
pate in reproduction.

As previously stated, eukaryotic cells contain a nucleus, which contains 
the cell’s genetic material. The cytoplasm, which surrounds the nucleus, 
is where most of the living processes of the cell not related directly to pro-
cessing of the genetic material occur (see Figure 1.1).

The bulk of genetic material is stored in molecules called DNA. The 
data encoded in the DNA is used by the cell to build proteins. Proteins are 
built up from sequences of smaller molecules called amino acids. To build 
a protein, the cell first builds a chain of amino acids. The DNA codes both 
the identity and the order of the amino acids in the protein. Enzymes are 
an important group of proteins and are responsible for executing the cell’s 

Ribosomes

Cell membrane

Nucleus

Mitochondria

Chromatin (DNA)
Nuclear envelope

FIGURE 1.1  The general structure of a eukaryotic cell.
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activities by participating in chemical reactions. They enable the cell’s 
activities by acting as catalysts, that is, by increasing the rate at which 
chemical reactions occur in the cell by reducing the amount of energy 
needed for the reaction. A fundamental property of catalysts is that their 
amount does not decrease due to the chemical reaction they enable, and 
therefore they can continue participating in further chemical reactions. It 
is often the case that without a catalyst the rate of reaction is so low that 
the reaction is virtually nonexistent. As enzymes are organic catalysts, we 
say that they “perform” the cell’s activities.

Chapter 5, which deals with molecular computation, shows how we can 
make use of biological molecules to implement computational processes. 
The computations involve, for example, the cutting and splicing of DNA 
molecules performed by various enzymes. As we will see, some enzymes 
perform general functions, while others are very specific in their activities 
and exist only in certain organisms.

The cytoplasm contains organelles, which have a variety of func-
tions. One of the most important organelles is the mitochondrion (plural 
mitochondria), which is the cell’s “power plant.” The mitochondrion is 
responsible for producing energy from sugars by using oxygen. It builds 
special molecules that are used as a source of chemical energy by the cell. 
In plant and algae cells there exists another important organelle called the 
chloroplast, which is responsible for photosynthesis. This is the process 
whereby CO2 and water combine into sugar molecules containing energy 
(e.g., glucose) by using solar energy. This process releases oxygen. Most 
of the animal kingdom ultimately depends on this process as a source 
of energy (eating sugars provides energy). Some bacteria also photosyn-
thesize; however, they do not have chloroplasts, and their photosynthesis 
occurs directly in the cytoplasm.

Another essential role of plants in the living world is that of nitrogen 
fixation. Nitrogen is a building block of amino acids and is therefore 
necessary for building proteins. Atmospheric nitrogen is relatively inert 
and does not interact readily with other elements. There are bacteria 
that fix nitrogen, mainly by a symbiotic process with plants in which 
soil bacteria fix nitrogen in the roots of plants. The plants synthesize 
amino acids, which are a source of nitrogen for organisms that feed on 
plants.

Ribosomes are another important component of the cell. They are 
responsible for creating proteins based on the genetic information. We 
will expand on this fundamental process later.
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The cell is enclosed in a cell membrane, which is composed of many 
organic molecules, among them proteins and lipids (fats). The mem-
brane is not just a sac containing the cytoplasm but is rather a com-
plex structure that deals with the passive and active transfer of material 
to and from the cell and is involved in cell adhesion and intercellular 
communication.

The cell’s cytoplasm contains other organelles that are responsible for 
digesting molecules in the environment, that complete the building of 
proteins after they are synthesized by ribosomes, that deal with cellular 
division, and more. In the past the cytoplasm was considered to be a disor-
ganized “soup” in which the organelles and other cellular molecules live, 
but today we know that it has a complex internal structure that deter-
mines the location of the different organelles, the regions where cellular 
processes occur, and more. The internal skeleton of the cell is involved in 
cellular motion, material transfer in the cell, organelle motion, and even 
cell division, when the cell divides the cytoplasm and its contents are split 
between the two daughter cells. 

1.3.2  The Structure of DNA

DNA (deoxyribonucleic acid) is a complex chain-like molecule. Its struc-
ture was discovered by James Watson and Francis Crick in 1953 in a 
major breakthrough in understanding the heredity processes and life in 
general. We will focus on the properties that enable DNA to be used as 
data storage used to code for proteins and on the properties of DNA that 
enable its replication in cell division.

DNA is composed of a long sequence of bases or nucleotides. The back-
bone of the DNA molecule is formed by sugars and phosphates to which 
the bases are attached. There are four types of bases: adenine (A); cytosine 
(C); guanine (G); and thymine (T). One of the major roles of DNA is to 
code for proteins. We will see later how the sequence of nucleotides deter-
mines the sequence of the amino acids that constitute proteins.

One of the first discoveries about DNA was that in every species tested 
the amount of adenine was equal to the amount of thymine and that the 
amount of cytosine was equal to the amount of guanine. This is a conse-
quence of the way DNA is organized, but it took a few more years until 
its exact structure was determined. The model suggested by Watson and 
Crick explains the equal amounts of adenine-thymine and cytosine-gua-
nine to be the result of DNA molecules being made up of two side-by-side 
strands. Each strand is a sequence of nucleotides, and each nucleotide in 
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one sequence matches (complements) a nucleotide in the opposite strand. 
This base pairing is such that an A in one strand matches a T in the other 
strand, and a C matches a G (Figure 1.2). The two strands spiral around each 
other to form a structure called a double helix (Figure 1.3). Each strand has 
a direction dictated by the orientation of its backbone, and the convention 
is that each strand runs from the 5' end (pronounced “five prime end”) to 
the 3' end (Figure 1.3).

The base pairing is due to chemical bonds (hydrogen bonds) between the 
A and T bases and between the C and G bases. If we suspend two comple-
mentary single DNA strands in a solution, they will anneal with each other 
due to the base pairing and will form a double-stranded DNA molecule.

The exact DNA sequence of each organism is unique. Human DNA 
contains roughly three billion bases; therefore, the number of possible 
sequences is beyond imagination. The genetic differences between different 
species such as humans, chimpanzees, mice, and the tetanus bacteria are 
characterized by the length of their DNA sequences and the order of their 
bases. Organisms of the same species also have unique DNA sequences, 
but the similarity between any two individuals of the same species is very 
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high (more than 99% for humans). Nonetheless, these small variations 
account for the huge variability we encounter.

To summarize:

	 1.	The order of nucleotides in the DNA molecule codes the genetic 
information stored in the molecule.

	 2.	The two DNA strands match according to the base matching rule: A 
with T, C with G.

1.3.3  The Genetic Code

After discovering the structure of DNA, the next major challenge was to 
understand the genetic code, that is, to understand how the order of the 
bases determines the sequence of amino acids in proteins. The research 
undertaken to decipher the genetic code is a fascinating topic we cannot 
delve into here, but its main result was that the identity of each amino acid 
in a protein is determined by a sequence of three nucleotides in the DNA 
molecule. Therefore, one has to read the DNA sequence as if it was made 
up of words, each of which contains three nucleotides. Each such word 

T

C

C

T A

A

G

G

H
H

H
H
H

H
H
H

H
H

Diameter is  2 nm

Distance between adjacent
base pairs is 0.34 nm

�e helix makes a turn
every 3.4 nm

Base pairing is the result of hydrogen
bonding between A and T and

between G and C.

3'

3'

5'

5'

FIGURE 1.3  The double helix structure.



Introduction and Biological Background    ◾    17

is called a codon. With minor exceptions, all living organisms use the 
same genetic code, and given a codon we can identify the corresponding 
amino acid. It is easy to see that there are 64 possible codons (4 × 4 × 4); as 
there are only 20 amino acids, most amino acids correspond to more than 
one codon. The mapping between codons and amino acids is called the 
genetic code and is shown in Figure 1.4.

The almost complete universality of the genetic code confirms its early 
origin in the history of life, which is to be expected. On the other hand, one 
may wonder why the genetic code did not continue to evolve and change 
in different families of organisms. A possible explanation is that charac-
teristics necessary for survival are intolerant of change, and as a result 
the original characteristics are preserved and cannot change or improve 
even if they originated due to “historic accidents.” Arguing against this 
answer is that some organisms have developed a few variations on the 
genetic code and survived. For example, the mitochondria have their own 
genome that is different from the genome of the nucleus. The genetic code 
used by the mammalian mitochondrial genome deviates slightly from the 
standard genetic code. This leads to the hypothesis that the universality of 
the genetic code is not only because any change in it will be catastrophic 
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but rather because the genetic code in its current form has evolutionary 
advantages. The jury is still out on this issue.

Not all of the DNA sequence codes for proteins. A sequence of DNA 
nucleotides that codes for a specific protein is called a gene. We should 
note that an exact definition of the notion of gene has proven elusive, and 
the definition of the term has changed as more and more of the complexi-
ties of the control mechanisms involved in producing proteins have been 
discovered. It is worth pointing out that the genes (i.e., the protein coding 
sequences) are distributed in the genetic material and in higher species 
constitute only a small fraction of the total genome. There is a lot of active 
research on the functions of the rest of the genetic material. Sequences 
that used to be called junk DNA and were thought to be useless turn out 
to have roles in organizing the genome and determining which genes are 
expressed in the cells. It has been discovered in recent years that many 
RNA molecules are transcribed from DNA—the first step in protein syn-
thesis—but are not used to build proteins (protein synthesis is discussed 
in the next section). These RNA molecules (called noncoding RNAs or 
ncRNAs) have many roles, and it is already clear from what we know about 
them that they have a major importance in the regulation of the genome.

1.3.4  Protein Synthesis and Gene Regulation

As previously discussed, the DNA is a double helix containing two 
strands, and a protein is composed of a sequence of amino acids. When 
a DNA molecule is to be “read” so that it can be decoded and a protein 
can be synthesized, the helix is unwound, and the information is read 
from one of the strands. Here again the base pairing is essential. In 
the first stage an RNA molecule called messenger RNA (abbreviated 
to mRNA) is created. RNA is similar to a single DNA strand—it also 
contains four types of nucleotides: adenine, cytosine, guanine, and, 
instead of thymine found in DNA, uracil (U), which pairs adenine. 
We will ignore the chemical differences between mRNA and single-
stranded DNA.

To create an mRNA molecule the double helix of DNA is opened at 
a certain point, and an RNA molecule is built on one of the separated 
strands using base pairing. This transcription process is aided by enzymes 
called RNA polymerases (the process is schematically described in Figure 
1.5). It is interesting to note that the transcription can happen on either 
of the DNA strands, and it is erroneous to think that one strand contains 
the genetic data and the other strand only complements it. In fact, both 
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strands contain protein building instructions in different locations in 
the genome. The mRNA transcription process starts at a region called a 
promoter, which marks the beginning of the gene and terminates at a 
sequence used as the termination signal. The promoter is in front of the 
transcribed region but is not always directly adjacent to it.

In eukaryotes mRNA transcription happens in the nucleus. After 
the mRNA is formed, it leaves the nucleus, and protein synthesis can 
start. The process whereby the information stored in the RNA mol-
ecule is converted into a sequence of amino acids is called translation 
and is performed by a cellular complex or machine called a ribosome. 
The ribosome reads the RNA molecule codon by codon (recall that a 
codon is a sequence of three nucleotides). The mapping of codons to 
amino acids is represented in the cell by another kind of RNA, known 
as transfer RNA (tRNA). A tRNA molecule is attached at one end to a 
specific amino acid and at its other end to an anticodon—three bases 
that are complementary to a codon. When a ribosome is to deal with a 
particular mRNA codon, the appropriate tRNA molecule attaches to it 
using base pairing with the anticodon, and the amino acid is detached 
from the tRNA and attached to the growing sequence of amino acids 
that will make up the protein. Now the ribosome moves on to the next 
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mRNA codon and so on until the ribosome reaches the stop codon. 
Stop codons do not have corresponding tRNA molecules. The stop 
codon means that the sequence of amino acids is complete and that 
the corresponding protein has been synthesized in its entirety. Since 
protein production is crucial to cells, many thousands of ribosomes in 
each cell are constantly synthesizing proteins.

Proteins are chain-like linear (nonbranching) sequences of amino acids. 
Each amino acid (see schematic structure in Figure 1.6(a)) has a part called 
the backbone, which is virtually identical for all amino acids and a part 
called side chain (denoted here by R), which is different in each of the 20 
amino acids and gives each amino acid its special characteristics. Proteins 
are the machinery that operates the cell, and therefore most proteins have 
a unique three-dimensional structure that allows them to perform their 
function. The linear chain of amino acids folds and twists according to 
chemical and physical laws after the protein has been synthesized (a sche-
matic structure of a protein can be seen in Figure 1.6(b)). In some cases 
other proteins are involved in achieving the three-dimensional struc-
ture necessary for the protein to function. Some proteins consist of more 
than one linear chain of amino acids that combine to create the complete 
protein.

The three-dimensional structure determines the protein’s behavior in 
the cell as proteins interact with each other and with other cellular mate-
rial according to their physical shape. For example, hemoglobin, which 
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represents the backbone of the amino acid chain with the various amino acids 
branching from the backbone. (The protein is polymerase β consisting of 355 
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carries oxygen in the bloodstream to the muscles, has four cavities that 
can be loaded with heme, an iron compound that can bind to oxygen.

Researchers distinguish between several levels in the organization of 
proteins. The first, called the primary structure, refers to the sequence of 
amino acids. The secondary structure describes local structures along the 
amino acid sequence such as different kinds of helices, extended strands 
that combine to create sheets, turns, and loops. These structures are 
maintained by a network of chemical bonds (hydrogen bonds) between 
neighboring amino acids. The three-dimensional structure of a protein is 
referred to as its tertiary structure and describes the three-dimensional 
location of each atom in the protein.

Determining the tertiary structure of proteins can provide important 
clues about how they perform their function. Protein structure can be 
determined using experimental methods such as crystallography using 
x-rays and nuclear magnetic resonance (NMR). Finding the three-dimen-
sional structure of proteins is an expensive and complex undertaking, and 
the exact structure of only a relatively small fraction of proteins is known. 
As the tertiary structure is derived from the amino acids sequence, an 
ongoing effort exists to build computational tools that will predict the spa-
tial structure for a given sequence. Although in recent years significant 
progress has been achieved in several aspects of the problem, by and large 
the current tools have only limited success in predicting the three-dimen-
sional structure of proteins.

To summarize, in the simplest case protein synthesis consists of the 
following steps. An mRNA molecule is transcribed from the DNA mol-
ecule, and the information stored in the mRNA molecule determines the 
sequence of amino acids in the synthesized protein (translation). The uni-
directional information transfer DNA → mRNA → proteins is called the 
central dogma of molecular biology.

As research progressed it became obvious that the central dogma does 
not cover all possible variations and processes. For example, the genetic 
material of retroviruses (e.g., HIV) is stored in RNA and the virus injects 
itself into the genome of the host cell. This RNA → DNA process is called 
reverse transcription.

One of the central research topics today is that of understanding the 
processes that determine which genes will be expressed in the cell (i.e., 
will be translated into proteins) and at what point in time. Gene regula-
tion requires different levels of control. At the most basic level, the DNA 
molecule contains regulatory regions called promoters, which are usually 
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close to the DNA region that codes for a protein. Recall that, for a gene to 
be expressed, RNA polymerase has to transcribe it to an mRNA molecule. 
The promoter allows the RNA polymerase to home in on the correct loca-
tion in the DNA. In eukaryotes, proteins called transcription factors are 
attached to the promoters and are responsible for attaching to the RNA 
polymerase. Thus, the protein will not be expressed if the promoter is 
inaccessible (e.g., due to a fold in the DNA). As different cells express dif-
ferent proteins, we find that different promoters are “active” in different 
cells, and by experimentally attaching a gene to a particular promoter one 
can cause it to be expressed in certain cells (e.g., in muscle cells or in nerve 
cells). Cellular regulatory processes are of course much more complicated 
and are different for bacteria and eukaryotes.

One of the first regulatory structures to be understood was that of 
the operon in bacteria in which a few consecutive genes are jointly reg-
ulated (Figure  1.7). In addition to the promoter the operon contains 
another DNA sequence before the gene or genes, called the operator. 
Proteins, called repressors, influence gene expression by attaching to 

Promoter Operator lacZ lacY lacA

lacZ lacY lacA

Lac repressor
(active)

RNA polymerase cannot
bind to promoter

Transcription repressed

Lactose sugar
binding site

lacZ lacY lacA

Inactivated
repressor

Transcription allowed

�e inducer
(Lactose)

FIGURE 1.7  A schematic structure of the lac operon which controls the metabo-
lism of the sugar lactose depending on the presence of glucose. Three genes lacZ, 
lacY and lacA are under joint control. The lac repressor is attached to the operator 
region and thus prevents the RNA polymerase from initiating transcription from 
the promoter. Once a sugar is bound to the repressor it cannot attach to the DNA 
and the polymerase can bind to the promoter and transcription is initiated.
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the operator and thereby preventing or reducing the transcription rate. 
Repressors work in two major ways. In one mechanism the repressor 
is constitutively bound to the DNA and prevents transcription. When 
an inducer molecule is present in the cell it attaches to the repressor 
molecule, changes its conformation, and prevents it from attaching to 
the operator and thus enables transcription. In another mechanism, the 
repressor is not regularly bound to the operon sequence. The repressor 
protein may exist in the cell but may not be able to attach to the opera-
tor unless another molecule is attached to it and changes its conforma-
tion. When this happens the repressor can attach to the operator and 
block transcription. In both mechanisms repressors implement negative 
control, or inhibition, on gene expression. Other mechanisms imple-
ment positive control in which molecules called activators strengthen 
the affinity of the transcription machinery to its target DNA and thus 
increase the transcription rate of a gene or set of genes. Additional regu-
latory mechanisms operate on the mRNA and even at the protein level.

1.3.5  Reproduction and Heredity

One of the main characteristics of the living world is reproduction, a pro-
cess whereby parents create offspring and pass their characteristics on to 
them. The information transfer from parent to offspring is called inheri-
tance. Inheritance exists already at the single-cell level as previously noted: 
a cell can divide and generate two new cells. An important component of 
inheritance is the passing on of genetic material in the DNA.

The term genotype is used to describe the heritable (or genetic) infor-
mation, and phenotype is used to describe the physical characteristics and 
behaviors of the organism (which, of course, change over time). Generally 
speaking, the phenotype is derived from the genotype under the envi-
ronmental conditions the organism encounters during development. It is 
common to assume that changes to the phenotype (e.g., breaking a leg, 
getting the flu) do not change the genotype and are not passed on to sub-
sequent generations (we expand on this issue in Chapter 3). Genetics is the 
biological field dealing with inheritance.

Recall that the genetic information (the genotype) is stored as DNA 
molecules. In eukaryotes the information is distributed among a few 
DNA molecules. A DNA molecule together with a few attached protein 
molecules form a unit called a chromosome. The cells of most species 
contain several chromosomes. The number of chromosomes is the same 
in all the cells of a multicellular organism, except for the gametes.
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Cells go through a number of stages that occur in a fixed order; this 
constitutes the cell cycle. The cycle starts with the formation of a new cell 
and ends when the cell divides, and each of its descendents starts its own 
life cycle. The last phase of the life cycle—mitosis—is the phase where 
the cell actually divides. We first focus on the previous phase, in which 
the DNA is replicated and the chromosomes get duplicated, known as the 
replication phase.

The structure of the DNA molecule as previously discussed lends itself 
to the possibility of duplicating the genetic information. Just as the syn-
thesis of an mRNA molecule uses one of the DNA strands as a template, a 
new DNA strand can be created from a previous one by base pairing. To 
generate a double stranded copy of the DNA molecule, the two original 
strands separate, a complementary strand is created from each of them, 
two new double helixes are formed, and cell division can proceed. This 
process involves many enzymes, of course. Among those are DNA poly-
merases, which synthesize DNA fragments, and DNA ligases, which join 
together the DNA fragments. Errors in replication are one source of muta-
tions, random changes in the genetic information.

Not all species reproduce by the mating of male and female individuals. 
Some species of plants, aphids, and other organisms can reproduce asexu-
ally in a process whereby a single parent passes a copy of its complete 
genome to its descendents, similar to the way a single cell divides. Ignoring 
mutations, these descendents have genetic information that is identical to 
that of their parent. The situation is more complex in sexual reproduction. 
The genes in the cells of organisms that undergo sexual reproduction are 
organized in pairs, where usually one comes from the father and the other 
from the mother. We have already noted that different individuals may 
have different versions of the same gene. A peculiar example is the texture 
and color of earwax. Two types of earwax in humans are controlled by 
a single gene (called ATP-binding cassette C11). One version of the gene 
gives rise to an individual having brown-yellow wet earwax (the form that 
predominates in Africa and Europe), whereas another leads to gray dry 
earwax (common among East Asians). The different versions of one gene 
are called alleles. As the two genes in each pair originate in different par-
ents, they may be different alleles. In other words, in sexual reproduction 
new combinations of alleles are created, giving rise to diverse individuals, 
and the offspring in a sexually reproducing population will be different 
from their parents. The differences between the individuals are the raw 
material for the evolutionary process discussed in Chapter 3.
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We now briefly discuss the cellular basis of sexual reproduction. The 
cells of organisms that reproduce sexually contain pairs of chromosomes, 
where one chromosome originates in the father and the other in the mother. 
These cells are called diploid, and the number of chromosomes in them is 
denoted by 2n. Both chromosomes in a pair are of the same length and 
have genes for the same characters. They are called homologous chromo-
somes. Human cells contain 23 pairs of chromosomes (n = 23) and there-
fore contain 46 chromosomes.

A noteworthy pair of human chromosomes is the sex chromosomes. 
They come in two forms, the X chromosome and the Y chromosome, 
which have different lengths. In females the genotype is XX (i.e., each cell 
contains two X chromosomes), whereas the male genotype is XY. As males 
can inherit the Y chromosome only from their father, one can use genetic 
markers on the Y chromosome to test for paternity and to establish pater-
nal lineage.

An obvious question arising from this discussion is what impact does 
the difference between alleles in homologous pairs have on a phenotype? 
The answer is complex and differs from situation to situation. For some 
properties it suffices to receive the corresponding allele from one of the 
parents (an allele having this property is considered to be dominant), 
while other properties require getting the appropriate allele from both 
parents (recessive alleles). Returning to the previous illustration, it turns 
out, for example, that the wet earwax allele is dominant over the dry one.

As a diploid cell contains 2n chromosomes, it would seem that the 
descendant’s cells, receiving the chromosomes of both parents, will con-
tain 4n chromosomes, and the number of chromosomes will double from 
one generation to the next. This runaway process does not happen as the 
genetic information is passed on by specialized cells called gametes (in 
mammals, an egg or a sperm). These are created by a special division pro-
cess called meiosis or reductional division and contain only one chro-
mosome from each pair. These cells are called haploid, and the number 
of chromosomes in them is denoted by n. This allows the descendants to 
have diploid cells, where each homologous chromosome pair contains one 
chromosome from each parent.

From the current perspective one essential element of meiosis is of par-
ticular interest: the mixing of information between the homologous chro-
mosomes. This process is called crossover and happens by a pairing up of 
the homologous chromosomes and exchange of corresponding sections of 
DNA. The location of the exchange sites is random to a large extent.
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If each gene had only one possible molecular form (i.e., a single pos-
sible allele), the crossover would have no effect. But as many genes have 
different alleles, the chromosomes in a homologous pair are not identical; 
therefore, the crossover process gives rise to new combinations of alleles, 
producing descendants that have different properties.

After the crossover the cells are still diploid, but their chromosomes 
are a new combination of alleles. The reduction in the number of chro-
mosomes happens during meiosis when the cell divides into two haploid 
cells, each of which contains only one copy of the genetic informa-
tion that has already undergone crossing over. (In reality, this process 
is more complex. Before the reductional division the genetic informa-
tion is duplicated. Thus, meiosis can be described schematically as 2n 
→ 4n (duplication) → crossover → 4 haploid cells.) Moreover, note that 
the haploid cells contain one chromosome chosen randomly from each 
pair of homologous chromosomes, which have already been recombined 
using the crossover process. In humans this allows for more than 8 mil-
lion (223) possible combinations of 23 chromosomes.

The last stage of sexual reproduction is fertilization, when a male gam-
ete and a female gamete combine to create a new diploid cell. So in humans 
the 23 chromosomes from the father combine with the 23 chromosomes 
from the mother to create 23 homologous pairs of chromosomes. This 
process again increases variation as two random gametes, picked from the 
many gametes available to each parent, participate in the fertilization.

To summarize, sexual reproduction increases variation in the popula-
tion via several mechanisms:

	 1.	Random crossover.

	 2.	Random selection of one chromosome from each homologous pair.

	 3.	Random selection of the gametes that will undergo fertilization.

In Chapter 3 we will see how it is possible to mimic these various 
mechanisms to solve search problems, in which a solution to a problem is 
sought from a large space of candidate solutions.

1.4  MODELS AND SIMULATIONS
We mentioned at the beginning of this chapter that using concepts from 
the biological sciences in computer science can be viewed as “translating” 
biological phenomena into formal mathematical models. The translations 
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we will deal with in this book are not exact translations but rather the 
usage of certain elements of the biological phenomena as an inspiration 
for computational and mathematical ideas.

A mathematical model of a system describes the behavior of the sys-
tem using mathematical tools such as variables, equations, functions, 
and rules. Historically, it was common to separate models to two types: 
models described using differential equations that were used to explain 
continuous deterministic systems and models defined by sets of rules 
suitable for describing discrete systems that may be nondeterministic. 
The first type of model might be appropriate for modeling the flow of 
blood in the circulatory system by a set of equations, whereas models of 
the second type might be more appropriate for modeling the immune 
system. In recent years, however, many models are hybrids that combine 
both techniques.

Many disciplines use mathematical models. They are particularly prev-
alent in the natural sciences, but mathematical models are also used heav-
ily in social sciences such as economics and sociology. A model focuses on 
the properties of the system to be studied and describes them formally and 
exactly. Ideally, this allows for a formal and exact analysis of the system, 
or at least for gaining a better understanding of the system and its behav-
ior. Models can also be used for predicting the behavior of the system, 
even when the reasons for the behavior are not well understood. This may 
help when trying to intervene with a system in order to change its behav-
ior. A case in point is ecological models that can predict the outcome of 
introducing a new species into an environmental niche and the complex 
dynamics that might ensue.

After a system is described as a model, it can be handled in two ways:

	 1.	Finding analytical solutions of the model: This approach is appro-
priate when the model is described by equations or functions that are 
amendable to analytic analysis.

	 2.	Simulating the behavior of the system: This is useful when the sys-
tem is described by a set of rules that are not necessarily determin-
istic or by equations that cannot be solved analytically. Simulations 
do not analyze the system mathematically but rather use a math-
ematical description of the system to simulate its behavior, usually 
with the aid of computer programs. The simulation calculates the 
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changes in the variables describing the system according to the 
rules specified by the model. This is usually done iteratively as a 
step-by-step process.

When building a model the most important decisions are identifying 
the variables that characterize the system and its behavior. The model is 
usually a simplified representation of the system which is tractable; for 
this purpose, only the properties necessary for describing the particular 
behavior being studied should be represented in the model.

Here are a couple of examples of models arising in different fields:

•	 Consumer behavior: A simple model of consumer behavior stipu-
lates that the consumer has to choose among n products denoted 1, 2, 
…, n whose prices are p1, p2, …, pn respectively. The consumer is rep-
resented by a utility function U, which determines the consumer’s 
satisfaction and is a function of the quantities of each of the items 
the consumer buys. The larger the value of U the more satisfied the 
consumer is. Note that the function U reflects the particularities of 
an individual consumer, who might, for example, be an individual 
who feels the highest satisfaction when owning a small number of 
necessary worldly goods or a greedy individual who wants the high-
est quantity of each product he can afford. Each consumer has a bud-
get M, which is used to buy the products. The goal of the consumer 
is modeled as an optimization problem, where U is to be maximized 
under the constraint that the money spent cannot surpass M.

•	 Growth of a bacteria colony: The next chapter presents a simple 
mathematical model of the growth of a bacteria colony in the lab. 
That model does not attempt to be completely precise biologically. 
The reproduction law we will describe states that the colony grows at 
a rate proportional to the colony’s size at every point in time. If we 
denote the number of bacteria at time t as y(t), we can derive a simple 
differential equation that describes the exact behavior of the func-
tion y(t). (The solution to such an equation is described in the next 
chapter.) This function allows us to calculate the size of the bacteria 
colony without having to resort to simulations. Note that this model 
is oversimplified and ignores many parameters such as the influence 
of the amount of available nutrients on the colony’s size, the influ-
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ence of its density on its growth rate, the minimal amount of time 
needed for bacterial reproduction, and more.

•	 L-systems, or Lindenmayer systems, are a mathematical formal-
ism based on term rewriting proposed by the biologist Aristid 
Lindenmayer for modeling the growth and development of plants. 
More recently, L-systems have found several applications in com-
puter graphics. An L-system is specified by a set of rewrite rules of 
the form X → Y, meaning that every occurrence of the symbol X is 
replaced with the string Y. The rules of the L-system grammar are 
applied iteratively starting from an initial state. As many rules as 
possible are applied simultaneously, per iteration. For example, start-
ing with the string A and the rules A → AB, B → A, the resulting 
strings are AB, ABA, ABAAB, ABAABABA and so on (keep in mind 
that all possible replacements are done simultaneously, so each time 
the rules are applied the result is a new string that will be the seed 
of the next iteration). When the strings produced by L-systems are 
interpreted as graphic commands they can be used to produce strik-
ing fractal images, some of them reminiscent of biological patterns.

	 For example, starting with the string F the system composed of the 
rule F → F + F − F − F + F, produces the strings F, F + F – F – F + F, F 
+ F – F – F + F + F + F – F – F + F – F + F – F – F + F – F + F – F – F + 
F + F + F – F – F + F, and so on. If F is interpreted as the instruction 
“draw forward” and + and – as a turn of 90° left or right, respectively, 
the strings can be executed and result in drawings of a variant of 
the Koch snowflake (see Figure 1.8). By adding more symbols, it is 
possible to model more complex patterns, for example, patterns of 
branching growth.

Generation 1: 

Generation 2: 

Generation 3:
etc.

FIGURE 1.8  The first three generations in the evolution of the Koch snowflake.
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	 The L-system starting with the symbol X and the rules X → F – [[X] 
+ X] + F[+FX] – X, F → FF leads to complicated tree structures. The 
strings are interpreted as before, with + and – specifying turns of 25°. 
The symbols [ and ] are the magic behind the branching structure. 
When executing the string, [ is interpreted as a command to store 
the current position and angle on a stack, and ] is a command to 
return to the position and angle of the last push. Finally, note that 
the symbol X does not affect the drawing. When the string is inter-
preted as drawing instructions, we can simply ignore the X’s. Their 
role in the string is to serve as placeholders, allowing the L-system 
to keep track of the structure of the curve. Figure 1.9 shows the first 
two iterations of this L-system.

These examples of models demonstrate how assumptions about the 
behavior of a given system are used to build a model and how they are 
formalized during that process. Sometimes these assumptions will allow 
only a single outcome, whereas in other cases the hypotheses allow for 
a family of common behaviors, all of which adhere to the constraints of 
the model. The model allows us to analyze the system and come up with 
hypotheses that are used to further investigate the system, either by test-
ing them on the model (e.g., using additional simulations) or by studying 
the system directly, back in the lab or in the field. The crucial question of 
course is whether the model gives a faithful representation of the system. 
This is a complex question for a number of reasons. First, the model sim-
plifies the system and therefore may not allow for a direct comparison of 
its variables with the parameters and data that can be measured directly 
from the system. Also, when building the model we neglect many of the 
system’s components, and therefore, even if it behaves in a similar fashion 
to that of the system, it is unclear whether the neglected components are 

FIGURE 1.9  A simulation of plant growth by an L-system.
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crucial for understanding the behavior of the real system. Furthermore, 
the model may behave accurately in some cases and deviate from the sys-
tem’s behavior in other circumstances, say when the initial conditions are 
varied. These and other questions all have to be considered when building 
a formal model that attempts to describe a natural system.

An important point to consider is whether the fact that a model pres-
ents a behavior matching the behavior of the system it models provides 
an explanation of that behavior. If our goal is to understand the causes of 
a particular behavior, a simple simulation will not necessarily suffice. On 
the other hand, if we aim to find the minimal requirements needed for a 
system to present a particular behavior, a model may present a satisfactory 
answer and be considered explanatory. In Chapter 4, dealing with neural 
networks, we will see that it is easy to build models that present useful and 
complex behaviors, even though gaining an insight into how the system 
achieves these goals can be extremely difficult. These models act as black 
boxes: we define the initial conditions and the rules of behavior and allow 
the system to self-organize accordingly, thereby often losing the ability to 
analyze the role of each component in the system, or at least making this 
task very difficult.

The use of formal mathematical tools to build faithful models of bio-
logical phenomena is outside the scope of this book. That field is called 
theoretical biology or systems biology and makes use of a wide range 
of mathematical and computational tools (systems biology is discussed 
briefly in Chapter 6). It is interesting to note that experimental biologists 
also take advantage of a completely different kind of models: they perform 
research on species called model organisms, which are easy to use in the 
lab, in an effort to understand processes also occurring in other species 
or even across the living world. Often used model organisms are yeasts: 
particularly the baking yeast (which is a single-cell eukaryote); the micro-
scopic roundworm C. elegans, for which the developmental trajectory of 
each of its 1031 cells has been worked out to amazing detail; the fruit fly 
Drosophila, which has easily observable chromosomes and was used in 
groundbreaking work in genetics; and mice, which as mammals are closer 
to humans. Model organisms for plants include Arabidopsis and tobacco, 
which have relatively simple genomes, and maize (corn), whose separate 
kernels allow for easy observation of the effect of genetic changes on the 
development of the organism.

This book focuses on attempts to use biological knowledge to develop 
new methods for solving problems using computers. Clearly, we will need 
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to choose some minimal characteristics of the biological systems that can 
be used for this purpose. For example, we will see in Chapter 4 how to 
build a computer system that is capable of independent learning, thereby 
eliminating the need to reprogram it to solve new problems. In Chapter 3 
we will harness some basic insights into the evolutionary process to create 
computer programs that solve difficult optimization problems (i.e., prob-
lems of finding a maximal value of a multivariable function that is not dif-
ferentiable or does not have a simple formal description) by generating a 
collection of possible solutions and applying evolutionary like processes to 
promote the best ones. The main consideration in building such models is 
their usefulness as computational tools and not necessarily their precision 
as descriptions of biological systems or processes. This is the reason this 
field is often referred to as biologically inspired computing.

Building and using such models allows us to develop an intuition about 
biological processes, even though the biological systems are much more 
complex, contain many interacting mechanisms, and behave in diverse ways 
in different species under different conditions. This is apparent even when 
looking at the previously described biological systems. The general under-
standing of the biological systems that is the starting point of the techniques 
we describe does not necessarily match the real behavior of the biological 
processes, nor is our goal to achieve a better understanding of the biological 
behavior. Having said that, using the models may help us in understanding 
general biological principles rather than specific processes. In the next chap-
ter we will see how mathematicians and computer scientists attempted to 
construct models that explain the amazing ability of living things to self-rep-
licate, that is, to generate offspring similar or identical to themselves. These 
researchers were trying to understand which requirements are necessary to 
build a self-replicating system and were not attempting to understand how 
self-replication occurs in nature. Surprisingly, after the discovery of DNA 
and its behavior it turned out that the abstract model studied by theoreticians 
was similar in fundamental respects to what happens in living cells.

We have stated already that other computational tools, not inspired by 
biology, make use of the basic principles discussed in this book. These 
principles include self-organization, local interactions between compo-
nents, asynchronicity, redundancy, use of noise, and nondeterministic 
and parallel and distributed systems. The reader who studies the models 
we describe in this book and the ways to analyze, implement, and test 
them (e.g., varying parameters and determining their influence, attempts 
to combine different models, analyzing the models’ fault tolerance) will 
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gain important insights and intuition about the relative merits of these 
principles that are also used in the development of large software systems 
not necessarily based on biological models.

In Chapter 5 we will discuss the usage of biological molecules (DNA 
and proteins) to perform computations. This obviously does not involve 
modeling a biological system but can be rather seen as the opposite—using 
biological molecules to model the computational process.

1.5  SUMMARY
The chapters ahead discuss several paradigmatic computational models 
and techniques that were inspired by observing the living world or by bio-
logical knowledge. In each chapter we try to give the relevant biological 
background and intuition and to present the fundamental aspects of the 
computational approaches we discuss. We do not assume any prior bio-
logical knowledge, and each chapter is self-contained.

In Chapters 2–5 we describe topics that by now are considered well estab-
lished and form the core of the emerging field of biological computation. In 
the concluding chapter, Chapter 6, we provide a survey of additional topics 
like swarm intelligence, artificial immune systems, artificial life, formal lan-
guages to describe biological systems, and system biology. These approaches 
interact with the approaches described in the previous chapters and expand 
on them and show which directions this field may develop in the future.

The techniques discussed in Chapters 2 through 4 and in Chapter 6 can be 
applied immediately to solving practical problems, whereas at the moment 
the notion of molecular computing discussed in Chapter 5 is of less immedi-
ate use to programmers. All the models discussed, however, provide insight 
about biology, about the nature of computation, and about how the two 
fields relate to each other.

Each of the techniques we discuss exists in many varieties and can be 
extended in various ways for different purposes. Each chapter includes ref-
erences to further reading, and the final chapter includes a list of recom-
mended books. We hope that, after studying the material presented in this 
book, the interested reader will be well prepared to independently explore 
the wealth of useful and related material available online.

Our goal in each chapter is to present the fundamental concepts behind 
the techniques and examples of types of applications for which it may be 
relevant. We hint at some of the directions in which each technique may 
be modified, often via the exercises that appear at the end of each chapter. 
We intentionally refrain from presenting most of the material formally 
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in order for the text to be accessible and readable. Several fundamental 
theorems, however, are presented formally along with a proof or a sketch 
explaining how the proof of the theorem is constructed.

The techniques presented in the following chapters are powerful and 
easy to implement, and many free implementations (in both senses of the 
term) exist online. We encourage readers to “play along” and experiment.

Enjoy the ride!

1.6  FURTHER READING

The following introductory textbooks in biology can be used to supple-
ment the short introduction to biology we present in this chapter.

Campbell, Neil and Jane B. Reece. 2009. Biology, 8th ed. San Francisco: Pearson 
Benjamin Cummings.

Solomon, Eldra, Linda Berg, and Diana W. Martin. 2007. Biology, 8th ed. 
Florence, KY: Thomson Brooks/Cole.

Starr, Cecie, Ralph Taggart, Christine Evers, and Lisa Starr. 2008. Biology: The 
Unity and Diversity of Life, 12th ed. Florence, KY: Thomson Brooks/Cole. 

1.7  EXERCISES

Exercises with solutions are marked with bold numbers.

1.7.1  Biological Computation

	 1.	When building a system one tries to avoid the existence of single 
points of failure, a failure which will cause the system to crash. 
Use this notion to discuss why the control mechanisms of the non-
standard computational models (as summarized in Table 1.1) may 
account for the systems’ robustness.

	 2.	Try to use your answer to the previous question to discuss how self-
organization can contribute to robustness. What are the dangers in 
relying on such a mechanism?

	 3.	Discuss which of the properties of nonstandard computation enu-
merated in Table 1.1 will make standard programming techniques 
more difficult. Consider all the stages of building software systems: 
analysis, design, programming, testing, and maintenance.
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1.7.2  History

	 4.	Which of the following constitute positive feedback and which con-
stitute negative feedback?

	 a.	 Feeling cold, the body reacts by shivering designed to raise its 
temperature.

	 b.	 Global warming causes the glaciers to melt. As glaciers reflect a 
lot of sunlight, their existence reduces warming.

	 c.	 Fat cells secrete the hormone leptin. When the amount of fat 
decreases, less leptin is secreted, and that causes brain cells to 
send hunger signals. Cells in the gastrointestinal tract can deter-
mine how much food has been consumed and can signal other 
brain cells to stop the eating. The newly replenished fat cells 
resume the leptin secretion, and the feeling of hunger passes.

1.7.3  Biological Introduction

	 5.	How many bits are needed to code the information contained in a 
single nucleotide?

	 6.	Does the double-stranded DNA molecule contain more information 
than each of the separate strands?

	 7.	Some regions of DNA contain repeating long sequences of the nucle-
otides AT (i.e., regions of the form ATATAT). Explain why these 
sequences are believed to have a role different from that of storing 
genetic information.

	 8.	Try to come up with biological reasons that could explain why the 
genetic code is not a one-to-one mapping (i.e., why there are multiple 
codons that code the same amino acid). Does your hypothesis lead 
to any predictions that can be tested either by examining the genetic 
code or experimentally?

	 9.	Where is the genetic code stored? Try to figure out how the genetic 
code becomes expressed in the cell.

	 10.	We have noted in Section 1.3 that it is believed that a change in a 
phenotype does not imply a corresponding change in the genotype. 
How is this assumption manifested in the formula “DNA → RNA → 
protein” (the central dogma of molecular biology)?
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	 11.	 In the following table, match the items in column A (biological terms) 
with items in column B (computational terms). Note that not all terms 
need necessarily be matched, and more than one term can be matched 
to some of the items.

Column A Column B
DNA Hardware
Protein Software
Enzyme Programming language
Genetic code Compiler
Ribosome Machine language

	 How successful is the analogy between the two domains?

	 12.	Assume eye color has two possible alleles: A for brown eyes; and 
a for blue eyes. An individual with the alleles A and a (denoted by 
Aa) will have brown eyes (i.e., a does not affect the eye color in this 
case). We say that in this situation A is dominant relative to a, and 
a is recessive relative to A. Assume two parents are both Aa. Every 
child will get one gene from each parent (A or a) with probability of 
one half. Calculate the probability of each possible genotype for the 
descendents and the probability of each phenotype (i.e., eye color).

	 13.	Assume the gene for leaf color has two possible alleles: A for red 
leaves; and a for white leaves. An individual with both the A and a 
alleles (denoted as Aa) has pink leaves (which is the combination of 
red and white). Assume two parents are both Aa. Every child will 
get one gene from each parent (A or a) with probability one half. 
Calculate the probability of each possible genotype for the descen-
dents and the probability of each phenotype (i.e., leaf color).

	 14.	We discussed two processes that use DNA as a template for creating a 
new molecule: creating mRNA and creating new DNA. In both pro-
cesses, errors can occur, as is expected in any chemical process. The 
cell deals with such errors by having error correction mechanisms.

	 a.	 In which of the two processes are errors more critical? What 
hypothesis can you deduce from this regarding the error correc-
tion mechanisms?
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	 b.	 Most proteins are generated in the cell in many copies and thus 
are transcribed again and again. Does this change your previous 
answer?

	 15.	We have discussed the fact that most cells in multicellular organ-
isms, except for the gametes and a few types of specialized cells, con-
tain the same genetic information. Cells go through a specialization 
process and have different roles. Discuss how regulatory mechanisms 
could be employed toward this end and how regulation has to inte-
grate with cell division.

1.7.4  Models and Simulations

	 16.	You may have encountered queueing theory in the past (e.g., in 
a computer networks course). Which of the types of models we 
discussed is most similar to the models of queueing theory? How 
does queueing theory allow for analytical solutions, despite the 
fact that the models are based on random behavior (i.e., they are 
probabilistic models)?

	 17.	You may have encountered game theory in the past. Which of the 
models we discussed is most similar to the models of game theory?

1.8  ANSWERS TO SELECTED EXERCISES
	 2.	 If the programmer foresaw the possibility of a particular fault that can 

crash the system and determined how to deal with it, the system may 
be able to recover from it. Alternatively, a self-organizing system may 
be able to recover from many kinds of faults. The more complex the 
system and its possible set of problems, the odds of planning for all 
faults in advance decreases, and therefore self-organizing capabilities 
may become more important. This gives rise to the danger of the sys-
tem recovering (self-organizing) in an inappropriate way. The best way 
of dealing with this is testing how the system reacts to an array of prob-
lems and adjusting the system if it reacts inappropriately to problems.

	 4.

	 a.	 Negative feedback: shivering raises the body’s temperature, 
which decreases the feeling of cold, which causes the shivering to 
stop and the system to revert to its initial state.
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	 b.	 Positive feedback: the glacier melting reduces the solar reflection, 
and therefore Earth’s temperature rises. This causes more gla-
ciers to melt, and the warming trend increases.

	 7.	Easily compressible data cannot contain much information (as the 
same data can be represented in a more concise fashion). The more 
compressible the data, the less information it carries. A long repeat-
ing sequence can be easily compressed (“repeat AT 200,000 times”). 
Therefore, it would seem that repeat sequences contain very little 
information. If such sequences exist and do not disappear during 
the course of evolution (see Chapter 3), it might suggest that they 
have a role other than that of storing information (e.g., a structural 
role).

	 9.	The genetic code is stored by the set of tRNA molecules in the cell—
molecules whose one end presents an anticodon and whose other 
end is linked to the appropriate amino acid. The tRNA molecules 
are coded for in the DNA of the cell. Loading the tRNA molecules 
with the appropriate amino acid for the anticodon is the function 
of specific enzymes called tRNA synthetases, which themselves are 
coded for by DNA genes, of course. Try to figure out how the genes 
involved in this process can themselves become expressed: how does 
the process get started?
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C h a p t e r  2

Cellular Automata

Cellular automata (CA) were proposed in the 1950s by the famous 
mathematician John von Neumann as a model for studying the abil-

ity of organisms to self-replicate. Since then, the CA model has been used 
to describe many phenomena in diverse research areas. Some of these 
areas are biological and include models for the spreading of diseases and 
the behavior of bacteria colonies (see Section 2.1), but CA are also used in 
nonbiological fields, for instance for creating physical simulations. CA can 
be enjoyed as purely recreational mathematics, but we will use this model 
to discuss deep topics in biological computation.

2.1  BIOLOGICAL BACKGROUND

2.1.1  Bacteria Basics

The vast majority of living organisms are the prokaryotes of which 
there are two types, Bacteria and Archaea. The prokaryotes are char-
acterized by the  absence of a nuclear membrane and consequently the 
noncompartmentalized nature of their single cell. All organisms syn-
thesize proteins on molecular complexes called ribosomes, and there-
fore the need to accommodate a large number of these relatively large 
molecular machines means that the minimum size of autonomous 
organisms  is generally a few hundred nanometers (1 nm = 10–9 of a 
meter) across; however, they can be as small as 200 nm in diameter. 
Figure  2.1(a) shows an electron microscope image of a colony of the 
Vibrio cholerae bacteria, which infect the digestive system; a schematic 
description of bacteria’s structure is given in Figure 2.1(b).
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Bacteria exhibit an amazing range of sizes, metabolic capacities, and life-
styles, with the largest characterized representative exceeding 500 microm-
eters (1 µm = 10–6 of a meter) in diameter. This remarkable bacterial diversity 
not only is fascinating for bacteriologists but also is crucial to the contin-
ued existence of our world. For example, various species of bacteria release 
oxygen into the atmosphere, whereas others, living inside the human body, 
influence the delicate balance between health and disease.

The most notorious property of bacteria is their capacity to reproduce 
rapidly. In a rich medium (containing sugars and amino acids), the oft-
studied Escherichia coli divides every 20 minutes to produce 72 generations 
per day. Such growth, if left unchecked, would generate a mass of bacteria 
equal to the mass of the earth in two days. In general, bacterial growth 
involves replication of genetic material followed by binary fission into two 
identical daughter cells, each containing one copy of the genome.

2.1.2  Genetic Inheritance—Downward and Sideways

In contrast to the linear chromosomes of eukaryotes, the essential com-
ponent of a bacterial genome is typically a single, closed circle of dou-
ble-stranded DNA, 4–5 megabases (Mb) long, called the bacterial 
chromosome, which is compacted inside the cell to form a structure called 
a nucleoid. In addition, the genomes of some bacteria also contain smaller 
circles of double-stranded DNA, known as plasmids, which range in size 
from 1000 bases to several megabases. Essential bacterial genes, those 
required for growth and reproduction, are generally encoded within the 
chromosome, whereas genes needed only under exceptional conditions 
are encoded within a plasmid. For example, genes encoding resistance 
to antibiotics are often encoded in plasmids. A very large fraction of the 

Plasmid

Ribosomes

Cell wall
Cytoplasm

DNA (nucleoid)

Bacterial flagellum

1 µm

(a) (b)

FIGURE 2.1  (a) A colony of Vibrio cholerae bacteria; (b) A schematic structure 
of a bacterium. 
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bacterial chromosome DNA  (about 85% in Escherichia coli) encodes for 
proteins, whereas for humans less than 5% of DNA encodes proteins (see 
Chapter 1).

The replication and equal partitioning of the bacterial genome that 
occurs during bacterial growth underlies the classical vertical inheritance 
of traits from one generation to the next. However, bacteria can acquire 
genes in another manner, termed horizontal gene transfer or lateral gene 
transfer (LGT), whereby genetic material is received by one bacterium 
from an unrelated bacterium. Comparative genomic analysis indicates 
that LGT impacts bacterial evolution in the long-term and additionally 
serves as a pathway for acquiring transitory traits, such as the reduced 
susceptibility to antibiotics, a worrying and increasingly prevalent phe-
nomenon since the 1960s.

2.1.3  Diversity and the Species Question

Classifying bacteria into species and strains has been a challenge since 
they were first visualized and is even more so presently, despite the ava-
lanche of genomic information becoming available each day. This prob-
lem is particularly pertinent as millions of bacterial species are thought 
to exist in our environment that have not yet been sampled or grown 
successfully in a laboratory.

It is becoming clear that bacterial genomes are composed of core 
sequences, such as essential genes; dispensable sequences characterized 
by their erratic appearance and nucleotide variability across a panel of iso-
lates (the same bacterial species sampled repeatedly and independently); 
and strain-specific genes that are unique to a given isolate. These observa-
tions have created the notion that a bacterial species cannot be represented 
by a unique genomic sequence but instead is defined by a pan-genome, 
which is the core sequences plus the collection of dispensable and strain-
specific sequences. Moreover, since bacteria exist in nature in a particular 
environmental niche, such as inside our guts or in the ocean, an initially 
radical research approach is to study the niche community as an entity and 
to call the genetic repertoire of the diverse microbes therein a metagenome. 
In recent years, metagenomics has become a mainstream field. Within such 
an environment, events of LGT are expected to occur quite often. Currently, 
more than 100 metagenomic projects are under way for which novel bio-
informatics tools are being developed. Together with the insights gained 
from about 700 fully sequenced microbial genomes, our understanding of 
what really defines a bacterial species is likely to improve.
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2.1.4  Bacteria and Humans

Currently, researchers are analyzing the metagenome of the human gut, 
estimated to contain some 10 trillion individual bacteria that are mem-
bers of more than 1000 different species. Bacteria are found also in other 
human habitats, including the female reproductive tract, the skin, and the 
mouth. Together, all the bacteria in the human body constitute the human 
microbiome. Bacteria living inside the body that do not cause disease are 
known as commensals, whereas those associated with human disease are 
called pathogens. Bacteria play crucial roles in the life of higher organ-
isms like humans. Many bacteria develop symbiotic relationships with 
their hosts. For example, bacteria participate in key stages of food diges-
tion in humans. Furthermore, the mere existence of the “good” bacteria 
keeps at bay the number of the pathogenic bacteria because they compete 
for the same environmental resources. However, the distinction between 
harmless or even beneficial bacteria and pathogens is becoming blurred 
as emerging studies reveal that many recognized pathogens, such as the 
bacteria responsible for pneumococcal diseases, are commonly carried 
asymptomatically. Such studies highlight the gaps in our present under-
standing of pathogenicity and of the interplay between different species 
and strains of bacteria that cohabit at the same niches.

A better understanding of pathogenicity is urgently needed to expand 
our ability to combat bacterial diseases. Antibiotics have changed the 
outcome of the everlasting war between humans and bacteria dra-
matically in the last 60 years. However, the excessive use of antibiot-
ics brought about the emergence of “superbugs,” such as the multidrug 
resistant Klebsiella pneumoniae and methicillin-resistant Staphylococcus 
aureus (MRSA), which do not respond to antibiotics and pose a major 
public health risk.

2.1.5  The Sociobiology of Bacteria

A growing body of studies demonstrates that bacteria produce and secrete 
signaling molecules that other bacteria detect and to which they respond, 
for example, by changing gene expression. These signals enable bacteria 
to exhibit advantageous communal behavior, which appears to under-
lie several key phenomena, such as biofilm formation, whereby bacteria 
organize into a particular architecture. Another phenomenon is quorum 
sensing, a mechanism by which bacteria can estimate the density of their 
colonies by monitoring the amount of signal molecules secreted by the 
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community members. In fact, a colony of bacteria can be regarded almost 
as a multicellular organism rather than a collection of individual cells.

An impressive example of such collective behavior is seen in Figure 2.2: 
an expanding colony of bacteria encounters a fragment of glass wool on 
the surface of the petri dish, causing the individual cells in the colony to 

FIGURE 2.2  A series of pictures showing how a fiber approached by a bacte-
ria colony is being surrounded by an individual cell that leaves the colony and 
engulfs the fiber. Eventually, the coated fiber is being absorbed into the colony. 
(From Shapiro and Dworkin, Eds., Bacteria as Multicellular Organisms, Oxford 
University Press, 1997. With permission.)
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change behavior in such a way that the colony manages to engulf the glass 
wool fragment.

Another example concerns pattern formation by bacteria colonies. 
Eshel Ben-Jacob has shown (Ben-Jacob, 2007) that a colony of the same 
bacteria can grow in a very different patterns under different conditions 
like food availability (Figure 2.3). Furthermore, it was shown that a colony 
of bacteria has the ability to “learn,” and therefore its response to a first 
course of antibiotics may be very different from its response to successive 
courses. The details of the mechanisms involved in these processes are 
only beginning to unravel.

The “social” processes occurring within a bacterial colony are so rich 
that ongoing studies are investigating whether certain forms of cooperative 
multicellular behavior even lead to the emergence of “cheaters,” individual 
bacteria that reap the benefits of cooperation without contributing to the 
community. In general, the recent coining of various phrases by bacteriolo-
gists (e.g., the sociobiology of bacteria, microbial multicelluarity, quorum 
sensing) illustrates the extent to which this area has become a focus of cur-
rent bacterial research. The following description of cellular automata deals 
with artificial systems, but we are sure that the analogy with bacterial colo-
nies and their self-organization will be evident to the reader.

2.2  THE “GAME OF LIFE”
We will start our discussion of cellular automata by describing an example 
of a two-dimensional CA known as the “Game of Life.” A more general 
and formal definition of CA will be presented later.

(a) (b) (c)

FIGURE 2.3  Branching patterns exhibited by Paenibacillus dendritiformis bacte-
ria: (a) shows the pattern at higher food levels; (b) shows the typical pattern with 
intermediate levels of food depletion; (c) shows the growth for a very low level of 
food. These forms of bacterial self-organization provide the colony with the abil-
ity to make an efficient use of the available resources. (From Ben-Jacob, Eshel, 
European Physical Journal B – Condensed Matter and Complex Systems 65, no. 3, 
315–322. With permission.)
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A two-dimensional cellular automaton is a square grid of cells, each 
of which is in one of a finite number of states. The automaton progresses 
from one generation to the next using the following procedure: each cell 
inspects its state and the states of its neighbors and updates its state using 
a simple rule. The same rule is used by all the cells. A configuration is a 
collective state of the automaton, that is, a description of the state of each 
cell in a given generation.

The best-known cellular automaton is the “Game of Life” (or Life for 
short) presented by John Horton Conway in 1970. In Life, the grid is infi-
nite in both dimensions. Each cell can be in one of two states: alive or dead 
(equivalently, full or empty). The update rule depends on the number of 
live cells in the immediate neighborhood of each cell (i.e., how many of the 
eight cells around a given cell, including diagonals, are alive):

Birth rule: a dead cell with exactly three live neighbors comes to life; in 
any other case a dead cell remains dead.

Survival rule: a live cell with two or three live neighbors stays alive.

Death rule: a live cell with four or more live neighbors dies of overcrowd-
ing; a live cell with at most one live neighbor dies of loneliness.

Note that the states of the cells are inspected before the update. That means 
that first all the cells needing to be updated are identified, and then the 
updates happen simultaneously for all of the automaton’s cells. The rules 
are demonstrated in Figure 2.4.

�e lower gray cell’s
neighborhood consists of 4
live cells so it will die in the
next generation.
�e upper gray cell’s
neighborhood consists of 3
live cells so it will change to
live in the next generation.  

�e gray cell’s neighborhood
consists of 2 live cells so it
will stay alive in the next
generation.

�e gray cell’s neighborhood
consists of 3 live cells so it
will stay alive in the next
generation.

FIGURE 2.4  Examples of the execution of the transition rule of the “Game of 
Life” (a live cell is marked with a filled circle).
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Typically, we will use a computerized simulation to follow the evolution of 
cells in the “Game of Life,” but we could also run the simulation manually:

	 1.	Start with an initial configuration where live cells are represented on 
a checkerboard using the black pieces.

	 2.	Find all the cells that will die in the next generation. Mark each such 
cell by adding another black piece on top of the one in the cell.

	 3.	Find all the cells that will be born in the next generation. Mark each 
such cell by placing a white piece on it.

	 4.	Make sure that you did not miss anything; then update the board 
by removing all pieces from the dead cells (those with two black 
pieces), and execute the birth rule by replacing all the white pieces 
with black pieces.

	 5.	Now that you have the next generation; repeat from step 1.

Figure 2.5 shows a few configurations that lead to interesting patterns you 
may want to follow for several generations.

Studying these examples demonstrates that although the rules are sim-
ple, the system’s behavior can be complex and hard to predict. Some ini-
tial configurations never change when the rules are applied; other initial 
configurations cycle between a finite number of configurations (i.e., these 
configurations are called oscillators); still others preserve their shape but 
move over the board.

Observing Life can have a hypnotic effect, but it also raises many ques-
tions such as the following:

•	 Can we predict the board’s configuration in n generations without 
executing the game for n generations?

�e clock �e glider

FIGURE 2.5  Initial configurations that lead to interesting behavior.



Cellular Automata    ◾    47

•	 Do all initial configurations lead to a steady state, after which there 
are no further changes?

•	 Do all initial configurations lead to a state with a fixed number of live 
cells, that is, a state after which the automaton will not grow further?

Conway’s goal was to find simple rules for cellular automata with the 
following elusive properties:

•	 There will be no initial configuration for which it will be easy to prove 
that the population of live cells will grow indefinitely without bounds.

•	 There will be initial configurations for which it will seem as if the 
population of live cells grows without bounds.

•	 Some initial configurations will change during many generations, 
but eventually they will settle into one of three situations: (1) extinc-
tion (due to overcrowding or loneliness); (2) periodic oscillation 
between several configurations; or (3) achieving a steady state.

In this regard, one of the most interesting examples is the “R-Pentomino,” 
which is an innocent-looking pattern of five cells shown in Figure 2.6. It 
takes 1103 generations for it to stabilize. Readers are encouraged to try it 
on their favorite Life applet (e.g., at http://www.ibiblio.org/lifepatterns/) 
and be amazed by the richness of the final pattern. No wonder this pat-
tern is known as one of the Methuselah patterns, named after the biblical 
Methuselah who lived for 969 years.

From this, and many other such examples, it became clear that indeed, 
as Conway intended, predicting the behavior of the system is extremely 
complicated. In fact, it turns out that it is impossible to predict the evolution 
of the system from its initial configuration, and its evolution can be deter-
mined only by simulating the game. This can be proved mathematically 

FIGURE 2.6  The R-Pentomino. This simple pattern takes 1103 generations to set-
tle down into a complicated “community” of blocks, blinkers, gliders and more.
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by showing that Life can function as a computer (in formal terms, it is 
equivalent to a universal Turing machine [TM]). Therefore, predicting the 
fate of an initial configuration in the “Game of Life” is equivalent to decid-
ing whether a computer program will halt for a given input or what its out-
put will be, which are known to be undecidable problems. We will return 
to this important point later in the chapter.

2.3  GENERAL DEFINITION OF CELLULAR AUTOMATA
So far, we have discussed a very specialized case of a cellular automaton. 
We will attempt now to generalize the properties of a CA.

The cells may be in one of a larger set of states (not just “live” or “dead” 
as in Life). The set of states has to be finite (typically the set is rather small 
and contains no more than 10 states). The set of states is usually denoted 
by the letter ∑ and the number of states by k.

The cells consulted for each cell by the behavior rules are called the cell’s 
neighborhood. The neighborhood may be different from one automaton 
to the other. Sometimes the neighborhood is defined to be the cells per-
pendicular to the cell (four cells in the two-dimensional case, called the 
von Neumann neighborhood). In other cases the neighborhood contains 
all the adjacent cells (eight in the two-dimensional case, called the Moore 
neighborhood). In general the neighborhood may include cells that are 
not directly adjacent neighbors and may have any shape.

An automaton need not be two-dimensional; it may be one-dimensional 
(a linear formation of cells) or three-dimensional (a cube of cells) or have 
higher dimensionality. The cells need not be on a square, chess-like grid. 
Any regular tiling of the automaton space such as triangular or beehive 
shaped tiling will do. We will assume that the automaton space is infinite. 
When implemented by a computer program, we will usually enlarge the 
board when necessary. But we may also assume other boundary condi-
tions, such as a two-dimensional surface on a sphere where the edges meet 
or a board laid out on a torus.

Taking all of this into account, we see that the elements needed to define 
a particular CA are as follows:

•	 The layout of the board (e.g., a two-dimensional board, a beehive) 
and its boundary conditions.

•	 The set of states ∑. At any instance every cell is in one of these states. 
We will denote the state of cell i at time t by Sti . A configuration is a 
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collective state of the automaton’s cells, that is, a description of the 
state of each cell in a given generation.

•	 The neighborhood of every cell. The states of all cells in a cell’s neigh-
borhood are used as input when calculating the state of the cell in the 
next generation. The neighborhood is denoted by Ni

t , which specifies 
the states of the cells in the neighborhood of cell i at time t. When 
we are not interested in a specific time period the t may be omitted.

•	 The transition rule determines the state of each cell in the next gen-
eration, based on its current state and the current states of the cells 
in its neighborhood. For simplicity we will assume that a cell’s neigh-
borhood contains the cell itself. We will denote the transition rule 
by δ( Ni

t ). Note that the transition rule may not consider the location 
of a specific cell on the board (e.g., its x and y coordinates). Using 
such information would violate the principle that each cell can get 
information only from its neighbors and cannot make use of “sys-
tem-wide” properties (i.e., a cell can use only local rather than global 
information). This is the basis of the cellular automata model.

So, a particular automaton is defined by four properties: (1) the board; 
(2) the set of states; (3) the definition of a cell’s neighborhood; and (4) the 
transition rule.

All the cells’ neighborhoods have the same shape and this shape does 
not change with time. For now we will also assume that all the cells tran-
sition at the same time to their next state. This is called a synchronous 
transition. Accordingly, the time in the system can be divided into dis-
tinct and discrete time units, a regime called discrete time.

Note that discrete time is very different from the notion of time 
as continuous, and the incompatibilities between these two notions 
of time can lead to paradoxical behavior as in Zeno’s arrow paradox. 
Imagine an arrow in f light. Now suppose time is divided into a series 
of indivisible moments. At any given moment, the arrow is at an exact 
location, so it is not moving. But if at any moment in time there is no 
motion, we must conclude that movement cannot happen—that the 
arrow is motionless. The paradox actually stems from the idea that 
time can be divided into discrete units. Thus, we must be careful when 
we model dynamic systems using CA not to get into situations when 
the discrete nature of time might be a confusing factor in the behavior 
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of the simulation or to assume that a discrete time model necessarily 
captures all the important elements of a continuous phenomenon (or 
vice versa, of course).

A state s for which δ(s,…,s) = s is called a quiescent state: a neighbor-
hood where all the cells (including the cell itself) are in a quiescent state 
and will remain in a quiescent state at the next time step. The quiescent 
state of cells in the “Game of Life” is “dead”: the rules of the game will not 
result in a creation of any living cell if the entire board is empty.

We summarize this section with a formal definition of a CA as follows:

2.4  1-DIMENSIONAL AUTOMATA
A one-dimensional (1-D) automaton is a tape or sequence of cells. For 
example:

1 0 0 1

is an instance of a 1-D automaton with the state set {0,1} where the tape is 
of length 4. We often assume that the tape is circular (i.e., the right-hand 
neighbor of the rightmost cell is the left cell and vice versa). Typically, 
a cell’s neighborhood will be described by the radius r around the cell. 
Therefore, the number of cells in the neighborhood is 2r + 1 (r cells on each 
side of the cell and the cell itself).

If we keep the number of states and the size of the neighborhood mod-
erately small, the number of different possible neighborhoods also remains 
relatively small, and we will be able to describe the automaton using a 
simple table that holds the next state of a cell as a function of the states in 

FORMAL DEFINITION OF A CELLULAR AUTOMATON

A d-dimensional cellular automaton A is a 4-tuple (Zd , ∑, N, δ) where:

•	 Zd is the description of the space defining the automaton’s layout.
•	 ∑ is a finite set of the possible cell states.
•	 N is an ordered subset of Zd of size n+1 called the neighborhood of 

A. For a cell x ∈ Zd, the neighborhood of x is defined to be the cells 
in positions x + ri for i = 0,1,…,n. where ri is a vector in the d-dimen-
sional space (i = 0 represents the cell x itself).

•	 δ: ∑n+1→∑ is a function called the transition rule of A.

This is a standard definition of a cellular automaton. Some variations 
later in this chapter do not adhere to this definition.
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its neighborhood. For example, an automaton where k = 2 and r = 1 is an 
automaton in which each cell can be in one of two states and the next state 
is determined by the states of the cell and its two neighbors.

Table  2.1 describes a possible transition rule for such an automaton. 
Note that the entire table represents a single transition rule. Also note that 
this table enumerates all possible states of the environment.

If the automaton’s initial configuration is as previously described

1 0 0 1

After applying the transition rule, its state in the next generation will be

1 0 1 1

Observe that all tables describing transition rules for 1-D automata with 
k = 2 and r = 1 have eight rows. Note that the number of rows in the table 
is determined by the number of possible neighborhoods (here 23 = 8) and is 
not dependent on the size of the automaton, namely on how many cells it 
contains. For simplicity, the following notation has been devised: the next 
state of cells as a function of the neighborhoods will be written as a sequence 
of bits (read bottom to top from the “Next State” column in Table 2.1). So the 
transition rule in Table 2.1 can be described by the sequence 01101110. This 
sequence is the binary representation of the decimal number 110, so this 
transition rule is known as Rule 110 (Table 2.2). This shorthand for describ-
ing the transition rules is known as Wolfram numbers, after Stephen 
Wolfram (2002), who first proposed and used this notation.

TABLE 2.1  Rule 110

Neighborhood

State of Left 
Neighbor

Current State 
of Cell

State of Right 
Neighbor Next State

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
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As every eight-digit binary number can represent an automaton’s 
transition rule, we see that the number of possible automata is 28 = 
256. This is a significant observation since it means that we have now 
a systematic way to address all possible transition rules for binary 1-D 
automata. Furthermore, practically speaking, we can reduce this num-
ber significantly. There is an obvious symmetry between the digits 0 and 
1. In addition, we will usually consider only automata with a quiescent 
state (i.e., for the configuration where all the cells in the neighborhood 
are 0, the next state of a cell in state 0 remains 0). A further simplifica-
tion may arise from allowing only rules that are symmetrical around the 
middle cell in the neighborhood. In this case, we will want the neighbor-
hoods 100 and 001 to have the same value as well as neighborhoods 110 
and 011.

The first simplification reduces the number of possible automata by half. 
The second simplification implies that the binary representation of a tran-
sition rule ends with a 0, since this represents the transition 000 → 0. The 
third simplification allows us to look only at the values of five neighbor-
hoods to infer all the other values of the transition rule. Taken together, 
we see that the interesting transition rules are of the form α1α2α3α4α2α5α40 
(note that α2 and α4 appear twice due to symmetry), and the number of 
rules to consider for automata with k = 2 and r = 1 has been reduced from 
256 to 32.

We can visualize the behavior of a 1-D automaton as a function of time 
with a space–time diagram. Every row of the diagram will describe the 
automaton’s state at a particular generation, with time progressing down 
the chart. For example, Figure 2.7 shows the progression of rule 18 for an 
automaton that starts with a single cell with value 1 on a long tape for 20 
generations (cells with the value 1 are denoted by a circle and cells with 
value 0 by a space).

TABLE 2.2  Rules and Their Decimal Names

Converting a Rule to Its Decimal Name
Neighborhood as a binary 
number

111 110 101 100 011 010 001 000

2 to the neighorhood’s 
state

128 64 32 16 8 4 2 1

Next state 0 1 1 0 1 1 1 0

01101110b=128•0+64•1+32•1+16•0+8•1+4•1+2•1+1•0=110d
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One of the interesting advantages in the Wolfram notation is that we 
can go systematically through all automata and qualitatively characterize 
their behavior. It turns out that roughly 85% of the automata behave in a 
uniform and uninteresting way (Figure 2.8(a)), 10% in a way that seems 
ordered and complex (Figure 2.8(b)), and 5% in a seemingly random and 
chaotic way (Figure 2.8(c)) although they follow deterministic rules. From 
experiments with other CA it seems that this observation is quite general. 
In most systems, most sets of rules will lead to uniform and uninteresting 
behavior (similar to the behavior in Figure 2.8(a)), whereas only in a minor-
ity of cases the system will show either a complex behavior (like in Figure 
2.8(b)) or random-like behavior (like in Figure 2.8(c)).

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

FIGURE 2.7  Space–Time Diagram.  This representation enables one to follow 
the behavior of a 1-dimensional automaton over time. In this example rule 18 is 
followed for 20 generations starting from a single non-empty cell.

(a) (b) (c)

FIGURE 2.8  The different general behavior of 1-dimensional automata. (a) 
Trivial order (this specific pattern was created by rule 250); there are 222  autom-
ata that show this type of behavior. (b) Complex order, (this specific behavior 
comes from rule 90); there are 24 such automata. (c) Chaotic-like behavior (cre-
ated by rule 30); there are 10 automata that show chaotic like behavior among the 
total of 256 automata. (From Wolfram, Stephen. A New Kind of Science, Wolfram 
Media, 2002. With permission.)
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2.5  EXAMPLES OF CELLULAR AUTOMATA
Cellular automata have properties that are useful for modeling cer-
tain classes of phenomena. By definition, time progresses discretely for 
CA, which therefore makes them appropriate for models where time 
is naturally divided into generations and where the progress from one 
generation to the next is synchronous. In a cellular automaton, the state 
of every cell is a function of its neighborhood, and this is appropriate 
for describing phenomena where the neighborhood affects behavior and 
the interaction between the components of the model is local. Another 
important feature of CA is that all the cells obey the same rule, making 
CA appropriate for modeling homogeneous systems. On the other hand, 
CA are less useful for modeling systems where time is not discrete or 
when the behavior of each cell is difficult to define by discrete states.

A few examples will give us a better understanding of the phenomena 
that can be modeled by CA. Some of these models are based on the pre-
viously given CA definition, and in other cases we will modify the CA 
definition to allow an easier description of the phenomena we are try-
ing to model. Some of the modifications are merely technical; however, 
some modifications, like introducing randomness into transition rules, 
are more fundamental.

2.5.1  Fur Color

Mammals’ hair color is determined by pigment cells called melanocytes 
in the basal layer of the epidermis (skin). These cells produce melanin, 
which determines the hair color. In general, mammal hair color is a sin-
gle color or a template containing two colors (e.g., a zebra; unlike fish and 
birds, no mammals display an array of colors). Actually, producing the 
two-color pattern is a binary process: either no (or very little) melanin is 
produced, in which case the “background” color is displayed, or melanin 
is produced, in which case the “foreground” color is displayed. The fore-
ground color might appear in two tones, such as black–brown for zebras 
and orange–yellow for tigers. But the main question remains as to how a 
particular cell knows whether to produce melanin or not.

It is important to realize that this is a developmental decision. 
Genetically, all the epidermis cells are identical, and there is no a priori 
determination of what color each cell will display. Therefore, each cell 
has to determine its melanin-producing behavior based on its neighbors’ 
states. Clearly, the amount of time available for this decision-making 
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process is limited, and at its end each cell has to decide whether to pro-
duce melanin. Once this has been determined, the decision cannot be 
reversed. This process is an example of the more general mystery: the 
process of embryonic development. In general, the embryonic develop-
ment process depends not only on the organism’s genetics but also on 
many other factors. Understanding the process by which the genetic 
information is deployed during development in a robust way not affected 
by irrelevant changes in the environment and resulting in a functioning 
organism is one of the main challenges of modern biology.

One of the mysteries of this process is that the embryo starts out as a 
single cell that constitutes a completely homogeneous and symmetrical 
system. This system develops into a small set of identical cells and then 
evolves into an asymmetrical system where cells have differentiated such 
that each may fulfill its unique function (e.g., blood cells differ from skin 
cells). So the question is how does a homogeneous symmetrical system 
lose its symmetry? The symmetry-breaking question shows up in other 
scientific fields as well, and although we will not discuss it in detail we will 
note that Alan Turing, the father of the Turing machine and one of the 
main figures in the history of computer science, was also puzzled by the 
symmetry-breaking phenomenon in embryonic development. In 1952 he 
suggested a theoretical model for this problem (Turing, 1952). This model, 
just like the model we will present next, is not faithful to the biological 
details, yet both models show how symmetrical laws of nature that act 
on a symmetrical system can in principle lead to symmetry breaking. In 
contrast to Turing’s complex model, we will describe two simple models 
that give rise to symmetry breaking.

Let us start with a very simple model that describes the decision process 
governing melanin secretion. The cells are located on a grid and can be 
in one of two colors (e.g., black or white), which are initially chosen ran-
domly. In every generation, each cell chooses one cell in its neighborhood 
randomly and takes on its color. This process repeats itself for a number 
of generations. Note that this process does not adhere to our previous CA 
definition. Here, states are determined stochastically and not by a deter-
ministic rule.

What kind of hair pattern do we expect to see using this model? 
Obviously, we cannot give an exact answer due to the random behav-
ior of the system. It is important to note that the initial distribution of 
the black cells is of paramount importance: if the initial number of black 
cells is very small, the probability that they all disappear after a number 
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of generations increases. In fact, the percentage of cells that start out 
being black is a parameter of the model, and we may change its value and 
observe its impact on the system’s behavior. Once we let the system run 
for enough generations, we will see the color distribution as spots on the 
grid; if we limit the neighborhoods to be only the cells to the right and 
left of every cell or only to the cells above and below it, we will get stripes.

This model demonstrates that we can get complex color distributions by 
using a simple and local rule for each cell’s behavior. This absolutely does 
not mean that this is the way animals’ hair color is determined. When we 
created this model, we did not take into account what we know about the 
details of the biological process but concentrated on the abstract problem 
of symmetry breaking. We could obviously go now and see if the model we 
came up with corresponds to what is known about the generation of hair 
color patterns. In this way simple models can be used to guide us toward 
the relevant properties of the biological system of interest.

On the other hand, the model is too simple to describe the formation 
of more specific color patterns, such as that of the various tails we see in 
animals. The limited surface area and the cyclic surface make the color 
formation on tails more elaborate and specific than the rest of the body.

A slightly more complex model (Young, 1984) considers the weighted 
average of the cells’ colors in a radial neighborhood around each cell. As 
before, each cell has one of two colors (0 for white, 1 for black), and the 
transition rule is

	

= − −
∈
∑C H w i i j j Ci j i j

i j N

, ,

( , )

( , )

where C ' is the value of the cell in the next generation, w is a weight 
matrix (note that the matrix is centered around (0,0)) used to compute the 
weighted average, and N describes the radial neighborhood. The function 
H(u) has value 1 if u ≥ 0 and 0 if u <0.

Although this system is deterministic, by starting from different ran-
dom configurations and varying the weights and the neighborhood size 
(these are the model’s parameters) many different color distributions can 
be obtained. Note that the weights may be either positive or negative. A 
negative value will result in a phenomenon where a black cell in the cell’s 
neighborhood will prevent or delay the cell turning black.
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2.5.2  Ecological Models

CA are extremely useful in simulating ecological systems composed of 
predators and prey that share a confined habitat.

Consider an automaton with cells in one of eight possible states: 0 for 
an empty cell, 1 for prey, 2–6 for stages (or ages) in a predator’s life, and 
7 for a reproducing predator. Predators depend on prey to progress to 
their next stage, as they die of starvation if there is no prey in their neigh-
borhood. Prey that are adjacent to predators disappear (are “eaten”). The 
prey reproduce and inhabit adjacent cells in their neighborhoods, but 
when a predator in state 7 reproduces it fills its adjacent empty cells as 
well as adjacent cells that have previously contained prey. The cells that 
have been thus inhabited will contain a young predator in stage 2, while 
the old parent dies and leaves its cell empty (Ermentrout and Edelstein-
Keshet, 1993).

If one starts with a square grid of dimensions 50 × 50 cells, with an 
initial random distribution of prey, and a few cells containing predators, 
the system exhibits complex population dynamics. The size of the preda-
tors and prey populations fluctuates widely with time. Depending on the 
specific parameters used, the population can become extinct, show some 
regular fluctuations, or evolve into a complex prey and predator popula-
tions, which interact in unpredictable ways. As we noticed before, most 
sets of parameters will lead to uninteresting behavior, whereas some will 
lead to surprisingly rich behavior.

A different ecological model that yields interesting behavior is Wator 
(Dewdney, 1984). In this model, the universe is torus-shaped, filled with 
water, and contains fish and sharks that hunt and eat them. The fish swim 
randomly into one of the vacant cells that are adjacent to their cell, either 
horizontally or vertically. If the fish survives for a few generations and has 
an adjacent empty cell, it will reproduce into that cell. A shark eats a fish 
in an adjacent cell or swims into an empty adjacent cell if there are no fish 
in his neighborhood. A shark that has not eaten for a few generations dies 
of starvation. The sharks also reproduce in a manner similar to the way 
the fish reproduce.

This model has five parameters: (1) the initial number of fish; (2) the 
initial number of sharks; (3) the time it takes fish to reproduce; (4) the 
time it takes sharks to reproduce; and (5) the time it takes the sharks 
to starve to death. These parameters can be tweaked so that the system 
achieves a steady state, but this is a difficult task especially when the game 
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board is small. Typically, this model gives rise to a widely fluctuating sys-
tem or to the extinction of the population. Note that similar to the color 
formation automata, Wator uses random moves, and thus the automaton 
is not deterministic.

It may also seem that Wator is not CA per our definition since the 
fish and sharks move on the board, while we did not define any motion 
in a CA and discussed only the way the cells’ states change. Actually, 
this is not a fundamental extension of the original definition. A move-
ment of an organism from one cell to its neighbor can be implemented 
in the standard model by adding states and rules by which an organism 
to be moved dies in its original cell and an identical copy is created in a 
neighboring cell.

2.5.3  Food Chain

This model describes a universe in which different species feed off one 
another. For example, consider a universe containing grass eaten by 
zebras, which in turn are hunted by tigers. We will try to model some 
characteristics of such a food chain using CA.

Every cell in the CA can be in one of N states: 0,1,…,N – 1. A cell in 
state k will eat any of its four perpendicular neighbors, which are in state 
k – 1, by changing the neighbor’s state to k. The food chain is circular so 
that cells in state N – 1 are eaten by cells in state 0. For example, Figure 2.9 
shows a transition of a particular configuration of the CA (N  =  6, and 
the states are 0,…,5). Such automata are called circular cellular automata 
(CCA) (Dewdney, 1989). Can you guess how this particular system will 
behave?
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FIGURE 2.9  An example of one generation of the food chain automaton. A cell 
in a particular state will be “eaten” by a neighboring cell (only the four perpen-
dicular neighbors are considered) with a state higher by 1. The order is cyclic, 
so a cell in state 5 can be eaten by a cell of state 0. In this automaton spherical 
boundary conditions are not imposed, and cells on the boundaries have fewer 
neighbors than interior cells.
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2.6  �COMPARISON WITH A CONTINUOUS 
MATHEMATICAL MODEL

For comparison, we present a continuous mathematical model that de-
scribes the growth of a bacteria colony in ideal lab conditions. Obviously, 
this model does not exactly describe the real biological processes.

The reproduction rule we want to implement states that the bacteria 
population grows at a rate proportional to its size at any point in time. We 
will denote the number of bacteria at time t by y(t). The rate of growth at 
time t is

	
lim

( ) ( )
t

y t t y t

t→

+ −
0

In other words, this is the derivative of y(t) which we denote y’(t). So now 
we can express the reproduction rule as

	 y’(t) = λy(t)	 (2.1)

where λ is a positive constant that characterizes the reproduction rate.
Note that (2.1) describes properties of functions, and we are looking for a 

function that obeys this equation—in this case, a function whose derivative 
at any point is equal to the value of the function at that point times a con-
stant λ. Such equations belong to a mathematical field called ordinary dif-
ferential equations. Solving (2.1) is quite straightforward, as described next.

To determine the function y(t) which gives the number of bacteria at 
time t, we rewrite (2.1) as

	 y’(t) – λy(t) = 0

Multiply the equation by −λt
e to get

	 −λt
e (y’(t)–λy(t)) = 0	 (2.2)

The function −λt
e is never equal to 0; therefore, a function y(t) will satisfy 

the reproduction function (2.1) if and only if it satisfies (2.2).

The left-hand side of (2.2) is the derivative of the function −λt
e y(t); 

therefore, (2.2) can be written as
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e y tt−( ) =λ ( )

,
0

The only functions with derivative 0 are constant; therefore, the func-

tion 
−λt

e y(t) is a constant, that is,

	
− =λt

e y t C( )

where C is a constant. To solve for y(t), we divide by −λt
e to get

	 y t Ce t( )= λ

	 (2.3)

This derivation shows that only the exponential functions described in 
(2.3) satisfy the reproduction rule (2.1); in other words, (2.3) describes the 
(infinite) set of all solutions to (2.1) and is called the general solution to 
(2.1).

The reproduction rule described by (2.1) does not provide us with 
enough information to determine the size of the bacteria colony at time t, 
as there exists an infinite number of solutions to the equation. This is not 
surprising since the reproduction rule describes the rate of growth, and 
the initial number of bacteria has not been specified.

Assume, for example, that the number of bacteria at time t = 0 is y0, 
that is,

	 y(0) = y0

Substitute into (2.3) to get

	 y Ce y( )0 0
0= =λi

Therefore, C = y0.

So of all the possible solutions given by (2.3) only one function satisfies 
the initial conditions: y(t) = y0eλt. This function is called the particular 
solution of equation (2.1) with the initial condition y0.

This model differs in a few key aspects from the other models we 
explore in this chapter. In this model time is continuous, as t may be any 
real number. Furthermore, the mathematical analysis used depended 
on the change in the number of bacteria over time periods that are 
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arbitrarily short to compute the total number of bacteria. These kinds 
of models use calculus as their main mathematical tool. The model we 
just presented is a very simple example: the reproduction rule is an easily 
solved first-order differential equation. Some models need to use much 
more complicated differential equations that often are not amenable to 
analytical solution and require numerical solutions.

The assumptions underlying this model are unrealistic from a biological 
point of view (e.g., in reality the rate of bacteria reproduction is nonuni-
form), but they allowed us to focus on the main characteristic of a bacteria 
colony: that its growth rate is proportional to its size. To build an exact 
biological model we would have had to also allow for the availability of 
food, the density of the colony, and so forth. At best, our model describes 
a bacteria colony during a limited period of its existence. However, using 
analytical mathematical tools allowed us to derive an exact formula that 
gives the colony size at any given moment without having to simulate the 
colony’s development during discrete time periods. We can use differential 
equations to describe more complex processes, for example, processes that  
deal with multiple organisms competing over resources. This is beyond 
the scope of this book, but it is important to remember that these tools are 
available for modeling.

Discrete and continuous models each have their advantages and disad-
vantages. Some systems are inherently continuous (like blood flow), and 
some are inherently discrete (e.g., modeling DNA mutations where there are 
only four types of nucleotides). In many situations, though, the modeler can 
choose which type of model to use for the task at hand. Often, discrete mod-
els are appropriate for populations of fixed size where finite size effects are 
important, whereas continuous models are more appropriate for analyzing 
asymptotic behavior. When the equations that govern the continuous model 
can be solved analytically, the analysis is usually more efficient than the 
lengthy simulations needed for discrete models. On the other hand, when the 
equations do not have analytical solution, a discrete model may be preferred.

2.7  COMPUTATIONAL UNIVERSALITY

2.7.1  What Is Universality?

At first glance it seems that the question of whether a computer can be 
used to solve a particular problem is fundamentally different from the 
question if an initial state of the “Game of Life” can be found such that a 
particular behavior may be observed. It would seem that the complexity 
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of the first problem results from the many variables that might affect the 
answer (e.g., which computer are we referring to, how large is its memory), 
whereas the analysis of Life does not depend on any such parameters.

Surprisingly, when we analyze what operations computers can perform 
(i.e., which algorithms can be implemented by them) or even when we try to 
analyze computing devices that work in diverse and unusual ways, it turns 
out that in a deep sense all computing devices are able to implement the 
same class of algorithms. This does not mean that simple computers have 
the exact capabilities as high-end supercomputers. The supercomputers will 
arrive at solutions faster, for example, but in spite of the technical differences 
the fundamental computing capabilities of all computers are the same.

This amazing insight was achieved by researchers who defined different 
computational models and compared them. A computational model is a sim-
ple but exact description of the principle characteristics of the operation of a 
computational device. As we already saw, a model is a simple presentation of a 
complex system that captures the important characteristics of the system.

The founders of computer science came up with a set of computational 
models to standardize and formalize the description of algorithms. After 
carefully defining the models, the researchers attempted to investigate 
many different questions these models brought up. One such class of ques-
tions deals with comparing the different models: determining whether 
one model is more powerful than another (i.e., given a problem that is 
solvable by one model, can it always be solved with the other?). Are two 
models equivalent; that is, are the same sets of problems solvable using 
both models (even if they might differ in speed or efficiency)?

Studying these problems led to the formulation of a fundamental 
hypothesis of computer science, the Church–Turing thesis. This hypoth-
esis asserts that we can describe formally and precisely the set of prob-
lems that may be solved algorithmically. This hypothesis emerged when it 
turned out that many computational models, which were mostly developed 
in the 1930s using very different ideas and techniques, were all equivalent: 
any problem that is solvable using one of the models is also solvable in the 
others. This equivalence led researchers to believe that all the models fun-
damentally describe the same intuitive idea known nowadays as “effective 
computation.” Any computational model that is equivalent to these mod-
els is called a universal computational model.

The most famous such model is the Turing machine (TM). This model, 
developed in 1936 by Alan Turing, is of a state machine that reads an infi-
nite 1-D tape composed of characters. At any point in time the machine is 
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in one of a finite set of states (hence the name state machine), which deter-
mines its actions for any input character it reads off the tape. According 
to the state and the current character on the tape, the machine writes a 
new character to the tape and moves the read/write head one position to 
the right or the left of its current position on the tape. The model assumes 
that any piece of information may be described as a sequence of characters 
on the machine’s tape. A different model was described by the logician 
Alonzo Church. His model is called Lambda Calculus and is similar to 
a minimal computer language and therefore is particularly useful in pro-
gramming language research.

As already stated, these two models were proven to be computation-
ally equivalent; that is, any algorithm may be translated from one model 
to the other, and we may always select the model that is easier to work 
with for proving a particular statement. Nonetheless, the models differ to 
such an extent that describing a problem in one model might be mean-
ingless in the other; therefore, we need to translate between the models. 
For example, when describing a computation using a Turing machine we 
need to describe how the data are encoded on the tape and determine the 
machine’s behavior in every state. But in the lambda calculus there is no 
tape and no predetermined set of states.

The current state of affairs is that we have a number of models that 
are computationally equivalent, and no stronger computational model 
has been found during the decades that have passed since they were first 
developed. Thus, the current hypothesis in computer science is that a 
Turing machine can, in principle, perform any computation. Furthermore, 
Turing proved that some computational problems cannot be solved using 
a Turing machine. According to the Church–Turing thesis, these problems 
are algorithmically intractable, and no computer will ever be able to solve 
them, regardless of any future technological development.

One of the interesting and important characteristics of a Turing 
machines is that it is relatively easy to build one Turing machine that 
can simulate the behavior of any other Turing machine. Such a machine 
is known as a universal Turing machine. To build such a universal TM, 
we need to find a way to describe any other TM on the input tape of the 
universal TM. This description must contain all the data necessary for a 
complete description of the TM—that is, its states and the transition rules 
from state to state upon reading the tape of the simulated TM. Other com-
putational models also allow us to build a universal machine or program 
that can simulate any other computation under the model.
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A universal TM is similar to a modern general purpose computer in the 
sense of being able to perform a wide range of computations by executing 
many different programs. Note, however, that in any real computer the 
memory is finite, as opposed to the idealized infinite tape of a TM.

The fact that we can construct a universal Turing machine, U, is of 
major importance since this is a single machine with maximal computing 
power. The existence of universal TMs allows us to replace the question 
“Does a TM X with the following properties exist?” with “Is there an input 
for which the universal TM U will behave in the following manner?” Note 
that the existence of a universal TM implies that for a universal comput-
ing model it is impossible to distinguish between the data used as input to 
the computation and the program that controls the computational process. 
The data can be used as the program and vice versa.

Turing showed a well-defined computational problem that cannot be 
solved by any TM. To understand his counterexample, let us consider a 
computer program that contains loops. For example, we might implement 
(in pseudo-code) a program that computes the sum of the integers from 1 
to 10 (1 + 2 + 3…+ 10) as

sum := 0

for i := 1 to 10

	 sum := sum + i

At the end of the execution of the loop the variable sum will contain 
the result we wanted to compute. Obviously the statement in the body of 
the loop is executed exactly 10 times, but for other loops determining the 
number of iterations that will take place may be much harder. Consider, 
for example, the following code segment:

	 	 sum :=0

L1: if i=0, exit.

	 	 sum := sum+i

		  i:=i–1

		  goto L1

Here the situation is more complicated. If the variable i contains the 
value 10 at the beginning of the execution of the code segment, the loop 
will be executed exactly 10 times and will calculate exactly the same value 
as before. If i starts out with any other positive integer value, the loop 
will be executed i times; however, if i starts out as a negative integer, the 
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condition in statement L1 will never be satisfied, and the computation will 
be in an infinite loop and will never stop. Since the value of i is determined 
earlier in the program, it is not clear what its value will be.

It is interesting to ask if we can design an algorithm that will be able to 
look at a code of a computer program and its input and decide whether it 
will result in an infinite loop. In simple cases, like the first one we showed, 
the problem is easy and even trivial to solve. However, for the general case 
Turing showed that it is impossible to construct a computer program that 
takes as its input another computer program and its input and determines 
whether the other program will halt or go into an infinite loop. In other 
words, it is impossible to determine in a finite time whether a particular 
program will halt on any particular input. This is called the halting prob-
lem, and it is unsolvable using our strongest computational model (i.e., in 
universal computational models). Such problems are called undecidable.

We will see that a cellular automaton is a computational model and will 
analyze it in comparison with other computational models. Moreover, we 
will show that the “Game of Life” with its simple rules is a universal com-
putation model. As a corollary, we will see that some questions about the 
behavior of CA are undecidable and cannot be answered algorithmically.

2.7.2  Cellular Automata as a Computational Model

To discuss CA as a computational model, we first need to explain how the 
operations of CA can be thought of as performing a computation. Let us 
look at a particular cellular automaton. At every generation the transition 
rule of CA determines the state of the cells in the next generation. In other 
words, we compute for every cell its next state, taking into consideration 
its current state and the states of the cells in its neighborhood.

If we think, for instance, on the Game of Life, we can rephrase its rules 
using the following pseudo-code:

If the cell is alive

Then

	 If the number of live cells in its neighborhood is 			 

	 either 2 or 3

	 Then

		  The cell’s state in the next generation is “alive”

	 Else

		  The cell’s state in the next generation is “dead”

If the cell is dead
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Then

	 If the number of live cells in its neighborhood is 3

	 Then

		  The cell’s state in the next generation is “alive”

It is important to note that the CA executes this computation simulta-
neously on all cells and therefore that the computation it executes is differ-
ent from the computation of a single cell’s next state. However, a standard 
computational model (e.g., computer program) can execute this computa-
tion cell by cell. Actually, this direction of the proof should be self-evi-
dent, as we usually implement CA using a regular computer program. It 
is harder to show that CA can be used to perform standard computations. 
To answer this kind of question we have to show how a computation in 
another model can be simulated by CA.

For instance, let us look at the addition of two numbers. First, we have 
to represent the numbers in a cellular automaton. Let us consider a 1-D 
cellular automaton and assume the numbers are represented as unary 
numbers (i.e., the number n is represented as a sequence of n cells con-
taining 1). The two numbers will be written one after the other, with an 
empty cell (represented by zero) between them. So an initial state of a cel-
lular automaton

1 1 1 1 1

represents the problem of adding 2 and 3.
Now we need to define the set of states and define the neighborhood so 

that the CA will eventually achieve the state

1 1 1 1 1

which represents the number 5.
The problem with finding a transition rule that will apply to any addi-

tion problem and not just to the problem 2 + 3 is that the rule has to be 
applied simultaneously to all the cells of the CA. Moreover, the fixed 
neighborhood size (in this example it is 3; i.e., each cell sees only its imme-
diate neighbor on each side) makes every cell ignorant of the states of cells 
outside of its neighborhood. However, in this example we can take advan-
tage on the particular observation that there is only one cell whose local 
neighborhood is 101, so we can set rules that will be applicable only to cells 
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with this neighborhood. This neighborhood should change to 110. Thus, 
in the next generation the neighborhood to its right will be 101 and will 
be treated the same way; after three generations the computation will be 
correctly executed, no more 101 neighborhood would exist, and thus the 
computation will end.

More complicated questions can be addressed using CA. Consider a 
cellular automaton using rule 132 (see Section 2.4), and observe that it 
can determine whether a number is odd or even. If its initial state is com-
posed of an even number of live cells, then after some generations all the 
cells will be empty. Conversely, if the initial state is composed of an odd 
number of live cells, after some generations the automaton will arrive at 
a steady state where exactly one cell is alive. In other words, this automa-
ton is a special-purpose computer that can determine if a number is odd 
or even. By adding more states and changing the transition rule, we can 
build CA that can perform more complex operations, such as squaring 
any integer and finding prime numbers. The important point here is that 
we can transform a computational problem so that it can be described by 
CA, and we can create transition rules that will allow the CA to execute 
the computation.

In the next section we will see that this can be done in the general 
case—that is, any computation can be carried out in the CA model.

2.7.3  How to Prove That a CA Is Universal

As already noted, to prove that a computational model is universal we 
have to prove it is computationally equivalent to another universal com-
putational model such as Turing machines or the lambda calculus. To 
prove this equivalence we have to prove two claims: (1) that any TM 
can be simulated by CA; and (2) that any CA can be simulated by a TM. 
If we proved only one of these two claims, we would have shown that 
one model is at least as strong as the other and not that the models are 
equivalent.

The latter direction is simple: while we describe our cellular automata 
as set of rules we actually run them using a conventional computer pro-
gram. Since all computer programs can be executed on Turing machines 
it follows that every automaton can be simulated by a TM.

To prove the other direction—that we can simulate a TM by a cellular 
automaton—recall that a TM is characterized by the initial state of its tape, 
the set of states, and the transition rules that determine for every state how 
the current tape cell has to be modified and how to move the read/write head. 
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Therefore, we have to determine how to represent the TM’s tape and states on 
the automaton’s grid and to write the transition rules such that the automa-
ton mimics the TM’s behavior at any point in time. Such a construction is 
sketched in Section 2.7.4 and proves that we can build a CA for any TM.

Note that this proves only that we can construct a cellular automaton for 
a given TM. It does not help us to determine for a given automaton whether 
it is equivalent to any specific TM. Thus, proving, for example, that Life is 
itself a universal computational model is a bit more complicated, as the 
transition rules for Life are fixed, and we cannot define the transition rules 
to simulate the behavior of a particular TM.

The creative solution to this predicament is showing that certain pat-
terns (like the glider described in Figure 2.5) can be made to interact and 
collectively behave like digital circuits. In particular we can show that we 
can perform logical AND and NOT operations, which turn out to be suf-
ficient for a universal computation (more about this in Section 2.7.5).

Note that the most general definition of a cellular automaton consists of 
an infinite number of cells, and therefore the equivalence between a TM 
and a cellular automaton is relevant only when we limit ourselves to a finite 
number of nonempty cells in the CA. Remember that a TM performs its 
computation sequentially and thus cannot access or simulate an infinite 
number of cells in finite time, whereas a cellular automaton can address 
an infinite number of cells due to the locality of the transition rule.

2.7.4  �Universality of a Two-Dimensional Cellular 
Automaton—Proof Sketch

We will present a construction of a two-dimensional (2-D) cellular auto-
maton Ms that simulates a given TM M. Showing that any TM can be 
transformed into a 2-D CA demonstrates that 2-D CA are a universal com-
putational model; the sketch follows the proof in Mitchell (1998).

The automaton Ms simulates a TM M in “real time” (i.e., any step taken 
by M is simulated in one time unit by Ms). Let M be a TM with n states and 
an alphabet of size m, and assume without loss of generality that n < m.

We note the following properties of Ms:

•	 The CA Ms operates in an infinite 2-D space. A certain number of its 
cells will represent the TM and be active, and all other cells are in the 
quiescent state that will be denoted by 0.



Cellular Automata    ◾    69

•	 We will denote by k the number of possible states for each of Ms’s 
cells. Let k = 1 + max(m,n) = m + 1. The state numbered m + 1 is the 
quiescent state 0.

•	 Four cells (h, a, b, s) play a central role in the operation of Ms 
(Figure 2.10(a)). The cell corresponding to the TM’s read/write head 
is denoted as h and is at state P. The cells adjacent to it to the right 
and left are denoted as a and b, respectively. The cell currently being 
read on the tape is denoted by s and is in state S0. We define the 
neighborhood of each cell as the seven cells around them arranged 
in the shape shown in Figure  2.10(b). Note that when each of the 
four previously mentioned cells is the center of the shape in Figure 
2.10(b) it can be identified by unique properties of its neighborhood. 
For example, the cell s is distinguishable because it has an occupied 
cell above it and empty cells below it.

The cellular automaton is constructed as follows. One row of the grid is 
used to represent the tape of M. At each time step t of the operation of Ms 

the cells in this row are in states corresponding to the characters on the 
tape of M. Although Turing machines use infinite tape, the size of their 
input must be finite. In the automaton Ms this is implemented by using a 

P

cell h

cell s

S0S–1S–2S–3 S1 S2 S3

(b)(a)

cell a cell b

FIGURE 2.10  A CA that simulates a TM. (a) A schematic description of the CA’s 
operation. The cell corresponding to the TM’s read/write head is denoted as cell 
h and is at state P. The cells adjacent to it to the right and left are denoted as a and 
b, respectively. The cell currently being read on the tape is denoted by s and is in 
state S0. The other cells depicting nonempty tape cells are denoted by i, and their 
states are Si. (b) Description of the neighborhood defined for each cell (marked 
in gray) in the universal CA. (Adapted from Mitchell, Melanie, In T. Gramss, S. 
Bornholdt, M. Gross, M. Mitchell, and T. Pellizzari, Nonstandard Computation, 
pp. 95–140, Weinheim: VCH Verlagsgesellschaft, 1998. With permission.) 
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special state that denotes the leftmost and rightmost cells of the input. All 
the cells outside of this finite active region are set to the quiescent state 0.

The row above the row representing the tape simulates the read/write 
head of M, which is denoted as cell h in Figure 2.10. Cell h is exactly above 
the cell s, whose state S0 will be read at time t. The cells to the right and left 
of h are denoted as a and b, respectively. All the cells in this row other than 
h are in the quiescent state 0. We will not write the transition rules of the 
CA in a formal way, but we will follow the execution of the CA that simu-
lates the following generic rule of the TM M (Figure 2.11): “If the head is in 
a state P and sees the input symbol u, change u to v, switch to state Q, and 
move the head one place to the right.”

To understand the translation we have to remember that the main 
problem is that in the CA Ms all the cells act simultaneously according to 
the transition rules, but to implement M we want to change only the cell 
that corresponds to the current tape position and the cells that correspond 
to the read/write head containing the information about the state of the 
machine.

Since the four previously described cells (s, h, a, b) each sees a different 
kind of neighborhood (Figure 2.12), the CA rules can be made to uniquely 
reflect the required changes for each cell.
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FIGURE 2.12  The unique seven cells environment of the cells s, h, a, b.
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FIGURE 2.11  The CA before and after executing the following rule: If the head is 
in state P and sees the input symbol u, change u to v, switch to state Q, and move 
the head one place to the right.
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Notice that the cell corresponding to the read/write head has to “move” 
relative to the tape, in accordance with transition table of M, but cells do 
not move in the standard CA model. As usual when designing CA, this 
problem is solved not by having the cell move but rather by updating the 
cell values in accordance with the transition rule in a way that simulates 
information flow between cells. Note that the cell corresponding to the 
read/write head and the two cells adjacent to it are configured in a way 
that makes them identifiable by their neighborhoods, and h is the only cell 
among them whose value is not 0. Therefore, it is possible to choose transi-
tion rules that update the states of these cells so that the cell describing the 
read/write head can replace either a or b (depending on the direction of 
the head’s movement). The state of the new cell representing the read/write 
head—either a or b—changes to the state of Ms corresponding to the new 
state of M according to transition table of M.

We have thus shown how it is possible to construct a 2-D cellular autom-
aton Ms that simulates any TM M thereby proving that 2-D CA are a uni-
versal computation model.

2.7.5  Universality of the “Game of Life”—Proof Sketch

The computation universality of Life is proven by showing how to build 
state configurations that behave as digital circuits that perform logical 
operations.

We will use the “glider” (shown in Figure 2.5) to build such “digital cir-
cuits” composed of logical gates that perform the standard logical opera-
tions AND, OR, and NOT.

The rules of Life allow the glider to travel “autonomously” on the board. 
After four time steps the glider moves one cell diagonally down and to the 
right. Configurations called glider guns “shoot out” new gliders periodi-
cally and then return to their initial configuration, which guarantees they 
will continue to create new gliders indefinitely. Figure 2.13(b) shows the 
well-known Gosper glider gun, named after its discoverer. The Gosper 
glider gun shoots out a new glider after every 30 time steps (i.e., its period 
is 30).

The logical circuits are based on using glider guns that shoot out 
sequences of new gliders representing bits. As an example we will show 
how to implement the NOT operator. It acts upon a sequence of bits rep-
resented by a stream of gliders. The bit 1 is represented by a glider, and the 
bit 0 is represented by the absence of a glider—a gap in the glider sequence 
advancing along the board. We place a glider gun that shoots out new 
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gliders continuously perpendicular to this glider stream. It turns out that 
two perpendicular gliders colliding in a particular way annihilate each 
other. Therefore, in the stream of gliders being shot out of the gun only 
the gliders that do not intersect the gliders representing the input will sur-
vive. Put differently, only the gliders that intersect the gaps in the input 
stream (corresponding to the 0 bits) will survive. Therefore, the surviving 
stream represents exactly the NOT value of the input stream, as depicted 
in Figure 2.14.

Notice that, for a glider from the input stream and a glider from the 
glider gun to annihilate each other, they have to be precisely positioned 
relative to each other. Different relative positions during a collision can 
have different outcomes: for instance, a four-cell block or a “blinker” that 
lights up periodically may be created. Figure 2.15 shows two gliders posi-
tioned in an annihilating configuration (verifying this is left as an exercise 
to the reader).

The operations AND and OR are implemented by employing similar 
techniques, that is, creating two input streams of gliders (with 1 represented 
by a glider and 0 by its absence) and letting them interact so that the out-
put stream of gliders will have a glider only if both input streams had a 
glider (when implementing AND) or when at least one stream had a glider 
(in the case of OR). To combine these logical operators into more complex 
logical circuits, which are necessary to show that Life has universal com-
puting power, we need to create more machinery, such as the capability of 
copying glider streams, moving glider streams, and halting them. We also 
have to be able to store information (represented as a glider stream) and 
to retrieve it.

The existence of ways for performing all of these tasks, together with 
the implementation of the logical operations on glider sequences, shows 

(a)

(b)

FIGURE 2.13  (a) A glider that can travel autonomously across the board. (b) The 
Gosper glider gun that releases a glider every 30 generations.
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that it is possible to implement logical circuits that can perform an arbi-
trary computation within the “Game of Life” framework, which proves 
that the “Game of Life” is a universal computational model.

2.8  SELF-REPLICATION
Without delving deeply into the problem of defining life, we can say that 
one of the distinguishing characteristics of life is the ability of living 
organisms to reproduce. In other words, living organisms can create new 

FIGURE 2.15  Two gliders in a configuration that will lead to their mutual 
elimination.

Input
stream

From
glider gun

Output
stream

FIGURE 2.14  The configuration of Life that describes the NOT operation on a 
stream of bits represented by the existence or absence of gliders. Since gliders 
from the glider gun will survive only if there is a gap (i.e., 0) in the input stream, 
the output stream will be the logical complement of the input stream.
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organisms that are very similar or even identical to themselves. Recall that 
von Neumann’s purpose when inventing the CA model (together with the 
famous mathematician Stanislaw Ulam) was to investigate the phenom-
enon of self-replication.

It is easy to find CA that exhibit what looks like self-replication. For 
instance, a 1-D cellular automaton where a cell with value 1 causes the 
cells in its neighborhood to also change their values to 1. But this is not an 
interesting example of self-replication since copying the value 1 from cell 
to cell is very different from the complex processes of self-replication in 
the living world which we are trying to investigate, such as cell division, or 
the creation of a human baby. Therefore, we want to construct a self-repli-
cating cell automaton that is complex enough to convince us that its self-
replication mechanism is somewhat similar to replication or procreation 
in complex biological systems. The cell automaton that copied the value 
1 is no more interesting than a rock that splits into two similar-looking 
smaller rocks during an earthquake, and neither can teach us much about 
self-replication.

Another domain where self-replication can be experimented with is 
programming, where the challenge is to have a program whose output 
is the original program itself. This is clearly a programming challenge 
since Print (‘A’) will output A and the output of Print (‘Print (‘A’)’) is not 
identical to the original (and in addition might be considered as a syn-
tax error depending on the way the particular programming language 
handles quotation marks). The recursive nature of the challenge is clear. 
Surprisingly, such programs were written in almost all programming 
languages. These programs, nicknamed “quines” after the American phi-
losopher Willard Van Orman Quine, operate mainly by tinkering with 
the printing commands of the particular languages. The following is a 
Quine program in C:

char*f=”char*f=%c%s%c;main()
{printf(f,34,f,34,10);}%c”;
main(){printf(f,34,f,34,10);}

While such programs are fun for programming aficionados, they hardly 
give us general insight into self-replication.

One way of making the CA models of self-replication more relevant is 
by looking only at CA that possess a certain minimal level of complexity. 
This is what von Neumann did. An alternative way would be to look at 
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many CA that exhibit self-replication and then to select those with inter-
esting characteristics. Many researchers chose this path, using models 
with varying levels of complexity.

The basic difficulty in constructing a self-replicating system is that 
the system seems to need to contain its own description and the recipe 
for constructing the next generation, which must contain the recipe for 
constructing the generation after that, and so on ad infinitum. This is 
patently impossible.

Von Neumann’s insight was that the self-description can have two 
roles: (1) as a recipe for controlling the construction of another copy of 
the system; and (2) as data that will be copied verbatim and attached to 
the new copy of the system, which in turn will enable it to continue self-
replicating.

This approach allows us to solve the infinite regress problem that ini-
tially seemed unsolvable. Our current understanding of biology shows 
that self-replication in living organisms works in a similar fashion, as the 
DNA that contains the genetic data is read as a recipe for creating pro-
teins and is replicated as data during the replication process. It is amaz-
ing that von Neumann had this insight about self-replication already in 
the 1940s, since the DNA structure was discovered in 1953, and it took 
a few more years until an understanding of its fundamental properties 
was achieved.

The self-replicating cellular automaton von Neumann constructed was 
so complex that he never finished its design completely. The cells could 
be in one of 29 states, and the automaton had a universal construction 
capability—that is, it could construct essentially any configuration of cell 
states based on the description in its input (Mitchell, 1998). Moreover, von 
Neumann’s automaton had universal computing capabilities, that is it can 
compute any computable function, which as we already saw is highly sig-
nificant. Further studies were able to complete simpler, but still very com-
plicated, versions of universal self-replicating CA.

It turns out that one can construct relatively simple self-replicating 
CA if these CA are not required to have universal construction capabili-
ties (i.e., these systems can replicate only specific configurations). Moshe 
Sipper and James Reggia (2001) suggested one such elegant system, which 
was implemented on a 2-D square lattice. Each cell can be in one of five 
states. It may contain a rook, a bishop, a knight, or a pawn or can be empty. 
The transition rules for each state are given in Figure 2.16.
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FIGURE 2.17  The initial configuration of the self-replicating automaton. Every con-
figuration in the marked square will be duplicated. (Adapted from Sipper, Moshe 
and James A. Reggia, Scientific American 285, no. 2, 34, 2001. With permission.)

Knight
If there is a bishop just
behind or to the left of the
knight, replace the knight
with another bishop.   

Bishop or Rook
Replace it with a pawn.

Empty square
If there are two
neighboring knights and
either faces the empty
square, fill the square with
a rook.    
If there is only one
neighboring knight and it
faces the square, fill the
square with a knight
rotated 90 degrees
counterclockwise.     
If there is a neighboring
knight and its left side
faces the square, and the
other neighbors are
empty, fill the square with
a pawn.     
If there is a neighboring
rook, and the other
neighbors are empty, fill
the square with a pawn.   

If there are three
neighboring pawns, fill
the square with a knight
facing the fourth, empty
square.    

Otherwise, if at least one
of the neighboring squares
is occupied, remove the
knight and leave the
square empty.    

Pawn
If there is a neighboring knight, replace the pawn
with a knight with a certain orientation, as follows: 

If a neighboring knight is
facing away from the
pawn, the new knight
faces the opposite way.   

Otherwise, if there is
exactly one neighboring
pawn, the new knight
faces that pawn.   

Otherwise, the new knight
faces in the same direction
as the neighboring
knight.   

FIGURE 2.16  Rules that describe a self-replicating automaton. Each cell can be in 
one of five states: rook, bishop, knight, pawn, or empty. (Adapted from Sipper, Moshe 
and James A. Reggia, Scientific American 285, no. 2, 34, 2001. With permission.)
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The initial conformation is given in Figure 2.17, where the square at the 
left is the “genome” and the two pawns to the right form the “replication 
arm” used in the replication process. We leave it as an exercise to the reader 
to start from the initial configuration in Figure 2.17 and see how it dupli-
cates. We also leave open the question if such specific self-replicating autom-
ata can be used to study the general properties of self-replicating systems.

Note, however, that living organisms are not universal “replicators” 
either. Bacteria can be used to replicate other foreign or even synthetic 
DNA, and in fact many applications of biotechnology are based on such 
capabilities; nonetheless, some genes cannot be replicated in this way as 
they may be lethal to the host. In higher multicellular organisms there is a 
much tighter regulation on what can be replicated, and in this sense their 
replication system is not universal at all.

An interesting alternative way for constructing self-replicating CA 
is via an evolutionary process. Here we start with a large collection 
of randomly created CA and then search for the ones closest to being 
self-replicating, that is, the CA that create copies closest to their initial 
configuration. At the next stage, one starts with the previously identi-
fied set, mutates them slightly, and repeats the process. By iterating this 
process we may eventually find CA that replicate exactly. This search 
process is similar to biological natural selection, which is the engine 
of the evolutionary process. We will deal with this search procedure in 
more detail when we discuss genetic algorithms (Chapter 3) and Avida 
(Chapter 6), a programming environment that enables experiments 
related to artificial life and can be used, among other purposes, to study 
self-replication.

2.9  SUMMARY
We have seen that CA originated in an effort to model biological processes 
(e.g., cells, bacteria colonies), but they are useful in other contexts as well.

Models based on CA also abound in physics, chemistry, and other areas 
in which there is a need to build models based on discrete time and space. An 
interesting application is discussed in Rosin (2006) where cellular automata 
were trained to perform image processing tasks like noise filtering, thin-
ning, and finding convex hulls. The purpose of the training was aimed to 
automatically select, using a technique similar to genetic algorithms, a set of 
rules that can perform the task at hand. CA are also useful where research 
on the origin of complex behavior from simple local rules is being done.
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The main lesson of this chapter is that a small number of simple rules 
repeatedly applied can create a wide spectrum of complex behavior that often 
seems as if it were the result of a detailed plan and nonlocal coordination.

Considering CA as a nonstandard computational model enabled us to use 
fundamental concepts and theorems from computer science to gain deeper 
insights into CA. One such aspect is our study of universality. We should 
note that universality is interesting as a theoretical question that determines 
the theoretical capabilities of cellular automata. Models of specific phenom-
ena do not depend on universality, and, furthermore, no one would use a 
cellular automaton as a practical universal computational device.

In our theoretical studies of CA we were able to use the undecidabil-
ity of the Halting problem to learn that the fate of initial configurations 
in the “Game of Life” cannot be predicted without actually following the 
simulation all the way through. In more grandiose terms, Life cannot be 
predicted; it must be lived!

2.10  PSEUDO-CODE

// Generic code to run a 2-D cellular automata

// Initia
INIT_MAT(mat)

lizing the matrix to the starting set-up

WHILE not END_CONDITION(mat)
 BEGIN 
 // The end condition can be met by either reaching a pre-determined
 // number of generations, or by reaching a certain state of the matrix.

     FOR i:=1 TO n
      FOR j:=1 TO n

// Calculate the new state of each cell based on its current
        // state, the states of its neighbors, and the transition rules 
        // which constitute the function NEW_STATE.
        // To emulate simultaneous update of the main matrix a temporary 
        // matrix is used. 

        temp_mat[i,j] := NEW_STATE(NEIGHBORHOOD(mat,i,j))

      // Update the main matrix

FOR i:=1 TO n
       FOR j:=1 TO n

mat[i,j] := temp_mat[i,j]
 END
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2.12  EXERCISES

2.12.1  “Game of Life”

	 1.	Given the initial state of the board in Figure 2.18, compute the state 
of the board in the next five generations. Assume the grid is large 
enough not to encounter boundary conditions.

(a) (b) (c)

FIGURE 2.18
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	 2.	Why did we need pieces in two colors for the manual execution of 
Life as described in the text?

	 3.	Does the orientation of the live cells on the board affect the sys-
tem’s outcome? That is, if, for example, we rotated the boards 
in exercise 1 by 90° clockwise, would the future of the system 
change? How?

	 4.	Try to find an initial configuration for Life that will result in an 
oscillator with period 3 (i.e., returns to its initial state after three 
generations).

	 5.	True or false: If the board is finite, one would eventually return to 
states that have occurred previously in a periodic fashion. Prove your 
claim.

2.12.2  Cellular Automata

	 6.	 In the standard CA model, how would you build an automaton 
where every cell at every instant belongs to one of two types of cells, 
for which there are different transition rules (the neighborhoods are 
the same for both types)?

	 7.	There are 256 one-dimensional automata with k = 2 and r = 1. Find a 
formula for computing the number of automata as a function of the 
parameters k and r.

	 8.	Describe rule 146 using a table.

	 9.	Choose a random starting position, and create a space–time diagram 
10 generations long for executing rule 146 from this initial state.

	 10.	Identify the similarity in behavior between rules with binary repre-
sentation α1α2α1α2α20α20 (rules 0, 90, 160, 250).

	 11.	We discussed automata where cells can determine the state of their 
neighbors in the next generation. Explain why this does not contra-
dict the basic model where each cell determines only its own state in 
the next generation.

	 12.	Explain how it is possible to simulate a CA with any neighborhood 
using a CA with a nearest neighbor’s neighborhood.
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	 13.	Given a deterministic CA operating on a finite board, prove the fol-
lowing: If it has a configuration that can be reached in one step from 
two previous configurations, a configuration of the CA can be found 
that has no previous configuration. Such a configuration can there-
fore exist only as an initial configuration of the system and is called 
a “Garden of Eden” configuration.

	 14.	It is possible to change the CA model to a model with asynchro-
nous time by randomly choosing only one cell at each time step and 
applying the transition rule only to that cell. Does this change the 
properties of the model significantly?

	 15.	We have defined the transition rule in a way that is independent of 
the cell’s location on the board. What is the importance and the goal 
of this property? What would happen if we removed it?

	 16.	Construct a 1-dimensional CA with three states (0,1,2). The initial 
state of the automaton is composed of a pair of 1s, and all the other 
cells are in the quiescent state (state 0). See the space–time diagram 
in Figure 2.19. The transition rule should change the states of the cells 
between the two 1s from left to right from state 0 one after the other 
to state 2 over time. After changing the rightmost 0 to 2, the CA will 
not change anymore. Ignore what happens outside the boundaries 
marked by the two 1s. 

12221
10221
10021
10001

FIGURE 2.19

	 17.	Construct a 1-dimensional CA using Exercise 16 as a refer-
ence point; however, state 2 will now progress from left to right 
between the 1s, with the provision that at any generation only one 
cell will be in state 2 (Figure 2.20), and state 2 will disappear in 
the last generation. Hint: You may need to add extra states to the 
automaton.
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12001
10001

10201
10021
10001

FIGURE 2.20

	 18.	Construct a 1-dimensional CA using Exercise 17 as a reference point; 
however, state 2 should now move right and left indefinitely. That is, 
when the automaton reaches the final state of Exercise 17, it will then 
make state 2 move left until it will meet the cell in state 1 on the left and 
then will turn right again, thereby creating an indefinite oscillator.

2.12.3  Computing Using Cellular Automata

	 19.	Why could we discuss the undecidability of the halting problem for 
computer programs and Turing machines as if it was one claim, even 
though the two computational models are different?

	 20.	The following problem is undecidable: Given a computer program 
and an input string, determine whether the program will output a 
specific character during its execution. Show how we may use the 
halting problem to prove the undecidablility of this problem.

	 21.	List the main differences between a computational model based on 
Turing machines and a model based on cellular automata.

	 22.	We have claimed that we can construct a two-dimensional CA that 
simulates any TM. Is this enough to prove that CAs are a universal 
computational model, or do we need to apply the construction for a 
universal TM and find a CA equivalent to it?

	 23.	We have claimed that we can construct a CA for a given TM. From this 
claim we can deduce that we can construct a CA that can accept on its 
grid a description of a TM and can simulate it. Why?

2.12.4  Self-Replication

	 24.	Von Neumann’s automaton has a universal construction capability. 
What input does it need to construct a self-replicating automaton?

	 25.	Based on the results given in Section 2.8, is a universal construction 
capability necessary for self-replication? Is it enough?
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2.12.5  Programming Exercises

	 26.	Program an “engine” to execute any CA. When designing your pro-
gram try to allow maximum flexibility in defining the CA’s universe 
(the grid on which it computes) and the transition rules.

	 27.	Using the engine created in Exercise 26, implement the automata 
mentioned in this chapter.

	 28.	Construct a cellular automaton that, when given a board containing 
cells that form all kinds of shapes, will leave only shapes that look 
like a symmetric cross of any size (i.e., lines of the same size that 
cross each other in the middle) and will eliminate all other shapes 
(see Figure 2.21). (A single cell is not considered a cross.)

Initial conformation Final conformation

FIGURE 2.21

	 29.	An N × N board where each cell has a random numerical value 
between 0 and N2 is given (assume that N is known to the cells). Find 
the rules for a cellular automaton that will keep only the cells with 
the highest value on the board and will eliminate (set to 0) the values 
of all other cells (see Figure 2.22).

01200
0000
00120
0000

01243
5785
99123
2460

Before After

FIGURE 2.22
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2.13  ANSWERS TO SELECTED EXERCISES
	 4.	Many patterns can be found with three generations periodicity. One 

such example is given in Figure 2.23.

FIGURE 2.23

	 5.	 If the board is finite, the number of configurations is finite. (For an 
N × N board it is 2(N×N)). Thus, for any initial configuration, its evolu-
tion must eventually hit a configuration that already occurred. Since 
the rules are deterministic, the cycle between these configurations 
will repeat itself forever.

	 7.	The number of possible automata is Kk(2r+1).

	 10.	 In all of these rules the state of a given cell in the next generation is 
dependent on the state of its two neighboring cells but not on its own 
state.

	 13.	Since the automaton is deterministic, every configuration is fol-
lowed by a unique consequent configuration. If there is a configu-
ration that is reachable from two different previous configurations, 
it means that the number of consequent configurations is smaller 
than the total number of configurations of the system. Therefore, 
the system must have some configurations that are not the con-
sequents of any configuration and are thus “Garden of Eden” 
configurations.

	 15.	The requirement that a cell cannot use its location (e.g., its x,y coor-
dinates) in calculating its next state is essential to the concept of cel-
lular automata as it allows each cell to communicate only with its 
local neighborhood and requires that all cells will follow the same 
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rules. It thus ensures homogeneity and locality and ensures that the 
computation of the CA is not a simple translation of programs that 
use addressable memory. 

	 16.	The key here is to notice that the new state of the cell is determined 
by its current state and the current state of its neighbor from the left 
according to the following table. Note that there are other combina-
tions of the two relevant bits (i.e., the current cell and the cells to 
the left) but they will not occur inside the boundaries marked by the 
two 1s.

Left Current New State
0 0 0
1 0 2
2 0 2
0 1 1
2 1 1
2 2 2
1 2 2

	 17.	The solution requires changing the current 2 into 0 and changing 
the 0 to the right into 2. However, the leftmost 0 cell must use an 
additional flag to prevent it from starting another wave of 2 after the 
first one.

	 20.	Add a print command for the required character immediately before 
any stop command (or termination point) of the program. (If that 
character is part of any other output of the program replace the 
character for that output.) Now, if this printing problem was decid-
able, then we would have a solution to the Halting problem, which is 
known to be undecidable and, therefore, this is impossible.

	 24.	To construct a self-replicating automaton the input tape should con-
tain a coded description of the automaton.
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C h a p t e r  3

Evolutionary Computation

3.1  �EVOLUTIONARY BIOLOGY AND 
EVOLUTIONARY COMPUTATION

3.1.1  Natural Selection

Charles Darwin opened his famous book, The Origin of Species, in which 
he presented the theory of evolution by natural selection, with a discus-
sion aimed at showing that a far-reaching hereditary change in organisms’ 
characters is possible and that such changes can be achieved by selective 
breeding. Darwin explained the mechanism for such evolutionary changes 
by presenting the example of domesticating animals and crops. By selec-
tive breeding based on small variations in hereditary characteristics, one 
can gradually create different strains according to the breeder’s prefer-
ences. Figure  3.1 gives as an example Brassica oleracea and the variety 
of crops cultivated from it. Domestication and artificial selection often 
result in extensive hereditary changes. Consider, for example, the differ-
ent dog breeds or the many edible and decorative plants created by man. 
Domestication is an example of evolution in action, albeit on a small scale. 
Darwin argued that under natural conditions the environment takes on 
the role of the breeder, as individuals who are better adapted to the envi-
ronment reproduce more than others.

The industrial melanism of the peppered moth provides a famous exam-
ple of this process. An increase in air pollution has been shown to give a 
camouflage advantage to darker moths that were rare before the industrial 
revolution, so that the dark form of the moth became the more prevalent 
form, replacing the previously more common light form. Antipollution 
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legislation, which led to reduced pollution, reversed the trend. Scientists have 
observed a more disturbing example of evolutionary change: various strains 
of bacteria have developed resistance to antibiotics, often very rapidly.

The theory of natural selection has far reaching implications, but it is 
based on simple basic assumptions:

	 1.	There is variation between the individuals in the population, each 
individual having a unique combination of characteristics.

	 2.	A large part of this variation is hereditary.

	 3.	The world has limited resources, and some of the variants in the 
population can make better use of these resources. These individuals 
will produce more offspring than other individuals.

These simple and widely accepted assumptions necessarily lead to natural 
selection. In other words, the principle of natural selection is an unavoid-
able result of the conditions that exist in the living world.

Brassica oleracea

Broccoli

Cabbage

Kohlrabi

Cauliflower

Brussel sprouts

Artificial
selection

FIGURE 3.1  Some of the cultivated varieties of wild cabbage (Brassica oleracea).
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One of biggest obstacles to Darwin’s natural selection theory was 
understanding the source and nature of the hereditary variations. When 
Darwin published The Origin of Species in 1859 there was no established 
theory explaining heredity. It is interesting to note that in 1866 Gregor 
Mendel, the father of modern genetics, discovered the basis for hereditary 
laws, but his research was ignored and forgotten until the beginning of 
the 20th century. At the beginning of the 21st century, we now have a much 
more complete picture of the mechanisms of heredity based on our under-
standing of DNA and the processes related to it, as we saw in Chapter 1. 
Darwin assumed blending inheritance, in which the characteristics of 
both parents blend to produce the corresponding organ in the offspring. 
Darwin believed that tiny particles he called gemules allow for heredity. 
The gemules represent characteristics, are present in all organs, and are 
sent from the organs to the reproductive cells so that during reproduction 
the gemules from both parents mix together to create the offspring, who 
usually has the average of the parents’ characteristics. In turn, the off-
spring’s gemules will be sent to their reproductive cells, and so on.

Darwin’s blending inheritance theory, also known as pangenesis, had 
severe theoretical problems since selection (natural or artificial) cannot 
affect blended characteristics. Repeated blending will “dilute” the charac-
teristics, and selection cannot preserve them. In the same way that when 
we mix red and white paints we cannot separate the resulting pink back 
into its white and red components by more mixing, it is impossible to sep-
arate the parents’ characteristics after blending. As discussed in Chapter 1, 
we know now that the alleles of both parents are preserved in the offspring 
and are not blended. This was one of Mendel’s most important findings.

Another important problem with Darwin’s inheritance model is that 
it allows the inheritance of acquired characteristics, which the individual 
developed during his or her life. If an ostrich developed calluses on its knee 
due to the knee rubbing the ground when it runs and passed this property 
on to its descendants so that they will have calluses on their knees even 
before they start running, this would be the inheritance of acquired char-
acteristics. Since young ostriches really do have calluses before running, 
this idea seems plausible, but we know now that ostriches have calluses on 
their knees at a young age because of natural selection and the reproduc-
tive advantage of individuals with this property and not due to the inheri-
tance of acquired characteristics. Or consider the long necks of giraffes. 
According to the inheritance of acquired characteristics model, ancient 
giraffes with necks of normal length were compelled to feed on leaves 
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of tall trees and thus had to stretch their necks. This acquired trait was 
passed on to their offspring, resulting in the long neck of modern giraffes. 
According to pangenesis when a particular organ is affected by the envi-
ronment, its gemules are affected in the same fashion and are passed to the 
reproductive cells in this new form and therefore the acquired character-
istics are passed on to the individual’s descendants. Inheriting acquired 
characteristics is often referred to as Lamarckian evolution, named after 
Jean Baptiste Lamarck. He predated Darwin and suggested an evolution-
ary model that relied on the inheritance of acquired characteristics.

Note that there are two types of information flow according to this 
model of inheritance of acquired characteristics. First, the change caused 
by the environment (e.g., the callus caused by the knee hitting the ground) 
has to be stored as information in the gemules. As the reproductive cells 
do not contain a copy or “image” of the organs but rather instructions that 
control the gradual and complex development of the embryo and the indi-
vidual under the environmental influences, it is unclear how to automati-
cally translate back an external change in an organ to a change in these 
instructions. August Weismann, one of the most influential scientists to 
have worked on evolution, described this problem as follows: believing 
that information can be translated in such a manner is similar to believ-
ing that an English telegram sent to China will arrive already translated to 
Chinese. The second information transfer, according to the model of the 
inheritance of acquired characteristics, is the passing of the gemules from 
the organs to the reproductive cells. This would require that reproductive 
cells do not exist early on but rather are produced during the organism’s 
adult life from the gemules sent from the various organs. This information 
transfer is not supported by modern understanding of the major heredi-
tary processes. For example, we know now that all human female eggs, or 
oocytes (about 500,000) already exist when a baby female is born. Male 
sperm cells are being continuously produced in the testis, but we don’t 
know of a mechanism that enables transfer of arbitrary information from 
the rest of the body into the testes. Weismann actually tried to check the 
validity of the model by repeatedly breeding mice whose tails have been 
cut off and discovered (of course) that the offspring were born with tails 
of regular length.

Interestingly, recent discoveries may open the door to the return of 
Lamarckian ideas (of course not in their naïve version), operating at the 
molecular level. Mechanisms like reverse transcription, which enables 
reverse flow of information from RNA to DNA in contrast to the central 
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dogma (see Section 1.3.4), and inherited regulatory changes in gene 
expression (a form of inheritance referred to as epigenetic inheritance) 
paint a richer picture of hereditary information flow than was previously 
assumed. In any case, even though Lamarckian evolution differs from 
our modern genetic model, it can be used in evolutionary computation 
(genetic algorithms, or GAs). We will see in Section 3.5 how this idea is 
implemented and to what effect.

Modern evolutionary theory (known as neo-Darwinism) denies the 
troublesome ideas of blending inheritance and the inheritance of acquired 
characteristics. It is intimately related to the modern understanding of 
heredity provided by genetics, based on distinguishing between inherited 
genetic information and the organism’s characteristics. The transfer of 
genetic information is schematically described in Figure 3.2. The individu-
al’s genetic information is called its genotype (multiple units of inheritance 
called genes make up the genotype). The individual’s expressed character-
istics are called its phenotype. For example, the information in the DNA 
molecules (see Chapter 1) that is responsible for eye color is part of the 
genotype, whereas the eye color itself is a phenotype. Hereditary changes 
impact the genotype, whereas natural selection selects between the differ-
ent phenotypes created under the combined influence of the genotype and 
the environment. We return to the distinction between genotype and phe-
notype in the discussion of the use of Lamarckian inheritance by genetic 
algorithms.

The origin of variations in the genotype is random mutations. In asex-
ual reproduction a single parent passes a copy of all his or her genetic 
information to the offspring. Therefore, each descendant is an exact genetic 
copy of the parent, except for rare mutations. On the other hand, in sex-
ual reproduction each individual usually contains two copies of genetic 
information—one from each parent—which are not necessarily identical, 
since each parent may pass on a different form of the gene. The differ-
ent forms of a gene are called alleles. Additionally, during meiosis new 
combinations of alleles taken from the two parental chromosomes are cre-
ated (see Chapter 1). Therefore, in sexual reproduction, the progeny have 
new combinations of alleles and thereby different characteristics. This is 
the source of the power of sexual reproduction, as found in animals and 
humans. Asexual reproduction is found in bacteria, plants (which exhibit 
both types of reproduction), and some other simple organisms.

To summarize, neo-Darwinism, which is the common evolutionary the-
ory held today, denies the passing on of acquired characteristics and explains 
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evolutionary change by natural selection of nondirectional (random) varia-
tions. For our discussion it is important to emphasize the following points:

	 1.	Genetic change can result from one of two events: A mutation, 
which is a discrete random change in the genetic material that causes 
a change in a trait (e.g., color change), or, in sexually reproducing 
organisms, via a new combination of alleles.

Germline cells Development

Mature form

Heredity

Events occurring
in the phenotype

Mutation

FIGURE 3.2  Information transfer in asexual reproduction. The hereditary con-
tinuity is based on reproductive (germ line) cells. The information in the repro-
ductive cells is transferred to the next generation. Only changes in the genetic 
makeup of the reproductive cells (i.e., mutations, which are rare) impact the next 
generation. Changes to the nonreproductive cells of the organism (somatic cells), 
which are caused by the environment, will change the mature form but will not 
impact the offspring. The information transfer in multicellular organisms with 
sexual reproduction is also mediated by germ line cells, but the situation is more 
complicated, as each offspring is endowed with a unique combination of genes 
from its parents.
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	 2.	Natural selection is not a creative force in evolution; it can elimi-
nate deleterious variations in the population and can increase the 
frequency of successful variations.

3.1.2  Evolutionary Computation

The term genetic algorithm in its most general sense refers to a family 
of computational models inspired by biological evolution. The different 
models are based on various conceptions of the biological evolutionary 
processes and do not necessarily faithfully represent current biological 
understanding. Moreover, genetic algorithms allow researchers to experi-
ment with different evolutionary mechanisms in order to analyze their 
behaviors and outcomes.

Any evolutionary computation is based on representing pos-
sible solutions to a computational problem as “genetic” information 
passed from one generation to the next. The evolutionary process is 
initialized with a (usually random) population of “solutions,” which 
correspond to individual organisms. Each solution is examined to 
determine how successful it is in solving the computational problem; 
this defines its fitness and determines how well represented it will be 
in the next generation’s population. Furthermore, new solutions may 
be created by introducing random changes (similar to mutations) or 
by combining elements of different solutions (similar to sexual repro-
duction). Therefore, better solutions become more prevalent from one 
generation to the next, and the probability of finding a satisfactory 
solution to the computational problem increases. The computational 
process is halted when a good enough solution to the problem is found. 
Evolutionary computation is often described as a function optimiza-
tion process, since the computation can be viewed as a search for the 
maximal value of the fitness function.

Genetic algorithms are used for a variety of applications, prominently 
optimization problems. Typically the problems are hard to attack using 
standard mathematical tools (e.g., the functions are noncontinuous, the 
set of equations is nonlinear), and the set of candidate solutions is very 
large. An important advantage of genetic algorithms is that it is a very 
generic method, and a genetic algorithms engine can be utilized for solv-
ing a wide variety of different types of problems by modifying or supply-
ing a few functions. A good review of evolutionary computation can be 
found in Mitchell and Taylor (1999).
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3.2  GENETIC ALGORITHMS
Solving a computational problem using an evolutionary process depends 
on answers to a few fundamental questions:

	 1.	How is the genetic data passed from generation to generation 
represented?

	 2.	How is the fitness of each individual determined?

	 3.	How does fitness affect the makeup of the next generation?

	 4.	Which genetic changes will be performed on individuals when pro-
ducing the next generation?

	 5.	When should the evolutionary computation terminate?

The classical genetic algorithms model, which we will use during most 
of this chapter, is based on the model first suggested by John Holland in 
1975 (Holland, 1975). In this model, the answer to the first question is 
that the genetic information is represented as a fixed-length sequence of 
binary bits. We refer to every such sequence as a genotype or sometimes 
as a chromosome. It is important to understand that, while this par-
ticular representation is the most familiar one, there is nothing sacred 
about this representation. Other representations such as a sequence of 
numbers rather than a sequence of bits, arrays, matrices, linked lists, 
or other data structures may be used as representations when they are 
more suitable. The important thing is to preserve the principle that ran-
dom changes in the solutions will change their fitness, which in turn will 
change the impact of each solution on the population of solutions in the 
next generation of solutions, and with that will give rise to the possibility 
of generating better and better solutions.

In the algorithm we will present, the offspring are generated by com-
bining the chromosomes of two parents. The offspring, which like all 
individuals are made up of a single chromosome (i.e., the organisms are 
“haploids” and carry only one chromosome), contain genetic information 
derived from both parents by a crossover process similar to the biologi-
cal process of exchanging genetic information between chromosomes.

The crossover process of two chromosomes is done by randomly pick-
ing a location in the sequences and exchanging the corresponding parts of 
both chromosomes:



Evolutionary Computation    ◾    95

10110 \/ 0101011

01010 /\ 1100100

After exchanging the corresponding parts, the following two chromo-
somes will be generated:

101101100100
010100101011

The general structure of a genetic algorithm is as follows:

	 1.	Start with a random population of n chromosomes.

	 2.	Compute the fitness of each chromosome in the population.

	 3.	Repeat until n offspring are created in the new population:

	 a.	 The selection phase: Pick a random pair of chromosomes from 
the current population. The probability of picking a particular 
chromosome has to be an increasing function of fitness.

	 b.	 The crossover phase: Crossover the parent chromosomes with 
probability pc (the crossover probability), and then choose arbi-
trarily one of the resulting chromosomes as the offspring (if there 
was no crossover, choose one of the parents).

	 c.	 The mutation phase: For every bit in the offspring, flip it (if 0 then 
change to 1; if 1 then change to 0) with probability pm (the mutation 
probability).

	 d.	 Insert the offspring into the new population (note that the pro-
cess in steps a through c generated a single offspring).

	 4.	The new population becomes the current population forming the 
next generation.

	 5.	If a predefined end criterion has been reached then stop; otherwise 
repeat from step 2.

There are many valid variants within this scheme, some of which will 
be discussed later in this chapter. The general description shows that the 
behavior of a genetic algorithm is influenced by a few central param-
eters. The general structure of the algorithm does not dictate how the 
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fitness of each individual is computed and how the differences in fitness 
determine how the parents, who will mate and create the next genera-
tion, are chosen. These two components, as well as the probabilities pc 
and pm, have a major influence on the behavior of the algorithm, that 
is, on the changes in the population from one generation to the next. 
Another important parameter is the population size n, which deter-
mines how many individuals will be tested in each generation out of all  
the possible solutions or chromosomes.

Example

Let us demonstrate how a genetic algorithm behaves using a very simple exam-
ple where the goal is to find the integer x in the range [0,..,31] that maximizes 
the function g(x) = 31x – x2.

Clearly, this is a very simple problem that is easily solved analytically (or 
by exhaustive search), but it will serve to demonstrate how to solve a problem 
using a genetic algorithm (Table 3.1a and Table 3.1b).

Solution representation: we will represent every possible solution by a five-
bit sequence (chromosome). Five bits suffice exactly to represent the 
integers 0 (00000) to 31 (11111) as binary numbers.

Initial population: we will choose the population size to be 4 (just for the 
sake of the example, as this population is much smaller than commonly 
used). The initial population will be random.

Score: the score of an individual i in the population, fi, will be the value of 
the function g; that is, we will look at each chromosome as the binary 
representation of a number x and will compute g(x).

The probability of selecting a chromosome as a parent: the probability of 
picking individual i as a parent is correlated to its score and is defined as 
the ratio between its score and the sum of the scores of all organisms in 
the population, that is,

	

P i
f

f
i

k

( ) =
∑

all solutions k

Sample run: Table 3.1 shows the execution of the algorithm for a population 
of four individuals.

•	 The sequences 10011 and 11000 are chosen as parents. For the cross-
over phase, the point after the fourth bit was randomly picked as the 
crossover point to produce 10010 and 11001. We pick the first chromo-
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some and select it as the first individual in the next generation (note that 
we are not demonstrating mutations in this example).

•	 This process is repeated until we have the next generation, that is, the 
four offspring shown in Table 3.1b.

•	 The entire process (i.e., score calculation, selection, and crossover) is 
repeated to produce subsequent generations.

When will the execution of the algorithm halt? We can choose among a few 
strategies, depending on the problem:

•	 If we know what the score of the optimal solution should be, we can halt 
when it is reached.

•	 If we know what the score of the optimal solution is, we can halt when an 
individual with sufficient score has been found (e.g., 90% of the optimal).

•	 We can halt when the variance in scores in the population is small (a 
special case is to halt when all the individuals have the same score).

•	 We can decide to halt if the fitness of the best solution found has not 
improved for a certain number of generations.

•	 We can decide to halt after a certain number of generations (e.g., halt 
after 1000 generations) and then choose an individual with the maximal 
score as the solution. Since it is in general possible that the computation 
will not converge to an optimal solution, this technique can be com-
bined with any of the others to ensure termination.

Based on prior knowledge of g(x) we might choose to halt the evolutionary 
process once an x with g(x) ≥240 is reached or at most after 1000 generations.

It is probable that after some generations the individuals 10000 or 01111 
which have the score 240 will be generated and the system will halt (in the 

TABLE 3.1a  Initial Generation of Genetic Algorithm Optimizing g (see text for details)
Initial population 10011

(x = 19)
01000
(x = 8)

11000
(x = 24)

01101
(x = 13)

Score 228 184 168 234
Probability of being selected 
as parent (rounded)

0.28 0.23 0.20 0.29

TABLE 3.1b  Population of the Second Generation of Genetic Algorithm Optimizing g 
(see text for details)
Next generation 10010

(x = 18)
01101

(x = 13)
11001

(x = 25)
01011

(x = 11)
Score 234 234 150 220
Probability of being selected as 
parent (rounded)

0.29 0.29 0.18 0.27
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range [0,…,31], g(x) reaches a maximum value of 240.25 for x = 15.5; however, 
in this example we considered only integer values for x).

The beauty and strength of the genetic algorithm is that we did not need 
to understand and analyze the function g, so we could use exactly the same 
algorithm to maximize other, much more complex functions, for example, g(x) 
= 15 – (x – 2)2 or g(x) = sin(x)3 – cos(x).

3.2.1  Selection and Fitness

The phrase survival of the fittest is often used to describe the process of 
natural selection. This term, which was first used by Herbert Spencer and 
not by Darwin, means that, on average, the individuals best adapted to 
their environment survive and reproduce the most in nature. For exam-
ple, animals that make good use of their food resources or that can escape 
from their predators by running fast are adapted to their environment and 
have increased chances of survival. Assigning a precise meaning to the 
phrase survival of the fittest is elusive, however, as it seems to be making a 
circular claim: survival is the result of being adapted, while being adapted 
is defined as survival in the environment. According to this interpreta-
tion it would seem that survival of the fittest boils down to survival of 
those that survive. Biologists have argued frequently about the meaning 
of the claim that evolution works by the principle of survival of the fittest. 
Most biologists today prefer to use the original term natural selection to 
describe the evolutionary processes.

Natural selection of course does not compute a numerical fitness value 
for each individual that in turn determines how many descendants he or 
she will have. It is the other way around: the number of offspring defines 
the fitness of the individual. In general, if an organism has many offspring 
we can deduce that it is better adapted.

Genetic algorithms are obviously very different, as the fitness func-
tion (called the score in the previously given example) chosen by the 
programmer has a direct impact on the number of offspring. The choice 
of fitness function can cause the algorithm never to converge to a solu-
tion or to do so very slowly. The values of the fitness function are the 
inputs of the selection process, so the fitness function and the selec-
tion method have to be compatible for the genetic algorithm to perform 
successfully.

It is important to distinguish between computing a measure of the suc-
cess of a particular solution in the population (a single chromosome) and 
the relative success of a solution in relation to other solutions in the popu-
lation. In the previous example, fi was computed without taking the other 
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chromosomes in the population into account, whereas the values P(i) were 
computed by taking all the scores of the population into account. To cap-
ture this distinction we introduce the following definitions:

•	 Evaluation Function: a function used to determine the success 
(score) of a single solution, based on the requirements of the problem.

•	 Fitness Function: a function which translates the value of the evalu-
ation function to the value which will determine how likely the solu-
tion is to reproduce (that is, how frequently it will participate in the 
reproduction and crossover operations).

The values of the evaluation function for each individual in the popu-
lation are independent of each other. On the other hand, the value of the 
fitness function is always defined relative to a given population (usually 
relative to the values of the evaluation function for all other individuals in 
the current generation).

The fitness of individual i is usually defined to be f fi / where fi is the 
value of the evaluation function and f  is its average value over all the 
individuals in the population. This normalization allows us to consider 
the relative quality of individuals in the population when selecting the 
individuals that serve as parents of the next generation.

Recall that after computing the fitness values, the next phase is the 
selection phase in which individuals are selected as parents according 
to their fitness. Before discussing various selection regimes, we define a 
term that will help us analyze the difference between different selection 
mechanisms.

The selection pressure is the degree by which the genetic algorithm 
prefers selecting individuals with a high-fitness value as parents for the 
next generation over individuals with an average or low-fitness values. 
Intuitively, a selection method with high selection pressure creates more 
copies of the better individuals, thereby hastening the removal of the indi-
viduals with lower fitness values. In other words, when the selection pres-
sure is low the maximum number of offspring for high-fitness individuals 
is low, so low-fitness individuals are almost as capable of reproducing as 
individual with high-fitness. When the selection pressure is high, low-fit-
ness individuals are less likely to reproduce and have fewer descendants. 
Thus, a careful balance should be maintained. If the selection pressure is 
too high, the genetic algorithm will converge quickly to a small number 
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of high-fitness individuals. This phenomenon is called premature conver-
gence, and we will see that it is one of the main obstacles to the success of 
a genetic algorithm. Premature convergence means that we may have given 
up too quickly on individuals with low-fitness who still could have made 
positive contributions to the gene pool. On the other hand, if the selection 
pressure is too low, we might encounter slow convergence, or the algo-
rithm may not converge to a solution at all.

When a genetic algorithm starts executing, we expect to find a small 
number of successful individuals in a population of average and below-
average individuals. It is important not to lose the better solutions at this 
stage. Later on, it is likely that there will still be a variance in the popula-
tion, but the average fitness of the population may be close to the maxi-
mal fitness. Nonetheless, we would like the higher-fitness individuals to 
have a larger influence on the next generation than the average-fitness 
individuals.

The standard selection mechanism used most often by genetic algo-
rithms is called roulette wheel selection and emulates the game of rou-
lette, where each individual is represented by a set of consecutive slots on 
the roulette wheel with a size relative to its fitness, as seen in Figure 3.3. 
Choosing this roulette system to select parents gives every individual a 
probability to become a parent, which is the ratio between its fitness and 
the sum of all the individual fitness values.

Note that with the roulette mechanism there is a danger of early con-
vergence. The higher the fitness value of an individual, the more often it 
will be selected as a parent and therefore will have more descendants. If 
the initial population has too many high-fitness individuals, they will be 
selected as parents most of the time, and we may lose solutions.

ik

j

FIGURE 3.3  Roulette wheel selection. Here individual j has the highest fitness, 
while individual k has the lowest fitness. Therefore, when the wheel spins, the 
probability that j is selected as a parent is the highest, k has the lowest chance to 
become a parent, and i has an intermediate probability.
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Several alternative selection mechanisms may be more suitable in cer-
tain cases, including the following:

•	 Rank selection: In this technique individuals are sorted by their 
fitness and chosen as parents based on their ranking rather than 
directly by their fitness. This method helps to avoid early conver-
gence since the selection pressure is low, and low-fitness individu-
als may be selected quite often as parents. The disadvantage of this 
mechanism is that an individual might have a significantly higher 
fitness than the next ranked individual, yet ranking hides such dif-
ferences in fitness and may cause slow convergence. Conversely, 
ranking works well when the fitness differences are small but 
believed to be significant. The roulette mechanism will select each 
individual with a similar probability, but the ranking mechanism 
can give rise to more significant differences between the selection 
probabilities.

•	 Tournament selection: In its most naïve form this mechanism works 
as follows. Two individuals are randomly chosen from the popula-
tion. The one with the higher fitness is then chosen to serve as parent 
(the two individuals may or may not be returned to the population 
so they can be reselected). There are more general variants of this 
mechanism where the number of individuals compared (the tourna-
ment size) is larger than two. One advantage of tournament selection 
is that it is somewhat easier to implement than more complicated 
selection regiments while still allowing the adjustment of selection 
pressure (by choosing different tournament sizes). Another advan-
tage is that there is no need to precompute the fitness values, which 
require evaluating of the entire population, since the contestants can 
be compared based on the evaluation function. This eliminates the 
need for two passes through the population to compute fitness or 
the cost of sorting the population (in rank selection). Eliminating 
the need for global population statistics makes tournament selection 
better suited to parallel implementations. Similarly, there are cases 
in which it is easier to compare solutions, as done in tournament 
selection, rather than to compute an evaluation function for indi-
vidual solutions (e.g., if solutions represent different game playing 
strategies, pitting them against each other may be the best way to 
evaluate their quality).
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•	 Steady-state selection: In this mechanism only a small fraction of 
the population is replaced at every generation, whereas most indi-
viduals continue to live from one generation to the next. Usually 
the low-fitness individuals are replaced, of course. After deciding 
which individuals are to be replaced, the next generation’s parents 
have to be selected using one of the selection mechanisms so that 
new individuals can be created to replace the ones to be eliminated. 
In this method the turnover between generations is much more 
gradual. It is interesting to note that with this mechanism better 
solutions survive from generation to generation without the danger 
of crossover.

Each of these mechanisms has many variants that are appropriate when 
solving specific problems.

3.2.2  Variations on Fitness Functions

We have assumed up to now that the values of the evaluation and fitness 
functions are positive (or at least nonnegative) and that higher fitness val-
ues represent better solutions, that is, that the goal of the genetic algorithm 
is to maximize the fitness function. For many problems these assumptions 
are not appropriate.

Sometimes fitness values are not necessarily positive. For instance, 
when we search for the maximal value of the function g(x,y) = x2 – y2, for 
some ranges of x and y the function has only negative values. In this case, 
if we use the roulette mechanism the fitness values will give us incorrect 
roulette cell sizes.

Moreover, many problems are represented as minimization problems 
rather than maximization problems. In most of the problems we dis-
cussed, the evaluation function represented the level of success of the solu-
tion; therefore, our goal was to find a solution of the highest evaluation 
value. In many other problems the evaluation function represents the cost 
of a solution; therefore, we want to minimize its value.

We describe a couple of techniques that allow us to use genetic algo-
rithms in cases where the natural fitness measure is not suitable for the 
selection mechanisms in their standard form. In all such cases the solu-
tion is to map the values of the evaluation function to values that are better 
suited to serve as fitness values.
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•	 Minimization problems: The common solution is to subtract the 
value of the evaluation function from some constant:

	
f x

C g x g x C
( )

( ) ( )max max
=

− <

0 otherwise

	 We can select Cmax in advance (as an input to the system), or as the 
largest value of g observed so far, or as the largest value of g in the 
current generation, or in the last k generations.

•	 Negative evaluation function values: Here the solution is to add to 
the evaluation function g(x) a large positive value
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0 otherwise

	 As in the previous case, Cmin may be selected in advance (as an 
input to the system), as the absolute value of the worst g observed so 
far, or observed in the current generation, or observed in the last k 
generations.

•	 Dynamic range: In the implementation we presented so far we 
used the same mapping of evaluation function to fitness func-
tion for the entire duration of the algorithm. This may not always 
be suitable. Consider the following example. Assume that the 
evaluation values are distributed between 1 and 10, and thus the 
best solution (10) will have a huge advantage over the worst (1) 
when using roulette wheel selection. Now assume that all solu-
tions were improved by a constant value, and the range is now 
between 1001 and 1010. Now, the best solution (1010) will have 
only marginal advantage over the worst (1001). To avoid this 
problem and to keep supplying the impetus to continue to push 
the better solutions further, we transform the evaluation values 
into the range between the best and the worst values by the fol-
lowing normalization:
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	 where Cmin and Cmax are the current minimal and maximal values 
in the population, respectively; the ε is added to make sure that even 
the solution with the minimal value will still have a nonzero prob-
ability to be selected.

These techniques help with some of the more common situations. More 
sophisticated mappings are also possible, but they need to be evaluated to 
see how well they really improve the behavior of the algorithm (e.g., how 
well they help avoid early convergence and slow termination).

For the most part we assume that individual fitness (i.e., the value 
of the evaluation function) is computed independently for each indi-
vidual. There are, however, situations in which it is either necessary or 
profitable to compute the fitness of individuals based on how they inter-
act with other individuals. An interesting technique is based on allow-
ing individuals from two populations to compete with one another. For 
example, if the goal is to evolve a mechanism that handles arbitrary 
data in an appropriate way, it might be useful to evolve two popula-
tions: one consisting of candidate mechanisms, and another consist-
ing of datasets that attempt to cause the mechanisms to fail. These two 
co-evolving populations will then find themselves in an evolutionary 
arms race—of the sort that can be found between predator and prey 
in nature—that may improve the solutions the genetic algorithm will 
manage to find. More generally, the fitness function does not have to 
be a fixed and simple function specified in advance but may in fact be 
a complex algorithmic function whose result changes depends on the 
population of solutions or on other factors. See the exercises at the end 
of this chapter for examples. We return to this topic in the discussion of 
Artificial Life in Chapter 6.

3.2.3  Genetic Operators and the Representation of Solutions

The two genetic operators we have used—mutation and crossover—
expand the set of solutions tested by the algorithm. Mutations change the 
chromosomes in a random fashion, and their influence on the fitness of 
individuals is determined in the following generations. Crossover is more 
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significant, as it allows the genetic algorithm to combine elements of 
already reasonably good solutions to create better solutions. Other genetic 
operators for improving the performance of genetic algorithms for certain 
problems have been suggested over the years.

It is important to realize that one of the crucial factors determining 
how well a genetic algorithm performs is the representation of the solu-
tions as chromosomes—that is, the way the evaluation function interprets 
the chromosome—and how well this representation is compatible with 
the genetic operators. As the representation of solutions is such a central 
issue, it is sometimes called the representation problem.

Consider the example of designing a genetic algorithm for finding val-
ues for x ∈ [31,…,62] and y ∈ [0,…,31], which maximize the value of the 
function g(x) = x2 – y2. In this case it is clear that, given a possible solu-
tion (x,y), any change that will increase x will yield a better solution, as 
will any change that will decrease y. Thus, the changes in x and y should 
be independent and the representation should provide this independence. 
The “natural” way to achieve this is to represent the variables as a chro-
mosome of length 10, where the first five bits represent the first gene x (as 
x – 31) and the last five bits represent y (the second “gene”). How will this 
representation behave when the genetic operators are applied? Mutations 
(which change a single bit) will obviously operate on x and y indepen-
dently. What about crossover? Look at the example in Figure 3.4: assume 
crossover happens at the mark in Figure 3.4(a), and the result of the cross-
over is shown at Figure  3.4(b). In both possible offspring x is changed, 
while the y’s remain as they were in the parents’ generation. Note that for 
all possible crossover points x and y are never both affected by a single 
crossover.

If we had chosen a different representation for x and y we could 
have created a situation in which a crossover could affect the values of 

Chromosome 1
Chromosome 2

Chromosome 1
Chromosome 2

(a)

(b)

FIGURE 3.4  Effect of crossing over on two chromosomes.
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both variables simultaneously. Consider, for example, a representation 
of solutions in which the bits representing the two variables are inter-
laced (Figure 3.5). What will happen when we cross over two solutions 
under this representation? By changing the representation we created 
a situation in which the crossover operator changes the values of both 
genes. Therefore, we have increased the rate of generating new solu-
tions, but we may pay for this by damaging parts of the solution (e.g., 
y = 0) that may have been found by the algorithm earlier. In fact, note 
that offspring may not carry any significant property of either of their 
parents. Is such a payoff worthwhile? Usually we can assume that the 
answer to this question will be negative (this is clearly the case for the 
function g) and will result in lengthening the search process, often 
significantly.

Another example of the difficulty of choosing a representation is 
manifested by the genetic algorithm solution to the following clustering 
problem. Given a set of N elements (vectors in Rn), arrange them in K sets 
(where K << N), and define one of the elements in each set as its center, 
such that over the K sets the sum of the distances between the elements 
and the centers of the clusters they belong to is minimized. There are two 
natural ways to represent the solutions:

	 1.	Every solution is represented as a vector of length N, where every 
element denotes to which of the sets 1,…,K the corresponding ele-
ment belongs. The center of each set can be calculated by looking for 
the element whose sum of distances to all other elements in its set is 
minimal. Note that in this representation the membership of each 
element is explicitly represented but that the identity of the centers is 
implicit and must be calculated in each generation.

	 2.	Alternatively, each solution can be represented by a vector of length 
K that holds the identity of the center of each set. An element 
belongs to set k if its distance from the center of the set is minimal 
compared with its distances to all other centers. Here, the identity 
of the centers is explicit, but the membership of the elements has to 
be calculated in each generation.

FIGURE 3.5  Interlaced representation of two variables.
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In this case it is harder to determine which representation leads to a more 
effective evolutionary search without implementing both representations. 
It turns out the second representation is significantly more efficient.

Various genetic operators were proposed to improve the performance 
of genetic algorithms for specific problems. Many of these were general-
izations of the crossover operator. An example is increasing the number of 
break points along the chromosome: for example, taking the first segment 
of the chromosome from one parent, then the second from the other par-
ent, and then the last part again from the first parent. In the limit, each bit 
can be taken independently from either parent. Another suggestion was 
to use the information from more than two parents in generating each 
offspring. In the exercises at the end of the chapter we describe other rep-
resentation methods and the corresponding genetic operators.

So far we have presented the classical genetic algorithm, but the generic 
evolutionary algorithm can be implemented using different representa-
tions and different operators. For instance, the genetic information may 
be represented as a vector of real numbers rather than bits; mutations may 
be implemented by adding a random number (chosen from some distribu-
tion, say, the normal distribution); the rate of mutations, Pm, may change 
during the evolutionary process; and other genetic operators in addition to 
crossover may be used. Among these operators we will mention the inver-
sion operator, which selects two points on the chromosome and inverts the 
bit sequence between them (e.g., 11101 becomes 10111 when the underlined 
sequence is inverted). This operator is inspired by chromosomal inversions 
that happen in nature. For this operator to be useful, the “meaning” of 
the bits has to be independent of their location on the chromosome; that 
is, every bit has to have an identity. Given such an identity, inversion will 
change the order of the “genes” on the chromosome causing a change in 
the distance between genes, which might impact crossovers significantly. 
For example, if the problem has 10 parameters a,b,..,j, each of which can 
be 0 or 1, we can think of each bit in the chromosome as the “gene” for 
one of the parameters. It might be that ordering the genes on the chro-
mosome abcfedghij will lead to better performance than abcdefghij, since 
abcf might tend to vary together because values for these genes represent 
a component of good solutions in the search space. In other words, differ-
ent regions of the chromosome will become building blocks for generating 
solutions. Inversion is particularly useful when the representation of indi-
viduals is richer than a simple string of bits.
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It is of course possible to come up with other genetic operators, either 
by imitating other biological processes or based on theoretical consider-
ations. The appropriateness of the operators to particular problems should 
then be evaluated by gauging their success in improving the solutions 
found by the evolutionary search process and by examining the behavior 
of the algorithm (e.g., its speed, the number of generations it takes it to 
converge, the risk of converging to local maxima).

We can see from the previous examples that it can be very difficult to 
guess in advance how well a particular crossover method will work for a 
given evaluation function, and the decision is based to a large extent on 
intuition, understanding of the problem, and trial and error. Note that in 
the true biological context the “evaluation function” (i.e., the success and 
adaptation of an organism) is not a simple mathematical function, and 
therefore the corresponding problem of how nature finds good represen-
tations is even harder. For example, it would be interesting to understand 
how evolution determines how many genes are needed to represent a cer-
tain characteristic (e.g., one gene with a few functions as opposed to several 
independent genes), how close to each other in the genome should related 
genes be located, and how evolution “decides” whether to preserve one copy 
of a gene or a few copies in different locations to protect against a change in 
one of the copies (on this issue see also the discussion of robustness of gene 
networks in Chapter 6).

3.3  EXAMPLE APPLICATIONS
This section presents a few domains in which genetic algorithms have 
been used successfully.

3.3.1  Scheduling

Scheduling problems, from arranging a weekly course schedule for college 
students to designing the production floor of a car factory, are multiob-
jective optimization problems with multiple inputs, multiple constraints, 
and limited resources. Such problems are very difficult to solve using 
standard optimization methods. Genetic algorithms can address, in a 
single framework, various subtypes of optimization problems. The algo-
rithm maintains a population of alternative schedules, and mixing and 
matching improves their overall performance. Thus, genetic algorithms 
have become a popular method to address such problems (Bagchi, 1999). 
More generally, an important question about genetic algorithms and sim-
ilar techniques is how best to approach problems that require optimizing 
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several objectives simultaneously (Coello, 2000). A naïve way of working 
with multiple objectives, and hence multiple fitness functions, is to aggre-
gate them into one multi-objective function using a weighted sum. Note 
that for this to work all functions should be approximately in the same 
numerical range, or they must be normalized appropriately. In another 
interesting technique, called the vector evaluated genetic algorithm 
(VEGA), for a population of size M, k subpopulations (where k is the 
number of objectives) of size M/k are evaluated. Individuals are selected 
in each subpopulation according to a fitness function that is based on a 
single objective. The populations are then mixed and the regular opera-
tions of mutations and crossing over are performed and finally the pro-
cedure is iterated for the next generation. Both the weighted sum and the 
VEGA techniques are easy to implement but are severely limited in the 
type of cases they handle successfully (Coello, 2000).

3.3.2  Engineering Optimization

In an application of genetic algorithms to an engineering problem 
(Goldberg, 1989) the goal was to optimize the structure of an oil pipe, 
which consisted of stretches of pipe and compressor units used to maintain 
pressure, so that energy needed to operate the compressors is minimized 
under the constraints of the minimal and maximal allowed pressure in 
each pipe segment.

3.3.3  Pattern Recognition and Classification

A very early system (Cavicchio, 1970) used genetic algorithms to find good 
feature detectors for an image classification device. The images are com-
posed of 25 × 25 black and white pixels and are divided into various named 
classes. During the training stage, images belonging to known classes are 
presented to the device, and the states of subsets of pixels (which serve as 
detectors) are recorded. In the recognition phase an unknown image is 
presented to the device, which then ranks the classes to which the image 
may belong based on the responses of the feature detectors to the new 
image and the information learned during the training stage. The goal of 
the genetic algorithm is to find subsets of pixels (i.e., detectors) that can 
be used to improve the classification success. Clearly, the set of detectors 
(each being a set of pixels inspected by that detector) determines how well 
the system performs in the classification. Genetic algorithms, in which the 
population consisted of sets of detectors, were used to search for successful 
detector sets.
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3.3.4  Designing Cellular Automata

Genetic algorithms are often combined with other models such as cel-
lular automata and neural networks. Genetic algorithms can be used, 
for example, to find transition rules for cellular automata that lead to a 
desired behavior. In an interesting experiment (described in Mitchell, 
1998) a genetic algorithm was used to find a transition rule performing 
the “density classification task” on a one-dimensional cellular automa-
ton with two states and radius 3 (k = 2, r = 3). The goal in this task is that 
the automaton decides whether the initial configuration of a long array 
contains a majority of 1's, in which case the system should settle to a fixed-
point configuration of all 1's, or not, in which case it should settle to a 
fixed-point configuration of all 0s. Recall from the discussion of Wolfram 
numbering (Section 2.4) that for the automaton under discussion there are 
2 22 1282 1r+

= different rules, a huge number making it impossible to search 
for appropriate rules exhaustively. The genetic algorithm operated with 
a population of 100 possible solutions each representing a rule and mea-
sured their fitness by checking how well they preformed the density clas-
sification task on a random set of initial configurations (in each generation 
a new set of initial configurations was used). Most of the time the genetic 
algorithm was unsuccessful in finding a good transition rule, but in 3% of 
the runs it was able find transition rules that significantly outperformed 
naïve strategies for solving the density classification task.

3.3.5  Designing Neural Networks

In another application that combined the use of genetic algorithm and 
another biologically inspired computation model, a genetic algorithm was 
used to evolve a neural network that is able to learn to recognize handwrit-
ing well. As will be explained in Chapter 4, neural networks have internal 
mechanisms to modify the connection between elements once the net-
work has been laid out. However, they do not have an internal mechanism 
that can help in designing the network layout itself. Genetic algorithms 
can be used to make a selective competition between different layouts and 
thus evolve better networks (Miller, Todd, and Hegde, 1989).

3.3.6  Bioinformatics

In a typical situation, a researcher is faced with a set of DNA sequences that 
share a biological function and another set of sequences that do not. The 
challenge is to find a sequence motif (which we assume can be represented 
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as regular expression) present in all (or most) of the sequences from the 
first set and none (or very few) from the second set. Several researchers 
have used evolutionary computation techniques to find regular expressions 
that represent shared properties of sets of related nucleotide sequences. 
In these systems the fitness of solutions depends on how well the regular 
expressions match the set of sequences and possibly also how well they fail 
to match a control set of irrelevant sequences. In Section 3.6, which deals 
with genetic programming, we discuss this computational task in more 
detail. Langdon and Harrison (2008) provide a clear explanation of one 
such system.

3.4  ANALYSIS OF THE BEHAVIOR OF GENETIC ALGORITHMS
We have to ask ourselves why genetic algorithms so often succeed in find-
ing good solutions to difficult problems. We can reformulate this ques-
tion and ask which problems can be solved efficiently by using genetic 
algorithms, as there are problems for which genetic algorithms fail to find 
good solutions. To answer these questions we have to understand how 
genetic algorithms behave as search strategies.

Search algorithms, including genetic algorithms, search for an optimal 
solution to a problem in a search space. The search space defines the pos-
sible values of the parameters that characterize a solution. Any point in 
the search space represents one solution. For example, if a solution is a 
2-tuple of real numbers x and y, then the search space is a two-dimesional 
plane, where each point in the plane is a 2-tuple (x,y) representing a par-
ticular solution.

For every point in the search space we can associate a value that indicates 
how successful this point is (we called this value the value of the evaluation 
function). So, if, for example, the solution is the 2-tuple (x,y), we can associ-
ate it with the value h = f(x,y). We can think of this value as another dimen-
sion or another axis depicting the height (i.e., the evaluation function’s 
value) for each point in the domain. Plotting these values will display the 
values of the evaluation function for all the solutions in the search space. 
This graph (obviously not limited to the two-dimensional case) is called a 
fitness landscape. Figure 3.6 provides examples of fitness landscapes.

Think of a genetic algorithm’s search process as a walk on the fit-
ness landscape aiming at getting to the highest point. This exposes the 
greatest problem faced by any algorithm that “walks” or “climbs” on a 
landscape from one point to a close point—it can become “stuck” in a 
local maximum. That is, it can reach a point that is not the highest in 
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the entire search space; however, since it is higher than all its immediate 
neighbors, moving away in any direction entails going downhill. The 
shape of the fitness landscape in Figure 3.6(c) clearly demonstrates the 
problem.

To better understand the behavior of genetic algorithms, we will 
compare them with a more basic algorithm, called hill climbing, which 
is based on climbing a fitness landscape. This algorithm is similar to a 
genetic algorithm with a population of size 1, which uses only the muta-
tion operator:

	 1.	Start with a random chromosome x in the search space, and com-
pute its fitness.

	 2.	Choose the best change for x:

	 a.	 Compute the fitness of every possible 1-bit mutation of x.

	 b.	 Let x be the chromosome with the best fitness among all the 
mutations.

	 3.	Repeat Step 2 until no 1-bit mutation improves the fitness. Return x 
(which is the “summit” reached by the algorithm).

It is obvious that this algorithm will halt when it reaches a local maximum, 
even if the search space contains better solutions (solutions with higher 
fitness). There are many ways to address this problem. A simple solution 
would be to apply hill climbing from a set of different starting points (just 
like a genetic algorithm) rather than from a single starting point. This is 
called iterated hill climbing and is defined by adding the following to the 
hill-climbing procedure:

(a) (b) (c)

FIGURE 3.6  Different types of fitness landscapes. (a) Smooth landscape with a 
single maximum. (b) A structured landscape with many equivalent local maxima 
and a single global maximum. (c) A rugged landscape with several local maxima 
and a global maximum that is difficult to identify.
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	 4.	Return to the previous Step 1, and choose another starting point.

	 5.	After a number of repetitions of the previous Steps 1–3, return the 
highest summit achieved.

The advantage of the iterated hill-climbing algorithm is clear, but note 
that even in this case all the climbs might end in local maxima (look again 
at Figure 3.6, and observe how this danger depends on the shape of the 
fitness landscape).

The main difference between the hill-climbing algorithms and genetic 
algorithms that also climb the fitness landscape toward better solutions 
is that genetic algorithms make use of crossovers to combine elements of 
two successful solutions. This helps when different segments of the chro-
mosomes can be used as elements that can be combined in different ways 
to create new solutions. Thus, the search process performed by the genetic 
algorithm does not follow a single path, and the danger of local maxima 
is diminished.

However, genetic algorithms face a related problem—early conver-
gence. The selection pressure causes the frequency of better solutions to 
increase with time. As a result, a situation where a single solution (or a 
very small set of solutions) comes to dominate the population in a rel-
atively short time arises quite often. In fact, a population may end up 
containing N copies of the same solution. This might seem to be a good 
outcome showing that the algorithm found a successful solution. But, in 
fact, because we are dealing with hard problems, the probability that this 
is an optimal solution is small, and it is more likely that the algorithm 
found a local maximum. It is important to note that computationally 
there is no point in continuing to execute the algorithm once a single 
solution dominates the population. Most crossovers will be crossovers 
with identical copies that are of course meaningless, and changes will 
come mainly from mutations.

If early convergence occurs during the execution of the algorithm and 
we want to be able to overcome it, we first have to detect the problem. 
One possibility is to directly measure the variability in the current set of 
solutions. However, this may be time-consuming as it necessitates O(N2) 
comparisons between all pairs of solutions. This problem can be mitigated 
by randomly sampling a few individuals and comparing them.

Alternatively, we could compute the difference between the values of 
the evaluation function, as these values are computed in any case. If the 
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difference between the best and worst solutions in a population is small 
and does not change over a few generations, it is probable that an early 
convergence has occurred.

It would seem that one could combat early convergence by lowering 
the selection pressure (i.e., the preference for better solutions); however, as 
we already mentioned, without preferring better solutions the algorithm 
cannot advance toward a solution, and maintaining the delicate balance 
between these two goals is almost unachievable.

Several approaches have been proposed for dealing with this problem. 
One could halt the algorithm every time early convergence is detected and 
start afresh with a new set of initial random solutions. After a predefined 
allocated running time, the algorithm is halted and the best solution found 
so far is returned.

Another approach is to raise the rate of mutations significantly when 
early convergence has been detected. The mutations “shake” the system up 
and break up the clustering of solutions. After a few generations the rate of 
mutation is turned back down to the original lower rate.

An interesting approach is niching. The population is initially divided 
into a few subpopulations, and the genetic operations take place only 
within subpopulations. After a period of such segregation, we allow cross-
over among all the individuals in the population for a short period, and 
then the population is again divided into subpopulations and the proce-
dure repeated. Assuming that each subpopulation will converge to a dif-
ferent local optimum, the periodic mixing of the subpopulation may create 
new solutions with the hope that some of them will combine better parts 
that have risen independently in different subpopulations.

A frequently arising issue when implementing a genetic algorithm is 
the simple linear trade-off between the size of the population and the 
number of generations. If you can allocate 100,000 computational steps 
(where a step is the evaluation of one candidate solution), you can have, 
for example, a population of 1000 solutions that runs for 100 generations 
or a population of 100 solutions that runs for 1000 steps. Clearly, we do 
not want to go to the limits: evaluating a population consisting of a single 
solution for 100,000 steps or a population of 100,000 solutions for one step 
makes no sense. Selecting the actual optimal trade-off point is tricky and, 
as many other decisions in genetic algorithms, requires trial and error. 
However, our experience suggests that it is often better to go with a larger 
population for a smaller number of generations as this decreases the prob-
ability of premature convergence.
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3.4.1  Holland’s Building Blocks Hypothesis

What is the source of the strength of the genetic algorithm paradigm? 
The main idea is that segments of the chromosome code for favorable fea-
tures of the desired solution. The algorithm succeeds, from time to time, 
to combine such favorable segments. This is done by the crossover opera-
tion, which can take two favorable segments, each residing on a separate 
chromosome, and can create a single chromosome containing both seg-
ments, thereby creating a much better solution. John Holland called these 
segments building blocks. Holland expanded this notion with his notion 
of schema, a set of solutions in the search space that have a common struc-
ture. For chromosomes represented as a sequence of bits, a schema will be 
a template that determines only a subset of the values of the bits. The bits 
not determined are denoted by the character * (a wild card or don’t care).

We call the bits defined by the schema (i.e., the bits that are not wild 
cards) defined bits. The number of defined bits for a schema H is called 
the order of the schema (e.g., a schema of order 1, a schema of order 2) and 
is denoted o(H). The length of a schema, denoted by d(H), is the distance 
from the first to the last defined bits in the schema. For example, for H = 
**10*10*, o(H) = 4 and d(H) = 5.

Observe two individuals in a population of chromosomes consisting of 
four bits:

	 A = 1010

	 B = 1001

These chromosomes have a few mutual characteristics that can be denoted 
as schemas: 1*** (a schema representing the fact that both chromosomes 
have a 1 as their first bit), 10**, or *0**. When a chromosome fits a schema, 
we say it is an instance of the schema.

Obviously, a genetic algorithm acts on chromosomes and not on sche-
mas, but we can think of the computational process as sampling specific 
instances of different schemas. This allows us to view the progress of the 
algorithm as a process where the values of the fitness function in conjunc-
tion with selection, and the mutation and crossover operators, divert the 
algorithm from schemas with low average fitness values toward schemas 
with high average fitness values.

Holland’s building blocks hypothesis states that genetic algorithms 
tend to start out by identifying fitness differences defined by schemas of 
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low order (i.e., schemas with a small number of defined bits). In successive 
generations the algorithm becomes more focused and succeeds in locating 
fitness values for schemas of higher orders (i.e., schemas with more and 
more defined bits), until it converges to the optimal region in the search 
space, which is highly enriched with high-order schemas with high val-
ues of the fitness function. The reason for this behavior is that low-order 
schemas will in general have more instances in the population. In other 
words, they will be better sampled. Low-order schemas, according to this 
perspective, provide coarse-grained estimates but serve as building blocks 
for more complicated high-order schemas (which are created mainly 
through crossing over), as the algorithm is drawn to regions of the search 
space characterized by schemas that have on average higher fitness values. 
According to the building blocks hypothesis this process is the source of 
the strength of genetic algorithms as a means for searching for solutions 
and optimization.

The genetic algorithm computes, indirectly, the average fitness of all 
schemas that have instances in the population and increases or decreases 
the number of instances accordingly. The concurrent evolution of a large 
number of schemas in a population consisting of a much smaller number 
of individuals is called implicit or intrinsic parallelism. This is one of the 
explanations for the effectiveness of genetic algorithms.

3.4.2  The Schema Theorem

In this section we prove Holland’s schema theorem, also known as the 
fundamental theorem of genetic algorithms. The theorem formally char-
acterizes the behavior of genetic algorithms.

Let m(H,t) be the number of instances of schema H at time t, and let 
u(H,t) be the average fitness of individuals who are instances of H at time 
t. We would like to compute m(H,t + 1), the number of instances of H in 
the population at time t + 1.

Assume that the parents are chosen using the roulette mechanism. 
Recall that the expected number of children of individual x in the popula-
tion is

	

f x

f t

( )

( )

where f(x) is the fitness of x, and f t( ) is the average fitness of the popula-
tion at time t.
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Let x denote individuals in the population at time t, which are instances 
of the schema H. If we ignore mutations and crossovers for the time being, 
we get

	
E m H t

f x

f t

u H t

f t
m H t

x H
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Thus, the expected number of instances of a schema in the whole pop-
ulation grows by the ratio of the average fitness of individuals who are 
instances of the schema to the average fitness of all individuals in the 
population. The number of instances of a schema with a high average fit-
ness will rise in the next generation, whereas the number of instances of 
a schema with a low average fitness will decrease. Note that although the 
algorithm does not explicitly compute the average fitness of a schema the 
value u(H,t) appears in the previous formula.

Next we analyze how the crossover and mutation operators affect the 
behavior of the algorithm. It is enough to consider only the destructive 
actions of these operators because our goal is to derive a lower bound on 
the successfulness of a schema. We will compute the probability Sc(H) 
that a schema H will still exist in the population after a crossover (at a 
single point)—that is, the probability that at least one of the descendants 
of instances of H will also be an instance of H. Let l be the length of the 
chromosome, d(H) be the length of the schema as previously defined, and 
pc be the probability of a crossover:

	
S H p

d H

l
c c( )
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1
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To understand this inequality note that there are l–1 possible crossover 
points, d(H) among them are inside H, so there is a d(H)/(l–1) probability 
that a crossover will cut and potentially destroy the schema. The prob-
ability that at least one such event occurs is pc(d(H)/(l–1)). Therefore, the 
schema will be conserved with probability 1–pc(d(H)/(l–1)).

We stress again that this is a lower bound as there is a possibility that 
the bits coming from the other parent will recreate the schema.

Let us now consider the mutation operator. A schema H will be con-
served after a mutation if and only if all its fixed bits were not mutated. A 
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bit will not mutate with probability 1 – pm. As the probability of mutation 
in any bit is independent of all the other bits, the probability that schema 
H will be conserved after mutation is (1 – pm)o(H).

Combining these results (i.e., multiplying the expected number of 
instances by the probability of the schema being conserved) produces 
Holland’s schema theorem, which gives a bound on the expected number 
of instances of H in the population at time t + 1 which is 
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3.4.3  Corollaries of the Schema Theorem

The schema theorem allows us to compute the rate of growth of the num-
ber of instances of H:
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Observe that if H is short and of a low order and if its fitness stays higher 
than the average fitness of the population, this expression is larger than 1, 
and the number of instances of H will grow, roughly at the rate of u(H,t)/ f (t) 
every generation. This is an exponential rate of growth (and we are discuss-
ing only a lower bound). This is of course compatible with Holland’s building 
block hypothesis previously presented.

However, this argument assumes that the population on which a genetic 
algorithm operates is a representative sample of the set of all possible chro-
mosomes in the search space. This assumption is needed to conclude that 
an exponential progress rate toward an optimal solution will indeed hap-
pen. It is easy to see how problematic this assumption can be. For binary 
chromosomes of length 20 there are 220 (which is more than a million) 
possible sequences. We usually restrict the algorithm to a much smaller 
population (say, 50 to 500 individuals). Obviously, the longer the chromo-
somes, the more critical this problem becomes.

On the positive side, recall that the schema theorem deals with only 
one aspect of the behavior of genetic algorithms. Given that some schemas 
have fitness advantage, the theorem shows that crossovers and mutations 
will not disrupt the growth in the number of instances of these schemas. 
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However, the power of genetic algorithms is also derived from the fact that 
crossovers and mutations can create even better new schemas from exist-
ing good schemas.

3.5  LAMARCKIAN EVOLUTION
Recall that Lamarckian inheritance is the inheritance of acquired char-
acteristics. Neo-Darwinism denies the possibility of inheriting acquired 
characteristics, based on our knowledge of biological inheritance mecha-
nisms, but this need not deter us from using this mechanism as a com-
putational tool. Obviously, we first must consider how to incorporate the 
inheritance of acquired characteristics into the evolutionary computa-
tional model and second evaluate whether this mechanism improves the 
behavior of the algorithm.

In the standard genetic algorithms model every individual in the pop-
ulation is represented as a chromosome, and a fitness value is computed 
for every chromosome using the evaluation function. This means that 
usually we compute the fitness directly from the genetic information (i.e., 
the genotype), and we do not have a notion of an explicit phenotype. For 
example, we interpret the bits in the chromosome as binary numbers that 
directly represent the numbers we are trying to optimize. Recall that in 
nature the phenotype is generated in a complex way involving the geno-
type as well as the influence of the environment. This process can involve 
various forms of interactions between genes (recall the discussion of reg-
ulation in Chapter 1), the influence of the environment on which genes 
become active and to what extent, environmental influence independent 
of gene action, and more. To consider the inheritance of acquired charac-
teristics it is helpful to distinguish between the phenotype and the geno-
type, since the inheritance of acquired characteristics amounts to having 
changes that occur in a phenotype reflected in the genotype that is passed 
to the next generation.

An example of a situation in which the distinction between genotype 
and phenotype is inviting is the design of learning systems, like the neural 
networks that were mentioned in Section 3.3.5 and will be discussed in 
detail in Chapter 4. The structure of the network (i.e., the number of ele-
ments and the way they are connected) is predesigned, but the strength of 
the connections (called weights) is adjusted in the learning phase of the 
network. If we use genetic algorithms to design such systems, we can rep-
resent the structure of the system as the genotype and can add a learning 
stage that can improve the performance of each network by changing the 
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weights of the connections between the elements, and generates the mature 
phenotype. The fitness of the individuals in the population (i.e., the differ-
ent networks) will be computed only after the learning stage. In the basic 
structure of genetic algorithms discussed thus far the fitness values are 
calculated for solutions immediately after they are formed, whereas here 
we calculate the fitness values after the solutions have been optimized. 
This is somewhat similar to Darwinian evolution where the phenotype of 
individuals, and hence their fitness, is affected by their life experience.

Recall that Weismann noted that it is unclear how a change caused 
by the environment can be coded as a genetic change. One can consider 
various systems where this problem will manifest itself (in Chapter 6, for 
example, we will see systems whose behavior is a complex result of the 
behavior of their components, making it difficult to find a change to the 
components that would lead to a phenotypically specified target behavior). 
However, in some computational cases this problem does not arise. For 
example, in neural networks all that is needed to implement Lamarckian 
evolution is to use the updated weights after the learning stage (“pheno-
types”) as the parent genotypes instead of the weights prior to the learning 
stage.

Now that we see how to incorporate the inheritance of acquired char-
acteristics into the genetic algorithms model, we can address the second 
question and see what computational benefits may arise from this modi-
fication. The two outcomes we may hope for are better behavior of the 
algorithm (e.g., faster convergence to a solution, avoiding local maxima) 
and finding better solutions. In some cases that researchers studied, both 
these goals were achieved, but as usual there is no way to predict a priori 
if inheriting acquired characteristics will give rise to a better or worse sys-
tem. Nonetheless, one aspect that was studied is worth mentioning.

When we allow learning to impact not only the fitness of solutions but 
also the genotypes of the individuals passed to the next generation, the 
role of the environment in which the solutions “learn” becomes impor-
tant. Returning to biological systems, the inheritance of acquired char-
acteristics allows directed changes caused by the environment, which are 
presumably adaptive, to be passed on directly to the next generation. This 
is in contrast to the natural selection scenario in which mutations are ran-
dom and are selected when they happen to be appropriate for the environ-
ment. In the previously given neural network example, the inheritance of 
acquired characteristics means that a change in weights caused by learn-
ing in the current generation is passed on to the next generation. As the 
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learned weights were adjusted to the challenges of the parents’ generation, 
the offspring will have an advantage over randomly generated individuals 
in learning the same tasks. However, this advantage comes with a cost: 
researchers who analyzed the inheritance of acquired characteristics in 
the evolution of neural networks discovered that, when the environment 
changed rapidly from one generation to the next, neo-Darwinian inheri-
tance worked better than the inheritance of acquired characteristics.

3.6  GENETIC PROGRAMMING
We end this chapter by presenting another evolutionary computational 
model that uses a different representation of solutions rather than the 
sequence of bits commonly used by genetic algorithms. As we have men-
tioned several times, it is sometimes easier and more natural to use repre-
sentations other than binary chromosomes.

In genetic programming (Koza, 1992; Poli, Langdon, and McPhee, 
2008), solutions are represented directly as computer programs that imple-
ment the different solutions to a problem. The fitness of each solution is 
determined by executing the program, usually on a number of different 
inputs, and by analyzing its success.

Despite the name genetic programming and its link to computer pro-
grams, genetic programming does not really deal with objects that are 
computer programs and with operators that change lines of code. In prac-
tice, the programs are represented as expression trees, and the genetic 
operators operate on trees.

Note that, although genetic programming has become a subfield in 
itself, the representation of the genetic information does not significantly 
affect the structure of the genetic algorithm itself, and it is always simi-
lar to standard genetic algorithms as previously described. The elements 
affected by the representation of solutions are those dealing directly with 
the genetic information, that is, the genetic operators like mutations and 
crossovers.

As a simple example of genetic programming, consider the problem of 
finding a simple mathematical function (or arithmetical expression) over 
x in [0..31] that most closely matches the points (0,0), (10,210), (31,0).

We will try to find a function of x composed of the four basic arithmetic 
operators (+, –, *, /) and real numbers in the range [0..31]. We will define 
the result of division by 0 as 0 (rather than an error), so we do not have to 
handle separately situations in which division by zero occurs during the 
evaluation of an expression.
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•	 Solution representation: Each solution will be represented as a com-
bination of the elements specified above as expression trees, such as 
the trees shown in Figure 3.7.

•	 Initial population: As with other evolutionary algorithms, the com-
putation begins with a random population of candidate solutions. To 
generate this population we need to generate a set of random expres-
sion trees. The maximal depth of the trees is usually specified in 
advance and guides the process. In the full method, randomly cho-
sen operator nodes are added to the tree successively until the maxi-
mum depth is reached, and beyond that only nonoperator nodes are 
added (in the current case these would be the numbers between 0 
and 31 and the variable x). In the grow method both operator and 
nonoperator nodes are added until the maximum depth is reached 
(from that point on until the tree is completed, only nonoperator 
nodes are added). A commonly used technique called ramped half-
and-half combines these two techniques by generating half the pop-
ulation using full and the other using grow. To ensure a variety of 
trees, various tree depths are used.

•	 Evaluation function: Every function f that is a candidate solution is 
evaluated by computing the values going over the list of points the 
function is expected to match and summing the distances between the 
values generated by the function and the desired results. The smaller 
this sum of distances, the more successful is the solution f. Note that, 
in contrast to most other examples in this chapter, we deal here with a 
minimization problem rather than a maximization problem.

•	 Crossover: Once the two parents are selected, we randomly select a 
node in the expression tree for each parent and exchange the sub-
trees of each node (Figure 3.8).

10 x

5

+ +–

* *

x x

0 10 21

FIGURE 3.7  Trees corresponding to the arithmetic expressions 10x + 5, 0 – x2, 
10 + 21.
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•	 Mutation: This is even simpler than crossover. Select a random node in 
the expression tree, and replace its subtree with a randomly generated 
subtree using the same distribution used to create the initial popula-
tion. A second type of mutation, called node replacement mutations (or 
point mutations), is similar to single-bit mutations in genetic algorithms 
and consists of a random change to a single node. In mutations of this 
kind a function can be replaced only by a function with the same num-
ber of arguments, and leaf nodes can be replaced only by leaf nodes.

As usual in evolutionary computation, this process continues until an 
individual with sufficient fitness is found. In this case, for instance, we 
may decide to continue the processing until an individual with fitness 
error of at most 0.5 is found.

To summarize, the following components need to be decided in order 
to attack a computational problem using genetic programming:

	 1.	The set of constants and variables that may appear in expressions—
in the example we used the values [0..31] and the variable x. This set 
is called the set of terminals and is denoted by T.

	 2.	The set of functions that are composed to create solutions (we used 
the four arithmetic operators). This set is called the set of functions 
and is denoted by F.

10

*

* *

*

+ –

–

x

5

x x

0

10 x x x

FIGURE 3.8  The crossover operation on trees. In this case 10x + 5 and 0 – x2 are 
crossed to yield 10x – x2.
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	 3.	The evaluation function, the selection mechanism, and when will the 
system halt (as in standard genetic algorithms).

As a second example of the use of genetic programming, consider the 
following bioinformatics application. A set of DNA sequences that presum-
ably have something in common (e.g., they may all come from regions in 
the DNA affected by a specific cellular mechanism) is given, and the goal 
is to find a regular expression (RE) that captures their similarity. To reduce 
the number of irrelevant answers, a control set of sequences that should not 
be identified as belonging to the original set is also given. Genetic program-
ming is used to evolve regular expressions that match as many sequences in 
the original set and as few of the sequences in the control set.

For the sake of this example, we allow regular expressions consisting 
only of the four nucleotides (this is the terminal set) and the concatena-
tion (.), alternation (|), and Kleene star (*) operators, without parenthe-
ses. The order of precedence of these operators is, from highest to lowest, 
Kleene star, concatenation, and alternation. We often omit the concatena-
tion operator and write r1r2 instead of r1.r2, thus at is the same expression 
as a.t. Examples of regular expressions from this language are a*t, which 
accepts any string of a’s (including the empty string) followed by a t, and 
a*t|t*a, which accepts strings that belong either the previously described 
set of strings or strings of t’s (including the empty string) followed by an 
a. Because of the lack of parentheses, the expression (a.t)*, which accepts 
any string consisting of repetitions of at, is not included in the specified 
regular expression language.

As before, solutions are represented as expression trees, crossing over is 
done by subtree crossing over, and mutations are done by replacing nodes 
with random nodes or subtrees. Clearly, a reasonable threshold has to be set 
for the maximal size of the tree to avoid solutions where many sequences 
are explicitly stored in the tree. To evaluate the quality of the different 
solutions, each regular expression is matched against all the sequences in 
each set. The quality of the solution depends on the number of true posi-
tives and true negatives as well as on the number of false positives (i.e., 
sequences that match the suggested regular expression but belong to the 
control set) and false negatives (i.e., sequences with the biological function 
that do not match the regular expression). To factor these four attributes 
in a way that takes into account the possibility that the two sets may be dif-
ferent in size, the Matthews correlation coefficient (MCC) can be used.
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MCC

tp tn fp fn

tp fp tn fn tp fn tn fp
=

⋅ − ⋅

+ + + +( )( )( )( )

where tp and tn are the number of true positives and true negatives, respec-
tively, and fp and fn are the number of false positives and false negatives.

The MCC is a value between –1 and +1, with +1 being a perfect predic-
tion and –1 being an inverse prediction.

Note that crossing over may produce expression trees for which there 
is no corresponding expression in the language we specified. A crossover 
of g* and a|t that replaces the g node of the star expression with the entire 
tree of the second expression results in the tree shown in Figure 3.9.

The corresponding expression in the language would presumably be 
(a|t)*, which is disallowed by the syntax of the previously defined lan-
guage. There are various solutions to situations such as this. In some cases 
the problem emerges because the language is too restricted. A possible 
solution in this case would be to use the full-standard definition of regular 
expressions, assuming that in the full language such problems do not exist 
(or are very rare). However, there may be cases in which such a change to 
the language is impossible. For example, we might be using an external 
regular expression engine whose syntax we have to match. Alternatively, 
the constraints of the language may not be artificial but rather be neces-
sary for producing expressions that make sense; for example, the language 
may include if statements in which the condition expression has to be a 
Boolean expression. In cases such as these we can ensure valid trees when 
producing the initial population and during mutation by following the 
syntax of the language. When doing crossover we may allow crossing over 
only between nodes having the same type (e.g., only a Boolean expression 
node can replace a Boolean expression node), or we can identify invalid 

a

|

t

*

FIGURE 3.9  A tree depicting an expression disallowed by the syntax of the 
language.
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offspring after crossover and redo the crossing over again to give the par-
ents a chance to produce valid offspring.

This discussion should make it clear why genetic programming is for-
mulated in terms of expression trees rather than textual source code. When 
textual representations are needed, parsing or unparsing to and from the 
tree representation may be necessary. Classically, genetic programming 
is formulated in terms of S-expressions, which underlie the syntax of the 
programming languages Lisp and Scheme. S-expressions use a prefix nota-
tion and explicitly encode the tree structure; for example, the S-expression 
equivalent to the arithmetical expression (2 + 3)*4 is (* (+ 2 3) 4). Since Lisp 
code is written using this tree notation, it is a natural candidate for genetic 
programming.

3.7  A SECOND LOOK AT THE EVOLUTIONARY PROCESS
In this chapter we presented the standard genetic algorithms model, 
which is widely used and is a basis for understanding other evolution-
ary algorithms. In the previous two sections we presented a few exam-
ples of using other evolutionary models for computational purposes 
and saw how evolutionary computation can use mechanisms such as 
the inheritance of acquired characteristics regardless of whether they 
operate in nature and to what effect. Not only are these models useful 
in practice, but they also provide useful intuition about cases where it is 
difficult to observe biological processes and thereby can help biological 
research by raising new questions and hypotheses (see the discussion of 
artificial life in Chapter 6) . In this way biology and computer science 
influence and enrich one another.

For this and other reasons it is useful to expand here on our knowledge 
of evolutionary processes. This allows us to see the genetic algorithms 
model we discussed in a wider perspective.

3.7.1  Mechanisms for the Generation and Inheritance of Variations

The neo-Darwinian theory presented at the beginning of this chapter stip-
ulates that two mechanisms generate evolutionary changes: mutations and 
sexual reproduction. Both these processes are inherently nondirected (i.e., 
cannot create targeted genetic changes in response to environmental chal-
lenges faced by the organism). Mutations are random and independent of 
the environment. Sexual reproduction creates new combinations of existing 
genes and might give an advantage to certain characteristics in the popula-
tion (e.g., because their carriers are more attractive sexually and therefore 
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will have more mates and offspring) but does not create new genes, only 
gene combinations. The roles of the organism and the environment are very 
clear: the organism presents a possibly new genetic constitution, and the 
environment selects among individuals. This paradigm is encapsulated by 
the slogan, “The organism proposes and the environment disposes.”

One could deduce from this that the genes uniquely determine the 
characteristics of the organism, and therefore the environment really 
selects between genes. But, as we all know, biological systems are much 
more complex; even identical twins—who share the same set of genes—
are not completely identical. The development of an organism is a long and 
complex process, and the environment plays a role in most of its stages. 
Rather than considering development as an inputless computer program, 
we must at least realize that input from the environment can affect the 
development process significantly. For example, some critical develop-
mental stages necessitate environmental stimuli or specific environmental 
conditions (e.g., sunlight, gravitational pull). Changes in the environ-
ment caused by the organism can affect it later on, so the relationship is 
interactive. No less important is the developmental flexibility exhibited 
by most organisms that allows them to thrive despite certain environ-
mental conditions or constraints. The observations made by Slijper in the 
1940s of a goat born without its front legs, a situation that would usually 
spell imminent death, are a particularly instructive example. Amazingly, 
the goat learned to walk on its hindquarters. After it got killed in a road 
accident, an autopsy was performed, and substantial changes were found 
in the goat’s skeletal structure, its musculature, and joints: all its systems 
had adapted to walking upright, although it is clear that no prior genetic 
information in the goat’s genotype was waiting to take over in such a situ-
ation, since it is unlikely that evolution had to deal with this predicament 
frequently enough and for enough generations.

Such examples demonstrate that the role of the environment is not lim-
ited to selecting individuals and that it has a significant impact on the 
development of organisms. The capability of organisms to adapt to chang-
ing conditions is called developmental plasticity, and, as the goat story 
suggests, can have a major impact on the fitness of individuals (and hence 
on their evolutionary success). Developmental plasticity is a mechanism 
for creating variations. However, it is important to note that in the absence 
of other mechanisms these changes are not inherited, and therefore devel-
opmental plasticity is not a mechanism for creating heritable variability.
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Having compared the genetic information with a computer program, it 
is important to keep in mind that biological control is rather more com-
plicated than the analogy with a sequential computer program would 
have us believe. Instead of a master control program, each cell and system 
operates semi-independently of others, and indeed so do the proteins and 
gene networks within each cell. The control is distributed and reactive to 
stimuli on a variety of levels of organization, and the resulting behavior is 
a complicated outcome of many localized interactions. This fact is relevant 
for understanding many of the phenomena we discussed, from develop-
mental plasticity to the difficulties in the notion of inheriting acquired 
characteristics. In Chapter 2 we saw how simple local rules can lead to 
complicated and coordinated behavior. We return to this topic again in 
Chapter 6.

The genetic algorithms model discussed in this chapter is based on our 
understanding of the evolutionary process founded on genetic inheritance. 
Other mechanisms allowing information passing between generations are 
used in many situations. A fundamental example is the capability of cells 
in multicellular organisms to differentiate into different cell types such 
as nerve cells and blood cells. Recall that, since all cells carry the same 
genetic information, the differences between the cell types occurs because 
a different set of genes is expressed in each type. In general, the decision of 
which genes will be expressed in each cell in any given time is not based on 
changes in the genetic information itself (the DNA sequence) and is there-
fore called epigenetic. The epigenetic variations that create the phenotypic 
differences between the cells are dependent on developmental conditions 
for each family of cells. The changes can remain stable for long periods of 
time in the life of the cell and can be passed on via various processes col-
lectively called epigenetic inheritance to the next generation of cells: for 
example, liver cells will create new liver cells. Another way for one genera-
tion to impact the next generation is by creating environmental changes. 
For instance, the dams a beaver builds impact the environment of its 
descendants and thereby the selection pressure and developmental cues 
they will have to deal with. It is interesting to observe that such environ-
mental changes (called niche construction) impact not only the descen-
dants of a particular individual but also the offspring of other individuals 
and even of other species. In this way the shared environment allows dif-
ferent species to mutually affect each other over many generations and for 
sustained periods of time.
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Another route for passing information between generations is social 
learning and imitation. Social animals, including humans, imitate and learn 
from one another, which allows variations to spread within and between gen-
erations. As a final example, note that another way of passing information 
between generations is inheriting immunity to pathogens from the mother. 
In many species of mammals the mother passes antigens via the placenta and 
milk. Passing on this information (which has mainly been acquired by the 
mother during her life as a reaction to infections and is thus similar to pass-
ing acquired characteristics), allows the descendants to gain protection from 
pathogens in the environment without the dangers associated with infection.

Eva Jablonka and Marion Lamb proposed that the existence of such 
inheritance processes in addition to genetic inheritance suggests that in 
some cases heritable variations of these kinds are more advantageous than 
genetic variations (Jablonka and Lamb, 2005); we should ask ourselves 
how we can adopt similar processes for evolutionary computation.

3.7.2  Selection

Selection is the mechanism that turns random variation into cumulative 
evolutionary change. Throughout this chapter we assumed that selection 
is the main mechanism for evolutionary change that leads to individuals 
adapted to their environment. The question as to whether this really is 
the main mechanism leading to evolutionary change in nature and how 
important other processes, such as the previously described variational 
mechanisms, are to the direction of evolution is a major area of debate 
between researchers. A related debate is on the importance of processes 
in which members of a random subset of a population, not determined by 
fitness, become parents to the next generation. We can consider such pro-
cesses as sampling processes, since only a random sample of the population 
becomes the genetic source of the next generation. A simple example of this 
occurs when the environment changes significantly enough so that no indi-
vidual is better adapted to the new conditions than other individuals and 
most of the population perishes. The remaining population is composed 
of the “luckier” individuals and not necessarily those with a better genetic 
makeup. Another example is the situation where a small random sample of 
the population moves to a distant and isolated location (e.g., an island) and 
continues reproducing there (the technique of niching introduced above is 
somewhat similar to this situation). If the original and new environments 
are different, then the resulting differences between the two populations 
may be due to selection. However, even if the two habitats are identical, 
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differences between the two populations may appear because genetic vari-
ability that exists in the island population is small relative to the genetic 
variability in the original population. Sampling processes such as these are 
called drift. Their role in evolution and relation to selection remain contro-
versial. Clearly, the smaller the population, the higher the risk that random 
drift will affect the evolution of the population. To simplify analysis, many 
theoretical models of evolution assume an infinite population, but in many 
real-life situations population sizes are in fact small. Experience shows that 
population size is also an important factor in evolutionary computation.

Finally, note that the fitness landscape in nature is not fixed, in con-
trast to the way we portrayed it throughout this chapter. In fact, it changes 
due to changes in the environment, the impact of other organisms in the 
environment, and even due to changes in the environment that are the 
result of the activities of the organism (e.g., beaver dams). All these fac-
tors may be incorporated into evolutionary computational techniques or 
arise there because of unforeseen interactions between elements of the 
computational model. It is not a simple climb on the fitness slope since 
the slope shifts and changes under the organisms’ feet!

3.8  SUMMARY
We discussed computational strategies inspired by biological evolution 
and in particular by natural selection. Most of the discussion in this 
chapter was devoted to the classic genetic algorithm developed by John 
Holland. We described a range of variations on the basic algorithm, which 
in some cases show superior performance. As we saw, the representation 
of solutions can have a significant impact on the success of the evolution-
ary search, and many problems are naturally represented in formats other 
than binary chromosomes.

We showed how the behavior of genetic algorithms can be analyzed for-
mally and explained the proof of Holland’s schema theorem. This discus-
sion elaborated on Holland’s building block hypothesis and the implicit 
parallelism that characterizes genetic algorithms.

The generic structure of evolutionary computation lends itself naturally to 
many variations. We discussed two major ideas—Lamarckian evolution and 
genetic programming—but many other models are described in the literature.

The chapter concluded with a short digression about evolution in 
nature, with the goal of showing the richness of the evolutionary processes 
in nature, large parts of which are not represented directly in the classic 
genetic algorithm model.
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3.9  PSEUDO-CODE

// Generic code for implementing a simple genetic algorithm 

INIT_POPULATION(pop)  // Create initial population 

WHILE not END_CONDITION(pop)
 BEGIN 
 // The end condition can be any of the conditions described in
 // section 3.2 

REPORT(pop)          // report properties of current population 

 new_pop:=NEXT_GENERATION(pop) // create next generation 
 pop:=new_pop
 END
REPORT(pop)          // report properties of final population 

NEXT_GENERATION( )

CALCULATE_FITNESS_OF_INDIVIDUALS( )

      WHILE  FULL( )
 BEGIN 

SELECT( )
SELECT( )
CROSSOVER( )
MUTATE( )

INSERT( )
  END 

RETURN

rand()

SELECT( )

:=SUM_FITNESS( )
:=rand() *

:=
:= FITNESS( )

WHILE
BEGIN

FITNESS( )
       END 

RETURN
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3.11  EXERCISES
3.11.1  Evolutionary Computation

	 1.	Discuss how a genetic algorithm should deal with the situation 
where, after a large number of generations, no good enough solu-
tion for a problem has been found. Try to suggest ways for a system 
designer to attempt to increase the probability of finding a solution 
when such a situation occurs.
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3.11.2  Genetic Algorithms

	 2.	Is it a good idea to choose a large pm (close to 1)?

	 3.	In the general algorithm we described, pm determined whether to 
flip a bit. In another description of genetic algorithms, pm determines 
whether to replace the bit with a new bit, and if so the new bit is cre-
ated as a 1 with probability 0.5 and as a 0 with probability 0.5. Are 
these two algorithms fundamentally different, or are they the same 
up to simple adjustments of parameters?

	 4.	Describe in detail how to find the values of x ∈ [31,..,62], y ∈ [0,..,31], 
which minimize the function g(x,y) = x2 + 2xy – y2 using a genetic 
algorithm. Consider how the selection method and population size 
may affect the rate of convergence and minimize the dangers of pre-
mature convergence.

	 5.	An ant walks on a rectangular two-dimensional grid containing 
obstacles. All steps are of length 1 on the grid. Before each step the 
ant can change its direction to one of the four possible directions 
(north, south, east, or west). A path is composed of ten such steps 
(consisting of a turn and a move). When an ant hits an obstacle it 
cannot move further and remains stuck in place.

	 a.	 Propose a way for representing possible paths as a chromosome 
of bits.

	 b.	 Show how to use a genetic algorithm to find the maxi-
mal Euclidean distance from the beginning of the path (i.e., 
the maximal distance between the start and end points of a 
path) an ant may reach in ten steps.

3.11.3  Selection and Fitness

	 6.	After an individual is chosen to serve as parent, it may either be dis-
carded or returned to the population so that it can be selected again. 
How does this choice affect selection pressure (for concreteness, con-
sider each selection mechanism separately)?

	 7.

	 a.	 Express the probability P(i) of choosing individual i as a parent 
using fi (i=1..n), for roulette wheel selection.
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	 b. 	 Using (a) derive the expected number of offspring for individual 
i assuming the size of the population is n.

	 8.	Show that the values of the probability function P(i) derived for rou-
lette wheel selection are between 0 and 1 and that their sum is 1.

	 9.

	 a.	 In Tournament selection does the selection pressure increase or 
decrease when the size of the set k is increased?

	 b.	 If two individuals are selected to be compared and the individ-
ual with the higher fitness is chosen as parent with probability 
p while the individual with the lower fitness is chosen as par-
ent with probability 1 – p, will the use of a smaller p increase or 
decrease the selection pressure?

	 10.	We can add an elitism mechanism to any of the selection methods, 
whereby in each generation a number of individuals with high fitness 
are chosen and passed as is to the next generation (similar to what 
happens to most individuals in steady-state selection). One of the 
advantages this offers is that it guarantees the monotonicity of the 
maximal fitness in the population (as it clearly can only increase). 
Does this raise or lower the selection pressure?

	 11.	Try to find biological examples analogous to each of the selection 
techniques presented. Try to speculate whether these techniques 
were developed based on biological observation or as an attempt to 
improve the performance of genetic algorithms.

3.11.4  Genetic Operators and the Representation of Solutions

	 12.	A chromosome is composed of two consecutive genes A and B, each 
of which is represented by five bits. There are two values (alleles) of 
A and two alleles of B in the population. The two alleles differ in 
every bit. Each allele of each gene appears in 50% of the population. 
What is the probability that a crossover between two chromosomes 
will give rise to a new allele of A that did not exist in the original 
population?

	 13.	Repeat the analysis in question 12 for chromosomes of length 100, 
where A is on the left end of the chromosome, B on its right and there 
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are the 90 bits between them all with value 0 for every individual in 
the population.

	 14.	One can change the “rate” of mutations pm during the execution of a 
genetic algorithm. What would be the advantage of doing so? How 
should one change pm as the execution progresses?

3.11.5  Analysis of the Behavior of Genetic Algorithms

	 15.	Given the schema H = 1***01*, compute o(H) and d(H). How many 
possible instances are there of H?

	 16.	Compute the number of schemas for which a given chromosome of 
length l can be an instance.

	 17.	Prove that not every subset of chromosomes of length l is uniquely 
defined by a schema.

	 18.	Assume a genetic algorithm or hill-climbing algorithm that repre-
sents the solutions as a real number x rather than a chromosome 
made up of bits. How would you implement mutations in this repre-
sentation? (Hint: think of the definition of the derivative.)

	 19.	Explain why the niche method lowers the risk of early convergence.

	 20.	The following observation lowers the bound given by the schema 
theorem: a crossover cannot destroy a schema if both parents are 
instances of the schema, regardless of the crossover point. Refine the 
bound we derived using this observation. Hint: derive an expression 
that computes the probability that at time t the second parent will 
belong to H, under the assumption that the first parent belongs to H. 
We are interested in the complement of this situation. Combine this 
expression with the expression dealing with crossovers in the proof 
we presented for the schema theorem.

	 21.	We can deduce from the schema theorem that the success of a par-
ticular schema is independent of the success of other schemas in the 
population and depends only on its average fitness and the average 
fitness of the population as a whole. Explain this statement and why 
it supports the idea of implicit parallelism. Based on the discussion 
of the schema theorem in the chapter, qualify this conclusion.
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3.11.6  Genetic Programming

	 22.	Consider a case in which genetic programming is used for a problem 
of finding a mathematical function that goes through a given set of x,y 
points (numerical regression). Suppose additionally that the solution 
must be of the specific form such as a*sin(x) + b*cos(x), where a and 
b may be any arithmetic expressions not involving x. Suggest ways to 
use genetic programming to find solutions that have the desired form.

3.11.7  Programming Exercises

	 23.	Given 10 cards numbered 1 through 10, divide them into two piles, 
such that the sum of the card values in the first pile will be as close 
as possible to 36 and the product of the card values in the second pile 
will be as close as possible to 360.

	 a.	 Suggest a way to solve this problem using a genetic algorithm, and 
describe all its components. It is recommended to write a whole 
computer program to implement the evolutionary computation.

	 b.	 Do you think that genetic algorithms are suitable for solving this 
problem? Did you change your mind after you experimented 
with the program?

	 24.	Given x,y coordinates of 10 cities and assuming an Euclidian dis-
tance between each pair of cities, use a genetic algorithm to find 
the shortest path through all of the cities (the traveling salesman 
problem).

	 25.	Sorting networks are hardware components used to sort sequences 
of numbers. Their advantage is their simplicity and their high par-
allelism. They operate as follows. Every number in the sequence 

FIGURE 3.10
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is put in a channel (the number of channels equals the sequence 
length). Every two channels are connected with a comparator ele-
ment, a component that compares two numbers and exchanges 
them as needed so that the number in the lower-indexed channel 
is the smaller one. The numbers in the sequence move along the 
channels and are exchanged if need be. The goal is that at the end of 
execution the channels will contain a sorted sequence. The network 
in Figure 3.10 sorts 10 elements (the horizontal lines are the chan-
nels, and the vertical lines are the comparators). The depth of the 
network is defined by the number of nonparallel exchanges, so in 
this example the network contains 29 comparators and has a depth 
of 16. A good network will use a small number of comparators and 
will have a low depth. In this exercise we will attempt to find a net-
work that will correctly sort any possible input and will have a small 
number of comparators using a genetic algorithm (you can ignore 
the low depth requirement).

	 a.	 Design and implement a genetic algorithm for designing a sort-
ing network of sequences of numbers of length 12. Analyze the 
behavior of the algorithm in relation to the following points:

	 i.	 How did you deal with the huge number of possible input 
sequences? How did you determine when to stop searching 
for a solution?

	 ii.	 How did you represent the solution? What were the genetic 
operators, and the evaluation function, and how did these  
decisions impact the behavior of the algorithm?

	 iii.	 How would you modify the representation if you were trying 
to also minimize the depth of the network?

	 iv.	 What did you do to avoid local maxima?

	 b.	 To escape from local optimums, we can use the following tech-
nique: in addition to the population networks, we will run in par-
allel an evolutionary process for a population of test sequences 
that the networks have to sort correctly (the more sequences are 
sorted correctly, the higher the fitness of the sorting network). 
The “goal” of the sequences is to hinder the performance of the 
sorting network, so a fitness of a sequence will be higher if net-
works fail in sorting it. Implement this idea, and test its impact 
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on the performance of the sorting networks. How would you 
describe this change in terms of what it does to the fitness land-
scape of sorting networks?

	 26.	Given 100 points on the plane represented as 2-tuples (x,y), use a 
genetic algorithm to sort them into five clusters. Use the two repre-
sentations described in Section 3.2.3 and compare the behavior of 
the algorithm and the quality of the results.

	 27.	Given an undirected connected graph G = (V,E), compute a cycle 
(a path that starts and ends on the same vertex) such that every 
edge is used exactly once (such a cycle is called an Eulerian cycle if 
such a cycle exists). Let m be the number of edges. We want to solve 
this problem using two evolutionary algorithms, with no crossover 
operations—that is, only the mutation operator is involved. A solu-
tion is represented as a permutation of the edges of G (and not as a 
binary chromosome). The fitness is defined to be the length of the 
longest prefix of the solution that is connected (adjacent edges that 
share a vertex). If the fitness equals the number of edges then the 
solution represents an Eulerian cycle. It was claimed that an asym-
metric mutation operator may be more effective than a symmetric 
one (Doerr et al., 2007). In this exercise we will investigage this 
claim.

		  Solution 1—Asymmetric mutation operator:

	 i.	 Choose a random permutation of edges π as the initial solution.

	 ii.	 Choose 1 ≤ i ≤ m uniformly at random. Let π’ be the result of 
moving the element at position i of π to position 1 and shifting 
the elements between position 1 and position i one position 
to the right. For example, jump(5) applied to (6,4,3,1,7,2,5) 
produces (7,6,4,3,1,2,5).

	 iii.	 Replace π by π’ if π’ has higher fitness.

	 iv.	 Repeat Steps 2 and 3 forever.

		  Solution 2—Symmetric mutation operator:

	 i.	 Choose a random permutation of edges π as the initial 
solution.
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	 ii.	 Choose 1 ≤ i,j ≤ m uniformly at random. Let π’ be the result 
of jump (i,j) applied to π, where the element at position i is 
moved to position j while the other elements between posi-
tion i and position j are shifted in the appropriate direction. 
For example, jump(5,2) applied to (6,4,3,1,7,2,5) produces 
(6,7,4,3,1,2,5).

	 iii.	 Replace π by π’ if π’ has higher fitness.

	 iv.	 Repeat Steps 2 and 3 forever.

	 Implement both solutions and compare their performance.

	 28.	Use a genetic algorithm to solve sudoku puzzles, and analyze the 
effect of Lamarckian evolution of the performance of the algorithm. 
Given a sudoku board, choose a population of solutions randomly 
(the population can be of any size, but a size between 50 and 100 
seems most appropriate), which will comprise the first generation. 
The algorithm will generate the subsequent generations. You have to 
decide on the following elements of the genetic algorithm:

	 a.	 Solution representation.

	 b.	 The evaluation function.

	 c.	 How to perform crossover between solutions.

	 d.	 What mutations will consist of.

	 e.	 How to select the individuals which will be passed on to the next 
generation.

	 The main objective of this exercise is to determine the influence of 
Lamarckian evolution on the performance of the genetic algorithm—
that is, determine the effects of allowing the inheritance of acquired 
characteristics. To this end, we will allow every solution to optimize 
its fitness and the passing of the improved solutions from one gen-
eration to the next. Optimization can be implemented, for example, 
by the following procedure: assume you chose to represent the solu-
tion using a 9 × 9 matrix. A solution is modified by exchanging two 
cells in the matrix. Optimization can be performed by finding the 
pair of cells that when exchanged will give rise to the best improve-
ment in the evaluation function. We will allow 100 optimization 
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steps for each solution. The representation and the optimization sug-
gested here are only examples, and you are free to choose other rea-
sonable approaches; however, the number of optimization steps for 
each individual has to be to the same. Compare the following three 
policies:

	 a.	 The usual genetic algorithm.

	 b.	 A genetic algorithm where each solution is optimized directly, 
the fitness is evaluated after the optimization step, but the solu-
tions used for generating the next generation are the original, 
nonoptimized solutions.

	 c.	 A complete Lamarckian algorithm, where each solution is fully 
optimized, fitness is evaluated after the optimization step, and the 
optimized solutions are used to generate the next generation.

Game boards can be found at http://www.sudokupuzz.com and many 
other places. The program has to deal with boards classified as easy, 
medium, and hard.

Compare the algorithm’s performance under the different inheritance 
policies and different levels of difficulty of a sudoku game.

3.12  ANSWERS TO SELECTED EXERCISES
	 2.	Usually not. If the mutation rate is too high, the properties of the 

good solutions will not be preserved from one generation to the next.

	 3.	There is no significant difference. The second algorithm behaves 
exactly like the original for a pm twice as small.

	 7.	If we denote by fi the evaluation value of i and by f̂i the fitness value 
of i, then
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	 Therefore, we deduce that with this selection mechanism and defini-
tion of fitness we can use the evaluation function directly when cal-
culating the probability of reproduction without first computing the 
fitness value separately. Using the probability P(i) we can estimate the 
expected number of descendants for i: in the population of size n as
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	 This is exactly the fitness value!

	 9.

	 a.	 The selection pressure increases as k increases.

	 b.	 Lowering p will decrease the selection pressure.

	 10.	As elitism maintains the solutions with the highest fitness and 
reduces the number of new offspring it raises the selection pressure.

	 15.	d(H) = 6, o(H) = 3. There are 16 (= 24) instances of the schema.

	 16.	A chromosome of length l belongs to 2l schemas since a matching 
symbol in the schema can be either the same symbol as in the chro-
mosome or *.

	 17.	There are 22l

subsets and only 3l possible schemas.

	 20.	A refined expression for the schema theorem:
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		  where n is the size of the population.

	 21.	The formula we derived shows that the rate of growth of the number 
of instances of a schema depends only on the schema’s average fitness 
and on the average fitness of the population. So we can consider the 
evolutionary process as dealing with schemas rather than individuals 
(i.e., the fitness of schemas rather than the fitness of individuals). But 
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in practice the algorithm tests the fitness of individuals and only indi-
rectly the fitness of schemas; therefore, a small number of individuals 
represent a larger number of possible schemas, and we have implicit 
parallelism. On the other hand, if the population is too small, the 
sampling of schemas it provides may be insufficient and hence prob-
ably biased.

	 23.

	 a.	 The natural way is to represent solutions as binary chromosomes 
of length 10. If a bit has value 1, the card belongs to the first pile 
and otherwise to the second pile. To compute the fitness of a solu-
tion we will construct an error function and attempt to minimize 
it. The function has to take into account both piles relative to 
their target values (the absolute value of the difference from the 
targets), making this a multiobjective optimization problem. The 
products are bigger than the sums, so the function has to account 
for this when combining the values (by multiplying the term for 
the sum by an appropriate factor).

	 b.	 The search domain is small (1024 possibilities), and the fitness 
landscape is not smooth and hard to climb due to the dependence 
between the components of the problem. Therefore, it is probable 
that on average a genetic algorithm will be less efficient than an 
ordered search or even a random search (this can be tested by 
increasing the rate of mutations).

	 24.	A possible way to represent the path to the genetic algorithm is by 
using a chromosome containing 10 numbers that determine the order 
of traveling between the cities. For example: 10 1 5 3 2 6 4 7 9 8 is a 
path starting at city 10, then city 1, then city 5 and so forth until it ends 
at city 8. A mutation would be a swap of two cities, and a crossover 
will be cut and paste of two permutations. Note that such a crossover 
does not guarantee that only valid paths (i.e., a real permutation) will 
be produced; thus, there is a need to go over each offspring, to check its 
validity, and where necessary to correct it (e.g., by randomly replacing 
cities that appear twice by cities that did not appear at all).
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C h a p t e r  4

Artificial Neural Networks

Up to now we have dealt with computational models inspired by 
biological systems, and our discussions have been focused on their 

computational capabilities, that is, their abilities to solve difficult compu-
tational problems. In this chapter we will again look at a model inspired by 
a biological system (the brain and the nervous system), but we will focus 
on a specific capability of this model, namely, its learning capability.

Artificial neural networks (ANN) are a family of computational models 
inspired by various aspects of the nervous system and the brain. A neu-
ral net is a set of interconnected simple computational units, similar to 
the brain, which is composed of a large number (on the order of 1011) of 
neurons that are interconnected. Artificial neural nets are interesting in 
part due to the large number of technological applications they have and 
in particular because neural nets are extremely useful tools for solving 
problems that require learning or generalizing from examples.

4.1  BIOLOGICAL BACKGROUND
The atomic units of the nervous system are nerve cells, also known as neu-
rons. Neurons come in many different forms, but they all share some char-
acteristics: they have components called dendrites that act as “antennas” 
and are composed of extensions that receive signals from various sources 
(mainly from other neurons) and another component called an axon that 
transmits output signals (Figure  4.1). A single neuron has many inputs, 
averaging between 1000 and 10,000 dendrites, but only a single output 
axon, which splits up at its end to allow it to connect to the dendrites of 
several other neurons. The dendrites are relatively short, but axons can be 
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very long. For instance, in humans, the axon in neurons connecting the 
spinal cord to the foot is about 1 meter long.

When neurons are activated, certain physical changes happen in them, 
and an output signal is generated. For example, photo-sensitive cells in 
the eye react to light by creating neural signals that are then acted upon 
by the nervous system and the brain. How are the signals inside a neuron 
and between neurons transmitted? Signals propagating along the axon 
are electric, whereas the signals received by the dendrites are chemical in 
nature. These signals are translated into electric signals by using a com-
plex array of gates and pumps that control the ionic balance in the cell 
and generate electric signals. When the sum of signals in the dendrites 
surpasses a certain threshold, the cell body (or soma) generates an electric 
signal that propagates along the axon. This is called a nerve impulse. One 
of the reasons the signal does not decay along the axon is that the axon 
is sheathed by an insulating material called myelin. In patients suffering 
from multiple sclerosis, the myelin sheath is defective; therefore, in these 
patients the nervous system is severely impaired.

In contrast to this electrical conductivity, signals are passed between 
one neuron’s axon to other neurons’ dendrites using chemical molecules 
called neurotransmitters that cross the gap between the axon and the den-
drite, called a chemical synapse, or just synapse. The sending neuron is 
called the presynaptic neuron, and the receiving neuron is the postsyn-
aptic neuron. Vesicles containing neurotransmitters are at the end of the 
axon. The electrical impulse triggers the fusion of the vesicles to the outer 
membrane and changes the permeability of the vesicles, thereby causing 
the release of the neurotransmitters into the synapse. The neurotransmit-
ters then defuse to the other side of the synapse, bind onto receptors on the 

Dendrite

Nucleus

Axon

Myelin sheath

Axon Terminal

FIGURE 4.1  A schematic description of the structure of nerve cell. The dendrites 
are the inputs of the cell, and the long axon is the output.
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dendrites, and cause them to activate and start the electrical signaling in 
the neighboring cell, or modulate it. About 100 different molecules acting 
as neurotransmitters have been identified in the human brain.

This complex signaling mechanism has several advantages. The transla-
tion from an electrical signal to a chemical signal and back again allows 
for signal amplification and prevents signal decay. Moreover, different 
neurotransmitters have different affinities to the postsynaptic receptors, 
leading, for example, to different rates of signal transmission, and as a 
result affect postsynaptic neurons in a differential way. Thus, the vast 
array of neurotransmitters allow for fine-tuned control over the function 
of the nervous system.

The brain size of animals varies widely—from the 0.001 gr brain of 
honeybees to the 10 kg brain of whales. Generally, there is a good correla-
tion between the size (either mass or volume) of the brain and the size of 
the body of animals; the human brain, which typically weighs around 1.2 
to 1.4 kg, stands out with a high brain-to-body ratio. However, although it 
is common in comparative studies to normalize the size of the brain to the 
size of the body, the absolute size of the brain must also play a role, as there 
might be a limit to how much the brain circuitry can be miniaturized. 
Thus, it is fascinating that honeybees, whose brain size is only about 0.001 
gr (compared with a body mass of about 0.1 gr) are capable of sophisti-
cated social behavior. Readers interested in this subject are referred to a 
recent review (Chittka and Niven, 2009). In general, the sophistication of 
the brain depends not only on its size but also on its structure and level of 
interconnectivity.

We already mentioned that neurons are highly connected. A neuron 
can receive input from tens of thousands of neurons and output signals to 
hundreds of other neurons. The strength of the system is due to its high 
connectivity. The human brain is highly connected; it consists of the order 
of 1011 neurons interconnected by the order of 1014 synapses, thereby allow-
ing for complex collective computations.

The development of the nervous system can be understood as consist-
ing of two components. First, neurons are created, and their axons grow 
in various directions. This determines the overall topology of the neural 
network. Next, the strength of connections at each synapse is refined due 
to the signals passing between adjacent neurons. Neurons live for a long 
time, and in a certain sense the brain continues to develop as long as the 
organism is alive. Thus, synapses are generated, strengthened, weakened, 
or eliminated. We do not understand all these processes in full detail, but 
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it is known that these processes are at the core of the amazing ability of the 
human brain to learn and remember.

Artificial neural nets are a simplification of the biological system. We 
will use very simple “neurons” that can sum up their inputs and can pro-
duce a corresponding output. In these artificial networks, like real neural 
networks, the system gains its strength from the connections between the 
single cells, and the challenge is to design a system that can learn, remem-
ber, and perform complex computations.

4.1.1  Neural Networks as Computational Model

In addition to scientific curiosity, researchers try to mimic the brain when 
designing computational systems for many practical reasons. The brain 
presents many desirable properties that are hard to achieve in standard 
digital computational systems:

•	 Fault tolerance and robustness: Individual nerve cells can die with-
out affecting the functionality of the system. In fact, the brain can 
withstand damage that is rather widespread.

•	 The ability to deal with inconsistent, noisy, or unreliable data: Our 
daily experience shows that the brain is capable of reaching correct 
decisions, at least most of the time, under conditions where the rel-
evant data are far from being complete and entirely reliable.

•	 Parallelism: Computation in the brain happens simultaneously in 
different regions and is based on the local interaction between neu-
rons connected to each other.

•	 Asynchronous: The brain does not contain a clock that synchro-
nizes the different computational processes and nonetheless can 
compute effectively.

•	 Learning ability: The human brain, as well as brains of simpler 
organisms, can adapt the organism’s behavior to changing environ-
ments. This is in stark contrast to computers, which have to be repro-
grammed when computational challenges change.

4.2  LEARNING
One of the main characteristics of animals is their ability to learn. One 
can see this ability even in simple bacteria (which are simpler than the 
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simplest animals) that can adapt to their environment both as individu-
als and as colonies (see Chapter 2). Higher organisms can perform different 
types of learning based on either their own experiences or by learning 
from teachers, such as young animals imitating their mothers, dogs 
being trained, or learning abstract ideas through reading as is happening 
between the readers of this book and its authors. Realizing the advantages 
of learning, scientists were motivated to design artificial systems that can 
learn, and this gave rise to various approaches to machine learning. It is 
customary to distinguish between two types of machine learning:

•	 Supervised learning: Animals tend to learn by example, such as 
when a cub learns from its mother to distinguish between danger-
ous and benign animals. In this case the mother is the “supervisor” 
that supplies the correct answers. Similarly, in a supervised learning 
system, the system’s output is compared with answers known to be 
correct, and then the internal parameters are tweaked in an effort to 
make its output correspond better to the correct answers. The obvi-
ous goal is for the system to internalize and generalize the answers 
so that eventually it will be able to give correct answers to questions 
that are not in the training set. Supervised learning comes in two 
flavors: either the trainer provides the correct answer to the trainee, 
or the trainer merely indicates whether the solution is correct and 
grades it.

•	 Unsupervised learning: In addition to supervised learning, higher 
animals and in particular humans are capable of independent learn-
ing. In this process there is no trainer to grade the answers, and in 
fact there is no a priori definition of correct and incorrect answers. 
Still, humans learn by attempting to discover consistent patterns 
in phenomena they encounter. Similarly, in unsupervised learning 
a computational system is tasked with discovering interesting pat-
terns in its input that have statistical significance. Discovering such 
patterns allows, for example, the machine to make correct decisions 
based on the input data and to successfully forecast future inputs.

Most of this chapter will deal with supervised learning, but we will pro-
vide one example of unsupervised learning, self-organizing maps (SOMs).

Machine learning can be implemented using standard computational 
techniques, but as artificial neural networks are computational models 
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emulating natural learning systems, they are particularly well suited to 
such tasks. This chapter deals with such artificial neural networks and 
their usage as learning systems.

4.3  ARTIFICIAL NEURAL NETWORKS

4.3.1  General Structure of Artificial Neural Networks

The atomic unit of the simplest artificial neural network is an idealized 
neuron called the McCulloch–Pitts neuron, shown in Figure  4.2. The 
neuron can be in one of two states: (1) the firing state (denoted by the 
value 1); and (2) the nonfiring state (denoted by the value 0). The state 
of the neuron changes according to signals it receives from the neurons 
feeding into it: The value ni of neuron i at time t + 1 is calculated by the 
following formula:
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The step function Θ is called the threshold function or the activation 
function of the neuron.

The value θ defines the threshold required to activate the neuron, 
and wij are the weights that define how strongly the input from neuron j 
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FIGURE 4.2  A simple artificial neuron. The neuron sums the inputs (each mul-
tiplied by the relevant weight). If the weighted sum is larger than the threshold θ 
then the neuron will have output of 1; otherwise the output will be 0.



Artificial Neural Networks    ◾    149

influences neuron i. (Note that the common convention is to denote the 
weight leading from j to i by wij). The weighted sum of the input signals 
arriving at time t has to be above the threshold θi for neuron i to fire at 
time t + 1. The outputs of the neurons are binary values, but as these val-
ues are multiplied by the weights, which are real numbers, the inputs of 
the neurons are real numbers. The binary values are usually 1 and 0 (as 
indicated in the previous formula), although for some of the analysis that 
we will show it will be simpler to use the sign function instead of the Θ 
function and represent the output by 1 and –1.

A neural network is a collection of neurons that are connected to each 
other. Simple networks are single layered, and we will discuss them first. In 
these networks the neurons representing the input are connected directly 
to the neurons representing the output. Other networks are multilayered, 
which means there are one or more layers of neurons between the inputs 
and the outputs. Other networks have a topology that is not layered at 
all, for instance, a network where each neuron is connected to all other 
neurons. In every network every connection (often called an edge) has a 
weight that determines how active this connection is, and these weights wij 
determine how the neurons’ states will change after setting the network’s 
initial conditions.

It is easy to see that the network shown in Figure  4.3 computes the 
majority function: if two or more of the inputs are of value 1, the weighted 
sum of the inputs to the neuron will be larger than the threshold value (θ 
= 1), and its output will be 1. For instance, if X1 = 1, X2 = 0, X3 = 1 then the 
weighted sum of these values is 0.8 × 1 + 0.7 × 0 + 0.6 × 1 = 1.4, which is 
larger than the threshold value of 1. If only one input has the value 1, or 
all of the inputs are 0, the weighted average will be less than 1, and the 
neuron’s output will be 0. In this example, the weights were chosen so 
the network computes the desired function, but as we will see one of the 

θ = 1
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FIGURE 4.3  A very simple network comprised of one neuron that implements 
the majority function. If two inputs or more have the value 1 then the output will 
be 1; otherwise it will be 0.
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main challenges in working with neural networks is to find a way for the 
network to self-adjust the weights so as to compute a given function.

This simple model of neurons simplifies away most of the complexity 
of biological neurons, but it allows us to build useful neural networks. 
Despite the simplicity of the single neuron, the theoretical analysis of 
networks of these neurons poses complicated challenges. This approach 
to artificial neuronal networks was suggested in 1943 by McCulloch and 
Pitts. They showed that it is possible to build a universal computer using 
such neurons, thereby demonstrating that simple units such as these are 
computationally strong when combined in networks.

A few of the differences between biological neurons and the abstract 
McCulloch–Pitts neurons are as follows:

•	 McCulloch–Pitts neurons follow a step function and thus have a dis-
continuous reaction (i.e., they don’t react below the threshold and 
then switch to full activity). The response of real neurons is con-
tinuous although they may have rapid change of activity at some 
point. Some artificial neurons use continuous functions, and we will 
describe them and their properties when we talk about multilayer 
networks.

•	 Some real neurons address their input in a sophisticated manner 
rather than simple linear summation. For example, if the input from 
a certain source rises above a certain threshold, then this input is 
no longer taken into account. Examples of differential treatment 
can be found in the sensory system. For example, some neurons are 
responsible for distinguishing between sounds that reach both ears 
simultaneously. The neurons can distinguish between an increased 
volume in one ear (one input) and the same increase into both ears, 
even when the sum of the inputs is the same in both cases (Segev, 
1998). One can model such properties of single neurons by a collec-
tion of McCulloch–Pitts neurons.

•	 The output of real neurons is a sequence of pulses (spikes) rather 
than an output of a constant level. Biological neurons can represent 
information not only by the level of the output but also by the rate 
in which the pulses are emitted. Recently artificial neural networks 
using such spike neurons as their basic elements have been proposed, 
but we will not discuss these networks here.
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4.3.2  Training an Artificial Neural Network

In neural networks, learning is achieved by updating the values of the 
weights. As the weights determine the result of the computation, we have 
to set the weights so that they produce the correct output for the learning 
samples. In most situations this is achieved by setting initial random val-
ues for the weights and then modifying them so that the network will pro-
duce the required results. We will discuss how this process is performed 
in different kinds of neural networks.

In supervised learning we assume that there exists a training set of 
inputs for which the desired result of the computation is known. Although 
neural nets can produce numerical results (e.g., multiply two numbers), 
we will usually deal with networks whose computational goal is classi-
fication. Therefore, it is common to deal with input with a known clas-
sification into subsets, and the goal of the training phase is to teach the 
network to classify the input patterns by adjusting its weights. To demon-
strate the relevant ideas, it often suffices to discuss a network that outputs 
a single bit, which classifies the data into two subsets. Obviously, by using 
more output neurons the data can be separated into more classes.

During the training phase, each input item from the training set is pre-
sented to the network, and the network computes the output. If the result 
differs from the correct answer, the weights are updated in an attempt to 
fix the error. This process is executed repeatedly. One pass through all 
the training data is called an epoch. As the weights are constantly being 
updated, there is no guarantee that input data producing a correct result 
will continue doing so at the end of the epoch. Similarly, there is no guar-
antee that the updated weights will result in a correct result when applied to 
an input set that had originally produced an error. Therefore, more passes 
through the training set may be needed. If the network produced the correct 
answers for all the input elements, then the training phase is completed.

We will see that there are problems and learning algorithms for which 
one can prove that this process converges and produces the correct weights. 
Nonetheless, in most cases we have no guarantee that the process will con-
verge, so deciding when to terminate the training phase and make do with 
a network that does not always produce the correct classification is of the 
utmost importance.

It is important to realize that in the learning stage the system can sim-
ply “memorize” the input rather than extracting features that character-
ize the input. There are existing networks, such as the Hopfield network 
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discussed later, whose main task is to memorize. However, learning net-
works are judged by their ability to give correct answers to new inputs 
for which no solutions were given. For example, assume that the training 
set consists of two sets of binary strings of fixed length. One set con-
tains strings all having an even number of 1’s, and the other contains 
strings all having an odd number of 1’s. Our goal is that, after the train-
ing phase on the training data including specific strings, the network 
will be capable of classifying correctly as many strings that were not part 
of the training set.

To determine how well a network has learned we define a test set 
containing input items not presented to the network during the train-
ing phase but for which the correct answer is known. The success (i.e., 
comparing the network’s result with the correct answer) of the network 
in classifying these items is the metric for evaluating the success of the 
network.

4.4  THE PERCEPTRON
One of the simplest types of a neural network that has learning capabili-
ties is called the perceptron and was among the first to be studied (Minsky 
and Papert, 1969). Perceptrons are used to solve classification problems—
that is, given an input, the network has to determine the class to which the 
input belongs. We will present a learning rule used to update the weights 
as more classification samples are presented to the network, and we will 
prove that this rule allows the network to converge to correct weights, if a 
set of correct weights exists.

4.4.1  Definition of a Perceptron

In a simple perceptron the input cells are directly connected to the 
output cells as seen in Figure 4.4 (we will describe more complex archi-
tectures later). In Figure 4.4(a) a number of input cells (marked as X1, 
X2,…,X5) are connected to a number of output cells (O1,O2,O3). For 
simplicity we will usually consider perceptrons with a single output 
cell as seen in Figure 4.4(b). Such a network can obviously classify only 
into two sets, but it is not hard to extend the discussion to larger num-
ber of output neurons and a correspondingly larger number of classes 
since output neurons are independent. Note that in a network with a 
single output neuron, it suffices to index the weights using a single 
index, wi.
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The Perceptron’s Computation
The weighted input of the neuron in Figure 4.4(b) is the difference between 
the weighted sum of the incoming edges and the threshold value:
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The value of the output neuron will be

	

O w xi i

i

p

= −
=
∑Θ θ

1

where

	
Θ( )X

X

X
=

≥

<

1 0

0 0

Note that a threshold level of θ can be achieved by a neuron with a thresh-
old level of 0 by adding another input whose value is the constant –1 and 
the weight of the edge between it and the output neuron is θ. Adding the 
additional input without fixing the weight that connects it to the neuron 
allows the network to determine the threshold level according to the same 
learning procedure used for adjusting the network weights.
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FIGURE 4.4  A simple perceptron. The general model (a) shows several inputs 
and outputs. However, since each output is independently calculated, we will 
analyze the behavior of a simple perceptron with a single output (b).
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If we consider each input set as a point in an p-dimensional space, 
where each dimension represents one of the inputs 1,2,…,p, we see that the 
simple preceptron divides the space into two separate regions separated by 
a hyperplane of p – 1 dimensions defined by
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In Figure 4.5 we can see how the network behaves with two inputs x1 
and x2. If the point (x1,x2) is above the separating line then it belongs to 
Class 1; otherwise it belongs to Class 2. The boundary line is defined by 
w1x1 + w2x2 – θ = 0. The slope of the boundary line is –w1/w2, and θ deter-
mines the distance from the origin. In particular, if θ = 0, the boundary 
line passes through the origin.

In the two-dimensional (2-D) case depicted in Figure 4.5 the boundary 
is a one-dimensional (1-D) line. In the three-dimensional (3-D) case the 
boundary is a 2-D plane, and for more than three dimensions (i.e., more 
than three inputs), the boundary is a hyperplane. Note that the dimension 
of the hyperplane is always one less that the dimension of the input space. 
Separation by a hyperplane is called a linear separation.

Let us investigate using a simple perceptron to compute the values 
of Boolean functions, starting with the AND and OR functions. Their 
truth values appear in Table 4.1. If we consider X1 and X2 as coordinates 
on a two-dimensional plane and want to separate the points by their 
truth values we will get the situation depicted in Figure 4.6. This fig-
ure demonstrates the existence of a line separating the points with the 

0 x1

x2

Decision boundary
w1x1 + w2x2 – θ = 0

Class 1
Class 2

FIGURE 4.5  The weights of the perceptron define a line (in the two-dimensional 
case) that separates the data into two classes.
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value 0 from the points with the value 1. For instance, the line x1 + x2 

– 1.5 (i.e., w1 = w2 = 1, θ = 1.5) describes the function AND, and the line 
x1 + x2 – 0.5 describes the OR function. An infinite set of lines achieves 
each separation.

Consider now the XOR function, which outputs 1 if exactly one of its 
inputs is a 1. The truth table for XOR is given in Table 4.2, and Figure 4.7 
shows it graphically. It is impossible to find a straight line with the black 
points on one side of it and the white points on the other side. In other 
words, the values of the XOR function cannot be linearly separated.

x1

x2x2

OR

x1

AND
0 01

1.1 1.1

1

11

FIGURE 4.6  For the Boolean functions AND and OR, the coordinates (x1,x2) of 
each point represent the input values, and the color of the point represents the 
output (black circle for 1 and white circle for 0). It is easy to see that there are lines 
separating the 1’s from the 0’s.

TABLE 4.1  Truth table of AND and OR

X1 X2 Result X1 X2 Result
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

AND OR

TABLE 4.2  Truth Table of XOR

X1 X2 Result
0 0 0
0 1 1
1 0 1
1 1 0

XOR
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4.4.2  Formal Description of the Behavior of a Perceptron

To make the description simpler we will use the sign function instead of the 
Θ function and represent the output by 1 and –1 instead of 1 and 0.

Let p be the number of input neurons in the network. We describe 
the weights of all the connections of the inputs to the output neuron as a 
p-dimensional vector w. Each input pattern x(i) will also be described as a 
p-dimensional vector (i is the ordinal number of the pattern). In vector nota-
tion, the value of the output neuron is

	 O = sign(w . x(i))

where w . x(i) is the inner product of the two vectors,
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Recall that even though it would seem we have fixed the threshold 
value θ of the neuron to be 0, we can assume that one of the p inputs was 
included to take care of the threshold level.

Let O(i) be the correct output for x(i), that is, it is +1 if the input 
pattern belongs to the first class, and –1 if it belongs to the second 

x2

x1

XOR
0

1,1

1

1

FIGURE 4.7  A simple perceptron cannot compute the XOR function. Note that 
it is impossible for a straight line to separate the 1 values (black circles) from the 
0 values (the white circles).
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class. Therefore, we are looking for weight vector w that will satisfy 
O(i)=sign(w·x(i)).

The boundary between the positive and negative classes is the multi-
dimensional plane described by the equation w·x(i) = 0 which passes 
through the origin and is perpendicular to w. The product w·x(i) is equal 
to ||w||||x(i)||cosϕ and has the value 0 when the two vectors are perpendic-
ular, that is, when the angle ϕ between them is 90 degrees. As can be seen 
in Figure 4.8, the weight vector w has to be perpendicular to the separat-
ing line (or in the higher-dimensional case, the hyperplane) so that it can 
separate between the inputs whose output is +1 and those whose output 
is –1.

The geometrical meaning (Figure 4.8) is that one has to choose the 
weight vector w such that the projection of all input vectors x(i) on w has 
the same sign as O(i).

Recall that the projection of the vector x(i) on w is:
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where ϕ is the angle between the vectors and ||v|| denotes the norm of the 
vector v. The norm or vector length is defined as
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FIGURE 4.8  The weight vector w is perpendicular to the separation line 
between the two classes.
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Note that even when the network has more than one output neu-
ron, the computation for each output neuron is independent from the 
computations for the other output neurons (as each output neuron has 
a separate weight vector w), and therefore one can generalize the discus-
sion of a perceptron with a single output neuron to perceptrons with a 
higher number of output neurons, such as the perceptron described in 
Figure 4.4(a).

4.4.3  The Perceptron Learning Rule

We have seen that if the input can be linearly separated a weights vector 
achieving the separation is present. In this section we limit our discus-
sion to problems that are linearly separable and present a learning rule 
for a perceptron with a single output neuron, that is, a perceptron clas-
sifying the inputs into one of two possible classes. The rule will allow 
us to determine, iteratively, weights achieving the desired classification.

Since we are dealing with supervised learning, there is a training set 
containing samples for which the classification is known. Learning is 
achieved by feeding these examples to the network iteratively. If the 
network outputs the correct classification (where +1 represents the first 
class and –1 the second class), the weights are not changed. If the output 
is wrong, the weights leading from the inputs to the neuron are slightly 
modified to achieve the desired output.

As previously discussed we consider the threshold value θ as another 
input neuron with a value of –1, and for convenience this neuron will 
always appear first in the vectors, so all our input patterns will start with 
–1. The training set will be denoted by X. Let X’ be the set of patterns 
belonging to the first class and X’’ the set of patterns belonging to the sec-
ond class (X = X’ ∪ X’’). The goal of the training phase is to find a weight 
vector w such that

	 w·x ≥ 0 for every vector x ∈ X’

and

	 w·x < 0 for every vector x ∈ X’’

Let w(i) be the weight vector at the i-th iteration of training, and let w(0) 
= 0. (In practice, it is advantageous to start with a weight vector consist-
ing of small random weights rather than with an all 0 vector). We denote 
by x(i) the i-th training input pattern, and t(i) is the target output (i.e., the  
required correct output) for this pattern.
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The training is performed as follows for i = 0,1,2,…:

	 1.	Compute the output of the perceptron for pattern i:

	 o( ) ( ) ( )i sign i i= ( )ww xx

	 2.	Determine the updated weight vector w(i +1), as follows:

	 ww ww xx( ) ( ) ( ) ( ) ( )i i i i i+ = + −1 α t o

	 where 0 ≤ α ≤ 1 is a constant that determines the learning rate.

	 3.	Continue to pattern i + 1.

	 4.	The training terminates if the weights are not updated during an 
entire epoch; otherwise, return to step 1 for another epoch.

When the pattern x(i) is classified correctly, the difference t o( ) ( )i i− is 0, 
and therefore w(i + 1) = w(i). If the pattern is misclassified, the weights are 
updated by adding or subtracting the quantity α t o( ) ( ) ( )i i i− xx .

The learning rate constant α determines how big the weight changes 
are. If α is too large, the learning might be too “jagged”: a low weight 
can increase to a value that will be too high and will misclassify the 
next pattern, and then the weight will decrease too sharply, causing more 
misclassifications, and so on. On the other hand, if α is too small, the 
training may be too slow and ineffective. There are no good rules for 
determining the value of α, and one has to resort to trial and error in 
each particular case.

To use a perceptron with more than one output neuron, the same train-
ing algorithm is applied to each output neuron separately. If the output is 
linearly separable for each output neuron, this will result in an appropriate 
set of weight vectors.

4.4.4  Proving the Convergence of the Perceptron Learning Algorithm

In the previous section we presented the algorithm for updating the weights 
of the perceptron. It is not clear that this algorithm always converges; in 
principle we can envision a situation in which the weights will be updated 



160    ◾    Biological Computation﻿

indefinitely, sometimes undershooting and sometimes overshooting the 
desired output. Fortunately, a mathematical proof is available to show that 
when the input is linearly separable the algorithm will converge. We will 
prove convergence for w(0) = 0 and α = 1.

The idea behind the proof is to follow the changes to the size of the 
weight vector w during the updates made by the perceptron learning rule. 
We will show that the size ||w|| of the weight vector grows faster than or 
equal to a term dependent on n2, where n is the number of learning itera-
tions (note that n may be larger than the number of patterns). On the other 
hand we will show that size of the weight vector grows slower than or 
equal to a term dependent on n. Since asymptotically a term dependent on 
n2 will surpass a term dependent on n, there must exist an iteration where 
these two bounds meet, and the weight vector will not change further.

We note that the algorithm will behave identically for the problem of 
finding a vector w separating X’ and X’’ and the problem of finding a vec-
tor w that satisfies w . x(i) ≥ 0 for all the vectors x(i) belonging to the set 
consisting of X’ and all the negatives (i.e., –x(i)) of the vectors belonging 
to the set X’’. Thus, we can assume for the proof that all the n inputs that 
were misclassified are misclassification of the form w(i) · x(i) < 0 for i = 
1,2,…,n, where x(i) ∈ X’.

Given that we have started with w(0) = 0, according to the learning rule

	 w(n + 1) = x(1) + x(2) + … + x(n)	 (4.1)

Since we assume that the input is linearly separable, there exists a 
weights vector w* such that w*·x ≥ 0 for x ∈ X’, and w*·x < 0 for x ∈ X’’.

Multiply equation (4.1) by w* (the products are inner products):

	 w*·w(n + 1) = w*.x(1) + w*.x(2) + … + w*.x(n)	 (4.2)

Pick the minimal term on the right-hand side of (4.2) and denote it by p:

	
==p nmin

( )
ww xx⋅

∈
( )

x n X

So, from equation (4.2)

	 ww ww* ⋅ ( +1)n ≥np
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Squaring, we get

	 ww ww* ⋅ ( +1)n ≥
2 2 2n p 	 (4.3)

Recall that the product of the norms of two vectors is at least as large as 
their inner product (Cauchy–Schwartz inequality) and thus

	 || * || ||ww ww ww ** ww||2 2 2( +1) ( +1)n n≥ ⋅ 	 (4.4)

Combining (4.3) and (4.4) we get

	 || * || ||ww ww|| ( +1)2 2 2 2n n p≥

or

	 || ||
|| *||

ww
ww

( +1)n 2
2 2

2
≥

n p
	 (4.5)

Now we turn to show an upper bound on the growth of w.
For every k = 1,…,n

	 w(k + 1) = w(k) + x(k)

Therefore, after taking the square of the Euclidian norm, we get

	 || ( )|| || ( )|| || ( )|| ( ) ( )ww ww xx ww xxk k k k k+ = + + ⋅1 22 2 2 	 (4.6)

We assumed that the perceptron misclassified x(k), that is, w(k) . x(k) < 0 
and therefore (4.6) implies that:

	 || ( )|| || ( )|| || ( )||ww ww xxk k k+ ≤ +1 2 2 2

or

	 || ( )|| || ( )|| || ( )||ww ww xxk k k+ − ≤1 2 2 2

If we sum these inequalities for k = 1,…,n, assuming w(0) = 0, we see 
that most terms of the left-hand side cancel each other, and we are left with
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2 	 (4.7)

Pick the maximal term of the summation on the right-hand side of (4.7) 
and denote it by q:

	
q x k( )

( )
=

∈
max

2

x k X 	 (4.8)

From (4.7) and (4.8) we get

	 || ( )||ww n nq+ ≤1 2 	 (4.9)

From (4.9) we see that the growth of the length of the vector w is bounded 
from above by a term linear in n. Recall from (4.5) that the length of the 
vector is bound from below by a term dependent on n2. Since asymptoti-
cally a term dependent on n2 will surpass a term dependent on n, it is clear 
that there exists an iteration nmax for which

	

n p
n qmax

max
||

2 2

ww*||2
=

	

or

	
n

q

p
max

||
=

ww*||2

2

	

Therefore, we have shown that for w(0) = 0 and α = 1, and under the 
assumption that there exists a solution vector w* the learning algorithm 
has to terminate after at most nmax iterations.

4.5  LEARNING IN A MULTILAYERED NETWORK

4.5.1  The Backpropagation Algorithm

We turn now to study multilayer networks in which layers of internal neu-
rons exist between the input and the output layers. Such layers are often 
called hidden layers, since they are not “visible” from outside the network. 
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We have seen the limited computational powers of the simple single-
layered perceptron: it can classify only patterns that are linearly separable. 
In their book Minsky and Papert (1969) showed that multilayered neural 
networks can compute functions that cannot be computed by a single-layer 
preceptron. For instance, it is enough to add one hidden layer to com-
pute the XOR function, which is not computable by a simple perceptron. 
Multilayered networks’ greater computing power is an attractive property, 
but they are much harder to engineer. Designing a suitable layout for a 
multilayered network and finding the appropriate network weights can be 
difficult. Finding an efficient learning rule for updating the weights of a 
multilayered network automatically was thus an important goal, but find-
ing such a learning rule proved to be a real challenge. The challenge was 
solved by Rumelhart et al. (1986), who proposed an algorithm called feed-
forward–backpropagation. Feedforward is an obvious property of multi-
layered networks where the computation results are fed forward layer after 
layer from the input layer to the hidden layers and from them to the output 
layer. The term backpropagation characterizes Rumelhart et al.’s learning 
procedure, which is based on percolating the weight updates from the out-
put level back to the input layer. For short, this algorithm is often called 
backpropagation.

The algorithm is based on examining the error in the output neuron by 
comparing it with the target value. If the value is incorrect, and hence the 
network weights need to be adjusted, the adjustments are backpropagated 
from one intermediate level to the previous one. At every level, we can 
define an error function for each node and try to minimize it. This can be 
done by a gradient descent algorithm. This algorithm uses the derivatives 
of the error function to calculate the change in the direction and magni-
tude of the weight vector that will minimize the error.

Recall that the activation function Θ we used to define the behavior of 
the output neuron in the simple perceptron is a threshold function and 
as such is neither continuous nor differentiable. We would like to replace 
it with a differentiable function with similar characteristics, that is, a 
function that returns one value (e.g., 0) for inputs that are smaller than 
the threshold value and another value (e.g., 1) for inputs larger than the 
threshold value with the added stipulation that the transition between the 
two values is as abrupt as possible, yet continuous. A function with such 
properties is the sigmoid function:
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Figure 4.9 plots the sigmoid in the range [–5,5], and it is easy to see that 
it has the desired properties

We could adjust its slope by looking at the more general sigmoid
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where β is a parameter.
A useful property of the sigmoid function is that its derivative can eas-

ily be expressed using the value of the function itself. This property will 
be useful later on:
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Other functions such as the hyperbolic tangent function
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FIGURE 4.9  The sigmoid function has the property of a sharp transition between 
0 and 1.
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that returns values between –1 and +1 can be used, but the sigmoid func-
tion is most commonly used.

The output neurons will be denoted by the vector O (a single neuron 
will denoted by Oi). The output value of the hidden neurons in layer k will 
be denoted by Vk (and a single neuron byVi

k ), and the weight of the edge 
between neuron j in layer k–1 to neuron i in layer k will be denoted by Wi, j

k  

(so the weights between the inputs and the first hidden layer are Wi, j
1 ). The 

vector X will denote the inputs. The values of the output neurons can be 
either binary or any real numbers. We assume N inputs, L patterns in the 
training set, and M layers (in addition to the input layer, designated as 
layer 0) in the network (Figure 4.10).

We set initial random values for all the weights and the network com-
putes in a feedforward fashion similar to the operation of the single- 
layer perceptron, where each layer is evaluated after the evaluation of the 
previous layer except that the activation function is now the previously 
described sigmoid.

The input to a neuronVi
k is
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Therefore, the output value of that neuron will be
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FIGURE 4.10  Artificial multilayer neural network.
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While the computation of a multilayered network is quite similar to the 
computation of a simple perceptron (with the notable change of using the 
sigmoid function), the learning procedure (i.e., the way the weights are 
adjusted) is quite different.

The weights update stages are as follows:

	 1.	Define the error function e for the output layer by

	
ei

M
i iT O= −

1

2
2( )

	 where Oi is the actual output and Ti is the required output in the out-
put i.

	 2.	The derivative of the error function is used to compute the correc-
tion values that will be used to update the weights. Note that this 
involves taking partial derivatives, since the error function depends 
on the output of the nodes, which in turn depend on their input, 
which depends on the weights, and we are interested in the effect of 
each weight. As these derivations require application of the chain 
rule and are somewhat involved mathematically, we will not get into 
the details here and present only the final formulas, which are as 
follows:

	 a.	 For the edges going into an output neuron compute the required  
corrections values as follows

	 δi
M

i i i iT O O O= − −( ) ( )1

	 b.	 To compute the correction values δ for previous layers, recall that 
the correction percolates down from the output layer; therefore, the 
correction for a neuron in a particular layer m–1 should take into 
account the corrections already calculated for neurons in layer m.
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		  for m = M–1,M–2,…,1. 

	 An example of the calculation for a specific neuron is shown in 
Figure 4.11.

	 3.	The needed changes to the weights are then
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	 Note that the correction for a weight is proportional to the activity of 
the previous node and the correction value reflecting the propagated 
error as computed by the formulas above. Like in the simple percep-
tron algorithm, α is a constant that determines the rate of learning.

	 4.	The final update of all the weights in the network is simply
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	 See an example in Figure 4.12.

1

0

1

0.5

–0.2 0.3

0.4
0.7

–0.5

–0.1

–0.5

0.4
0.3

0.6
0.4

0.5

0.7

O = 0.672
δ = 0.0723

V1
3 = 0.476

δ = 0.00898

V2
3 = 0.683

δ = 0.01096

V1
2 = 0.69

δ = (0.69*(1 – 0.69))[– 0.5*0.00898 + 0.3*0.01096] = –0.000257

FIGURE 4.11  An example of the backpropagation algorithm. Assume that the 
output value should have been 1 but the network computed the value of 0.672. 
The algorithm calculates back (i.e., from the output layer at the right) the cor-
rection values δ for each node in the network according to the formulas given 
in Stage 3. In the example we detailed the computation of the correction needed 
for the top node in the first hidden layer, based on its output activity V and the 
δ values that propagate back from the two nodes in the second hidden layer.
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	 5.	Repeat all the previous steps for the next input pattern in the training 
set.

	 6.	Repeat all the previous steps for the whole training set for the next 
epoch.

Unlike in the simple perceptron case, for the backpropagation algo-
rithm we don’t have guaranteed convergence. Thus, the obvious ques-
tion is when we should stop training the network—or how many epochs 
to run. We can choose among several halting criteria: halt when the 
error on the training set is small enough; halt when the size of the 
weight updates for each epoch is small enough; halt when the network 
gives satisfactory results on the test set. The latter is usually the pre-
ferred criterion.

We have presented the simplest and most popular version of the back-
propagation algorithm. This learning algorithm is probably the most 
common and most studied algorithm in the field of artificial neural net-
works. Thus, many variations of this basic algorithm have been suggested 
over the years such as using a method different from gradient descent for 
determining the weights or changing the parameters of the algorithm 
during the run—for example, accelerating the rate of weight change for 
edges whose weights has grown consistently over the previous iterations 
and slowing the rate of changing the weights of edges whose weights have 
oscillated during the last iterations.
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FIGURE 4.12  Updating the value of the weight between the top input node to 
the top node of the hidden layer according to the formula given in Stage 5 when 
α = 0.5.
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As with other optimization algorithms (e.g., genetic algorithms), we 
have to consider the possibility of hitting a local minimum (or maximum) 
when using backpropagation, a situation where the weights cannot be 
changed further by applying the learning algorithm even though a better 
weight vector exists. If we focus on the error function of the output neu-
ron, we can think of these situations as being trapped in a local minimum 
of the output neuron error function instead of finding the global mini-
mum for which the learning algorithm searches.

Several techniques can be used to address this problem. One reason for 
local minima might be choosing bad initial weights. If they are too large, 
the function will tend to consistently overshoot and produce a value of 1, 
which may make training difficult. Therefore, it is advantageous to choose 
initial weights such that a typical neural input will have a value smaller 
than 1.

An important approach for avoiding local minima is to increase ran-
domness. This increases the region of all possible weights sampled during 
training and can be achieved in different ways:

•	 Train the network by selecting randomly the order in which the 
input patterns from the training set are presented to the network. 
This decreases the probability that patterns close to each other in the 
training set will cancel each other’s influence.

•	 Modify the algorithm so that during training it will occasionally 
(but rarely) change the weights to increase the error function. While 
it seems that this would decrease the probability that the network 
will converge to the correct values, it turns out that this technique 
can prevent the algorithm from being trapped in a local minimum. 
Clearly, such uphill moves should be performed infrequently. It is 
reasonable to reduce the probability of performing this operation as 
the learning progresses to minimize the damage such moves make 
to the learning that has been already achieved.

•	 Add noise to the system. In this method, the weights are occasion-
ally changed randomly. The random change is small to avoid dis-
turbing the learning that has already been achieved. On the other 
hand, a small change in weights may be enough to move away from a 
local minimum. Another way of adding noise is randomly changing 
the value of the input patterns presented to the network. Experience 
shows that adding noise in either way can improve the ability of the 
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network to generalize (i.e., produce good results on the patterns in 
the test set).

4.5.2  Analysis of Learning Algorithms

It is important to note that learning is an unusual algorithmic problem. It 
may even be viewed as an ill-defined problem. The reason is that the input 
(i.e., the training set) does not necessarily define a single solution. Often 
many solutions perform well on the training set, but it is impossible to 
forecast how well they will do on the test set and in the real world. The 
goal of learning is to find a model that will represent the input data well, 
but many such models may perform well on the training set. Different 
learning algorithms will give rise to different results for the same training 
set in accordance with the properties of the algorithms.

It is useful to consider two types of learning errors: (1) training 
errors, which are errors in dealing with patterns in the training set; 
and (2) generalization errors, which are errors in dealing with new 
patterns from the test set. Despite the fact that the goal is to minimize 
both kinds of errors, it turns out that minimizing one type can increase 
the prevalence of the other type, so in fact one has to find a way to bal-
ance these goals. The reason for this trade-off is that one can build a 
model that fits the training set members well, at the cost of creating 
a model that is very specific to this set and does not perform well on 
new samples. In general, at the beginning of the learning process both 
the training error and the generalization error will decrease, but after 
a certain point, as members from the learning set are learned again 
and again the network performs better on them, thereby decreasing the 
training error but at the price of increasing the generalization error as 
can be seen in Figure 4.13.

A simple example of this situation is finding a curve to fit a dataset. 
Look at the two situations depicted in Figure 4.14. Both graphs attempt to 
describe the four points, but while the left curve passes exactly through 
the points, the right one does not pass through any of them. Nonetheless, 
it is reasonable to believe that it will model better new data points. On the 
other hand, while a straight line seems to be a good approximation for the 
current points, we do not know if the sample set is a good representative 
of the data, and introducing more points might lead us to prefer a more 
complex model that is not a straight line.
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In general, the closer we get to the desired answers for the training set, 
the larger the danger of overfitting, that is, a situation where the model 
describes the training set exactly, yet lacks generality (as is the case in 
the left panel of Figure 4.14). The opposite case where the model contains 
too little data to describe the training set is called underfitting. Due to 
the danger of overfitting it is typical not to continue to train the network 
until it is very successful on the training set but to stop training before 
that to increase the chances of obtaining good results on the test set.

Training error

Generalization error

Number of epochs

OverfittingUnderfitting

Error rate

FIGURE  4.13  Increasing the length of training improves the performance on 
the training set but may adversely affect the performance on the test set as the 
network starts to overfit the data.

(a) (b)

FIGURE 4.14  Two types of lines that describe the given data points. The line on 
the left (a) goes through all the points, and the line on the right (b) does not go 
through any of them. Nevertheless, in many situations the description provided 
by the straight line on the right is more informative as it captures the trend in the 
data and allows a better prediction of the value of additional points.
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Increasing the number of neurons in the network (and in particular 
the number of neurons in the hidden layers) can also cause overfitting. 
This puts the designer of the network in a delicate position: the network 
cannot be too small, since this may cause underfitting, or too large, in 
which case it can learn the training set too well, leading to overfitting. 
Adding noise, which we previously described as a way to avoid the con-
vergence of the weights to local minima, can also be useful tool to reduce 
the risk of overfitting. For example, one can, on occasion, supply the 
learning process with a wrong classification for a member of the train-
ing set. By reducing the probability of converging to an exact solution 
for the training set, this seemingly strange tactic can actually improve 
generalization.

4.5.3  Network Design

So far we have assumed that the architecture of a network is given and 
the goal of the learning process was to determine the weights of the edges. 
An obvious question is how to design the network—that is, how to decide 
how many hidden layers it will have and which pairs of neurons to con-
nect with one another. Experience shows that usually it is not beneficial 
to deal with networks with too many layers of hidden neurons, and in 
fact that might harm performance. In practice it seems that two or three 
layers suffice for most problems that can be solved by the backpropaga-
tion method.

As for connectivity, recall that in these networks neurons can commu-
nicate only if they are in consecutive layers, but it is not always necessary 
to connect every neuron in one layer with every neuron in the consecu-
tive layer. Obviously, the more connections, the more weights have to be 
determined, a situation which may hinder the network’s ability to learn in 
a reasonable time and may also cause overfitting. One way of dealing with 
this situation is to train the network for a relatively short period of time 
and then to sever the connections that have weights close to 0. Next, the 
network is retrained, and the other weights are updated. This process can 
be repeated until the network has a “reasonable” number of edges.

Another way to design a network is by using an external algorithm that 
will design the network optimally. For instance, one could use a genetic 
algorithm that deals with a population of neural network of different archi-
tectures. At every generation of the genetic algorithm, the performance of 
the neural nets will be assessed (e.g., by testing how well they do on the test 
set), so that selection will prefer the more successful networks.
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Another important question is that of data representation. The net-
work designers have to decide how to represent the data as an input to the 
network, and even more importantly they have to decide which data to 
present the network so that it succeeds in learning. This is true for both 
the input and the output. This is similar to the situation we encountered in 
the discussion of genetic algorithms where it is important to consider how 
to represent each solution as a chromosome. In both cases there are no 
recipes for solving these issues, and the designer has to rely on experience 
and understanding of the problem domain.

We will start with a simple example. Assume that we want to classify a 
set of data points into n subclasses. In principle we can use log2n output 
bits to represent the output. Thus, if we want to classify data into eight 
subclasses, we can use binary representation of three bits. However, this 
requires the network to “learn” the binary code in addition to solving 
the particular classification problem it encounters. Often, especially 
when the number of input examples in not very large, this is beyond the 
capabilities of the network. Thus, when the goal is to classify a dataset 
into n subsets, it is better to work with n output neurons and a unary 
representation, so that if neuron k has the value 1 and all other n–1 neu-
rons have the value 0, the result of the classification is k.

Another more fundamental example for the importance of repre-
sentation comes from image processing. If the image consists of 1000 × 
1000 24-bit values pixels, it would seem one should use a network with 
24,000,000 inputs. This is often not practical because of the size of the net-
work and the time required to learn the weights. Therefore, it is reasonable 
to preprocess the data and try to extract features required for the com-
putation. For example, one can locate lines, corners, and changes in the 
density of color. Actually, this is similar to the way the human brain which 
contains a large set of sensors that extract such features operates (Marr, 
1982). It turns out that the retina contains cells whose electrical activ-
ity depends on identifying a particular pattern of boundaries between 
light and darkness; that is, some cells are sensitive to lines and react only 
when the field of vision contains lines but not surfaces of uniform color. 
Similarly, some neurons are sensitive to the movement of objects in the 
field of vision and can even distinguish the direction of motion. Such bio-
logical mechanisms suggest that similar ideas should be used by artificial 
neural networks as well.
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4.5.4  Examples of Applications

We now present a few classic examples of using neural networks. Most 
of these are of multilayered networks trained using backpropagation. 
Nonetheless, in many of the examples we discuss, some deviations from the 
standard algorithm were used to adapt the network to the requirements of 
the problem.

NetTalk
The goal of this project (Sejnowski and Rosenberg, 1987) was to build a 
network that translates written text into speech. The input was seven char-
acters from the text, and the network had to determine the pronunciation 
of the middle character. The seven-character window through the text is 
used to allow the network to determine the pronunciation based on the 
context of each character, as seen in Figure 4.15. Two forms of data were 
considered. In the first, the text in fact came from a transcript of recorded 
continuous speech that was moved along the window such that more than 
one word could be included at the same time in the window (as can be seen 
in Figure 4.15). In the second dataset, dictionary words were fed into the 
system one at a time.

For every seven characters, the network determined what sound (pho-
neme) to make out of a set of 26 possible phonemes. The network con-
tained 29 × 7 = 203 inputs: seven characters in the sliding window, where 
each character may be one of the 26 letters of the language and three punc-
tuation marks; each character is represented by 29 neurons, one with the 
value 1 and all other neurons set to 0. The network contained 80 hidden 
neurons in one layer and 26 output neurons that specify the output sound. 
After 50 passes over the training set the network was 95% and 98% precise 
in its output for the first and second datasets, respectively.

\z\

Hidden units

Output units
(phoneme code)

S i m p l e a s t h a t

FIGURE  4.15  A schematic representation of the network used by NetTalk to 
identify phonemes in a “text to speech” translation system.
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The self-organization of the network was quite interesting. It turns 
out that the network learned how to identify certain components of the 
input. It began by learning very general properties (e.g., the transition 
from word to word), and progressed to more subtle properties. After 
training, some of the hidden neurons were capable of identifying well-
known properties, such as the distinction between vowels and conso-
nants. The network was 78% accurate on new text (generalization)—a 
result that, while not very high, was still high enough to make the speech 
understandable.

Another interesting test of the network was determining its fault toler-
ance. We discussed already that fault tolerance is one of the main differ-
ences between the brain and digital computers. And indeed, in this case 
a local fault in the network (the removal of some neurons) or a random 
change in weights caused a gradual degradation in the quality of the out-
put rather than a catastrophic complete failure. Moreover, after such fail-
ures, retraining quickly enabled the network to recover.

Handwriting Recognition
In this example, a neural network was used for automatically reading zip 
codes off envelopes, as part of a system to automatically sort mail for the 
U.S. Postal Service (LeCun et al., 1989). The system made use of many tech-
nologies, but we will discuss only the aspects related to the topics discussed 
in this chapter.

The training set consisted of about 10,000 handwritten digits. Finding 
the zip code on the envelope and separating it into distinct digits are com-
plex tasks that will not be discussed here. The task we will discuss is the 
final stage of the process: identifying each separate digit.

The input to the neural network was a 16 × 16 matrix of pixels rep-
resenting the image of a digit. The characters were scaled as needed so 
that they were all the same size, regardless of the particular handwriting. 
Every pixel in the matrix was represented by an input neuron. The values 
of the inputs were continuous rather than binary (black or white) because 
the scaling may cause every pixel in the matrix to represent more than 
one pixel in the original image. Figure 4.16 shows examples of the kind of 
handwritten digits presented to the neural network.

The network contained three hidden layers and an output layer con-
taining 10 neurons representing the digits 0–9. The output of the network 
was determined by the output neuron with the highest value. The organi-
zation of the network can be seen in Figure 4.17.
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The first two hidden layers are used to identify recurring features in the 
input images:

•	 The first hidden level contains 12 groups of 8 × 8 = 64 neurons each, 
which represent an 8 × 8 matrix tasked with identifying a specific 
feature. The input for each neuron in each group is a 5 × 5 neigh-
borhood on the input matrix; the corresponding neurons in each of 
the feature detectors “observe” the same neighborhood on the input 
matrix. Adjacent neurons deal with neighborhoods that are two pixels 

FIGURE 4.16  Example of handwritten digits. The task of the neural network is 
to identify such digits in spite of the large variability in how people are used to 
writing the different digits.
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apart in the input matrix. All the neurons in each group have the 
same weights. (Interestingly, even though the weights are the same, 
the threshold could differ from neuron to neuron.) Functionally, this 
means that all neurons in the group identify the same image feature, 
but in different regions of the input. This weight-sharing property 
decreases the number of weights the network has to learn, allowing 
the training set to be smaller.

•	 The second hidden layer is quite similar to the first layer. It contains 12 
groups of 4 × 4 = 16 neurons that observe a region of 5 × 5 cells in the 
previous layer. The neurons receive their inputs from corresponding 

10 output units

30 units

12 feature defectors
(4 by 4)

12 feature defectors
(8 by 8)

16 by 16 input

9876543210

FIGURE 4.17  A schematic representation of the neural network’s architecture 
used to identify handwritten digits. (Adapted from LeCun, Yann, et al., IEEE 
Communications Magazine 27, no. 11, 41–46, 1989. With permission.)
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regions from 8 of the 12 groups in the first layer. (Every group of 4 × 4 
neurons observes a different combination of eight groups.)

•	 The third hidden layer contains 30 neurons, all of which are con-
nected to all the neurons in the previous layer.

•	 The output layer contains 10 neurons representing each of the digits, 
all of which are connected to all the neurons in the previous layer. 
The identity of the input digit is determined by the identity of the 
most active output neuron.

The network contained 1256 neurons, 64,600 edges and 9760 weights 
that had to be learned. The network was trained on 7300 digits and tested 
on 2000 images. The error rate was 1% on the training set and 5% on the 
test set. The latter could be reduced to 1% by rejecting cases where the 
value of the most active neuron is very close to that of the runner-up. 
These cases would then have to be read by a human operator. This solution 
gave rise to 12% of the test inputs being rejected.

After training, the system was implemented on standard signal pro-
cessing hardware. The resulting system was capable of processing more 
than 10 digits per second (from photographing the image to identifying 
the digit by the neural network).

Backgammon
To play well, a computer system must be able to determine which of the 
next possible moves in a game is the most advantageous. The ranking of 
moves is usually based on two elements: (1) a good function for static eval-
uation of a given configuration of the board; and (2) an algorithm that can 
simulate the progression of the game a few moves ahead and can decide 
which move to select such that the position of the board will be, after the 
next few moves, the best possible for the player the computer represents 
(the minimax algorithm is an example of how this idea is implemented). 
Writing good backgammon-playing software poses a computational chal-
lenge since the number of possible moves after the die are tossed is usually 
rather large (about 20 moves on average), and there are 21 possible out-
comes of the die toss. Therefore, the space of possible moves grows expo-
nentially fast—faster than chess.

The approach we mention here (Tesauro and Sejnowski, 1989) does not 
explicitly look ahead: Given a position on the board and the dice value, the 
task of the network is to judge the quality of the possible moves.
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A neural network was used to grade each possible move. The network 
was trained to grade each triplet of the from {current board configura-
tion, dice values, possible move} with values between –100 (bad) and 100 
(excellent). The network was trained using about 3000 such triplets, where 
the grading provided by the training set was determined by a skilled back-
gammon player. The inputs were the triplets and a few specific properties 
calculated from the state of the board (e.g., the number of blots, which are 
single checkers that can be hit). Altogether, 459 neurons were needed to 
represent the input. The network contained two hidden layers of 24 neu-
rons each and one output neuron whose value was a real number between 
0 and 1 that could be transformed to values in the range of –100 to 100 
used to grade moves.

An important element in training the network was the use of noisy 
input. The input contained a few moves whose grades were determined 
randomly to reduce the danger of overfitting. This is critical for backgam-
mon as the number of possible backgammon moves is much larger than 
the size of any reasonable training set. Cases where the network graded an 
input particularly badly were identified and rectified by adding correct-
ing samples to the training set with the aim of reducing the occurrence of 
similar problems.

When the trained network played against another computer program 
(not implemented using a neural network), it won in 59% of the games. 
Interestingly, when only the triplets of {current board, dice, move} were 
used as input to the network, without the additional information calculated 
from the board, the machine won only 41% of the games. This significant 
drop in performance highlights the importance of preprocessing of the 
data presented to neural networks, since all of the additional features that 
were used could in principle be extracted automatically from the board, 
but apparently the system was not powerful enough to find them. In addi-
tion, it was noticed that, if no noisy data were included in the training set, 
the success rate dropped from 59% to 45%, indicating that noisy data are 
indeed useful in preventing overfitting.

The Bottleneck Technique
Neural networks and backpropagation can be used for finding efficient 
representations for large sets of patterns and for identifying common 
properties. This can be achieved by training a network with N input and 
N output neurons and only one hidden layer with M neurons where M is 
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significantly smaller than N. The goal of training is to find weights for the 
hidden neurons so that each input pattern presented to the network will 
be reproduced as output. At first glance this may seem a strange task. Why 
should we want to reproduce our input? The answer lies in the observa-
tion that the hidden layer has to represent the input pattern so the output 
layer can reproduce it. Thus, if M is smaller than N and the training is 
successful, then we have actually found a way of representing the N input 
bits of information by a smaller set of M bits. In other words, if we have 
“squeezed” the data through a narrow bottleneck and were able to repro-
duce it back, then the hidden layer must have found properties and inter-
relationships in the dataset. This technique can be used for text or image 
compression or more generally for identifying features of a dataset.

4.6  ASSOCIATIVE MEMORY

4.6.1  Biological Memory

Our discussion so far has centered on using the computational capabilities 
of neural networks for solving problems such as classification. The human 
brain (as well as the brains of other species from mollusks to elephants) 
has another important role, namely, memory. Brains can remember and 
retrieve a huge number of data items. Despite the fact that conventional 
computers have very large memories, their memory capabilities are very 
different from those of animals. After many years of research and many 
insights that have been gained, many aspects of the memory capabilities 
of the brain are still not well understood. We will see how to implement 
some of the biological principles in a simple neural network architecture.

As far as we know, in the brain there is no explicit distinction between 
the neurons used for computations and those used for memory. We know 
of no type of neurons whose specific function is memory. Nonetheless, 
certain brain regions are dedicated to memorizing, and patients who suffer 
from damage (due to injury or illness) to these regions experience various 
types of memory loss while other cognitive functions are not impaired. 
It is common to classify memory to short-term memory (a few seconds 
long), which can store a very limited amount of data (the common claim 
is that it can store up to about seven data items), and long-term memory, 
which can potentially be retained for a lifetime (though obviously not all 
long-term memories are retained).

It is common to discuss three facets of the memory system: (1) encod-
ing; (2) storage; and (3) retrieval. Here, we will not discuss the encoding 
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(i.e., the way the information from the senses is converted into neural 
information that can be further analyzed by the brain), since it is specific 
to the biology of the brain and is less relevant to our discussion of artificial 
neural networks.

The brain’s storage system is distributed; that is, no single cell stores a 
particular data item. A centralized arrangement would have caused mem-
ories to disappear with the natural death of the individual cell storing a 
particular datum of information. Thus, brains must have mechanisms to 
ensure robustness. One way of achieving robustness is to keep multiple com-
plete copies of the data in different locations (similar to computer backups). 
However, evidence suggests that memories are stored in the brain in a dis-
tributed fashion. For example, data items seem to be broken up into smaller 
units that can be reassembled, even if a few of the pieces are missing.

From daily experience we know that memories are often retrieved by 
association. For instance, we recall a person’s name when seeing his or 
her face, or a tune gives rise to memories of an event during which the 
tune was played. The retrieval can be instantaneous and not conscious, 
but occasionally we have to explicitly search our databanks to recall a data 
item. Associative memory allows us to recall data not by accessing a par-
ticular location in memory (the way digital computers deal with memory) 
but rather by using partial content to access the rest of the data. This prop-
erty is called content addressability.

4.6.2  Hopfield Networks

In 1982, John Hopfield described an artificial neural network that pro-
vides associative memory. Rather than being organized in layers like the 
networks we discussed in previous sections, each neuron in a Hopfield net-
work is connected to all other neurons. Moreover, there is no explicit dis-
tinction between input and output neurons. We will see how the network 
remembers by updating the weights and how data retrieval is executed by 
an iterative process of updating the values of neurons connected by these 
weights. As no neurons represent the output, retrieval ends when all the 
neurons reach a steady state where their values no longer change.

4.6.3  Memorization in a Hopfield Network

Let us start by defining the storage process and understanding the retrieval 
process. Assume we have to remember p strings U of N bits each. Let Ui

k  
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be the i-th bit of the k-th string. The values of the memory table will be 
computed as follows:
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Formula (4.10) allows us to compute the weights for a network used 
to store a set of samples. Each neuron in the network corresponds to 
one of the p bits. The value Ti,j represents the strength of the connec-
tion between the two neurons. If we are supplied with the set of sam-
ples ahead of time, we can use formula (4.10) to compute the weights. 
Alternatively, the same value can be computed iteratively by consider-
ing sequentially each sample and updating the strength of the connec-
tions as required.

Let us look at the following example. Suppose the goal is to memorize 
five binary strings of length six: 001010, 111100, 101110, 010001, 011000 
(Figure 4.18).

The strings will be stored in “associative memory,” which is a 6 × 6 
matrix (6 is the length of the strings), where the value in cell (i,j) reflects 
in how many of the strings bit i and bit j are identical (Figure 4.19). For 
instance, the value of cell (1,2) reflects the fact that the first and second 
bits are equal in two of the five samples and not equal in the other three, 
and therefore its value is 2 – 3 = –1. The rest of the table is filled up in a 
similar way. By definition the diagonal cells (i,i) are set to zero. The matrix 

000110
100010
011101
001111
010100

FIGURE 4.18  An example of input strings presented in the Hopfield network.
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represents the data in a distributed fashion since each cell contains infor-
mation which is affected by all the data samples. Note that the learning 
rule (4.10) ensures that the weights between neurons that typically have 
the same value will be high.

This learning procedure is called Hebb’s rule, named after the psy-
chologist Donald Hebb who postulated that in the brain the connection 
strength between cells is correlated with the frequency of them being 
active together. This idea is often summarized by the slogan “Neurons that 
fire together wire together.” Obviously, the simple learning rule in (4.10) 
cannot adequately model the complicated process happening in the brain 
(which, moreover, is not well understood). For instance, in our model two 
inactive cells (bits with value 0) will have a strong connection, which is 
probably not the case in a biological system.

4.6.4  Data Retrieval in a Hopfield Network

Retrieval is initiated by setting the value of the neurons in the network 
to the values of the corresponding bits in the string. The retrieval process 
should be such that, if the system is presented with one of the samples in 
memory the values of the neurons in the network will not be altered. If a 
slight variation is presented (i.e., a string where only one or two bits have 
been altered relative to the original), we want the network to come up with 
the appropriate (i.e., most similar) sample string. If an entirely new sample 
is presented, we usually have no expectations from the system.

The retrieval of the memorized patterns is based on the fact that the 
weight matrix represents the strength of the connection between all pairs 
of bits. Thus, when we want to retrieve the value of a specific bit, we can 
look at the values of the other bits and see what their “recommendation” 
is. For example, if the values of other bits that are strongly coupled with 

0–1–1–5–1–1
–1011–51
–1101–15
–5110–11
–1–5–1–10–1
–1151–10

6
5
4
3
2
1

654321

FIGURE 4.19  The weight matrix that is calculated for the input strings shown in 
Figure 4.18.
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the given bit is 1, then we should set its value to 1. The actual calculation is 
achieved by the formula given in (4.11).
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(4.11)

We will now repeat the process for other randomly chosen neurons 
until the process stabilizes, that is, until no neuron is updated. Intuitively, 
at every step the chosen neuron “adopts” the value “recommended” by the 
other bits. For instance, consider the string 1 1 1 1 1 0 (which is similar to 
the string 1 1 1 1 0 0 in Figure 4.18). Assume that we want to compute the 
value of the fifth bit:

	 SUM5 = U1×T5,1 + U2×T5,2 + U3×T5,3 + U4×T5,4 + U5×T5,5 + U6×T5,6 =

	 1×1 + 1× (–5) + 1×1 + 1×1 + 1×0 + 0×(–1) = –2

Therefore

	 U NEW
5 0=

This correction is indeed what we are hoping for, but it is only a step 
in the process. In general, we have to show that the process does indeed 
converge; that is, no infinite loop can arise where the values of a cell will 
oscillate between 0 and 1, and the process will eventually halt and retrieve 
the correct value.

Note that the process we have described is asynchronous, where at each 
time unit one cell is updated and its new value will be used to update the 
values of cells updated in subsequent time steps. This property is believed 
to be relevant to the situation in the brain where there is no master clock; 
therefore, the activity is not tightly synchronized. However, in principle 
one can also explore synchronous systems where all the values are changed 
simultaneously (similar to the synchronous updates in cellular automata 
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discussed in Chapter 2). Clearly, a synchronous system would require aux-
iliary memory to prevent updating bits before they affected the other bits.

4.6.5  The Convergence of the Process of Updating the Neurons

We will prove the convergence of the process of updating the values of the 
neurons by defining a quantity called the total energy of the network:
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We prove that the total energy is monotonic decreasing as the weights 
are updated. As the energy is additive, we can consider its component 
derived from bit j:

	

E T U U U T Uj i j j i

i j

j i j i

i j

= − =−
≠ ≠
∑ ∑1

2

1

2
, ,

When the value of Uj changes, all the other bits remain as they were, so 
the difference in energy can come only from change in Uj. Therefore,
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Note that if there was no correction to the value of Uj then ΔUj=0.
Otherwise, the value of Uj has been changed by the update rule in one 

of the following two cases:

	 if   T Uij i
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≥
≠
∑ 0  then ΔUj ≥ 0 
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, <
≠
∑ 0  then ΔUj < 0

In either case the product
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will be positive; therefore, the total energy will decrease. As the system 
is finite, the energy cannot decrease ad infinitum, so the network has to 
converge. Next, we need to show that the values the network converges on 
will be those strings the network is tasked with storing.

4.6.6  Analyzing the Capacity of a Hopfield Network

Why and under what conditions will the system give the expected results 
and be able to retrieve the input? We begin by examining a network 
designed to store a single input sample. In this case the weights of the 
network will be
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Applying the neuron update rule and computing 
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for every bit in the sample does not cause any updates.
In fact, the weights define an energy surface as depicted in Figure 4.20 

where the saved string is an attractor for the network such that points 
close to the attractor will converge to the attractor. Obviously, if we start 
at the attractor (i.e., present a memorized sample to the network), the sys-
tem will remain at the same point. Notice that, because of the symme-
try between the 0 and 1 bits, the strength of all the connections will not 
change if we replace every 0 with 1 and every 1 with 0. Therefore, when 
one pattern is memorized its complement is memorized too, as can be 
seen in Figure 4.20.

What happens when more than one string is to be memorized? The 
energy surface will be much more complex and may contain multiple 
minima. Intuitively, there must be a limit to the capacity of the network, 
so that if we attempt to memorize too many samples the attractors will 
overlap and patterns will be attracted to the wrong attractors.



Artificial Neural Networks    ◾    187

Let us determine how many patterns can be memorized such that small 
perturbations will be corrected by the dynamics of the network. To make 
the analysis more convenient we will discuss neurons with the values +1 
and –1 rather than 0 and 1, so the sign of the product of two bits indicates 
whether the bits are equal (when their product is 1) or different (when 
their product is –1). Moreover, we will normalize the weights in (4.10) by 
multiplying by 1/N, where N is the number of bits in a string:
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Note that by this definition the main diagonal of the weight matrix is 1 
and not 0 and that the normalization achieved by multiplying by the con-
stant 1/N may affect the retrieval rate but not its result.

We now consider one pattern U v and check if it is stable. It will be stable 
if no neuron changes due to the update rule; that is, for every i it holds that

	
i
v

i j j
v

j

U T U= ∑sign ,

X0

X1

FIGURE 4.20  The energy surface of a Hopfield network that stores a single input. 
The energy surface (reflecting the energy function) is shaped such that the input 
data point will be at the minimum of the surface (X0) and nearby points will be 
attracted to the minimum. Note that for binary strings the symmetrical treat-
ment of 1 and 0 bits results in a “shadow” minimum (X1) corresponding to a 
string where the bits are flipped.
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where the sign() function returns 1 for positive values and –1 for nega-
tive values.
By inserting the expression for Ti,j:
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Isolating the k = v term and manipulating the equation gives
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If the second term is 0, U v is clearly stable. It will also be stable if the 
second term is small enough: if Ui

v  is 1, then if the second term is greater 
than or equal to –1 it cannot flip the sign of Ui

v. Similarly, if Ui
v  is –1 then 

the second term will have to be greater than 1 to change the sign. Since the 
sum of random (+1/–1) bits will tend to be around 0, in most cases the sum 
will not be larger than N and the pattern will be stable, but the probability 
of this depends on the number of strings p and their length N.

Let us determine the probability that
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since in this case the sign of the expression in (4.13) will change. As 
a first approximation, let us assume that the patterns and the weights 



Artificial Neural Networks    ◾    189

are random, so the question boils down to the question of what is the 
probability that the product of 1/N and the sum of Np random numbers 
whose values are –1 or +1 is less than –1. In other words, what is the 
probability that sum of Np random numbers whose values are –1/N or 
+1/N is less than –1?

Assuming that p and N are large, by the central limit theorem this sum 
is distributed normally with a mean of 0 and variance of p/N, and the 
probability that it is less than –1 (as a function of p/N) appears in Table 4.3. 
For example, to achieve a retrieval error smaller than 1%, we have to store 
less than 0.185N patterns. Note that this is only an upper bound. In reality 
the storage capacity may be lower.

Indeed, Hopfield did not analyze the network capacity formally in his 
original paper but reported that empirical results show that the capacity 
of the network is about 0.15N, similar to the theoretical capacity we have 
derived. Further, more careful, theoretical analysis shows that the best 
achievable lower bound is about 0.138N.

This analysis indicates a relatively low capacity. If we assume strings of 
length 100, the network can memorize at most 15 strings using 100 × 100 
= 10,000 weights, whereas the data can be represented by 15 × 100 = 1500 
bits. This means that in practice the Hopfield network is of limited use for 
storing patterns, but it is an interesting model of distributed memory and 
associative recall.

4.6.7  Application of a Hopfield Network

We now describe how a Hopfield network is used to memorize the shape 
of digits (Haykin, 1998). The digits are represented as patterns of size 10 
× 12 as can be seen in Figure 4.21. The network contains 120 neurons, 
where a black pixel is represented by the value +1 and an empty pixel by 

TABLE 4.3  Error Probabilities and Network Capacity

P

N
max Perror

0.105 0.001
0.138 0.0036
0.185 0.01 (= 1%)
0.37 0.05 (= 5%)
0.61 0.1 (= 10%)
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the value –1. The weights are computed according to the network learn-
ing rule (4.10).

In the first phase of the experiment the memorized patterns were 
presented to the system, and as expected it remained in the stable con-
figurations. In the second phase, altered patterns were presented to the 
system to see how it dealt with input errors. The value of each pixel in 
the pattern was flipped with probability 0.25. For instance, Figure 4.22 
shows how the network dealt with the pattern of the digit 6, which has 
been altered in this fashion: it managed to converge to the memorized 
pattern.

Similar behavior was observed in other cases. Nonetheless, the network 
does fail occasionally in converging to the correct shape. For instance, in 

Pattern “0” Pattern “1” Pattern “2”

Pattern “3” Pattern “4” Pattern “6”

Pattern “9”Pattern “  ”

FIGURE  4.21  Example of digits memorized by the Hopfield neural network. 
(Adapted from Haykin, Simon, Neural Networks: A Comprehensive Foundation, 
2nd ed. Upper Saddle River, NJ: Prentice Hall, 1998. With permission.)
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the example shown in Figure 4.23 the network starts with an altered rep-
resentation of the digit 2 and converges erroneously to 6. A more surpris-
ing problem is the existence of stable erroneous states, that is, attractors 
that are not memorized patterns. These are called spurious attractors. 
This situation can be seen in Figure  4.24 where the network converged 
to a pattern similar to the pattern it was presented with (the digit 9 with 
alterations). The pattern it converged on was similar to the memorized 9 
but not identical to it.

4.6.8  Further Uses of the Hopfield Network

Up to now we have dealt with the memorizing and retrieval capabilities 
of Hopfield networks. However, Hopfield networks have additional uses. 

Initial corrupted 6 After 5 iterations After 10 iterations

After 15 iterations After 20 iterations After 25 iterations

After 37 iterationsAfter 30 iterations

FIGURE 4.22  Example of the digit 6 where pixels were flipped with probability 
0.25 that is gradually retrieved by the network. (Adapted from Haykin, Simon, 
Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle River, NJ: 
Prentice Hall, 1998. With permission.)
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Assume that we present the input patterns shown in Figure 4.25(a) to the 
network, and it produced the weight matrix depicted in Figure 4.25(b).

Observe the patterns to notice that the three rightmost and leftmost 
bits in each pattern are mirror images, while the two middle bits are inde-
pendent of any other bits in the pattern. When we initialized the network 
with the string 0 1 0 1 1 0 0 0, after 3 update steps, computing bits from left 
to right, we come up with 0 0 0 1 1 0 0 0 which is the retrieval of one of the 
memorized patterns.

On the other hand, if we start with 1 1 0 0 0 1 1 1 we will encounter an 
interesting situation. After three updates steps, the string 1 1 1 0 0 1 1 1 will 
be generated—a string that has not been memorized but has the properties 

Initial corrupted 2 After 5 iterations After 12 iterations

After 18 iterations After 24 iterations After 30 iterations

After 41 iterations
Wrong answer!!

After 36 iterations

FIGURE 4.23  An example of erroneous retrieval. The network starts with a noisy 
version of the digit 2 (with 25% flipped pixels) and ends up retrieving the digit 6. 
(Adapted from Haykin, Simon, Neural Networks: A Comprehensive Foundation, 
2nd ed. Upper Saddle River, NJ: Prentice Hall, 1998. With permission.)



Artificial Neural Networks    ◾    193

we identified in the set of strings that was memorized. In other words, as 
the weights reflect the types of relations between the bits, the network has 
succeeded in learning the rule governing the samples. Obviously, regular-
ity can also be learned by the feedforward networks described earlier.

Hopfield networks can also be used for optimizations. We saw in the 
proof of the convergence of the retrieval process that a set of weights corre-
sponds to an energy function. This function is minimized by the process of 
updating the values of the neurons such that at the end of the process neu-
rons connected by an edge with a positive weight will tend to have similar 
values, whereas neurons connected by an edge with a negative weight will 
tend to have opposite values. One can use a Hopfield network in the opposite 

Initial corrupted 9 After 4 iterations After 8 iterations

After 12 iterations After 16 iterations After 20 iterations

After 28 iterations
Wrong answer!!

After 24 iterations

FIGURE  4.24  An example of retrieval to a spurious attractor. The network 
converged to the digit 9, but note that this is not exactly the same digit pre-
sented in the input data. (Adapted from Haykin, Simon, Neural Networks: A 
Comprehensive Foundation, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1998. 
With permission.)
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fashion: start with an energy function to be minimized, and build a network 
around it with weights derived from the function (a nontrivial task). If we 
perform a process similar to the retrieval process on this network, we will 
get values that are good solutions to the minimization problem. Hopfield 
and Tank (1986) implemented this idea for the traveling salesman problem 
(TSP). In this problem the input is a map of cities with known distances 
between them. A traveling salesman has to find the shortest route allowing 
him to visit all the cities and each city exactly once. This problem is known 
to be an NP-complete problem, and therefore it is commonly believed that 
no algorithm can compute an optimal solution in a reasonable amount of 
time (i.e., in time that is not exponential in the number of cities). Hopfield 
and Tank represented the solution as a matrix representing the order of vis-
iting the different cities (see Figure 4.26). Since the representation does not 
ensure that the route is legal (e.g., two cities are designated as visited sec-
ond in the route in Figure 4.26(a)), the energy function penalized for illegal 
routes as well as for routes that are long. The challenge was to derive a weight 
matrix such that the computation will end in the shortest legal route (e.g., 
Figure 4.26(b)). Hopfield and Tank reported good results for examples of 10 
and 30 cities. Interested readers are referred to the paper for further detail.

4.7  UNSUPERVISED LEARNING
Up to now we have discussed different forms of learning in which the neu-
ral network is trained using example data to which the required output is 
known, and network learning is driven by comparing the output the net-
work produces and the required output. Can learning be achieved with-
out supplying the network with examples of previously classified data? 
Such learning can be achieved by analyzing the input and attempting to 
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FIGURE  4.25  An example of input patterns (a) and weight matrix (b) for a 
Hopfield network.
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find patterns, connections, and correlations between the data points. The 
standard approaches to unsupervised learning are statistical in nature 
and attempt to single out important features of the input. We now dis-
cuss a technique based on a neural network called self-organizing maps 
(SOMs), or Kohonen networks, named after Teuvo Kohonen (2001), who 
was the first to describe such a network.

4.7.1  Self-Organizing Maps

Self-organizing maps are used to produce a discrete low-dimensional rep-
resentation of a set of input samples. The SOM network is based on com-
petitive learning, where neurons compete with each other in an attempt 
to represent the input. The neurons are usually organized on a 2-D grid 
with a hexagonal structure. If each input pattern is of length N, then each 
neuron will hold a vector of length N. For example, if each input is a vec-
tor of three numbers representing a point in 3-D space, then each neuron 
will contain a vector of three numbers. The initial values of the vectors 
held by the neurons are random, and the network seeks the neuron that 
best represents each input item. When a particular neuron is selected to 
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City

Position in path
Path = DHIFGEAJCB

(a) (b)

FIGURE 4.26  The representation used by Tank and Hopfield to address the TSP 
problem using a Hopfield network. In this binary matrix representation the first 
column represents which city is visited first, the second column represents the 
city visited second, and so forth. Note that the representation does not ensure a 
legal path; that is, one city can be visited multiple times, or the route can visit in 
two cities simultaneously. The matrix in (a) depicts such an illegal route in the 
beginning of the optimization process, and the matrix in (b) shows the final legal 
route, which happens to be the optimal route. (Adapted from Hopfield, John J. 
and David W. Tank, Science 233, no. 4764, 625–633, 1986. With permission.)
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represent an input point, its value is further updated to be more similar 
to that input point. This process is iterated many times such that, when it 
ends, all the input points are mapped to neurons so that adjacent neurons 
will represent similar input points.

The process is demonstrated schematically in Figure 4.27. Assume that 
each input sample on the left contains values for five properties and is there-
fore represented as a vector of length 5. At the beginning of the process all 
the neurons in the hexagonal grid contain vectors of length 5 with random 
initial values. For each input sample we search for the neuron whose value 
is the most similar to that sample. “Similar” can be defined in different 
ways, but often the Euclidean distance is used; that is, for the input sample 
Vj we will search for the neuron Ni that minimizes the expression
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whereVj
m denotes the m-th component of the vector Vj.

Clearly, we do not expect to find a good fit at the beginning of this 
process as the initial values of the neurons are random; nonetheless, we 
can pick the neuron for which the value of the previous expression is the 
smallest. Assume this is the neuron Ni, colored black in Figure 4.27. At this 
point, the value of neuron Ni is changed to be more similar to the sample 
Vj (see following formula). We define a neighborhood for each neuron—in 

FIGURE 4.27  A schematic description of the process of creating a self-organizing 
map. Each input vector is mapped to a neuron of the network (which usually has 
the layout of a two-dimensional hexagonal grid). In an iterative procedure, the 
values of the target neuron as well as neurons in its neighborhood are adjusted 
to reflect the values of the input. Thus, the procedure achieves reduction in the 
dimensionality of the input—in this example, from five to two.
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this example the neighborhood was chosen to be two layers deep. All neu-
rons in the neighborhood of Ni are also updated to be more similar to Vj 

but to a lesser extent. So Ni is changed the most (marked in black), the 
neurons in the layer closest to it are changed in a weaker way (dark gray), 
and the neurons in the second layer are changed the least (light gray). The 
changes are given by the following formula:

	 N t N t t h t V N tk k ki j k( ) ( ) ( ) ( )[ ( )]+ = + −1 α

We see that the value of a neuron in iteration t + 1 is the sum of its pre-
vious value and a change term that is the product of three factors: (1) the 
difference between its previous value and the input sample [Vj–Nk(t)]; (2) 
the learning rate function α(t), which is similar to the learning constant 
we have encountered previously but is represented as a function since it 
can be changed during the computation; and (3) hki(t), which determines 
if neuron Nk is in the neighborhood of Ni and if so how close they are to 
each other. Note that this factor is also time dependent and it is common 
to decrease the size of neighborhoods as the learning process progresses  
in order to refine it. Variations of this algorithm define the neighborhood 
and the way neighborhood sizes change with time in different ways.

After the neurons are updated, the next input point is selected, and the 
process is repeated. Note that the same neuron can represent more than 
one sample. In fact, if the number of samples is larger than the number 
of neurons this must be the case. This learning process, like the other 
learning procedures previously discussed, requires many learning epochs 
before it converges.

We say that the network has converged when the mapping (i.e., which 
sample is represented by which neuron) does not change during an 
entire epoch. The learning process just described leads to a clustering of 
the input data. Since neurons are arranged on a 2-D grid, we can think of 
the algorithm as a way to reduce the dimensionality of the data from N 
to 2. In contrast to some of the networks we discussed earlier, we cannot 
prove mathematically that this network does indeed converge, but expe-
rience shows that this process usually ends up with a stable mapping of 
the input samples to neurons such that similar inputs are represented 
by the same neuron or by adjacent neurons. Clearly, every execution of 
the learning algorithm will give rise to different solutions as the initial 
values of the neurons are chosen randomly. Each input point will be 
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mapped to different neurons upon different choices of the initial val-
ues, but we do expect the network to be similarly organized for different 
initial values. As it is common to repeat this process many times, we 
would like to be able to identify the best mapping. For this purpose two 
error metrics are used: (1) the quantization error; and (2) the topologi-
cal error. The first computes the average distance between each input 
vector and the neuron most similar to it, and it is obvious that we will 
prefer the maps with the smallest quantization error. The topological 
error computes the percentage of input samples for which the two most 
similar neurons are not adjacent on the grid. If the map self-organized 
into clusters, we expect that for most input vectors the neuron closest in 
value and the neuron second closest in value are adjacent on the grid, 
and therefore the topological error will be small. The combination of 
these two metrics allows us to identify the best mapping.

4.7.2  WEBSOM: Example of Using SOMs for Document Text Mining

One of the most impressive examples of using self-organizing maps is 
WEBSOM, a system for mining very large document collections (Lagus, 
Kaski, and Kohonen, 2004). The largest implementation of the system so 
far contains 7 million patent abstracts mapped to a network of about 1 
million nodes. In this system, each document is represented by a very long 
binary vector where each position in the vector represents one word in 
a predefined vocabulary. The vector contains 1 in cells that correspond 
to words that appear in the document and 0 for words that do not. To 
reduce the huge size of such vectors, the vocabulary is made smaller by 
aggregating words of similar meaning. Each neuron in a 2-D SOM starts 
with a random vector, and the input vectors are mapped to neurons in 
an iterative process. When selecting the best match for a given input, the 
similarity between the vector representing the input and the vector rep-
resented by the neuron is calculated by counting the matches between 
corresponding positions in the two vectors or in mathematical terms by 
calculating the inner product of the two vectors. Different weights can 
be given to different words to reflect their relative importance to the text. 
Such a weighting scheme is achieved, for example, by the “inverse docu-
ment frequency” measure that gives higher weights to words appearing a 
lot in a specific document but that are otherwise rare. The actual imple-
mentation of WEBSOM includes several shortcuts enabling the system to 
handle efficiently the large amount of data.
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The system maps similar documents to neurons in the same region of 
the map. To make the map a useful text-mining tool, the system selects 
and automatically labels map regions. A search can start by finding docu-
ments mapped to regions whose labels match best with the search expres-
sion. Then, further relevant search results can be found by moving to 
documents mapped to neighboring regions even if they did not match 
exactly the search criteria. Figure 4.28 shows an example of such search 
in a WEBSOM built for 68,000 articles from the Encyclopedia Britannica.

Descriptive words:
bird, yellow, species, black, king bird,
Hawaiian, bill, inch, family, have    
Articles:
cacique
guira
Hawaiian honeycreeper
siskin
kingbird
chickadee           

Descriptive words:
insect, adult, lay, other, water

Articles:
homopteran : Formation of galls
strepsipteran
mantispid
neuropteran : Natural history
lacewing
damselfly
caddisfly : Natural history
bagworm moth
glowworm

Descriptive words:
shark, fish, species, ray, many, water, feed, have,
attack, use  
 Articles:

fox shark
chondrichthian : General features
leopard shark
soupfin shark
shark
chondrichthian : Economic value
of rays
bull shark
Cambyses I chondrichthian : Natural history
blacktip shark
shark : Description and habits
shark : Hazards to humans

FIGURE 4.28  A close-up of the map of Encyclopedia Britannica articles. The user 
has clicked a map region with the label “shark,” obtaining a view of a section of the 
map with articles on, for example, sharks, various species of fish, and eel (middle 
and left); insects and larvae (lower right corner); and various species of birds (upper 
right corner). Searches performed on the map confirm that whales and dolphins 
can be found nearby (not shown). A topic of interest is thus displayed in a context 
of related topics. The three inserts depict the contents of three map regions, that is, 
the titles of articles found in the region. By clicking a title, the user can access the 
article. The “descriptive words” contain a concise description of the contents of 
each map region. (Adapted from Lagus, Krista, Samuel Kaski, and Teuvo Kohonen, 
Information Sciences 163, no. 1–3, 135–156, 2004. With permission.)
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4.8  SUMMARY
In this chapter we have concentrated on the pioneering examples of neural 
networks developed more than two decades ago. Since then, neural networks 
have become practical tools in several areas including image processing and 
medical decisions. Probably the most popular area of application is finance, 
where neural networks are used to evaluate loan applications, to forecast 
foreign currency exchange rates, and to predict stock market behavior. 
One remarkable recent application of neural network is 20Q, a computer-
ized version of the popular children game of guessing what the opponent 
is thinking about in 20 yes/no questions. The system uses a neural network 
structured as a matrix of weights that represents the strength of the associa-
tion between objects and questions. This weight matrix is used to dynami-
cally choose the next question based on previous answers, and the weights 
are updated when the system guesses the correct answers, reinforcing the 
weights involved in the successful computation. The game is available in an 
online version (http://www.20q.net/) with about 10,000,000 synaptic con-
nections that keep learning from the answers of the participants and also 
as a small handheld device using far fewer weights and without the ability 
to learn. Try it and you will be amazed by the performance of the system.

We have focused on the classical models of neural networks: the per-
ceptron, the multilayered feedforward–backpropagation network, and the 
Hopfield network. Many variants of these models as well as several new 
models have been suggested. Among them are recurrent networks, where 
the network includes not only forward edges but also backward connec-
tions; stochastic neural networks, where the output of the neurons is not 
deterministic and includes random noise; dynamic neural networks, 
where the network exhibits time-dependent behavior such as transient 
phenomena and delay effects; and spiking neural networks, where the 
output of the neurons is a sequence of pulses (spikes) rather than an out-
put of a constant level. Spiking neural networks are inspired by biological 
neurons that can represent information not only by the level of the output 
but also by the rate in which the pulses are emitted. It is too early to tell 
if any of these models or other emerging models will achieve the promi-
nence of the models we discussed in this chapter.

In this chapter we discussed learning and memory. We demonstrated 
how similar principles to those used by the central nervous system can 
be implemented by simple computational systems. Clearly, the biological 
systems are different and much more complex than the artificial systems 
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we dealt with, but we hope we have succeeded in highlighting the similar 
principles, first and foremost of which is the importance of high connec-
tivity between the basic building blocks of the systems. This connectivity 
is at the core of the capabilities of the human brain and is the common 
basis of all the artificial neural networks we have described.

Will future artificial networks be as capable as the human brain? The 
jury is still out on this issue. Many researchers believe that there is a vast 
difference between the two kinds of systems. They believe that we are inca-
pable of building and controlling systems with a similar number of com-
ponents and level of connectivity as exists in the human brain. According 
to this view not only is the limitation technological; we also simply do 
not understand well enough the actual data processing mechanisms 
that occur in the brain and the principles governing these mechanisms 
to enable us to simulate them in an artificial system. On the other hand, 
some researchers believe that most of the difference between the biological 
and artificial processing capabilities is merely quantitative, and when we 
consider the rate of growth of computational systems (as measured by, e.g., 
the number of components, their speed and complexity, memory size) we 
see that the rate of technological advancement is so fast that it will soon 
catch up with biological systems. In the bibliography you will find a refer-
ence to one of the leaders of this school of thought, Ray Kurzweil (2005).
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4.10  EXERCISES

4.10.1  Single-Layer Perceptrons

	 1.	Study the OR function learned by a simple perceptron with three 
inputs x0,x1,x2 and threshold of 0. Fill out the values of the weights in 
Table 4.4 using the learning rule. Let the value x0 always be –1. The 
patterns are presented to the perceptron in the order in which they 
appear in the table. The learning rate is α = 0.5. Repeat as needed 
until the weights converge.
TABLE 4.4

X0 X1 X2 W0 W1 W2 Output
Desired 
Output

–1 0 0 1.3 0.4 –0.2
–1 0 1
–1 1 0
–1 1 1
–1 0 0
–1 0 1
–1 1 0
–1 1 1
–1 0 0
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	 2.	Design a perceptron for the following problem: the inputs to the net-
work are strings of six bits (i.e., there are six input neurons), and the 
perceptron has six output neurons that count the number of bits, 
which are 1 in the input strings as follows:

	 The output is 000000 if the input contains no 1’s.

	 The output is 100000 if the input contains a single 1 (its position is 
unimportant).

	 The output is 110000 if the input contains two 1’s.

	 …

	 …

	 The output is 111111 if the input is all 1’s.

	 3.	Can you design a perceptron for Exercise 2 if the output is represented 
by the position of a single 1 in the output neurons? For instance:

	 100000 represents an input string containing a single 1.

	 010000 represents an input string containing two 1’s.

	 000010 represents an input string containing five 1’s.

	 Justify your answer.

4.10.2  Multilayer Networks

	 4.	Design a network that deals with images of the format shown in 
Figure  4.29. Every image contains N cells that are either white or 
black. The network has to determine whether the image contains 
more than N0 contiguous black regions. The images are circular 
(the first and last cells are considered to be adjacent). For instance, 
in Figure  4.29, the top image contains two black regions, and the 
other images contain one black region each. Suggest a topology for 
the network, and determine its weights. Your solution can disregard 
the special case where all cells are black.
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FIGURE 4.29

	 5.	Design a multilayered network that implements the XNOR function. 
(XNOR is Not XOR; that is, it returns 0 when XOR returns 1 and 1 
when XOR returns 0).

	 6.	Given the network in Figure 4.30, determine the weights W1,…,W9 
so that the network computes correctly the XOR function on binary 
inputs A and B. (Note that each hidden neuron has a control input 
with the fixed value –1.)  To simplify matters, you may assume that 
all the neurons compute using a threshold function (as in percep-
trons) rather than a sigmoid function.

−1

−1

−1

A

B

A

B

W1
W2

W3

W4

W8

W9

W7

W5

W6

FIGURE 4.30

	 7.	The network in Figure 4.31 is to be used to compute the XOR func-
tion. The learning rate is α = 0.5, and the activation function is a 
sigmoid. Perform a full epoch of weight updates for the inputs (0,1) 
and (1,1) where the initial weights are w1 = –0.1, w2 = 0, w3 = 0.1, w4 = 
0.2, w5 = 0.1, w6 = –0.2, w7 = 0.1, w8 = –0.3, and w9 = 0.
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x1

x2

–1

W1

W7

W8

W9

W2
W3

W4

W5

W6

FIGURE 4.31

	 8.	In the NetTalk network:

	 a.	 What are the advantages and disadvantages of a larger window?

	 b.	 How can the optimal window size be determined?

	 9.	In the handwriting recognition example:

	 a.	 Why was such a large training set needed?

	 b.	 Calculate the number of connections between the neurons in the 
first hidden layer and the neurons in the input layer (consider the 
threshold level as input) and the number of weights needed to 
specify these connections.

	 10.	Consider a multilayered network with seven input neurons, seven 
output neurons, and n neurons in a single hidden layer. For simplic-
ity, assume that the neurons in the hidden layer function accord-
ing to step function and not the sigmoid function. The network is 
designed to map unary representations of the digits 0 to 7 to identi-
cal outputs (the bottleneck method). In this representation the input 
patterns 0 is represented as 0000000, the input 1 as 10000000, 2 as 
01000000, and 7 as 00000010.

	 a.	 What is the minimal number of neurons in the hidden layer?

	 b.	 Design a network to solve this problem.

4.10.3  Hopfield Networks

	 11.	Consider the Hopfield network shown in Figure 4.32 where the thresh-
old values of the neurons are 0.
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FIGURE 4.32

	 a.	 Display the weights as a matrix T where the cell in position (i,j) 
holds Ti,j.

	 b.	 Show that the weights in T adhere to the requirements on weights 
in a Hopfield network.

	 c.	 The network contains three neurons, allowing for eight possible 
patterns. The stored states are (1,–1,1) and (–1,1,–1). Compute the 
behavior of the network on these patterns, and show that they are 
stable.

	 d.	 For each vector obtained by changing the value of a single neuron 
in the stored patterns (e.g., changing (1,–1,1) to (–1,–1,1), (1,1,1) or 
(1,–1,–1), determine the vector to which the network will con-
verge. Does the network deal well with errors?

	 12.	A Hopfield network containing five neurons has to store the fol-
lowing patterns:

	

U

U

U

1

2

3

= ( )
= ( )
=

1, 1, 1, 1, 1

1, –1, –1, 1, –1

–11, 1, –1, 1, 1( )

	 a.	 Determine the 5 × 5 weight matrix for the network.

	 b.	 Show that the stored patterns are stable states of the network.
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	 c.	 Check the network’s behavior when presented with a noisy ver-
sion of U1 where the second element is –1.

	 d.	 Show that the following patterns are also stored in the network. 
What is the relationship between these patterns and the original 
patterns?

	

U

U

1

2

= ( )
= ( )

–1, –1, –1, –1, –1

–1, 1, 1, –1, 1

UU3 = ( )1, –1, 1, –1, –1

	 13.	Design and implement a Hopfield network that memorizes dig-
its and retrieves them. Every digit will be represented as a 10 × 10 
matrix containing 0’s and 1’s. The network will memorize the digits 
and will retrieve a digit when presented with its image with a few 
flipped bits. For instance, in Figure 4.33 the network will retrieve the 
digit 3 on the left when presented with the image on the right, which 
has several altered bits. Explore a few aspects of this network:

(a) (b)

FIGURE 4.33

	 a.	 Determine how many different digits the network can memorize. 
A digit is considered memorized if the network can retrieve it 
correctly in 90% of the cases in which 10% of the bits are flipped.

	 b.	 Explore the trade-off between the number of memorized digits 
and the number of altered bits. Plot a three-dimensional graph 
where X is the digit axis, Y is the percentage of errors axis, and 
the Z axis is the success percentage.
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	 c.	 Repeat the tests where every digit is memorized using several 
similar but not identical input patterns (create the patterns first). 
Does this improve the learning?

	 d.	 Repeat the experiments by representing the digits using 1 and –1 
(rather than 1 and 0). Does this improve the success rate or the 
convergence rate? Why?

	 e.	 The network can fail in one of two ways: it can converge to a digit 
that was learned but that is not the correct digit, or it can con-
verge to a state that was not part of the input samples (a spurious 
attractor). Count the number of errors from each type, and print 
out a few samples of states that are not part of the input samples. 
Try to classify those patterns.

4.10.4  Self-Organizing Maps

	 14.	Download a red/green/blue (RGB) color table. In it each color is 
coded using three numbers that represent the strengths of its red, 
green, and blue components. For instance, navy blue is represented 
as (65,105,225) and pink as (255,192,203). Such tables can be found 
on many Web sites. Make sure your table contains about 100 colors 
(choose a sampling of the table if it is too large). Build a self-organiz-
ing map that will classify the colors on a map of size 9 × 9 and display 
the results graphically.

4.10.5  Summary

	 15.	In supervised learning the size of the dataset is often limited. Thus, 
dividing the data into a training set and a test set might render the 
training set too small. Suggest a way to handle such situations.

	 16.	Due to the complexity of designing multilayer neural networks (e.g., 
the need to determine the number of layers, the number of neurons 
at each level, weight sharing), it has been suggested that genetic algo-
rithms can be used to find good network architectures. Discuss how 
to implement this idea (consider the components required to char-
acterize the genetic algorithm, such as data kept in chromosomes, as 
well as the components required to characterize the network, such as 
the learning process).
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We presented several potential applications of neural networks (of all 
types). For Exercises 17–22 discuss how to represent the input for each 
problem in an appropriate way and which network should be used to solve 
the problem. Note that these problems can be approached in different ways 
and that no single correct solution or method can be found that guaran-
tees finding a successful network without using trial and error.

	 17.	Optimization problems:

	 a.	 The map coloring problem: given N countries and K colors, color 
the countries such that no two adjacent countries (countries 
sharing a border) have the same color. Countries may remain 
uncolored, and the goal is to minimize the number of uncolored 
countries.

	 b.	 The N queens problem: place N queens (or less) on an N×N chess-
board such that no queen can attack another queen. The goal is to 
minimize the number of unplaced queens.

	 18.	Design a network that suggests reasonable past forms for English 
verbs when given the present tense of the verbs. Keep in mind that 
many English verbs have irregular past tenses (e.g., run–ran, speak–
spoke, draw–drew, die–died). Consider data representation, network 
design, and expected deficiencies in the network’s learning and gen-
eralization capabilities.

	 19.	Image processing:

	 a.	 Face recognition: the goal is for the network to identify a person 
from a photograph. Assume the photograph is a headshot.

	 b.	 Image reconstruction: the network is presented with images that 
have some missing regions (e.g., parts were torn off) and some 
regions that are out of focus. The network is to reconstruct the 
originals from these partial images.

	 20.	Suggest a design for a network to forecast failures in a large engine in 
a power plant. The network uses sensors that report the temperature, 
number of rotations per minute, fuel flow, and vibrations as well as a 
microphone that captures the engine’s sound. Under normal circum-
stances the engine operates continuously (and the network design has 
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to take this into account). For training purposes, however, the engine 
may be stopped, and started; failures can be induced, etc.

	 21.	A bank uses an expert system to determine which clients are credit-
worthy. The system is based on parameters such as the clients’ age and 
gender, their balance sheets, number of operations per month, and the 
type of requested credit (i.e., whether it is for small, medium, or large 
loans). The system has been in use for a few years, and the bank has 
data on its performance (i.e., the cases where loans were approved and 
turned out to be bad loans.) Will a neural network be able to improve 
the loan approval process? Suggest an appropriate architecture.

	 22.	Identifying unusual credit card usage. Design a network for a single 
customer (one credit card). Note that under normal circumstances 
there are no unusual usage patterns of the sort the network needs to 
identify that can be used for training the network.

4.11  ANSWERS TO SELECTED EXERCISES
	 2.	A perceptron where each one of the six inputs is connected to all of 

the six output neurons and the threshold of the first output neuron 
is 1, the threshold of the second output neuron is 2, and so forth 
accomplishes the given task.

	 3.	This is impossible to do with a simple perceptron. Look at a smaller 
example of two inputs and two outputs. The behavior we require for 
the first output bit is to be 1 if and only if one of the two input bits is 
1; this is the XOR function that cannot be calculated with a simple 
perceptron.

	 4.	The black cells will be represented by the value 1 and the white cells 
by 0. The network has a single hidden layer as shown in Figure 4.34. 
For the hidden layer a simple step function with a threshold of 0 is 
used. Thus, a node in the hidden layer will fire only when it recog-
nizes a switch from a white cell to a black cell. Note that because of 
the circular nature of the problem we have a node that connects the 
first cell and the last cell. The output neuron will have a threshold of 
N0, so it will output 1 only if there are at least N0 contiguous black 
regions.
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	 8.

	 a.	 The network has more data the larger the window and there-
fore can pronounce the letter better. If, for example, there was 
no window around the letter, the network would be unable to 
distinguish between the k’s in “kill” and “know.” On the other 
hand, a larger window means that the network is more complex 
and has to learn a larger number of weights. That will cause the 
training phase to be longer, require a larger training set, and may 
result in an impractical convergence rate.

	 b.	 The decision has to be based on the network’s performance: can 
it achieve a low enough percentage of errors to be useful?

	 9.

	 a.	 The variety of different shapes is very large, and the number of 
neurons and weighs grows proportionally. Moreover, the large 
variability in the ways the same digit can be written necessitates 
the use of a large training set to decrease the danger of overfit-
ting, where the network would be well trained on the training set 
but incapable of generalizing.

	 b.	 The hidden layer contains 768 neurons (8 × 8 × 12), which have 
19,968 connections. The number of weights is only 1068 (768 
threshold values + 12 × 25 weights). This means that the net-
work has to learn ~5% of the weights it would have had to learn 
if weight sharing was not employed. The second hidden layer is 
similar to the first. It contains 12 groups of 4 × 4 neurons that 
are “in charge” of a region of size 5 × 5 in the first hidden layer. 
The neurons get input from corresponding regions in 8 of the 12 
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groups in the first hidden layer (every 4 × 4 group is “in charge” 
of a different combination of eight groups).

	 10

	 a.	 Since the network actually needs to count the numbers 0 to 7, 
three neurons are enough to capture the data using a binary 
representation.

	 b.	 A possible design for the network is shown in Figure 4.35. The 
input nodes are connected to the hidden layer nodes in a way 
that represents the binary coding; for example, every second 
input bit is connected to the upper hidden node that repre-
sents the parity (rightmost) bit in the binary representation. 
The weight of all edges from the input to the hidden layer is 1 
(to prevent overloading the figure not all of these weights are 
shown). The threshold values of all the hidden layer neurons 
are 1. The hidden layer neurons are fully connected to the out-
put neurons (again, to prevent overloading the figure, not all 
of these edges are shown). The reconstruction is achieved by 
setting the appropriate values for the weights on the edges and 
by the threshold of the output units. The weights are set accord-
ing to the binary representation of the number; for example, 
the three edges going into the fourth neuron, which represents 
the number 4 with the binary representation 100 should have 
weights of (1,–1,–1). The threshold value for each neuron is 
the number of 1’s in the corresponding binary representation, 
which is 1 in the case of 100.

1
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FIGURE 4.35
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	 11.

	 a.	

	

T =

− +

− −

+ −

1

3

0 2 2

2 0 2

2 2 0

	 b.	 We have to test for two conditions: (1) that the weights Tii are 
equal to 0; and (2) that the weights satisfy Hebb’s rule (i.e., for-
mula (4.10)). Verify that T satisfies both of these conditions.

	 c.	 We will demonstrate this using matrix multiplication notation.

	

Tvv =

− +

− −

+ −

+

−

+

1

3

0 2 2

2 0 2

2 2 0

1

1

1

=

+

−

+
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	 Applying the sign() function yields:

	

sign( )Tvv vv=

+

−

+

=

1

1

1

	 which means that v is stable. The calculation for the other vector is 
similar.

	 15.	A possible solution is to use all the available data for training, leav-
ing out only a single example to be used for testing. To evaluate the 
performance of the network in this way, one needs to repeat the 
procedure many times, each time leaving out a different example 
for testing, and then evaluate the performance over all trials. This 
is known as the “jackknife” method. Note, however, that the data 
points have to be independent and different from each other in order 
for this technique to work. If many data points are duplicated, then 
when one copy is presented as the test case, the other copy is included 
in the training test and would taint the result of the test
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C h a p t e r  5

Molecular Computation

This chapter deals with solving computational problems using 
chemical and biological processes. Problems to be solved using molec-

ular computation are usually presented as a collection of molecules that 
are mixed together and undergo a series of biological processes. These pro-
cesses produce a new collection of molecules that represent the solutions to 
the computational problem. This approach to solving computational prob-
lems is interesting in several ways:

•	 Practical motivation: Molecular computation may allow us to build 
computational devices from biological molecules and possibly to 
build general-purpose “biological computers.” As we will discuss in 
this chapter, such devices may have several advantages over classical 
computers for certain applications. An interesting example might be 
in medicine where such devices may be able to make autonomous 
real-time decisions inside the patient’s body.

•	 Theoretical motivation: The observation that biological molecules 
can carry out computations should help us realize that many bio-
logical processes involved in information processing and biological 
control should be viewed as computational processes. The computa-
tional perspective can help us gain better insight into these biological 
processes. Furthermore, this viewpoint opens the way to employ the 
tools and methodologies of computer science to analyze biological 
processes.
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•	 Parallelism: Molecular computations are inherently parallel pro-
cesses, as they involve a large number of molecules that collide and 
interact with each other. Thus, molecular computational models are 
potentially very powerful and may be able to solve hard computational 
problems.

•	 Analog computation: Molecular computation is analog computa-
tion rather than digital computation. Historically, the first com-
puting machines were mechanical and were used for astronomical 
computations. They made use of gears, cams, levers, drums, and 
other mechanical components to perform complex computations 
such as computing integrals. The heyday of the mechanical com-
puting machines was during World War II when electromechanical 
machines called BOMBE were used to crack the Enigma code used 
by the Germans. This era came to an end when electronic computers 
using binary logic took over and replaced the mechanical machines. 
The term analog computation, however, encompasses a wider range 
of computational processes based on making use of other physical 
phenomena like hydraulics, optics, and biological phenomena  to 
solve computational problems. In other words, analog computers 
use the physical behavior of a system to solve computational prob-
lems. Consider, for example, the following. When two boards con-
nected by rods are dipped in soap water, bubbles with a minimal 
surface area will be created between the rods, because closed physi-
cal systems will reach an equilibrium state of minimal energy, and 
thus, in this example, the system will minimize the surface of the 
bubbles. We could harness this phenomenon to solve the following 
computational problem. Given a set of vertices, interconnect them by 
edges such that the total length of the edges (the sum of the lengths 
of all the edges) is minimized. You may add vertices and edges to 
the graph to reduce the total length. (The added vertices are called 
Steiner vertices, and the problem is known as the Steiner tree prob-
lem and is an NP-complete problem.) The soap bubbles self-organize 
by adhering to the laws of physics to find the Steiner tree defined by 
the location of the rods between the boards (Figure 5.1).

		  To date, analog computations are hardly considered by computer 
scientists, but they do raise very interesting algorithmic, complexity, 
and computability questions such as how to measure the complex-
ity of an analog system, what can and cannot be computed using an 
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analog computer, and to what extent the analog and digital computa-
tional models are equivalent. We believe that the new computational 
models described in this chapter, along with quantum computing 
(out of the scope of this book; a computational model based on 
qubits, which can be in a state of one, zero, or quantum superposi-
tion of zero and one) will raise interest in analog computation.

5.1  �BIOLOGICAL BACKGROUND
In this section we describe a number of laboratory techniques used in the 
molecular computations discussed later in this chapter.

5.1.1  PCR: Polymerase Chain Reaction

Polymerase chain reaction (PCR) is a major player in biological lab work 
and has a central role in the molecular algorithms described in this chap-
ter. PCR is used to amplify a DNA segment of interest multiple times. 
Kary Mullis developed this technique in the 1980s and was awarded the 
1993 Nobel prize in chemistry for this accomplishment.

PCR makes use of the enzyme DNA polymerase (Figure 5.2), which 
completes a single strand of DNA, which is used as a template for a 

FIGURE 5.1  Soap bubbles self-organize to create the optimal Steiner tree on a 
four-vertex graph. (Picture courtesy of Scott Grandison.)
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double-stranded DNA molecule. To perform its function, the enzyme has 
to encounter single-stranded DNA that terminates with a double-stranded 
segment at one end. The DNA polymerase elongates the double strand 
to the entire molecule. When DNA is heated to a high temperature 
(around 95°C), the strands separate from each other, whereas they attach 
to each other at lower temperatures in a process called hybridization or 
annealing.

The combination of strand complementation, separation, and anneal-
ing allows the PCR process to turn into a chain reaction. A DNA sequence 
to be amplified is selected, and short sequences of DNA called primers are 
prepared. The primers complement the beginnings of each selected DNA 
strand and must be roughly 20 bases long for the PCR to succeed. The 
PCR process starts when DNA, the primers, the bases used to create new 
strands, and the DNA polymerase are mixed together in a test tube. The 
complete process is described in Table 5.1.

A thermal cycler, or a PCR machine, is used to automatically heat 
and cool the solution in the test tubes. Note that the solution should 
contain enough “raw material” so that the process can go through all its 

DNA
polymerase

A T

T A

G G GA A T T A T G G GA A T T

T A C C CT T A A

FIGURE 5.2  The DNA polymerase reaction.

TABLE 5.1  The PCR Process

1. �e DNA strands are separated by
    heating them to around 95°C.

2. �e mixture is cooled to around 55°C
    and the primers attach themselves to
    the beginnings of the corresponding
    strands (base pairing).

3. �e mixture is warmed to 72°C which
    is optimal for the functioning of the
    Polymerase. �e enzyme complements
    the bases on each strand, thereby
    doubling the number of DNA molecules.

4. �e whole process is repeated from
    Step 1 as often as needed. �e number
    of available DNA molecules is doubled
    at each iteration.
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phases. PCR allows researchers to start from a very small amount of DNA 
(obtained, e.g., from fossils or found at a crime scene) and to amplify it 
quickly. For example, if we want to know whether a sample of DNA con-
tains a particular DNA sequence, we can prepare unique primers that 
surround the sequence and start a PCR reaction. If the sequence is pres-
ent in the sample it will be amplified; otherwise, the two primers will not 
attach, and the reaction will not take place.

5.1.2  Gel Electrophoresis

Gel electrophoresis is a technique for separating molecules such as DNA 
and proteins using an electric field applied to a gel. Different molecules 
move differently in the gel according to their size and electrical charge, 
so smaller and higher-charged molecules will be more affected by the 
electric field and therefore will move faster. Since DNA molecules have 
a similar charge to mass ratio, the main difference between molecules is 
their size, which determines their ability to migrate through the pores 
of the gel. Thus, running DNA molecules on a gel sorts the molecules 
according to their size and allows researchers to determine the size of 
new DNA molecules by comparing them with DNA molecules of known 
sizes (which form a DNA ladder when run on the gel).

5.1.3  Restriction Enzymes

Restriction enzymes cut double-stranded DNA molecules. They oper-
ate by binding to the DNA at a specific restriction site (a short sequence 
usually four to eight bases long) and incising the DNA at the site or 
close to it. Some enzymes perform a blunt incision, and others leave 
behind sticky ends that allow the ends to join other DNA molecules 
(Figure  5.3). The first restriction enzyme was discovered by Werner 
Arber, Dan Nathans, and Hamilton Smith, who were awarded the Nobel 
prize in medicine in 1978. It is believed that these enzymes evolved in 
bacteria to protect them against viruses with double-stranded DNA. 
Restriction enzymes have turned into essential molecular biology tools, 

A A GC T T
T T CG A A

A A GC T T
T T CG A A

(a) (b)

FIGURE 5.3  Restriction enzymes. (a) Blunt edge. (b) Sticky end.
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since they allow cutting DNA for many purposes such as introducing 
new sequences into existing DNA molecules. Hundreds of restriction 
enzymes are currently available commercially.

5.1.4  Ligation

Ligase enzymes can repair breaks in one of the strands of a DNA mol-
ecule (provided that the molecule is held together by its double-strand 
structure). This is done by bonding (ligating) adjacent nucleotides, thereby 
recovering the original structure of the molecule (Figure  5.4). Ligase 
enzymes are used by cells both in DNA repair and in DNA replication. In 
molecular biology, ligase and restriction enzymes are often used in con-
cert to introduce new sequences into DNA molecules.

5.2  COMPUTATION USING DNA

5.2.1  Hamiltonian Paths

Molecular computation seemed almost like science fiction until Leonard 
Adleman published his paper “Molecular Computation of Solutions to 
Combinatorial Problems” in 1994. In the paper, Adleman presented an 
implementation of a molecular process to solve the classical computer sci-
ence problem of finding Hamiltonian paths in a directed graph:

Let G = (V,E) be a directed graph and vin and vout be two of its ver-
tices. A Hamiltonian path is a path starting at vin and terminating 
at vout that goes through every vertex exactly once. Given G, vin, and 
vout, determine whether there exists a Hamiltonian path in G.

The Hamiltonian path problem is known to be NP-complete; therefore, 
solving it using DNA was an exciting development.

We first present an abstract nondeterministic algorithm to solve the 
problem, which we will then use as an outline for the molecular algorithm. 

Ligase

T TG G GC CC A A A

A AC C CG GG T T T

T TG G GC CC A A A

A AC C CG GG T T T
(a) (b)

FIGURE 5.4  The ligation process. (a) Before. (b) After ligation the double-strand 
structure is complete.
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The algorithm generates random paths, which are tested to determine if 
they are Hamiltonian. The algorithm follows these steps:

	 1.	Generate a large set of random paths in the graph, where a path is a 
set of one or more edges where the starting vertex of an edge has to 
match the ending vertex of the previous edge in the path.

	 2.	Discard all paths that do not start at vin and do not terminate at vout as 
they cannot be a solution to the given Hamiltonian path problem.

	 3.	Discard all paths whose length (the number of vertices they traverse) 
is not equal to the number of vertices in the graph, as they cannot 
be a solution to the given Hamiltonian path problem. Note that this 
stage may retain paths that do not solve the problem as they may visit 
some vertices more than once and never visit other vertices.

	 4.	Discard all paths that do not visit every vertex as these paths can-
not be solutions to the Hamiltonian path problem. Note that we do 
not need to check separately if the remaining paths visit some nodes 
more than once, as this follows from Steps 3 and 4.

	 5.	 If the resulting set is nonempty, return “yes.” Otherwise, return “no.”

This algorithm has two main stages: (1) generate a set of candidates; and 
(2) sieve out all the candidates that do not solve the problem. This is called 
a generate and test algorithm, and the molecular algorithm operates in a 
similar way.

The main trick in implementing the algorithm using molecules is the 
way vertices and edges are represented. We represent the graph as a collec-
tion of single-stranded DNA molecules, where the vertices and edges are 
represented as follows (Figure 5.5):

TATAGGGGTAGCGCTTTTGC

TATCGGATCGGTATATCCGA

GCTATTCGAGCTTAAAGCTA

ATATCCCCATCGCGAAAACG

O0

O2

O3

O0

GTATATCCGAGCTATTCGAGO2  3

TATAGGGGTAGCGCTTTTGCGCTATTCGAGO0  3

FIGURE 5.5  Molecular representation of vertices and edges in a graph.
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•	 Vertices: Every vertex is represented by an arbitrary sequence of 20 
bases (we could have chosen another arbitrary number of bases). The 
sequence associated with each vertex is arbitrarily chosen, but we will 
see that these sequences may not be identical, similar, or complemen-
tary to sequences associated with other vertices. There are 420 possible 
such representations, which is assumed to be much larger than the 
number of vertices in the graph. The molecular representation of vertex 
i will be denoted as Oi. The complementary sequence, where A comple-
ments T and C complements G, will be denoted as Oi .

•	 Edges: Each edge is also represented by a sequence of 20 bases. The 
edge between vertices i,j is composed of the last 10 bases of i’s rep-
resentation followed by the first 10 bases of j’s representation. We 
will see how this allows us to connect the edges to create paths. The 
molecular representation of the edge i → j will be denoted as Oi  → j.

		  The edges starting at vin or ending at vout have a slightly different 
representation. They use the complete representation of these special 
vertices, so these edges will be represented by sequences of length 30. 
An edge from vertex vin to vertex j will be represented by the entire 
representation of vin followed by the first 10 bases of j. Similarly, edge 
from vertex i to vertex vout will start with the last 10 bases of the rep-
resentation of i followed by the entire representation of vout.

The significant property of this representation is that it enables the con-
nection of adjacent edges into a sequence that represents a path. This is 
achieved by putting together, in a solution, molecules representing edges 
and molecules representing the complements of the vertices. So if, for 
example, we introduce the representation of the edges O2 → 3 and O3 → 4 and 
the complement of O3 denoted as O3, O3 will combine with the second half 
of the edge O2 → 3 and with the first half of the edge O3 → 4 to create a double-
stranded sequence, as can be seen in Figure 5.6.

When such double-stranded sequences are created in the presence of the 
enzyme ligase, the two separate molecules O2 → 3 and O3 → 4 will be ligated to 
form a single molecule representing the path 2 → 3 → 4. In this manner all 
possible paths in the graph are generated from the molecules representing the 
edges of the graph; then, they can be sieved such that only the Hamiltonian 
paths (if they exist) remain. Another example, representing the path 0 → 
3 → 4, appears in Figure 5.7. Note that this process can create sequences 
representing paths that are not legal Hamiltonian paths. The molecular 
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GTATATCCGA GCTATTCGAG

CTTAAAGCTA CGCTAGGTAC

CGATAAGCTC GAATTTCGAT

O3  4

O3

O2  3

O2  3 O3  4

GTATATCCGA GCTATTCGAG CTTAAAGCTA CGCTAGGTAC

CGATAAGCTC GAATTTCGAT

O3

Ligase

(a)

(b)

FIGURE 5.6  Building the path 2 → 3 → 4. (a): The participating molecules: two 
edges, and the complement of a vertex. (b): The segment of the path that can be 
created by these molecules.

CGATAAGCTC GAATTTCGAT

CTTAAAGCTA CGCTAGGTAC

TATAGGGGTA GCGCTTTTGC GCTATTCGAG

ATATCCCCAT CGCGAAAACG

O3  4

O0  3

O0

O3

GAATTTCGAT

CTTAAAGCTACGCTAGGTACTATAGGGGTAGCGCTTTTGCGCTATTCGAG

ATATCCCCATCGCGAAAACGCGATAAGCTC

O0 O3

O3  4O0  3
Ligase

(a)

(b)

FIGURE 5.7  Building the path 0 → 3 → 4. (a): The participating molecules: two 
edges, and two complements of vertices. (b): The segment of the path that can be 
created by these molecules. Note that, because of the longer structure of the edge 
O0→3, the beginning of the path has a blunt shape that cannot be extended.
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algorithm was implemented in Adleman’s paper on the seven-vertex graph 
in Figure 5.8, where vertex 0 is the starting vertex vin, and vertex 6 is vout. 
Figure 5.9 depicts a legal Hamiltonian path in the graph, whereas Figure 5.10 
shows a path through the graph that is not a legal Hamiltonian path.

Let us now go over all the steps required for executing the molecular 
algorithm for the seven-vertex graph, using the same steps we used to 
describe the nondeterministic algorithm:

	 1.	Insert multiple copies of the representations of all the edges and the 
complements of all the vertices into a solution that also contains the 
enzyme ligase. The molecular processes should then generate the 
molecular representations of all the paths in the graph.

	 2.	At this point, a process that creates many copies of the paths start-
ing and ending at the appropriate vertices is applied to the solution. 
This is achieved by doing a PCR with primers that are the molecular 
representations of vin (O0) and the complement of vout ( O6 ).

O5 O6O2 O5O0 O2

O0 O2 O5 O6
––– –

FIGURE 5.10  An illegal Hamiltonian path in Adleman’s graph.

1

0

2

3

4

5

6

FIGURE 5.8  The graph used by Adleman to compute a Hamiltonian path. A pos-
sible Hamiltonian path in this graph is depicted by the darker arrows.

O5 O6O4 O5O3 O4O2 O3O1 O2O0 O1

O0 O1 O2 O3 O4 O5 O6
–––––––

FIGURE 5.9  A legal Hamiltonian path in Adleman’s graph.
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	 3.	The DNA molecules are separated based on their length, and only the 
molecules of length 140 (20n, where n is the number of vertices in the 
graph) are kept. As each edge is represented by a molecule of length 
20 and a Hamiltonian path has to traverse each vertex exactly once, a 
Hamiltonian path will contain n – 1 edges. But as the edge starting at 
vin and the edge ending at vout are of length 30, the total length of the 
representation of the Hamiltonian path is 20n. The molecules that 
were kept are amplified again so that enough copies exist to continue 
with the algorithm.

	 4.	The paths that visit every vertex in the graph are selected. This is 
achieved by first selecting from the solution all the molecules that 
contain the sequence O1. The selection of such molecules is achieved 
by first heating the solution to separate the DNA strands and then 
applying magnetic beads attached to sequences that are complemen-
tary to those being searched for and thus anneal with them. Next, 
the selected molecules are further processed to select only the ones 
containing O2 and so on, up to O5. The molecules we are left with at 
the end of this process represent paths that visit each vertex.

	 5.	PCR is applied again to the solution (using the same primers) to make 
sure that even a small number of appropriate DNA molecules will be 
detectable.

	 6.	Gel electrophoresis is performed to test whether any DNA molecules 
of the appropriate length are found. If such molecules exist in the 
solution, this proves that a Hamiltonian path exists in the graph, and 
the algorithm outputs yes; otherwise the output is no.

Figure 5.11, taken from Adleman (1994), shows the gel used to read out the 
composition of the DNA molecules found. The gel shows the final step of the 
algorithm (Step 6). To produce the image in Figure 5.11, a number of PCR 
processes were applied to the molecules, each of which contained O0 as one 
of its primers; the complements of O1 through O6 were used consecutively as 
the other primer. The resulting DNA was then run on a gel. Each lane in the 
figure shows the result of the amplification of a specific subsequence of the 
Hamiltonian path. This process allows us to see the formation of the mol-
ecules for all partial paths and to prove that the resulting Hamiltonian path 
is 0 → 1 → 2 → 3 → 4 → 5 → 6. Alternatively, it is possible to sequence the 
resulting molecule and actually read out the sequence of the vertices.
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In Adleman’s experiment the implementation of the molecular algo-
rithm for a seven-vertex graph took about a week of lab work. Some of the 
steps can be automated, and the time to implement such an algorithm may 
be shortened to a matter of hours; indeed, in subsequent works Adleman 
presented apparatuses that can do this. Nonetheless, some of the processes 
are time-consuming; for example, the PCR steps cannot be significantly 
shortened. Clearly, for a seven-vertex graph the computation time is much 
shorter on a regular computer. However, computer scientists are interested 
in analyzing how the time to execute an algorithm changes as a function 
of the problem’s size. The molecular algorithm was run on a small graph, 
and we would like to know how its speed would vary as the size of the 
graph is increased. This allows us to neglect “fixed costs” and focus on the 
execution speed as a function of the input size (the number of vertices in 
the graph). The complexity of the algorithm is analyzed by counting the 
change in the number of basic operations the algorithm goes through as 
a function of the input size (usually denoted by n). Note that counting 
basic operations is better than measuring actual running time, as it is not 
dependent on the speed of the machines used to execute the algorithm.

The number of lab steps needed for implementing the molecular algo-
rithm grows linearly with the size of the input. That means that if the 
number of vertices is doubled, the number of lab steps will also double 
(ignoring fixed costs that do not change as a function of n). This can be 
seen by looking at all the steps taken by the molecular algorithm and ana-
lyzing how they depend on the size of the graph. For most of the steps 
it seems that the amount of time is constant regardless of the size of the 
graph. For example, the hybridization performed in Step 1 would take 
roughly the same time whether 7 or 7000 molecules are involved. The only 
step that is directly dependent on the size of the graph is Step 4 where the 

1 2 3 4 5 6 7

150
100
50

FIGURE 5.11  The experiment proving the existence of a Hamiltonian path: 
Graduated PCR of the final product of the experiment revealing the Hamiltonian 
path (lanes 1 through 6); the molecular weight marker is in lane 7. (From 
Adleman, Leonard M., Science 266, no. 5187, 1021–1024, 1994. With permission.)
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number of selection operations is the same as the number of vertices in the 
graph, so obviously the number of selection operations will double when 
the number of vertices is doubled. If at every step of the algorithm the 
increase in the number of operations is equal (or is a constant multiple) to 
the increase in the number of vertices, the total increase is linear, and the 
algorithm is called a linear algorithm.

All the conventional Hamiltonian path algorithms require a number of 
operations that grows very fast—in fact, exponentially—as a function of 
the size of the graph. This is very different from the behavior of the molecu-
lar algorithm, which is more and more cost-effective as graphs gets larger.

Counting the number of steps needed to execute the algorithm in the 
lab allows us to estimate the efficiency of the algorithm but hides the num-
ber of concurrent operations caused by the collisions of the molecules in 
the test tube. As already stated, parallelism is the secret behind the power 
of the molecular algorithm, and to appreciate its strength it is important 
to try to determine how many molecular operations are performed at each 
stage. This will allow us to estimate the number of basic operations and 
to facilitate the comparison between the performance of the molecular 
computation and regular digital computations.

Let us estimate the number of ligation operations performed in Step 1 of 
the molecular algorithm to evaluate the number of operations performed 
per time unit, which is the common metric of the speed of a computa-
tional device. This approach provides a way of quantifying the advantage 
a molecular algorithm has relative to a sequential computation using a 
digital computer. Adleman (1994) estimated that the number of ligation 
operations performed in Step 1 was on the order of 1014 and that it would 
be relatively easy to increase this number to at least 1020. Dividing this into 
the length of time it takes to perform Step 1 (about an hour) shows that 
the molecular computation operations are about as fast as basic operations 
performed on a supercomputer.

It is common in computer science to evaluate algorithms by looking 
at the time and memory needed to execute them (as a function of input 
size). One could also look at other resources. For molecular algorithms we 
might want to look at the cost of resources, such as the number of mole-
cules needed to perform the algorithm or the amount of energy consumed 
by the process, again as a function of the graph size.

The number of distinct molecule types needed for implementing the 
algorithm (i.e., representing the vertices and edges), grows only linearly 
with the graph size. However, this is not the case for the total number of 
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molecules. It is important to realize that the algorithm has to generate all 
possible paths in the graph to make sure that each one is tested for being 
Hamiltonian. Since the number of possible paths of length N in the graph 
is roughly dN (where d is the average degree of nodes in the graph), the 
amount of DNA (i.e., the total number of molecules) needed will grow 
exponentially with the number of vertices. Assume a graph with 80 ver-
tices and an average degree of 10. We will then need more than 1080 DNA 
molecules. This number is larger than the estimated total number of atoms 
in the universe, which obviously indicates that this and similar algorithms 
are not practical for large problems. Thus, these types of molecular algo-
rithms do not really offer us a magic bullet to shatter the limits of solving 
large exponential problem. Nevertheless, these algorithms may be useful 
in addressing medium-size problems that are not amenable to conven-
tional computation.

Another disadvantage of the molecular algorithm, compared with digi-
tal computation, is that it is susceptible to errors. As we will see, errors can 
arise in various stages of the algorithm and can adversely affect the success 
of the algorithm. This is particularly dangerous in Step 4 of the molecu-
lar algorithm. If a single valid path fails to be selected and is removed 
due to an error, the algorithm may return a false negative, even though 
a Hamiltonian path does exist. That is the reason for repeating the PCR 
at each step—amplifying the number copies representing each solution 
reduces the probability that all the copies will be lost due to an error. The 
danger of a false positive is not as problematic, as the molecules that gave 
rise to the positive answer are validated at the final step to verify that they 
indeed represent a Hamiltonian path in the graph. If it turns out that the 
molecule does not represent a Hamiltonian path, other molecules from 
the final batch can be tested.

A major source of errors during the molecular computation is due to 
the potential creation of wrong double-stranded molecules. For instance, 
a sequence s might hybridize with a sequence that is similar but not iden-
tical to its complement s because of a partial match. Another possibility is 
that single strands that are complementary on a subsequence will create 
a double-stranded molecule even though they are not complementary on 
the full length of the sequence: a sequence xy can create a partially dou-
ble-stranded molecule with the strand yz by pairing the sub-sequences y 
and y . Another case is when two regions in the single strand happen to 
complement each other, thereby losing the linear structure and creating 
loops in the molecule.



Molecular Computation    ◾    229

The more similar is the representation of a vertex to the complement of 
another vertex, the larger is the probability of creating erroneous double-
stranded sequences. To lessen this danger, it is better to choose molecular 
representations that minimize the probability of creating such errors, that 
is, choosing representations that are different enough from each other. 
This can be achieved by using longer molecular representations and select-
ing the sequences so that the number of complementing bases between 
any two representations will be minimal.

Note that the hardware of digital computers is also prone to various 
errors, which might occur because of electromagnetic induction between 
components of the electronic circuits or because of electrical noise in the 
vicinity of the circuit. The errors may affect the computation of the logical 
circuits, but the main danger lies in the fact that they may change the con-
tent of stored data bits. Various techniques are applied to minimize these 
risks, and digital computers are usually considered so trustworthy that 
programmers and users tend not to consider the possibility of hardware 
errors. Nonetheless, when building computers that have to be extremely 
reliable (e.g., aircraft control systems), system architects do address the 
possibility of hardware errors—both at the physical design and at the logi-
cal design (e.g., algorithmic) levels.

To conclude, let us compare the molecular algorithm with a digital 
computer:

	 1.	Speed: Personal computers currently operate at speeds of Gflops (109 

floating-point operations per second). The fastest supercomputers are 
close to achieving speeds of Petaflops (1015 floating-point operations 
per second). Adleman (1994) estimated that one can achieve a simi-
lar number of 1015 ligation operations per second. In other words, the 
number of basic operations per second (which are not particularly 
expensive or complex) of the molecular algorithm is similar to that 
of a digital supercomputer.

	 2.	Memory (space efficiency): A single bit of information is stored in a 
molecular representation with a volume of about 1 cubic nanometer. 
Modern disks can store 1011 bits in a cubic centimeter that translate 
to one bit in 1010 cubic nanometers; that is, the molecular representa-
tion offers a dramatic improvement.

	 3.	Energy: One joule of energy is enough for 2 × 1019 ligation opera-
tions, which is 1010 more efficient energy-wise than a supercomputer. 
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(A joule is a physical unit of energy equaling roughly the amount 
of energy required to lift a 1 kilogram object 10 centimeters off the 
Earth’s surface.)

	 4.	Flexibility: The biggest problem is that the use of molecular algo-
rithms requires a radically different design of the algorithm for each 
problem (in terms of, e.g., representation, logical operations, and labo-
ratory procedures) and that in each case the algorithm needs to be cre-
ated from very basic molecular operations. Contrast this with solving 
problems using digital computers where modern high-level program-
ming languages and software design tools enable solving computa-
tional tasks in fairly straightforward ways (at least most of the time).

5.2.2  Solving SAT

We now present a molecular algorithm for solving another computation-
ally hard problem called the satisfiability problem, or SAT for short. This 
is also an NP-complete problem, like the Hamiltonian path problem. The 
solution described here was presented by Richard Lipton in 1995 and uses 
Adleman’s (1994) technique for constructing all possible paths in graph as 
part of its construction (Lipton, 1995).

The particular case of SAT known as 3SAT has an illustrious com-
puter science history, as it was the original problem proven directly to 
be NP-complete. All the subsequent NP-completeness proofs are based 
on reducing 3SAT to the problem or reducing another problem that was 
reduced directly or indirectly from 3SAT. The molecular solution we pres-
ent here is not as “elegant” as Adleman’s Hamiltonian path solution (even 
though it is based on it) and exposes a brute-force characteristic that is 
much more subtle in Adleman’s work.

Definition of the SAT Problem
Let U = {u1,u2,…un} be a set of logical variables. A logical variable’s value 
can be either “true” or “false.” An assignment is a function t that deter-
mines for every element in U a value, either “true” or “false,” denoted 
from now on by 1 and 0, respectively. If u is a variable from the set U, 
then u and u’ (meaning “not u,” also denoted by ¬u) are called literals. 
The literal u has the value “true” under the assignment if and only if the 
variable u was assigned the value “true.” Similarly, the literal u’ has the 
value “true” if and only if the variable u was assigned the value “false.”

The SAT problem is defined as follows:
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Given a logical formula of the form C = C1 ∧ C2 ∧…∧ Cm, where 
every clause Ci is of the form v1 ∨ v2 ∨…∨ vh , and each vi is a literal, 
determine whether there exists an assignment for the variables in 
C for which the logical formula C is true (i.e., its value is 1). We say 
that such an assignment satisfies the formula C. 

Examples
•	 Let C = (p). This formula contains one clause and one variable, and 

the assignment {p = 1} satisfies it.

•	 Let C = (p ∨ q). This formula contains one clause and two variables, 
and any assignment where either p or q assumes the value 1, such as 
{p = 1, q = 0}, satisfies it.

•	 Let C = (p)∧ (q). This formula contains two clauses and two variables. 
In this case the assignment has to be {p = 1, q = 1} for both clauses 
to be satisfied.

•	 Let C = (p ∨ q) ∧ (p’ ∨ q’). Here we have two clauses: (p ∨ q) and (p’ 
∨ q’). To satisfy the formula, both clauses have to be satisfied simul-
taneously. The two assignments {p = 1, q = 0} and {p = 0, q = 1} both 
satisfy the formula.

•	 Let C = (p) ∧ (p’). It is easy to see that an assignment cannot exist 
that satisfies C because it is impossible for both p and p’ to be true at 
the same time.

•	 Let C = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z’) ∧ (x’ ∨ y’ ∨ w) ∧ (x ∨ z’ ∨ w’). For C 
to be true, we have to assign values to the variables x, y, w, and z such 
that for each clause there exists at least one literal with the value 1. 
Here {x = 1, y = 1, w = 1, z = 0) is one such an assignment. This for-
mula is an instance of a 3SAT problem, where each clause contains 
exactly three literals.

To solve SAT we have to represent all possible assignments for the variables 
in the formula. To do so, DNA sequences representing all the binary strings 
of a given length are prepared. For instance, if the formula contains three 
logical variables x, y, and z, all the eight possible Boolean assignments have 
to be evaluated.

In general, 2n representations of sequences have to be gener-
ated for n variables. To do this efficiently we make use of the power of 
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molecular computation using similar techniques to those used for solving 
the Hamiltonian path problem. We will build a graph in which each path 
from the initial node a1 to the last node an represents a binary string. The 
graph for n = 3 is shown in Figure 5.12.

An example of a path in the graph is a1xa2y’a3za4. This represents the 
string 101: at each node ai one can choose between the upper and lower 
edges. The upper edge corresponds to choosing 1 as the assignment of 
one variable, whereas the lower nodes represent the bit 0. Each path rep-
resents an assignment of the set of variables. So the path a1xa2y’a3za4 
represents the assignments {x = 1, y = 0, z = 1}. As in Adleman’s (1994) 
algorithm, we choose random DNA sequences for the vertices a1, a2, a3, 
and a4 and for the vertices representing the variables x, y, and z and 
their negations x’, y’, and z’. Note that the representations of x, y, and z 
and their negations x’, y’, and z’ are not complementary DNA sequences 
(e.g., the representation of x does not complement the representation of 
x’). Using these representations for the vertices, the edges are then built 
as described in Adleman’s algorithm. All the possible paths in the graph 
will be generated in a test tube containing all of these molecules together 
with the enzyme ligase, similar to the way the paths were generated in 
the Hamiltonian path problem. Each path represents one distinct truth 
assignment for the n variables in the formula.

Note that in such a graph Adleman’s technique will create all the paths 
representing exactly all the 2n combinations of the variables’ values. After 
they are generated it is possible to select all sequences with the value 1 in 
the i-th bit or all sequences without 1 in that bit, that is, sequences with 
the value 0 in the i-th bit. This can be achieved by using magnetic beads 
attached to the complements of the sequences of interest. The general strat-
egy is to prepare all possible assignments as previously described and then 
to select the sequences that satisfy the formula (clause by clause) and to dis-
card sequences that do not satisfy the clauses. If (and only if) any sequences 
remain, we know that a satisfying assignment exists for the formula.

x y z

x́ ý ź

a1 a2 a3
a4

FIGURE 5.12  The graph generating all binary sequences of length three.
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We start with a test tube marked T0 containing all possible assignments 
to the variables. The computation proceeds to create a set of T1,T2,…,Tm 
of test tubes (where m is the number of clauses in the formula) such that 
Ti contains only the sequences that satisfy the clauses C1,C2,…,Ci.

Algorithm Structure
•	 Prepare a test tube T0 containing all possible variable assignments.

•	 For all 1 ≤ i ≤ m perform the following:

•	 Generate the test tube Ti from the molecules in the test tube Ti-1 
by selecting the sequences representing assignments that satisfy 
the clause Ci (the exact way of doing it is left as an exercise; see 
Exercise 5.10).

	 Recall that the sequences in tube Ti-1 contain only sequences sat-
isfying all the clauses C1,…,Ci-1; thus, this process will iteratively 
eliminate sequences that do not match the clauses of the logical 
formula.

•	 Test the tube Tm to see if it contains any DNA (there are many simple 
ways for doing this). If so, the algorithm returns “yes.” If not, the for-
mula is not satisfiable, and the algorithm returns “no.”

Performance Analysis
If the formula contains m clauses and is made up of a total of l literals, 
then the number of operations the molecular SAT algorithm performs is 
linear in l. If the number of literals per clause is fixed (as in the 3SAT case), 
then the performance of the algorithm is linear in m. We leave the proof 
of these assertions as exercises for the reader (see Exercises 5.11 and 5.12).

5.2.3  DNA Tiling

In the 1960s Hao Wang suggested using tiling as a computational mecha-
nism. This model seems simple but turns out to be very challenging. In 
the tiling model there is a finite number of types of tiles and an infinite 
number of tiles of each type. Each tile has four labeled sides (e.g., the sides 
may be colored), and tiles may be laid next to each other only if any two 
touching sides are labeled the same. The tiles may not be rotated. Given 
such a set of tiles, the computational task is to determine if it can be used 
to tile the entire plane (Figure 5.13). In some cases the answer is trivial. 
For instance, if all tiles are of the same kind and the opposite sides share 
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a color (Figure 5.13(a)), then it is possible to use them to tile the plane. In 
other cases (Figure 5.13(b)) it is obvious that they cannot be used to tile 
the plane. But in many cases (Figure 5.13(c)) the answer is far from obvi-
ous. In fact this problem is equivalent to the halting problem we discussed 
in Chapter 2. In other words, in general it is impossible to find an algo-
rithm that will decide if the tiling problem has a solution in finite time. 
Moreover, it is possible to build the equivalent of a Turing machine using 
such tiles; therefore, the tiling model can be used to solve any problem 
solvable using a Turing machine; that is, it is computationally universal.

Erik Winfree (Winfree et al., 1998) suggested that DNA molecules can 
be used to represent “tiles.” Winfree demonstrated the power of the til-
ing model by using it to build a binary counter (Barish, Rothemund, and 
Winfree, 2005) as demonstrated in Figure 5.14.

Winfree used seven types of tiles, depicted at the top of Figure 5.14. The 
tile labeled S is the starting tile. The two shaded tiles are used to build the 
frame in which the computation occurs, and the remaining four tiles are 
used for the computation. (This time, in contrast to Figure 5.13, we match 
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FIGURE 5.14  A binary counter using tiles. (Adapted from Barish, Robert D., 
Paul W. K. Rothemund, and Erik Winfree, Nano Lett 5, no. 12, 2586–2592, 2005. 
With permission.)

(a) (b) (c)

FIGURE 5.13  Tile samples. (a): Single tile that can be used for tiling the plane. 
(b): A pair of tiles that cannot tile the plane. (c): Three tiles for which the problem 
is difficult.
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shapes instead of colors.) The computing tiles represent binary values—
two represent the value 0, and the other two represent the value 1.

The computation starts by laying down the starting tile S (this is the 
only time it is used). Subsequently, the framing tiles necessarily have to be 
laid out as depicted in Figure 5.14. Using this frame, the local rules speci-
fying how tiles match will lead the computing tiles to self-organize in a 
way that creates a binary counter where the first row represents the value 
1, the second row the value 10, followed by 11, and so forth. The computa-
tion can be understood by studying Table 5.2: a tile has the same value 
as that of the tile directly underneath it if there is no carry (denoted by a 
smooth face) and has the opposite value if there is a carry (the face has a 
protrusion). So whenever a carry causes the value to change from a 1 to a 
0, the corresponding tile will have a protrusion, thereby passing the carry 
bit to the tile on its left.

As mentioned already, it is theoretically possible to use tiling to perform 
any computation; thus, if we can implement tiles by using DNA molecules, 
we will be able to use DNA to perform any computation. However, achiev-
ing this in practice presents many technical challenges. DNA molecules are 
usually viewed as having binary recognition capabilities; that is, the two 
strands can recognize each other. If we can construct DNA molecules such 
that four strands can mutually recognize each other, then we can directly 
implement the tile model. By coding the molecules correctly we can expect 

TABLE 5.2  The Matching Rules of Tiles
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that they will self-organize in a way that will solve the tiling problem. For 
instance, in the previous example we would like the DNA molecules to 
recognize each other if and only if two recognition surfaces (on the bottom 
and on the right) match.

Winfree et al. (1998) created complex DNA structures that implement 
four-way recognition (Figure 5.15). Each structure contains four DNA mol-
ecules that are partly single stranded and partly double stranded. Using 
these molecules, Winfree designed a relatively simple tiling representing 
a two-dimensional periodic template and implemented it in the lab. Later 
he also implemented the binary counter as well as other complex computa-
tions. Nonetheless, the necessary self-assembly processes have a low yield 
(i.e., not all molecules self-organize when they should) and a high error 
rate (i.e., molecules are matched even if they should not match).

5.2.4  DNA Computing—Summary

We have discussed Adleman’s (1994) technique for solving computa-
tional problems using DNA. This technique is useful when attempting 
to solve NP-complete combinatorial optimization problems such as the 
Hamiltonian path problem. We also saw how to use this technique to solve 
another NP-complete problem, SAT.

In both cases the generate-and-test algorithms have two main phases:

	 1.	“Possible solutions” are created randomly.

	 2.	The solution set is refined so that only true solutions to the problems 
are kept.

The first phase uses the fact that single-stranded DNA molecules create 
double-stranded sequences according to the base-pairing rules. So, for 
instance, in Adleman’s Hamiltonian path algorithm the edges combine 

T

T T T T TA A AA A AG GG G G GGC
C C C CCA A A AT T T TGG G

C C

T T TC C CC C CG GG G
G GG G G G G GG GG T CGTC CC CC CA A A

A A A A AT T T T TTG G GG G GC C C
CCCC C AAA GGG TTTT T

C

T T T T TA A AGGCC CC CC C CCAG
A A AT T TT T

CA A A A AA

FIGURE 5.15  A schematic DNA structure for creating “tiles” that can join other 
tiles. (Adapted from Barish, Robert D., Paul W. K. Rothemund, and Erik Winfree, 
Nano Lett 5, no. 12, 2586–2592, 2005. With permission.)
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to create paths. These molecules, which represent possible solutions to the 
problem, are generated randomly and in parallel as a result of collisions 
between molecules in the test tube.

The second phase is based on a sequence of molecular operations. Each 
operation is performed simultaneously and in parallel on all possible solu-
tions in the test tube. This is reminiscent of parallel computing technique 
called single instruction, multiple data (SIMD).

It is useful to catalog the set of basic molecular operations used to build 
this kind of algorithm (Boneh et al., 1996) and to understand their logical 
purpose (see Table 5.3). So far this toolbox of molecular operations has not 
allowed us to create a practical high-level language to facilitate easy con-
struction of molecular algorithms for solving many diverse computational 
problems.

Winfree presented another way of computing using DNA; he created 
tiles that can be matched in ways that implement complex computations. 
As tiling is a universal computational model, this approach should allow 
us to solve any solvable computational problem using molecular compu-
tation. In practice, the translation of computational problems into til-
ing problems is nontrivial, and this approach is fraught with technical 
difficulties.

5.3  ENZYMATIC COMPUTATION
In Adleman (1994) we saw how to represent a computational problem as 
a collection of DNA molecules and to compute using a sequence of lab 
operations. In Winfree et al. (1998) we saw how to use DNA to implement 
a molecular computation that proceeds in the test tube without the need 
for external manipulation. The approach we describe next, developed by 
Ehud Shapiro’s group (Benenson et al., 2001) is similar in this respect. 

TABLE 5.3  The Basic Molecular Operations

Operation Logical Meaning
Extraction Extract all molecules containing a given sequence.
Length Separate the molecules according to their length (using gel 

electrophoresis).
Pour Combine the content of two test tubes without changing the 

molecules.
Amplify Create many copies of molecules or segments using PCR.
Anneal (base pairing) Create double-stranded molecules from single-stranded 

molecules using base pairing.
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The fact that a molecular computation is autonomous is of major impor-
tance as it may allow us to build “molecular computers” that will operate 
independently as components in biological and chemical processes not 
requiring external manipulations. An example of such a process may be a 
biological device for drug release inside the body. Moreover, this approach 
allows us to regard autonomic biological processes as computational pro-
cesses, a point of view that has theoretical importance when considering 
life as a computation.

5.3.1  Finite Automata

This section presents a molecular computing device that implements a finite 
automaton. A finite automaton is a model of a system that reacts to a 
sequence of inputs. At any given time period the machine is in one of a 
finite set of states, and the transitions from state to state depend on the 
next input being read.

The automaton’s set of states is denoted as Q, and the states are qi, 
where i is between 0 and n. The input tape contains an input word that is a 
sequence of symbols from a finite alphabet denoted by ∑. The automaton’s 
“read head” reads this sequence of symbols, and the automaton changes its 
state accordingly. At any given point during the computation the reading 
head is located on a particular input symbol (current input). After the sym-
bol is read, a basic computation step composed of two actions is performed:

	 1.	The automaton proceeds to the next state (which may be the same as 
the current state).

	 2.	The input tape advances so that the read head is placed on the next 
input symbol.

The automaton repeats this basic computation step until the tape has 
been read entirely. The final state, which the automaton reaches after read-
ing the complete tape, is defined as the result of the automaton to the input 
word. The states of the automaton are of two kinds: (1) accepting; and (2) 
nonaccepting. If the last state the automaton reaches after reading the com-
plete word is an accepting state, we say that the automaton has accepted 
the input word. Otherwise, the automaton rejects the input. We denote the 
set of accepting states by F. The set of all words accepted by the automaton 
is called the formal language accepted by the automaton.
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To ensure a unique computation outcome, one of the states is defined to 
be the initial state and is denoted as q0.

The formal definition of a deterministic finite automaton is as follows:
Let ∑ = {a1,a2,…,an} be a finite alphabet. A deterministic finite automaton 

A = (Q,q0,δ,F) over ∑ is characterized by the following four parameters:

	 1.	Q is a finite set of states.

	 2.	q0 ∈ Q is the initial state of the automaton.

	 3.	δ: Q × ∑ → Q is a deterministic function that defines the transition 
between the automaton’s states.

	 4.	F ⊆ Q is a finite nonempty set of terminal (or accepting) automaton 
states.

The automaton is an abstract state machine that changes its state as 
dictated by the function δ when reading an input string with symbols 
in ∑ .

If the automaton is in state qj ∈ Q and it reads the symbol ai ∈ ∑, it will 
transition to the state δ(qj,ai ). If a a ai i ik1 2

... is a sequence of length k of sym-
bols over ∑ then δ δ δ( , ... ) ( ( , ), ... )q a a a q a a aj i i i j i i ik k1 2 1 2

= .
A language L is defined by an automaton A over an alphabet ∑ as the set 

of all strings over ∑ for which the automaton transitions from the initial 
state q0 to some terminal state q ∈ F, that is, L(A) = {x|δ(q0,x) ∈ F}.

It is customary to distinguish between two kinds of finite autom-
ata. In a deterministic finite automaton there is a single transition 
for any combination of the current state and the current input symbol. 
In contrast, for a nondeterministic finite automaton there is a set of 
possible next states for any combination of the current state and the 
current input symbol. The set may be empty, in which case the autom-
aton cannot continue reading the input. A nondeterministic automa-
ton accepts all words for which there exists any path from the initial 
state to an accepting state. It is also common to allow transitions that 
do not advance the reading head on the input tape—these are called 
ε-transitions. Surprisingly, it turns out that the set of languages defined 
by deterministic finite automata is identical to the set of languages 
defined by nondeterministic finite automata.

The following examples show that finite automata can be represented 
in several ways:
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•	 In the automaton described in Figure 5.16, q0 is both the initial and 
the only accepting state. The arrows indicate that upon reading either 
a or b the automaton transits from q0 to q1 and back upon reading 
the next symbol. The automaton accepts all even-length words and 
no odd-length words.

•	 A finite automaton that accepts strings with an even number of the 
symbol b (Figure 5.17).

•	 A formal description of a finite automaton:
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		  The language defined by this description is

	 L A a b kk( ) { | }= ≥ 0

		  So the automaton accepts all words of the form b, ab, aab, aaab, and 
so forth.

b

b

aa q0 q1

FIGURE 5.17  An automaton that accepts all strings over ∑ = {a,b}, where the 
symbol b appears an even number of times.

a/b

a/b

q0 q1

FIGURE 5.16  An automaton that accepts all strings over ∑ = {a,b} of an even 
length.
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•	 The automaton in Figure  5.18 is nondeterministic as there are two 
possible transitions for q0 upon reading the symbol b, and there is no 
possible transition from state q1, regardless of the next symbol. If this 
state is visited before reaching the end of the input word, the automa-
ton gets stuck and the word is rejected. When the automaton is in 
state q0 and reads the symbol b, it has to “guess” whether to make the 
transition to q0 or to q1. If the automaton guesses that this is the last 
input symbol it makes the transition to the accepting state q1; oth-
erwise, it stays in state q0. For every word in the language (i.e., every 
word ending with b), there is a computation that accepts it (i.e., where 
the guess is correct), although alternative computations may exist that 
do not terminate in an accepting state. Conversely, for words that are 
not in the language, there is no possible computation that will end in 
an accepting state. Note that if the automaton reaches state q1 before 
reading the complete word, it halts in this state (as there are no transi-
tions out of it), and the word is not accepted (to accept a word it has to 
be read in its entirety).

•	 One can also view the computation performed by a finite automaton 
as an execution of a set of derivation or rewrite rules on strings as 
follows. Assume that we are given the string q0bab, which contains 
the initial state, and we are given the following rules:

	 q0a → q0

	 q0b → q1

	 q1a → q1

	 q1b → q0

a/b

b q1q0

FIGURE 5.18  A nondeterministic automaton that accepts all strings over ∑ = 
{a,b} that end with the symbol b.
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	 where each rule encodes a given state and the left-most symbol of the 
string and specifies what to do in that combination. For example, the 
first rule states that if the string starts with q0a it should be replaced 
with the symbol q0. For the string q0bab we start by applying the 
second rule to obtain the string q1ab. Now we can apply the third 
rule to derive the string q1b and finally the string q0 by using the 
fourth rule. At this point there are no rules we can apply, so q0 is the 
final product of the chain of derivations. Note that this is exactly the 
same automaton we saw in Figure 5.17. If we define q0 to be a termi-
nal state, the automaton will accept all strings containing an even 
number of occurrences of the symbol b. The string in the example 
contains an even numbers of b’s, and indeed the computation ended 
in the state q0. We will soon see how molecular computations can 
implement finite automata described by derivation rules.

5.3.2  Enzymatic Implementation of Finite Automata

The analogy between automata with a read head that traverse an input 
tape and the biological process of a DNA sequence being “read” during 
operations such as transcription is the reason many researchers attempt 
to connect the two models. Here we describe one of these attempts done 
by Shapiro’s group—implementing finite automata using molecular tech-
niques. The automata described here are simple two-state automata oper-
ating on an alphabet containing two symbols.

Shapiro’s computation is performed on DNA molecules sequentially 
cleaved by enzymes until the final result of the computation is obtained. 
The restriction enzyme allowing for this automatic cutting without the 
need for external manipulation is called FokI.

The FokI enzyme is a restriction enzyme (see Section 5.1.3); that is, its 
function is to cleave a DNA molecule. It operates by recognizing a particular 
sequence of nucleotides (called a restriction site) and by cutting the DNA 
at a location a few bases from the recognition site. Let us look at the DNA 
molecule in Figure 5.19. The enzyme recognizes the sequence GGATG and 
cleaves that strand 9 bases away and the other strand 13 bases away. As a 
result of this particular type of cut, the resulting double-stranded DNA 
molecule has a single-strand end that is four bases long (i.e., a sticky end). 
The result is depicted in Figure 5.20.

The finite automaton is implemented by representing each transition 
rule as a DNA molecule. These molecules are called transition mol-
ecules and are similar to the derivation rules previously described. The 
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input string is represented as a DNA molecule chosen such that the FokI 
enzyme will cleave it and expose the appropriate sticky ends. A transition 
molecule attaches to the sticky end in accordance with both the current 
symbol in the input string and the current state of the automaton, and is 
ligated to the molecule. This representation is the basis of the automaton’s 
molecular implementation.

The computational process follows these steps:

	 1.	Representing the input string as a double-stranded DNA molecule 
containing the FokI recognition site.

	 2.	The FokI enzyme cleaves the molecule and exposes the sticky end.

	 3.	A transition molecule representing one of the transition rules 
attaches to the sticky end and determines the next state of the 
automaton. It is important to make sure that only one molecule 
can attach, thereby implementing the required transition rule. As 
we discuss later, if more than one molecule is allowed to attach 
to the sticky end, a nondeterministic automaton is in effect 
implemented.

	 4.	Repeat from Step 2.

GGATGNNNNNNNNN
CCTACNNNNNNNNNNNNN

(5’) (3’)

(3’) (5’)

FIGURE 5.19  FokI recognition site and cutting pattern (N can be any nucleotide).

(a)

(b)

(5’)

(3’)

9 bases

13 bases

Sticky end

GGATGATATATTCTGGCTCGCAGC...
CCTACTATATAAGACCGAGCGTCG...

GGCTCGCAGC...
GCGTCG...

(3’)

(5’)

FIGURE 5.20  The result of a FokI restriction. (a) Binding of FokI. (b) The result-
ing molecule.
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Steps 2 through 4 continue to take place as long as the FokI enzyme can 
find a restriction site and as long as the appropriate transition mole-
cules exist. If the transition molecules are depleted, the automaton halts 
and does not reach an accepting state. The molecular representation 
of the automaton described in Figure  5.17 is depicted in Figure  5.21. 
Following the molecular computation in this example is left as an exer-
cise (Exercise 5.17).

The key idea of the molecular implementation of the finite automaton is 
finding a molecular representation that combines the automaton state and 
the next input symbol. This representation allows one DNA molecule both 
to represent the automaton’s input and to implement its memory during 
the computation. First, we choose representations for each symbol in the 
alphabet, namely, for a and b, as well as for a special terminator symbol 
that will signal the end of the input string. Each representation is six bases 
long. A possible representation is shown in Table 5.4.

The current state of the automaton is stored in the DNA molecule by 
having each of the automaton states represented by exposing a different 

Start

Input

Output

Software

Fok I
Ligase

a
GGATGT  CTGGCT  CTGGCT  CGCAGC  CTGGCT  CGCAGC  TGTCGC
CCTACA  GACCGA  GACCGA  GCGACG  GACCGA  GCGTCG  ACAGCG

GGATGTAC

GGATGACG
CCTACTGCGACC

GGATGG
CCTACCGCGT

CCTACATGCCGA
GGATGACGAC
CCTACTGCTGGTCG

a b a b

q0 q0 q0 q1
ba

q1 q1
a q1 q0

b

FIGURE 5.21  Molecular computation. The figure shows the molecular represen-
tation of the input string, the transition molecules, and the two enzymes needed 
to implement an automaton that accepts binary strings with an even number of 
b’s. (Courtesy of Ehud Shapiro.)
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sticky end of the representation of the next input symbol. The sticky ends 
depend on the representation of the symbol and the current state of the 
automaton. For state q1 we use the first four bases of the symbol’s rep-
resentation, and for q0 we use the last four bases of the representation. 
The displacement from the beginning of the symbol’s representation is 
denoted by ∆ and is in one-to-one correspondence with the state of the 
automaton. In Table 5.5 the sticky end is underlined for every symbol–
state combination.

Recall that the state transition function determines the next state as 
a function of the current symbol and state: δ : Q × ∑ → Q. Thus, when 
FokI cleaves the last added transition molecule, it will expose a sticky 
end representing the new state of the automaton. The next transition 
molecule will attach itself to this sticky end as dictated by the new state 
and the next input symbol and so on until the input has been read in 
its entirety.

Each transition molecule has three components (see, e.g., the four tran-
sition molecules in Figure 5.21):

	 1.	The FokI recognition site.

	 2.	The region identifying the current state and symbol.

	 3.	The spacer region determining the next state. This component is the 
key for the proper implementation of the automaton, as its length 
determines the automaton’s next state (Table  5.6).

TABLE 5.4  Representation of the Automaton’s Alphabet

A B Terminator (t)
CTGGCT CGCAGC TGTCGC

TABLE 5.5  Representation of Symbol–State Combinations
State Symbol

A
CTGGCT

B
CGCAGC

T
TGTCGC

q0
Δ = 2

<q0,a>
CTGGCT

<q0,b>
CGCAGC

<q0,t>
TGTCGC

q1
Δ = 0

<q1,a>
CTGGCT

<q1,b>
CGCAGC

<q1,t>
TGTCGC
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How does the length of the spacer achieve the desired result? Recall that 
FokI removes nine bases after the recognition site and that each symbol is 
represented by six bases. These, together with the current displacement ∆, 
determine what will be the displacement from the beginning of the next 
symbol arising after the FokI cleavage. This displacement uniquely deter-
mines the identity of the next state of the automaton.

	 ∆new = 9 – (6 – ∆current) – spacer = 3 + (∆current – spacer)

Plugging the result of this formula into each of the transition states 
produces the displacements shown in Table 5.7. The table confirms that, 
given the displacement of the current state, the displacement produced 
after the cleavage matches the new state as required. So by choosing the 
spacer length it is possible for the transition molecules to encode the state 
transitions. This construction allows us to create molecules describing all 
eight possible transition rules for a two-state automaton over a two-sym-
bol alphabet (Figure  5.22). When interested in recognizing a particular 
language (e.g., all strings containing an even number of occurrences of 
the symbol b), one can select the appropriate subset of rules (as illustrated 
in Figure 5.21).

The input molecule also includes a “terminator” sequence that is attached 
to the right of the input sequence. The input is scanned as long as recogni-
tion sites for FokI to cleave still exist and as long as appropriate transition 

TABLE 5.6  Spacer Length Representation of the Automaton’s State Transitions

Spacer 
Length State Transition
1 q1 → q0

3 State unchanged
5 q0 → q1

TABLE 5.7  Analysis of the Effect of Different Spacer Lengths

State Transition Spacer Length ∆current ∆new

q1 → q0 1 0 2

Do not change states 3 0 0
2 2

q0 → q1 5 2 0
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molecules exist. When the required transition molecules are missing (i.e., 
no transition molecule exists that matches the current sticky end), the 
automaton halts and does not reach a final state. If the automaton scans the 
input string to its end, the final sticky end will be that of the terminator, 
which reflects the final state reached by the automaton.

To determine whether the automaton accepts the string (i.e., to deter-
mine whether the string belongs to the language recognized by the autom-
aton), one has to determine if the final state is an accepting state. The last 
time FokI cleaves the sequence, it cleaves the terminator sequence, and the 
resulting sticky end depends on whether the final state is q0 or q1.

Output detectors, which are double-stranded DNA sequences with a 
sticky end that complements the terminator sequences representing either 
q0 or q1, can be used to identify the final state. In Shapiro’s method this was 
done by using output detectors of different sizes for each of the two autom-
aton states. In this way gel electrophoresis, which allows us to ascertain 
the length of the DNA molecules in the solution, can be used to discover 
the final state of the automaton.

It is interesting to note that the molecular implementation allows the 
implementation of both deterministic and nondeterministic finite autom-
ata. This nondeterminism is manifested by allowing more that one type of 
transition molecule to attach to a given sticky end and thus the computation 
to proceed in alternative routes. Using nondeterminism permits a reduc-
tion in the number of states necessary for identifying a particular language 

GGATGTAC
GGATGTACCCGA

T1:q0 q0
a

GGATGACGAC
C C TA CT G C T GC C G A

T2:q0 q1
a

GGATGACG
C C TA CT G CG T C G

T3:q0 q0
b

GGATGACGAC
C C TA CT G C T GG T C G

T4:q0 q1
b

GGATGA
C C TA CAG A C C

T5:q1 q0
a

GGATGACG
C C TA CT G CG A C C

T6:q1 q1
a

GGATGG
C C T A CCG C G T

T7:q1 q0
b

GGATGACG
C C TA CT G CG C G T

T8:q1 q1
b

FIGURE 5.22  The eight molecular rules for implementing all two-state automata 
over a two-symbol alphabet. (Courtesy of Ehud Shapiro.)
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relative to a deterministic automaton that recognizes the same language. So 
it would seem that using the molecular mechanism to implement nondeter-
ministic automata may offer an advantage. However, in practice Shapiro’s 
group noted that increasing the number of nondeterministic decisions 
decreases the yield (i.e., the number of molecules that complete the com-
putation) exponentially; therefore, this approach was not deemed practical.

5.4  SUMMARY
This chapter demonstrated two main approaches to using biological mol-
ecules for computational processes: (1) computations implemented by 
applying lab techniques to DNA molecules; and (2) independent computa-
tion performed by proteins (i.e., the enzymatic computation discussed in 
Section 5.3). Both approaches depend on choosing an appropriate repre-
sentation of the data as DNA molecules so that the computation can make 
use of the complementarity of DNA strands.

DNA computing allows us to harness the inherent power of parallel-
ism, as molecular operations occur simultaneously in a huge number of 
molecules in the test tube. This property is promising for solving com-
putationally hard problems, such as NP-complete problems. Independent 
computations performed by enzymatic reactions lead to the possibility 
of using computational processes for medical purposes. For example, 
systems have been proposed that can identify DNA sequences typical of 
cancerous processes (i.e., cancer markers). Such systems can identify the 
combination of such sequences that the patient has (e.g., identify the exis-
tence of marker A and marker B and the lack of marker C) and can decide 
on treatment, such as releasing a DNA molecule appropriate for treating 
a specific condition (Benenson et al., 2004). The treatment might involve 
turning off genes that promote the cancerous process using various molec-
ular techniques. This approach has been demonstrated in the lab in an in 
vitro setting but is not yet ready for medical use. It is conceivable that such 
techniques may be used in the future for medical applications.

Note that computations using DNA are “artificial” in the sense that 
they are not based on natural processes and make use of DNA for applica-
tions that are not natural to DNA molecules. Enzymatic computation is 
based on reactions occurring in nature, but even so the procedure pre-
sented by Shapiro in which a sequence of DNA is iteratively digested can-
not be regarded as a natural biological process. This raises the question as 
to whether one can use biological processes and molecules for computing 
in a manner more similar to their natural activities. This would allow us 
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to make better use of the potential of these molecules, which have been 
optimized to perform their function over millions of years of evolution.

In Dennis Bray’s (1995) insightful paper, he claims that a central func-
tion of proteins is to transfer information and to perform computations and 
that proteins are therefore the most useful platform for molecular compu-
tations. Particularly useful is the capability of proteins to recognize each 
other and to attach to each other very specifically. In fact, we can think of 
the signal transduction mechanism in the cell as a computational process 
and can harness it for general-purpose computations. Signal transduction 
is the process whereby a combination of signals received by the cell mem-
brane causes a specific chain of reactions to occur (making use of proteins 
that recognize each other), which results in the expression of genes in the 
nucleus of the cell. Several such computational models have already been 
proposed. For example, Unger and Moult (2004) suggested a way (so far 
only as a theoretical model) to implement logical NAND (not and) gates by 
molecules built from proteins tagged by DNA sequences. These molecules 
are diffused in solution and can phosphorylate each other. Phosphorylation 
is a process by which a phosphate is added to a protein molecule. This phos-
phate causes the protein molecule to undergo structural modification, in 
essence creating two versions of the protein—phosphorylated and nonpos-
phorylated. Phosphorylation is a common modification used in biological 
signaling. Unger and Moult suggested that phosphorylation reactions can 
implement the logic of NAND gates so that when two molecules collide 
they create a complex that phosphorylates the target molecule unless they 
both are already phosphorylated. The model includes additional ingredi-
ents required for the model to directly implement any logical circuit, sug-
gesting a way for universal computation by proteins.

In conclusion we can say that the potential of molecular computation 
of various types is large, yet it is important not to forget that molecular 
computation has two main obstacles preventing it from currently being a 
realistic alternative to digital computing:

	 1.	The difficulties in designing molecular algorithms relative to the 
ease and flexibility of programming digital computers.

	 2.	Physical and experimental limitations making dealing with large, 
multiphased molecular systems difficult and error prone. Taking a 
molecular algorithm and turning it into a practical system is far from 
straightforward.
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5.6  EXERCISES

5.6.1  Biological Background

	 1.	The DNA polymerase enzyme continues complementing the tem-
plate strand to its end. Assume we started with long double-stranded 
DNA molecule and primers that complement regions not at the ends 
of the molecule. Which molecules will result after the PCR? Hint: 
draw the molecules, and follow the PCR steps.

	 2.	What will happen if the first phase of PCR is applied to single-
stranded DNA molecules? What molecules will result at the end of the 
process?

5.6.2  Computing with DNA

	 3.	Explain why a graph of N vertices has at most N! paths of length N.

	 4.	Determine whether the graph shown in Figure  5.23 contains a 
Hamiltonian path (for any vin and vout).
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FIGURE 5.23

	 5.	Follow all the steps in Adleman’s algorithm, and show that it runs in 
time that is linear in the number of vertices in the graph.

	 6.	Analyze the probability for errors in Step 4 of Adleman’s algorithm 
where the goal is to select molecules containing a specific subse-
quence. Let P(X,s) be the “positive” test tube resulting from selecting 
from a test tube X all sequences containing the subsequence s, and let 
N(X,s) be the “negative” test tube (i.e., the remaining molecules after 
taking out all the sequences containing s). Let εp be the probability 
a molecule that should be in P(X,s) ends up instead in N(X,s), and 
let εn be the probability a molecule that should be in N(X,s) ends up 
in P(X,s) instead. To decrease εp, s can be selected by the following 
repeating selection cycles from the initial population T:

Step 1: P1 = P(T,s), 	 N1 = N(T,s)
Step 2: P2 = P(N1,s), 	 N2 = N(N1,s)
Step 3: …
Step 4: …
Step n: Pn = P(Nn – 1,s), 	 Nn = N(Nn – 1,s)
Final step: P = P1 ∪ P2 ∪ … ∪ Pn, 	 N = Nn

	 a.	 Explain the logic of this procedure. Why is there a high probabil-
ity that the molecules in final test tubes P and N are indeed the 
correct molecules?

	 b.	 What is the probability that after n steps a molecule that should 
be P is indeed in that test tube?

	 c.	 What is the probability that after n steps a molecule that should 
be in N is in P?
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	 d.	 Given an initial estimate of εp = 1/10 and εn = 1/106, what value of 
n guarantees final probabilities of εp ≈ εn ≈ 1/106?

	 7.	Solve the following problem using DNA-based computing: given a 
map of cities and roads between them where every road has a given 
length (the map is connected, but not all cities are necessarily directly 
connected), compute the circular route of shortest total length that 
visits each city. You can asume that it is possible to distinguish experi-
mentally between circular and non-circular DNA molecules, and sort 
circular DNA by size.

	 8.	Suggest a way to solve the vertex cover problem using DNA-based 
computation. The vertex cover problem is defined as follows: 
given a graph, find a minimal subset of the vertices that “covers” 
all the edges in the graph; that is, every edge has to touch at least 
one of the vertices in the subset. Refer to Figure 5.24 for an exam-
ple where the dotted circles indicate the vertices in the minimal 
cover set.

FIGURE 5.24

	 9.	Solve the maximal clique problem using DNA: given a graph, find 
the largest subset of vertices in which every two vertices are con-
nected to each other by an edge.

	 10.	Show how to use molecular operations to extract only the sequences 
representing assignments for which Ci is true from the Ti-1 test tube 
in the SAT algorithm. Hint: consider as an example the clause Ci = p 
∨ q’. The sequences making this clause true are those where p = 1 and 
those where q = 0.

	 11.	Show that the number of operations for the molecular algorithm for 
SAT is linear in l (the number of literals in the formula).
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	 12.	Show that if the number of literals in each clause is constant then the 
number of operations for the molecular algorithm for SAT is linear 
in m (the number of clauses in the formula).

	 13.	Explain the role of the right frame column in Winfree’s binary coun-
ter (Figure 5.14).

	 14.	Explain how each of the generic operations in Table 5.3 is carried out 
molecularly and where each operation is used in the Hamiltonian 
path and SAT algorithms.

5.6.3  Enzymatic Computation

	 15.	Find the language accepted by the automaton in Figure 5.25.

q2q1

b/c

a

a/b/c

q0

b/c

a

FIGURE 5.25

	 16.	Construct a nondeterministic automaton over the alphabet {a,b} that 
accepts all the words containing aa or bb. Hint: construct automata 
for each of the sequences, and combine them using an initial state 
that guesses which of the two sequences has to appear in the input.

	 17.	Step through the computations performed by the molecules in 
Figure 5.21, writing down all the partial results.

	 18.	Given the automaton in Figure 5.26, determine the molecules required 
to represent it, and follow the algorithm’s operations on the input 
bbaab.

a/ba

bq0 q1

FIGURE 5.26
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5.7  ANSWERS TO SELECTED EXERCISES
	 1.	Molecules comprising only the sequence between the two primers 

will be amplified.

	 2.	There will be no difference from PCR that starts with double-stranded 
DNA (assuming that both correct primers were used). After the 
primer attaches to the single-stranded DNA, the DNA polymerase 
will complete the complementary strand. Then the situation is back to 
that described in the presentation of the PCR method.

	 4.	The graph in the question does not contain a Hamiltonian path, but 
note that by adding a single edge we do get a graph (Figure  5.27) 
containing a Hamiltonian path.

FIGURE 5.27

	 6.	Analysis of the probability using repeated extractions:

	 a.	 Since εp is much larger than εn the goal is to reduce the prob-
ability that a molecule that should be selected is not selected. 
Thus, at every step we extract the molecules containing s from 
the remainder of the previous extraction; that is, in every step 
we select the positive molecules from the negative test tube of the 
previous step.

	 b.	 The probability is the sum of the probabilities that the molecule 
is in the positive test tube for each of the n steps; that is,

	
1 1 1

1

1
11−( ) + + + = −( ) −

−
= −−ε ε ε ε

ε

ε
εp p p

n
p

p
n

p
p� nn

		  (this is a sum of a geometric series).
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	 c.	 1 – (1 – εn)n.

	 d.	 For n = 6, εp = 1/106, εn ≈ 6/106, which is close enough to be con-
sidered equal for practical purposes.

	 7.	The solution is similar to the Hamiltonian path solution, with the 
following changes:

	 a.	 As the path is circular, there is no need to distinguish between 
edges starting at the first vertex or ending at the last vertex.

	 b.	 We will add an arbitrary sequence of the length of the edge into 
the representation of each edge. For example, an edge of length 5 
between the vertices i and j is built as shown in Figure 5.28.

Representing the length of the edge i   j

Representing the suffix of node i Representing the prefix of node j

T

A A A A A A A A A AT T TC G G G G G

T T T T

FIGURE 5.28

	 c.	 Mix as before all the edges and the complements to the vertices 
to create all the circular paths. Note that, since the first and last 
edges are no longer distinct, all possible circular paths will be 
generated. Note that circular DNA runs in a particular way on 
a gel (circular DNA migrate more slowly on electrophoresis gels 
and their migration rate is determined by their radius of gyra-
tion), a fact that can be used to extract only circular molecules.

	 d.	 As in Adleman’s algorithm, we will use n test tubes to extract 
the sequences containing the complementary sequences to the 
sequences representing all the cities.

	 e.	 The remaining molecules (i.e., those containing all the ver-
tices) will undergo gel electrophoresis, and the shortest mol-
ecule will be selected as it represents the circular path of 
minimal length.
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	 8.	Represent the given graph’s vertices and edges as in Adleman’s algo-
rithm. Then create sequences representing all subsets of the set of 
vertices. This can be achieved using a graph similar to the one we 
used when solving SAT where each vertex is represented in the upper 
edges and one dummy vertex in all the lower edges (Figure  5.29). 
The total length of all dummy nodes should be less than the length 
of the representation of a real vertex. This will produce sequences 
containing all the subsets of the vertices, where all missing vertices 
from the set are represented by the dummy vertex. We are interested 
in only the subsets whose vertices cover the whole graph, that is, in 
which every edge touches at least one vertex in the subset. Recall 
that the representation of each edge contains half of the representa-
tion of the two nodes it connects. Thus, for a sequence representing 
a subset of nodes to be a solution to the vertex cover problem it must 
contain bases that are complementary to at least half of each edge. 
To achieve this we will compare the subsets with all edges in the 
graph, an operation that may require n2 test tubes for a graph with n 
vertices. In each test tube we will test whether the edge hybridizes to 
the sequence (we can create the representations so that the hybrid-
ization occurs if half of the edge’s length matches the sequence). At 
the end of the process the remaining sequences represent covering 
subsets. By performing gel electrophoresis we will identify the short-
est sequences corresponding to minimal cover set.

a1
a2 a3

a4

Representation
of node S1

Representation
of node S2

Representation
of node S3

Representation
of a dummy node

Representation
of a dummy node

Representation
of a dummy node

FIGURE 5.29

	 10.	Let Ci = p ∨ q’. Represent Ci as v1 ∨ v2, where v1 is the variable p, and 
v2 is the negation of the variable q.
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	 a.	 Since v1 represents a variable, let t1 be a test tube containing all 
the sequences extracted from Ti-1 where v1 is assigned the value 
1. Extraction can be done using magnetic beads that are comple-
mentary to sequence of v1 . Let t1 be the remainder of sequences 
left in Ti-1..

	 b.	 t2 is created from sequences in the reminder test-tube, t1 . Since v2 
represents a negation of a variable, select from t1 all the sequences 
where v2 is assigned the value 0, that is, that include the q’ sequence.

	 Now mix together the contents of the test tubes t1 and t2. This creates 
the Ti test tube because in the first step we extract all sequences sat-
isfying v1. From the remainder we extract all sequences satisfying v2, 
so the result is all the sequences satisfying v2 but not satisfying v1 (it is 
trivial to generalize this example to clauses containing any number of 
literals). The mixing step gives us the union of the sets, so we end up 
with all the sequences satisfying v1 or v2. (If the clause contains three 
literals like in 3SAT problem we need to create in a similar way a third 
test tube t3 and mix the three test tubes to create Ti.)

	 11.	The first step of the algorithm requires the preparation of raw material 
(representations) that depends linearly on n (calculate the exact num-
ber of required molecule types), followed by mixing the molecules and 
waiting for the ligation to finish. The next steps require a number of 
extraction operations that is linear in the number of literals (Step 2) and 
one identification step to test whether any DNA remains in the test tube 
(Step 3).

	 13.	The role of the right frame column is to add 1 to the value computed in 
the previous row; therefore, it is implemented using a tile with a pro-
trusion causing the computation in the next row to start with a carry.

	 16.	See Figure 5.30.
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q4q3
b

a,bq0

a,b q2q1
a

b

a

a,b

FIGURE 5.30

	 18.	The four rules needed to implement the automaton are as follows:

	 q0,a → q0

	 q0,b → q1

	 q1,a → q1

	 q1,b → q1

		  Thus, we need to use molecules T1, T4, T6, and T8 from Figure 5.22.
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C h a p t e r  6

The Never-Ending Story
Additional Topics at the Interface 
between Biology and Computation

In this book we have discussed a wide spectrum of ideas in computer 
science that were inspired by our understanding of biological processes. 

We focused on four main areas that introduced new computational mod-
els based on ideas and insights arising from biological research. Chapter 2 
dealt with cellular automata in which computation is performed on a grid 
of cells, and every cell affects only its neighbors. This model is somewhat 
reminiscent of a colony of single-cell organisms (e.g., bacteria), which 
presents a complex collective behavior, even though each cell’s behavior 
is based on a set of relatively simple local rules. We saw how to prove that 
a nonstandard computational model is universal (in the sense of being 
equivalent to Turing machines). We also saw how cellular automata allow 
us to formally study the conditions that are sufficient for self-replication, a 
fundamental aspect of living systems.

Chapter 3 dealt with evolutionary computation, which involves solving 
computational problems such as optimization and search problems by mim-
icking the evolutionary process in nature. The focus of Chapter 3 was mainly 
on genetic algorithms; even this specialized model presents the system 
designer with a wide scope of choices, such as how to represent the genetic 
data or the precise properties of the genetic operators. Moreover, we saw that 
one can formally prove theorems about properties of the evolutionary com-
putation (Holland’s Schema theorem) that are valid under a wide variety of 
assumptions. We also discussed genetic programming in which the indi-
viduals undergoing evolution are representations of computer programs.
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Chapter 4 presented several models of neural networks. These models 
are based on an attempt to mimic the way a brain operates in order to facili-
tate machine learning. The first three models were based on supervised 
learning, where networks are presented with a set of examples for which 
the expected output is known, which are used to train the network. The first 
model was that of a simple perceptron, and we saw how simple it is to prove 
the inherent limitations of such networks. Then we discussed multilayered 
neural networks and developed a learning algorithm based on backpropa-
gation, which adjusts the network weights automatically and sequentially. 
Then, using the Hopfield model, we studied the issue of associative mem-
ory and discussed the strength and the weaknesses of this model. Finally, 
we gave an example of self-organizing maps, which are neural networks 
capable of unsupervised learning.

Chapter 5 dealt with molecular computation. Here we saw another 
kind of link between computer science and biology: the use of biological 
techniques and organic molecules to implement computational processes. 
In this chapter the biological material was used as “hardware.” The inher-
ent parallelism of molecular processes was harnessed to improve the effi-
ciency of expensive computations such as finding Hamiltonian paths in 
graphs. We showed how DNA can be used as a computational medium 
as well as how to harness enzymatic reactions to implement autonomous 
computational processes.

Each of these four areas is an extensive field of study, and we pre-
sented only basic concepts—enough to give a sense of each topic to help 
the reader identify which approaches may be useful for solving a given 
problem, and to provide the basic tools and concepts needed for the fur-
ther study of each topic. The reader interested in more in-depth knowl-
edge will find references to further reading at the end of each chapter 
and in the list of recommended books that appears at the end of this 
chapter.

The summary of the previous chapters shows how combining ideas 
from biology and computer science leads to a variety of results: from 
technological and engineering applications to theoretical conclusions 
and formal proofs of theorems. In this chapter we will discuss briefly 
additional topics that are in the intersection of computer science and 
biology that further demonstrate the rewards that can come from “cross-
fertilization” between the two fields. We will try to relate the new topics 
to ideas discussed in the previous chapters and to highlight the similari-
ties and differences.
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We will not discuss the important field of bioinformatics, which 
focuses mainly on computational analysis of biological sequences such as 
RNA, DNA, and proteins. This analysis is achieved to a large extent by 
using methods developed in the computer science fields of pattern match-
ing and machine learning. This is a central topic in computational biol-
ogy requiring a separate discussion, and many recent textbooks have been 
dedicated to this subject (see Further Reading section).

6.1  SWARM INTELLIGENCE
Swarm intelligence is a set of computational approaches influenced by 
observing the living world from a computational perspective that views 
the behavior of organisms as problem-solving processes. Swarm intel-
ligence approaches are derived from observations showing how cooper-
ating organisms solve problems collectively. The classic example of such 
behavior is that of an ant colony. Anybody who has observed a row of ants 
marching toward a food source must have wondered how the ants know 
where to go and how to return to their nest. It turns out that an ant that 
has discovered a food source can signal the preferred direction to other 
ants, which repeat the process and mark the way for even more ants.

Swarm intelligence is based on the observation that colonies of sim-
ple organisms can present a behavior that seems planned and goal ori-
ented even though each individual is simple and lacks the skills to solve 
the problem independently. We have discussed this observation in other 
contexts, particularly when discussing the emergent behavior of cellular 
automata in Chapter 2. In this respect, the discussion can be considered 
as an extension of the topics described there. The set of simple organisms 
that are capable of developing mutual interactions and interact with the 
environment is known as the swarm or the swarm system. The collective 
goal-directed behavior is an emergent property (a topic we return to in 
Section 6.3) of the swarm system and is referred to as swarm intelligence. 
We present three computational methods based on swarm intelligence.

Ants leave chemical markers called pheromones on their trails, which 
allow them to pass information between individuals. Communication 
between individuals by locally changing the environment is called stig-
mergy. The scent of the pheromones is picked up by the olfactory organs 
of other ants, allowing the pheromones to mark the way back to the nest 
and the way to food sources. When more ants use a particular path, the 
stronger its markings will become. Conversely, pheromones evaporate over 
time, so a trail that has been neglected will disappear after a certain period 
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of time. Note that ants do not always follow the trail and may turn in ran-
dom directions from time to time. This guarantees that ants will discover 
new food sources and new trails.

The combination of these two properties—individuals with simple com-
putational abilities and communication using the environment—makes 
swarm computation appropriate for distributed computing and for solving 
coordination problems for robots that operate cooperatively.

6.1.1  Ant Colony Optimization Algorithms

The pheromones mechanism gave rise to the development of a class of 
optimization algorithms known as ant colony optimization (ACO) algo-
rithms. Such an algorithm was first presented by Marco Dorigo in the 
1990s (Bonabeau et al., 1999, 2000). The goal of the algorithms is to find 
an optimal solution to a computational problem by using the method that 
allows ants to find food quickly and efficiently by not wasting energy on 
long trails. The problems are usually presented as finding good paths in 
graphs, and the algorithm proceeds by creating a set of virtual ants that 
walks the graph with the goal of constructing appropriate paths. A typical 
application is the traveling salesperson problem (TSP). The solution to 
this problem is the shortest path traversing a given set of cities where each 
city is visited exactly once.

To solve the TSP, several ants are placed in each city. At each time step, 
a random ant is selected and has to travel on the graph according to the 
trails marked by pheromones. Thus, the probability that an ant will go to 
an adjacent city (an adjacent node in the graph) is directly proportional 
to the amount of pheromones deposited on the edge between the current 
and adjacent cities.

The following random proportional transition rule is the formula one 
of the algorithms uses to determine the probability that an ant at vertex i 
will go to the adjacent vertex j:
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where τij is the amount of pheromones on the edge (i,j), and ηij is the heuris-
tic value assigned as the value of the edge (i,j) a priori. This heuristic value 
serves to estimate the quality of the ants’ choices in advance of building 
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the path. Such heuristic functions exist also in algorithms for game play-
ing where the different game states are evaluated as part of evaluating the 
game tree. In problems such as TSP the heuristic value is determined by 
the distance between the cities d and may be, for example, 1/d, to give a 
higher weight to closer cities. As expected, the heuristic value is computed 
using local information only. α is a positive constant that determines how 
the quantity of pheromones influences the algorithm, and β is a positive 
constant determining the influence of the heuristic value. The sum in the 
denominator is over all the neighboring vertices k among which the ant 
has to choose.

After building a path between n nodes, the ant updates the amount of 
pheromones on the graph edges it traversed in accordance with the qual-
ity of the complete path (the better the path, the more pheromones will 
be deposited). For simple graphs, this mechanism suffices for finding the 
shortest paths. For complex graphs or when searching for paths with other 
properties, additional mechanisms are added to the algorithm, such as 
having only the ant that found the best path during an iteration of the 
process leave a pheromone trail behind it; having a certain percentage of 
pheromones evaporate at every time step; fixing minimum and maximum 
values for the amount of pheromones deposited on each edge; or keep-
ing a list of visited cities for each ant to avoid multiple visits to the same 
city. Researchers have successfully used ACO to solve the TSP and other 
similar combinatorial problems, which can be represented as problems of 
finding paths in graphs.

Another interesting use of swarm intelligence is for planning routing 
tables in a communication network. The basic premise is simple: commu-
nication packets update the routing tables based on the quality of the path 
they were routed to. For slow routes, the corresponding table entries will 
be updated by a small value, whereas a faster path will be updated with a 
higher value. In this fashion the packets act as ants leaving a trail of phero-
mones behind them as well as carrying the information in the network. 
This application of swarm intelligence is called ant colony routing (ACR) 
and has two important engineering advantages:

	 1.	Using the many packets sent in the network allows for an efficient 
mapping of the network which may be large and complex.

	 2.	The mapping happens in real time and allows for route changes 
based on the changing characteristics of the network. Since the load 
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in certain parts of the network may vary greatly over time, this prop-
erty is highly important.

6.1.2  Cemetery Organization, Larval Sorting, and Clustering

Observing ant behavior also leads to techniques for solving clustering 
problems. In these problems the goal is to find a good partition of a 
(usually large) set of data into subsets or clusters. The goal is to have the 
elements of each cluster be closer or more similar to each other than to 
members of other clusters. The number of clusters may be an input to the 
algorithm or may be determined by it. A typical example is the problem 
of partitioning customers into sets of customers with similar charac-
teristics, for example, “customers who buy expensive kitchenware” ver-
sus “customers who buy expensive appliances and cheap kitchenware.” 
The types are not known a priori—they are found by the algorithm that 
attempts to identify clusters minimizing the distance between the data 
points inside each cluster.

Observation of certain species of ants has demonstrated that they 
arrange “cemeteries” for dead ants in the nest. Initially, the dead ants are 
distributed randomly over a certain area, but after some time the area is 
partitioned into subregions containing dead ants and others that are free 
of them; in other words, one can observe clusters of ant carcasses. Other 
ants have been shown to arrange their larvae by size, such that the smaller 
larvae are placed in the center of a cluster and the larger larvae at the clus-
ter’s periphery. These observations gave rise to the idea of using stigmergy 
to solve clustering problems similarly to the ants’ techniques for clustering 
carcasses. Here the data to be partitioned and sorted play the role of the 
“carcasses” to be clustered.

The basic idea of the algorithm is to place the data on a two-dimen-
sional grid, similar to the one found in cellular automata. For best 
results the data are initially placed on the grid randomly using a uni-
form distribution. Ants are also placed on the grid and may move from 
one grid cell to another and carry with them the data when they move. 
At each time step an ant decides whether to move the datum in the 
cell according to the distribution of data in the local neighborhood, 
and it may do so only if it is not already carrying some other data. The 
sparser the data in the neighborhood, the higher the probability the 
ant will “pick up” the datum and start carrying it. Conversely, an ant 
may put a data item it carries down in a new cell at any time step, and 
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the probability of this event increases the more data items there already 
are in the local neighborhood. Iterating this process over a number of 
generations causes the data to cluster, as more distant data are brought 
into existing clusters.

When calculating the probability of an ant picking up or putting 
down data, one has to take into account both the placement of the data 
on the grid and the distance between the datum in the current cell and 
the data in the local neighborhood. Going back to our example, the dis-
tance between two customers might be defined as the number of items 
one customer has bought and the other has not (i.e., the size of the sym-
metric difference between the sets of items each customer has bought). 
Using this definition, customers who bought similar items will be con-
sidered “close” for the purpose of clustering. Note that in most cases the 
data are characterized by a rather large set of properties, so they can be 
considered as points in an n-dimensional space Rn (where n is the num-
ber of properties for each data point). The algorithm we described not 
only attempts to discover clusters but also does so while projecting the 
n-dimensional property space onto the two-dimensional grid (or more 
generally on a space with less than n dimensions). It is convenient to 
implement this approach using “ants” moving on a discrete grid, so in 
fact the n-dimensional space Rn is projected onto a discrete two-dimen-
sional space (Z2) similarly to what is achieved by self-organizing maps 
(Chapter 4).

The structure of the clustering algorithm is as follows:

// Generic code for clustering using ants (Lumer-Faieta Algorithm) 
// Each ant remembers its current location on the grid, and the item
// it is carrying. 

PLACE_ITEMS_ON_GRID()

PLACE_ANTS_ON_GRID()

WHILE no  END_CONDITION t
 BEGIN

FOR i:=1 TO number of ants 
BEGIN

        IF not(CARRYING(ant )) and not(EMPTY(LOCATION(anti i)))THEN
           p := PICKUP_PROBABILITY(anti) // see below 
      PICKUP(ant ) with probability pi

 ELSE IF CARRYING(ant ) and EMPTY(LOCATION(anti i)) THEN
           p := PUTDOWN_PROBABILITY(anti) // see below 
      PUTDOWN(anti) with probability p
        END IF 
        MOVE(anti) // randomly move ant 

END
 END 
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To complete the presentation of the algorithm we have to specify how 
to compute the probability that an ant will lift up a piece of data and the 
probability that an ant will deposit a data item at a particular grid point. 
These probabilities have to be based on the number of similar points in the 
ant’s neighborhood.

First, we define the function f(i,r), which computes the local density of 
objects similar to object i located at position r:

	

f(i,r)= s

d(i, j)

j

1
1

2
−∑ α

if positive
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where d(i,j) is the distance (or dissimilarity) between objects i and j, s is the 
neighborhood’s radius, and the sum is over all items in the neighborhood 
around r. f(i,r) measures the average similarity between item i and the 
items in its neighborhood. The parameter α determines the sensitivity of 
the comparison: if the value of α is high, then the comparison is less sensi-
tive and items that differ by much may be clustered together. Conversely, 
when α is low, even similar items will be viewed as different and will not 
be clustered together.

Using f(i,r) we can define the probabilities for picking up and putting 
down data using the following formulas:
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where k1 and k2 are constants. If f(i,r) << k1, the pickup probability will be 
close to 1. This describes a sparse neighborhood. If f(i,r,) >> k1 the neigh-
borhood is rich in similar items, and the pickup probability will be close to 
0. k2 plays a similar role in computing the putdown probability.
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To summarize, the probability of a pickup decreases with the density of 
similar items, whereas the probability of an item being put down increases 
with the density of similar items in the neighborhood. In this way the 
algorithm achieves the desired goal.

We saw in previous chapters how the interaction with the environment 
can often affect the behavior of the computational organism. It is interest-
ing to note that this is also the case with swarm intelligence: the system is 
governed by the feedback the ants receive from the environment, which is 
used both for representing the input to the algorithm and for communica-
tion between the organisms in the swarm.

6.1.3  Particle Swarm Optimization
Swarm behavior—particularly the behavior of schools of fish and flocks of 
birds—has led to another computational technique, called particle swarm 
optimization (PSO). In this technique optimization problems are solved by 
a set of particles distributed on the search space (which is represented as an 
n-dimensional space Rn) where each point (an n-tuple of real numbers) rep-
resents the n characteristics of a possible solution. The particles move around 
attempting to reach the extreme points (optimal solutions) identified at each 
time step. In the basic algorithm, every particle is aware of the following:

•	 The quality of the solution represented by the point at which it is located.

•	 The quality and location of the best solution it has ever visited (per-
sonal best).

•	 The quality and location of the best solution the population has ever 
encountered (global best).

The particles are initially randomly distributed on the search space, and 
each has a velocity (which initially may be 0 or some random value). At each 
iteration the location and velocity of the particles are updated as follows:

	 1.	The change in velocity (“acceleration”) is determined so that it cre-
ates movement toward the personal best and global best. The acceler-
ation is computed as a weighted average of the distance between the 
particle and the personal best and global best; the location and veloc-
ity of particles are vectors in the n-dimensional space (i.e., vectors 
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of n real numbers). The new velocity is calculated using the current 
velocity and acceleration.

	 2.	The new position of particle i is determined by the current position 
and the new velocity (xi,t is the vector location of particle i at time t): 
xi,t = xi,t-1+vi,t. (Figure 6.1).

As usual, the algorithm executes until it converges or some other halting 
condition is satisfied.

Most of the parameters allowing for fine-tuning the system involve the 
way the new velocities of the particles are calculated in Step 1. The new 
velocity of particle i is determined as follows:

	 vv vv xxi,t i,t 1 1 i,t-1 2= +c rand() globalbest - +cω − ( ) rrand() personalbest -
i i,t-1xx( )

where:

•	 xi,t is the location of the particle at time t.

•	 globalbest is the location of the best solution the population has encoun-
tered so far.

•	 personalbest is the location of the best solution particle i has encoun-
tered so far.

•	 ω denotes the inertia of each particle. It is usually chosen to be close 
to 1.

Current
position

Personal best

Global best
x

v

FIGURE 6.1  New position calculation. The actual trajectory of a particle is deter-
mined by its own position and velocity and also by biasing the trajectory toward 
the best position visited by the particle and the best position found by the entire 
population.
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•	 The constants c1 and c2 determine the influence of personalbest and 
globalbest, respectively. The larger c2, the larger the influence of the 
particle’s “private” data, whereas the larger c1, the larger the influ-
ence of the whole population on the behavior of each particle (the 
social influence). Initially, one could use c1 = c2 = 2.

•	 rand() is a random number between 0 and 1. Note that a different 
random value is used for each dimension (to simplify notation this is 
not reflected in the formula above).

The calculation of the velocity in each dimension is done separately 
and takes into account the corresponding dimensions of globalbest and 
personalbest.

Note that, in contrast to the cellular automata described in Chapter 2 
where each cell has only local knowledge, in PSO, the system keeps track 
of the global data—the location of all particles and the properties for the 
optimal solution globalbest. It is possible to reduce the role of global infor-
mation by having each particle be aware only of a limited group of neigh-
boring particles, where the neighbor relation is defined in advance and 
does not depend on the current locations of particles.

The structure of the PSO algorithm is as follows: 

INIT_POPULATION()
WHILE  END_CONDITION 
 BEGIN 

FOR := TO
 BEGIN 

        IF  THEN 
:=

 END IF 

        
       :=

MAX_FITNESS_LOCATION(
)

 FOR := TO
BEGIN

         

v := c rand() x
c rand() x

x := x v

          
        END  // FOR d  
      END  // FOR i 
 END  
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In an impressive demonstration, particle swarm optimization was used 
to find weights for a neural network whose goal was to report the charge 
of an electrical car’s batteries. The network consisted of five input neu-
rons, three hidden neurons and one output neuron, and it took around 3.5 
hours to train using backpropagation. It took merely 2.2 minutes to find 
weights achieving the same level of success (the same sum-squared error) 
using PSO (Kennedy and Eberhart, 2001, p. 318).

6.2  ARTIFICIAL IMMUNE SYSTEMS
Immunology is the research field dealing with the immune system, which 
defends the organism against a wide variety of pathogens such as bacte-
ria, fungi, and parasites. The immune system is a complex system whose 
description is beyond the scope of this book. We will present a few appli-
cations that employ insights gained from knowledge of the biological 
immune system to solve problems arising in computer science and while 
doing so will introduce the relevant properties of the biological immune 
system.

The immune system is fascinating from a computational perspective as 
it operates in a consistent fashion, “reaches” conclusions, exhibits “mem-
ory,” and performs various activities while being totally distributed and 
without a central control mechanism or even “wiring.” Thus, it is radically 
different from the nervous system discussed in Chapter 4. Two central 
properties of the immune system are immune specificity and immune 
memory. Immune specificity refers to the capability of certain immune 
system cells to identify specific pathogens, to target them, and to destroy 
them. Immune memory is based on the fact that some of the cells gener-
ated during the initial contact with a pathogen remain in the organism and 
allow for a faster reaction to subsequent attacks by the same pathogen (this 
property is the basis of vaccinations). Artificial immune systems, which 
mimic biological immune systems, attempt to recreate these properties to 
achieve computational needs. We will describe one such task—securing a 
computer system against unauthorized users.

To achieve its immunological task, the immune system has to distin-
guish between elements belonging to the organism and external elements. 
This is called the distinction between self and nonself. To achieve this goal 
the system has to contain cells that recognize and react to new elements 
invading the system. This raises an interesting question: how can one cre-
ate cells that can identify elements the organism has never encountered 
previously? We can conceive of various ways for creating detectors for 
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certain known properties, but how can one detect invaders with unknown 
properties? Another requirement from the immune system, which is of 
equal importance, is that the detectors do not react to the organism’s own 
cells (the self), because such a reaction will cause the organism to attack 
itself (autoimmune diseases, such as multiple sclerosis and lupus, occur 
due to an immune response to the organism’s own proteins). It turns out 
that even healthy people have autoimmune activity but to a lesser extent. 
This raises the question of whether the immune system is geared only 
toward identifying the nonself or whether it has other functions unrelated 
to dealing with external elements. For instance, it might have additional 
regulatory functions. This fundamental question gives a completely dif-
ferent perspective to the immune system’s function, whereby the immune 
system actually defines and maintains the self rather than just identifying 
it. In our artificial applications we will ignore this question and focus on 
the task of distinguishing the self from the nonself.

One way the immune system attempts to distinguish between self and 
nonself is negative selection. A large set of detectors are created randomly, 
and the ones that react to the self are sieved out. To implement this, many 
detectors are generated and allowed to live for a certain period of time in 
an environment exposed to the organism’s own molecules. If the detec-
tors fire, there is a high probability they are reacting to the organism itself 
and have to be removed. Detectors that have not fired during this training 
period have the potential to react only to external elements and therefore 
should be activated in the hope that they identify attackers. In this way the 
system can be said to “learn” to identify nonself elements. In the immune 
system this process happens mainly in the thymus gland where white 
blood cells known as T-cells are “trained” to distinguish between self and 
nonself targets. It is easy to see that this method is useful for identifying 
not only attackers but also any anomalies in a system.

This process is called negative selection because the detectors react-
ing against the organism’s own proteins are removed. This is not the only 
mechanism employed by the immune system, and other mechanisms 
have inspired various learning algorithms; however, in this section we will 
focus only on negative selection.

6.2.1  Identifying Intrusions in a Computer Network

It seems very natural to use ideas derived from immunology to defend 
computer systems against unwelcome intruders, as the biological immune 
system attempts to solve a similar problem. The LISYS system we will 
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describe (Hofmeyr and Forrest, 2000) is based on the negative selection 
mechanism. In addition, the system makes use of other ideas inspired by 
the immune system.

The goal of the system is to defend a local area network (LAN). The 
system monitors the communication in the network constantly and learns 
to distinguish between normal communication (self) and unusual com-
munication (nonself). The system makes use of the fact that in a LAN 
every computer sees the entire communication passing in the network. 
This allows for detectors to be distributed on many computers on the net-
work and for all the communication passing through the network to be 
monitored from each one of them.

The monitoring system observes the network connections between dif-
ferent computers. Each connection is represented by a 3-tuple composed 
of the Internet Protocol (IP) address of the sending computer, the IP 
address of the receiving computer, and the requested service (the port). 
Each 3-tuple is represented by a string of 49 bits. The goal of the system is 
to distinguish between 3-tuples representing normal connections between 
computers and those that are atypical and may indicate unauthorized 
entry into the network. For this purpose the system has to compare strings 
representing detectors with strings representing active connections 
between two computers. The strings are compared using the r-contiguous 
bits criterion, which considers two strings as matching if there exists in 
both strings an identical contiguous substring of at least r bits.

Negative selection plays a role in the creation of new detectors. A detec-
tor, which like the network connections is represented as a string of 49 
bits, is generated randomly. The detector is considered immature during 
a training period of length T called the tolerization phase. If during that 
time the detector fires, the assumption is that it reacts to self strings and 
the detector is eliminated. A detector surviving this initial phase is con-
sidered mature and is used to identify invaders. A mature detector identi-
fying at least τ strings in a time interval is considered to have identified an 
invasion, and its state changes to active (and its match counter m is reset 
to 0). τ  is called the activation threshold. The match counter decays with 
time, so if not enough strings are identified during a time interval the 
detector slowly reverts to a less active state.

When a new 3-tuple is observed it can cause a few detectors to fire. Those 
identifying an intrusion best (i.e., with the largest number of adjacent 
identical bits with the 3-tuple) are selected to be memory detectors. These 
detectors clone themselves, and the clones are distributed to neighboring 
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computers in the network. In this way the identity of the atypical 3-tuple 
is distributed in the network and it will be quickly identified at its next 
occurrence as detectors identifying it will exist on many computers in 
the network. Moreover, the activation threshold of memory detectors is 
lower than that of regular detectors (e.g., τ = 1), which causes them to react 
faster. The memory detectors provide the intrusion detection system with 
an immune memory.

Similar to a biological immune system, one of the greatest dangers is of 
the system being overly sensitive and reacting strongly to innocent occur-
rences. A way of minimizing this is by co-stimulation, which involves gen-
erating an immune reaction only when a number of different mechanisms 
detect a problem. The LISYS architects chose a simple method for co-stimu-
lation: when a detector is activated by identifying a string s, the string is sent 
to a human operator, who has to confirm to the detector within a fixed time 
Ts that this indeed is an abnormal occurrence. Only then does the detector 
become active and an immune response is initiated. If the operator does not 
respond within this time period, the assumption is that the detector identi-
fied a valid string (self), and the detector is removed from the system and 
replaced with a new immature detector. The life cycle of a detector is shown 
in Figure 6.2. The system developers tested the immune system on a set of 
data obtained from a live communication network by stimulating 20 days of 
real network use. Tables 6.1 and 6.2 list the immune system parameters they 
chose and the performance achieved by the system.

6.3  ARTIFICIAL LIFE
The borderline between using biological ideas to solve computational 
problems (bio-inspired computing) and attempting to build systems that 
behave like biological organisms (artificial life) is fine and often hard to 
define. Throughout the book we have mainly addressed bio-inspired com-
puting, but we will now attempt to differentiate between various approaches 
to artificial life (ALife) and will discuss a few well-known systems.

Discussing artificial life immediately raises the question of defining 
what life is in an exact way (the definition of life problem). Life manifests 
itself in a vast number of different living organisms with their different 
properties. Our large but limited knowledge of biological systems and the 
philosophical depth of the question “what is life” combine to make the 
definition of life a question many scholars prefer to avoid. The scientists 
and philosophers who did discuss the problem have suggested an array of 
definitions focusing on the many properties found in living organisms. 
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FIGURE 6.2  The life cycle of a detector. (Adapted from Hofmeyr, Steven A. and 
Stephanie A. Forrest, Evolutionary Computation 8, no. 4, 443–473, 2000. With 
permission.)

TABLE 6.1  LISYS Parameters

Parameter Value
String length 49 bits
Number of contiguous bits to match (r) 12 bits
Activation threshold (τ) 10 matches
Decay period of match counter (m) 1 day
Decay period of local sensitivity (see Exercise 6.13) 0.1 days
Telorization period of immature detector (T) 4 days
Waiting period for costimulation (Ts) 1 day
Detector life expectancy 14 days
Number of detectors per node 100 detectors

TABLE 6.2  LISYS Performance
Percentage of immature detectors in detector population 
(average over 20 days) 23%

Average number of false positives per day 1.76
Number of correctly identified intrusions into system 7 of 7
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Among these properties we may find self-replication and heredity, adapt-
ability to the environment and homeostatis, and metabolic behavior (i.e., 
the capability to use matter and energy in the environment for the organ-
ism’s existence and functioning).

The challenge of providing such definitions is twofold: (1) the definition 
has to match all the varied objects we consider as living organisms and not 
match objects such as chairs, rocks, and digital computers that we do not 
consider to be live organisms; and (2) we have to avoid using too narrow a 
definition that will match only the living organisms found on Earth. We 
should aim to reflect on the fundamental properties of life, so that when-
ever we encounter an object that falls within the definition, we will agree 
it is alive, whether it is on another planet or even on a computer system. 
Due to these and other difficulties, there is no one definition everyone 
agrees on, and it is doubtful that such a definition is possible. Researchers 
who work in the field of artificial life do not necessarily define the term 
explicitly, but we can nonetheless characterize the assumptions underly-
ing many of their projects.

The fundamental premise underlying artificial life is that life is not lim-
ited to phenomena we necessarily know already. Artificial life researchers 
thus deal with questions of life-as-it-could-be as well as life-as-we-know-
it. This means that man-made systems are not ruled out (at least in prin-
ciple) as living systems. The reasoning behind this assumption is that life is 
a dynamic process with universal characteristics that are independent of the 
life’s medium. In other words, life is a characteristic of the way the medium 
is organized and not of the medium itself: for instance, life does not have to 
be based on organic molecules. This allows us to accept the possibility that 
a computerized simulation of living processes should be considered as being 
alive.

Given the scientific and philosophical difficulties of defining life, 
it is common among researchers to distinguish between two types of 
approaches to artificial life: (1) the strong ALife approach, which postu-
lates that virtual “creatures” on a computer screen can be considered to 
be alive if they fulfill the definition of life used by the researchers; and 
(2) the weak ALife approach, whereby computerized creatures displaying 
characteristics of living systems are only models used in research and are 
not really alive.

Most ALife systems have common characteristics, based on general ideas 
derived from biology and the study of complex systems. As expected, these 
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characteristics are similar to the main characteristics of the biology-inspired 
models which we have discussed throughout this book:

	 1.	The systems are composed of a large collection of simple programs 
or other simple entities (a “population”).

	 2.	There is no central control mechanism.

	 3.	Every program or object reacts to local phenomena in its immediate 
environment. The environment may of course contain other objects  
with which the object has to interact.

	 4.	Any property of the system that extends beyond the local behavior 
of the objects (i.e., an emergent property) is the result of the local 
simple behaviors.

As expected from this list, many ALife systems use the computational 
models described in Chapters 2, 3, and 4.

We will describe a few representative examples of ALife systems. While 
studying them, try to determine how well these examples adhere to any of 
the previously given characteristics and whether they deal with the chal-
lenge of strong ALife or the simpler but still challenging weak ALife.

6.3.1  Avida

Avida (Lenski et al., 2003) is a software environment for studying 
and evaluating the evolution of self-replicating computer programs. 
(Following the lead of the system’s developers, we will call such pro-
grams computational organisms.) Using Avida allows researchers to 
perform experiments on artificial evolutionary processes relatively easily 
and to follow all the stages in the evolution of the computational organ-
isms “living” in the computer’s memory. Computerized experiments are 
of course simpler than experiments in the laboratory, especially when 
the experiments involve following many generations of organisms. 
Many researchers use mathematical simulations to analyze evolution-
ary processes, but this approach is inherently biased as the simulations 
are based on the researchers’ already held assumptions about the evolu-
tionary process (the computer simulations simply use pseudo-random 
numbers to explore probabilistic models of evolutionary processes). The 
Avida developers chose a different route—the computer is used not to 
perform the computations defined by a mathematical model but as an 
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environment in which autonomous organisms operate. These organisms 
are responsible for their own reproduction and interaction with the envi-
ronment and create an evolutionary process that does not necessarily 
operate according to a predefined mathematical model. The main task of 
an Avida organism (which is a computer program) is to generate as many 
copies of itself as possible (i.e., to self-replicate). Note the fundamental 
difference between this approach and the way the genetic algorithms we 
studied in Chapter 3 work. In Avida the organism is responsible for its 
self-replication; replication is not provided by a separate mechanism. 
The success in self-replication is the fundamental metric for an indi-
vidual’s fitness in Avida, and the success of an organism is measured by 
the number of its copies in the final population.

The Avida software system implements a virtual computer and oper-
ating system, on which different programs comprising the population of 
organisms in the virtual environment are run. The computer runs as a par-
allel system, using time slicing, so that every artificial organism is allocated 
a time slice during which the computer program comprising the organism 
is executed. Avida was inspired by an earlier system for studying artificial 
evolution of self-replicating entities called Tierra, which was developed 
by the ecologist Thomas S. Ray. One of the main differences between 
Avida and Tierra is that in Avida organisms may be assigned computa-
tional tasks, and if they fulfill them successfully they are rewarded with 
extra running time as a bonus. For example, we may challenge the organ-
ism with the task of accepting two numbers as input and of producing 
their sum as output upon completion of the program. Organisms that are 
successful at this task will get extra running time, which they can use to 
create copies of themselves. In this fashion one can study the evolution 
of different computational capabilities. For example, one of the experi-
ments conducted using Avida was to compute logical operations, and the 
highest bonus was given to the organisms implementing the EQU opera-
tion, the operation that tests whether the bits of both input strings are 
equal (see Lenski et al., 2003). The goal of this work was to study how the 
evolution of complex traits depends on the evolution of simpler building 
blocks. Another feature Avida added to Tierra is that it implements a two-
dimesional universe on which the organisms live. It additionally supplies 
a large spectrum of configuration and monitoring mechanisms for evolu-
tion of the computational organisms.

Ray already observed interesting evolutionary phenomena using 
Tierra (Ray, 1992). In his first experiment the only success criterion was 
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the rate of self-replication. Ray noticed that the organisms became suc-
cessively shorter—since the shorter the program the less time it needs to 
replicate—therefore for a fixed execution time, shorter programs will gen-
erate more copies. Another interesting phenomenon Ray discovered was 
that some organisms succeeded so well in decreasing their size that they 
removed critical parts of themselves and used parts of other programs 
that resided in the computer’s shared memory. This is reminiscent of the 
biological phenomenon of parasitism, whereby a parasite benefits at the 
expense of another organism. The creation of parasites led to an arms 
race: the abused organisms developed methods to confuse the parasites 
and gain immunity; the parasites developed methods to overcome the 
immunity; and the cycle would repeat. Eventually, organisms evolved that 
seemed to be potential victims but that actually had mechanisms allowing 
them to fool the parasites and cause them to clone the victim rather than 
themselves!

We now describe the Avida system in more detail and discuss how it 
can be used as a system for investigating evolutionary processes. An Avida 
run starts by the execution on the virtual machine of an initial organism 
that is capable of self-replication. This organism is the initial input pro-
vided by the user. For example, the initial organism described in Table 6.3 
is capable of self-replication. The program is written in the machine lan-
guage implemented by the Avida system. There is no need to try to under-
stand the details of the machine language, as we just want to give a general 
notion of what the digital organisms look like. What follows is a high-level 
description of the organism’s operation.

The program starts out by allocating memory for the future descen-
dant. Then the program seeks its end, which is marked by the two 
commands nop-A (“nop” stands for no operation) and nop-B (these 
commands do not do anything). The new copy will be written to this 
memory location, where the newly allocated memory resides. Note that 
the template nop-A, nop-B is represented for the h-search command by 
the template nop-C, nop-A, which appears in the next two lines of code 
(this is how the machine language of Avida uses nop operations to rep-
resent labels). After this initial step the copy loop starts executing and 
will execute as long as the template nop-A, nop-B (represented again 
for the if-label as nop-C, nop-A), which marks the end of the program, 
has not been copied. For every loop cycle one command is copied (by 
h-copy) from the read head (which is at the beginning of the code at 
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the beginning of execution) to the write head (which the program posi-
tioned at after the template nop-A, nop-B). At the end of the loop (after 
copying the whole program), the h-divide command is executed and 
causes the program in the new memory region to turn into an indepen-
dent organism. The experimenter using Avida defines the probability 
that h-copy will misbehave, and, instead of copying the command it is 
supposed to copy, a random command will be copied into the descen-
dant. This creates mutations.

Note how Avida’s machine language uses the nop commands, whose exe-
cution has no effect, to seek memory locations (h-search) and to check which 
commands have been copied (if-label). It is worth reflecting on how this 
design influences the ease of writing self-cloning programs compared with 
addressing memory in the standard ways used in other machine languages.

TABLE 6.3  A Description of an Organism in the Avida System

# — Setup —
h-alloc # Allocate extra space at the end of the genome to copy the offspring into.
h-search # Locate an A:B template (at the end of the organism) and place the 

Flow-Head after it.
nop-C #
nop-A #
mov-head # Place the Write-Head at the Flow-Head (which is at beginning of offspring-

to-be).
nop-C # [ Extra nop-C commands can be placed here w/o harming the 

organism! ]
# — Copy Loop —

h-search # No template, so place the Flow-Head on the next line (to mark the 
beginning of the copy loop).

h-copy # Copy a single instruction from the read head to the write head (and 
advance both heads!)

if-label # Execute the line following this template only if we have just copied an A:B 
template.

nop-C #
nop-A #
h-divide # ...Divide off offspring! (note if-statement above!)
mov-head # Otherwise, move the instruction pointer (IP) back to the Flow-Head at 

the beginning of the copy loop.
nop-A # End label.
nop-B # End label.

Source: Courtesy of Charles Ofria.
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The Avida developers mention a few factors demonstrating the appeal 
of digital organisms for evolutionary research. Here are two of the most 
important ones:

•	 Researching artificial life allows us to generalize about systems with 
self-replication capabilities. This allows us to study other evolutionary 
systems in addition to the biological ones based on DNA and RNA.

•	 Studying digital organisms allows us to discuss questions that can-
not be researched using biological systems. For instance, a certain 
type of mutations can be canceled, or certain evolutionary stages can 
be pinpointed so that changes can be made to them.

Among the topics studied using Avida are the importance of the fitness 
of intermediate evolutionary steps in the evolution of complex properties, 
the factors causing the coexistence of multiple species rather than the cre-
ation of a single dominant species, and the evolution of cooperation.

Clune, Ofria, and Pennock (2007) studied the evolution of plasticity 
and made an interesting use of Avida (see Chapter 3 for a further dis-
cussion of plasticity). They tried to test whether frequent changes in the 
demands made by the environment will cause the digital organisms to 
evolve an ability to adapt to the changing environment, that is, to evolve 
behavioral plasticity. Recall that in Avida the organisms may be required 
to fulfill some tasks, and success at the tasks gives them additional run-
ning time (failure may result in a decrease in the allotted running time). 
The researchers added a mechanism allowing the organism to determine 
if the task was accomplished successfully (using the return value from the 
output command). The aim was to test if this input from the environment 
will be used by the organisms to adapt their behavior to the demands of the 
environment, which was changed cyclically between requirements for two 
different computations on the input values. The researchers hoped that the 
system will create organisms which check the return value of the output 
command and use it (using a conditional statement) to choose a compu-
tational path providing for more running time. Dramatically, something 
else happened: the artificial evolution managed to find an organism with 
one computation path that did not use the return value in any conditional 
statement yet remained adapted to the changing environment. The organ-
ism achieved this by using the return value as one of the numbers used in 
the computation of the next output value, in a way that assured the new 
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output generated matched the environmental requirements represented 
by either one of the two return values. In other words, evolution man-
aged to create an organism that did not need plasticity at the level of the 
computation paths (while the output it produced obviously had to dem-
onstrate the required plasticity). To force the system to develop organisms 
with developmental plasticity of the type they were hoping to find, the 
researchers had to avoid the creation of such a static solutions by chang-
ing the conditions of the problem in a subtle way aimed at undermining 
solutions with a single computation path. The variety of environmental 
demands in nature may not allow for the creation of “sneaky” solutions 
such as those initially created.

From a scientific perspective it is important to note that similar results 
about the evolution of plasticity and its relation to environmental demands 
were also obtained in studies looking at the evolution of neural networks 
under changing environmental conditions. The fact that similar evolution-
ary phenomena arose in models that are fundamentally different from each 
other allowed the researchers to draw from the results of the different exper-
iments general conclusions about the behavior of evolutionary processes.

6.3.2  Evolvable Virtual Creatures

Karl Sims (1994) presented a way to use ideas derived from artificial life to 
create three-dimensional graphical creatures for animated movies. These 
creatures had to be mobile in their environment and to react to external 
stimuli. Their shape and the “brain” controlling their musculature and 
reacting to the environment are generated in the Sims system by a genetic 
algorithm of the sort described in Chapter 3. The evolution of the creatures 
can be directed toward certain behaviors by choosing different fitness 
functions. Sims presented a large collection of creatures that have evolved 
in the system and were able to walk, swim, jump, and follow light sources.

The genotype of the creatures determined both their physical structure 
and their control mechanism. The control mechanism was not a standard 
neural net as described in Chapter 4 but rather contained more complex 
elements capable of performing operations such as addition, multiplica-
tion, conditional statements, and mathematical functions such as sin, log, 
and abs. The genotype was a graph representing the rules for building the 
creature (as can be seen in Figure 6.3). The graph contains both the rep-
resentation of the creature’s physical structure and the description of the 
neural net and sensors allowing it to sense its environment. As seen in 
Figure 6.3, a creature is constructed from a collection of connected blocks. 
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Its brain reacts to environmental stimuli and determines how to move the 
different blocks, similar to the way a live organism moves its limbs. This 
movement of various body parts allows the creatures to move around its 
living space.

Sims performed experiments on the evolution of creatures under dif-
ferent conditions, such as walking on a flat terrain, swimming in water, 
or following a moving light source (see Figure 6.4). Fitness was com-
puted taking the simulation’s goal into account. For instance, for the 
evolution of walking, the fitness function took into account the dis-
tance of the creature from its starting point and its final velocity. Like 
in other genetic algorithms, individuals were selected for reproduction 
(either sexually or asexually). During the offspring creation phase, cer-
tain mutations could occur as well as chromosome crossover (in sexual 
reproduction).

Genotype: Directed graph

(segment)

(body
segment)

(leg
segment)

(body) (limb
segment)

(head)

Phenotype: Hierarchy of 3D parts.

FIGURE 6.3  Sims’s virtual creatures. (Adapted from Sims, Karl, in Proceedings 
of the 21st Annual Conference on Computer Graphics and Interactive Techniques, 
15–22, ACM, 1994. With permission.)
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An important part of the system was the simulation of the properties 
of the environment: the evolution of walking and jumping was affected by 
gravity, whereas the evolution of swimming was affected not by gravity 
but by water viscosity and its influence on mobility. Moreover, the velocity 
of each creature was computed by taking into account the movement of its 
muscles and physical laws. All of this had a significant impact on the real-
ity of the simulation. Indeed, when one watches a video of the creatures, 
their movement seems extremely realistic and reminiscent of the move-
ment of animals.

Not only did Sims’s simulations emulate the physical environment; the 
creatures existed in an environment that could contain more than one crea-
ture, and the creatures could interact with each other. For example, one of 
the simulations demonstrated competition between two creatures, where a 
creature “won” (evolutionarily) if at the end of the competition it was closer 
to a cube located in the environment. The creatures could look for the cube, 
move it, disturb each other, and so forth. Dealing with the environment in 
all its richness is of course a central factor in biological evolution, but many 

FIGURE 6.4  Creatures adapted to walking. (Adapted from Sims, Karl, in 
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive 
Techniques, 15–22, ACM, 1994. With permission.)
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of the evolutionary computation models we have discussed thus far do not 
address this at all or address it only in a very limited fashion.

6.4  SYSTEMS BIOLOGY
Systems biology is a new research area attempting to apply modern tech-
niques to the study of whole living systems rather than individual elements 
such as genes, proteins, or single cells. It might seem strange given how 
much we do not know about the basic components of biological systems to 
attempt to study how they combine and interact. For example, given that we 
do not fully understand how single genes function, how can it make sense 
to try to look at the next level up and study how large group of genes func-
tion together? This approach might be less ridiculous than it first sounds. 
In many cases, studying the interaction between components sheds light 
not only on the system behavior but also on the behavior of the individual 
components.

While not complete, the vast knowledge accumulated about the biologi-
cal building blocks allows for the usage of mathematical tools and simula-
tions to try to understand how these components interact to create complete 
biological systems. As we saw throughout the book, complex systems can 
present properties that are generated by the way the different components 
interact and influence each other and that do not exist at the level of the 
separate components.

Systems biology, then, is the attempt to construct models describing 
biological systems in order to investigate the interactions between the ele-
ments of biological systems, to study the behavior of these models, and 
to use them to explain the systemic properties of the biological systems. 
Many types of modeling techniques are used, and models range from 
mathematical models consisting of equations describing the relation-
ships between various quantities in the system to computational models 
attempting to describe the step-by-step operation of the biological system 
being modeled (see, e.g., the discussion of statecharts later in the chapter).

An important example of a systemic property is tolerance to disturbances 
and “noise” (robustness). System robustness manifests itself in a variety 
of ways: adaptability to changing environmental conditions, insensitivity 
or low sensitivity of the system to certain changes, or gradual reaction to 
damage to the system rather than a catastrophic shutdown. Robustness is 
discussed in more detail later in this section.

A “systemic” approach to system-level properties such as robustness 
requires an understanding of both the structure and organization of a 
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system (i.e., the components and their interconnectivity) and an under-
standing of its dynamics (i.e., how the system behaves through time and 
how it reacts to different conditions and forces applied to it). A systemic 
understanding of the organization and behavior of systems in the human 
body may, for example, be helpful in the development of new drugs and 
medical treatments that can change the behavior of these systems. It is 
important to note a fundamental problem in studying the dynamics of a 
system: the data we collect are mostly static and describe (partially) the 
state of the system at a given moment. Even when discovering connec-
tions between some components of the system, one still has to discover 
how these connections generate the observed dynamics. The mechanisms 
responsible for controlling a system’s dynamics are called control mecha-
nisms. Reasoning about their behavior based on observations is not at all 
simple and makes use of, for example, statistical tools and simulations. 
This analysis can be likened to reverse engineering: the attempt to under-
stand the operation of a technological system such as a computer program 
or complex machine by observing its behavior. The goal is to be able to 
describe the biological system’s behavior in a precise quantitative manner 
so that we can analyze it analytically or simulate it and thereby discover 
answers to questions about the system, some of which may be very expen-
sive or even impossible to study directly on the system itself. For instance, 
using simulations of biological processes in drug design can reduce the 
need for animal experimentation and can shorten the development cycle, 
thereby reducing the development cost while also allowing the research-
ers to test how the drug will behave in rare conditions. For the simulation 
to be useful, it has to be as precise as possible and take as many factors as 
possible into account. All of these difficulties are examples of the chal-
lenges facing systems biologists.

As mentioned in Chapter 1, biological systems present a wide array of 
hierarchical organization levels—starting with organic molecules such as 
DNA and RNA, moving on to the organelles that build up the cells, then 
the cell, which is a basic unit capable of surviving and reproducing inde-
pendently, and then on, in multicellular organisms, to tissues, organs, and 
the whole multicellular individual. Multiple individuals create populations 
and communities that are complex dynamical systems.

Systems biology builds models for different levels of organization. Some 
models focus on whole subsystems (e.g., the processes responsible for 
managing blood sugar), whereas others focus on one process built up from 
a few interconnected stages. As of now, most models limit themselves to 
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subsystems. There is an interesting and important project to simulate all 
the molecular life processes in a minimal cell (i.e., a nonspecialized cell). 
The goal of the project is to present in a quantitative and exact way the 
set of basic life processes necessary to maintain a cell (see http://www.e-
cell.org for more information). Another kind of systems biology model 
being developed is the whole patient model, which attempts to simulate a 
patient for drug development purposes (e.g., Entelos® provides a technol-
ogy called “Virtual Patients”). Such models have to address the different 
organizational levels of the patient (e.g., the links among genes, chemical 
processes, intercellular communication, and the organization of tissues, 
organs, and finally the whole patient). Each structural level may operate at 
different scales of size and time rates and present different types of behav-
ior. To be true to life and useful, a model has to capture the interactions of 
the different organization levels.

One of the research goals is to identify and characterize modules or bio-
logical “circuits” with well-defined roles that are used as building blocks 
in the assembly of the more complex biological systems, similar to the 
way electronic circuits are used to build computer systems. Researchers 
have been successful in identifying the control mechanisms that deter-
mine the properties of many such modules. The modules contain pro-
teins that act together as an organized system with a well-defined goal or 
are made up of cooperating gene (or protein) networks. Examples of such 
modules and their control mechanisms include positive feedback loops, 
negative feedback loops with delay mechanisms, mechanisms that imple-
ment temporary storage of data (memory), noise-reducing and noise uti-
lization mechanisms, and various oscillators (Kitano, 2002). Identifying 
the biological and chemical ways these control mechanisms must be 
implemented to create the required behavior allows us to understand 
the biological systems at a high level of abstraction based on engineering 
descriptions of the characteristics common to different processes sharing 
the same control mechanisms. The engineering approach allows us to use 
the same mathematical tools used in system engineering (e.g., differen-
tial equations). Obviously, the same control mechanism may be imple-
mented in several ways at the chemical level; nonetheless, understanding 
the control mechanisms and the ways the different modules interconnect 
to create a whole biological system gives us a new perspective on biologi-
cal systems.

It is interesting to note that, in contrast to engineered control mecha-
nisms, which are designed to implement desired behavior, the biological 
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control mechanisms evolved as a result of various evolutionary needs over 
long periods of time. It is natural to wonder about the chances that evolu-
tion will give rise to modules that exactly match the control mechanisms 
developed by engineering disciplines. To answer this question, different 
biological control mechanisms have to be identified and analyzed, and 
their evolution must be investigated. There is no doubt that our ability to 
perform large-scale studies and to analyze data from many sources pres-
ents large challenges to systems biology and high expectations for new 
biological insights. Time will tell whether computational systems biology 
is up to this challenge.

We now discuss two examples of questions asked by systems biology: (1) 
the origin and nature of biological modularity; and (2) the robust architec-
ture of gene networks. We conclude this section with a discussion of the 
application of formal languages to the description of biological systems.

6.4.1  Evolution of Modularity

The modular and hierarchical structure of organisms (which contain cells, 
tissues, and organs) raises the obvious question about the evolutionary ben-
efits of such a structure, and this question is the focal point of many studies. 
Herbert Simon, one of the central figures of artificial intelligence during its 
heyday, offered one famous explanation in his paper titled “The Architecture 
of Complexity” (1962). He defined the term nearly completely decompos-
able system (ND) to describe systems made up of separate components in 
which there is much more interaction within each component than between 
different components. It is easy to see that many biological and physical 
systems fall into this category. ND is not the same as modularity, as can 
be seen from the variety of properties of the previously mentioned biologi-
cal “circuits,” but it does define a central property of modular systems. So 
the question is how evolution leads to ND systems. Simon answered this 
using a parable about two watchmakers, named Hora and Tempus. The 
watchmakers build almost identical watches, each of which contains 1000 
components. The difference is that Hora builds his watches out of 10 sta-
ble modules, each containing 10 stable submodules with 10 elements each. 
Tempus, on the other hand, does not use such stable substructures, and the 
only stable structure he comes up with is the whole watch made up of 1000 
pieces. Assume both watchmakers are distracted frequently by phone calls 
from their customers. Clearly, Hora, who has to assemble only 10 mod-
ules between interruptions, will be much more productive than Tempus, 
who needs an uninterrupted period of time long enough to assemble 1000 
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elements and has to restart from the beginning after each phone call. Hora, 
Simon tells us, prospered, while Tempus grew poorer and poorer and finally 
lost his shop. While Simon’s parable is told about watchmakers, it is in fact 
concerned with the organization of the watches, as examples of two ways 
complex systems might be organized, rather than with the role of the watch-
makers or the origin of the different organizations.

Simon concluded from the parable that in an evolutionary scenario ND 
watches (e.g., Hora’s watches), or in general ND systems, would be fitter 
than their non-ND counterparts and therefore will have the upper hand 
in the evolutionary race (the reader is encouraged to understand how the 
conclusion about fitness arises from the parable).

As already noted and acknowledged by Simon, this model is very gen-
eral and allows for different conclusions about the evolutionary process 
(note, in particular, that the model does not address the evolution of 
modularity of watches per se, but only deals with its advantages if it 
exists). Simon also has a stronger claim about ND systems: such sys-
tems will improve their fitness faster than non-ND systems with similar 
complexity (the property of how well a system can undergo evolution-
ary changes is called its evolvability). The reason is that an ND system 
allows for local changes and therefore raises the probability that a change 
in one of the components improving fitness will not compromise other 
components (Simon, 2002).

The watch discussion seems to have dealt with the phenotype of a 
system, but the evolvability claim actually suggests that the genome may 
be ND in some sense and is reminiscent of Holland’s building block 
hypothesis (see Chapter 3). Biological systems present both genotypic 
and phenotypic modularities. For instance, each of our two arms is a 
defined organ, and an arm injury does not directly affect other organs; 
therefore, in this sense each arm is a module. On the other hand, both 
arms reflect the same genetic template and not two different genetic 
modules. However, we did see in the previous discussion of biological 
circuits that we can identify sets of genes operating as separate modules 
in an ND-like fashion. Simon uses the notion of ND to discuss both 
these aspects of modularities, which do not necessarily arise due to the 
same reasons and the same evolutionary pressures. ND is useful in dis-
cussing modularity but does not explain the difference between these 
two kinds of modularity.
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6.4.2  Robustness of Biological Systems

An important property of living organisms is their robustness to various 
internal or external mishaps occurring before and during their lifetime, 
including genetic mutations, developmental perturbations, and accidental 
events. We will not define robustness here, and it is clear that too many 
accidents will cause an organism to fail and eventually to die; however, 
our daily experience convinces us that organisms are generally robust to 
many such events.

Engineering has taught us a variety of methods for achieving robust-
ness. The central ones are as follows (Kitano, 2002):

•	 Control mechanisms: In particular, negative feedback.

•	 Modularity: Allows for the containment of failures so that a failure 
affecting one module will not spread and cause a total system failure.

•	 Redundancy: A few components with identical functions can serve 
as backup for each other.

•	 Structural stability: A physical structure can provide stability.

These methods are also available to biological systems. A simple exam-
ple is the redundancy achieved by having many different cells with identi-
cal functionality (consider the huge number of blood cells, which is the 
reason a minor injury does not cause a significant physiological problem). 
The engineering knowledge of these methods for achieving robustness can 
help with the understanding of biological processes or at least can aid in 
creating exact mathematical models that will be the basis for new research.

Robustness of Gene Networks
One can perform large-scale experiments on simple organisms such as 
bacteria, worms, and yeasts where a single gene is removed from the 
genome or deactivated and the effect on the phenotype is studied. For 
instance, it turns out that 82% of the 6000 genes of yeast are not strictly 
necessary, and removing each of them leaves viable strains (Giaever et al., 
2002). Moreover, only 15% of these genes affected the organisms’ rate of 
growth. In other words, 70% of the yeast’s genes do not seem to adversely 
affect its functions when missing. Clearly, we cannot judge the quality 
of life of these organisms, and probably this research has to be repeated 
under various environmental conditions where the affects of the loss of 
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the genes may be more pronounced. In any case it is clear that a very large 
fraction of the yeast’s genes are not absolutely necessary. Similar results 
were obtained when removing a single gene from organisms of varied 
complexity, from bacteria to mice.

It would seem that these results suggest a simple mechanism that can 
explain the robustness of organisms. Genes may have backups that become 
operational when their counterpart is missing; therefore, removing a single 
gene at a time is not likely to cause any harm. This is similar to the engi-
neering practice of increasing robustness by redundancy, for instance, by 
having dual wheel retraction systems in passenger jets.

However, this simplistic explanation raises two issues. The first is that 
evolution can almost never preserve a gene whose sole purpose is to pro-
tect against mutations. This is because mutations are rare events, so there 
is no obvious advantage in having a redundant gene; as a result the backup 
gene will accumulate mutations over time and eventually lose the ability 
to produce the backup protein. The second problem is due to results of 
recent large-scale studies where pairs of genes were deactivated. If deacti-
vating each of the genes separately would not seem to affect the system but 
mutual gene-pair deactivation had catastrophic results, then this could 
indicate that the two genes act as backups for each other. The results of 
the experiments present a much more complex picture (Tong et al., 2004). 
Very few pairs that back each other up have been identified, and most 
genes are members of modules interacting to create complex webs of func-
tional modules.

As a result, the current view is of partial backup among genes (or mod-
ules) that have some functional overlap. In this way, each gene has a specific 
role that affects the fitness of the organism; thus, it would be valued and 
preserved by evolution. On the other hand, the gene can at least partially 
substitute another gene if that gene fails (Kafri et al., 2005). For example, 
there might be two enzymes that digest different types of sugars and can 
stand in for each other in a partial fashion (e.g., in lesser efficiency) in case 
one enzyme fails.

6.4.3  Formal Languages for Describing Biological Systems

Research in systems biology uses advanced computational capabilities 
to build simulations and to test hypotheses using models. To be able to 
describe the models in a consistent and uniform way and to share data 
between different research groups, formal languages for describing the 
biological models were developed. Currently, biological information is 
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described (e.g., in textbooks and most scientific papers) in natural lan-
guage accompanied by figures and pictures, but these descriptions can 
be ambiguous and unclear. Hence, the need for formal languages with 
precise semantics to describe biological models. Such languages are very 
important when we want to make sure that information collected by mul-
tiple research groups is consistent. In addition, they can be used as input 
languages for programs that simulate a model and describe its behav-
ior graphically and as output of programs for visual building of models. 
Another important usage of formal languages is the ability to publish in 
conjunction with a traditional scientific paper an exact description of the 
model in a standardized language allowing other researchers to evaluate 
the results more easily. To these ends a few languages based on Extensible 
Markup Language (XML) have been defined. The best-known among 
those languages is Systems Biology Markup Language (SBML). Using 
SBML one can describe biochemical networks, that is, systems composed 
of a collection of chemical objects (e.g., molecules) linked to each other by 
chemical reactions. Using standard languages such as SBML allows data 
repositories containing a large collection of models from the scientific lit-
erature to be created making them available to the research community.

One can also go a step further and use tools developed for modeling 
computer systems to build “active” biological models. An example of this 
is the use of statecharts to build formal models of biological systems. 
The statecharts language is a visual language developed in 1984 by David 
Harel to aid in developing complex reactive systems (this language was 
originally intended to be used in the development of aeronautical systems). 
The behavior of a system is described using states and events that cause 
transition between states. The states in statecharts may be composed from 
substates, allowing the specification of systems at different levels of orga-
nization, and for easy transitions between levels of description. Moreover, 
using statecharts one can allocate states to components acting in paral-
lel and thereby can describe systems containing parallel and interacting 
processes. In contrast to a verbal description, a system described by a stat-
echart is defined exactly and therefore allows for automatic execution.

Researchers have used statecharts to describe different biological 
mechanisms, including major processes of the immune system. These 
models were used to integrate the data obtained from many decades of 
research and to test by simulation whether these data are consistent and 
whether the models agree with the observed behavior of the immune sys-
tem. To understand a system described using statecharts, one can use the 



292    ◾    Biological Computation﻿

simulation tools originally developed to interact with models of computer 
systems. These tools allow viewing animations that visualize the behavior 
of the system in order to observe the state of each object during the execu-
tion, and to change objects’ states. All of these are, of course, necessary to 
verify a model and to understand its behavior.

Figure 6.5 (from Setty et al., 2008) is a statechart of a eukaryotic cell in a 
multicellular organism, which is specified by using three distinct objects, 
namely, the nucleus, membrane, and cell. The cell includes the specifica-
tion of the different stages in the life cycle of the cell. The nucleus object 
specifies gene expression in a discrete fashion, whereas the membrane 
object specifies the response to external stimulations. The statechart of 
the cell object contains two concurrent components: the proliferation and 
differentiation processes. The proliferation component defines a state for 
each stage of the cell cycle, whereas the differentiation component specifies 
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FIGURE 6.5  Statechart description of a eukaryotic cell. (Adapted from Setty, 
Yaki, Irun R. Cohen, Yuval Dor, and David Harel, Proceedings of the National 
Academy of Sciences 105, no. 51, 20374–20379, 2008. With permission.)
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a state for each developmental stage of the organism. The nucleus and the 
membrane objects are located inside the cell to indicate the (strong) com-
position relation among the three objects, that is, that the nucleus and 
the membrane cannot exist without the cell containing them. The stat-
echart for the nucleus specifies each gene as an independent component 
that can be either in an expressed or an unexpressed state (denoted by Exp. 
and Unexp., respectively). Three genes—Sonic hedgehog (Shh), Patched 
(Ptc), and Pdx1—involved in pancreatic organogenesis are shown in this 
example. Similarly, the statechart for the membrane specifies the cell’s 
reactions to possible external stimulations. Two subcomponents within 
the membrane statechart specify two receptors in the membrane—activin 
receptor (AcrR) and fibroblast growth factor receptor (FGFR)—that can 
be in a bound or an unbound state. The third component in the membrane 
statechart depicts the motion unit that continuously scans over six pos-
sible directions to find the optimal move. The states contain behavioral 
instructions for the cell. For example, in the membrane, the state bound of 
a receptor defines the specific genes it activates. Similarly, in the nucleus, 
the expressed state contains instructions for genes to activate the expres-
sion of other genes.

While we cannot go into a full description of the semantics of statecharts 
here, it is important to realize that this graphical representation carries 
a precise meaning. For example, a cell is presented from two orthogonal 
views (i.e., proliferation and differentiation) marked by dotted lines. In the 
proliferation view, the statechart tells us that a cell can be either in a resting 
state G0 or in the active part of the cell cycle that must start in G1.

The language we just described is based on states. One of the problems 
with this notation is that we often do not have enough biological data (or 
the data are not precise enough) to describe all the states and transitions of 
a complicated biological systems. Thus, other projects used languages and 
formal notations that are scenario based—for example, a list of rules that 
described what a cell does in a certain situation given a certain stimulus. 
Then, given a set of such rules, the system allows for execution of many 
scenarios from different initial conditions. Such languages can better cope 
with partial knowledge. For this reason they may be better suited at the 
present time for describing biological processes.

In addition to statecharts a variety of formalisms developed by computer 
science have been adopted for the description and analysis of biological 
systems. Among these are Petri nets, process calculi (e.g., the pi-calculus), 
and Boolean networks (Fisher and Henzinger, 2007).
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The last few years have seen many initiatives for creating languages for 
describing biological systems. Paradoxically, this multitude of initiatives 
is problematic. It seems that it would be better to select one language (or 
a small number of languages) and to focus on the monumental task of 
translating the vast array of biological knowledge to this formal language. 
Only when there is a critical mass of biological knowledge described in a 
few common formal languages will we be able to gain the full scientific 
benefit promised by standardized formal languages.

Given the current difficulties in adapting and using a common formal 
language to describe biological systems, there is an ongoing effort to extract 
biological knowledge from natural language texts, that is, from biomedical 
journal articles. While regular text searches use exact word matching and 
keyword annotations, more sophisticated methods aim to use natural lan-
guage processing (NLP) techniques combined with machine-learning algo-
rithms using biological ontologies and dictionaries to extract knowledge 
from biomedical articles. While far from perfect, such text-mining systems 
bring hope to the endeavor of retrieving at least some of the vast amount of 
knowledge that has been published and converting it to machine-readable 
form. Having the data specified in formal languages with precise semantics 
will ease the goal of building systems to store, manage, and mine biological 
knowledge.

6.5  SUMMARY
We have outlined in this chapter a few of the varied directions taken by 
researchers who study computational approaches motivated by biology. 
Each of the topics we described is an active research area with new ideas 
and applications being developed constantly. The topics we presented in 
this chapter are newer than the “classic” areas we described in previous 
chapters, and it is safe to assume they will develop in varied and surpris-
ing directions.

We have attempted throughout the book to emphasize the computa-
tional aspect of nature, particularly the study of biological processes as 
computational processes (i.e., as information processing and problem-
solving processes). This outlook made us consider which computational 
problems can be solved using biological mechanisms, looking at the spec-
trum of biological mechanisms from molecular processes to the behav-
ior of animal populations. To this end we inspected the information the 
processes consume and how it is saved and manipulated; the control 
mechanisms responsible for various processes; the roles of parallelism and 
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distribution; and the methods for dealing with faults, noise, and missing 
information. This perspective obviously does not address all the different 
ways of researching and studying biological processes, but it does allow us 
to observe aspects of the biological systems that might be obscured oth-
erwise and to use computer science and engineering tools to help under-
stand biological phenomena.

On the flip side, viewing biological phenomena with “computational 
eyeglasses” allowed computer scientists to develop new computational 
models inspired by biology and new methods for solving computational 
problems. These included optimization and search problems, clustering 
and classification problems, pattern recognition, and machine learning. 
Most of these new models are not exact representations of biological pro-
cesses (which are only partially understood for the most part) but rather 
are new models developed by computer scientists inspired by the knowl-
edge gained from the study of biological systems. The computational per-
spective that guided the discussion in this book provided insights about 
basic computer science ideas, including computational universality, the 
fundamental inability of distinguishing between programs and data, ways 
to build parallel and distributed systems, and dealing with and utilizing  
noisy data. An important property of many of the methods we discussed 
is that they are based on using local data and control (this is especially 
manifest in cellular automata, neural nets, computational immunology, 
and swarm intelligence). Obviously, locality is of major importance in 
building parallel and distributed systems.

Another recurring theme was that a system containing a large number of 
simple components may be much more complex than each of its components. 
For example, in the “Game of Life” we derived a system that is equivalent to 
a digital computer using very simple birth and death laws. The existence of 
a population of different solutions and a simple selection process allows for 
optimizations that cannot be achieved by a single solution. The learning and 
computing capacity of a neural system is much greater than that of a single 
neuron. Molecular computation was another example; as we saw, a large set of 
simple molecules can effectively solve complicated computational problems.

An important aspect of these new models is that they rely to a large 
extent on learning and self-organization rather than on conventional 
programming. Modern computer systems have to contend with more 
and more complex computational problems, failures of various kinds, 
and complex and changing environments; to adapt to input changes and 
sometimes even to required changes in output; and also to deal with 
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huge amounts of data in an effort to find patterns and statistical links. 
These requirements are only part of the challenges faced by developers of 
large computer systems, and these challenges make the programming of 
these systems harder and harder. It is difficult to believe we will be able 
to avoid in the near future the need for system analysis, software design, 
and programming. Hopefully, we may be able to hand some of the tasks 
faced by the computational system to mechanisms that can deal inde-
pendently with them by machine learning and self-organization.

Not only do the topics we explored in this book have a major research 
interest; they are also used for a wide variety of practical technological 
applications. The models we presented (in particular genetic algorithms 
and neural nets) allow us to deal with complex optimization and plan-
ning problems and with problems that involve very large amounts of data, 
therefore requiring huge computational resources. Using the tools we pre-
sented often helps in reducing the amount of resources needed to more 
manageable levels. Some of the problems do not have other feasible solu-
tions, whereas using self-organization characteristic of biological models 
allows us to cope with them, either by using an evolutionary process simi-
lar to genetic algorithms or by a learning process of the kind implemented 
by neural networks. Examples of such problems are handwriting recogni-
tion, image recognition, and data mining.

In recent years buzzwords such as complex systems, nonlinear sys-
tems, self-organization, and emergence are often used in technological 
discussions to describe the behavior of dynamical distributed systems 
that do not employ hierarchical control. It is also common to associate 
properties such as learning ability, adaptability, and robustness with such 
systems. Often it is unclear what the exact meaning of these properties is 
and how to discuss them formally. We have presented in this book spe-
cific examples of systems with these properties in an effort to make them 
clearer and more tangible. We attempted to show how such properties 
manifest themselves and how they can be analyzed and made useful. We 
avoided theoretical definitions of these terms, and we tried to steer clear 
of vague generalizations. Computer scientists have dealt with the different 
aspects of these topics in a formal mathematical manner, and we provide 
suggestions for relevant further reading at the end of this chapter. In this 
book we preferred to focus on the diversity of biological examples while 
emphasizing their common properties on one hand and the richness of 
each biological example on the other hand.
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Solving technological problems using the ideas we presented in this book 
often requires a combination of different methods and the use of the new 
models in conjunction with standard methods. For example, we can use 
genetic algorithms to discover a neural net with a useful topology allowing it 
to learn a training set efficiently and to achieve a required behavior and good 
generalization. Another example of a combination of several models is the 
simulation of a population of neural nets embedded on a grid that pass infor-
mation to each other, similar to the implementation of a cellular automaton. 
The set of possible combinations is obviously infinite. Just as solving a new 
problem using standard algorithms necessitates using existing algorithms 
and adapting them to the new problem, the same is true when using the new 
methods and models.

When using the ideas presented in this book, do not hesitate to make 
changes to the solutions we presented. Often trial and error is the way to 
find successful new solutions. Sometimes a solution is possible only after 
preprocessing the data so it is better adapted for a particular computational 
model (we saw examples when discussing neural networks). Technological 
applications often require some changes to fine-tune the system. Do not 
neglect the exciting possibility of observing the world, be it the physical, 
chemical, biological, or human aspects of the world, borrowing ideas and 
turning them into computational models. There is great opportunity to 
develop new ideas and new applications of existing ideas!

6.6  RECOMMENDATIONS FOR ADDITIONAL READING
We recommend the following books, which deal with the topics we dis-
cussed in this book. They may be used to deepen the understanding of 
topics we discussed, to find more examples, and to become familiar with 
other computational models inspired by biology.

6.6.1  Biological Introduction

The following are some textbook suggestions for readers who are unfamil-
iar with basic biology or who want a deeper biological introduction than 
provided in Chapter 1. Many other fine textbooks are available.

Solomon, E., L. Berg, and D. Martin. 2007. Biology, 8th ed. Florence, KY: Thomson 
Brooks/Cole.

Campbell, N. and J. Reece. 2008. Biology, 8th ed. Pearson Education.
Starr, C., R. Taggart, and C. Evers. 2008. Biology: The Unity and Diversity of Life, 

12th ed. Florence, KY: Thomson Brooks/Cole.
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6.6.2  Personal Perspectives

Crick, F. 1988. What Mad Pursuit: A Personal View of Scientific Discovery. 
Jackson, TN: Basic Books.

Watson, J.D. 1968. The Double Helix: A Personal Account of the Discovery of the 
Structure of DNA. New York: Atheneum. 

		  The autobiographical accounts of the co-discoverers of the structure of the 
DNA molecule provide enjoyable background to some of the topics discussed 
in Chapter 1. Francis Crick was also involved in the efforts to decipher the 
genetic code, and his book provides a personal account of this research as 
well.

Hofstadter, D.R. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. Jackson, TN: 
Basic Books. 

		  A personal book about the role of self-reference in explaining life and cog-
nition. Paradoxes, music, logic, and computation are some of the themes 
woven together in this unique book. The book won a Pulitzer prize and 
enjoys what might be called a cult following.

6.6.3  Modeling Biological Systems

The following books present various approaches to mathematical model-
ing of biological systems.

Thompson, D.W. 1992. On Growth and Form. Mineola, NY: Dover. 
		  A famous and inspiring exploration of the living world, focusing on the role 

played by physical forces in determining the shapes of animals, this book is 
a treasure trove of magnificent examples of biology viewed mathematically. 
Originally published in 1917.

Mandelbrot, B.B. 1982. The Fractal Geometry of Nature. New York: W.H. Freeman. 
A detailed analysis of a large number of examples from the living and nonliv-
ing world, by the man who invented fractal geometry.

Murray, J.D. 2002. Mathematical Biology: I. An Introduction, 3rd ed. Heidelberg: 
Springer-Verlag. 

		  This book presents the classical approach of mathematical modeling of bio-
logical phenomena using differential equations.

	Nowak, M.A. 2006. Evolutionary Dynamics: Exploring the Equations of Life. Boston: 
Harvard University Press. 

		  A contemporary perspective on the application of mathematical techniques 
to a variety of biological questions.

Prusinkiewicz, P. and A. Lindenmayer. 1990. The Algorithmic Beauty of Plants. New 
York: Springer-Verlag. Available at: http://algorithmicbotany.org/papers/#abop.  
The book shows how the L-systems formalism can be used to model the growth 
patterns of plants.
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6.6.4  Biological Computation

While many books have been written on the various topics we discuss, not 
too many integrative books tackle the emerging field of biological compu-
tation. The following books, which vary a lot in their technical level and 
scope, survey the entire field.

Flake, G.W. 1998. The Computational Beauty of Nature: Computer Explorations of 
Fractals, Chaos, Complex Systems, and Adaptation. Cambridge, MA: MIT 
Press. (See also: http://mitpress.mit.edu/books/FLAOH/cbnhtml/.) 

		  A delightful book emphasizing the aesthetic aspects of natural phenomena 
of self-organizing systems.

Sipper, M. 2002. Machine Nature: The Coming Age of Bio-Inspired Computing. 
Columbus, OH: McGraw-Hill. 

		  A well-written book describing in a nontechnical way many aspects of bio-
logical computation.

De Castro, L.N. 2006. Fundamentals of Natural Computing: Basic Concepts, 
Algorithms, and Applications. Boca Raton, FL: Chapman & Hall/CRC Press. 
A comprehensive book covering many aspects of biological computation as 
well as other natural computational models such as quantum computation. 
The book can be used as reference book for many of these topics.

Floreano, D. and C. Mattiussi. 2008. Bio-Inspired Artificial Intelligence. Cambridge, 
MA: MIT Press. 

		  A recent book covering in depth a wide range of topics related to bioinspired 
computing. The book is written with an engineering orientation and covers 
many biological systems.

6.6.5  Cellular Automata
Schiff, J.L. 2008. Cellular Automata: A Discrete View of the World. Hoboken, NJ: John 

Wiley & Sons. 
		  A readable introduction to cellular automata and their applications.
Wolfram, S. 2002. A New Kind of Science. Champaign, IL: Wolfram Media. 
		  A very ambitious book trying to demonstrate in detail (the book contains 

1197 pages) that the entire universe around us (e.g., biological, physical, and 
computational phenomena) could be and should be considered as cellular 
automata. While the approach of the author is a matter of heated discussion, 
the book is thought-provoking and contains many interesting examples.

Ilachinski, A. 2001. Cellular Automata: A Discrete Universe. Hackensack, NJ: 
World Scientific Publishing. 

		  A detailed (approximately 800-page) and technical exposition of cellular 
automata. Includes detailed discussions of various theoretical techniques for 
studying cellular automata behavior. The proof of the universality of Life is 
presented in detail. Among the topics covered are probabilistic CA, the rela-
tionship between CA and physics models, and a comparison between CA 
and neural networks.
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6.6.6  Evolutionary Computation
Holland, J.H. 1975. Adaptation in Natural and Artificial Systems: An Introductory 

Analysis with Applications to Biology, Control, and Artificial Intelligence. 
Cambridge, MA: MIT Press, 1992. 

		  Written by the father of genetic algorithms, this book is short but deep and 
complex and presents a wide and rich perspective on the subject.

Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization, and Machine 
Learning. Reading, MA: Addison-Wesley Professional. 

		  A detailed and clear introduction, including code samples.
Koza, J.R. 1992. Genetic Programming: On the Programming of Computers by 

Means of Natural Selection. Cambridge, MA: MIT Press. 
		  The classic book about genetic programming (not genetic algorithms). 

Describes how programs can be evolved to solve various problems.
Mitchell, M. 1998. An Introduction to Genetic Algorithms. Cambridge, MA: MIT 

Press. 
		  A short and readable exposition of the research on genetic algorithms.

6.6.7  Neural Networks

There are many dozens of books and Internet sites dealing with all types 
of neural nets. Two “classic” and recommended texts are

Hertz, J.A., A.S. Krogh, and R.G. Palmer. 1991. Introduction to the Theory of 
Neural Computation. Reading, MA: Addison-Wesley. (See also http://www.
phy.duke.edu/~palmer/HKP/.) 

		  Comprehensive and detailed book with a mathematical focus. The book 
emphasizes the connection between neural nets and mathematical models 
derived from physics.

Haykin, S. 2008. Neural Networks and Learning Machines, 3rd ed. Upper Saddle 
River, NJ: Prentice Hall. 

		  Covers many topics, written from an engineering/applicative perspective.

6.6.8  Molecular Computation

Not many books deal with this topic, and most of the information can be 
found in research papers, which are published at a fast rate. The following 
is one of the few introductory texts and presents varied models:

Calude, C. and G. Paun. 2000. Computing with Cells and Atoms: An Introduction to 
Quantum, DNA and Membrane Computing. Boca Raton, FL: CRC Press.

6.6.9  Swarm Intelligence
Dorigo, M. and T. Stützle. 2004. Ant Colony Optimization. Cambridge, MA: 

MIT Press. 
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		  The book discusses ant colony optimization (ACO) algorithms and includes 
chapters dedicated to ACO algorithms for the traveling salesman problem, 
ACO for NP-hard problems, and ACO for data network routing. Each chap-
ter ends with a short section enumerating the main points raised in the chap-
ter. Pseudo-code and exercises are provided.

Bonabeau, E., M. Dorigo, and G. Theraulaz. 1999. Swarm Intelligence: From 
Natural to Artificial System. New York: Oxford University Press. 

		  The book presents techniques for building artificial systems derived from the 
analysis of social insect behavior. Each chapter focuses on a specific biologi-
cal example, which is described, modeled, and from which an algorithm is 
then derived. Pseudo-code for each of the algorithms is provided.

Kennedy, J., R.C. Eberhart with Y. Shi. 2001. Swarm Intelligence. San Francisco, 
CA: Morgan Kaufmann. 

		  A readable and thorough discussion of swarm and collective intelligence, as 
well as related areas. Includes detailed discussions of applications and philo-
sophical and theoretical implications.

6.6.10  Systems Biology
Alon, U. 2006. An Introduction to Systems Biology: Design Principles of Biological 

Circuits. Boca Raton, FL: Chapman & Hall/CRC Press. 
		  A recent book by one of the pioneers of the field. The book concentrates on 

several well-known biological examples and demonstrates how mathemati-
cal treatment can be used to gain insight into the way biological systems 
work.

6.6.11  Bioinformatics

In the last few years many books dealing with bioinformatics from every 
possible aspect were published.

Mount, D.W. 2004. Bioinformatics: Sequence and Genome Analysis, 2d ed. Cold 
Spring Harbor, NJ: Cold Spring Harbor Press. 

		  This frequently used book goes beyond listing bioinformatic tools and data-
bases and tries to explain, often in detail, the computational and biological 
background for the main tools developed in the field. The book is used as a 
textbook in many bioinformatics courses but is also suitable for self-study.

Lesk, A. 2002. Introduction to Bioinformatics. New York: Oxford University Press. 
Another comprehensive book by one of the founders of the field. The book 
gives special emphasis to the structural aspects of biological molecules.

6.7  FURTHER READING
Bonabeau, Eric, Marco Dorigo, and Guy Theraulaz. 1999. Swarm Intelligence: 

From Natural to Artificial System. Oxford: Oxford University Press.
Bonabeau, Eric, Marco Dorigo, and Guy Theraulaz. 2000. Inspiration for optimi-

zation from social insect behaviour. Nature 406, no. 6791, 39–42.
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Clune, Jeff, Charles Ofria, and Robert Pennock. 2007. Investigating the emergence 
of phenotypic plasticity in evolving digital organisms. In F. Almeida e Costa, 
L. Rocha, E. Costa, I. Harvey, and A. Coutinho (Eds.), Advances in Artificial 
Life, 74–83. New York: Springer.

Fisher, Jasmin and Thomas A. Henzinger. 2007. Executable cell biology. Nature 
Biotechnology 25, no. 11, 1239–1249.

Giaever, Guri, Angela M. Chu, Li Ni, Carla Connelly, Linda Riles, Steeve 
Veronneau, et al. 2002. Functional profiling of the Saccharomyces cerevisiae 
genome. Nature 418, no. 6896, 387–391.

Hofmeyr, Steven A. and Stephanie A. Forrest. 2000. Architecture for an Artificial 
Immune System. Evolutionary Computation 8, no. 4, 443–473.

Kafri, Ran, Arren Bar-Even, and Yitzhak Pilpel. 2005. Transcription conrol repro-
gramming in genetic backup circuits. Nat. Genet. 37, no. 3 (March), 295–299. 

Kennedy, James, Russell C. Eberhart, with Yuhui Shi. 2001. Swarm Intelligence. San 
Francisco: Morgan Kaufmann.

Kitano, Hiroaki. 2002. Computational systems biology. Nature 420, no. 6912, 
206–210.

Lenski, Richard E., Charles Ofria, Robert T. Pennock, and Christoph Adami. 2003. 
The evolutionary origin of complex features. Nature 423, no. 6936, 139–144.

Ray, Thomas S. 1992. Evolution, ecology and optimization of digital organisms. Santa 
Fe Institute working paper 92-08-042. Available at: http://life.ou.edu/pubs/tierra/.

Setty, Yaki, Irun R. Cohen, Yuval Dor, and David Harel. 2008. Four-dimensional 
realistic modeling of pancreatic organogenesis. Proceedings of the National 
Academy of Sciences 105, no. 51, 20374–20379.

Simon, Herbert A. 1962. The Architecture of Complexity. In Proceedings of the 
American Philosophical Society 106, 467–482.

Simon, Herbert A. 2002. Near decomposability and the speed of evolution. 
Industrial and Corporate Change 11, 587–599.

Sims, Karl. 1994. Evolving virtual creatures. In Proceedings of the 21st Annual 
Conference on Computer Graphics and Interactive Techniques, 15–22. ACM.

Tong, A. H., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, 
G. F., Brost, R. L., Chang, M. et al. 2004. Global mapping of the yeast genetic 
interaction network. Science 303, no. 5659, 808–813.

6.8  EXERCISES

6.8.1  Swarm Intelligence

	 1.	 Is the pheromones mechanism based on positive or negative feedback?

	 2.	To determine how ants discover paths to a food source, a device 
similar to the one in Figure 6.6 was created. The ants walk along the 
circular corridor. The bottom vertical line defines the ants’ starting 
point and the top vertical line the location of the food source. The 
ants start out as depicted on the left. Initially, they distribute them-
selves uniformly between the short and long paths as can be seen in 
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the middle. After a while they concentrate on the short path as seen 
on the right. Try to explain the development of this organization.

Food Food Food

FIGURE 6.6

	 3.	How will increasing the number of ants in the ants colony optimiza-
tion affect the results of the algorithm?

	 4.	Raising the rate of evaporation of pheromones (i.e., the decrease in 
the amount of pheromones at every iteration) can help avoid a too 
rapid convergence into a suboptimal region of the search space and 
can also help avoid premature convergence. Why?

	 5.	Developers who built a PSO-based system discovered that if ini-
tially ω is large (close to 1) and then is decreased after a few itera-
tions to ω ≈ 0.5, the system performs better. Try to explain this 
observation.

	 6.	Why is rand() used in the PSO rate update formula?

	 7.	 In a well-known variation of PSO, the particles are not affected by all 
the other particles in the population but only by a subset of “neigh-
bors” (the set of neighbors for each particle is defined ahead of time).

	 a.	 What changes to the PSO algorithm we presented have to be 
made to implement this mechanism?

	 b.	 Discuss possible advantages of this mechanism compared with 
the standard PSO algorithm.

6.8.2  Artificial Immune Systems

	 8.	 Immunological detectors that react to the organism are dangerous, 
but on the other hand detectors that do not react at all are useless. 
How would you balance between these two requirements when using 
a negative selection algorithm?
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	 9.	How will increasing the activation threshold τ and the training 
period impact the frequency of false alarms?

	 10.	Why is it important for the match counter to decay over time?

	 11.	Ideally, the immune system should not react at all in any situation 
that does not pose a real risk. If that is impossible, one would want 
the severity of the reaction to be proportional to the probability that 
the situation poses a real risk. Suggest ways to achieve this in an arti-
ficial immune system.

	 12.	Discuss the possible disadvantages of the co-stimulation method used 
by LISYS.

	 13.	LISYS also uses another mechanism (not described in the text) that 
allows each computer on the network to have a different sensitivity 
level ωi (i = 1,2,..,n) to immunological events. The local activation 
threshold for the detectors in computer i is defined to be τ – ωi (the 
higher the local sensitivity, the lower the required activation thresh-
old). Whenever a detector’s counter changes from 0 to 1, the relevant 
ωi increases by 1. Just like the other counters, ωi decays with time. 
What role does the local sensitivity mechanism play? How does it 
contribute to the behavior of the system?

	 14.	The self set may change over time (e.g., the normal communication 
patterns in the network may change over time). How can an immune 
system of the kind described deal with this? A good solution will 
minimize both the number of false positives and false negatives.

	 15.	Another mechanism used by the immune system and not discussed 
so far is rapid “evolution” of detectors, based on their similarity to 
a suspicious element. The only detectors that partake in this process 
identify the suspicious element with high enough confidence. They 
are quickly cloned, allowing for a high mutation rate. The mutation 
rate for each detector depends on how well it detected the suspect 
element—the more closely it matches the intruder, the lower its 
mutation rate. How can we integrate this mechanism in the detec-
tion system, and what are its possible contributions to the system?

	 16.	The immune system naturally has to be robust. Identify the proper-
ties of artificial immune systems that contribute to their robustness.



The Never-Ending Story    ◾    305

	 17.	We have mentioned that the biological immune system may have reg-
ulatory functions. Try to suggest possible regulatory functions for the 
immune system, and assess their likelihood (keep in mind the obser-
vation that the distinction between self and nonself may be the result 
rather than the reason for the existence of such functions). Suggest 
observations or experiments to test your hypotheses.

6.8.3  Artificial Life

	 18.	Try to find a counterexample for each of the properties used to define 
life that were mentioned in the text; that is, describe a system that 
has that property but that is not considered to be alive.

	 19.	Check to see whether the dictionary definition of the word life can 
serve as the definition of life.

	 20.	Which of the properties we enumerated to define life presents the 
most difficulties to the proponents of strong ALife?

	 21.	Both Avida and genetic programming (see Chapter 3) deal with evolv-
ing computer programs. What are the fundamental differences between 
the two approaches?

	 22.	Download Avida’s source code from the Internet, and study the 
Divide_DoMutations subroutine (which is part of the implementa-
tion of Hardware_CPU). This subroutine is executed after the organ-
ism executes the h-divide function. For which types of mutations is 
this subroutine responsible?

	 23.	In Avida the basic cloning mechanism (i.e., command copy) is imple-
mented by the virtual computer, as opposed to biological systems in 
which the replication mechanisms are part of the organism. Can 
organisms that are able to correct copying errors exist in Avida? The 
basic copying mechanism in Avida cannot improve evolutionarily 
since it is not part of the organism. Suggest a way to overcome this 
limitation to make Avida more faithful to biological systems. Why 
do you think the Avida developers preferred not to implement such 
a mechanism?

	 24.	 Which of the two approaches to fitness—Avida’s or Sims’s virtual crea-
tures simulation—is closer to the meaning of fitness in natural selection?
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6.8.4  Systems Biology

	 25.	Find more examples of robustness, and determine whether the 
robustness stems from positive feedback, negative feedback, or 
some other mechanism.

	 26.	Explain the impact that understanding of control mechanisms may 
have on applications such as drug design and development.

	 27.	Suggest situations in which the mechanisms giving the organisms their 
robustness helps disease processes in becoming robust and hard to treat.

	 28.	A heating system controlled by a thermostat operates by compar-
ing the room temperature to the target temperature and adjusting 
the heating level accordingly. The obvious goal is for temperature to 
reach a steady state. Describe in detail the system’s algorithm. Does 
the system implement positive or negative feedback?

6.8.5  Programming Exercises

	 29.	Implement a solution to the traveling salesman problem using ACO. 
Test on a variety of graphs. For which graphs does the system fail to 
find a good solution? Try to add mechanisms that will improve the 
behavior of the system in these cases. Try to minimize the number 
of additional mechanisms, and avoid using global information.

	 30.	An interesting usage of clustering using ants is for plotting graphs. 
Let G = (V,E) be an undirected graph. The goal is to embed the nodes 
in the Euclidean plane such that the connections are as clearly drawn 
as possible. In particular:

	 a.	 Clustered nodes will be placed close together on the plane.

	 b.	 The distances inside clusters will be minimal.

	 c.	 Different clusters will be far enough away from each other.

	 Use the clustering algorithm we presented, in which the distance 
between two nodes is defined to be
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	 where ρ(vi) is the set of neighboring nodes of vi (including vi itself)
D is the symmetrical difference between the sets, and |...| denotes 
the number of elements in the set. Test this solution on a few graphs 
(observe how the nodes move as the algorithm progresses). Has the 
algorithm found presentations that seem visually successful for the 
graphs you tested?

	 31.	How can one use PSO to discover weights for a multilayered neu-
ral net with full connectivity, assuming a training set composed of 
(input, output) pairs is known? Try to use this method for one of the 
neural nets described in Chapter 5 (without learning), and analyze 
the quality of the PSO algorithm’s results for varying parameters.

	 32.	Design an artificial immune system that will alert about unusual 
data in a software system’s output files. Assume that the software 
system runs a complicated computation in batch mode every night 
(e.g., a payroll). The immune system will be used to inspect the out-
put files and will alert if the output differs enough from the norm 
to indicate a possible error (or deliberate attack) in the system. 
Note: the goal is to be able to identify suspicious result, not merely 
corrupt output files.

	 33.	 Install Avida, and program a new self-replicating organism. (Use Avida’s 
documentation for details of the machine language.)

6.9  ANSWERS TO SELECTED EXERCISES
	 2.	 Initially there are no pheromones, and the ants choose a random 

path. As the left path is shorter, the ants traversing it will reach the 
food quicker, and when they look for a path back to the nest they will 
go back on the same path, following the pheromone trail they laid 
down. (As the other ants have not reached the food source yet, there 
is no pheromone trail on it close to the food source.) This choice 
makes the left path even more attractive, and more ants will choose 
it in the future.

	 3.	Adding ants allows for better scanning of the graph and therefore may 
improve the algorithm’s results. On the other hand, too many ants 
will cause the entire graph to be covered with pheromones, which will 
obfuscate the paths and will impact the algorithm’s results negatively.
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	 9.	 Increasing τ and T (up to reasonable values) lowers the rate of false 
positives.

	 17.	Inflammation is a complex biological process involving the immune 
system. It was suggested that immune systems have a regulatory role 
in the inflammatory process.

	 21.	The most significant difference is that in Avida the organism is 
responsible for self-replication and that no external selection mecha-
nism controls the process. A related difference is that in genetic pro-
gramming one has to define a fitness function a priori to evaluate 
the different solutions, while in Avida the evaluation is based only 
on the individuals’ self-replication ability, though it is important to 
note that in Avida one can reward individuals for performing exter-
nal tasks. Another difference is in the representation of individuals: 
in genetic programming the individuals are usually represented as 
expression trees to allow an easy crossover between the genotypes of 
different individuals (sexual reproduction). In Avida the individuals 
are represented as computer programs written in the Avida machine 
language.

	 26.	Drugs may work by direct interference with control mechanisms; 
thus, understanding these mechanisms might help in designing 
treatment strategies. For example, if part of a process is controlled by 
positive feedback, one may affect the whole process using minimal 
intervention, such as by using a small amount of medication whose 
affect will be amplified by the feedback mechanism. Conversely, a 
process regulated by negative feedback may require large, potentially 
harmful doses of medication to overcome the negative feedback. In 
this case, finding drugs that modify the behavior of the negative 
feedback loop and can be administrated together with the original 
drug might be a solution.

	 27.	The normal robustness processes of the healthy individual are par-
tially responsible to the resistance of cancer cells to interferences in 
their reproduction and survival processes. An organism employs 
many negative feedback loops to adapt to changes in its environment. 
Cancer cells take advantage of these and other cellular mechanisms to 
resist the attacks the body may launch against them. In addition, anti-
cancer drugs may become less effective because of the ability of cancer 
cells to adjust and become less sensitive to them. A second example 
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involves the lowered efficacy over time of psychiatric drugs, many of 
which achieve their effects by mimicking the structure of naturally 
occurring neurotransmitters (e.g., by attaching to the receptors of 
neurotransmitters and effectively blocking them). The body reacts in a 
variety of ways, including changes in the number and density of neu-
rotransmitters receptors expressed, which cause the brain to readjust 
to the changing levels of neurotransmitters and to return over time to 
its activity state prior to the administration of the drug.

	 30.	A relevant discussion and references can be found in Bonabeau et al. 
(1999). The discussion in this book explains why drawing graphs is a 
hard problem and why using clustering is not successful for all graphs.
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