Methods in Modecular Biology 674

Computational
B iology of Transcription
Fact Bmdmg




™™
METHODsSs IN MOLEcuLAR BioLoagy

Series Editor
John M. Walker
School of Life Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK

For other titles published in this series, go to
www.springer.com/series/7651






Computational Biology
of Transcription Factor Binding

Fdited by

Istvan Ladunga

Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA

M,
2.« Humana Press



Editor

Istvan Ladunga

Department of Statistics

University of Nebraska-Lincoln
1901 Vine St., E145 Beadle Center
Lincoln, NE 68588-0665, USA

sladunga@unl.edu
ISSN 1064-3745 e-ISSN 1940-6029
ISBN 978-1-60761-853-9 ¢-ISBN 978-1-60761-854-6

DOI10.1007,/978-1-60761-854-6
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010934132

© Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Humana Press, ¢/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Cover illustration: Crystal structure of Fis bound to 27 bp optimal binding sequence F2 from Stella, S., Cascio, D.,
Johnson, R.C. (2010) The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes
Dev. 24: 814-826.

Printed on acid-free paper

Humana Press is part of Springer Science+Business Media (www.springer.com)



Preface

Transcriptional regulation controls the basic processes of life. Its complex, dynamic, and
hierarchical networks control the momentary availability of messenger RNAs for protein
synthesis. Transcriptional regulation is key to cell division, development, tissue differenti-
ation, and cancer as discussed in Chapters 1 and 2.

We have witnessed rapid, major developments at the intersection of computational
biology, experimental technology, and statistics. A decade ago, researches were struggling
with notoriously challenging predictions of isolated binding sites from low-throughput
experiments. Now we can accurately predict cis-regulatory modules, conserved clus-
ters of binding sites (Chapters 13 and 15), partly based on high-throughput chro-
matin immunoprecipitation experiments in which tens of millions of DNA segments are
sequenced by massively parallel, next-generation sequencers (ChIP-seq, Chapters 9, 10,
and 11). These spectacular developments have allowed for the genome-wide mappings of
tens of thousands of transcription factor binding sites in yeast, bacteria, mammals, insects,
worms, and plants.

Please also note the no less spectacular failures in many laboratories around the world.
Having access to chromatin immunoprecipitation, next-generation sequencing, and soft-
ware is no guarantee for success. The productive and creative use of computational and
experimental tools requires a high-level understanding of the underlying biology, the
technological characteristics, and the potential and limitation of statistical and computa-
tional solutions. This is the raison d’étre of this volume, guiding scientists of all disciplines
through the jungle of regulatory regions, ChIP-seq, about 200 motif discovery tools and
others. As in previous volumes of the series Methods in Molecular Biology™, we help read-
ers to understand the basic principles and give detailed guidance for the computational
analyses and biological interpretations of transcription factor binding. We disclose critical
practical information and caveats that may be missing from research publications. This
volume serves not only computational biologists but experimentalists as well, who may
want to understand better how to design and execute experiments and to communicate
effectively with computational biologists, computer scientists, and statisticians. Chapter 1
helps readers to find their way in the maze of resources by a high-level overview of the
computational, biological, and some experimental solutions of transcription factor bind-
ing. Chapter 1 highlights other units in this volume and discusses some of the issues not
covered.

Why are there so many failed experiments and analyses? Consider, for an example,
ChIP-seq, where background noise accounts for more than half of the sequencing reads.
Potentially, this may lead to a vast array of false-positive observations. Careful investi-
gators, however, can apply kernel-based density estimates and other background mod-
eling and correction methods to find significantly enriched signals in such noisy obser-
vations (Chapters 9 and 10). Density estimates are followed by improved peak calling
with controlled false discovery rate (Chapter 10). Another problem is that ChIP-seq
peaks are tens to hundreds of times wider than the footprint of the transcription fac-
tor on the DNA. The highest peaks often come from amplification and sequencing bias,
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not from a bona fide biological signal (Chapter 1). These serious issues mandate the
identification of shared, short, and variable DNA motifs, representations of variable bind-
ing sites, from moderate-to-low resolution ChIP-seq data using computational motif dis-
covery algorithms. On the other hand, false negatives are also abundant. Consider the
temporary nature of regulation, which responds to temporary environmental and internal
stimuli. Therefore, a site is typically bound only at a fraction of time, easily missed by snap-
shot techniques like ChIP (Chapter 24). In order to reduce the number of false positives
and negatives, motifs are trained by a wide spectrum of statistical learning methods. In
spite of the diverse implementation of these tools, most of them stem from expectation
maximization and Gibbs sampling (Chapters 6, 7, and 11) or support vector machines
(Chapter 13). The trained tools can find binding sites missed by experiments in the pre-
dicted promoter regions (Chapter 5), all regulatory regions (Chapter 4), or in the whole
genome.

In itself, de novo computational motif prediction is still not accurate enough
(Chapter 8). Confidence levels can be increased greatly by integrating binding site loca-
tions with in vitro protein—DNA affinities (Chapter 12), evolutionary conserved regions
(Chapters 11, 14, and 18), and transposable DNA elements that propagate binding
sites through the genome (Chapter 14). Time-delayed co-expression as inferred from
large compendia of gene expression experiments also indicates binding sites of shared
transcription factors. This enormous wealth of information can be retrieved in computa-
tionally efficient ways from diverse databases including OregAnno (Chapter 20), Plant-
TFDB (Chapter 21), cis-Lexicon (Chapter 22), and genome browsers (Chapters 1, 10,
and 22).

The integrated observations and predictions help us to reconstruct complex, hierar-
chical, and dynamic transcriptional regulatory networks (Chapters 23 and 24). This task
demands not only new experiments but also the re-annotation of existing experimental
data and computational predictions and ongoing, major paradigm changes for all of us.

Istvan Ladunga
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Chapter 1

An Overview of the Computational Analyses and Discovery
of Transcription Factor Binding Sites

Istvan Ladunga

Abstract

Here we provide a pragmatic, high-level overview of the computational approaches and tools for the
discovery of transcription factor binding sites. Unraveling transcription regulatory networks and their
malfunctions such as cancer became feasible due to recent stellar progress in experimental techniques
and computational analyses. While predictions of isolated sites still pose notorious challenges, cis-
regulatory modules (clusters) of binding sites can now be identified with high accuracy. Further sup-
port comes from conserved DNA segments, co-regulation, transposable elements, nucleosomes, and
three-dimensional chromosomal structures. We introduce computational tools for the analysis and inter-
pretation of chromatin immunoprecipitation, next-generation sequencing, SELEX, and protein-binding
microarray results. Because immunoprecipitation produces overly large DNA segments and well over
half of the sequencing reads from constitute background noise, methods are presented for background
correction, sequence read mapping, peak calling, false discovery rate estimation, and co-localization anal-
yses. To discover short binding site motifs from extensive immunoprecipitation segments, we recommend
algorithms and software based on expectation maximization and Gibbs sampling. Data integration using
several databases further improves performance. Binding sites can be visualized in genomic and chromatin
context using genome browsers. Binding site information, integrated with co-expression in large com-
pendia of gene expression experiments, allows us to reveal complex transcriptional regulatory networks.

Key words: Transcription factor, transcription factor binding site, computational prediction, back-
ground correction, peak calling, chromatin immunoprecipitation, next-generation sequencing,
ChIP-seq, protein-binding microarrays, transcriptional regulation, data integration.

1. Introduction

Transcriptional regulation affects the fundamental biological pro-
cesses. By regulating cellular mRNA levels, it influences trans-
lation and the level of proteins. The sophistication of higher

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
DOI 10.1007/978-1-60761-854-6_1, © Springer Science+Business Media, LLC 2010
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cukaryotes resides primarily in the architecture and function-
ing of the regulatory networks, not in the number of pro-
teins. In Caenorbabditis elegans, a relatively simple eukaryote, an
adult hermaphrodite has 959 somatic cells and about 20,000
protein coding genes. Trillions of cells in a human individual
carry only about twice the number of C. elegans genes. We are
only beginning to understand the complex transcription regula-
tory networks and other mechanisms. It is vital to improve this
understanding for curing regulatory malfunctions like cancer and
autoimmune diseases. Although most of the regulators includ-
ing transcription factors and microRNAs are known in human,
the vast majority of their binding sites remain unexplored. The
enormous variability of regulatory sites poses the most difficult
challenge. For example, in the 12 half sites of the N\ operators, as
few as 2 of the 8 positions are conserved and most of the others
are highly variable (1). The computational representation of such
variable sequence sets — motifs — affects the performance of motif
finder tools. Variability may also indicate differential DNA-TF
affinity. Sites with higher affinity are expected to produce more
transcripts than low-affinity regulatory sites (2). Fortunately, the
prediction of promoter regions has matured (see Chapter 5).

Long and well-characterized motifs like those of p53 (3, 4)
or PPARG (5, 6) are relatively easy to predict if some false neg-
atives can be accepted. For shorter motifs, the naive application
of the over 200 published tools often provides somewhat incon-
sistent results [see Chapter 8 and ref. (7)]. Such moderate per-
formance mandates genome-wide experimental identification of
binding sites samples. These samples have to represent motif vari-
ation to allow the training of prediction tools, which may find
the rest of the sites including those unbound under the specific
conditions of the experiment.

Obtaining representative samples is becoming increasingly
affordable thanks to stellar progress at the intersection of biol-
ogy, computational analyses/predictions, and experimental tech-
nology. This volume focuses on mapping the binding sites of
transcription factors (TFs) to regulatory regions on the genome.
TFs are regulatory proteins that bind to promoter, enhancer, and
other DNA regions in a sequence-specific manner (Chapters 2,
3, and 4). TF binding affects the recruitment and dynamism of
RNA polymerases and hence the transcription of genes. Most
TFs provide control in one direction only: they either upregulate
or downregulate the expression of a target gene, but not both.
Certain other TFs, however, activate at low levels, but at high
concentration, they repress the transcription of the same gene.
C-proteins, for example, at low cellular concentration attach only
to high-affinity sites and activate the target gene (Chapter 17). At
high levels, C-proteins bind to the low-affinity sites as well, now
inhibiting transcription. Such complex mechanisms are abundant
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in higher eukaryotes where most genes are regulated by multiple
TFs. MicroRNAs (8), DNA methylation (9), and histone modifi-
cations (10, 11) also play major roles in transcriptional regulation.

A key message of this volume is that purist approaches,
either “pure experiments” loosely associated with service-like
computations or “pure algorithms” with marginal understand-
ing of the biology and the technology, are equally elusive. Con-
sider the most successful high-throughput experimental tech-
nique for the discovery of transcription factor binding sites
(TFBS): chromatin immunoprecipitation (ChIP) combined with
next-generation sequencing (ChIP-seq). Here tens of millions of
sequencing reads are mapped onto the genome. Researchers have
to correct for background noise and normalize between repli-
cates. The background-corrected and normalized density distri-
butions of reads allow calling peaks, significantly enriched regions
that span over TF binding sites (TFBS, Chapters 9, 10, and 11).
These 35-200 base pair wide peaks (see Chapters 9, 10, and 11)
far exceed the 4-25 base pair footprints of TFs on the DNA (12,
13). Therefore locating the actual binding sites from (tens of)
thousands of overly wide peaks requires computational discovery
of shared binding site motifs.

2. Methods

2.1. Experimental
Information

Computational binding site predictions or analyses invariably
stem from some experimental information. Such observa-
tions include genomic, mRNA, and protein sequences, three-
dimensional structures of DNA-bound TFs (Chapter 4),
chromatin immunoprecipitation, Systematic Evolution of Lig-
ands by EXponential enrichment [SELEX, Chapter 12 and
refs. (14-16)], protein-binding microarrays (17), co-expression
of genes as calculated from compendia of gene expression exper-
iments (Chapters 23 and 24), and DNAse I hypersensitive
regions that indicate nucleosome-depleted, regulatory regions
(18, 19).

Most information comes from high-throughput experiments
at the cost of low resolution, significant background noise, and
considerable systematic bias. Such undesirable features can be
reduced by computational tools that take into account criti-
cal technological characteristics and biological issues. Abundant
false positives and negatives can be reduced by motif analyses
(Chapter 6, 7, 8, 11, and 13), and integrating with Evolution
of Ligands by EXponential enrichment (SELEX, Chapter 12),
protein-binding microarrays, and co-expression results (Chapters
23 and 24). We also seek for a reasonable balance between false
positives (overly permissive analyses) and false negatives (overly
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2.1.1. Perturbation
Experiments:
Mutagenesis and RNA
Interference

2.1.2. Chromatin
Immunoprecipitation
(ChiP)

2.1.2.1. ChIP-chip

2.1.2.2. ChIP and
Next-Generation
Sequencing: ChIP-seq

conservative settings). At the final steps, computational analyses
converge to motif discovery and network reconstruction.

Experimental mutagenesis of binding sites at regulatory regions
and/or knocking out the TF genes provide for the most reliable
TEBS localization (20) at the price of extremely low throughput.
Knocking down TF genes by RNA interference (21) is a more
economical solution but incomplete silencing could impair the
results. Knockdown /knockout effects are evaluated by measuring
the expression of target genes using PCR experiments.

Chromatin Immunoprecipitation (ChIP) is the most power-
ful experimental technique for the in vivo mapping of DNA-
associated proteins [Chapters 9, 10, 11 and refs. (11, 22, 23)].
Essentially, proteins are cross-linked to their native genomic loci
in vivo. Then cells are lysed and DNA is fragmented by sonication
or shearing. Antibody-bound chromatin is immunoprecipitated
and the extra DNA may be digested by micrococcal nuclease.
Having reversed the cross-links, proteins are digested. DNA
segments are either hybridized to promoter or tiling microar-
rays [ChIP-chip, (24)] or sequenced by ultra-high-throughput
sequencing [ ChIP-seq, (11)].

Immunoprecipitated, protein-free and size-selected DNA can be
hybridized to genome-wide tiling or promoter microarray chips
[ ChIP-chip, (24)]. These microarrays differ from gene expression
chips in that they span the whole genome or its selected parts
like promoter regions or the ENCyclopedia of DNA Element
(ENCODE) regions (25). ChIP-chip allowed the genome-wide
mapping of TFBS in simple eukaryotes such as yeast (26, 27).
In higher eukaryotes, the accuracy of ChIP-chip is compromised
by intensive cross-hybridization between sample DNA and par-
tially matching probes on the microarray chips. When millions
of probes are crowded on a few chips, resolution (the spacing
of probes on the genome) is sacrificed (28). Mapping chromatin
around repetitive DNA elements that accounts for almost half of
the mammalian genomes (29) would require longer probes and
highly expensive microarrays. For less researched genomes, chip
design and manufacturing may be economically unattractive.

The above issues motivated researchers to sequence chromatin-
immunoprecipitated DNA using next-generation sequencing
(ChIP-seq, Chapters 9, 10, and 11). ChIP-seq scales up well
even to the most complex genomes. Since there is no need
for species-specific microarrays, any genome can be sequenced.
Cross-hybridization, the most burning issue with microarrays,
is unknown in sequencing. ChIP-seq has a much finer resolu-
tion (25-200 bp) than ChIP-chip in large genomes (~200 bp).



2.1.2.2.1. Base Calling
in ChIP-seq

2.1.2.2.2. Mapping
Sequencing Reads
to the Genome

2.1.2.2.3. Amplification
and Sequencing Bias
and Background
Correction
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The high resolution so much needed for distinguishing signal
from background can be achieved at reasonable costs by using
more fluid cells, each of them producing tens of millions of
sequencing reads. The Illumina (formerly Solexa) Genome Ana-
lyzer platform (30) generates the highest coverage of 28-100
bases per sequencing read, while the Roche /454 instrument pro-
duces 250—400 base long reads at the price of much lower cov-
erage (31). The Life Technologies (formerly Applied Biosystems,
http:/ /solid.appliedbiosystems.com) SOLiD platform is a com-
promise between the other two machines. Due to the short, 4-30
base pair footprint of TFs on the DNA (12, 13), long reads have
no major advantages and most researchers opt for high coverage.

Vendors of sequencing platforms supply software packages that
perform deterministic base calling. More real, probabilistic base
calling can be achieved by Rolexa (32) or Alta-Cyclic (33), which
are expected to increase the number of mappable sequencing
reads as compared to the deterministic tools.

Mapping tens of millions of sequencing reads to a reference
genome would take prohibitive time using traditional meth-
ods such as BLAST (34) or BLAT (35). Instead, the reference
genome is represented as a suffix tree, and using the Burrows—
Wheeler transformation, Bowtie (36) and related methods can
map millions of reads in a few hours on a LINUX/UNIX com-
puter (Chapters 9 and 10). A considerable proportion of the
sequencing reads cannot be mapped unambiguously due to repet-
itive DNA sequences that make up ~46% of the human genome.
Sequencing errors, to some extent, can be corrected by using read
quality information. For a recent review of read mapping, confer
Trapnell et al. (37).

ChIP produces very low amounts of DNA. Emerging technolo-
gies like the Helicos platform can sequence single molecules (38),
but samples need to be amplified for the Illumina, ABI/Life
Technologies’ SOLiD and Roche instruments. Significant ampli-
fication bias has been observed (39). The considerable extent
of amplification and sequencing bias is best studied in simple
systems free from the complications of ChIP. Whole-genome
sequencing is one such system where nonrepetitive DNA seg-
ments are expected to have equimolar concentrations in the
sample. Significant departures from the uniform distribution in
whole-genome sequencing reads over nonrepetitive DNA indi-
cate bias in amplification, sequencing, and the accessibility of
DNA. GC-rich regions tend to produce more sequencing tags
than AT-rich segments (39—41). In whole-genome sequencing,
nucleosome-depleted hence highly accessible gene boundaries
produce significantly more sequencing tags than other genomic
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regions (41). Transcriptional activity increased the number of
sequencing reads obtained: at the transcription start sites of highly
expressed genes about four times more tags were obtained than
at those of less expressed genes (41). This may be partly due
to nucleosome depletion around the promoters of transcription
(42), which makes the DNA more accessible for sequencing than
nucleosome-rich regions. It is important to note that the highest
ChIP-seq (or ChIP-chip) peaks frequently come not from bona
fide TEBS but from the most accessible regions that also have
positive amplification and sequencing bias (43).

According to Pepke et al. (43), ~60-90% of the sequencing reads
come from background: most of the ChIP-DNA segments come
from interactions other than the TF of interest. ChIP is lim-
ited by the specificity of the antibody used, a particularly seri-
ous issue with superclass/multigene family TFs. Four superclasses
were proposed for TFs: leucine zippers (44), basic helix-loop-
helix TFs (45), zinc fingers (46), and beta-scaffold factors with
minor groove contacts (12). For a classification of regulatory pro-
teins, see (12). Due to the moderate correlation of epitope and the
actual DNA-binding residues, designing highly specific antibod-
ies to multifamily TFs remains a major challenge (47). Also, anti-
bodies may bind to other DNA-associated proteins including his-
tones, chromatin remodeling enzymes, and chromatin scaffolding
proteins. Antibody binding to untargeted proteins raises the issue
of estimating background noise and false discovery rate (FDR)
(Chapters 9 and 10 and ref. (48)). Background noise estima-
tions can be assisted by three major experimental approaches. In
the first approach, chromatin is ligated with IgG or other non-
specific antibody (11). In this type of control experiments, we
measure the nonspecific binding of a general antibody to any part
of the chromatin. Unfortunately, this approach cannot character-
ize the reaction of the selected TF-specific antibody with other
members of the TF family. The second technique reverses the
cross-links in vitro, which allows chromatin delocalization over
the genome. The third type of control omits IP altogether and
therefore assesses only the availability of genomic segments, their
amplification, and sequencing biases. Note that each of these con-
trols underestimates antibody binding to similar TFs. The similar-
ity of epitope structures within large families may cause a drop in
selectivity resulting in many false positives.

When no control experiment is available, statisticians develop
models of background noise using theoretical distributions.
Model-based analysis of ChIP-Seq (MACS) (49) estimates back-
ground using the Poisson distribution. The negative binomial dis-
tribution generates even better estimates (Chapter 9). Recently,
most peak calling programs involve some kind of background
correction.
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ChIP-seq reads are enriched near the binding sites of the targeted
TF as compared to genomic loci unbound by the TF of inter-
est (Chapter 10, Fig. 10.4). When each strand of the ChIP-
DNA fragments is sequenced from the 5" end, the probability of
polymerase detachment increases by progressing toward the 3'.
Therefore the 5" termini of both the Watson and the Crick strands
are covered by more reads than their centers or 3’ ends. Two
enrichment areas emerge, one upstream and another one down-
stream of the actual binding site. Typically, neither the highest
point nor the center of the enrichment indicates exactly the bind-
ing site. Enrichment areas are somewhat irregular in shape and
extend considerably wider than the actual binding site. Recogniz-
ing, merging, and calling the location of twin peaks is still a chal-
lenging problem as indicated by the dozens of diverse peak calling
methods published. In Chapter 9, Hongkai Ji discusses model-
ing the background noise, peak calling, and as implemented in
his CisGenome (22) tool. Chapter 10 demonstrates kernel den-
sity estimates for peak calling and false discovery rate calculations
as incorporated into the Quantitative Enrichment of Sequencing
Tags software [QuEST, (50)]. For a detailed comparison of Find-
Peaks (51), SISSRs (52), USEq (53), PeakSeq (54), and dozens
of other peak calling methods, we recommend Pepke et al.’s (43)
comprehensive review.

Noise often exceeds signal coming from bona fide binding
sites. Therefore calling peaks above any reasonable threshold
unavoidably will include false positive results. Therefore credi-
bility requires managing false positive calls and reporting their
frequency. In order to balance between false positives and false
negatives, users select an FDR threshold, input to several peak
calling tools including CisGenome [Chapter 9, (22)], QuEST
[Chapter 10, (50)], SiSSRs (52), FindPeaks (51), USEq (53),
PeakSeq (54), and many others. These tools calculate the low-
est value of the ranking statistics (e.g., density or signal-to-noise
ratio) still not exceeding the selected FDR threshold. Not know-
ing all positive binding sites, FDR has to be estimated by either
from the control experiments or from negative binomial or Pois-
son models of background noise distribution (Chapter 9, sec-
tion “Background Correction”). Certain tools like QuEST (50)
explicitly demand a control library but CisGenome [Chapter 9
and ref. (22)], FindPeaks (51), and MACS (49) work with or
without control experiments. FindPeaks (51) performs Monte
Carlo simulations. Most recent tools improve peak calling by
estimating the shift between the peaks on opposing strands (see
Chapter 10 and ref. (50)).

Having performed these analyses, researchers may find that
immunoprecipitation is not selective enough or the first run of
sequencing does not provide sufficient contrast between signal
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2.1.3. Measuring In Vitro
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2.1.3.1. Systematic
Evolution of Ligands by
EXponential Enrichment
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and background. Then a new antibody may be added and/or fur-
ther sequencing is performed. It is prudent to have a contingency
of resources for such experiments and analyses even at the cost of
studying fewer regulatory proteins.

Since the called peaks are considerably wider than the actual
TEBS, binding site motifs are further analyzed by pattern recog-
nition methods (Section 2.2).

Transcriptional regulation is a temporal phenomenon, a condi-
tional, short-term response to changing environmental and cel-
lular conditions. Ideally, activator TFs bind only when the target
gene needs to be upregulated and inhibitor TFs bind when the
gene product is not needed at a given point of time. ChIP and
subsequent motif discovery may also miss previously uncharacter-
ized binding sites/motifs due to partial occupancy or low resolu-
tion. In 2009, Zhu et al. (55) estimated that almost half of the
in vivo TFBS in yeast remained unknown. This is plausible since
performing ChIP experiments for all possible conditions to find
all biological sites in bound state remains an elusive proposition.
Therefore, it is necessary to complement in vivo assays by in vitro
assessments of the TF’s affinity to double-stranded DNA %-mers.
In vitro proteins, it in native conformation, bind to DNA probes
by and large regardless of the conditions. It is also feasible to map
the affinities of all %-mers for 2 < 10 for about 100 regulatory
proteins. This can be achieved by Systematic Evolution of Lig-
ands by EXponential enrichment (SELEX) and protein-binding
microarrays as discussed below.

Rapid selection of nucleic acids (single- or double-stranded
RNA or DNA) which have high affinity to a molecular tar-
get like a TF can be achieved by Systematic Evolution of Lig-
ands by EXponential enrichment [SELEX, Chapter 12 and refs.
(56, 57)]. SELEX has been highly productive in the discovery
of nucleic acid bound small molecule drug candidates (58) and
55 Escherichia coli TFs (14) among many other applications. The
experiments are performed in multiple rounds. From an initial
library of 101°-1016 sequences, ligand-bound DNA is separated
from free DNA and amplified. In the subsequent rounds, the
library pre-selected in the previous round is reacted with the lig-
and again, separated, and amplified. The average ligand bind-
ing affinity of the selected DNA sequences increases exponen-
tially with the number of rounds (16). While nonspecific binding
occurs at every round, at the final round, the large majority of
DNA sequences will be high-atfinity binders. These DNA seg-
ments are sequenced recently using next-generation technology
(Section 2.1.2.2). Over-selection, however, should be avoided
since TFs in vivo bind to biologically important medium- or low-
affinity loci as well. Besides the biological significance, de novo
computational motif discovery critically depends on these sites as
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well. Since a typical SELEX starting library can exceed the size of
the genome, many of the selected binder sequences may be absent
from the genome. SELEX-derived affinities, consensus sequences,
and PWMs are available in the SELEX DB (59) and TRANSFAC
(12, 13) databases. Larger data sets obtained by next-generation
sequencing can be retrieved from the HTPSELEX database (60).

Martha Bulyk and colleagues at Harvard characterize in vitro
DNA affinities using protein-binding microarrays (PBMs).
Among others, 30 previously uncharted and 59 other yeast TFs
were characterized (55). PBMs are custom-designed microar-
rays with dowuble-stranded DNA probes that include all possi-
ble ungapped and many gapped /%-mers (61). A typical analysis
applies 8-mers as follows (62). The selected TF is cloned in fusion
with glutathione $-transferase and hybridized with the DNA on
the microarray. DNA-TF-GST complexes are detected using
fluorophore-conjugated anti-GST antibodies (63). Microarrays
are scanned, mapped, background-corrected, and normalized.
Then the TF’s in vitro affinity to each k-mer is reported as a
normalized enrichment score. A major criticism of PBMs is that
in vitro affinities may differ from in vivo binding dependent
on the current state of the chromatin environment. Also, posi-
tion relative to regulatory regions matters, since in far intergenic
regions, many DNA-bound complexes have no detectable etfects
on transcription as indicated by ENCODE observations (25).
PBMs may miss bona fide sites when the association requires post-
translational modifications or cofactors. Also, the cloned protein
may fold into non-native conformations (55).

Computers work efficiently with thousands of %z-mer affinities
but humans cannot comprehend such massive data sets. There-
fore the CRACR algorithm (64) converts affinities into more
perceivable positional weight matrices (PWMs) to be discussed
in Section 2.2.2.1. PBM results are generally compatible with
ChIP-derived PWMs (55). In vitro observations were also
confirmed (55) by regulatory patterns derived from knockout
experiments (65) and condition-specific expression results from
a compendium of gene expression experiments with 1,693
conditions (66).

Ideally, a 3D structure of a TF-DNA complex (Chapter 4) could
allow us to predict binding sites. Such structures can be obtained
from X-ray/NMR determination or homology modeling. In
theory, molecular dynamics simulation and thermodynamic inte-
gration could facilitate the predictions of protein-DNA affinity
for diverse nucleic acid sequences. Successful simulations and
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predictions were reported for the yeast MAT-2 homeodomain
and GCN4 bZIP proteins (67, 68), but the widespread appli-
cability of the methods still needs to be demonstrated.

Binding sites of regulators evolved into often amazingly diverse
sequences that pose major challenges for computational biology.
Ten to fifteen years ago, binding sites were identified as over-
represented motifs in promoters of co-regulated genes in a sin-
gle organism. Some motifs were easier to discover like palin-
dromes where a sequence is identical with its reverse complement
(CACGTGQG). Spaced dyads are associated with dimeric TFs. Co-
regulated genes were identified from compendia of gene expres-
sion experiments [see Chapters 23 and 24 and ref. (69)], ChID,
SELEX, PBM, and other experimental techniques. These meth-
ods find DNA segments that typically span much wider than the
actual binding sites. ChIP-seq currently has a resolution of 50-
200 bp (Chapters 9 and 10), and ChIP-chip has even more
coarse resolution. ChIP-PCR experiments produce minimal flank-
ing regions with scarce if any false positives. However, even
decades of work generate relatively few sequences that poorly rep-
resent TFBS diversity. At the other extreme, gene co-expression
analyses (Chapters 23 and 24) produce long lists of genes but
binding sites need to be found in the promoter regions, possibly
spanning over 1000 bp.

The task is to obtain a statistically representative sample of the
variation including low-affinity but biologically important bind-
ing sites. Input to motif discovery is a set of overly long DNA
sequences which contain the binding site for the TF in ques-
tion. It is important to reduce flanking regions and false positive
sequences as much as possible.

Motifs are concise representations of a set of TFBS. The simplest
representation is the consensus sequence, where variable posi-
tions are shown in the JTUPAC ambiguity code for nucleotides,
for example, purines (A and G) are displayed as R, weak binders
(A and T) by W, and N stands for any nucleotide. Consensus
sequences, being only qualitative representations, cannot express
important quantitative nucleotide preferences at a position.

The power of the computational representation is a key to
the performance of motif discovery tools. First, we calculate
positional frequency matrices (PFMs), which indicate the P(4,7)
probability of (di)nucleotide & at position 7 of the motif align-
ment. The background probability of nucleotide & is denoted by
P(5,0). In order to score a DNA segment for the motif, posi-
tional weight matrices (PWMs) are computed as follows. First,
the (di)nucleotides & are counted at each position 2. To avoid tak-
ing the logarithm of 0, some constant (typically 1) is added to
each count. These values are divided by the number of sequences
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plus four times the constant. The base 2 logarithms of these ratios
form the PWM (70).

The first group of motif discovery tools searches for k-mers
(words) with ¢ or fewer mismatches overrepresented as compared
to the background. These alignment-free, deterministic searches
are typically implemented as suffix tree algorithms. Suffix trees
have been proven efficient for finding short z-mers with few mis-
matches in Weeder (71), the most sensitive and selective tool
in Tompa et al.’s performance evaluations (7), and in the mis-
match tree algorithm (MITRA) (72). Overlapping k-mers can be
merged by graph theoretical methods in the WINNOWER (73)
and c(WINNOWER (74) tools. van Helden and colleagues (75)
extended k-mer searches to include spaced dyads in a method
accurate in yeast but less effective in higher eukaryotes. In gen-
eral, k-mer search methods have the advantage of being rigorous
and exhaustive but are less effective for long words and several
mismatches than the probabilistic algorithms discussed below.

The second group of methods is typically based on either expec-
tation maximization (76) or Gibbs search (77) as reviewed in

Chapter 6.

Expectation maximization (EM) (78) is a general statistical pro-
cedure that allows maximum likelihood estimates of parameters in
probabilistic models depending on latent variables. Importantly,
EM can make estimates even from incomplete data sets. For motif
discovery, EM stems from progressive multiple alignments where
the information content is being maximized. EM works with posi-
tional frequency matrices (PFMs), where P(5,2) is the probability
of (di)nucleotide & at position 2. First, EM makes an initial guess
for each P(b,7) and also calculates the P(4,0) background prob-
abilities of nucleotides. In several iterations, the underlying mul-
tiple alignment and the P(4,7) probabilities are refined so as to
maximize the information in P(4,7) relative to the background
P(5,0) (Chapter 6). Initial alignment is not necessary but the
basic assumption is that each of the training sequences contains at
least one occurrence of the motif.

Note that since the initial choice of the PFM determines the
final outcome, it is prudent to improve this choice by restricting
the length of input sequences to promoter regions and by assign-
ing higher weights to alignments closer to the transcription start
sites. When the strand bias of a TF is known, the search space may
be limited to the preferred strand. Such choices are implemented
in the motif elicitation by maximizing expectation (MEME) tool
(76, 79-82). MEME can be instructed to remove the assump-
tion that each input sequences contains the motif. Also, multiple
occurrences of the same motifs within an input sequence can be
handled. MEME also reports several different motifs.
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2.2.2.3.2. Gibbs
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To relieve from the bias of the initial PFM choice in EM,
Charles Lawrence and colleagues (77) introduced random Gibbs
sampling techniques. Starting from identical data with identical
parameters, Gibbs sampling, unlike EM, typically ends up with
different solutions, and the magnitude of these differences indi-
cates the robustness of these solutions.

Gibbs sampling makes the assumption that each input
sequence contains at least one occurrence of the motif and pro-
ceeds as follows. An input sequence is selected randomly and left
out from the sample. From the remaining sequences, a random
site is chosen and a PEM is calculated possibly by adding pseu-
docounts to avoid zero values. From this PFM and the back-
ground distributions, a positional weight matrix (PWM) is cal-
culated (Section 2.2.2.1 and Chapter 6). Each occurrence of
the motif in the omitted sequence is scored using the PWM.
Weighted by these scores, one of these sites is selected. Then some
other sequence is left out, and a new PFM and the corresponding
PWM are calculated. Iterations are performed until the score does
not improve any more.

Note that Gibbs sampling cannot guarantee the global opti-
mality of the solution. Therefore one has to perform several
rounds of Gibbs sampling and analyze the convergence of solu-
tions if any. Gibbs sampling was implemented, among others, in
the BioProspector (83) and AlignACE (84) tools.

Both EM and Gibbs sampling have been proven useful for the
de novo discovery of DNA motifs such as candidates for TEBS.
It is important to note, however, that there is no guarantee that
these methods find the motif because these methods depend
on the presence of the motif in (almost) all input sequences, an
overly strong constraint in noisy ChIP experiments for example
(see Chapter 11). The lack of statistical significance in highly
variable or short motifs may also lead to failure. PWMs are
basically additive linear models of binding sites, while the free
energy change during TF-DNA association maybe nonlinear
(Chapter 11).

EM, Gibbs sampling, and other basic algorithms have been
sophisticated in over 200 tools that apply a broad spectrum of
models. For a comprehensive assessment of DNA motif finding
algorithms, we recommend Das and Dai’s review (85).

Until now, the installation and application of these tools
had been a major burden for the users. In order to combine
diverse statistical models and learning principles in a user-friendly,
modular way, Ivo Grosse and colleagues (Chapter 7) developed
Jstacs, an object-oriented Java framework for motif discovery.
Importantly, the rapid and easy generation of diverse predictions
allows the identification of those motifs that are reproduced by
diverse models and learning principles and therefore more likely
to represent biologically relevant TEFBSs.
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Over 200 tools have been published for the computational
identification of DNA motifs including those of TFBS (see
Chapter 8 and http://biobase.ist.unomaha.edu/mediawiki/
index.php/Main_Page). These methods perform the challeng-
ing statistical inference (generalization) from limited and noisy
samples to a priori unknown sites. Evaluating their performance
would require genomes where all binding sites were known but
even in yeast, about half of the TFBS, particularly the weak bind-
ing sites, remains unknown (55). Such incomplete benchmark
data sets unavoidably bias the evaluations of sensitivity and selec-
tivity. While the numerical performance values remain low, some
important lessons can be learnt. Quest and Ali (Chapter 8 and
ref. (86) introduced the motif tool assessment platform (MTAP)
to assess the performance of over 20 motif discovery tools. Some
tools excelled in a few motifs but over a diverse set of TFs and
their binding sites, there was no single tool standing out in gen-
eral performance. The balance between sensitivity and selectiv-
ity was compromised when using default parameter settings. This
may indicate that certain binding sites may require specific learn-
ing principles, methods, and parameter settings that are not easily
transferable to other motifs.

In a different study, Hu, Li, and Kihara (87) introduced an
ensemble algorithm by combining prediction results from multi-
ple runs of three heuristic motif discovery tools. This ensemble
algorithm outperformed the popular MEME tool (82) by over
50% on the E. coli RegulonDB data set (88). Although predic-
tion performance results obtained in bacterial or yeast genomes
are difficult to scale up for much larger mammalian genomes, this
finding supports the expert recommendation to analyze the same
data set by using multiple tools and diverse parameter settings.
It is also advisable to pursue not only the best hit but also the
few top motifs (7). Most importantly, the highest Mathews cor-
relation coefficient of 0.37 (Chapter 8) indicates low-to-medium
prediction accuracy and calls for utilizing several additional lines
of evidence as discussed below.

The most important evidence is the potential evolutionary con-
servation of regulatory sites in closely related genomes (Sec-
tion 2.3.1). Binding sites also tend to cluster into cis-regulatory
modules (Section 2.3.2). Further support comes from spatial
correlation of transposable DNA elements and regulatory sites
(Section 2.3.3).

Potential evolutionary conservation of binding sites in ortholo-
gous promoter regions of closely related organisms increases the
confidence in binding site predictions. This approach is termed
phylogenetic footprinting (89). In contrast to ChIP, PBMs, and
co-regulated genes, phylogenetic footprinting can work even on
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2.3.3. Propagation of
TFBS with Transposable
Elements and Their
Spatial Correlations

a single gene provided that sequences are available from multi-
ple related species. The performance of footprinting is greatly
improved by assigning weights to segment pairs in the function of
evolutionary distance. The power of phylogenetic footprinting is
remarkable in the case of TEBS discovery from ChIP-chip data in
yeast. The original analyses using six motif discovery tools were
limited to a single species, Saccharomyces cevevisine (26). Later,
phylogenetic footprinting over several yeast genomes using Phy-
locon and Converge allowed to create an improved map of the
conserved regulatory sites (90). Binding sites for an additional 36
TFs, and in total, 636 novel regulatory interactions were iden-
tified. Phylogenetic footprinting is implemented in a number of
state-of-the-art tools including PhyME (91), PhyloGibbs (92),
and MITRA (72).

In multicellular organisms, several TFs regulate a typical gene
and a TF may regulate a number of functionally related genes.
The binding sites of such co-regulated genes are frequently orga-
nized into clusters termed czs-regulatory modules (CRMs) (93).
These clusters are often conserved during evolution. The result-
ing spatial correlations among CRMs greatly increase the statisti-
cal power and confidence in TFBS discovery substantially as com-
pared to predictions of individual binding sites (94). To discover
new CRMs, researchers start with alignments of related genomes
(e.g., those of mammalian, Drosophila, or yeast species) using,
for example, the MULTIZ data sets (95). Either the alignments
or the individual sequences are scored against known PWMs
of TFBS, third-order Markov models are applied, and species-
specific scores are calculated. Score significance is evaluated by
the permutation test and subjected to multiple test corrections.
In Chapter 13, Sebastian Schultheiss presents KIRMES, a sup-
port vector machine-based package for the large-scale predictions
of CRMs. Gene sets that share CRMs may be compared with sets
of genes co-expressed in large compendia of transcriptional pro-
filing experiments like GNF Atlas II. Co-localization with DNase
I hypersensitivity regions (18) further increases the confidence in
the predicted CRMs.

Transposable elements (TEs) are DNA segments that can fre-
quently “transpose” from one genomic locus to another. TEs are
present in all domains of life and account as much as for ~46%
of the human genome (29). TEs are not only able to promote
their own transcription but can provide alternative promoters to
genes [ Chapter 14 and refs. (96, 97)]. Numerous TEs adapted to
propagate new TFBS in the host genome (98). Most notably, TEs
proliferated considerable parts of the c-myc (99) and p53 (100)
regulatory networks.
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Chapter 14 provides an example of propagation of CCCTC-
binding factor (CTCF) binding sites by TEs based on ChIP-seq
data. One can predict potential binding sites as follows. Map
sequencing reads to the genome by Bowtie (36). Then we res-
cue reads and perform the probabilistic assignments of multiple
mapping reads using MuMRescueLite (101). Peaks can be called,
among others, by the SISSRs package (52). Then the intersection
of TE and TFBS locations is calculated using the University of
California Santa Cruz Genome Browser tracks [see Section 2.5
and ref. (102)]. Intersections can be found by a simple Struc-
tured Query Language query in a relational database or in any
programming language, e.g., PERL.

Computational analyses, systematic querying, and integration
with diverse genic, genomic, and epigenomic observations
require efficient (relational) databases. The scientific commu-
nity attempts to annotate and organize comprehensive infor-
mation about transcriptional regulation. The classic TRANS-
FAC (12, 13) and JASPAR (103) databases are focused on
PFMs, PWMs, sequence logos, motifs, and their genomic coor-
dinates. The latest release of JASPAR now also holds ChIP-
chip and ChIP-seq data. Databases like the Open REGula-
tory ANNOtation [OregAnno, Chapter 20 and ref. (104)]
and PAZAR (105) systematically attempt to collect and orga-
nize quality information for high-throughput experiments, liter-
ature citations, text mining, expression, evolutionary conserva-
tion, and cellular reporter gene assays. Chapters 2, 20, and 22
review regulatory databases with special emphasis on plant reg-
ulators (Chapters 2 and 20). cis-Lexicon and the Virtual Sea
Urchin database tool is introduced by Sorin Istrail and colleagues
in Chapter 22. SELEX_DB (59) stores high-quality System-
atic Evolution of Ligands by EXponential enrichment (SELEX,
Chapter 12) data and larger data sets obtained by next-
generation sequencing can be retrieved from the HTPSELEX
database (60).

Genome browsers (GBs) visually display a rich context of reg-
ulatory regions, DNase hypersensitive areas, genic and genomic
landmarks, repetitive DNA, conserved regions, polymorphisms,
and numerous other features. TFBS locations or even the loca-
tions of all individual ChIP-seq reads can be visualized in GBs.
These displays facilitate the contextual analyses of TEBS with
repetitive DNA elements, binding sites of other TFs, nucleosomes
(106), or promoter, and other regulatory regions. GBs also help
us to compare peak characteristics at likely sites (e.g., promoters)
and unlikely regions (e.g., exons).

The most widely used GB was developed and is main-
tained at the University of California Santa Cruz (UCSC)
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(107) (http://genome.ucsc.edu). GBrowse (108) is a BioPERL-
based tool, the favorite choice of plant scientists. Hundreds
of genomes are displayed in the ENSEMBL Browser at the
European Bioinformatics Institute (109, 110) (http://www.
ensembl.org/info/about/species.html). CisGenome [Chapter 9
and ref. (22)] and Eagleview (111) help peak calling using cov-
erage by visualizing sequencing reads separately at each strands.
In Chapter 22, Sorin Istrail and colleagues demonstrate the cis-
GRN-Browser specifically designed for the annotation and inves-
tigation of gene regulatory networks (GRNs). GRNs cannot be
displayed in the usual one-dimensional browsers. Therefore the
above authors also introduced the Virtual Sea Urchin system, a
4D interactive tool that visualizes the genomic regulatory net-
work of the sea urchin embryo development in space and time.

All of the above GBs interface to underlying relational
databases. Users can freely download the database tables in order
to build their local MySQL or other database implementations
for comprehensive statistical analyses. Researchers can also upload
their own annotation tracks to the central UCSC server or a
local implementation of the Browser directly on the “Custom
Track” pages as described in Chapter 10. Using this opportunity,
QuEST (50) and several other peak calling tools prepare input
files for the UCSC Genome Browser (107).

Transcriptional regulation works in hierarchical, dynamic net-
works that change in response to environmental perturbations
or internal stimuli (93, 112). TF binding can be mathematically
represented as the edges of directed graphs connecting the ver-
tices, TFs, and regulatory regions of genes. Mapping binding
sites provides only qualitative information inadequate to predict
the expression level of a gene. More quantitative information is
provided by co-expression in large compendia of gene expression
experiments (69). From co-expression under diverse conditions,
we infer to sharing identical regulators. These agents may include
TFs, microRNAs (8), DNA methylation (9), and specific histone
modifications (10, 11). Lagged correlations in time series experi-
ments may indicate regulatory relationships (113).

Simple linear network inference like clustering based on cor-
relation coefficients is hindered by AND, OR, EXCLUSIVE
OR and other nonlinear regulatory relationships. Such nonlin-
ear dependencies can be captured using probabilistic methods
including B-splines, clustering hidden Markov models, and most
notably, dynamic Bayesian networks (Chapters 23 and 24).
Probabilistic methods are more tolerant to errors so prominent in
microarray experiments but require more sophisticated methods
than correlation-based techniques. Bayesian networks can reveal
causal relationships and allow the integration of heterogeneous
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data like ChIP-seq and protein—protein interactions. The first
part of a Bayesian networks is a directed acyclic graph represent-
ing conditional independent relationships among nodes (TFs and
genes). The second part is a set of parameters, which specify the
conditional distribution for each TF and gene.

To reconstruct regulatory networks, Luo and Woolf
(Chapter 23) propose three-way mutual information. 3MI mea-
sures the improvement in predictability when three variables are
analyzed jointly versus considering them separately. Enumerat-
ing mutual information for each possible gene triplets, first local
networks are built. These local structures are assembled into the
global regulatory network.

3. Conclusions

The computational discovery of cis-regulatory modules typically
produces acceptable results. For individual binding sites, motif
finding results have to be combined with evolutionary con-
servation information, transposable elements, and experimental
data. The latter includes ChIP-seq, protein-binding microarrays,
SELEX, co-expression analyses, knockout mutants and knock-
down by RNA interference, and protein—protein interactions.
Note that many of these techniques generate very noisy observa-
tions and peaks derived from ChIP-seq and ChIP-chip observa-
tion which span much wider than the actual binding sites. There-
fore, most experimental observations require filtering by compu-
tational motif discovery tools.

Although massive amounts of data are available in a wide
array of databases, about half of the TFBS remains unknown even
in such a primitive eukaryote as yeast. Major improvements are
expected from the integration of all reliable observations and pre-
dictions. Even smaller current data sets allowed us to reconstruct
sophisticated transcriptional regulatory networks in bacteria, and
subnetworks in higher organisms.
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Chapter 2

Components and Mechanisms of Regulation of Gene
Expression

Alper Yilmaz and Erich Grotewold

Abstract

The control of gene expression is a biological process essential to all organisms. This is accomplished
through the interaction of regulatory proteins with specific DNA motifs in the control regions of the
genes that they regulate. Upon binding to DNA, and through specific protein—protein interactions, these
regulatory proteins convey signals to the basal transcriptional machinery, containing the respective RNA
polymerases, resulting in particular rates of gene expression. In eukaryotes, in addition and comple-
mentary to the binding of regulatory proteins to DNA, chromatin structure plays a role in modulating
gene expression. Small RNAs are emerging as key components in this process. This chapter provides an
introduction to some of the basic players participating in these processes, the transcription factors and
co-regulators, the cis-regulatory elements that often function as transcription factor docking sites, and
the emerging role of small RNAs in the regulation of gene expression.

Key words: Promoter, DNA-binding, operon, cis-regulatory element, microRNA, small interfering
RNA.

1. Introduction

Cells can be considered as membrane-enclosed environments in
which many different proteins undertake one or several specific
functions. Thus, the proper development and the functional inte-
gration of cells within an organism depend on controlling the
accumulation of these proteins within some defined concentra-
tion restrictions, which are space and time dependent. Consistent
with the central dogma of biology, which states that the genetic
information flow is, in general terms, from DNA to RNA and
then to the proteins, the instructions on how much and when a

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
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protein needs to be made are encoded in the DNA. The process
of transcription transfers the code responsible for making pro-
teins, the cell workhorses, from the DNA to RNA and translation
converts a messenger RNA (mRNA) sequence into a sequence of
amino acids in a protein. Thus, protein levels can be controlled
at multiple stages, including transcription, translation as well as
mRNA and protein transport and stability. This chapter will pri-
marily focus on the control mechanisms associated with transcrip-
tion and responsible for how much mRNA is being made for each
of the thousands (or tens of thousands) protein-encoding genes
in a cell.

2. Description

2.1. Mechanisms
of Transcription

In simple terms, the process of transcription involves the unwind-
ing double stranded DNA and the chemical synthesis of RNA,
using one of the two genomic DNA strands as the template for
the RNA sequence. This is achieved by DNA-dependent RNA
polymerases (RNAP). In prokaryotes, there is a single type of
RNAP, which is responsible for the generation of various types of
RNA, such as messenger RNA (mRNA), transfer RNA (tRNA),
and ribosomal RNA (rRNA). In eukaryotes, however, there are
multiple RNAPs, each specialized in the production of particular
types of RNA species. For example, RNAP I synthesizes rRNAs,
RNAP II synthesizes mRNAs, and RNAP III synthesizes tRNAs.
In addition, there are other RNAP with functions more restricted
to particular kingdoms. For example, in plants, RNAP IV syn-
thesizes small interfering RNA (siRNAs) (1, 2) and RNAP V
transcribes intergenic and non-coding sequences, participating in
the small interfering RNA(siRNA)-mediated transcriptional gene
silencing (TGS) (3, 4).

To ensure proper gene expression levels, the activity of
prokaryotic RNAP and eukaryotic RNAP II, in particular, are
subjected to tight control. One of the best-studied mechanisms
involved in regulating RNAP II activity is through the effect of
transcription factors (TFs), which specify when and where RNAP
IT (and associated factors) is tethered to DNA, how RNAP II
initiates (and re-initiates once a round of mRNA formation has
been completed) transcription, and elongates nascent mRNAs.
We define here TFs as proteins that bind DNA in a sequence-
specific fashion to particular DNA sequences (cis-regulatory ele-
ments) located in the regulatory regions of the genes that they
control. This definition excludes the large number of proteins
that can affect gene expression without binding to specific DNA
sequences. As these proteins often function by modulating the
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action of specific DNA-binding TFs, there are few common char-
acteristics that permit their easy identification.

TFs are usually classified into families, based on the pres-
ence of specific structures in their DNA-binding or protein—
protein interaction domains. In vitro, TFs usually recognize DNA
sequences 6—8-bp long, length that is clearly insufficient for the
exquisite regulatory specificity that they display in vivo, suggest-
ing that large number of TFs form the active regulatory com-
plexes and providing the bases for the principle of combinatorial
gene regulation (5).

In prokaryotes, binding of RNAP to specific regions is
achieved by a particular protein factor, the sigma (o) subunit.
This prokaryotic TF increases the affinity of RNAP to certain pro-
moter regions while decreasing its affinity to non-specific DNA.
The o factor responsible for the regulation of most “housekeep-
ing” genes in Escherichia coli is o”° and o® in Bacillus subtilis,
which are responsible for initiating transcription from most pro-
moters. Other o factors are usually stress induced, to allow organ-
isms to become virulent or adapt to any number of environmen-
tal changes such as hyperosmolarity, heat shock, oxidative stress,
nutrient deprivation, and variations in pH (6, 7).

One strategy by which prokaryotic organisms control the expres-
sion of genes that participate in a common process is to group
the genes into operons, which are usually transcribed from a
unique promoter resulting in a single (poly-cistronic) mRNA that
is translated into multiple proteins, allowing the cell to streamline
the control of transcription. Here, we describe the /ac operon as
an archetypical bacterial operon, as an example of how prokary-
otes negotiate the control of gene expression (Fig. 2.1).

The lac operon encodes for three enzymes (/acZ encoding
B-galactosidase, /acY encoding a lactose permease, and /lacA
encoding a trans-acetylase) necessary for the uptake and
metabolism of lactose. Only when lactose but no glucose, a more
favorable carbon source, is present in the environment, the /ac
operon is expressed. When grown in glucose, for example, regard-
less of whether lactose is present or not, the lacZYA genes are
not expressed, a consequence of a repressor protein (/ac repres-
sor) recognizing the operator sequence of the operon regulatory
region, preventing the recruitment of RNAP to the DNA. When
lactose is present, this small molecule recognizes the /ac repressor,
preventing it from binding the operator sequence.

In eukaryotes, operon-like structures have been described,
although they clearly differ from bacterial operons, since they
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Promoter
—

Operator lacZ lacY lacA
A : =7 ),

Repressor ' lacZ lacY lacA

Lactose is absent, no transcription

20

Lactose is present, repressor can not block transcription

Lactose

A

lacZ .Iach VIacAA
' — 2

Fig. 2.1. Single RNAP transcribes multiple genes in an inducible lac operon. The repressor protein can bind to the
operator region and hinder RNAP binding to the promoter region in the absence of lactose (lac). When lac is present, this
small molecule binds to the repressor and dissociates it from operator, allowing RNAP to transcribe the lacZYA genes.

2.2.2. The Organization
of the Regulatory
Regions of RNAP
lI-Transcribed Genes

do not appear to produce poly-cistronic RNAs. Most of these
gene clusters encode enzymes that participate in a common path-
way. Plants have the best described examples. These gene clusters
encode enzymes for multiple catalytic steps that synthesize com-
pounds defending the host against pathogens (8-11). So far, the
mechanisms involved in the coordinate regulation of these com-
plex gene clusters have not been established.

The region of a gene, usually proximal to the transcription start
site ('TSS), to which RNAP II and associated factors are initially
recruited, consists of the core or basal promoter. It assembles as a
complex formed by the basal transcription factors (BTF). The pre-
cise boundaries of the core promoter must be empirically deter-
mined for each gene, but as a rule of thumb, it is considered to
comprise ~50 bp to each site of the TSS. Note that the conven-
tion is to number the first nucleotide represented in the mRNA
as +1, thus this interval can be represented as [—50; +50]. Core
promoters contain a number of cis-regulatory elements, which
include the TATA box and an Initiator (Inr) element (12-14).
However, there is no cis-regulatory element that is universally
present in all core promoters. Even the broadly distributed TATA
motif involved in the recruitment of the TATA-binding protein
(TBP), a central BTF involved in the assembly of the transcrip-
tional pre-initiation complex (PIC), is present in just ~30% of
all eukaryotic promoters (5). BTFs receive signals from other
regulatory factors, the TFs, most likely mediated by mediator
proteins (15). Textbooks indicate that the regulatory regions of
genes are usually located upstream of the TSS. However, notable
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recent evidence in large part provided by the Encyclopedia of
DNA Elements (ENCODE) consortium suggest that regulatory
sequences can be found in 5'- and 3’-untranslated regions (5'-
and 3’-UTRs), introns, and even coding regions (16). Thus, it is
clear that the definition of what the typical regulatory region of a
gene includes needs to be broadened.

TFs are responsible for providing signals necessary for the cor-
rect assembly of the PIC and are therefore primarily responsible
for controlling the time, amplitude, and duration of gene tran-
scription. About 5-7% of the genome of an eukaryotic organ-
ism encodes for TFs (17), which can be grouped into 50-60 dis-
tinct groups of families. Some families have dramatically expanded
while others might be absent altogether from particular organ-
isms or kingdoms. For example, the MYB family, named after the
avian myelodlastocys virus from where the first protein harboring
this domain was first identified (18, 19), is very large in plants
(>180 members in Arabidopsis), while animal genomes contain
just a handful of genes encoding proteins with this domain.

TFs can activate or repress transcription. If they function as
transcriptional activators, they often harbor a transcriptional acti-
vation domain (TAD), responsible for interacting with mediator
or other BTFs. The structure of TADs is significantly less con-
served than the folds that characterize DNA-binding domains,
and they are classified into various types (acidic, proline-rich,
glutamine-rich, etc.) (20). The structure of the acidic TAD of
the herpes simplex virus VP16 was determined and key residues
identified for function (21).

Important questions that the biologist often encounters include
(1) how to determine if a protein functions as TF or not and (2)
what are the direct targets (defined as the genes directly regu-
lated) of a TF.

For the identification of TFs from genome sequence or Expressed
Sequence Tag (EST) information, specific signatures character-
istic of TFs can be followed. As described earlier, TFs can be
classified into families based on particular folds of the respec-
tive DNA-binding domains. These structures can often share lit-
tle sequence identity, resulting in the need to investigate relat-
edness by using profiles that capture weak similarities or even
information on neighbor amino acids. The PFAM database
(http://pfam.sanger.ac.uk/) is a large collection of protein fami-
lies, each represented by multiple sequence alignments and Hid-
den Markov Model (HMM) profiles (22). Within a protein family,
multiple alignments reveal similarity in particular regions due to
conserved amino acid sequences. These protein fragments corre-
spond to one or more functional regions termed domains. PFAM
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contains profiles of domains that carry DNA-binding protein—
protein interaction functions and this information is used to pre-
dict if an unknown protein corresponds to a TF with a previously
described DNA-binding domain or not.

The second problem that the experimentalist often encounters is
how to identify the genes that a TF directly regulates. In studying
TF function, it is important to establish which DNA sequences
they can bind to. This can be accomplished through in vitro
protein—DNA interaction techniques that include electrophoretic
mobility shift assays (EMSA) in combination with footprinting
approaches or by the systematic evolution of ligands by exponen-
tial enrichment (SELEX). Using information derived from such
experiments to predict TF targets in silico, however, is not triv-
ial, as in vitro DNA-binding specificities established, for exam-
ple, by SELEX are often not correlated with the sequences that
a TF binds in vivo — a good example being provided by E2F fac-
tors (23). Thus, the alternative is to experimentally identify the in
vivo targets of a TE. The participation of a TF in a given reg-
ulatory process can be inferred from mutant analyses or from
gene expression profile clusters. However, determining the ulti-
mate function of a TF depends on identifying which genes it
can directly activate. Two main approaches are currently avail-
able to identify direct targets of TFs: (a) by expressing a fusion
of the TF to the hormone-binding domain of the glucocorticoid
receptor and identifying the mRNAs induced/repressed in the
presence of the GR ligand (dexamethasone, DEX), in the pres-
ence of an inhibitor of translation (e.g., cycloheximide, CHX), or
(b) by identitying the DNA sequences that a TF binds in vivo,
using chromatin immunoprecipitation (ChIP) assays, which can
be coupled with next generation sequencing methods (ChIP-Seq)
(24) or by using the immunoprecipitated DNA to hybridize a
tiling or promoter array representing all the genes in an organ-
ism (ChIP-chip) (25, 26). Information on TFs and their binding
sequences for a number of species is available at several databases
(Table 2.1).

TFs function in networks, in which a regulatory protein con-
trols the expression of another, which in turn may modulate the
expression of other regulatory proteins or control genes encod-
ing structural proteins or enzymes. These hierarchical arrange-
ments allow specific signals to be amplified, providing the infor-
mation necessary for given sets of genes to be deployed with par-
ticular spatial and temporal patterns motifs (27). Gene regula-
tory networks (GRNs) are formed by motifs, and the dynamic
properties of these motifs significantly contribute to the overall
behavior of the network (28). MicroRNAs and other small RNAs
(briefly described in the next section) are also emerging as key
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Online TF databases for various species. Online resources related to TFs are listed
and marked for information provided on TF sequence (TFs), TF binding sequences
(TF binding), promoter sequences, and TF binding locations in target gene promot-
ers (Promoters) and regulatory networks. Circuitry of regulatory networks combines
individual TF-target gene relationships into single comprehensive view. A list of
plant cis-element resources and detailed discussion is available in (33)

Regulatory

Name URL TFs  TF binding Promoters networks Reference

AGRIS arabidopsis.med.ohio- ./ f Vi Vi (34)
state.edu

DBD WWWw.transcription Vi (35)
factor.org

GRASSIUS grassius.org Vi o v a (17)

JASPAR jaspar.cgb.ki.se f (36)

PAZAR www.pazar.info N Vi N (37)

PLANTTFDB planttfdb.cbi.pku. Vi (38)
edu.cn

PLNTFDB plntfdb.bio.uni- Vi (39)
potsdam.de

TFCONES tfcones.fugu- Vi N (40)
$g.0rg

TFdb genome.gsc.riken. f (41)
ip/TEdb

TRANSFACP  www.gene- J J J J (42)

regulation.com

aPlanned feature.

bSome features are available in commercial package.

2.5. Small BNAs

and Gene Expression

components of GRNs [e.g., (29)], often participating in mixed
network motifs (27).

One of the most significant discoveries of the past few years is
the realization that most of the DNA that lies between genes is
not really “junk,” but that it participates in the formation and is
the subject of regulation of a large number of non-coding RNAs,
often groups under the term small RNA (to distinguish them
from the longer mRNA, tRNA, or rRNA populations). Small
RNAs have indeed been called the “Guardians of the Genome”
(30), and one of their main functions appears to be to keep trans-
posons (pieces of DNA that can move around the genome) at
bay, preventing major genome damage. Small RNAs can be of
different types and usually have lengths 20-30 nucleotides long.
They appear to be broadly distributed in all eukaryotes, and even
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prokaryotes express small RNAs with unique regulatory activities
(31). One class of small RNAs, the microRNAs (miRNAs) partic-
ipate in the post-transcriptional regulation of mRNA translation
and stability. In contrast, small interfering RNAs (siRNAs) con-
trol gene expression by specifically targeting particular sequences
for silencing in the process of TGS that involves histone modifi-
cations and DNA methylation (32).

Acknowledgments
Support in the Grotewold lab for projects involving regulation of
gene expression is provided by NRI Grant 2007-35318-17805
from the USDA CSREES, DOE Grant DE-FG02-07ER15881,
and NSF grant DBI-0701405. A.Y. is supported by NIH Ruth L.
Kirschstein National Research Service Award 5 T32 CA106196-
05 from NCI.

References

1. Herr, A.J., Jensen, M.B., Dalmay, T., and 8. Field, B., and Osbourn, A.E. (2008)
Baulcombe, D.C. (2005) RNA polymerase Metabolic diversification—-independent assem-
IV directs silencing of endogenous DNA. Sci- bly of operon-like gene clusters in different
ence 308, 118-120. plants. Science 320, 543-547.

2. Pikaard, C.S., Haag, J.R., Ream, T., and 9. Jonczyk, R., Schmidt, H., Osterrieder, A.,
Wierzbicki, A.T. (2008) Roles of RNA poly- Fiesselmann, A., Schullehner, K., Haslbeck,
merase IV in gene silencing. Trends Plant Sci M. et al. (2008) Elucidation of the final
13, 390-397. reactions of DIMBOA-glucoside biosynthe-

3. Wierzbicki, A.T., Haag, J.R., and Pikaard, sis in maize: characterization of Bx6 and Bx7.
C.S. (2008) Noncoding transcription by Plant Physiol 146, 1053-1063.

RNA polymerase Pol IVb/Pol V mediates 10. Osbourn, A.E., Field, B. (2009) Opecrons.
transcriptional silencing of overlapping and Cell Mol Life Sci 66, 3755-3775.
adjacent genes. Cell 135, 635-648. 11. Qi, X., Bakht, S., Leggett, M., Maxwell,

4. Wierzbicki, A.T., Ream, T.S., Haag, J.R, C., Melton, R., and Osbourn, A. (2004) A
and Pikaard, C.S. (2009) RNA polymerase gene cluster for secondary metabolism in oat:
V transcription guides ARGONAUTE4 to implications for the evolution of metabolic
chromatin. Nat Genet 41, 630-634. diversity in plants. Proc Natl Acad Sci USA

5. Grotewold, E., and Springer, N. (2009) 101, 8233-8238.

Decoding the transcriptional hardwiring of 12. Gurley, W.B., O’Grady, K., Czarnecka-
the plant genome. In: Plant systems biology Verner, E., and Lawit, S.J. (2006) General
(Coruzzi, G., and R.A. Gutierrez, Eds.) pp. transcription factors and the core promoter:
196-228, Wiley-Blackwell, Chichester. ancient roots. In: Regulation of transcription

6. Gruber, T.M., and Gross, C.A. (2003) Mul- in plants (Grasser, K., Eds.) pp. 1-27. Black-
tiple sigma subunits and the partitioning well Pub, Oxford.
of bacterial transcription space. Annu Rev  13. Smale, S.T. (2001) Core promoters: active
Microbiol 57, 441-466. contributors to combinatorial gene regula-

7. Kazmierczak, M.J., Wiedmann, M., and tion. Genes Dey 15, 2503-2508.

Boor, K.J. (2005) Alternative sigma factors 14. Smale, S.T., and Kadonaga, J.T. (2003) The

and their roles in bacterial virulence. Micro-
biol Mol Biol Rev 69, 527-543.

RNA polymerase II core promoter. Annu
Rev Biochem 72, 449-479.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Components and Mechanisms of Regulation of Gene Expression 31

Gustafsson, C.M., and Samuelsson, T.
(2001) Mediator — a universal complex in
transcriptional regulation. Mol Microbiol 41,
1-8.

Birney, E., Stamatoyannopoulos, J.A., Dutta,
A., Guigo, R., Gingeras, T.R., Margulies,
E.H. et al. (2007) Identification and analy-
sis of functional elements in 1% of the human
genome by the ENCODE pilot project.
Nature 447, 799-816.

Yilmaz, A., Nishiyama, M.Y., Jr., Fuentes,
B.G., Souza, G.M., Janies, D., Gray, J. et al.
(2009) GRASSIUS: a platform for compar-
ative regulatory genomics across the grasses.
Plant Physiol 149, 171-180.

Klempnauer, K.H., Gonda, T.J., and Bishop,
J.M. (1982) Nucleotide sequence of the
retroviral leukemia gene v-myb and its
cellular progenitor c-myb: the architec-
ture of a transduced oncogene. Cell 31,
453-463.

Klempnauer, K.H., Ramsay, G., Bishop,
J.M., Moscovici, M.G., Moscovici, C.,
McGrath, J.P. et al. (1983) The product of
the retroviral transforming gene v-myb is
a truncated version of the protein encoded
by the cellular oncogene c-myb. Cell 33,
345-355.

Roberts, S.G. (2000) Mechanisms of
action of transcription activation and
repression domains. Cell Mol Life Sci 57,
1149-1160.

Uesugi, M., Nyanguile, O., Lu, H., Levine,
AlJ., and Verdine, G.L. (1997) Induced
alpha helix in the VP16 activation domain
upon binding to a human TAF. Science 277,
1310-1313.

Sonnhammer, E.L., Eddy, S.R., Birney, E.,
Bateman, A., and Durbin, R. (1998) Pfam:
multiple sequence alignments and HMM-
profiles of protein domains. Nucleic Acids Res
26, 320-322.

Rabinovich, A., Jin, V.X., Rabinovich, R., Xu,
X., and Farnham, P.J. (2008) E2F in vivo
binding specificity: comparison of consensus
versus nonconsensus binding sites. Genome
Res 18,1763-1777.

Mardis, E.R. (2007) ChIP-seq: welcome to
the new frontier. Nat Methods 4, 613-614.
Buck, M.J., and Lieb, J.D. (2004) ChIP-
chip: considerations for the design, analysis,
and application of genome-wide chromatin
immunoprecipitation experiments. Genomics
83, 349-360.

Herring, C.D., Raffaclle, M., Allen, T.E.,
Kanin, E.I., Landick, R., Ansari, A.Z. et al.
(2005) Immobilization of Escherichia coli
RNA polymerase and location of binding
sites by use of chromatin immunoprecip-

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

itation and microarrays. J Bacteriol 187,
6166-6174.

Re, A., Cora, D., Taverna, D., and
Caselle, M. (2009) Genome-wide survey of
microRNA-transcription factor feed-forward
regulatory circuits in human. Mol Biosyst 5,
854-867.

Alon, U. (2007) Network motifs: theory and
experimental approaches. Nat Rev Genet 8,
450-4061.

Card, D.A., Hebbar, P.B., Li, L., Trotter,
K.W., Komatsu, Y., Mishina, Y. et al. (2008)
Oct4 /Sox2-regulated miR-302 targets cyclin
D1 in human embryonic stem cells. Mol Cell
Biol 28, 6426-6438.

Malone, C.D., and Hannon, G.J. (2009)
Small RNAs as guardians of the genome. Cel/
136, 656-668.

Waters, L.S., and Storz, G. (2009) Reg-

ulatory RNAs in bacteria. Cell 136,
615-628.
Matzke, M., Kanno, T., Huettel, B.,

Daxinger, L., and Matzke, A.J. (2007)

Targets of RNA-directed DNA methy-
lation.  Cwurr Opin  Plant Biol 10,
512-519.

Brady, S.M., and Provart, N.]J. (2009) Web-
queryable large-scale data sets for hypothe-
sis generation in plant biology. Plant Cell 21,
1034-1051.

Palaniswamy, S.K., James, S., Sun, H., Lamb,
R.S., Davuluri, R.V., and Grotewold, E.
(2006) AGRIS and AtRegNet. a platform to
link cis-regulatory elements and transcription
factors into regulatory networks. Plant Phys-
z0l 140, 818-829.

Kummerfeld, S.K., and Teichmann, S.A.
(2006) DBD: a transcription factor predic-
tion database. Nucleic Acids Res 34, D74~
D81.

Sandelin, A., Alkema, W., Engstrom, D.,
Wasserman, W.W., and Lenhard, B. (2004)
JASPAR: an open-access database for eukary-
otic transcription factor binding profiles.
Nucleic Acids Res 32, D91-D94.
Portales-Casamar, E., Kirov, S., Lim, J., Lith-
wick, S., Swanson, M.L., Ticoll, A. et al.
(2007) PAZAR: a framework for collection
and dissemination of cis-regulatory sequence
annotation. Genome Biol 8, R207.

Guo, A.Y., Chen, X., Gao, G., Zhang,
H., Zhu, Q.H., Liu, X.C. et al. (2008)
PlantTFDB: a comprehensive plant transcrip-
tion factor database. Nucleic Acids Res 36,
D966-D969.

Riano-Pachon, D.M., Ruzicic, S., Dreyer, 1.,
and Mueller-Roeber, B. (2007) PInTFDB:
an integrative plant transcription factor
database. BMC Bioinformatics 8, 42.



32

Yilmaz and Grotewold

40. Lee, AP, Yang, Y., Brenner, S., and

41.

Venkatesh, B. (2007) TFCONES: a database
of vertebrate transcription factor-encoding
genes and their associated conserved noncod-
ing elements. BMC Genomics 8, 441.

Kanamori, M., Konno, H., Osato, N., Kawai,
J., Hayashizaki, Y., and Suzuki, H. (2004)

42.

A genome-wide and nonredundant mouse
transcription factor database. Biochem Biophys
Res Commun 322, 787-793.

Wingender, E., Dietze, P., Karas, H., and
Knuppel, R. (1996) TRANSFAC: a database
on transcription factors and their DNA bind-
ing sites. Nucleic Acids Res 24,238-241.



Chapter 3

Regulatory Regions in DNA: Promoters, Enhancers,
Silencers, and Insulators

Jean-Jack M. Riethoven

Abstract

One of the mechanisms through which protein levels in the cell are controlled is through transcriptional
regulation. Certain regions, called cis-regulatory elements, on the DNA are footprints for the trans-
acting proteins involved in transcription, either for the positioning of the basic transcriptional machinery
or for the regulation — in simple terms turn on or turn off — thereof. The basic transcriptional machin-
ery is DNA-dependent RNA polymerase (RNAP) which synthesizes various types of RNA and core
promoters on the DNA are used to position the RNAP. Other nearby regions will regulate the tran-
scription: in prokaryotic organisms operators are involved; in eukaryotic organisms, proximal promoter
regions, enhancers, silencers, and insulators are present. This chapter will describe the various DNA
regions involved in transcription and transcriptional regulation.

Key words: cis-regulatory element, core promoter, silencer, enhancer, insulator.

1. Introduction

The complexity of transcriptional regulation greatly increases
from prokaryotic to simple, single-cell, eukaryotic organisms
and again increases in metazoan eukaryotes. It has been postu-
lated that the increase in complexity in transcriptional regula-
tion, together with alternative splicing, post-translational modi-
fication of proteins, and chromatin modification and reordering,
is a mechanism through which a relative small number of genes
are used to produce ever-increasing complexity both physiological
and behavioral (1).
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In prokaryotes, some co-regulated genes are organized into
operons on neighboring loci, to be transcribed together via a
single promoter region. Within the promoter region, two hex-
amers help position the RNA polymerase (RNAP) I adjacent to
the transcription start site (TSS) — they are located approximately
at 10 and 35 bases upstream of the TSS (+1) and are hence in
literature often referred to as the —10 and —35 sequences. Spe-
cific ¢ factors bound to the RNAP I increase the affinity for these
hexamers.

Operators, other DNA motifs within the promoter, acti-
vate or repress transcription through the binding of gene reg-
ulatory proteins. Repression functions by binding of proteins
to operators and thereby blocking the binding of RNAP I
to the DNA. An example of such a mechanism is the #p
operon in Escherichin coli. When tryptophan level is low in
the cell, RNAP I can bind and transcribe the #7p operon,
but when tryptophan levels increase the activated trypto-
phan repressor protein occupies the operator, disabling further
transcription (2).

Depending on the position near or within the promoter, the
same regulatory protein may act as either a repressor or an acti-
vator, e.g., the bacteriophage lambda repressor (3). Operons can
also be regulated by multiple signals, where both an activator and
a repressor motif are present within or near the promoter. The
E. coli lac operon is under dual control (4): inhibition via the
lac repressor (within the promoter) and activation via the CAP-
binding site (just upstream of the promoter). Yeast regulates its
metabolism so as to utilize glucose as the primary carbon source
and metabolize lactose only in the absence of glucose. Only
during glucose depletion, cyclic AMP binds to CAP, and only
when at the same time lactose is present, the /ac repressor is not
bound to the operator, together enabling transcription of the Jac
operon.

The two-signal regulation as exemplified in the /ac operon is
very simple; however, the same mechanism cannot be expanded
to include many different signals as there is just not enough room
in the promoter to accomplish this. In eukaryotes, several other
agents and mechanisms have evolved to allow a more complex and
combinatorial regulation of transcription. These include gene reg-
ulatory proteins that can influence transcription even when they
are bound to DNA far away from the gene locus, basal transcrip-
tion factors that are necessary for RNAP II binding, and the pack-
aging of DNA into chromatin.

This chapter will mainly deal with the first two mechanisms
and give an overview of the core promoter, enhancer, silencer, and
insulator regions and proximal promoter and upstream activator
elements (see Fig. 3.1).
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Fig. 3.1. Transcriptional regulatory units in eukaryotes. Schematic overview (a and b not drawn to scale) of the various
elements in the transcriptional units in simple eukaryotes (a, yeast) and higher eukaryotes (b, mammalian) and a detailed
overview (c) of the promoter region in mammals. Exons are shown as gray boxes with dashes lines. a, In yeast, a promoter
region is shown with a TATA box at —70 bp and upstream activating sequences (UASs) around 250 bp upstream from
the transcription start site (TSS). b, the mammalian transcriptional unit is more complex, with a large core promoter
overlapping the first exon and upstream promoter elements (UPE, or proximal promoter elements) further upstream. The
DNA loop shows that enhancers can be brought physically close to either the core promoter or the UPE. ¢, detailed
architecture of the core promoter. Various elements, many of them optional, are shown roughly to scale. Darker shaded
promoter elements are more frequent. Abbreviations: TATA box (TATA), initiator element (Inr), TFIIB recognition element
(BRE, upstream and downstream), motif ten element (MTE), downstream core element (DCE, subunits 1, 2, and 3), X core
promoter element 1 (XCPE1), and the downstream promoter element (DPE). Note that the core promoter can be focused
or dispersed, here shown by one bold TSS and many smaller TSSs, respectively.

2. Regions
Involved in
Transcription and

Transcriptional

Regulation

2.1. The Core The classical, textbook definition of the core promoter is a region
Promoter around the TSS (+1) of a gene, which contains several DNA ele-

ments that facilitate the binding of regulatory proteins. Binding
of these proteins is required for the step-wise sequestering and
formation of the PIC (pre-initiation complex). In one promoter
architecture, the TATA box, an AT-rich sequence acts as a binding
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2.1.1. Core Promoter
Elements

site for the TATA-binding protein (TBP) (5). TBP together with
TATA-associated factors (TAFs) forms the multi-subunit initiator
complex TFIID. The binding of TFIID to the TATA box is the
first step in the creation of a stable transcriptional complex. Other
basal transcription factors (TFIIA-]) together with the RNAP 11
itself will bind forming the PIC.

However, it has been known for some time that the TATA
box is not the only element within the core promoter: several
other elements can recruit TFIID: the initiator element (Inr)
and the downstream promoter element (DPE). The BRE (TFIIB
recognition element) is a motif that specifically interacts with the
TFIIB complex. Furthermore, it has been shown that the assem-
bly of PIC via the TATA box, at least in mammals, is more the
exception than the rule (10-20%) (6, 7).

Separately from this, the model that a core promoter regu-
lates the initiation of a single or very narrow range of co-located
transcription start sites is not fully correct. In recent years it has
come to light that core promoters can be roughly divided into
two classes: those that have a single TSS or a distinct cluster of
TSSs over a very narrow, focused region of several nucleotides
and those that have a very broad or dispersed range of poten-
tial transcription start sites over a 50-100 bp region (8-10).
Focused core promoters often contain a TATA box (11) and are
the most ancient type of promoter conserved from Archaea to
vertebrates, while the dispersed core promoters have an over-
representation of CpGQG islands. Most of the genes in higher
eukaryotes are under transcriptional control of dispersed core
promoters.

In Metazon, especially vertebrates, core promoter elements
have been best characterized while less is known about the organi-
zation of unicellular eukaryotes, for example, Saccharomyces cere-
visine (baker’s yeast). The next section describes mainly mam-
malian, insect, and plant core promoter elements (se¢ Table 3.1,
Fig. 3.1¢) and will indicate where significant differences with sim-
pler eukaryotes exist.

The TATA box is the best known and most ancient promoter ele-
ment (12-14). Although the exact position of the TATA box con-
sensus sequence TATAWAAR varies from 28 to 34 bp upstream
from the TSS, a strong preference to 30-31 bp is observed (15,
16). In yeast, the TATA box is located between =70 and —120 bp
(17).

The BRE element is present in a subset of the TATA-
containing core promoters and can be located immediately
upstream (BREY, consensus sequence SSRCGCC) as well as
downstream (BREY, consensus sequence RTDKKKK) of the
TATA box and can act in both a negative and a positive manner
(18-20).
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Core promoter elements. Consensus sequences, (approximate) location in rela-
tion to the transcription start site (TSS), and organisms from which consensus
sequences are derived are listed for the core promoter elements that are most fre-
quently used in eukaryotic organisms. Consensus sequences are listed in IUPAC

nucleotide code
Element Consensus Location Organism  Reference
Inr Initiator element YYANWYY —2to +5 Human (46)
TCAKTY -2 to +4 Drosophiln

TATA TATA box TATAWAAR —31 to —24 (10)

BRE, TFIIB recognition SSRCGCC (18)
element (upstream)

BRE4 TFIIB recognition RTDKKKK (19)
element (downstream)

DPE Downstream promoter RGWYVT +28 to +33 Drosophila®  (22)
element

MTE Motif ten element CSARCSSAAC  +18 to +27 Drosophiln  (24)

DCE S1 Downstream core CTTC +6 to +11 Human (25)
element (subunit 1)

DCE §2 Downstream core CTGT +16 to +21 Human (25)
element (subunit 2)

DCE S3  Downstream core AGC +31 to +34 Human (25)
element (subunit 3)

XCPE1 X core promoter DSGYGGRASM -8 to +2 Human (26)

clement 1

3Similar sequences conserved from Drosophila to human.

Recent studies have shown that the Inr motif is the element
that is the most prevalent (approx. 40-60%) (17, 21) in focused
core promoters, more so than the TATA box. The Inr straddles
the TSS, and the consensus sequence is YYANWYY in humans
and TCAKTY in Drosophila, with the underlined A frequently
being the +1 start site.

The DPE (downstream promoter element) is another motif
(consensus RGWYVT in Drosophila) (22) that is important for
transcriptional activity (23) and is under the same strict positional
control as the TATA box: it is located downstream +28 to +33 bp
from the TSS and operates cooperatively with the Inr.

More core promoter elements are currently known, but are
underrepresented when compared with the TATA, Inr, BRE, and
DPE elements: the motif ten element (MTE) (24), the down-
stream core element (DCE) (25), and the X core promoter ele-
ment 1 (XCPEL) (20).
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2.2. Proximal
Promoter Elements

2.3. Enhancers

In Metazoa, several other promoter elements exist which are
located upstream of the core promoter: the proximal promoter
elements. They do not always act as traditional activators or
repressors; instead, it is postulated that they serve as tethering
elements for active distant enhancers, enabling these enhancers to
interact with the core promoter (27, 28).

One of the characteristics of eukaryotic gene expression is the
existence of groups of specific DNA motifs that often from a great
distance can sequester transcription factors (TF) to upregulate the
rate of formation and binding of the pre-initiation complex to
the core promoter. These enhancer regions can be found up- and
downstream of the TSS, within exons or introns, in the 5 and 3’
untranslated (UTR) regions of genes, and even as far as 10,000 bp
in Drosophila or 100,000 bp in human and mouse away from the
gene boundaries (1, 29, 30).

The exact mechanisms through which enhancers influence
transcriptional activity are still under debate, but it is clear that
enhancer activation often needs the binding of several transcrip-
tion factors to cis-regulatory motifs to the enhancer. Once active,
the enhancer can bind to the PIC or to tethering elements in the
proximal region of the promoter and influence (the rate of) tran-
scription by itself. Looping in chromatin (see Fig. 3.1b) plays a
role in bringing enhancers physically close to the proximal or core
promoter region of a target gene — these interactions have been
shown via Chromosome Conformation Capture (3C) technology
and successors (4C, 5C, Hi-C) (Chapters 16) (31, 32). How
the looping is effectuated is still unclear: direct-contact models
postulate that the interaction between enhancers and promoter
elements is more by chance due to free motion of the chromatin
strand; the tracking model hypotheses that the active enhancer—
protein complex somehow tracks the chromatin strand until it
encounters the promoter region.

Another model postulated to increase the transcriptional rate
is for the enhancers to be instrumental in changing the sub-
nuclear position of the target genes and bring them closer to a
ready source of RNAP II: the RNAP II loci or factories (33-35).

Many of these enhancers are non-coding sequences that are
strongly conserved over hundreds of millions of years (fish to
mouse) (36) and regulate gene expression in highly specific tis-
sues, developmental stages, or combinations of these (37). The
importance of enhancers is also illustrated in their role in disease,
where chromosome rearrangements, deletion of, or point muta-
tions in enhancers can cause abnormal phenotypes. For exam-
ple, thalassemia is a blood disease in which nonstoichiometric
quantities of a- or p-globin are produced (these subunits need
to be produced in equimolar quantities). For some patients no
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2.4. Silencers

2.5. Insulators

mutations or deletions could be detected in the coding region.
Further studies showed that deletion or rearrangement of the
enhancer caused the globin imbalance (38). Another example is
preaxial polydactyly caused by point mutations in the limb-specific
enhancer ZRS that regulates the sonic hedgehog (SHH) gene,
which codes for an important signaling molecule (39, 40).

In contrast to higher eukaryotes, the majority of yeast genes
do not have distant enhancer sites (see Fig. 3.1a). Yeast does,
however, have upstream activating sequences (UASs) ~250 bp
upstream of the TSS. UASs facilitate the binding of activating
transcription factors (41). Each UAS often contains one or two
closely linked cis-acting binding sites; activating transcription fac-
tors that bind to those sites positively regulate the PIC via TAFs.
A well-studied example is the GAL4p transcription factor that
binds to a UAS with a specific motif of 5-CGGN;; CCG-3" and
is responsible for the regulation of expression of GAL genes when
galactose is utilized as a carbon source (42).

The role of silencers in the downregulation of gene expression
has been recognized much later and much less is known about
these cis-regulatory elements than their enhancer counterparts.
Two distinct classes of silencers exist: short, position-independent
motifs that via their bound TF (repressors) proteins actively inter-
fere with the PIC assembly are called silencer elements and are
normally found upstream of the TSS and position-dependent
silencers or negative regulatory elements (NREs) that passively
prevent the binding of TFs to their respective cis-regulatory
motifs and can be found both up- and downstream of the TSS
and within introns and exons (43).

Enhancers and silencers can act on multiple genes but in certain
cases these interactions might be unwanted. Special cis-acting reg-
ulatory DNA sequence regions called insulators can block such
interactions. Two distinct types of insulators have been discov-
ered: enhancer-blocking insulators and barrier insulators (35).
The enhancer-blocking insulators protect against gene activation
by enhancers and interfere with the enhancer—promoter interac-
tion only if the insulator is located between the enhancer and the
promoter. Barrier insulators safeguard against the spread of het-
erochromatin, and thus of chromatin-mediated silencing, and lie
on the border of eu- and heterochromatin domains.

Positional requirements for enhancer-blocking insulators
were first described in the Drosophila insulator element gypsy (44).
This insulator consists of 12 repeats of the consensus sequence
YRYTGCATAYYY and is a target for the suppressor of hairy-
wing Su(Hw) protein. The Su(Hw) protein binds with other pro-
teins (CP190, modifier of mdg4, ubiquitin ligase, topoisomerase-I-
interacting protein) to form complexes that bind to the nuclear
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lamina and as a result bring insulators together to form insulator
bodies (35). This is also one of the proposed mechanisms how
insulators block enhancers: by topological separation, for exam-
ple, by resulting loop domains, of the enhancers from promoter
sites.

In vertebrates, all currently identified enhancer-blocking insu-
lators contain cis-regulatory binding motifs for the CCCTC-
binding factor (CTCF) (45) and similar mechanisms like gypsy for
enhancer-blocking activity involving CTCF-containing insulators
have been proposed.

3. Conclusion

In the last 20 years, understanding about transcriptional regu-
lation has greatly increased. It is now clear that promoters with
TATA boxes are not the rule but the exception, and that several
other less-known promoter elements are important, too. Added
to that the combinatorial complexity of enhancer and silencer
interaction, together with recent discoveries with regard to 3D
localization and epigenetic control, has made clear that the ‘text-
book’ models of gene regulation are now severely outdated.
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Chapter 4

Three-Dimensional Structures of DNA-Bound Transcriptional
Regulators

Tripti Shrivastava and Tahir H. Tahirov

Abstract

Our understanding of the detailed mechanisms of specific promoter/enhancer DNA-binding site
recognition by transcriptional regulatory factors is primarily based on three-dimensional structural studies
using the methods of X-ray crystallography and NMR. Vast amount of accumulated experimental data
have revealed the basic principles of protein-DNA complex formation paving the way for better modeling
and prediction of DNA-binding properties of transcription factors. In this review, our intent is to provide
a general overview of the three-dimensional structures of DNA-bound transcriptional regulators starting
from the basic principles of specific DNA recognition and ending with high-order multiprotein—-DNA
complexes.

Key words: Transcription factor, gene expression, crystal structure, DNA-binding domain, DNA-
binding motif, protein—-DNA interaction, cooperative DNA binding, DNA recognition, promoter,
enhancer.

1. Introduction

DNA-binding proteins play central roles in biology. Among other
activities, they are responsible for replicating the genome, tran-
scribing active genes, and repairing damaged DNA. One of the
largest and most diverse classes of DNA-binding proteins is the
transcription factors that regulate gene expression. Transcription
factors regulate cell development, differentiation, and cell growth
by binding to a specific DNA site (or set of sites) on promoters
and enhancers and regulating gene expression. Gene expression
requires transcription: making mRNA (messenger RNA) copies
from the DNA.
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For a deeper understanding of the transcriptional regulatory
processes, it is essential to determine the structure and analyze the
three-dimensional organization of multiprotein—-DNA regulatory
complexes. This is a formidable task; progress made in this direc-
tion has evolved from understanding of the basic mechanisms of
specific DNA recognition by smaller DNA-binding motifs. Nowa-
days our knowledge is expanding based on structural studies of
complexes with several transcriptional regulatory proteins acting
cooperatively on DNA binding. In this review, our intent is to
provide a general overview of the three-dimensional structure
of DNA-bound transcriptional regulators starting from the basic
principles of specific DNA recognition and ending with more
complicated multiprotein—~DNA complexes. We do not provide a
comprehensive review; instead, we present some of typical exam-
ples demonstrating how transcriptional regulatory factors adopt
the simple DNA-recognition motifs to form more complex regu-
latory assemblies.

2. Discussion

2.1. The Principle
of DNA Recognition

2.1.1. Hydrogen Bonds

Inspection of protein—-DNA complexes at an atomic level reveals
that contacts between DNA and protein can be explained in terms
of two broadly defined mechanisms: direct and indirect readout.
Direct readout of a DNA sequence is the sensing of base pair
identity by direct hydrogen bonding and van der Waals interac-
tions (1, 2). Indirect readout senses base pair identity without
direct base—protein contact. It utilizes the sequence-dependent
deformability of DNA (3). Consequently, indirect readout allows
the sensing of the DNA sequence at a distance.

The discovery of hydrogen bond formation in macromolecules
solved the mysteries associated with the formation of secondary
structures, i.¢., a-helices and B-sheets in proteins (4) and double-
helix formation from single strands in DNA (5). The grooves
of DNA are rich in functional groups that can form hydrogen
bonds (1). AT base pairs provide N3 (H-bond acceptor) and
O2 (acceptor) atoms in the minor groove, and N7 (acceptor),
NH2 (6-amino donor), and O4 (acceptor) atoms/groups in the
major groove. GC base pairs provide NH2 (2-amino donor),
N3 (acceptor), and O2 (acceptor) in the minor groove and N7
(acceptor), O6 (acceptor), and NH2 (4-amino donor group) in
the major groove. If hydrogen bond formation were the sole
mechanism of recognition, this information should suffice to dis-
tinguish GC/CG and AT /TA base pairs from each other because
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2.1.2. Water-Mediated
Interactions

2.1.3. van der Waals
Interactions

2.1.4. lonic Interactions

of the order in which the acceptor and donor functional groups
appear in the grooves (0).

Hydrogen bonds are further classified into subgroups based
on the type of interaction between amino acids and base pairs.
These are either single interactions where only one hydrogen
bond exists between the amino acid and its corresponding base,
bidentate interactions where amino acids interact with bases by
two or more bonds, or complex interactions where amino acids
interact with more than one base simultaneously (7).

Water molecules can participate in hydrogen bonding networks
that link side-chain and main-chain atoms with the functional
groups on bases, and the anionic oxygens of the phosphodi-
ester backbone (1). With improved crystal structure resolution
beyond 3 A, macromolecular crystallography revealed that water
molecules can contribute significantly to stability and specificity
(8-10). These water molecules mediate interactions between the
two molecules and fill the gap arising from imperfect matching of
the protein and DNA surfaces (6).

van der Waals contacts comprise 64.9% of all protein—-DNA inter-
actions (7). Most of the contacts occur along the DNA backbone,
which is consistent with its high surface accessibility. The prefer-
ence of DNA bases for van der Waals contacts is in the following
order: thymine interacts most readily, then adenine, guanine, and
cytosine (7). The C5M methyl group of thymine often confers
the specificity of this base both by providing favorable van der
Waals contacts and repulsion of unnecessary side chains.

Not all protein-DNA complexes are highly hydrated at the
interface. For example, TATA box-binding protein (TBP) bound
to DNA exhibits a hydrophobic interface (11, 12). TBP inter-
acts along the minor groove of DNA, which is splayed open and
curves away from the protein. The driving force for such com-
plex formation seems to be primarily entropic. When a protein
and DNA form a complex, water molecules left at the interface
between the protein and DNA decrease the entropy of the sys-
tem. Consequently, the surfaces of the protein and DNA tend to
be exactly complementary so that none of the unnecessary water
molecules remain when the complex forms and the surface is ren-
dered inaccessible to solvent molecules.

Some theoretical and experimental studies underscore the
importance of long-range electrostatic effects in protein-DNA
complexes. The negatively charged DNA is packed with nuclear
proteins. To form chromatin, huge repulsive forces must be
overcome. The positively charged amino acids Lys and Arg of
the histone-fold domain form a distinct charged surface that
directs DNA wrapping around the histone core (13). In another
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2.2. DNA Recognition
Elements

2.2.1. a-Helices

2.2.2. B-Strands

example, the repressor in the met ] repressor—operator complex
is activated by binding two positively charged S-adenosyl-
methionine (SAM) molecules. During cooperative oligomeriza-
tion, the protein undergoes small conformational changes and
its affinity for the operator increases 1,000-fold. In the ternary
complex, the positively charged SAM lies on the protein surface
opposite of DNA. The altered charge distribution resulting from
SAM binding may make the electrostatic surface more favorable
to intra-protein interactions and DNA binding (14). c-Myb onco-
gene recognizes DNA with three tandem DNA-binding domain
repeats: R1, R2, and R3. The structure of DNA-bound RIR2R3
revealed involvement of R2 and R3 in specific DNA base interac-
tions; however, no direct DNA interaction was observed for R1
(1H88) (15). Instead, the large positively charged surface of R1 is
positioned facing the DNA major groove and the phosphate back-
bone, forming long-range electrostatic interaction between R1
and the DNA. This interaction stabilizes the c-Myb—-DNA com-
plex explaining the reason why R1 increases the binding affinity
of ¢c-Myb for DNA five- to six-fold (15).

Beyond the atomic level of interaction between DNA and pro-
tein, the basic mode of interactions is based on protein secondary
structures, i.¢., a-helices, B-sheets, and loops.

a-Helices are the most common secondary structure elements
used by transcriptional regulators and other DNA-binding pro-
teins for base recognition. They typically interact through the
major grooves. Maximal DNA base contacts are achieved when
an a-helix inserts into the major groove with its axis parallel to
the flanking DNA backbone. Typically, base contacts are made
between the main-chain atoms and the side chain of the helix.
Interferon regulatory factor, or IRF, interacts to DNA through
the helix at the major groove of its winged helix—turn—helix
(HTH) motif (16) (Fig. 4.1a). Other examples show incidences
of a-helix involvement with bases on the minor groove. For
example, in the Lacl family of proteins, the accommodation of
an o-helix at the minor groove distorts the DNA. In the purine
repressor dimer (PurR) DNA complex, each monomer contains
a helix-turn-helix domain which interacts with the major groove
bases and forms a two-turn ‘hinge’ helix contact with the minor
groove bases (17) (Fig. 4.1d).

B-Strands are the next secondary structure elements most fre-
quently involved in specific DNA binding. Normally two or more
B-strands form a B-sheet to mediate interactions with DNA. The
NikR nickel-induced transcriptional repressor of the nickel ABC-
type transporter, NikABCDE, is one such example. NikR forms
a tetramer, which is arranged as dimer of dimers and binds to



Three-Dimensional Structures of DNA-Bound Transcriptional Regulators 47

Fig. 4.1. Different modes of recognition. a a-Helix (pdb code 2IRF), b B-sheet (2HZV), and ¢ loop (2GEQ) at major groove;
d a-helix (2KEI), e B-sheet (1NVP), and f loop (1HJB) at minor groove. All figures were produced with PyMol.

2.2.3. Loops

palindromic DNA (18). In each half of the DNA palindrome, the
subunits of the NikR dimer donate a B-strand to form a two-
stranded antiparallel B-sheet that interacts with the DNA in the
major groove (Fig. 4.1b). Insertion of three-stranded B-sheet
into the major groove has been observed in the plant GCC box-
binding domain (19). In contrast to the p-sheets recognition in
the major grooves, the TATA-binding protein uses a surface of
10-stranded concave B-sheet to recognize the DNA at the minor
groove (20). The insertion of 10 B-strands into the minor groove
profoundly distorts the DNA (Fig. 4.1¢).

Loops are the third type of structural element that character-
izes protein—-DNA interactions. Whereas a-helices and B-sheets
provide rigid scaffolds for interaction with DNA, a superfamily
of proteins having an immunoglobulin-like fold uses the flexible
loops as their primary structural element for DNA recognition
(21). The core domain of the p53 tumor suppressor (Fig. 4.1c),
for example, forms a sandwich of antiparallel B-sheets with two
helices (H1 and H2); the H2 helix along with the preceding
loop interact with the DNA in the major groove (22). DNA
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2.3. DNA-Binding
Motifs

2.3.1. The
Helix-Turn-Helix Motifs

recognition by a Runt domain of Runxl via a minor groove dra-
matically increases its DNA-binding affinity and plays an impor-
tant regulatory role (23) (Fig. 4.1f).

Proteins that bind DNA have common folding patterns known
as DNA-binding motifs. The helix-turn-helix (HTH), Zn-
finger (ZnF), basic leucine zipper (bZip), basic helix-loop-helix
(bHLH), and B-ribbon-containing motifs are examples of fre-
quently observed DNA-binding motifs.

HTH is the best-characterized member of the DNA-binding
motif (24, 25). Its simplest form is traditionally defined as a
20-amino acid segment of two perpendicular a-helices connected
by short linker. The second helix, known as the ‘recognition
helix,” inserts into the DNA major groove and forms contacts with
both DNA bases and the sugar—phosphate backbone. The first
helix, while not embedded in the major groove, may make addi-
tional DNA contacts (26-28). In the simplest form of HTH, the
a-helices are connected together by a short linker of three amino
acids (29) (Fig. 4.2a). With the variation in the turn region of
the HTH motifs, several topologies have been determined where
B-sheets comprised of two or more strands interrupt, precede, or
follow the helices involved in DNA binding (Fig. 4.2b). These
B-sheets, which can participate both in DNA base and in back-
bone interactions, are packed against the helices of the motif.

Fig. 4.2. DNA-binding motifs. a A HTH motif of % repressor (1LMB) (56), b a wHTH motif of Fox01 (3C06) (57), ¢ a
Cys2His2-type ZnF of Zif268 (1AAY) (41), d a Zn,Cysg-type ZnF of GAL4 (3C0Q) (58), e a bZip motif of Jun homodimer
(2H7H), f a bHLH motif of sterol regulatory element binding protein (1AM9) (59), g a B-ribbon motif of Met J repressor of
E. coli (1CMA) (14), and h a B-sheet motif of TATA box-binding protein (1NVP) (20).



Three-Dimensional Structures of DNA-Bound Transcriptional Regulators 49

2.3.2. Zn-Bearing Motifs

2.3.3. Zipper Group

2.3.4. B-Sheet Group

2.4. Arrangement
of Motifs

This type of motif is known as a winged HTH (wHTH) domain
(30-32).

Proteins containing a domain with one or more coordinated zinc
ions at their core form a superfamily of eukaryotic DNA-binding
proteins. In each of the three classes of proteins within this super-
tamily, zinc plays a structural role in maintaining the protein fold
and does not interact with the DNA. ZnF is the most prominent
class, where an ~30 residue module with one Zn ion is coordi-
nated by two cysteines and two histidines (33, 34). This class is
also referred as Cysy-Hisa-type ZnF (Fig. 4.2¢). The second class
is an ~70 residue domain, found in steroid and related hormone
receptors. Here each of the two Zn ions is liganded by four cys-
teine residues (35). The third class was discovered in GAL4 and
other yeast activators (Fig. 4.2d), with two closely spaced Zn ions
sharing six cysteines (36).

The zipper group derives its name from its dimerization leucine
zipper region. So far, this group has only been found in eukary-
otic organisms (26, 37). The two known subfamilies in this group
are bZip and bHLH proteins. The structure of bZip proteins is
divided into two parts: the DNA-binding basic region interacting
via the major groove and the dimerization leucine zipper region
(26, 37) (Fig. 4.2¢). The GCNy, C/EBP, and Jun/Fos proteins
are typical representatives of bZip family. The bHLH proteins
differ from bZip proteins due to the presence of the loop sep-
arating the basic DNA binding and dimerization leucine zipper
regions (Fig. 4.2f). This separation of the two segments by a loop
provides more flexibility for DNA binding (37). The mouse Max
protein makes a parallel, left-handed four-helix bundle that con-
tributes a second dimerization interface (38).

This group includes diverse DNA-binding proteins which use
a P-sheet as their principal DNA recognition element. f-
Ribbon/hairpin proteins use smaller two- or three-stranded
pB-sheets or hairpin motifs to bind to either the minor or the major
grooves of the DNA (Fig. 4.2¢g). For example, the Met J repressor
of Escherichia coli (14) and the arc repressor of Salmonelln phage
P22 (39) contain dimeric DNA-binding domains. Each dimer
subunit consists of a helical bundle and a single B-strand; the
strands from each subunit pack side by side forming an antipar-
allel B-sheet that binds DNA in the major groove. In contrast to
B-ribbon /hairpin proteins, the TATA box-binding protein inter-
acts with the DNA minor groove using its 10-stranded antiparallel
B-sheet (20) (Fig. 4.2h).

Transcriptional factors have evolved a variety of mechanisms to
target a wider range of specific sites using fewer types of DNA-
binding motifs. Well-known cases include DNA binding with a
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2.4.1. Single Motif

2.4.2. Tandem Repeats
of Motifs

2.4.3. Homo- or
Heterodimers

tandem repeat of similar motifs or formation of homo- and het-
erodimers.

Pancreatic and duodenal homeobox 1 (Pdx1) is a homeodomain
transcription factor that binds to DNA as a monomer. This pro-
tein contains three a-helices and a flexible N-terminal arm. An
a-helix termed as the recognition helix binds to DNA, whereas
the N-terminal arm contacts the DNA bases through the minor
groove (40).

Binding with tandem repeats often occurs among ZnF proteins.
For example, three tandem Cys2-His2-type ZnF motifs of Zif268
bind at the DNA major groove (Fig. 4.2¢) (41). HTH proteins
also recognize DNA with tandem repeats. c-Myb contains three
tandem repeats, R1, R2, and R3. R2 and R3 bind the DNA
major groove and R1 enhances DNA-binding affinity by long-
range electrostatic contacts (Fig. 4.4¢) (15).

The specificity for more diverse regulatory DNA-binding sites
is frequently achieved by homo- and heterodimer formation of
highly related DNA-binding modules. Representative examples
are the DNA complexes of NFkB proteins. These proteins con-
tain two DNA-binding immunoglobulin domains connected by a
flexible linker. NF«kB p50 (Fig. 4.3a) and NF«B p65 (Fig. 4.3b)
bind palindromic DNA sites as homodimers with participation
of both domains in each subunit (42, 43). The carboxy-terminal
domains of p50 and p65 form a dimerization interface between
B-sheets using conserved residues. The conservation of dimeriza-
tion interface allows the formation of a p50—-p65 heterodimer
which can bind to a nonpalindromic DNA with 5-base-pair
5" subsite for p50 and a 4-base-pair 3’ subsite for p65 (Fig.
4.3c) (44). Some transcriptional factors, including Zn;Cyse bin-
uclear cluster proteins, contain a dimerization domain and a
DNA-binding motif that are held together by a flexible linker

Fig. 4.3. Examples of homo- and heterodimers bound to DNA. a NFkB p50 homodimer (1NFK) (42), b NFkB p65 homod-
imer (1RAM) (43), and ¢ NF«xB p50-p66 heterodimer (1VKX) (44) complexes with DNA.
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2.4.4. Multiprotein—DNA
Complexes

(45). Such flexibility allows variations in polarity and inter-half-
site separation of common half-site DNA sequences (45).

Transcription of eukaryotic genes is influenced by various reg-
ulatory elements within promoters, enhancers, and silencers
(Chapter 3). These regulatory elements constitute the sites for
the highly ordered cooperative assembly of multiprotein com-
plexes for the activation or repression of transcription (46). The
large molecular weight as well as transient and flexible nature
of such complexes makes them difficult to study by conven-
tional methods of X-ray crystallography and NMR. However,
some progress has been achieved in understanding the protein—
protein interactions leading to cooperative DNA binding. In gen-
eral these interactions can be classified into three modes: first,
those between a DNA-binding factor and a non-DNA-binding
factor; second, those between DNA-binding factors recognizing
adjacent cites on the promoter; and third, those between DNA-
binding factor recognizing widely separated cites on the promoter
(47). Among the representative structures of the first mode are
the GABPa—GABPB-DNA (48) and Runx1-CBFB-DNA (23,
49) complex structures. In the latter complex (Fig. 4.4a), the
non-DNA-binding CBFf enhances the DNA-binding activity of
Runxl by allosteric mechanism (23, 50). The structures of Ets1—
Pax5-DNA (51), MATa2-MCMI1-DNA (52), and NFAT-Fos—
Jun—DNA (53) are few of representative examples exhibiting the
second mode of cooperative DNA binding (Fig. 4.4b, d). And
finally, the structure of ¢-Myb-C/EBPB-DNA complex repre-
sents the third mode of cooperation (Fig. 4.4¢). Within this struc-
ture the protein—protein interaction is not between c-Myb and
C/EBPP bound to the same DNA fragment, but between these
molecules bound to different fragments. The structure mimics a
case in which c-Myb and C/EBPp bind to widely separated sites
on mim-1 promoter and interact by mediating DNA loop forma-
tion (15).

Modeling of the obtained structures of individual parts of
enhanceosome allows better description of its cooperative assem-
bly. For example, the activation of the interferon-f (IFN-B) gene
requires assembly of an enhanceosome containing several tran-
scriptional regulatory factors. Cooperative binding of these fac-
tors to the IFN-B enhancer results in recruitment of coactiva-
tors and chromatin-remodeling proteins to the IFN-f promoter
(54). The atomic model of the IFN-B enhanceosome was build
using the structures of ATF-2 /c-Jun/IRF-3 /DNA (55) and IRF-
3/IRF-7 /NF«B p65/NFkB p50,/DNA (54). The model shows
that an association of eight proteins with the enhancer creates
a continuous surface for cooperative recognition of a composite
DNA-binding element (54).
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Fig. 4.4. High-order multiprotein—-DNA complexes. a Runx1-CBFB-C/EBPB—DNA (1104), b Ets1-Pax5-DNA (1MDM) (53),
¢ MATa2—MCM1-DNA (1MNM) (52), d NFAT-Fos—Jun—DNA (1A02) (51), e C/EBPB—DNA/c-Myb—DNA (1H88) (15).

3. Conclusions

In spite of tremendous progress in structural studies of transcrip-
tional regulatory factors, many barriers remain in the complete
understanding of how these factors work. Among the frequently
facing hurdles is the missing structure of residues located beyond
the DNA-binding domains. These residues may fulfill a variety
of regulatory functions, including autoinhibition, protein—protein
interactions. However, the flexibility of these protein fragments
also interferes with crystallization of macromolecules which is
the most important step in structure determination. That is why,
alongside with biophysical methods, development of alternative
approaches, including computational biology methods capable of
building three-dimensional models of transcription factor com-
plexes, is necessary for full understanding the mechanisms of tran-
scriptional regulation.
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Chapter 5

Identification of Promoter Regions and Regulatory Sites

Victor V. Solovyev, Ilham A. Shahmuradov, and Asaf A. Salamov

Abstract

Promoter sequences are the main regulatory elements of gene expression. Their recognition by computer
algorithms is fundamental for understanding gene expression patterns, cell specificity and development.
This chapter describes the advanced approaches to identify promoters in animal, plant and bacterial
sequences. Also, we discuss an approach to identify statistically significant regulatory motifs in genomic
sequences.

Key words: Promoter prediction, animal and plant promoters, bacterial promoters, regulatory
motifs and homology inference.

1. Introduction

RNA polymerase II (Pol II) promoter is a key region that
is involved in differential transcription regulation of eukaryotic
protein-coding genes and some RNA genes. The gene-specific
architecture of promoter sequences makes it extremely difficult
to devise the general strategy for predicting promoters. Promoter
5’-flanking regions may contain dozens of short (5-10 bases long)
motifs that serve as recognition sites for proteins providing initia-
tion of transcription as well as specific regulation of gene expres-
sion.

The minimal promoter region called the core promoter is
capable of initiating basal transcription. It contains a transcription
start site (TSS) located in the initiator region (Inr), typically span-
ning from —60 to +40 bp relative to the TSS. About 30-50% of all
known promoters contain a TATA-box at a position about 30 bp
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upstream from the transcription start site. The TATA-box is the
most general functional signal in eukaryotic promoters. In some
cases, it can direct accurate transcription initiation by Pol II even
in the absence of other control elements. Many highly expressed
genes contain a strong TATA box in their core promoter. At the
same time, large groups of genes including housekeeping genes,
some oncogenes and growth factor genes possess TATA-less pro-
moters. In these promoters, Inr or the recently found downstream
promoter clement (DPE), usually located ~25-30 bp down-
stream of TSS, may control the exact position of the transcrip-
tion start. Many human genes are transcribed from several pro-
moters (having multiple TSS) producing alternative first exons.
Moreover, transcription initiation appears to be much less precise
than initially assumed. In the human genome, it is not uncommon
that the 5’-ends of mRNAs transcribed from the same promoter
region are spread over hundreds of nucleotides (1-3).

The core promoter recruits the general transcriptional appara-
tus and supports basal transcription, while the proximal promoter
(the region immediately upstream of the core promoter) engages
various transcriptional factors, which are necessary for appropriate
transcription activation or repression. Further upstream is located
the distal part of promoter that may also contain transcription
factor-binding sites and enhancer elements. A typical organiza-
tion of Pol II promoters is shown in Fig. 5.1. The distal pro-
moter part is usually the most variable region of promoters and

DISTAL PROMOTER

ENHANCER REPRESSOR

ENHANCER CORE PROMOTER

PROXIMAL PROMOTER

Fig. 5.1. Structural organization of RNA polymerase Il promoter. Inr is the initiator region, usually containing TSS; DPE is
the downstream promoter element, often appearing in TATA-less promoters; CpG is a CpG island.
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generally poorly described; therefore, most of computational pro-
moter recognition tools use the characteristics of only the core
and/or proximal regions. A few reviews of eukaryotic promoters
structure and computational identification have been published
(2,4-6).

To date, a number of databases provide information on
known promoter sequences. Bucher and Trifonov (7) have ini-
tiated a first collection of experimentally mapped transcription
start sites and surrounding sequences called Eukaryotic Promoter
Database (EPD). Up to Release 72 (October 2002), EPD was
a manually compiled database, relying exclusively on published
experimental evidences. With Release 73, the curators started to
exploit knowledge of 5'-ESTs from full-length cDNA clones as a
new resource for defining promoters, and about a half of the EPD
entries are based on 5-EST sequences (8). There are few other
databases that provide information about experimentally mapped
TSSs. DBTSS (9) and PromoSer (10) are the large collections
of mammalian promoters created using clustering of expressed
sequence tag (EST) and full-length ¢cDNA sequences. Promot-
ers of genes of the hematopoietic system have been collected in
HemoPDB, a specialized resource that provides also information
on transcription factor binding sites (11). Orthologous promot-
ers from various human/animal and plant species presented in
the OMGProm (12), DoOP (13) and CORG (14) databases.
There is a plant-specific PlantProm (15) database providing anno-
tated, non-redundant collection of proximal promoter sequences
for RNA polymerase II with experimentally determined transcrip-
tion start sites. The second release of the PlantProm database
contains 561 experimentally verified promoters and about 8,000
putative promoters with TSS predicted by using mapping full-
length cDNAs on corresponding genomic sequences.

Regulatory sequences in promoter regions are composed of
transcription factor binding sites called regulatory motifs. Often,
a motif is fairly short (5-20 bp) sequence pattern and is observed
in different genes or several times within a gene (16-18). A
relational Transcription Factor Database (TFD) including large
collection of regulatory factors and their binding sites was cre-
ated by Gosh (19, 20). Over 7,900 sequences of transcrip-
tional elements have been described in TRANSFAC database (21,
22). The other collections of functional motifs are TRRD (23),
PlantCARE (24), PLACE (25), RegSite (http: //softberry. com),
PlantTFDB (see Chapter 2 and (26)), Osiris for rice (27), and
Athena for Arabidopsis (28). Regsite DB (Plant) contains about
1,942 experimentally discovered regulatory motifs of plant genes
and detail descriptions of their functional properties. Annotat-
ing long genomic sequences using these motifs is not practical
due to their short length and degenerate nature. For example,
even if we will search for the well-described TATA-box motif
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using its weight matrix representation, there will be predicted one
false-positive at every 120-130 bp (29). Nevertheless, the above-
mentioned collections are invaluable for the detailed analysis of
gene regulation and interpretation of experimental data, includ-
ing microarray and gene networks studies.

The modular organization of transcription factors and regu-
latory sequences facilitates regulatory diversity and high level of
specificity using relatively small number of different components
(30). Therefore, to understand gene regulation, we need to study
patterns of regulatory sequences rather than single elements.
Searching for such patterns should produce much less false-
positive predictions in new sequences compared to the recogni-
tion of single motifs. The simplest examples of regulatory patterns
are composite elements (CE). They consist of modular arrange-
ments of contiguous or overlapping binding sites for various fac-
tors, providing the possibility that the bound regulatory factors
may interact directly. For example, the composite element of
proliferin promoter comprises glucocorticoid receptor (GR) and
AP-1 factor-binding sites. Both GR and AP-1 are expressed in
most cell types, but the composite element demonstrated remark-
able cell specificity: The hormone-receptor complex repressed the
reporter gene expression in CV-1 cells, but enhanced its expres-
sion in Hela cells and had no effect in the F9 cell (31). The
database of composite elements (COMPEL) contains informa-
tion about several hundred experimentally identified composite
elements, where each element consists of two functionally linked
sites (32, 33). A computational technique that provides possibility
to identify statistically significant occurrences of motifs (or com-
posite motifs) in a query sequence is described in Section 2.5.

2. Methods

2.1. Identification
of Promoter Regions
in Human DNA

Fickett and Hatzigeorgiou (18) presented one of the first reviews
of promoter prediction programs. Among these were oligonu-
cleotide content-based (34, 35), neural network (36-38) and
the linear discriminant approaches (39). Although their relatively
small test set of 18 sequences had several problems (40), the
results demonstrated that the programs can recognize ~ 50% of
true promoters with false-positive rate about 1 per 700-1,000 bp.
To reduce false-positive predictions located within protein-coding
genomic regions, some promoter-finding software include special
modules for recognition of coding parts of gene inside promoter
prediction programs (41, 42). However, modern gene prediction
software, such as Genscan (43) or Fgenesh (44, 45), provides
much better accuracy in the identification of coding exons and
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introns than any such procedures. Therefore, it was suggested
(46, 47) to run gene prediction software first, and then execute
promoter prediction on sequences upstream of the coding exons
of predicted genes.

In this chapter we will describe successful algorithms imple-
mented by us in a set of promoter prediction programs (TSSW,
TSSG, Fprom, TSSP, TSSP-TCM and PromH). These tools use
similar promoter features, but trained on different learning sets,
or for different classes of organisms. While the initial version of
the promoter recognition program TSSW (Transcription Start
Site, W stands for using functional motifs from the Wingender
etal. (21) database) (39)) has been developed more than 10 years
ago, the above-mentioned programs are still among the most
accurate ones (18, 46, 48, 49).

The approach implemented in TSSW will be described in
detail and its modifications in other programs will be noted. Dif-
ferent features of a promoter region may have different power for
promoter identification and might not be independent. Classical
linear discriminant analysis provides a good method to combine
such type of features in a discriminant function, which applied
to a pattern yields its class membership. The discriminant analy-
sis technique minimizes the error rate of classification (50). Let us
assume that each sequence can be described by vector X of p char-
acteristics (X1, 42, ..., &), Which could be measured (computed)
for a given sequence fragment. The procedure of linear discrimi-
nant analysis is to find a linear combination of the measures (linear
discriminant function or LDF) that provides maximum discrimi-
nation between sequences from class 1 and class 2.

The LDF

4
Z = Z a;x;
=1

classifies (X) into class 1 if Z > ¢ and into class 2 if Z < ¢. The
vector of coefficients and threshold constant ¢ are derived from
the training set by maximizing the ratio of the between-class vari-
ation z to within-class variation and are equal to (50):

c="a(m +m)/2,

and
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— ..
where #2; are the sample mean vectors of characteristics for class
7; Sis the pooled covariance matrix of characteristics,

1
§= m(& + $),

S; 1s covariance matrix and #; is the sample size of class 2.
Using these formulae, we can analytically calculate the coefficients
of LDF and the threshold constant ¢ using the values of charac-
teristics computed on the training sets and then test the accuracy
of LDF on the test set data. The significance of a given character-
istic or a set of characteristics can be estimated by the generalized
distance between two classes (the D? Mahalonobis distance):

which is computed from values of the characteristics in the train-
ing sequences of classes 1 and 2. To find the most discrimina-
tive sequence features, a lot of possible characteristics can be gen-
erated and checked, such as score of weigh matrices, distances,
oligonucleotide preferences within different sub-regions. Selec-
tion of the subset of significant characteristics q (among the tested
p) is performed by step-wise discriminant procedure including
only those characteristics that significantly increase the Mahalono-
bis distance. The procedure to test this significance of character-
istics uses the fact that the quantity

mtm—p=1__ mmD-DY
=1 (m +m)(m +m —2) + mmD2’

F =

has an F(p—g,m +ny —p—1) distribution when testing
hypothesis Hy: A% = Aé, where A2, is the population
Mahalonobis distance based on m variables. If the observations
come from multivariate normal populations, the posterior prob-
ability that the example belongs to class 1 may be computed as

- 1
Pr(classl/ X)) = 5 .
1+ m exp{—Z + ¢}

Potential TATA+ promoter sequences can be selected by the
value of score computed using the TATA box weight matrix
(51). Significant characteristics of promoter sequences from both
groups found by discriminant analysis are presented in Table 5.1.
This analysis shows that TATA+ and TATA- promoters should be
analysed separately as they have different sequence characteristics.
TATA- promoters have much weaker general features compar-
ing with TATA+ promoters and they will be extremely difficult to
predict by any general-purpose method.
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Table 5.1

Significance of selected characteristics of TATA+ and TATA— human promoters
Characteristics of sequences D? (TATA+ promoters) D? (TATA— promoters)
eHexaplets —200 to —45 2.6 1.4 (-100to —1)
o TATA box score 3.4 0.9
eTriplets around TSS 4.1 0.7
eHexaplets +1 to +40 0.9
oSpl-motif content 0.9
o TATA fixed location 0.7
¢CpG content 1.4 0.7
eSimilarity —200 to —100 0.3 0.7
eMotif density(MD) —200 to +1 4.5 3.2
eDirect/Inverted MD —100 to +1 4.0 3.3
Total Mahalonobis distance 11.2 4.3
No. of promoters,/non-promoters 203,/4,000 193,/74,000

The TSSW program classifies each position of a given
sequence as TSS or non-TSS based on two linear discrimi-
nant functions (for TATA+ and TATA— promoters) where the
sequence characteristics are calculated within the (—200, +50)
region around an analysed position. If the TATA-box weight
matrix in the region ~30 bp upstream of the potential TSS gives
a score higher than some threshold, then the position is classi-
fied based on LDF for TATA+ promoters, otherwise the LDF
for TATA-less promoters is applied. Only one prediction with
the highest LDF score is retained within any 300 bp region. If
we observe a lower scoring promoter predicted by the TATA-less
LDF near a higher scoring promoter predicted by TATA+ LDEF,
then the first prediction is also retained as a potential enhancer
region.

Using the same approach but the TFD database of functional
motifs (19) to calculate the density of functional sites in potential
promoter region, we have developed the TSSG (39) program and
later its variant Fprom (47) that used different learning set of pro-
moter sequences. Examples of performance of TSSW, TSSG and
Fprom programs on sequences upstream CDS regions of 10 genes
with experimentally verified positions of transcriptional stat sites
are presented in Table 5.2. In many cases the predicted TSS is
located within a few bases of the experimental site. The programs
produce one false-positive prediction per each 2,000—4,000 bp.
TSSW outputs all potential TEBS around the predicted promot-
ers or enhancers that includes the position, the strand (%), the
TRANSFAC database identifier and the sequences of functional
motifs found.
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A critical assessment of the promoter prediction accuracy
has been done relative to the manual Havana gene annotation
(48). As few as four programs participated in ‘blind’ predic-
tions: two variants of McPromoter program (40, 52), N-scan
(53) and Fprom (47). McPromoter and Fprom derived its predic-
tions from a genomic sequence under analysis; N-scan used cor-
responding sequences of several vertebrate genomes. When the
maximum allowed mismatch of the prediction from the reference
TSS for counting true positive predictions on test sequences was
1,000 bp, N-scan achieved ~3% higher accuracy than Fprom, the
next most accurate predictor. When the true positives predictions
required be closer than 250 bp to the experimental TSS, Fprom
demonstrated the best performance on most prediction accuracy
measures (48). In these experiments, the sensitivity of compu-
tational promoter predictions was only 30-50% (relative to the
5’-gene ends of Havana annotation), but we should note that the
TSS annotations from two experimentally derived databases also
overlapping in only 48-58%. Table 5.3 presents the relative accu-
racy of several popular promoter finding programs on genes with
known full-length mRNAs investigated by Liu and States (46).

Performance of promoter finding programs for genes with known 5'-ESTs

Set 1 (133 promoters)

Set 2 (120 promoters)

Program True predictions False predictions  True predictions False predictions
PROSCANL.7 32 (24%) 18 (36%) 30 (25%) 22 (42%)
NNPP2.0 56 (42%) 41 (42%) 26 (22%) 50 (66%)
PromFD1.0 88 (66%) 43 (33%) 69 (58%) 57 (45%)
Promoter2.0 8 (6%) 100 (93%) 14 (12%) 92 (88%)
TSSG 75 (56%) 10 (12%) 62 (52%) 18 (23%)
TSSW 57 (43%) 29 (34%) 58 (48%) 20 (26%)

2.2. Improving
Promoter
Identification by
Using Homologous
Sequences

The analysis of human—-mouse conserved blocks in ortholo-
gous genes (those which are each other’s closest homologues
in the two organisms) specifically upregulated in skeletal mus-
cle reported by Wasserman et al. (54) shows that 98% of experi-
mentally defined transcriptional factors binding sites are confined
to the 19% of human sequences most conserved during evolu-
tion. We have suggested using several types of conserved blocks
to enhance sensitivity and specificity of promoter prediction pro-
grams by analysing alignment of orthologous genomic sequences
(55). Since the sequences of a dozen of eukaryotic genomes are
available, this strategy can be applied for improving promoter pre-
diction in many organisms.



66 Solovyev, Shahmuradov, and Salamov

2.2.1. Promoter
Prediction by the PromH
Program

In most studies, researchers investigated conserved promoter
clements in particular pairs of orthologous genes (54; see also ref-
erences therein). However, we are interested in such conserved
features that can be observed in many different pairs of ortholo-
gous gene promoters. Analysing pairwise sequence alignments of
upstream regions of a set of mammalian genes, we have noticed
that general similarity of upstream regions of related genes is rel-
atively weak: for four pairs — about 30%, for five pairs — 40-50%
and only for one pair (human and rat MYL3 genes) — 61%.
But at the same time we have observed many short blocks with
very high level of conservation. We identified four classes of
such blocks making meaningful contribution for predicting ‘true’
promoters.

TATA-box conserved region: Seventeen of the twenty ‘true’

TATA-promoters have interspecies conservation level in this

region over 70% (six of them have 100%).

TSS conserved region: Thirteen of twenty-one genes have >77%
(five have 100%) level of similarity, six genes have 66%, one
gene has 41% and only one gene has 25%.

An average conservation level of vegulatory motifs upstream of the
TSS region: Sixteen of twenty-one genes have such similarity
>70%, five genes have 45-56%.

Conservative region downstream of TSS. Thirteen of twenty-one
genes have similarity in this region more than 70% and seven
have >50%.

To take advantage of knowledge of conserved elements in 5'-
regions of homologues genes, we have developed the PromH
program that included four new features in the discriminant func-
tion, in addition to the features described in Table 5.1, conserva-
tion levels: around TSS and TATA-box (for TATA+ promoters),
in area downstream of the potential TSS (40 bp) and in regulatory
motifs observed upstream of the TSS.

The performance of the PromoterH program is shown in
Table 5.4. The program identified 20 of 21 tested TATA-
promoters. At the same time, TSSW program predicted only 15
true promoters and 3 false ones. The most TSSs predicted by
PromH ditfers from the annotated pre-mRNA start positions by
only 1-5 bp and the average distance between predicted and
annotated TSSs is 2 bp. Examples of promoter predictions and
their conservative blocks are shown in Fig. 5.2. The regulatory
motifs, TATA-box and TSS of predicted TATA-promoters are
highly conserved in orthologous genes, and these predictions cor-
respond closely to the promoter annotations.

Some discrepancy is found in a few genes including
H-GLUT4, M-GLUT4 and H-NPPA between the predicted and
the annotated TSS localization. There are several reasons for
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Table 5.4
Test results of PromoterH on human, Otolemur, mouse and rat sequences
GenBank  Position of Total
accession predicted Conservation Conservation GConservation conservation
Gene? number  TSSP of TSS%  of TATA,% of REs,®% level, %
H-HBB U01317.1 —4mRNA 46 100 82 47
OL-HBB U60902  —10EST 77 100 85 47
H-HBD U01317.1 —4mRNA 77 81 80 30
OL-HBD U60902  —9EST 88 81 51 30
H-HBE U01317.1 +6mRNA 88 75 88 48
OL-HBE U60902  —27EST 66 71 88 48
H-HBGA U01317.1 +1mRNA 66 71 81 48
H-HBGG U01317.1 +1mRNA 66 71 81 50
OL-HBGG ~ U60902  —53¢DS 66 71 75 50
H-MYL3 M76408  —5UTR 100 87 89 61
R-MLCIV ~ X16325  +4MRNA 41 75 79 61
H- X58851, —1mRNA 46 25 56 28
MLClemb X55000
M-MLCIF  X12973  +1mMRNA 25 62 45 28
H-MYF4 AF050501 —27€PS 100 100 90 43
M-MYOG M95800  —2mRNA 90 100 90 43
H-PGAM-M  J05073 +]mRNA 88 81 71 40
R-PGAM2 717319  —1¢DS 77 81 82 40
H-NPPA AL021155 —220€PS 77 47 51 31
R-NPPA J03267 +1mRNA 100 100 87 31
H-GLUT4  M91463  —105mRNA  gg 25 52 30
M-GLUT4  M29660  —46™mRNA  gg c 86 30

2 H-HBB: human beta-hemoglobin, OL-HBB: otolemur beta-hemoglobin, H-HBD: human delta-hemoglobin, OL-
HBD: otolemur delta-hemoglobin, H-HBE: human epsilon-hemoglobin, OL-HBE: otolemur epsilon-hemoglobin, H-
HBGA: human hemoglobin gamma A, H-HBGG: human hemoglobin gamma-G, OL-HBGG: otolemur hemoglobin
gamma-G, H-MYL3: human ventricular myosin light chain, R-MLCI1V: rat gene encoding alkali myosin ventricle light
chain, H-MLClemb: human embryonic myosin alkaline light chain, M-MLCIF:. mouse myosin alkali light chain, H-
MYF4: human myogenin (MYF4) gene, M-MYOG: mouse myogenin, H-PGAM-M: human phosphoglycerate mutase,
R-PGAM?2: rat phosphoglycerate mutase, H-NPPA: human atrial natriuretic factor ANF precursor (atrial natriuretic
peptide ANP /prepronatriodilatin/isoform 2), R-NPPA: rat atrial natriuretic factor (ANF), H-GLUT4: human glucose

transporter (GLUT4), M-GLUT4: mouse glucose transporter.

b ocalizations of the predicted TSS are given in relation to mRNA or 5'-end of EST mapped on the promoter region,

CDS or 5'-UTR.
“Interspecies conservation level around TSS (=3 ...

TSS ... +5).

dAverage interspecies conservation level of regulatory motifs left to TSS.
¢Predicted promoter is TATA-less.
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Fig. 5.2. Location of predicted TSSs and TATA boxes (highlighted) in aligned sequences of H-HBB and OL-HBB (a) and H-
PGAM-M and R-PGAMZ (b) orthologous gene pairs. Annotated start positions of pre-mRNAs are boldfaced and italicized.
Some of the found conservative regulatory motifs are shown: in H-HBB and OL-HBB genes, 1 — HSSB | (rat; RSA01074),
2 — PERE (rat; RSA00900), 3 — P3-D (human; RSA00057); in H-PGAM-M and R-PGAM2 genes, 1 — inverted CCAAT-box
(human; RSA00526), 2 — Sp1 binding site (rat; RSA00253).

possible discrepancy between predicted and annotated promot-
ers. The GenBank annotation for the M-GLUT4 gene includes
a putative weak TATA-box, which has not been supported by
experiments. Our analysis of this region did not reveal any motif
resembling the consensus of TATA box. The comparative analy-
sis of human and mouse orthologous GLUT4 gene pairs revealed
that the upstream regions of both genes contain two high-scoring
and well-conserved non-TATA promoters.

These results indicate that the information from alignment
of orthologous genomic sequences can substantially improve
the quality of promoter identification. The found conserva-
tion characteristics independent of gene type can be extracted
from alignments of orthologous genes by using SCAN2-like
(http:/ /www.softberry.com /berry.phtml?topic=scan2 &group=
programs&subgroup=scanh) alignment programs parametrized
for weak but significant similarities. This program was specifically
designed to compare genomic sequences and aligning about
10,000 bp of a pair of 5'-regions for a second. This work also
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demonstrates that using orthologous sequences one can identify
the start of transcription within about 1-5 bases for TATA-
promoters, while a similar prediction of TATA-less promoters
remains an open problem.

2.3. Plant Promoter To identify plant promoter regions, we have developed the TSSP

Identification program that uses the sequence features described in Section
2.1 and has been trained on a set of plant promoter sequences
(56). Promoter characteristic, including functional motifs density,
was derived from our RegSite DB of plant regulatory elements
(http://softberry. com) that contains ~1,800 known plant reg-
ulatory sequences. Recent tests demonstrated a high accuracy of
plant promoter identification by TSSP: $z = 0.88 and Sp = 0.90
(see Table 5 in ref. 49). Here we describe a variant of this pro-
gram called TSSP_TCM developed by using a new learning and
discriminative technique called Transductive Confidence Machine
(57). Beyond making predictions, it also provides valid measures
of confidence in the predictions for each individual example in the
test set. Validity in our method means that if we set up a confi-
dence level, say, 95%, then we are not expected to have more than
5 errors out of 100 examples.

Table 5.5
Statistics of testing procedure for 40 TATA and 25 TATA-less promoter sequences of
351 bp?

Mean prediction Negative samples Negative samples
Promoter type error in from CDSs, % from introns, %
TATA Positive samples 7.4 35

Negative samples 6.0 8.7
TATA-less Positive samples 18.6 14.0

Negative samples 16.9 29.5

AForty various sets of 1,000 negative samples of the same length (351 bp), randomly chosen from CDSs (20 sets, totally
20,000 sequences) and introns (20 sets, totally 20,000 samples) of known plant genes. Confidence and credibility
levels were =0.9 (90%) and = 0.06 (6%), respectively.

Learning machines such as the support vector machine (SVM;
58) perform well in a wide range of applications without requir-
ing any parametric statistical assumptions about the source of
data; the only assumption made is that the examples are gen-
erated from the same probability distribution independently of
each other. However, a typical drawback of techniques such as
the SVM is that they usually do not provide any useful measure
of confidence in the predicted examples. Transductive confidence
machine (TCM; 58-60) allows us to compute prediction of pro-
moters and estimate its confidence.
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2.3.1. Estimating the
Confidence of Prediction

Here we outline the application of TCM and SVM techniques as
implemented in TSSP-TCM program, following closely Shahmu-
radov et al. (56).

Suppose we are given a training set of examples
(%1, M), - -5 (%1, ¥1), where «; is a vector of attributes and
y; is a label, and our goal is to predict the classifications
YVitls - -+ Yith fOr a test set x4y, ..., X4 We make only i.i.d.
(identically and independently distributed) assumption about
the data generating mechanism. When predicting y,1, we can
estimate the ‘randomness’ (or ‘conformity’) of the sequence
(xl, yl) s (x;, y;) , (x;+1, T) with respect to the i.i.d. model
for every possible value Y of y;41. The prediction can be confi-
dent if and only if exactly one of these two (in the case of binary
classifications) sequences is typical.

If the randomness level can be computed, we can provide
an algorithm for making predictions complemented by some
measures of confidence and credibility. Let assume that we
have training set (x1, 1), ..., (&7, ¥7) and test set X471, ..., X1k
(usually £ =1) and that our goal is to predict the classifi-
cations Y41, ---, Vi4k fOr Xi41, ..., X4, then we can do the
following:

1. Consider all possible values 73,...,7; for labels
YVi+ls ---» Yi+k and compute (in practice, approximate)
the randomness level of every possible completion

(xla )’1)> R ) (.Xfl, yl)) (xl-l-I’ Tl)) ) <xl+ka Tk)

2. Predict the set 17, ..., Y} corresponding to the completion
with the highest randomness level.

3. Output as the confidence in this prediction one minus the
second largest randomness level.

4. Output as the credibility of this prediction the randomness
level of the output prediction 17, ..., 13 (i.e. the largest
randomness level for all possible predictions).

To illustrate the intuition behind confidence, let us choose
a conventional ‘significance level” such as 1%. If the confidence
in our prediction exceeds 99% and the prediction is wrong, the
actual data sequence belongs to an a priori chosen set of prob-
ability less than 1% (namely, the set of all data sequences with
randomness level less than 1%). Low credibility means that either
the training set is non-random or the test examples are not repre-
sentative of the training set.

The randomness level can be approximated using the SVM
technique. Let us consider the problem of binary classification
with one test example. The basic idea of a support vector machine
is to map the original set of vectors into a higher dimensional fea-
ture space, and then to construct a linear separating hyperplane in
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this feature space. In SVM approach, we should select a separating
hyperplane with a small number of errors and a large margin by
finding the minimum of the objective function

l
%(w-w)—i—C(Zf;,-) — min (1)

=1

subject to the constraints

yil(xi-w)+b)>1—&,i=1,..., L

Here C s a fixed positive constant (maybe 8), w denotes the
weights, & is the intercept, and §&; stands for the non-negative
‘slack variables’.

As the mapping of the original set of vectors often leads
to a problem in dealing with a very large number of param-
eters, Vapnik (57) suggested reformulating the problem using
Lagrangian multipliers and replacing the original setting of the
problem by the dual setting: maximize a quadratic form

l l

1
;ai —3 .Zl y,-yjaiajK(xi,xj) — max
= i,j=

subject to the constraints
O<o;<C,i=1,2,..., L

Here, K is the kernel and the values «;, 2 =1, ..., [ are the
Lagrangian multipliers corresponding to the training vectors. For
each non-zero «; the corresponding vector x; is called a support
vector. The number of support vectors is typically a small fraction
of the training set. If x is a new vector, the prediction ¥ is

!
¥ = sign (Z a;yi K(x, x) + b) .

=1

With every possible label 7 € {—1, 1} for x;41, we associate
the SVM optimization problem for the /+1 examples (the train-
ing examples plus the test example labelled with 7). The solu-
tions (Lagrangian multipliers) oy, a2, ..., a1, to this problem
reflect the ‘strangeness’ of the examples («; being the strangeness
of (x;, yi), =1, ..., I, and oy, being the strangeness of the
(%141, 7)). By using Lagrangian multipliers «;, we can approxi-
mate from below randomness deficiency. Gammerman et al. (58)
did that by introducing a function:
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2.3.2. Predicting Plant
Promoters by TSSP-TCM
Program

fler) + -+ flogr)
flo)(I+1)

(2)

p(zl, ceey z;+1) =

Here f is some monotonic non-decreasing function with
f(0) = 0 as an upper bound for the randomness level. The sug-
gested specific function flo) was f(«) = sign « (that is, f(0) =0
and f(«@) =1 when « > 0). Gammerman et al.’s method (58)
corresponds to using the SVM method for prediction and using
function [2] for estimating confidence and credibility. The «;
variables are non-negative and, in practice, only few of them are
different from zero (the support vectors). An easily computable
approximation of the randomness level is given by the p-values
associated with every completion (x1, y1), - .., (%7, 1), (%41, 1):

#Hiio; > a1}
I+1

So, the p-value is the proportion of «’s, which are at least as
large as the last . It is possible to show that these p-values are
valid in the sense that they define a randomness test.

To characterize promoter sequences, we use sequence content
and signal features that were found in our previous works as being
significantly different in promoter and non-promoter sequences
(see Table 5.1). For training, we used 132 TATA and 104 TATA-
less promoters. Forty genes with the TATA promoter anno-
tated and 25 genes with the TATA-less promoter annotated were
selected for the testing. All promoter sequences and other infor-
mation were taken from the PlantProm DB (15). As negative
samples (non-promoter sequences), 50,000 sequences of CDS
and 50,000 sequences of introns of plant genes annotated in Gen-
Bank were extracted. The accuracy of recognition is shown in
Table 5.5.

While testing on sets of promoter and non-promoter
sequences demonstrated a good classification accuracy of the sug-
gested approach, in practice we need to identify the most prob-
able promoter location in long genomic sequences. For test-
ing our recognition function on such sequences, we used the
genomic sequences of the same 65 test genes. The performance
of the TSSP_TCM program is presented in Table 5.6. For 35
of 40 TATA promoters (87.5%) and 21 of 25 TATA-less pro-
moters (84%), TSS very close to the known one was predicted.
For 29 TATA promoter genes (72.5%) and 14 TATA-less pro-
moter genes (67%), the distances between known and nearest
predicted TSS were 0-5 bp (Fig. 5.3). As upstream regions of
plant genes usually ~2 kb, the developed approach having the
rate of true predictions ~ 85% and one false-positive prediction
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Table 5.6
Prediction accuracy of TSSP-TCM on plant genomic sequences®?
Forty TATA promoters Twenty-five TATA-less promoters
False negatives 5 At
False positives 14 9
False positives’ density 1 per 5,375 bp 1 per ~4,720 bp

3The confidence level for prediction of both promoter classes was 95% or higher. The credibility level was >35%
for TATA promoters and >60% for TATA-less promoters. For every class of promoters only one predicted TSS with
highest credibility level in an interval of 300 bp was taken.

2.4. Prediction of
Bacterial Promoters
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Predicted TSSs relative to annotated TSS (0)

Fig. 5.3. The distance between the experimental and the closest predicted TSS in base
pairs: a 35 (out of 40) genes with the annotated TATA promoters; b 21 (out of 25) genes
with the annotated TATA-less promoters.

in ~ 4,000-5,000 bp can be successfully applied for identifying
promoters in plant genomes.

To identify discriminative features of bacterial promoter regions,
we searched for conserved sequences in a set of known promoters
from the Escherichin coli genome, which has the largest number
of experimentally verified promoters. This set was used earlier
in developing promoter prediction algorithm and described in
Gordon et al. (61). Five relatively conserved sequence motifs
represented by their weight matrices have been selected for a
bacterial promoter model. Two most conserved motifs corre-
spond to the well-characterized —10 and —35 sequence elements
of promoters regulated by sigma70 factors. The third motif
(upstream of the —35 box) with a length of 7 bp is searched in
the area [—60 to —40]; the fourth motif (downstream of —10
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2.5. Finding
Statistically
Significant
Regulatory Motifs

block) with length 7 bp is searched in the area [—11 to +10]
and the fifth motif (between —35 and —10 boxes) has length
5 bp and is searched in the area [—31 to —22] of potential
promoter sequences. We applied linear discriminant analysis
to derive the recognition function for discrimination between
promoter and non-promoter sequences using as the ‘negative’
set of sequences from inner regions of protein-coding ORFs. We
also considered the distance between —10 and —35 elements
and the ratio of densities of octanucleotides overrepresented
in known bacterial transcription factor binding sites relative
to their occurrence in the coding regions. We used bacterial
functional sites collected in the DPInteract database (62).
The last feature was calculated similar to the one used in the
eukaryotic promoter recognition programs such as PromoterScan
(63) and TSSW (39). The linear discriminant function (LDF)
implemented in Bprom demonstrated a sensitivity 83% and a
specificity 84% in recognition of promoter and non-promoter
sequences not included in the learning set. Bprom could
be run at web servers of Royal Holloway (http://mendel.
cs.rhul.ac.uk/mendel.php?topic=fgen) and Softberry, Inc.
http: / /www.softberry.com/berry.phtml?topic=bprom&group=
programs&subgroup=gfindb) or in combination with a hundred
other bioinformatics software modules within the MolQuest
package developed for Windows, MAC OS and Linux oper-
ation systems (http://www.molquest.com). Bprom has been
used in numerous functional characterizations of bacterial
sequences (64-67).

To reduce the rate of false-positive predictions, we recom-
mend restricting prediction of promoters to the upstream regions
of predicted ORFs in the annotation pipeline. The predicted pro-
moters can help to refine the boundaries of operons as well.

Depending on cell /tissue type, developmental stage and extracel-
lular signals (hormonal induction, stress, etc.) transcription fac-
tors (TFs) interact with their DNA-binding sites (regulatory ele-
ments, REs) and control gene expression. A gene expression pat-
tern is primarily determined by the architecture of the promoter
region including cooperativity and binding sites for alternatively
functioning multiple TFs (for review, see: 68-70). The identifica-
tion of REs is one of the critical steps in deciphering mechanisms
of transcription regulation. Although large collections of vari-
ous REs and corresponding TFs documented in several databases
(20, 23-25, 33, 71) have been experimentally identified, we are
extremely far from understanding a complex regulatory content
of promoter regions. Moreover, as the experimental identification
of TFs and their binding sites require enormous time and material
resources, computer methods for predicting REs have particular
significance.



2.5.1. Estimating the
Statistical Significance
of RE Sequences
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There are two major approaches to this problem. The first
one includes methods that identify REs based on available biolog-
ical knowledge. The second approach relies on comparative anal-
ysis of homologous sequences (54, 72-74). To search for REs,
most methods of the first type use real site consensus sequences
expressed in terms of the IUPAC ambiguous nucleotide code or
weight matrices (75-81). Pattern identification programs: SIG-
NAL SCAN (76), weight matrix-based approaches: ConsInspec-
tor (79), Matlnspector (82) and MATRIX SEARCH (77) belong
to this group. There are more complex approaches also have been
applied to REs identification such as neural networks (83, 84),
hidden Markov models (85, 86) and machine-learning methods
(87). Benham (88) suggested detecting putative REs based on
the prediction of possible sites of DNA duplex destabilization.

To account for involving multiple TFs/REs in the transcrip-
tion regulation network, Kel et al. (89) created a COMPELL
database of composite REs affecting gene transcription in ver-
tebrates. Quandt et al. (80) have developed a software pack-
age Genomelnspector to detect potentially synergistic signals in
genomes. A number of other computer-assisted promoter recog-
nition methods devoted to the problem of combinatorial regula-
tion of transcription have been published (63, 90). Thakurta and
Stormo (91) reported a Co-Bind algorithm (Cooperative BIND-
ing) for discovering DNA target sites of cooperatively acting TFs.
At the same time for many promoter regions, information on their
REs is not available yet and more complex composite REs are still
remain to be discovered. In this connection, we should mention
a group of methods for computational discovery of novel motifs
(92-99; for a recent review, see: 100).

When we search for occurrence of functional motif in a
query sequence, we consider the best alignments of the motif
sequence with some of the sequence fragments. To assess whether
a given alignment constitutes evidence for potential function of
the aligned sequence, it helps to know how often such alignment
can be expected from chance alone. We have suggested a prob-
abilistic model to assess the statistical significance of the motif
similarity (101).

Let us search for a site in a random nucleotide sequence of length
Nwhere the nucleotide frequencies are denoted by P4, Pr(v), Pg
and Pc, respectively. If Py = Py, P, = Pg, P3 = Pr, P4 = P,
then the frequencies of the nucleotides of the other classes P;(j =
5, ..., 15) are determined as sums of frequencies of nucleotides
of all the types included to the j-th class.

Simple (ome — block) site. Let us consider a site of length
L characterized by the values Ny(/=1,...15), where Njis the
number of nucleotides of the /th class belonging to the site and
N1+ Ny+...Nj5=1L.



76

Solovyev, Shahmuradov, and Salamov

Let assume that the site has M conserved positions
characterized by the values M;(/=1,...,14), where M;
is the number of conserved nucleotides of the /th class
My 4+ My + ...+ Mg = M). Then k(k=0, 1, ...) mismatches
between the site and the segment of length L belonging to the
sequence under consideration are allowed only at L—M vari-
able positions. The number of mismatches between the consen-
sus and the DNA segment of the /th class, R;(/ =1, ..., 14),
should meet the following conditions: 0 < R; < min(k, Nj —
Ml), 0< R, < min(lz— Rl, N, — Mz),..., 0<Ryg <minK —
Ry — Ry —...— Ry3, N14 — Myy4).

Assuming binomial distribution for matches and mismatches,
the probability P(L—Fk) of detecting the segment (L, k) of length
L with mismatches in % variable positions between it and the site is

min(k, N1 —M7) min(k—Rj—Ry...R14,N14—M5)

P(Lk) = >
R;=0 Ry5=0
R Ny —P R Nj5—R
Ca g P (= PR O P (1 - Prs)ts

[3]

In this case the expected number T(L, &) of structures (L, k)
in a random sequence of length N is

T(L, k)= P(L, k) x F

Here Fr is the number of possible site positions in the
sequence: Fr = N — L+ 1.

Let us assume that the mean number of motifs (L, k) in the
random sequence is less than 1 or close to it. Then the probability
of having precisely 7 structures (L, k) in the sequence may be
estimated using the binomial distribution:

P(T) = Cf PT(L, k)1 — P(L, k)]~ [4]

The probability of detecting in the sequence 7'structures with
k or less mismatches is

k

=> CLPI(L, 2)[1 - P(L, )] 7. [5]

z=0

Now we can derive the upper boundary of the confidence
interval Ty (with the significance level g) for the expected number
of structures in the random sequence:

Tp—1

To
Y Pt)y<q and ) P(r)=7q [6]
=0

=0



2.5.2. The Nsite, NsiteM
and NsiteH Programs
for Identification of
Functional Promoter
Elements
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If the number of (L, k) structures detected in the sequence
meets the condition T > Tp, they can be considered as potential
functional sites with significance level 4.

Composite (two — block) site. Let us consider a composite
site containing two blocks of lengths I; and I, at a distance
D,(D) < D < Dy),i.e. Dy and D, are, respectively, the minimum
and maximum allowed distances between the blocks). Let Ny
and N,; be the number of nucleotides of the /th class in the first
and second blocks, respectively (/ =1, ..., 15). It is clear that
Nip+ Np+...+ Njis = Li(j =1, 2).

Let the first and second blocks have AMj; and M5; conserved
positions of the nucleotides of /th class. Then the probability
P(Lj, k;) of finding in random sequence the segment (L;, ;) of
size L; differing in k; non-conserved positions from the jth block
of the site is calculated using equation [ 3] with the substitutions
of L, k, Nyand M;by Lj, kj, Njjand My(l =1, ..., 14; 7 =1, 2),
respectively. The probability of simultaneous and independent
occurrence of the segments (L1, k1) and (L3, %) in the random
sequence is

P(Ly, ky, Lo, ka) = P(Ly, k1) x P(La, k2) [7]

The number of possible ways of arranging the segments
(L1, k1) and (Ly, k) in the random sequence of length N is

D+ D
F(Li,15,D1,Dy) = (Dy — Dy + 1)[N—L1—L2—1T2 +1]
(8]
Thus, the expected number of structures (Lj, k1, Lo,
ky, D1, Ds) is

T(Ly, k1, L2, ka2, D1, Da) = F(L1, Ly, D1, D2) x P(Ly, k1, Loy k)

The probability P(T) of detecting 7T  structures
(La, k1, L, ky, D1, D2) in the random sequence is com-
puted using equations [4] and [5] with the substitutions of F
and P(L, &) by F(L1, Ly, D1, D) and P(L1, k1, Lo, k2) given in
equations [7] and [8]. At last, using the obtained values P(7T), the
upper boundary of the confidence interval Ty can be computed
from the conditions [6].

To search for regulatory motifs in human or animal genomic
sequences, we can use available collections of functional elements
such as TRANSFAC (102), TRANSCompel (33), TFD (20).
Analysis of plant genomic sequences can be done with Regsite
DB (http://linuxl.softberry.com/berry.phtml?topic=regsite).
Applying the statistical model described above, we have devel-
oped a group of computer programs for identification of
statistically significant regulatory motifs including the Nsite,
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Table 5.7

Web software for gene, promoters and functional signals prediction

Program & task

WWW address

Egenesh

HMM-based  gene  prediction  (human,
Drosophila, dicots, monocots, C. celegans,
S. pombe, etc.)

Genscan

HMM-based  gene  prediction  (human,
Arabidopsis, maize)

HMM-gene

HMM-based gene  prediction  (human,
C.clegans)

Fgenes

Discriminative gene prediction (human)

Fyenesh-M

Prediction of alternative gene structures (human)

Egenesh+/Egenesh_c

Gene prediction with the help of similar pro-
tein/EST

Fyenesh-2

Gene prediction using two sequences of close
species

BESTORF

Finding best CDS/ORF in EST (human, plants,
Drosophiln)

FgenesB

Gene, operon, promoter and terminator predic-
tion in bacterial sequences

Mzef

Internal exon prediction (human, mouse, Ara-
bidopsis, yeast)

FPROM/TSSP

Promoter prediction (human/animals, plants)

NSITE

Search for functional motifs

Promoter 2.0

Promoter prediction

CorePromoter

Promoter prediction

SPL/SPLM

Splice site prediction (human, Drosophiln, plants,
etc.)

NetGene2/NetPGene

Splice site prediction (human, C. elegans, plants)

Scan2

Searching for similarity in genomic sequences
and its visualization

RNAbybrid
Prediction of microRNA target duplexes

http://sunl.softberry.com/berry.phtml?topic=
fgenesh&group=programs&subgroup=gfind

http://genes.mit.edu/GENSCAN.html

http://www.cbs.dtu.dk/services/HMMgene /

http://sunl.softberry.com/berry.phtml?topic=
fgenes&group=programs&subgroup=gfind

http://sunl.softberry.com/berry.phtml?topic=
fgenesh-m&group=programs&subgroup=gfind
http://sunl.softberry.com/berry.phtml?topic=
index&group=programs&subgroup=gfind

http://sunl.softberry.com/berry.phtml?topic=
fgenes_c&group=programs&subgroup=gfs

http://sunl.softberry.com/berry.phtml?topic=
bestorf&group=programs&subgroup=gfind

http://sunl.softberry.com/berry.phtml?topic=
index&group=programs&subgroup=gfindb

http://rulai.cshl.org/tools /genefinder/

http://sunl.softberry.com/berry.phtml?topic=
index&group=programs&subgroup=promoter

http:/ /www.cbs.dtu.dk/services /Promoter/

http://rulai.cshl.org/tools /genefinder /
CPROMOTER /index.htm

http:/ /www.softberry.com /berry.phtml?topic=
spl&group=programs&subgroup=gfind

http: //www.cbs.dtu.dk /services /NetPGene /

http://sunl.softberry.com/berry.phtml?topic=
scan2&group=programs&subgroup=scanh

http://bibiserv.techfak.uni-
bielefeld.de /rnahybrid /
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NsiteM and NsiteH programs. Each of these programs performs
searches for motifs of human /animal or plant REs, depending on
the user’s choice.
The Nsite program searches for one- or two-boxes statistically
non-random REs using their sequences or consensuses in a
single or a set of query sequences.

The NsiteM program searches for statistically significant REs
motifs observed in a user defined percentage (default 50%)
of a set of homologous sequences. The last condition serves
as an additional criterion for selecting putative REs. As input
data, it requires two or more sequences in FASTA format.

The NsiteH program discovers RE motifs with a given conser-
vation level in a pair of aligned orthologous (homologous)
sequences. Sequences are aligned beforehand by the SCAN2
program (http://softberry.com/scan.html).

3. Conclusions

For the prediction of promoters and the analysis of regulatory
motifs, a wide array of programs are available through web servers
(Table 5.7). The current accuracy is still not enough for their
successful implementation as independent sub-modules to predict
promoters on the whole genome sequences. It would be wise to
use them in known or predicted upstream gene regions in com-
bination with gene-recognition software tools. Many promoter
prediction algorithms that use propensities of particular TF bind-
ing do not take into account the mutual orientation and posi-
tioning of these motifs. It would limit their performance, as the
transcriptional regulation is a highly cooperative process involv-
ing simultaneous binding of many transcription factors. To make
future progress in promoter identification, we need to study spe-
cific patterns of regulatory sequences, where definite mutual ori-
entation and location of individual regulatory elements are nec-
essary requirements for successful transcription initiation or its
particular regulation.

References
1. Suzuki, Y., Taira, H., Tsunoda, T. et al. tional promoter structure and function in 1%
(2001) Diverse transcriptional initiation of the human genome. Genome Res 16, 1-10.
revealed by fine, large-scale mapping 3. Schmid, C.D., Perier, R., Praz, V., and
of mRNA start sites. EMBO Rep 2, Bucher, P. (2006) EPD in its twentieth
388-393. year: towards complete promoter coverage of
2. Cooper, S., Trinklein, N., Anton, E. et al. selected model organisms. Nucleic Acids Res

(2006) Comprehensive analysis of transcrip- 34, D82-D85.



80

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Solovyev, Shahmuradov, and Salamov

Werner, T. (1999) Models for prediction and
recognition of eukaryotic promoters. Mamm
Genome 10, 168-175.

. Pedersen, A.G., Baldi, P., Chauvin, Y., and

Brunak, S. (1999) The biology of cukary-
otic promoter prediction — a review. Comput
Chem 23, 191-207.

Abnizova, 1., Subhankulova, T., and Gilks,
W. (2007) Recent computational approaches
to understand gene regulation: mining
gene regulation iz silico. Curr Genomics 8,
79-91.

Bucher, P., and Trifonov, E. (1986) Com-
pilation and analysis of eukaryotic POLII
promoter sequences. Nucleic Acids Res 14,
10009-10026.

Schmid, C.D., Praz, V., Delorenzi, M. et al.
(2004) The Eukaryotic Promoter Database
EPD: the impact of i silico primer extension.
Nucleic Acids Res 32, D82-D85.

. Suzuki, Y., Yamashita, R., Sugano, S., and

Nakai, K. (2004) DBTSS, DataBase of tran-
scriptional start sites: progress report 2004.
Nucleic Acids Res 32, D78-D81.

Halees, A.S., Leyfer, D., and Weng, Z.
(2003) PromoSer: a large-scale mammalian
promoter and transcription start site iden-
tification service. Nucleic Acids Res 31,
3554-3559.

Pohar, T.T., Sun, H., and Davuluri, R.V.
(2004) HemoPDB: hematopoiesis promoter
database, an information resource of tran-
scriptional regulation in blood cell develop-
ment. Nucleic Acids Res 32, D86-D90.
Palaniswamy, S.K., Jin, V.X., Sun, H,,
and Davuluri, R.V. (2005) OMGProm: a
database of orthologous mammalian gene
promoters. Bioinformatics, 21, 835-836.
Barta, E., Sebestyen, E., Palfy, T.B. et al.
(2005) DoOP: databases of orthologous pro-
moters, collections of clusters of ortholo-
gous upstream sequences from chordates and
plants. Nucleic Acids Res 33, D86-D90.
Dieterich, C., Wang, H., Rateitschak, K. et al.
(2003) CORG: a database for Comparative
Regulatory Genomics. Nucleic Acids Res 31,
55-57.

Shahmuradov, I.A., Gammerman, A.J.,
Hancock, J.M. et al. (2003) PlantProm:
a database of plant promoter sequences.
Nucleic Acids Res 31, 114-117.

Wingender, E. (1988) Compilation of tran-
scription regulating proteins. Nucleic Acids
Res 16, 1879-1902.

Tjian, R. (1995) Molecular machines that
control genes. Sci Am 272, 54-61.

Fickett, J., and Hatzigeorgiou, A. (1997)
Eukaryotic promoter recognition. Genome
Res, 7, 861-878.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Ghosh, D. (1990) A relational database of
transcription factors. Nucleic Acids Res 18,
1749-1756.

Ghosh, D. (2000) Object-oriented Tran-
scription Factors Database (00TFD). Nucleic
Acids Res 28, 308-310.

Wingender, E., Dietze, P., Karas, H., and
Knuppel, R. (1996) TRANSFAC: a database
of transcription factors and their binding
sites. Nucleic Acids Res 24, 238-241.

Matys, V., Kel-Margoulis, O.V., Fricke, E.
et al. (2006) TRANSFAC and its module
TRANSCompel: transcriptional gene regu-
lation in eukaryotes. Nucleic Acids Res 34,
D108-D110.

Kolchanov, N.A., Ignatieva, E.V., Ananko,
E.A. et al. (2002) Transcription regulatory
Regions Database (TRRD): its status in
2002. Nucleic Acids Res 30, 312-317.
Lescot, M., Déhais, P., Thijs, G. et al. (2002)
PlantCARE, a database of plant cis-acting
regulatory elements and a portal to tools
for in silico analysis of promoter sequences.
Nucleic Acids Res 30, 325-327.

Higo, K., Ugawa, Y., Iwamoto, M.,
and Korenaga, T. (1999) Plant cis-
acting regulatory DNA elements (PLACE)
database: 1999. Nucleic Acids Res 27,
297-300.

Guo, A-Y., Chen, X., Gao, G. et al. (2008)
PlantTFDB: a comprehensive plant transcrip-
tion factor database. Nucleic Acids Res 36,
D966-D969.

Morris, R.T., O’Connor, T.R., and Wyrick,
J.J. (2008) Osiris: an integrated promoter
database for Oryza sativa L. Bioinformatics
24,2915-2917.

O’Connor, T.R., Dyreson, C., and Wyrick,
J.J. (2005) Athena: a resource for rapid visu-
alization and systematic analysis of Arabidop-
sis promoter sequences. Bioinformatics 21,
4411-4413.

Prestridge, D., and Burks, C. (1993) The
density of transcriptional elements in pro-
moter and non-promoter sequences. Hum
Mol Genet 2, 1449-1453.

Tjian, R., and Maniatis, T. (1994) Transcrip-
tional activation: a complex puzzle with few
casy pieces. Cell 77, 5-8.

Diamond, M., Miner, J., Yoshinaga, S., and
Yamamoto, K. (1990) Transcription factor
interactions: selectors of positive or negative
regulation from a single DNA element. Sci-
ence 249, 1266-1272.

Kel, O., Romaschenko, A., Kel, A. et al.
(1995) A compilation of composite regu-
latory elements affecting gene transcription
in vertebrates. Nucleic Acids Res 23,
4097-4103.



33.

34.

35.

36.

37.

38.

39.

40.

4]1.

42.

43.

44.

45.

46.

Identification of Promoter Regions and Regulatory Sites 81

Kel-Margoulis, O.V., Kel, A.E., Reuter, I.
et al. (2002) TRANSCompel: a database on
composite regulatory elements in eukaryotic
genes. Nucleic Acids Res 30, 332-334.
Hutchinson, G. (1996) The prediction of
vertebrate promoter regions using differen-
tial hexamer frequency analysis. Comput Appl!
Biosci 12, 391-398.

Audic, S., and Claverie, J. (1997) Detection
of eukaryotic promoters using Markov tran-
sition matrices. Comput Chem 21, 223-227.
Guigo, R., Knudsen, S., Drake, N., and
Smith, T. (1992) Prediction of gene struc-
ture. J Mol Biol 226, 141-157.

Reese, M.G., Harris, N.L., and Eeckman,
F.H. (1996) Large scale sequencing specific
neural networks for promoter and splice site
recognition. In: Biocomputing: Proceedings of
the 1996 pacific symposium (Hunter, L., and
T. Klein, Eds.), World Scientific Publishing
Co, Singapore.

Knudsen, S. (1999) Promoter2.0: for the
recognition of Polll promoter sequences.
Bioinformatics 15, 356-361.

Solovyev, V.V., and Salamov, A.A. (1997)
The Gene-Finder computer tools for analy-
sis of human and model organisms’ genome
sequences. In: Proceedings of the 5th inter-
national conference on intelligent systems for
molecular biology (Rawlings, C., D. Clark,
R. Altman, L. Hunter, T. Lengauer, and
S. Wodak, Eds.) pp. 294-302, AAAI Press,
Halkidiki, Greece.

Ohler, U., Harbeck, S., Niemann, H.
et al. (1999) Interpolated Markov chains for
cukaryotic promoter recognition. Bioinfor-
matics 15, 362-369.

Scherf, M., Klingenhoff, A., Frech, K. et al.
(2001) First pass annotation of promoters
of human chromosome 22. Genome Res 11,
333-340.

Bajic, V.B., Seah, S.H., Chong, A. et al.
(2002) Dragon promoter finder: recognition
of vertebrate RNA polymerase II promoters.
Bioinformatics 18, 198-199.

Burge, C., and Karlin, S. (1997) Predic-
tion of complete gene structures in human
genomic DNA. J Mol Biol 268, 78-94.
Salamov, A.A., and Solovyev, V.V. (2000) A&
initio gene finding in Drosophiln genomic
DNA. Genome Res 10, 516-522.

Solovyev, V.V. (2002) Finding genes by
computer: probabilistic and discriminative
approaches. In: Current Topics in Computa-
tional Biology (Jiang, T., T. Smith, Y. Xu,
and M. Zhang, Eds.) pp. 365—401, The MIT
Press, Cambridge, MA.

Liu, R., and States, D.J. (2002) Consen-
sus promoter identification in the human

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

genome utilizing expressed gene markers and
gene modeling. Genome Res 12, 462-469.
Solovyev, V., Kosarev, P., Seledsov, I.,
and Vorobyev, D. (2006) Automatic anno-
tation of eukaryotic genes, pseudogenes
and promoters. Genome Biol 7(Suppl. 1),
$10.1-S10.12.

Bajic, V., Brent, M., Brown, R. et al. (2006)
Performance assessment of promoter predic-
tions on ENCODE regions in the EGASP
experiment.  Genome Biol 7(Suppl. 1),
$3.1-83.13.

Anwar, F.; Baker, S.M., Jabid, T. et al. (2008)
Pol II promoter prediction using charac-
teristic 4-mer motifs: a machine learning
approach. BMC Bioinformatics 9, 4.

Afifi, A.A., and Azen, S.D. (1979) Statistical
analysis. A computer oviented approach. Aca-
demic Press, New York, NY.

Bucher, P. (1990) Weight matrix descrip-
tions of four eukaryotic RNA polymerase 11
promoter elements derived from 502 unre-
lated promoter sequences. | Mol Biol 212,
563-578.

Ohler, U., Liao, G.C., Niemann, H. et al.
(2002) Computational analysis of core pro-
moters in the Drosophiln genome. Genome
Biol, 3:1-12. RESEARCHO0087.
Arumugam, M., Wei, C., Brown, R.H,,
and Brent, M.R. (2006) Pairagon+N-
SCAN_EST: a model-based gene anno-
tation pipeline. Genome Biol 7(Suppl. 1),
§5.1-S5.10.

Wasserman, W.W., Palumbo, M., Thomp-
son, W. et al. (2000) Human-mouse genome
comparisons to locate regulatory sites. Nat
Genet 26, 225-228.

Solovyev, V.V, and Shahmuradov, I.A.
(2003) PromH: promoters identification
using orthologous genomic sequences.
Nucleic Acids Res 31, 3540-3545.
Shahmuradov, I.A., Solovyev, V.V., and
Gammerman, A.J. (2005) Plant promoter
prediction with confidence estimation.
Nucleic Acids Res 33, 1069-1076.

Vapnik, V.N. (1998) Statistical learning the-
ory. Wiley, New York, NY.

Gammerman, A., Vapnik, V.N., and Vovk,
V. (1998) Learning by transduction. In:
Proceedings of the 14th conference on uncer-
tainty in arvtificial intelligence, 24-27 July,
Madison, WI (Cooper, G.F., and S. Moral,
Eds) pp. 148-156, Morgan Kaufmann, San
Francisco, CA.

Vovk, V., Gammerman, A., and Saun-
ders, C. (1999) Machine-learning applica-
tions of algorithmic randomness. In: Pro-
ceedings of the 16th international conference
on machine learning, 27-30 June, Bled,



82

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Solovyev, Shahmuradov, and Salamov

Slovenia (Bratko, I., and S. Dzeroski, Eds.)
pp. 444—453, Morgan Kaufmann, San Fran-
cisco, CA.

Saunders, C., Gammerman, A., and Vovk,
V. (2000) Computationally efficient trans-
ductive machines. In: Proceedings of the
11th International Conference on Algorith-
mic Learning Theory, 11-13 December,
Sydney, Australia, Lecture Notes in Artifi-
cial Intelligence, Springer-Verlag, Berlin, pp.
325-333.

Gordon, L., Chervonenkis, A., Gammerman,
A. et al. (2003) Sequence alignment kernel
for recognition of promoter regions. Bioin-
formatics 19, 1964-1971.

Robison, K., McGuire, A.M.; and Church,
G.M. (1998) A comprehensive library of
DNA-binding site matrices for 55 proteins
applied to the complete Escherichia coli K-
12 genome. J. Mol. Biol 284, 241-254.
Prestridge, D.S. (1995) Predicting Pol II
promoter sequences using transcription fac-
tor binding sites. J Mol Biol 249, 923-932.
Pope, W.H., Weigele, P.R., Chang, J.
et al. (2007) Genome sequence, structural
proteins, and capsid organization of the
cyanophage Syn5: a ‘horned’ bacteriophage
of marine Synechococcus. | Mol Biol 368,
966-981.

Sriramulu, D.D., Liang, M., Hernandez-
Romero, D. et al. (2008) Lactobacillus
rewteri DSM 20016 produces cobalamin-
dependent diol dehydratase in metabolo-
somes and metabolizes 1,2-propanediol
by disproportionation. J Bacteriol 190,
4559-4567.

Singh, J., Banerjee, N. (2008) Transcrip-
tional analysis and functional characteri-
zation of a gene pair encoding iron-
regulated xenocin and immunity proteins of
Xenorbabdus nematophila. | Bacteriol 190,
3877-3885.

Mariscotti, J.F., and Garcia-Del Portillo,
F. (2008) Instability of the Salmonelln
ResCDB  signalling system in the absence
of the attenuator IgaA. Microbiology 154,
1372-1383.

Ptashne, M., and Gann, A. (1997) Transcrip-
tional activation by recruitment. Nature 386,
569-577.

Lemon, B., and Tjian, R. (2000) Orches-
trated response: a symphony of transcrip-
tion factors for gene control. Genes Dey 14,
2551-2569.

Bonifer, C. (2000) Developmental regula-
tion of eukaryotic gene loci. Trends Genet 16,
310-314.

Wingender, E., Karas, H., and Kntppel, R.
(1997) TRANSFAC database as a bridge

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

between sequence data libraries and bio-
logical function. Pac Symp Biocomput 1997,
477-485.

Duret, L., and Bucher, P. (1997) Search-
ing for regulatory elements in human non-
coding sequences. Curr Opin Struct Biol 7,
399-406.

Eisen, M.B., Spellman, P.T., Patrick, O.
et al. (1998) Cluster analysis and display of
genome-wide expression patterns. Proc Natl
Acad Sci USA 95, 14863-14868.

Stormo, G.D. (2000) DNA binding sites:
representation and discovery. Bioinformatics
16, 16-23.

Hertz, G Z., Hartzell, GW., and Stormo,
G.D. (1990) Identification of consensus in
unaligned DNA sequences known to be
functionally related. Comput Appl Biosci 6,
81-92.

Prestidge, D.S., and Stormo, G. (1993) SIG-
NAL SCAN 3.0: new database and program
teatures. Comput Appl Biosci 9, 113-115.
Chen, Q.K., Hertz, G Z., and Stormo, G.D.
(1995) MATRIX SEARCH 1.0: a com-
puter program that scans DNA sequences
for transcriptional elements using a database
of weight matrices. Comput Appl Biosci 11,
563-566.

Eddy, S.R. (1996) Hidden Markov models.
Curr Opin in Struct Biol 6, 361-365.

Frech, K., Herrmann, G., and Werner, T.
(1993) Computer-assisted prediction, classi-
fication, and delimitation of protein binding
sites in nucleic acids. Nucleic Acids Res 21,
1655-1664.

Quandt, K., Grote, K., and Werner, T.
(1996) Genomelnspector: a new approach
to detect correlation patterns of elements on
genomic sequences. Genomics 33, 301-304.
Crowley, E.M., Roeder, K., and Bina, M.
(1997) A statistical model for locating regu-
latory elements in genomic DNA. J Mol Biol
268, 8-14.

Quandt, K., Frech, K., Karas, H. et al.
(1995) Matlnd and Matlnspector: new fast
and versatile tools for detection of consensus
matches in nucleotide sequence data. Nucleic
Acids Res 23, 4878-4884.

Larsen, N.I., Engelbrecht, J., and Brunak,
S. (1995) Analysis of eukaryotic promoter
sequences reveals a systematically occurring
CT-signal. Nucleic Acids Res23,1223-1230.
Milanesi, L., Muselli, M., and Arrigo, D.
(1996) Hamming-clustering method for sig-
nals prediction in 5" and 3’ regions of
eukaryotic genes. Comput Appl Biosci 12,
399-404.

Frith, C.M., Hansen, U., and Weng,
Z. (2001) Detection of cis-elements in



86.

87.

88.

89.

90.

91.

92.

93.

94.

Identification of Promoter Regions and Regulatory Sites

higher eukaryotic DNA. Bioinformatics 17,
878-889.

Pedersen, A.G., Baldi, P., Brunak, S.; and
Chauvin, Y. (1996) Characterization of
prokaryotic and eukaryotic promoters using
hidden Markov models. Intel Sys Mol Biol 4,
182-191.

Seledtsov, I.A., Solovyev, V.V., and
Merkulova, T.I. (1991) New elements of
glucocorticoid-receptor binding sites of
hormone-regulated genes. Biockhim Biophys
Actn 1089, 367-376.

Benham, C.J. (1996) Computation of DNA
structural variability — a new predictor of
DNA regulatory regions. Comput Appl Biosci
12, 375-381.

Kel, A., Kel-Margoulis, O., Babenko, V.,
and Wingender, E. (1999) Recognition of
NFATp/AP-1 composite elements within
genes induced upon the activation of
immune cells. J Mol Biol 288, 353-376.
Kondrakhin, Y.V., Kel, A.E.,; Kolchanov,
N.A. et al. (1995) Eukaryotic promoter
recognition by binding sites for transcription
factors. Comput Appl Biosci 11, 477-488.
Thakurta, D.G., and Stormo, G.D. (2001)
Identifying target sites for coopera-
tively binding factors. Bioinformatics 17,
608-621.

Staden, R. (1989) Methods for discovering
novel motifs in nucleic acid sequences. Curr
Opin Struct Biol 5,293-298.

Bailey, T.L., and Elkan, C. (1995) Unsuper-
vised learning of multiple motifs in biopoly-
mers using expectation maximization. Mach
Learn 21, 51-80.

Brazma, A., Jonassen, 1., Vilo, J., and Ukko-
nen, E. (1998) Predicting gene regulatory

95.

96.

97.

98.

99.

100.

101.

102.

83

elements in silico on a genomic scale. Genome
Res 8,1202-1215.

Mironov, A.A., Koonin, E.V., Roytberg,
M.A., and Gelfand, M.S. (1999) Computer
analysis of transcription regulatory patterns
in completely sequenced bacterial genomes.
Nucleic Acids Res27,2981-2989.

Geraghty, M.T., Bassett, D., Morrell, J.C.
et al. (1999) Detecting patterns of protein
distribution and gene expression #n silico.
Proc Natl Acad Sci USA 96, 2937-2942.
McGQGuire, A.M., and Church, G.M. (2000)
Predicting regulons and their cis-regulatory
motifs by comparative analysis. Nucleic Acids
Res 28, 4523-4530.

Fujibuchi, W.; Anderson, J.S., and
Landsman, D. (2001) PROSPECT improves
cis-acting regulatory element prediction by
integrating expression profile data with con-
sensus pattern searches. Nucleic Acids Res29,
3988-3996.

Birnbaum, K., Benfey, PN., and Shasha,
D.E. (2001) cis element/transcription fac-
tor analysis (cis/TF): a method for discover-
ing transcription factor/cis element relation-
ships. Genome Res 11, 1567-1573.

Das, M.K.; and Dai, H.K. (2007) A survey of
DNA motif finding algorithms. BMC Bioin-
formatics 8(Suppl. 7), S21.

Shahmuradov, I.A.,; Kolchanov, N.A,
Solovyev, V.V., and Ratner, V.A. (1986)
Enhancer-like structures in middle repeti-
tive DNA elements of eukaryotic genomes.
Genetika (Russ.) 22, 357-367.

Wingender, E., Chen, X., Fricke, E. et al.
(2001) The TRANSFAC system on gene
expression regulation. Nucleic Acids Res 29,
281-283.



Chapter 6

Motif Discovery Using Expectation Maximization
and Gibbs’ Sampling

Gary D. Stormo

Abstract

Expectation maximization and Gibbs’ sampling are two statistical approaches used to identify transcrip-
tion factor binding sites and the motif that represents them. Both take as input unaligned sequences
and search for a statistically significant alignment of putative binding sites. Expectation maximization is
deterministic so that starting with the same initial parameters will always converge to the same solution,
making it wise to start it multiple times from different initial parameters. Gibbs’ sampling is stochastic
so that it may arrive at different solutions from the same initial parameters. In both cases multiple runs
are advised because comparisons of the solutions after each run can indicate whether a global, optimum
solution is likely to have been achieved.

Key words: Expectation maximization, Gibbs’ sampling, transcription factor binding sites, motif
discovery, position weight matrices, position frequency matrices, regulatory sites, motif modeling.

1. Introduction

Frequently one can identify DNA segments that contain bind-
ing sites for specific transcription factors (TFs) but the resolution
is not sufficient to identity the exact binding site positions. For
example, one may have a set of genes that are controlled by a
common TF and therefore expect to find binding sites for that
TF in the regulatory regions of those genes. Depending on the
species this may localize the binding site to a region of about
100 base pairs (bp) in bacteria, to several thousand base pairs
(kbp) in higher eukaryotes. Another type of data is the physical
evidence of binding of the TF to a specific region of DNA. For
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example, chromatin-immunoprecipitation (ChIP) of DNA that is
cross-linked to a TF can be hybridized to an array (ChIP-chip)
or sequenced (ChIP-seq) to obtain regions that contain binding
sites (see Chapters 9, 10, and 11), and the resolution is often
a few hundred base pairs. One might also perform selections of
binding sites in vitro from random pools containing a large num-
ber of potential binding sites. Often the randomized regions are
on the order of 10-30 bp, large enough that the exact location
of the binding site may not be immediately obvious and some
alignment procedure is necessary to find them. In each of these
data sets the binding sites themselves are not precisely given, but
one only has regions of sequences that can be inferred to con-
tain them. In order to find the actual binding sites one employs
a model that describes the features of the binding sites and an
algorithm that attempts to find sites that conform to the model
and are statistically significant. The motit should represent the
specificity of the TF, and its high scoring occurrences in the set
of sequences are predicted to be the individual binding sites.
Figure 6.1 is an abstract view of this type of data. Each line repre-
sents a sequence, such as one of the genomic regions identified as
containing a binding site, and the thick segments within each line
represent the unknown positions of the binding sites. The goal of
motif discovery algorithms is to find the binding sites within the
DNA segments and, in the process, determine the parameters of
the motif that represent the specificity of the TF.

This type of problem has existed for many years, ever since
one could sequence DNA and wished to determine the impor-
tant features of regulatory sites. In the earliest days the seg-
ments containing the sites were generally quite short and there
was extensive experimental data available that allowed one to

Fig. 6.1. A general schematic of the motif finding problem. Each long thin line represents a single DNA sequence. The
dark segments within each line represent the binding sites whose positions are unknown in advance and we are trying

to discover.
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find the main features, such as the consensus sequence, “by eye”
(1, 2). Within a few years an algorithm was published to auto-
mate the process of discovering consensus sequences from col-
lections of unaligned DNA segments known to contain bind-
ing sites for a common factor (3). In the ensuing years many
other approaches for discovering consensus sequences for regu-
latory sites have been published [for example (4, 5)]. The prob-
lem is non-trivial because individual binding sites are all sim-
ilar to a consensus sequence but often have variations, which
require that the algorithms for finding them must tolerate mis-
matches. However, it was also discovered in those early days
that consensus sequences were limited in their ability to accu-
rately represent the features of regulatory sites. Not only are mis-
matches to the consensus sequence common, but different posi-
tions within the binding sites have different degrees of variabil-
ity, with some being highly conserved and others much less con-
served (6). A weight matrix model (or position weight matrix,
PWM) solves this problem by allowing different mismatches from
the consensus sequence to have different scores. First developed
using a discriminative learning procedure to find a PWM that
would score known regulatory sites higher than similar, but non-
functional sites (7), it was later used in a probabilistic model
where the base distributions of the known sites were used directly
in the PWM (8). Figure 6.2 shows an example of this approach.
Figure 6.2a is an aligned set of 10 binding sites for some TF.
Figure 6.2b is just the count of each base at each position in
the aligned set of sites, and Fig. 6.2¢ converts those directly to
frequencies, which are sometimes referred to as a position fre-
quency matrix (PEM). To convert to a PWM, in which the scores
at each position are added to give the score for the entire site,
the logarithms of the PEM elements are used in the PWM (8).
Figure 6.2d shows a modified version of the PFM in which +1
has been added to each of the counts of the matrix of Fig. 6.2b
before computing the frequencies because a small sample size may
not represent the true distribution [and to avoid assigning a value
to log(0)]. The use of PWMs for motif discovery was initially
developed using a progressive multiple alignment approach where
an alignment with maximum information content was sought (9).
Over the next few years new statistical approaches were intro-
duced and in the intervening years many different algorithms for
identifying TF binding motifs from unaligned DNA sequences
have been developed (10, 11). The purpose of this chapter is to
provide a primer on two important statistical methods, expec-
tation maximization and Gibbs’ sampling, that were initially
adapted for the purpose of motif finding in biological sequences
(both DNA and protein) by Charles E. Lawrence and colleagues
(12, 13).
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A 0.57 0.07 0.07 0.43 0.07 0.14 0.71
C 0.07 0.21 0.21 0.14 0.64 0.14 0.07
G 0.21 0.07 0.07 0.14 0.14 0.64 0.14
T 0.14 0.64 0.64 0.29 0.14 0.07 0.07

Fig. 6.2. a Alignment of binding sites. b The count matrix that shows how many each
base (A, C, G, T) occurs at each position in the aligned sites. ¢ The position frequency
matrix (PFM) that converts the count matrix to a probability matrix by dividing by the total
in each column. d An alternative PFM for the same data in which +1 has been added to
each of the elements of the matrix of part b. This prevents any of the elements of the
PFM from being 0 and may be important when the PFM is based on a small sample of
binding sites.

2. Methods

2.1. Expectation
Maximization

Expectation maximization (EM) is a general statistical procedure
that allows for inferences when working with incomplete or miss-
ing data (14, 15). Its use in motif discovery is easily described in
reference to Fig. 6.1. We assume that each of the sequences is
composed of two parts, a background genomic sequence and the
embedded binding site, and that those two parts have different
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statistical properties. The binding sites are modeled as a PEM, as
in the PFM of Fig. 6.2¢, where the probability of observing a spe-
cific base depends on the position within the binding site. We refer
to the specific probability of a base at a position within a binding
site as P(b,2), where &is the base (A,C,G or T) and 7 is the position
(between 1 and /, the length of the binding site). We also assume
that the background can be described by an overall probability for
each of the four bases. We will refer to this probability at P(5,0)
where 0 refers to the base coming from the background sequence
rather than any of the positions in the binding site. In the sim-
plest case this would just be 25% each of A, C, G, and T, but may
be different in different species. It can probably be well estimated
just from the overall composition of all the sequences, especially if
the embedded binding sites make up only a small fraction of the
total sequence. Consider each of the following scenarios where
different information is available.

Scenario I: 1f we had complete information, we knew P(4,7)
for the binding sites and P(4,0) for the background, and we were
also told where the binding site was located in each sequence,
then we could calculate the probability of the observed collec-
tion of sequences. For example, suppose we know that there is a
binding site at position Jin the first sequence. Then the probabil-
ity for the / positions starting at J (J to J~/+1) would be product
of the P(4,7) values from the PEM for the bases at each position
in the binding site. All other positions in the sequence would
be assigned the probabilities from the P(4,0) distribution, and
the product of the probabilities of every base in the sequence
would be the product of those individual probabilities. And the
probability of the entire set of sequences would be the product
of the probabilities from each separate sequence. That value, by
itself, will not be very useful. Since all of the probabilities are <1,
and there are a very large number of bases in the entire data set,
the total probability of any particular data set will be exceedingly
small. But comparing different probabilities can be very useful,
especially if there is some uncertainty in the information we are
given.

Scenario 2: Suppose we are given the PEM for the bind-
ing sites, P(b,7), and P(4,0) for the background, but we are not
told where the binding site is in each sequence. We could con-
sider each possible position of the binding site, from J=1 to
J = L— [+ 1 (if the entire sequence is L-long) and for each pos-
sible choice of ] calculate the probability of the entire sequence.
A comparison of those probabilities will tell us which is the most
likely (highest probability) choice for the binding site position J.
And since each sequence is independent of the other sequences,
we could do that for each sequence separately to get the most
likely position of the binding site in each sequence and the prob-
ability of all the sequences assuming those binding sites.
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Scenario 3: Suppose instead we are given the binding site posi-
tions in each sequence, but we are given neither the PEM, P(4,7),
for the TF nor P(4,0). Now we could simply line up the bind-
ing sites, as we do in Fig. 6.2, to determine the PEM for the TF.
Then we would know everything, the same as in Scenario I above,
and we can calculate the probability of all the sequences with their
designated binding sites. In fact, it is easy to show that if we are
given the binding site positions, the most likely values of the PFM
(the values that create the highest probability for the entire set of
sequences) are obtained by the procedure of Fig. 6.2a—c.

Scenario 4: We are given only the sequences but neither the
PFM for the binding site (assume we are given its length /
although this is not necessary) nor the binding site locations. We
now have the task of determining both the binding site locations,
], in each sequence and the PFM for the TF, P(4,1), and the back-
ground probability P(4,0). This is the classic motif finding prob-
lem and the EM algorithm we now describe comes from (12).

Step 1: Make a guess for an initial PEM. In (12), the initial
PEM is derived by assuming all of the possible binding sites, every
position in every sequence, are equally likely to be the true bind-
ing site. The PFM is then obtained from an alignment of all possi-
ble binding sites, each weighted by 1/(L — / + 1) so that the sum
of the probabilities on each sequence equal 1. P(4,0) comes from
the overall probability of each base in all of the sequences. It is
possible that doing this would end up with equal probability of
each base at each position, so that P(4,7) = P(5,0) for all 7, in
which case there would be no information to use in the follow-
ing steps to distinguish between possible binding sites. But this
is highly unlikely and even a small divergence from equal proba-
bility can be used in the subsequent steps to increase the overall
probability.

Step 2: Given the P(b,7) and P(4,0) values from the previous
step, one calculates the probability of each sequence for all possi-
ble choices of the binding site, for J=1 to L — /4 1. In general
some possible binding sites will now have higher probability than
the average and some will have lower.

Step 3: A new PFM is derived from the alignment of all pos-
sible binding sites, but each one weighted by its probability as
determined in Step 2. Because the individual sequences are no
longer equally weighted, the PEM, and the values of P(4,z), will
change after this step. The background probability is taken over
all of the bases in each sequence, but now weighted by the prob-
ability that they are not part of the binding site, which will lead
to new values for P(4,0).

Step 4: Repeat Steps 2 and 3 until convergence, when the val-
ues of P(b,i), P(5,0), and the predicted binding site probabili-
ties no longer change. The total probability of the sequences is
guaranteed by this procedure to increase after every step, until
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it finally converges. Regardless of the initial choice of the PEM,
this method converges to some answer, which includes the pre-
dicted binding sites and their associated PFM. However, there is
no guarantee that it will converge to the correct solution, or the
solution with the highest probability over all possible choices. It is
generally suggested that one starts the procedure, at Step 1, with
different choices of the initial PEM. If it always converges to the
same solution it is more likely to be correct than if it converges to
many different ones.

We started with the assumption that we knew the length of
the binding site, but usually this is not the case. We can rerun
the whole procedure with different choices and pick the one
with the highest probability. It is also true that we may get the
correct locations of the binding sites even if we do not know
the correct length exactly. In that case we can often determine
the correct length by aligning the sites after convergence and see
if there is significant non-randomness in the adjacent positions. If
so, use that length and rerun again to get the best model.

Since the choice of the initial PEM determines the final answer
(the method is deterministic), it not only makes sense to start it
with more than one initial guess, but any prior information that
can be used to improve that guess is useful. For example, in bac-
teria the binding site is most likely to be within about 100 bp of
the start of the gene, and so that region is used as the starting
sequence, but it is more likely to be closer than that so one might
weight the closer regions somewhat higher in the initial estimate
of the PFM. One may have reason to expect the protein binds as
a homodimer, a common occurrence in bacterial TFs, and there-
fore the PFM is likely to be symmetric. If the binding site is not
symmetric, it might occur in different orientations in different
examples, so one may need to consider both DNA strands in the
search for a common motif. If one knows the type of transcription
factor that is binding to the sites, for example, a zinc finger pro-
tein or a homeodomain protein, that provides information about
the type of motif being sought and an initial bias toward that
motif can help to find it (16). Other types of useful information
can be applied to increase the likelihood that the EM procedure
will converge to the correct solution (17).

The MEME program suite (17-20) implements the EM algo-
rithm with many options that may be useful. For instance, one can
specify that there may be more than one site per sequence. Or per-
haps one is concerned that some of the sequences have no binding
sites, so the program can be instructed to not require that every
sequence contribute a site to the estimate of the PFM. One can
run it to identify multiple motifs within the set of sequences, since
in many cases TFs act coordinately to control gene expression so
it would not be surprising to find more than one significant motif.
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2.2. Gibbs’ Sampling

And once motifs are found they can be used directly in the search
of genomic sequences to identify more predicted binding sites.

The Gibbs’ sampling (13, 21) procedure has some similarities to
EM, but also some important differences. The most important
difference is that it is not deterministic but rather uses a ran-
dom sampling step. This means that multiple runs, starting with
the same initial parameters may end up in different solutions.
The practical consequence is that Gibbs’ sampling is less likely
than EM to get stuck in local optima and more likely to find
a global optimum if run long enough. It can still benefit from
multiple independent initializations, but it is better at exploring
the “search space” of possible solutions than is EM and therefore
more likely to find the best solution for the set of sequences. The
following steps, in parallel with the steps of EM, describe the basic
Gibbs’ sampling algorithm and its differences from EM.

Step 1: From the set of sequences, leave one out and from the
others choose a single site at random. If there are a total of N
sequences, this gives an alignment of N-1 sites, as in Fig. 6.2a.
From this set of sites one determines a PEM, but because N may
not be a large number it is important to add pseudocounts, as in
Fig. 6.2d, to avoid any of the P(4,7) values being 0. If N is large
the addition of a pseudocount of +1 has a very small effect, but
it can be critical if N is small. The pseudocount may be some-
thing other than +1 and it may be different for different bases, for
example, it may be proportional to the background probabilities
for each base, P(5,0), but the choice of +1 is fairly typical.

Step 2: Using the current PEM, calculate the binding proba-
bility of each potential site in the sequence that was left out. Since
this sequence did not contribute to the PEM the probabilities
of all its sites are independent estimates of binding probability,
given the current values of P(4,7). Rather than using the proba-
bility based on P(4,7) alone, one usually computes the probability
ratio for each potential site coming from the PEM versus coming
from the background model, P(4,0) (13). For computational effi-
ciency this can be done directly by converting the PFM to a PWM
by taking the logarithm of the ratio of the sites model, P(4,7), to
the background model, P(4,0) to get the PWM:

P(b, i)
P(4,0)

W(b,i)=In

and then summing W(5,7) over the positions of each potential
binding site, rather than multiplying the P(4,7) values of the
PEM (6).

Step 3: From the probability ratios for each potential bind-
ing site (from the log probability ratios if one uses the PWM)
one chooses a single site from the sequence where the choice is
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weighted by that probability ratio. That is, the higher the prob-
ability ratio the more likely a specific site will be chosen, but any
site within the sequence has some probability of being selected.
One of the sequences that was used in the previous step is now
left out, and its site, which contributed to the previous PEM, is
replaced by this new site. A new PFM is made from the alignment
of this current set of sites as in Fig. 6.2 (and a PWM if desired).

Step 4: Steps 2 and 3 are repeated as many times as desired.
Unlike EM this procedure does not converge, although it tends
to increase in score [generally a log-likelihood ratio score such
as “information content” (6, 13)] until reaching a plateau that it
fluctuates around. How long this takes is unknown, and indepen-
dent runs may take quite different times [see Fig. 3 of ref. (13)].
Usually the program is run multiple times for a fixed number of
steps each time and then the final results after each run are com-
pared. If they are all the same, or very similar, it has probably
found the global optimum, but if they are each different it could
be that none is really the optimum solution.

Variations of the basic Gibbs’ sampling approach have been devel-
oped by different groups, sometimes customized for specific types
of data [for example (22, 23)]. The basic Gibbs’ sampling pro-
cedure described can easily be extended to allow these multi-
ple sites per sequence, as well as looking for multiple different
motifs. Other constraints, as in the EM algorithm, can also be
applied, such as requiring symmetric sites. And similar to the EM
approach, prior information can be incorporated that biases the
initial PFM toward the expected motit which can increase the
likelihood of finding the correct solution.

3. Conclusions

EM and Gibbs’ Sampling are both powerful statistical methods
that are capable of identifying motifs and binding site de novo,
without any prior information. There is no guarantee that they
will succeed, either in finding the correct solution or in finding
the highest probability of all possible solutions. Multiple runs that
return the same solution are likely to be correct, but if many
different solutions are found perhaps none are correct. Prior
information of various types can be used to help find the correct
solution. And it is easy to look for multiple motifs that may corre-
spond to sets of factors that coordinately control gene expression.

Despite their usefulness, methods such as EM and Gibbs’
sampling may fail to find the correct solution or any significant
solution. This could be simply because the sequence set contains
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enough “incorrect data” (sequences that do not actually contain
binding sites) that the motif occurrence is not statistically signifi-
cant. It is also possible that the motif'is present but does not con-
form to the PFM model. For example, the PFM model assumes
that the positions of the binding sites contribute independently to
the binding activity and that is an approximation that may or may
not be true (24). Another potential problem is that the probabil-
ity model of the PEM does not fit well and an energy model that
takes into account the non-linear relationship between binding
energy and binding probability is needed instead (25, 26). But
even in such cases one may be able to get a good approximation
to the true specificity of the factors being studied.
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Chapter 7

Probabilistic Approaches to Transcription Factor Binding
Site Prediction
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Abstract

Many different computer programs for the prediction of transcription factor binding sites have been
developed over the last decades. These programs differ from each other by pursuing different objectives
and by taking into account different sources of information. For methods based on statistical approaches,
these programs differ at an elementary level from each other by the statistical models used for individual
binding sites and flanking sequences and by the learning principles employed for estimating the model
parameters. According to our experience, both the models and the learning principles should be chosen
with great care, depending on the specific task at hand, but many existing programs do not allow the
user to choose them freely. Hence, we developed Jstacs, an object-oriented Java framework for sequence
analysis, which allows the user to combine different statistical models and different learning principles in
a modular manner with little effort. In this chapter we explain how Jstacs can be used for the recognition
of transcription factor binding sites.

Key words: Transcription factor binding sites, probabilistic models, generative learning, discrimi-
native learning.

1. Introduction

Hundreds of different computer programs for the prediction of
transcription factor binding sites have been developed over the
last decades. However, many of them yield contradictory predic-
tions, leading to long debates and a lot of frustration on the hall-
ways of many biology departments all over the world. One of the
reasons why there are so many different programs is that binding
of transcription factors to their binding sites, and unbinding from

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
DOI 10.1007/978-1-60761-854-6_7, © Springer Science+Business Media, LLC 2010
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them, is an extremely complex process. Existing programs differ
by taking into account different aspects of that complexity, by
modeling the same aspects in a different manner, by taking into
account different sources of additional information, and by pur-
suing different objectives.

Programs for demnovo motif discovery, for example, (1-6)
obtain as input a set of promoter sequences containing unaligned
binding sites of unknown binding motifs. In contrast, programs
for the recognition or classification of binding sites (7—13) are sup-
plied with sets of known binding motifs. Orthologous promoters
are used as additional information in approaches of phylogenetic
footprinting (14, 15) or phylogenetic shadowing (16) and expres-
sion data (6, 17) and /or ChIP-Seq data (18) can be used as valu-
able additional information, too.

In addition to these differences, programs for the prediction
of transcription factor binding sites often differ at an elementary
level by the statistical models used for individual binding sites and
flanking sequences and by the learning principles employed for
estimating the model parameters. Many existing programs for the
prediction of transcription factor binding sites do not allow the
user to choose the statistical models or the employed learning
principle. However, according to our experience, both should be
chosen with great care, depending on the specific task at hand.
Hence, we developed Jstacs (www.jstacs.de), an object-oriented
Java framework for sequence analysis, which allows the user to
combine different statistical models and different generative and
discriminative learning principles in a modular manner with little
effort.

In this chapter, we focus on the recognition of transcription
factor binding sites and explain step by step how Jstacs can be
used for this task. By choosing a simple example we illustrate
how models can be learned based on different learning principles,
how each of the model combinations can be evaluated based on
independent test sets, and how the resulting classifier can finally
be used for the prediction of binding sites of steroid hormone
receptors in human promoter sequences. We provide the com-
plete program combining all of the source code snippets used in
this chapter as well as example data sets as supplementary material
at www.jstacs.de/index.php/MiMB.

2. Software

All code examples are based on Jstacs, an open-source Java
framework for statistical analysis and classification of biological
sequences. Jstacs is easy to use and readily extensible due to its
strictly object-oriented design.
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Jstacs comprises an efficient representation and convenient
handling of sequence data and provides ready-to-use implementa-
tions of many statistical models for sequence data (Section 3.2).
These models can be learned generatively (Section 3.3) or dis-
criminatively (Section 3.4) and can be combined to constitute
classifiers. Jstacs comes with assessment methods which are used
for comparing different classifiers on test data sets or by hold-out
experiments. For evaluating classifiers, the user may choose from
several performance measures, €.g., sensitivity or specificity. Jstacs
also provides classes for de novo motif discovery spanning from
generative approaches using the EM algorithm (See Chapter 6,
This volume) to more recent discriminative (19, 20) discovery
algorithms.

Jstacs is capable of handling a great variety of data and is not
restricted to DNA sequences. Data sets are called Samples in
Jstacs and consist of a number of Sequences. For convenience,
we implement the class DNASample that allows to easily load data
sets comprising DNA sequences.

Jstacs comes not only with implementations of statistical
models for sequence analysis, which help experimentalists to ana-
lyze their data, but it is also based on an object-oriented infras-
tructure, which assists the implementation and assessment of new
models. To this end, Jstacs provides interfaces and abstract classes
for statistical models, e.g., AbstractModel, and classifiers, e.g.,
AbstractClassifier. New statistical models that implement
and extend the required interfaces and abstract classes may be
combined for obtaining a classifier without further implementa-
tion overhead. If that classifier extends a predefined abstract class,
it is ready to be trained and to be evaluated on given data and to
be used for classification of new data.

To get started with Jstacs, a Java Runtime Environment
(JRE)' of at least version 5 is required. The easiest way to run
the example code is to download the Jstacs binaries, which are
publicly available at www.jstacs.de, and extract them into a direc-
tory of your choice. Download the example Java code file and
the datasets from www.jstacs.de/index.php/MiMB and follow
the instructions given in Getting started.

We present and explain parts of the example code in the
sequel. Line numbers in front of the code snippets allow to
quickly identify these parts in the example-code file, where also
detailed comments are supplied.

! www.sun.com/java
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3. Methods

3.1. Classification

In this section we present some of the theoretical concepts for
probabilistic prediction of binding sites and demonstrate these
concepts using some of the basic functions of Jstacs. As a spe-
cific example we choose the prediction of binding sites of mam-
malian transcription factors — namely androgen receptors (AR),
glucocorticoid receptors (GR), and progesterone receptors (PR)
— from the family of steroid hormone receptors, which we refer
to as AR/GR /PR, in a set of human promoter sequences. Specif-
ically, we present how to load the training data of experimentally
verified AR/GR /PR binding sites into Jstacs and how to obtain
the binding motit of these sites using different learning princi-
ples. Subsequently we show how to evaluate the performance of
the resulting classifiers and how to perform the final recognition
of AR/GR /PR binding sites in human promoter sequences using
the resulting classifier.

Taking a probabilistic approach to transcription factor binding site
prediction requires the definition of probabilities for each possible
sequence x = (x1,42,...,4) corresponding to a putative bind-
ing site of fixed length L, where each x; is from the alphabet
¥ ={A,C,G, T} of the four nucleotides A, C, G, and T. Our
goal is to distinguish binding sites — called foreground sequences
and abbreviated by fg — from flanking regions — called background
sequences and abbreviated by bg. Hence, we need likelihoods
P(x|c,0) with parameters 6 for the occurrence of a sequence for
both classes ¢ € C = {fg, bg}.

For classification it is common to use the Bayes classifier that
decides for class ¢* with

¢* = argmax P(c|x,0) = argmax P(c, x|0) [1]
ceC ceC

where P(c|x,0) denotes the posterior probability of class ¢ given
sequence xand parameters # and where P(¢, x/0) denotes the joint
likelihood of class ¢ and sequence x given parameters 6. In case
of two classes and a properly chosen threshold, this classifier is
equivalent to the lkelibood ratio classifier, which decides for the
toreground if P(x|tg,0)/P(x|bg,d) exceeds a given threshold and
which decides for the background otherwise.

The main challenge for probabilistic approaches is to esti-
mate the likelihood P(«|c,0). In addition, an estimation of the
class probability P(c|@) is formally required, although is not crit-
ical in most applications. For classification, we are in the case
of supervised learning and are given a data set of N labeled
data points (x,, ¢,), which we denote by D = (x1,...,xy) and
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¢c=(c1,...,cn) in the following. The data points (x,¢,) are
assumed to be independent and identically distributed (i.i.d.)
according to the joint likelihood P(¢, x().

Approaches for obtaining these probabilities from a set of
training data differ mainly by the families of statistical models
(Section 3.2) chosen for the likelihoods P(x|c,8) and by the
learning principle (Sections 3.3 and 3.4) chosen for estimating
the parameters 6 of these models.

To solve any classification problem we need to handle data
sets. The package de.jstacs.data of Jstacs contains Java
classes to represent data. Here we use the class DNASample for
handling the foreground and background data, assuming that the
training sequences are stored in FastA-files foreground. fa and
background. fa:

53 Sample fgData = new DNASample( "foreground.fa" );
54 Sample bgData = new DNASample( "background.fa" );

The data sets fgData and bgData are subsequently used for
training statistical models. Jstacs also supports plain text files and,
via the BioJavaAdapter, all formats and data bases accessible
from BioJava.

To characterize the distribution of binding sites, the prevalent sta-
tistical model is currently still the position weight matrix (PWM)
model (e.g. (7, 8), See Chapter 6, this volume). This model
assumes statistical independence of the nucleotides observed at
different positions. As a consequence, the likelihood of a sequence
decomposes as

~

P(xlfg, 05y) = H (elfg, Or) [2]

where the parameter® 6, denotes the matrix of four rows and L
columns called PWM. Here, the matrix element in row 1, 2, 3,
or 4 and column ¢ contains the probability of finding nucleotide
A, C, G, or T, respectively, at position ¢ in the binding site of
length L (7, 8) (See Chapter 6, this volume). The index ¢ in
Py(x¢|tg,0¢) emphasizes that these probabilities may vary from
position to position. Figure 7.1 shows the PWM of binding
sites of the AR/GR/PR-family and the corresponding consensus
sequence and sequence logo (21). The first three entries of row 1

* Note that the parameters # contain the parameters for each class, e.g., 0, 01,
and the class probabilities.
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Fig. 7.1. Sequence logo, position weight matrix, and consensus sequence of the binding sites of the AR/GR/PR family.

3.3. Generative
Learning Principles

3.3.1. Maximum
Likelihood Principle

of this PWM show that nucleotide A occurs with a probability of
0.14 at position 1, 0.44 at position 2, and 0.26 at position 3 of the
binding sites of the AR/GR /PR family. The consensus sequence
is composed of the consensus nucleotides, i.e., the nucleotides
with the highest probability at each position. Here, we replaced
consensus nucleotides with a probability of less than 0.5 by N.

As this strong assumption of independence is questionable in
general (4), inhomogeneous Markov models (iMMs) of higher
order have been used for modeling bindings sites (22, 23). In
these models the probability of observing a nucleotide at a given
position depends on nucleotides observed at previous positions.
This results in the likelihood:

L

P(xifg, 05;) = [ | Pe(xele—mys- - 5%0-1,68,0¢)  [3]
=1

where xp_y,, ..., x—1 with my = min{m, ¢ — 1} defines the con-
text of at most m nucleotides on which the nucleotide at position
£ depends on. The maximal length m of the context defines the
model order of the Markov model. Clearly, the PWM is an iMM
of order zero. Note 1 provides an intuitive justification and fur-
ther extensions of Markov models.

Generative learning principles aim at an accurate description of
the probability distributions of binding sites and background
sequences. This may seem the only sensible way of estimating
model parameters, but we see in the next sections that other learn-
ing principles are conceivable and potentially superior in many
applications of binding site recognition.

The maximum likelihood (ML) principle is probably the most
popular learning principle (Chapter 5). It suggests to choose
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those parameters 6 that maximize the joint likelihood P(D, ¢|@)
of the labeled data set (D, ¢):

éML = argmax P(D, c|6) [4]
0

The estimate éML is used in rule (1) for the decision of the
classifier. Note that the parameters 6 contain the parameters for
each class — according to the chosen family of distributions — and
the class probabilities.

If the parameters of different classes are assumed to be inde-
pendent, which is usually appropriate, maximization can be per-
formed for each class separately. In case of PWM models, ML

estimation amounts to counting frequencies of nucleotides in the
. . ~ML .
data set, i.e., the £th column of the ML estimate 0g, contains

the relative frequencies of the four nucleotides A, C; G, and T at
position £. For example, the AR/GR/PR data set contains 104
binding sites, out of which 15 binding sites start with an A, 46
binding sites have an A at position 2, and 27 binding sites have an
A at position 3, resulting in the relative frequencies % =0.14,

1‘% = 0.441%, and % = 0.26. Figure 7.1 contains the full 4 x L

matrix éf

As with all estimation methods, care must be taken with
regard to overfitting, which is the effect of over-adaptation of the
estimated parameters to noise and/or randomness in the train-
ing data. Overfitting results in a weak ability of generalizing to
new data, i.e., of predicting transcription factor binding sites in
promoter sequences not used for training. In general, the risk of
overfitting increases with decreasing sample size and with increas-
ing model complexity. For a PWM model overfitting can easily be
understood for a case where at some position £ some nucleotide
was not observed by chance in the training data set, resulting in an
estimated probability of zero for this nucleotide at this position.
This essentially “forbids” such sites, although they may not occur
in the training data just by chance. To alleviate this problem, often
pseudo-counts are added to the data.

The maximum a posteriori (MAP) principle takes a Bayesian view
on parameter estimation. This learning principle employs a prior
density P(f@|a) for the parameters 6, which is used for represent-
ing prior knowledge or assumptions. The prior is chosen from a
family of distributions and &« denotes the hyperparameters of the
prior. For the MAP principle, the objective is to choose those
parameters @ that maximize the posterior. Decomposing the pos-
terior yields

0™ — argmax P(8ID, ¢, ) = argmax P(D, ¢|0)P(8]a)  [5]
(4 [
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3.3.3. ML and MAP
Learning in Jstacs

This shows that maximizing the posterior can be viewed as maxi-
mizing the data likelihood multiplied by the corresponding den-
sity of the parameters. Furthermore, the posterior can be inter-
preted as the knowledge we have about the parameters updating
the prior with the observed data. Note 2 presents more informa-
tion on Bayesian approaches.

If we choose the prior from the family of Dirichlet distri-
butions (Note 3) using consistent hyperparameters & (Note 4),
the resulting MAP estimator corresponds to using pseudo-counts
derived from a set of virtually observed pseudo-data. The amount
of pseudo-data used is called the equivalent sample size (ESS) and
determines the influence of the prior on the parameter estimate.
In analogy to the ML estimate of a PWM, the MAP estimate of
a PWM can be easily obtained from absolute frequencies of the
data plus pseudo-counts stemming from the prior distribution.
For more complex models the product-Dirichlet prior can be used
and allows alleviating the problem of overfitting (Note 4).

The Jstacs package de.jstacs.models and its sub-packages
contain classes for models that can be trained genera-
tively. The class BayesianNetworkModel of the sub-
package de.jstacs.models.discrete.inhomogeneous
is a ready-to-use implementation of a Bayesian network. Inho-
mogeneous Markov models (Section 3.2), which we use for rep-
resenting foreground and background sequences, are special cases
of Bayesian networks.

In our example, we choose order 0 for the foreground
model and the background model, i.e., we decide for a PWM
model for both classes. We decide for MAP parameter estima-
tion with ESS = 4 for the foreground model and ESS = 1,024
for the background model. For the foreground model, we create
a BayesianNetworkModelParameterSet, which is a con-
tainer of external model parameters, and which can be used for
instantiating a BayesianNetworkModel:

59 BayesianNetworkModelParameterSet pars =
60 new BayesianNetworkModelParametersSet (

61 fghata.getAlphabetContainer (),
62 fgData.getElementLength(), 4, "fg model",
63 ModelType.IMM, (byte)0, LearningType.ML_OR_MAP ) ;

External parameters are the alphabet, the length of the
sequences, the ESS, a description of the model, the type of
the model, and the order of the model. The last external
parameter determines how the parameters are estimated, where
LearningType.ML_OR_MAP indicates that the ML or the MAP
learning principle is used. If we set t the ESS to 0 instead of 4, we
obtain ML instead of MAP parameter estimation.
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We instantiate the foreground model by calling

69 Model fgModel = new BayesianNetworkModel ( pars );

We construct the background model bgModel in analogy to the
foreground model. Details are given in the example code file.

As described above, we can estimate the parameters of the
foreground model, the background model, and the a priori prob-
abilities of the classes independently of each other. While we could
perform these steps by hand, Jstacs provides a convenient imple-
mentation in the class ModelBasedClassifier of package
de.jstacs.classifier.modelBased.

85 ModelBasedClassifier cl =
86 new ModelBasedClassifier( fgModel, bgModel );

A ModelBasedClassifier is a subclass of Abstract

Classifier. As such it has a method train (Sample...),
which can be used for training the models as well as the class
probabilities.

87 cl.train( fgData, bgDhata );

The variable ¢1 now holds a classifier that comprises a gen-
eratively trained PWM model as foreground model and a
generatively trained PWM model as background model. We
can next assess the classification performance of that classifier
(Section 3.5.3) or we can use it for recognizing binding sites
(Section 3.6).

3.4. Discriminative Discriminative learning principles (Note 5) have been introduced

Learning Principles to bioinformatics in the last decade as a promising alternative to
generative learning principles. While the latter aim at an accurate
representation of the probability distributions of the data in each
of the classes, discriminative learning principles focus on an accu-
rate discrimination of the data.

3.4.1. Maximum The maximum conditional likelihood (MCL) principle (19, 24)
Conditional Likelihood is the discriminative analog of the ML principle. It suggests to
Principle choose those parameters @ that maximize the conditional likeli-
hood P(¢|D,0):
~MCL

6 =argmax P(¢|D,0) [6]
0
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3.4.2. Maximum
Supervised Posterior

The maximization of the conditional likelihood is motivated
by the classification rule (1) and the MCL principle was suc-
cessfully applied to the classification of biological sequences
(25,13).

Solving this maximization problem is more involved than for
the ML and MAP principles. First, maximization cannot be per-
formed for the classes independently. Second and more severely,
optimization cannot be done analytically for many popular fami-
lies of distributions including Markov models. For Markov mod-
els considered in this chapter, numerical methods converging to
the global maximum are available for a properly chosen param-
eterization of the Markov model and its prior distribution (e.g.,
(19)). A sensible choice of the initial values of the parameters are
the corresponding generative estimates, which are called plug-in
parameters in Jstacs. In general, the resulting numerical methods
are computationally more demanding than the analytical solution
in the generative setting.

The effects of overfitting due to limited data may be even more
severe when using the discriminative MCL principle compared
to the generative ML principle (24). To overcome this problem,
the maximum supervised posterior (MSP) principle has been pro-
posed as another discriminative learning principle (20). The MSP
principle suggests to choose those parameters that maximize

éMSP = argmax P(¢|D,0,a)P(0|x) [7]
6

Comparing this equation [7] to equation [6], we see that the
MSP principle is the Bayesian analog of the non-Bayesian MCL
principle. Comparing equations [7] to [5], we see that it can
also be interpreted as the discriminative analog of the generative
MAP principle, because the supervised posterior is defined as the
product of the conditional likelihood [6] and the prior P(0|w).
As for the MAP principle, prior knowledge on the parameters is
introduced via the distribution P(f|e) and again frequencies of
zero are compensated for. The remarks made with regard to opti-
mization for the MCL principle apply to the MSP principle as
well.

Figure 7.2 summarizes the four learning principles described.

non-Bayesian | Bayesian
Generative ML MAP
Discriminative MCL MSP

Fig. 7.2. The tableau distinguishes the four learning principles introduced with regard
to the generative or discriminative objective and with regard to the use of prior
knowledge.
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3.4.3. MCL and MSP
Learning in Jstacs

In Section 3.3.3 we have seen how Jstacs can be used for
creating a BayesianNetworkModel. The discriminative
counterpart of that model is the BayesianNetworkScoring
Function located at de.jstacs.scoringFunctions.
directedGraphicalModels. In analogy to the instantiation
of a BayesianNetworkModel, we first define the external
parameters of the foreground model:

92 BayesianNetworkScoringFunctionParameterSet parsD =

93 new BayesianNetworkScoringFunctionParameterSet (
94 fgData.getAlphabetContainer (),

95 fgData.getElementLength(), 4, true,

96 new InhomogeneousMarkov( 0 ) );

where true in line 95 indicates that we wuse plug-
in parameters for initializing the parameters. Using new
InhomogeneousMarkov (0) results in an inhomogeneous
Markov model of order 0, i.e., a PWM model, and the remaining
parameters have the same meaning as in the generative case. We
use these parameters for instantiating the foreground model by

13 BayesianNetworkScoringFunction fgFun =
14 new BayesianNetworkScoringFunction( parsD );

We instantiate the background model bgFun accordingly with
ESS = 1,024 instead of 4. Details can be found in the example
code file.

We combine these models in a MSPClassifier of package
de.jstacs.classifier.scoringFunctionBased.msp,
which learns the parameters of the models by the discriminative
MSP principle. To instantiate this classifier, we specify its external
parameters by

112 GenDisMixClassifierParameterSet clPars =

113 new GenDisMixClassifierParametersSet (

114 fghata.getAlphabetContainer (),

115 fgDhata.getElementLength(),

116 Optimizer.QUASI_NEWTON_BFGS, 1E-6, 1E-6, 1,
117 false, KindOfParameter.PLUGIN, true, 1 );

where QUASI_NEWTON_BFGS, 1E-6, 1E-6, 1 define the
method for numerical optimization and parameters thereof.
KindOfParameter.PLUGIN indicates that we want to use
plug-in parameters for the class probabilities as well.
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3.5. Comparison of
Models and Learning

Principles

3.5.1. Performance

Measures

We instantiate the classifier from these parameters by

125 MSPClassifier cll =
126

new MSPClassifier (

clPars, new CompositeLogPrior (), fgFun, bgFun );

where new CompositeLogPrior () may be replaced by
null for obtaining the MCL principle.

We can now train this classifier in analogy to the generative
case by calling

133 cll.train( fgDhata, bgData );

which starts the numerical optimization and results in an discrim-
inatively trained classifier. In Section 3.5.3 we show how the clas-
sification performance of such a classifier can be assessed and in
Section 3.6 we show how it might be used for the recognition of
binding sites.

In the previous sections, we considered Markov models of differ-
ent orders on the one hand and different learning principles on
the other. However, we do not know in advance which combina-
tion of models and learning principle is best for a certain problem
and a certain data set. Hence, we typically scrutinize the perfor-
mance of different classifiers — using different pairs of models and
different learning principles — on the specific data set using several
performance measures and we strongly recommend this approach
to everyone working on the recognition of transcription factor
binding sites.

All performance measures considered in this chapter can be
derived from the confusion matrix. The general schema of a con-
fusion matrix is depicted in Fig. 7.3. Given that the data are

Actual
fg bg
o
< | fe || TP=51 FP =959 p=1,010
2
£ |be|| FN=1 TN =27,556| @ =27,557
p=52 n=28515| N'=28567

Fig. 7.3. Confusion matrix. The entries of the matrix are computed for PWM models on
the AR/GR/PR data set using a classification threshold of 1, corresponding to a threshold
of 0 on the log-likelihood ratios.
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partitioned into a training and a test data set and that a classi-
fier has been learned on the training data set, we use this classifier
for predicting the class of each of the sequences in the test data
set. Subsequently we determine the number of correctly classi-
fied sequences from the foreground class (true positives, 7P) and
background class (true negatives, T'N) as well as the number of
sequences classified incorrectly as belonging to the foreground
class (false positives, FP) or background class (false negatives,
FN). The sum TP + FN is equal to the number of foreground
sequences p, FP 4+ TN is equal to the number of background
sequences 7, TP + FP is the number of sequences p classified into
the foreground class, and TN + FN is the number of sequences 7
classified into the background class. Finally, p+#n=p+n= N’
is the size of the test data set.

It is important to note that the class labels of the data points
in the training and the test data set do not reflect some absolute
truth, but only some relative truth based on currently available
experiments. For example, if a set of sequences is partitioned into
those that are bound by a given transcription factor and those that
are not, then this partitioning is based on some data set, for exam-
ple, some set of ChIP-Seq data. However, these data are intrin-
sically noisy, containing both biological and technical variation.
Hence, the foreground set of ChIP-Seq-positive sequences is typ-
ically contaminated by some sequences that are not bound by the
immuno-precipitated transcription factor and vice versa. Hence,
class labels do not correspond to biological reality, but strictly
speaking they correspond only to currently available experimen-
tal observation. In case of ChIP-Seq data, the degree of cross-
contamination is still quite high, which often leads to frustratingly
low classification performance.

Based on the entries of the confusion matrix, several perfor-
mance measures can be computed:

e (lassification rate cr = % is the percentage of correct
predictions (%ggg; = 0.9664 in the example).

e Sensitivity Sn = % = % is the percentage of fore-
ground sequences correctly predicted (0.9898).

.. .. _ TP _ P . :
e Dositive predictive value ppv = 5 = TP+EP 1S the percent

age of correct predictions among the sequences predicted as
foreground (0.0505).

e Specificity Sp = T—i\] = FPTF—NTN is the percentage of correctly

predicted background sequences (0.9664).
e False-positive rate fpr =1 — §p is the percentage of erro-
neously predicted background sequences (0.0336).

From the confusion matrices for different thresholds
(Section 3.1), we can compute pairs of Sn and fpr, which can



110 Posch et al.
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Fig. 7.4. ROC curve (leff) and PR curve (right) for PWM models on the AR/GR/PR data set. The cross on the ROC curve
illustrates the pair of Sn and fpr for a threshold of 0 on the log-likelihood ratios, corresponding to the confusion matrix
presented in Fig. 7.3, and the cross on the PR curve illustrates the corresponding pair of ppv and Sn. The ROC curve is
biased by the unbalanced sizes of the foreground and background data set, yielding a spuriously inflated area under the
ROC curve close to 1, whereas the PR curve gives a more realistic view on the performance of the classifier.

3.5.2. Cross-Validation
and Holdout Sampling

be used for plotting a receiver operating characteristic (ROC)
curve. Another view on the classification performance can be
obtained by plotting ppv against Sn resulting in the precision—
recall (PR) curve. Examples for both curves are given in Fig. 7.4.
On first sight, the ROC curve indicates an almost perfect classi-
fication. However, the test data set contains approximately 600
times as many background sequences as foreground sequences,
which strongly biases the ROC curve (see also Note 6). In con-
trast to the ROC curve, the PR curve reveals that ppv decreases
by approximately the same amount as Sn can be increased. Hence,
in cases of very unbalanced data sets, the PR curve is a more ade-
quate measure of classification performance.

Ifa large number of classifiers need to be compared, the visual
comparison of curves is not always manageable. In this case, it is
helpful to aggregate the ROC and PR curves into scalar values
by computing the areas under the curves, denoted by AUC-ROC
and AUC-PR, respectively. Note 6 contains additional recom-
mendations regarding performance measures.

Data are limited for many applications in bioinformatics. This is
especially true for transcription factor binding sites, where typi-
cal data sets of verified binding sites comprise 20-250 sequences,
although chromatin immunoprecipitation combined with next
generation sequencing produces several thousand low-confidence
sites. For such small data sets a simple approach of splitting all data
available in training and test data does not yield reliable results.
Here we discuss two approaches for a reliable assessment
of classifiers on small data sets. The first approach is a k-fold
cross-validation: partition the data set into % non-overlapping
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3.5.3. Assessment of
Classifiers in Jstacs

parts of approximately the same size. Successively use each of the
k data sets for testing and train the classifier on the remaining
k—1 data sets. Finally, average the performance measures of the
results over the % folds. The maximum possible number % of cross-
validation folds is the number of sequences in the data set, which
results in a leave-one-out cross-validation.

Another approach is holdout sampling: randomly partition
the data set into a training and a test data set, comprising, for
example, 90 and 10% of the original data set, respectively. Use
the training data set to train the classifier and test its performance
on the test data set. Repeat this procedure % times and average
the performance measures over the % runs. Holdout sampling
allows the possibility of choosing a large number % of repetitions
even for small data sets. However, it cannot be assured that each
sequence is used exactly once for testing, which is the case for
cross-validation.

For cross-validation as well as holdout sampling, it is recom-
mended to partition the data in a stratified manner, i.c., to assure
that the proportion of foreground and background sequences
remains approximately the same for the training and the test
partition.

First, we demonstrate how to assess an already trained classi-
fier on a separate test data set. To this end, each subclass of
AbstractClassifier including ModelBasedClassifier
and CLLClassifier contains a method evaluateAll.

We first choose the desired performance mea-
sures by instantiating MeasureParameters of package
de.jstacs.classifier:

175 MeasureParameters mp =
176 new MeasureParameters( true, 0.999, 0.95, 0.95 );

where 0.999 is the fixed Sp for computing Sn and the two values
of 0.95 correspond to the fixed Sn for computing fpr and ppv,
respectively (Note 6).

Next we call the evaluateAll-method on the trained
classifier c1 on the foreground and background test data sets
fgTest and bgTest.

183 ResultSet rs =
184 cl.evaluateAll ( mp, true, fgTest, bgTest );
185 System.out.println(rs) ;

We obtain a ResultSet as a container for the performance
measures, which can be printed using standard methods. An
example output is depicted in Fig. 7.5. In this case, the
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0.9664 = Classification rate (...)
0.5577 = Sensitivity for fixed specificity (...)
3.9974 = Threshold for semnsitivity (...)

0.9942 = Area under ROC curve (...)

0.4770 = Area under PR curve (...)

[table] Receiver operating characteristic curve (...)
[table] Precision recall curve (...)

Fig. 7.5. Output of the evaluation of a classifier. The last two entries indicate that the
ROC curve and the PR curve have been computed in the evaluation.

ResultSet also contains the points of the ROC and PR curves,
which can be directly plotted using R (26) from within Jstacs,
resulting in the plots of Fig. 7.4. The example-code file contains
helpful comments for setting up communication between R and
Jstacs.

The package de.jstacs.classifier.assessment
contains classes for cross-validation and holdout sampling. In the
following we decide for a 1,000-fold stratified holdout sampling.
Again, we must first define the external parameters

230 RepeatedHoldOutAssessParameterSet parsA =
231 new RepeatedHoldOutAssessParameterSet (

232 Sample.PartitionMethod.PARTITION_BY_ NUMBER_OF
_SYMBOLS,

233 fgDhata.getElementLength (), true, 1000,

234 new double[]{ 0.1, 0.1 } );

where Sample.PartitionMethod.PARTITION_BY
NUMBER_OF_SYMBOLS indicates that we want to measure the
size of the partitions by the number of symbols, 1,000 is the
number of repetitions, and the array of doubles defines the rela-
tive size of the sampled foreground and background test data sets.

We assess the performance of the classifiers c1 and c11 by
calling

240 RepeatedHoldOutExperiment exp =

241 new RepeatedHoldOutExperiment( cl, cll );

242 ListResult lr = exp.assess( mp, parsA, fgDhata, bgData );
243 System.out.println( 1lr );

where mp are MeasureParameters as before. By printing the
ListResult to standard out, we obtain a table of the classifiers
and corresponding values of the performance measures. We can
use these results for comparing the performance of different
classifiers.

As an example, we present the results of a 1,000-fold strati-
fied holdout sampling on the AR/GR /PR data set in Fig. 7.6. We
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Fig. 7.6. Results of a 1,000-fold stratified holdout sampling for PWM models on the
AR/GR/PR data set. The parameters of the PWM models have been trained by the
ML, MAP, MCL, and MSP learning principle. Whiskers indicate the two-fold standard
error. While we find no significant differences regarding ppv, we find a just significantly
improved performance of the classifier learned by the MSP principle on this data set
considering the area under the PR curve.

compare the performance of PWM models learned by the genera-
tive ML and MAP learning principles as well as the discriminative
MCL and MSP learning principles considering ppv and AUC-
PR as performance measures. We find no significant differences
regarding ppv, but we find a significantly improved performance
of the classifier learned by the MSP principle on this data set con-
sidering AUC-PR (Note 7). These results suggest we use such
a classifier for recognizing new AR/GR/PR binding sites in the
next section.

The final goal is to predict transcription factor binding sites
in some set of genomic regions such as promoters of dif-
ferentially expressed genes, regions bound by one or several
TFs obtained by ChIP-Chip or ChIP-Seq experiments, or con-
served regions of orthologous promoters of evolutionarily related
species. Here, we consider the specific example of predicting
the putative binding sites of the AR/GR/PR-family of tran-
scription factors in a set of human promoter sequences, each
of length 500 bp, obtained from the human promoter database
(http://zlab.bu.edu/mfrith/HPD.html). Since PWM models
learned by the MSP principle achieved the best performance
of the classifiers we studied (Section 3.5), we now use such a
classifier for recognizing AR/GR/PR binding sites. The cho-
sen classifier c11 has a method getScore (sub, class), which
returns a score for sequence sub belonging to class class. Here
class=0 means foreground and class=1 means background.

We load the promoter sequences into Jstacs and compute the
log-likelihood ratio for each sub-sequence of length 16 bp of each
promoter sequence.

258 Sample promoters = new DNASample( "human_promoters.fa" );
259

260 for( Sequence seq : promoters ) {

261 for (int 1=0;l<seq.getLength()-cll.getLength()+1;1++) {
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262 Sequence sub = seq.getSubSequence( 1, cll.getLength() );
263 1llr = cll.getScore( sub, 0 ) - cll.getScore( sub, 1 );
264 out.print( 1lr + "\t" );

265 }

266 out.println() ;

267 }

In this example, we consider only the forwardstrand of
the promoters. The same analysis can be repeated for
the backwardstrand, if we replace getSubSequence by
reverseComplement. The log-likelihood ratios are printed
for further analysis. In Fig. 7.7, we present a plot of the log-
likelihood ratios for a sub-sequence of one of these promoter
sequences. We apply a threshold of 2 in this example and pre-
dict one potential occurrence (“CATTTTGTCCTAAACA”) of
a putative AR/GR/PR binding site within this sub-sequence.
Comparing this occurrence to the sequence logo of Fig. 7.1 we
find that this occurrence is in good accordance with the motif
of the AR/GR/PR-family. Interestingly, despite its large log-
likelihood ratio, this putative binding site cannot be found by
searching for the consensus sequence, as it does not match the
consensus “T” at position 9 of the motif.

-15 -10 -5 0

5

T 1
TAAACA

Fig. 7.7. Plot of the log-likelihood ratios for a sub-sequence of a promoter sequence, where the log-likelihood ratios for
each sub-sequence of length 16 bp, which is the length of AR/GR/PR binding sites, are plotted above its first nucleotide.
If we apply a classification threshold of 2 (horizontal line), we recognize one putative AR/GR/PR binding site (boldface
letters). The position of this binding site is determined by the log-likelihood ratio at its first nucleotide (from 5" to 3’ end)
and the length of AR/GR/PR binding sites.

4. Notes

1. One way of understanding inhomogeneous Markov models
(Section 3.2) is to start with the standard factorization of
an arbitrary distribution P(X), where we omit the class and
parameters for brevity:

P(x P1x1l_[ (xelct, -, 2e-1) (8]
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This factorization holds for arbitrary distributions, whereas
an iMM(m) restricts the context to a maximal length of m
nucleotides. This may tempt us to use large model orders m
for capturing all potential dependencies. However, the num-
ber of parameters increases exponentially with the model
order m, resulting in difficulties in estimating the parameters
from data due to overfitting (Section 3.3.1). To overcome
this problem, variable order Markov models have been intro-
duced in (27) and applied to DNA and protein sequence
analysis, e.g., in (28, 29). The idea is to shorten the context
in those cases where the training data suggest that a longer
context does not contain “strong additional” dependencies.

Depending on the problem at hand a shortcoming of
iMMs is the strict sequential order imposed on the depen-
dencies. Generally this is appropriate for time series, but
not obviously for binding sites (4, 9). Bayesian networks
(BNs) (30) do not suffer from this limitation. BNs allow,
for each position £ = 1,. .., L, statistical dependencies on an
arbitrary set of other positions as long as no cycles of sta-
tistical dependencies are induced. Alternatively this can be
understood by first imposing a suitable permutation on the
L positions of the sequence, applying the standard factoriza-
tion, and choosing for each position appropriate predeces-
sors to which statistical dependencies are allowed. Examples
of applications to sequence data are (4, 12, 31). The web
server VOMBAT available at https: //www2.informatik.uni-
halle.de:8443 /VOMBAT/ allows the recognition of tran-
scription factor binding sites based on variable order Markov
models and variable order Bayesian trees (32, 33).

2. The MAP principle introduced in Section 3.3.2 is some-
times called the first level of Bayesian analysis and sometimes
not considered truly Bayesian. Loosely speaking, this contro-
versy stems from the fact that the MAP principle uses only
the location of the maximum of the posterior and ignores all
other information of the posterior. To exploit all information
of the posterior, the classification rule of [1] can be adapted
as follows:

¢* =argmax P(c|x,D, ¢, o)
ceC
[9]
=argmax/ P(c,x0)P(0|D,c,x) A0
ceC 0

Here, the decision takes not only one, but all of the possible
parameter values into account, and weighs the class proba-
bilities accordingly for making a decision.
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3. For the MAP and MSP learning principle (Sections 3.3.2

and 3.4.2), a prior density P(f|a) is needed that represents
the prior knowledge or assumptions about the parameters
0. In case of inhomogeneous Markov models including the
PWM model (Section 3.2), a popular prior is the product-
Dirichlet prior defined as a product of Dirichlet densities.

For a PWM model it is a product of L four-dimensional
Dirichlet densities with hyperparameters « equal to the
pseudo-counts mentioned in Section 3.3.2. The extension
of the product-Dirichlet prior to inhomogeneous Markov
models of higher order and to more complex models such as
variable order Markov models, Bayesian networks, or vari-
able order Bayesian networks (Note 1) is straightforward.

. The values of the hyperparameters « for the product-

Dirichlet prior should be chosen with care, as they can
strongly influence the recognition and thus all subsequent
results. Fortunately, there is an intuitive interpretation of the
hyperparameters of a product-Dirichlet prior.

The sum of all a¢ , of position £ is called equivalent sample
size and denoted by ESS. Often, it is beneficial to use hyper-
parameters o« that satisfy the consistency condition (34, 35),
resulting in an identical ESS at each position. Under this
condition, each hyperparameter oy, can be interpreted as
the — possibly real valued — amount of pseudo-data observed.
The product-Dirichlet prior cannot be used for different
Markov models without further premises, since these models
differ in the number of parameters. Building on the consis-
tency condition, it is advisable to use hyperparameters that
represent uniform pseudo-data in order to avoid artificial
biases (34) that favor certain models over others. The gen-
eral assumption of uniform pseudo-data does not prevent
different ESS in different classes and this freedom can and
should be used for representing different a priori class prob-
abilities.

. Discriminative learning approaches have a long tradition in

bioinformatics. For example, the first application of weight
matrices in bioinformatics (7) employs a discriminative
learning algorithm called perceptron algorithm. The weight
matrix of (7) contains integer values instead of probabilities
as it is the case for discriminatively trained PWMs. Another
very popular example for discriminatively learned classifiers
are support vector machines (SVMs) (36). SVMs aim at find-
ing a number of support vectors, i.e., examples of the training
data, which define a hyperplane separating the foreground
and the background class. Although SVMs achieve good per-
formance for many sequence classification tasks (e.g., (37)),
their parameters are less easy to interpret than those of the
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probabilistic approaches presented in this chapter. However,
the interpretability of SVMs has been improved lately using
so-called positional oligomer importance matrices (POIMs)
(38).

6. The entries of the confusion matrix and, consequently, the
point measures cr, Sn, ppv, Sp, and fpr, depend on the
threshold (Section 3.1) used for classification. By varying
the threshold, it is trivial to yield, e.g., a sensitivity of one,
where all sequences are classified as binding sites, obviously
at the price of a specificity of zero. Hence, one typically
chooses the threshold in such a way that one of the per-
formance measures is fixed to a predefined value and then
reports the resulting value of a second performance mea-
sure. For example, we may choose the threshold such that
the specificity is fixed to 0.999 and then use the sensitivity
as performance measures, which quantifies the sensitivity if
one false prediction per 1,000 negative sequences is allowed.
Another common example is to use the false-positive rate
for a fixed sensitivity of 0.95, which quantifies the amount
of false positives if 95% of the binding sites are predicted
correctly.

Not all measures are suited for unbalanced test data sets. For
example, the test data set may comprise 9,900 background
and 100 foreground sequences. We can easily achieve a cr
of 0.99 if we classify all sequences into the background class
without considering sequence information. A similar prob-
lem can be encountered for the ROC curve, which is also
dominated by a large number of background sequences.
Consider the case of Section 3.5, where the test data set
comprises 600 times as many background sequences as fore-
ground sequences. Assume that we achieve Sn = 1 for some
threshold, i.e., all foreground sequences in the test data set
are classified correctly. Further assume that for the same
threshold we observe for each correct positive prediction on
average 10 additional, however, incorrect, positive predic-
tions. This would result in an fpr of approximately 0.0167
for an Sn of 1, although we would consider the classification
result as far from perfect.

In such cases, measuring the ppv or the PR curve is more
adequate for quantifying differences in the performance of
classifiers.

7. Irrespective of the value of & chosen for cross-validation or
holdout sampling, the obtained results depend on the cho-
sen data sets, and typically the results vary substantially from
data set to data set. Hence, we recommend to not rely on the
error bars obtained from cross-validation or holdout sam-
pling of only one data set, but to repeat all studies on several
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different data sets. The choice of appropriate data sets, how-
ever, is a highly non-trivial task and due to the condition that
the final results strongly depend on the chosen data sets we
recommend this choice to be made with great care and in a
problem-specific manner. This choice is typically influenced
by a priori knowledge on both the expected binding sites
and the targeted genome regions. Examples of features that
are often considered when choosing appropriate data sets are
the GC content of the target region, their association with
CpG islands, or their size and proximity to transcription start
sites.

Carefully choosing appropriate training and test data sets
is of additional advantage if the set of targeted genome
regions is not homogeneous, e.g., comprising both GC-rich
and GC-poor regions, CpG islands and CpG deserts, TATA-
containing and TATA-less promoters, upstream regions with
and without binding sites of another transcription factor.
In this case, one often finds that different combinations of
models and/or different learning principles work well for
different subgroups, providing the possibility of choosing
subgroup-specific prediction approaches. These considera-
tions are vital for a successful prediction of transcription fac-
tor binding sites, but beyond the scope of this chapter, so
we choose only one foreground data set and only one back-
ground data set in the presented example. Specifically, we
choose the data set of second exons used for training the
PWM models of Transfac, implying that the specific results
obtained in Section 3.5 are probably optimistic.
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Chapter 8

The Motif Tool Assessment Platform (MTAP)
for Sequence-Based Transcription Factor Binding Site
Prediction Tools

Daniel Quest and Hesham Ali

Abstract

Predicting transcription factor binding sites (TFBS) from sequence is one of the most challenging
problems in computational biology. The development of (semi-)automated computer-assisted predic-
tion methods is needed to find TEBS over an entire genome, which is a first step in reconstructing
mechanisms that control gene activity. Bioinformatics journals continue to publish diverse methods for
predicting TFBS on a monthly basis. To help practitioners in deciding which method to use to predict for
a particular TFBS, we provide a platform to assess the quality and applicability of the available methods.
Assessment tools allow researchers to determine how methods can be expected to perform on specific
organisms or on specific transcription factor families. This chapter introduces the TFBS detection prob-
lem and reviews current strategies for evaluating algorithm effectiveness. In this chapter, a novel and
robust assessment tool, the Motif Tool Assessment Platform (MTAP), is introduced and discussed.

Key words: Transcription Factor Binding Sites (TFBS), prediction algorithms, assessment tools,
Motif Tool Assessment Platform (MTAPD).

1. Introduction

Transcription factors and other regulatory proteins bind to DNA
primarily around the transcription start site, interact with RNA
polymerase, and then facilitate or inhibit transcription of the gene.
Most transcription factors bind to DNA at sequence-specific posi-
tions along the chromosome, called transcription factor binding
sites (TFBS). The (partially) conserved sequence pattern found
at several sites bound by the same transcription factor is called
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1.1. TFBS Detection
Problem

1.2. Algorithm
Evaluation

a motif. Motifs co-occur near transcription start sites for genes
that are regulated by the same transcription factor. Many com-
putational approaches have been developed to find conserved
motifs in the regulatory regions upstream of genes that have sim-
ilar expression patterns. Computational approaches complement
experimental approaches because they are less labor intensive and
costly. In addition, a predictive computational model is very use-
ful when experimental data are limited.

In prokaryotes, given a set of genes that are differentially
expressed, i.e., partially controlled by the same set of transcrip-
tion factors, the TFBS identification problem is to mark conserved
patterns in the regulatory regions of the differentially expressed
genes. The patterns can be represented as a set of k-mers (words
of length %) or as a Position Specific Scoring Matrix (PSSM)
among others. When the pattern is represented as a set of k-mers,
the objective function to be minimized is the number of mis-
matches in the set of words such that there exists a binding site in
close proximity to the transcription start site for each differentially
expressed gene. When the pattern is represented as a PSSM, the
objective is to maximize the probability that a PSSM of a given
length co-occurs in the promoters of each of the differentially
expressed genes (1).

Regardless of the approach taken to represent motifs at the
binding sites, practitioners must balance a set of complex trade-
ofts when building tools to solve the TFBS detection problem.
Hence, in the detection process, motif representation is the first
step. After motifs are represented, all possible motif instances in
the differentially expressed promoters are indexed. Then, a dis-
tance function is used to discriminate motif instances that exist
in the promoters of the differentially expressed genes but do
not exist in background sequence. Finally, likely matches are
extracted, ranked, and reported.

Currently, there are almost 200 tools to find TFBS motifs
given a set of differentially expressed genes. For the current
list, refer to http://biobase.ist.unomaha.edu/mediawiki/index.
php/Main_Page. For many practitioners, the most pressing ques-
tion is ‘what prediction tool should I use?” Experts in the field
commonly recommend running a set of tools and manually com-
paring the outputs. This has some merit, but a more formal
methodology is needed to rank tools for different problem char-
acteristics.

One way of choosing the most appropriate tool for a specific
problem is to run each possible tool on a related problem where
there is experimental evidence. The experimental evidence can
then be used as a standard to measure tool predictive perfor-
mance. Ideally, one would just run each tool as a black box to
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Fig. 8.1. Evaluatmg TFBS discovery algorithms. a First, all known regulatory regions from a genome are assembled into
a database. We then apply a reduction function, t, over all regulatory elements to determine a set of co-bound regulatory
sequences (a). Function t uses evidence from ChIP-chip, ChIP-seq, or a TFBS database to include only regions bound
by transcription factor i. The result of this pruning is shown in B. This results in n subsets By, By, ..., By one for each
transcription factor. For each regulatory subset (B;) we apply additional functions, hy, ho, ..., hp, to collect background
sequence data, to collect the orthologous regulatory regions in other genomes. These sequences are then fed into the
prediction pipeline (D), which calculates the background probability of a pattern in the sequences in (a) and from any
other sequences collected in (¢). The pipeline then generates a set of predictions corresponding to possible binding sites.
Prediction positions are marked in a standard format shown in (e).

mark TFBS and then compare the TFBS predictions with the
known binding sites found in the database. The most appropriate
tool for a problem is one that correctly predicts the largest per-
centage of known binding sites (true positive predictions) while
at the same time marking the least amount of non-sites, regions
that have similar sequence composition to known motifs but are
not known to be bound by a transcription factor (false-positive
predictions).

Each prediction algorithm requires multiple and different
stages in order to make a prediction. Each stage corresponds
to a unique added value implemented by the method. Some
methods implement novel approaches for modeling background
sequences, other methods implement cross-species conservation
models, while others include data from other sources such as
expression arrays. Thus, diverse TFBS prediction algorithms can-
not be treated as black boxes with the same input and outputs.
Evaluation of several different TFBS detection methods requires
that we build pipelines for all methods. These pipelines allow
access to all of the same data sources and standardize the outputs
so that they can be compared (Fig. 8.1). Once the predictions
are generated from all of the tools, statistics are collected that
measure the number of overlaps found between predictions and
known TFBS.

2. Materials

The software discussed in this chapter, Motif Tool Assessment
Platform (MTAP), was implemented in Python, C/C++, Java,
and Perl. A large assortment of languages was used because
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many effective algorithm techniques from other authors are
included in the MTAP download and are implemented in
several different languages. MTAP is open source, free, and
community supported. Enhancements are welcome. A com-
munity supported list of known TEBS finding algorithms
can be viewed at http://biobase.ist.unomaha.edu/mediawiki/
index.php/Main_Page. MTAP and a User’s Manual can also be
downloaded from this site. The installation of MTAP, due to its
complex dependencies, is far from being trivial as described in
Note 1. For running MTAP, see Note 2.

3. Methods

3.1. Algorithms

3.2. TFBS Databases

The central challenge in evaluating how well tools predict TFBS
is collecting data sets that in some way constitute a meaningful
representation of a (small) part of the transcription regulatory
networks. It is likely that the large number of prediction tools
exists primarily because the problem is difficult to pose. Despite
this, computational predictions have proven useful in narrow-
ing the search space for many known TFBS. Recently, databases
have been developed that contain binding site information for a
large number of transcription factors. High-throughput sequenc-
ing technologies and high-density micro-array-based technologies
enable the construction of such TFBS databases. One applica-
tion of these databases is to use it as a source of comparison
with prediction algorithms, which should enable refinement of
the tools and models used for TFBS prediction. The ability to
accurately evaluate how well TFBS prediction algorithms corre-
spond to TFBS databases is critical to understanding the faults of
current methods and possible avenues for improvement.

As experimental evidence mounts, TFBS locations have been col-
lected and entered into regulatory databases. Significant progress
has been made identifying regulatory genes, signaling path-
ways, and transcription factor binding sites. Pathways responsi-
ble for a wide variety of cellular processes have been identified
in Escherichia coli, Bacillus subtilis, yeast, worms, fruit flies, sea
urchins, zebra fish, frogs, chicken, mice, and humans, just to
name a few. The most substantial progress in constructing multi-
cellular organism regulatory maps has been with the sea urchin
embryo (2), the characterization of the dorsal-ventral patterning
of early Drosophila embryo (3), and the detailed map of Ciona
intestinalis (4).
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3.3. Core Evaluation
Statistics

The E. coli regulatory map (5) has been built by combining
the work of Shen-Orr et al. (6), the curators of RegulonDB (7)
and the maintainers of EcoCyc (8). This unique annotation con-
tains a large network topology representing current understand-
ing of gene regulation in E. coli K12. The annotation includes
binding positions derived from experimental evidence for E. coli
K12 regulatory proteins. Transfac (9), DBTBS (10), RegTrans-
Base (11), and Prodoric (12) are all examples of TFBS databases
that have been developed in recent years to annotate the regula-
tory network in other organisms.

A standard for annotating binding sites is still emerging. In
most databases, a TFBS is annotated in a database with a start
position, end position, and strand information. Some databases
contain additional information such as the genes regulated, the
protein family of the transcription factor, and the type of reg-
ulation (e.g., activation or repression). The information found
in these databases has not been standardized. Consequently,
many useful properties such as the strength of the interaction
between the transcription factor and the binding site are not avail-
able. Some databases differentiate between DNA regions that are
bound by transcription factor and those that lie between interact-
ing sites. Despite the need for protein-DNA interaction informa-
tion in protein structure data, few databases incorporate structure
data in the annotation. The structure and representation of TFBS
information in the database limit the accuracy of TFBS detec-
tion. Many researchers currently believe that even the most com-
prehensive databases miss many sites, especially those with weak
interactions. Some researchers build synthetic data sets to circum-
vent these issues, but these approaches are limited by the level
of fidelity of synthetic test representing the biology of transcrip-
tion factor binding. Appropriate evaluation metrics are essential
for determining the type and structure of data that should be cat-
aloged to improve TFBS prediction.

Algorithm performance is evaluated by comparing the positions
of predicted sites to the positions of known sites. For each posi-
tion marked, seven core statistics are collected. The first four core
statistics, shown in Table 8.1, are #TP — nucleotide true pos-
itives, nEN — nucleotide false negatives, nFP — nucleotide false
positives, and #TN — nucleotide true negatives. They are collected
by adding the number of each occurrence for each position in the
regulatory regions.

The site-level statistics (s7TP — site true positives, sFN — site
false negatives, and sFP — site false positives) are the final three
core statistics. A site-level statistic encompasses the idea that a
group of adjacent nucleotides, marked as binding positions for
a specific transcription factor, is representative of a binding site
annotation (Fig. 8.2). A site is a true positive if the prediction
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Table 8.1
Nucleotide-level statistics. u;; is the upstream
regulatory sequence j at position i

Statistic Definition
nTP u; j is both annotated and predicted
nEN u; j is annotated but not predicted
nFP u; j is predicted but not annotated
nTN u; ; is neither annotated nor predicted
Nucleotide Level Scoring
Prediction | Prediction
A | T G c | c T T a T | ¢c | A | G | C | T A c
T | A c G | ¢ a A T A |l e | T | Cc | G | A T G
Known (DB) T | Known (DB) | T
nTP nFN nTN nFP
Site Level Scoring
Prediction Prediction
A T ¢ | ¢ c |l T | T | A | T c | a | @ c T | A | C
T a c | G G | A | A | T | A& G | T | C e} A | T | @G
Known (DB)

!

sTP

Known (DB) T

sFN

Fig. 8.2. The seven core statistics collected to assess the accuracy of TFBS detection tools.

overlaps the annotation by no less than 7 percent (a threshold) of
the site. Site true negatives (sTN) represent any collection of adja-
cent bases that are not predicted or annotated to be a site. The
total number of such sites grows as a triangular number (13).
However, once a site is annotated or predicted, all possible over-
lapping sites can no longer be marked a sT'N. This makes sT'N less
meaningful because it can increase or decrease depending on the
number of predictions and annotations in the data set. In prac-
tice, it is best to set this number sufficiently large so that it is
always greater than sTP, sFN, and sFP and always positive and
consistent regardless of the number of predictions and annota-
tions in the regulatory regions. Our convention sets this value
to the length of all sequences in the upstream set, TP + nFN +
nFP + nTN divided by the number of sequences in the co-bound
set. We then subtract the number of predictions and annotations



The MTAP for Sequence-Based Transcription Factor Binding Site Prediction Tools 127

Table 8.2
Site-level statistics

Statistic Definition

sTP Number of known sites overlapped by predicted sites
sFN Number of known sites not overlapped by predicted sites
sFP Number of predicted sites not overlapped by known sites
STN STN — nTP+nFP+nFN+nTN _ STP _ IFN _ SFP

Number Sequences

from this total when calculating statistics. This ensures that sTN
will always be a strictly positive number that is independent of the
number of predicted and annotated sites. The site-level statistics
are shown in Table 8.2.

When evaluating site-level statistics, setting the value of the
threshold 7 is important. Tompa et al. (14) set T to 25%. Assum-
ing this overlap, if an experimentalist were to remove the site,
a change in expression should be observed. In some organisms,
such as bacteria, this threshold is too strict because the width of
known binding sites is too large for some tools to ever achieve
a sTP. Many motif discovery programs have fixed motif widths
(e.g., 8 base pairs), a threshold of 25% would not be sufficient
to mark s7Ps (e.g., an annotated site of width 60 and a site pre-
diction of length 8). Site-level motifs could be ranked based on a
percentage of the prediction width instead of the motif width in
the annotated database, but this would give an unfair advantage
to methods that predict larger sites. In the example benchmarks in
this chapter, 7 is set equal to the maximum annotated site width
in the data set divided by the minimum expected motif width
predicted by the suite of programs times 25%. A degree of over-
lap indicates that computational and biological refinement of site
predictions can still find the site. Table 8.3 illustrates the seven
core statistics collected for algorithm evaluation.

Table 8.3

Statistics for evaluating motif prediction algorithm implementations
Sensitivity 4N = 2o [1]
Specificity nSP = 2l [2]
Positive predictive value xPPV = % [3]
Matthews correlation coefficient nCC = nTP nTN_nFN*5FP [4]

Correlation coefficient

Site-level average site performance

= /(WTP+nEN)(nTN+nFP)(nTP+nFP)(nTN+nFN)

_ xTP
¥PC = Spr\ FNT#EP

_ SSN+sPPV
SASP = =>=5——

(5]
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3.4. Derived
Evaluation Statistics

For each transcription factor, a set of regulatory regions »
bases upstream of the controlled genes is collected, and each
of the seven core statistics is collected for each of the upstream
regions. Note that a given tool will be run for each set of co-
bound regulatory regions separately but that the annotation is
considered only once. For example, consider a set of regulatory
regions bound by two transcription factors, A and B. A and B
cooperate in the same regulon to control a set of genes X (those
genes only controlled by A), T (those genes controlled by both
A and B), and Z (those genes only controlled by B). Consider
the set of regulatory regions collected to calculate the TFBS for
A (regulatory regions for X and 7). Predictions from regulatory
regions regulating 7 that overlap B’s TFBS can be marked as false
positives because they predict a TEBS other than the protein of
interest.

The allowed prediction threshold indicates how many TFBS
predictions are allowed by a tool. TEBS predictions come in sets
and each set represents a highest scoring representative of bind-
ing sites for one transcription factor. In many cases, the highest
scoring representative is just a sequence that happens to co-occur
in the co-bound regulatory sequences and is not representative
of a TFBS. For this reason, practitioners often accept more than
one prediction. Allowing more predictions than one from a tool
has the advantage that more true sites can be detected and tools
can then better represent the combinatorial and co-operative reg-
ulatory cellular interactions that often occur. Varying the allowed
prediction threshold has dramatic impacts on tool performance
characteristics.

More advanced metrics for performance evaluation can be cal-
culated from the seven core statistics. Tompa et al. (14) recom-
mended the six informative statistics shown in Table 8.3. Each of
these statistics has its merit and is informative in different ways,
depending on the objectives of the assessment. It is difficult to
build tools that have high sensitivity and specificity. The sensitiv-
ity /specificity trade-off and the Matthews correlation coefficient,
nCC (nCC takes values —1 to 1 with O representing not corre-
lated), are often viewed as an overarching measurement for per-
formance.

There are two central problems in the TFBS databases used
for evaluation. First, most data sets are incomplete, since many
TEBS are not annotated in the data set. The best way to avoid
misleading scoring of a TFBS detection method is to construct a
data set that is as complete as possible to diminish the possibility
of false positives. The second problem shows up when a method is
over-fit to the known data repositories. Over-fitting occurs when
the method training set and testing set are too similar. Because so
little data have been available on TFBS, many methods have been
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3.5. Combining,
Viewing, and
Evaluating Data Sets

optimized to find binding sites that have already been discovered.
It is impossible to say how well tools will detect unknown binding
sites in the future.

In the machine learning community, cross-validation is often
used in supervised learning problems. Leave one out cross-
validation refers to training of an algorithm on a subset of the
available data and testing on the subset of the data that is left
out. Leave » out cross-validation refers to an iterative training
and testing process where the data are partitioned into many sets.
At a given stage in the cross-validation process a subset of the data
is either used for training or testing. All sets are eventually used
for both training and testing. The benchmark of algorithm per-
formance is constructed from combining the values from multiple
benchmarks on each partition of the data set dedicated to testing.
In the context of new algorithm development, MTAP can be used
in either of these ways. Historically, most algorithm developers
did not view the TFBS detection problem as a supervised learn-
ing problem; instead it was viewed as an unsupervised learning
problem. In other words, tool developers did not divide known
TEBS instances into testing and training sets, actually, most often
a training set did not exist. Instead, the goal was to build methods
that could discover the first TFBS with the eventual goal of con-
structing large data sets for supervised learning. Most often, this
was because of the lack of known TFBS. It is impossible to deter-
mine what TFBS influenced tool developers in the development
process and should therefore be discarded in evaluation metrics.
The most common goal of MTAP is to rank tools on a particular
data set given a recommended runtime procedure recommended
by the tool author. The data set used in this evaluation is assumed
to be independent from the data used by the algorithm developer
to construct the technique.

Once each tool is run over data sets D = {dy, d5,...}, the results
need to be illustrated in a meaningful way. There is an ongo-
ing discussion on the best approach. Tompa et al. (14) proposed
three methods for combining the results into one graph. Sandve
etal. (15) proposed a method for evaluating results based on how
well instances of the motif conform to known binding models.
We proposed a method based on ROC (receiver operating char-
acteristic) curves for combining and evaluating data sets and rela-
tive performance graphs for viewing data sets relative performance
over a suite of tools. This chapter covers five known statistics for
each data setin D.:
(1) Awithmetic mean. The arithmetic mean of M scores is calcu-
lated after the derived statistics are calculated for each data
setin D.

(2) Normalized. For each data set in D, normalize the score
by subtracting the mean score over all tools then divide



130

Quest and Ali

by the standard deviation. Combine scores by calculating
the arithmetic mean of M normalized scores. Note that this
procedure is called standardization in statistics.

(3) Combined. For each data set in D add »TP, nFP, nFN,
n TN, sTP, sFP, and nFN as if it were one data set. Calculate
the derived statistical measures over the summed totals.

(4) Relative Performance Graph. Do not combine the M
scores. Construct a graph with each data set along the
X-axis and relative performance of the 7 tools along the
T-axis. Construct one graph for each derived statistics.

(5) Receiver Operating Characteristic (ROC) Graph. Deter-
mine an algorithm parameter P. Vary P so that algorithm
sensitivity continues to increase while 1-specificity contin-
ues to decrease. The area under the curve (AUC) is an abso-
lute measure of performance, comparable across methods.

Over most derived statistics, Mean, Average, Normalized and
Combined summing methods correlate reasonably well on cur-
rent data sets (14, 16). Figure 8.3 shows the predictions of five
different motif prediction methods. Therefore, none of those
methods reported false positives on this region. When a tool fails
to make predictions over a large number of regions like this,
it appears (unfairly) that the tool is specific in locating bind-
ing sites because the number of false positives is small. On the
other extreme, many tools tend to predict nearly the entire region
instead of localizing to the TEFBS. Thus, when reading the derived
statistics it would appear that such methods are sensitive, when
they are in fact predicting large contiguous regions of binding
sites. For this reason, genome-wide comparisons of binding sites
and predicted sites serve as an important sanity check when eval-
uating statistics.

ROC curves are excellent for comparing the sensitiv-
ity /specificity trade-ofts of a single parameter (16). ROC curves
track the performance of an algorithm over changes over a sin-
gle parameter. Traditionally, ROC curves have been applied to
changing internal algorithm parameters from tight thresholds to
more lenient thresholds. This produces a ROC curve that travels
straight up and then to the right when the algorithm corresponds
exactly to the data set. Algorithms that poorly represent the prob-
lem or problems that are ill-conceived produce a curve that will
travel straight to the right and then up. Random predictions pro-
duce a diagonal line.

We applied ROC analysis to (1) the width of the regulatory
regions taken upstream of the gene, (2) the class (protein family)
of transcription factor, (3) internal algorithm prediction param-
eters, and (4) cross-species regulatory region extraction tech-
niques. The methods presented here provide insights into the
overall trends but some information is lost. Generalization is dif-
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ficult since some data sets consist of a few examples, while others
have motif instances in the hundreds; some motif instances are
highly conserved while others contain a great variability.

3.6. Results This section presents three illustrative example results of bench-
marks that can be generated using a robust database of almost all
transcription factor binding sites in the cell and several TFBS pre-
diction methods. Figure 8.4 illustrates derived statistics summed
via the combined method introduced in the previous section. For
each transcription factor in RegulonDB, all TFBS were used to
create D = {dy, dy, ...} where D represents the series of all

E1: Statistics for 9 Methods Run E. coli K12 (All TFBS)

Weeder
MotifSampler
Mitra 1
B nSn
MEME = nSP
u sASP
B sSn
Elph L
mnPPV
u sPPV
Glam — = nPC
unCC
Gibbs |
AlignACE -
ANN-Spec n
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Fig. 8.4. Derived statistics for nine regulatory motif detection methods.
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tests and dj, 4, ... each represent a set of co-bound genes, each
bound by the same transcription factor. Pipelines were developed
for nine different TFBS detection methods and run over D and
predictions compared to RegulonDB annotations to determine
the core statistics. Each tool was allowed to make three predic-
tions for a single transcription factor. All of the tools in Fig. 8.4
illustrate performance profiles that could be improved. Mitra (17)
is an example that, at the thresholds in this example, is sensi-
tive but not specific. Mitra predicts sites over the entire regula-
tory region. For this reason, it discovers many of the annotated
sites, but not because the algorithm is able to find patterns that
correspond to sites. Elph, Glam (16), and Gibbs (18) are at the
other extreme. These make very few predictions on this data set,
resulting in perceived high specificity. Weeder (19), MotifSam-
pler (20), MEME (21), AlignACE (22), and ANN-Spec (23) all
appear to strike a better balance; however nCC remains between
0 and 0.37 for all approaches. There is some possibility that
further refinement of tool parameters could yield better perfor-
mance. Assessments like this provide an overview of where current
methods stand and suggest ways of improvements. Figure 8.5
shows seven-motif discovery methods evaluated in an ROC curve.
Both single species and cross-species techniques are represented.

Nucleotide level ROC Site level ROC
0.6 0.9
0.8
0.5
0.7
0.4 o 06
S : -
2 05 G
0.3 § s
S 04
[
=
0.2 = 03
o2f [/
0.1 [/
0.1 /f
0.0 0.0 ¥
0.0 0.1 0.2 0.3 0.4 0.5 0.6 00 01 02 03 04 05 06 07 08

False positive rate

False positive rate

Fig. 8.5. PhyloMEME (a version of MEME run on regulatory regions from multiple species), PhyME, PhyloGibbs-MP, Phylo-
Weeder, ANN-Spec, Motifsampler, and Mitra represent state-of-the-art motif detection algorithms. This composite ROC
curve shows a side-by-side comparison of phylogenetic-assisted and purely sequence-based tools. At the nucleotide
level, performance is virtually random. At the site level, phylogenetics-based tools such as PhyloGibbs-MP outperform
single-genome methods. However, several methods perform hardly better than random. This result is expected given the
performance of several methods shown in Fig. 8.4. Tools cover large portions of the regulatory region with predictions,
many of them overlapping known binding sites.
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The benchmark was originally generated using over 20 motit dis-
covery methods but only the top seven tools were plotted for clar-
ity. The ROC curves were generated by running each of the algo-
rithms 10 times and increasing the amount of predictions each
algorithm was allowed to produce (using algorithmic thresholds)
after each run. This plot shows some advantages of incorporating
cross-species information. Not every tool maintains good predic-
tion accuracy as it is allowed to make additional predictions. On
this data set, PhyloGibbs-MP appears to continue to make good
predictions as the algorithmic thresholds are lowered.

An example using a relative performance graph is shown in
Fig. 8.6. All relative performance graphs contain at least three
axes, one for the tools in the study, and one for the transcription
factor classes in the study, and one for the performance metric.
Relative performance graphs are advantageous because they show
an in-depth look at relative performance over parts of the data
set for one statistic. The figure shows an in-depth look at nCC
over the RegulonDB data set. Along the X-axis is each TFBS
evaluated in the assessment. The top graph shows the relative
total correlation for all tools in the assessment combined. On
the bottom is the relative contribution for each tool for a specific
TFBS. Note that columns in the graph have no relationship to
one another. TEBS are sorted in this graph by conservation of the
sequence at the binding site. This graph illustrates that sequence
conservation at the binding site is not enough for accurate TFBS
detection.

Figure 8.6 also demonstrates that no tool in this assessment
is clearly dominant in detecting all binding sites of the same tran-
scription factor. Some tools are very good at detecting TFBS for
some sites, but not others. Some sites are more easily detected by
all tools and some sites challenge all tools. These results indicate
that one tool for detecting all TFBS may not be possible, instead
multiple methods for different classes of problems may be more
appropriate.

»
»

Fig. 8.6. (continued) content at the conserved site (bottom) to low-information con-
tent (top). nCC values do not increase as conservation at the site increases, most likely
due to competing background signals in the upstream regulatory regions. In this table,
nCC is negatively impacted for ELPH, Gibbs, Glam, PhyloMEME, PhyloGibbs, PhyloGibb-
sMP, and PhyME because the number of predictions is low (easily overcome for some
tools by considering more sites). Binding sites for some TFs such as AgaR are relatively
accurately predicted by many tools. Other TFs such as EvgA pose a greater challenge.
JAMM-b is a Bayesian filter for combining multiple methods. JAMM-i is the same filter,
with a length-based constraint relative to the promoter. No tool is clearly dominant for
every transcription factor.
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Fig. 8.6. nCC was calculated over RegulonDB by considering the top 3 predictions from
each tool. nCC over 16 tools assessed in this study represented in a heatmap. nCCvalues
range from 0 (black) to 0.37 (white). Binding sites are sorted from high-information
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3.7. Conclusions

We introduced an assessment methodology for the performance
of TFBS detection algorithms. Platforms such as MTAP make it
easier to rank algorithms on multiple criteria and to find effective
techniques that solve. We provided a new methodology and tool
to compare methods and rank them based on how well they per-
form on certain subsets of the TFBS detection problem. The key
is finding sub-problems of the overall TFBS detection problem
that can be solved with reasonable expectation that the algorithm
results correspond to real binding sites.

This new methodology is not without problems. First, high-
quality data sets of TFBS locations need to be standardized and
collected in order to use this technology effectively. Second, great
care needs to be taken when looking at benchmarking outcomes,
as numerical summaries cannot always convey intuition about why
certain approaches fail.

We introduced four principal methods for understanding the
TFBS detection problem: (1) tabulated results of derived statis-
tics; (2) ROC graphs; (3) sedimentation graphs; and (4) genome-
wide prediction visualization. We also introduced a platform,
MTAP, for performing these comparisons. MTAP provides the
raw data needed to perform comparisons shown in this section.
These raw outputs can be customized by the users for diverse
interpretations. A possible application is to compare the pipelines
implemented in MTAP with new methods.

When performing assessment, it is important to consider the
assumptions of the assessment and ensure that they are in line
with the assumptions of the tools being assessed. MTAP was built
to assess how well current tools work at automated annotation
of genomes. Current tools are expected to perform much bet-
ter with hand-picked motits from TFBS databases, although this
introduces a certain bias. Assessment must be viewed as a part
of the overall system of discovery and verification. It is therefore
important that any assessment has a scope consistent with predic-
tion objectives.

4. Notes

1. Installing MTAP: MTAP was developed and tested on
Ubuntu Linux. To set up an MTAP run, the user needs to
(1) install motif tool dependencies — this will install tools
such as BLAST and MLAGANS that many TFBS tools use
as part of their pipelines, (2) install motif discovery tools,
(3) format known motif databases, (4) configure MTAP,
and (5) run the MTAP analysis. To install MTAP, download
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the mtap.tar.gz file from http://biobase.ist.
unomaha.edu/mediawiki/index.php/Main_Page

and place it in a directory indicated by the $MTAP_ HOME
environmental variable. Untar and unzip MTAP to SMTAP_
HOME with the command: tar -xzvf mtap.tar.gz. In
this chapter, we will set SMTAP_HOME=/home. Then the
tar command will create the following directory structure:

/home/mtap/pipeline/bin

bin contains useful scripts for running MTAP and
installing motif tools

/home/mtap/pipeline/conf conf contains configuration files for use by scripts in
bin
/home /mtap/pipeline/dumpdir dumpdir is the location MTAP will place all tool pre-

/home/mtap/pipeline/1lib

diction and raw statistics
1ib contains libraries needed to run MTAP. Make sure

to run compile Java.py before attempting to run
MTAP

/home/mtap/pipeline/motifTools motifTools contains TEBS prediction software from

other institutions

/home/mtap/pipeline/reqgs regs contains libraries and tools for motif prediction

/home/mtap/pipeline/src
/home/mtap/pipeline/tmp

tools
src contains the MTAP source code

tmp is where TFBS databases are placed for MTAP
runs and where intermediate results are stored in tool
pipelines

1.1 Install tool dependencies: Scripts to install tool depen-
dencies exist in /home /mtap/pipeline/bin. First install
biopython, bioperl, and Java SDK and place them in your
path. To install system-level dependencies run from bin:
./installPrereqgs/home/matp/pipeline/motif
Tools/Linux-1386/. Cross-species regulatory region
detection requires RSD. Instal RSD with the
following command: ./installRSDregs/home/mtap/
pipeline/reqgs/RSD-bin/.

Some motif tools can be distributed with MTAP. For these
tools, we provide an automated script for installation. To
install run ./installMotifTools/home/matp/pipe
line/motifTools/Linux-1i386/ More information
on motif tools is in the next section. MTAP is made
aware of the dependencies for your specific architecture
through the MTAPglobals.py file found in /home
/mtap/pipeline/src/runManager /MTAPglobals.
py. Edit MTAPglobals.py to change RUNMANAGERPATH
and PROGHOME to
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® RUNMANAGERPATH = "/home/mtap/pipeline
/src/runManager"
® PROGHOME = "/home/dquest/mtap/pipeline".

MTAPglobals.py also contains many variables to change
the MTAP runtime characteristics such as number of predic-
tions allowed, number of sequences required, threshold for
site true positives, and other concepts discussed earlier in
the chapter. Edit the following variable lines to make MTAP
aware of the local installation:

motifToolBinHOME = "/home/mtap/pipeline/motifTools
/Linux-i386"

REQSPATH = "/home/mtap/pipeline/motifTools/"
PHYLOREQS = "/home/mtap/pipeline/motifTools/"

1.2. Installing TFBS Databases: To create an MTAP run,
one needs to first create the setup files in /tmp. First make
a directory for the name of the run. MTAP includes several
examples (e.g., /tmp/pito) that can be copied and mod-
ified to create new MTAP runs. Following is the directory
structure that is needed to create new runs (creating a new
run called “Runl”):

/home/mtap/pipeline/tmp/Runl The root directory ($RUN) for the new run

SRUN/accoc

SRUN/conf

$RUN/gbks
SRUN/kmraws

SRUN/motiflists

SRUN/phylo

$RUN/protein

SRUN/RSD
SRUN/xmls

Used to hold the accocs.txt association file for relating
TEBS location data to Genbank files

Used to backup MTAP configuration files for this specific
run

Holds Genbank files containing genome sequences

Holds databases for known TFBS-binding locations

Holds the motif.list file containing a unique listing of every
transcription factor annotated in the kmraw database

Holds the Phylo.txt file for relating the .gbk files and
for storing 16sRNA phylogenetic trees and multiple
sequence alignments

Holds translated .faa files for each coding sequence in the
.gbk file and blast databases for searching

Holds ortholog tables for cross-species comparisons

Location to store xml configuration files used by java
components

Once the directory structure is made, the MTAP user
needs only to copy Genbank files into the gbks directory,
copy tab-delimited TFBS data into the kmraw directory, cre-
ate the phylo. txt file, and create the accocs. txt file.
MTAP automatically creates the rest of the needed infor-
mation for the run. Then the MTAP user should change
the settings for the MTAP run in MTAPglobals.py
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and MTAPdbSetup.py to ensure MTAP will run cor-
rectly. At this time, they are ready to run MTAP
(python /home/bin/MTAP.py). Examples of known
motif databases acceptable by MTAP and Genbank files are
in the MTAP. tar.gz download for reference.

2. Running Motif Detection Tools: Motif tools are as variable as
the people that develop them. Each takes a multi-Fasta file
representing multiple regulatory regions. That is where the
similarities end. Each tool produces a specifically formatted
output file and takes a specific array of inputs. MTAP unifies
all tools by converting each arbitrary output into a unified
format (.gff) that represents predicted features from each
tool in the data set. MTAP also produces each arbitrary input
needed by the program. When MTAP is run, it creates a
run database consisting of all run tests in the database. This
database consists of run tuples of the form:

["runName", "phylo/genic", "#bpUpstream", "cr/sr",
"real/markov",",

"MotifList", "GenbankFile", "knownmotifDatabase",
"fastaUpstreamFile",

"MotifName", "MotifTool"]

These run tuples are constructed dynamically by per-
muting all options available in the src/runManager/
MTAPdbSetup.py configuration file and from the data
found in the TFBS database in /tmp (see previous sec-
tion). Each MTAP run consists of all possible permu-
tations of the variables found in MTAPdbSetup.py file.
These permutations are translated into jobs. The collec-
tion of all Motiflool pipeline jobs in a single MTAP
run is logged in a file called RUNFILE. RUNFILE exists
in /home/dumpdir/runName/RUNFILE. The directory
structure under /home/dumpdir/ corresponds to the
tuples in the RUNFILE. For example, consider a run using
Weeder to find binding sites for the CRP transcription fac-
tor in E. coli K12 (NC_000913.gbk). Assume RegulonDB
is the data set we wish to use for evaluation and that we
want to take 400 bp upstream of every gene regulated by
CRP as annotated in RegulonDB. The MotifList file for all
unique motifs in RegulonDB is called v2008_NC_000913.
Assuming we call the run “Runl”, the tuple for this job will
look like

["Runl", "genic", "400", "cr", "real", "v2008_NC_000913"
"knownmotifs.regulondb.v2008", "NC_000913", "CRP",
"Weeder"]

The job tuple indicates the location where the tool will be
run on the local file structure. The above example will be
run in $RUNDIR =/home/mtap/pipeline/dumpdir
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/Runl/genic/400/cr/real/. Unified .gff files for
plotting in tools such as gbrowse are available in
SRUNDIR/gff. The raw statistics files for analy-
sis are available in S$SRUNDIR/stats. Specific tool
thresholds and pipelines can be modified by chang-
ing the tool driver scripts found in /home/mtap/
pipeline/src/runManager/motifTools. Sophisti-
cated data collection scripts for analyzing gene regulatory
networks with graph theory and for plotting changes across
run parameters are available in src/runManager.
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Chapter 9

Computational Analysis of ChiP-seq Data

Hongkai Ji

Abstract

Chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) is a new technol-
ogy to map protein—-DNA interactions in a genome. The genome-wide transcription factor binding site
and chromatin modification data produced by ChIP-seq provide invaluable information for studying gene
regulation. This chapter reviews basic characteristics of ChIP-seq data and introduces a computational
procedure to identify protein-DNA interactions from ChIP-seq experiments.

Key words: Transcription factor binding site, high-throughput sequencing, peak detection, false
discovery rate.

1. Introduction

Chromatin immunoprecipitation (ChIP) followed by massively
parallel sequencing (ChIP-seq) is a new technology to map
protein—DNA interactions in genomes (1—4). In this technology,
a protein of interest (POI) is cross-linked to chromatin. Chro-
matin is sheared into small fragments. The POI and its bound
chromatin fragments are immunoprecipitated using an antibody
specific to the protein. After reversing the cross-links, a DNA sam-
ple called “ChIP sample” is obtained. In many studies, a negative
control sample is prepared in parallel using a similar protocol that
bypasses the immunoprecipitation step. Compared to the control
sample, the ChIP sample is enriched in DNA fragments bound
by the protein of interest. After size selection and further process-
ing, DNA fragments in the samples are sequenced from both ends
using one of the recently developed high-throughput sequencing

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
DOI 10.1007/978-1-60761-854-6_9, © Springer Science+Business Media, LLC 2010
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Fig. 9.1. Workflow for ChIP-seq.

platforms (5). This produces tens of millions of sequence tags,
also known as sequence reads. By computationally mapping these
reads to a reference genome and looking for genomic regions
where ChIP reads are enriched, genomic loci with protein—-DNA
interactions can be identified (Fig. 9.1). Currently, this tech-
nology is widely used to study transcription factor binding sites
(TFBS) (1, 2) and chromatin modifications (3, 4). The genome-
wide transcription factor binding site and chromatin state data
produced by ChIP-seq provide invaluable information for study-
ing gene regulation.

An earlier technology to map protein—-DNA interactions in
genomes is ChIP-chip (6, 7), which uses chromatin immuno-
precipitation to enrich protein-bound DNAs and hybridizes the
enriched DNA fragments to genome tiling arrays. Compared to
ChIP-chip, ChIP-seq has several advantages (8). First, ChIP-seq
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does not rely on array hybridization. As a result, it does not suf-
fer from the biases and noise caused by cross-hybridization, the
varying GC content of probe sequences and other issues related
to hybridization chemistry, although ChIP-seq may have its own
biases that are not well understood currently. Second, ChIP-
chip measures enrichment by intensities of hybridization which
may saturate at high signal, whereas ChIP-seq measures enrich-
ment by tag counts which can handle signals in a much broader
dynamic range. Third, protein-DNA interactions detected by
ChIP-chip are restricted to genomic regions for which probes are
available. Repetitive regions in the genome usually are excluded
from the array design. In contrast, ChIP-seq can be used to
study protein—DNA interactions in any part of the genome as
long as reads can be unambiguously aligned to places where
they are originally produced. For this reason, ChIP-seq is able
to offer much less biased genome coverage. Fourth, for map-
ping TFBS, ChIP-seq is able to locate binding sites at 50-100
base pair (bp) resolution. This represents a significantly improved
precision compared to the 300-1,000 bp resolution provided by
ChIP-chip. Other advantages of ChIP-seq include requirement
of less input materials and ability to provide extra information to
study allele-specific protein binding. Thanks to these advantages,
as the cost of high-throughput sequencing continues to decrease,
ChIP-seq has the potential to become the dominant technology
for creating genome-wide maps of protein—-DNA interactions.

ChIP-seq creates unprecedented amounts of data. Extracting
information from the data is not trivial. Typically, the analysis is
a multiple step procedure (Fig. 9.1). First, raw sequence reads
are mapped to the reference genome. Next, genomic regions
in which ChIP reads are enriched are identified and the statis-
tical significance of the predicted genomic regions is evaluated.
Regions that satisfy certain significance criteria are reported. Sub-
sequently, the reported regions are analyzed in various ways to
help scientists understand their functional implications. These
include adding gene annotations, finding or mapping transcrip-
tion factor binding motifs, and correlating the protein—-DNA
interactions with gene expression information. The purpose of
this chapter is to briefly review some basic characteristics of ChIP-
seq data and introduce a computational procedure to analyze the
data. We will mainly focus on describing a method to identify
protein—-DNA interactions and estimate the false discovery rates
(FDR). Tools to perform subsequent analyses will be discussed
briefly.

We focus on two types of ChIP-seq experiments, namely the
“one-sample experiment” and the “two-sample experiment.” A
two-sample experiment involves sequencing both a ChIP sam-
ple and a negative control sample. In contrast, a one-sample
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experiment only involves sequencing a ChIP sample. Readers are
referred to Note 1 for a discussion on how to analyze experiments
that have technical or biological replicates.

Compared to the two-sample experiment, the one-sample
design is more cost effective. However, the negative control sam-
ple in the two-sample experiment allows one to build a better
model to describe locus-dependent background noise, which can
significantly reduce the number of false positives and false nega-
tives in the subsequent data analyses (9, 10).

In both one-sample and two-sample experiments, protein—-DNA
interactions can be identified by searching for enrichment of ChIP
reads. A key component of ChIP-seq data analysis is to under-
stand what level of enrichment is required to distinguish signals
from noise.

First consider a one-sample experiment. Assume that the length
of the genome is L bps and the sample has N uniquely mapped
reads in total. Consider a w bp window in the genome, and let »
be the number of reads mapped to the window. Studies of neg-
ative control samples show that it the window does not contain
any protein—DNA interaction of interest, # can be approximately
modeled by a negative binomial distribution NB(a, 8) (9). In

o k
other words, Pr(n=k)= (k—i—a;l)(ﬂil) (ﬁil) :
o —

Here all background windows in the genome have the same values
of « and B. Based on this result, one approach to characterize the
background noise is to find appropriate parameter values of o and
B using the observed data. When estimating « and 8, one should
keep in mind that the data (i.e., the ChIP sample) usually consist
of a mixture of background windows and windows that contain
signals; however, o and B are parameters to describe background
noise only. An algorithm that estimates the background parame-
ters o and B from a mixture of signal and noise windows will be
described in Section 3.2.1.

Another natural way to model the read count of a back-
ground window is to assume that » follows a Poisson distribu-
tion with a rate parameter A (i.c., Pr(n = k) = A%¢=*/k!). Recent
studies show that the Poisson distribution with a fixed rate A
does not perform well to characterize the background variabil-
ity in real data (9-11). For example, in Table 9.1, a negative
control sample from a ChIP-seq experiment in mouse embry-
onic stem cells (12) is analyzed by both the Poisson background
model and the negative binomial model. The genome is divided
into 100 bp long non-overlapping windows and the number of
uniquely mapped reads in each window is counted. The negative
control sample contains no protein—-DNA interactions of interest;
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Table 9.1

Comparison of the Poisson and negative binomial background model

Read count Observed frequency Expected by Poisson Expected by NB
0 0.792664 0.792664 0.792230
1 0.164843 0.164843 0.164753
2 0.034140 0.017140 0.034122
3 0.006587 0.001188 0.007057
4 0.001320 0.000062 0.001459
5 0.000288 0.000003 0.000301
6 0.000075 0.000000 0.000062
7 0.000023 0.000000 0.000013

hence all windows represent background noise. The second col-
umn of the table shows the observed frequency that a window
contains % reads. The third and fourth columns show frequencies
expected by the Poisson and negative binomial models, respec-
tively. This table clearly shows that the Poisson model is not able
to describe the heavy tail of the empirical read count distribution
and the negative binomial model performs much better.

Using a fixed rate Poisson model assumes that background
reads are generated at the same rate for all loci in the genome
or, in other words, background reads are distributed uniformly
across the genome. Table 9.1 illustrates that this assumption
does not fit well with the real data. In the negative binomial
model, it is implicitly assumed that the background reads are
generated by Poisson distributions with different rates at dif-
ferent loci, and as a result, the background reads are not uni-
formly distributed across the genome. In order to see this, we
note that a negative binomial distribution can be related to a
Poisson distribution via a hierarchical model. Let us divide the
genome into w bp long non-overlapping windows and assume
that different windows generate reads independently. Let X; be
the rate to generate reads in the sth window, #; be the number
of reads in window z, and assume that #»; |A; ~ Poisson (A;). If
we allow A; to vary across the genome but assume that A;’s are
random samples drawn independently from a locus-independent
gamma distribution Gamma(«, B) (the probability density func-
tion for Gamma(a, B) is f(x) = %x‘)‘_l ¢~P%), then the marginal
distribution of #; of a background window, Pr(#; = kla, B) =
[ Pr(n; = klxi)f(Xila, B)dr;, has the same probability density
function as that of the NB(«, ).

The hypothesis that read sampling rates vary across the
genome is supported by analyses of independent samples from
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Fig. 9.2. Correlation of read numbers at the same genomic loci between a ChIP sample
and a control sample. The samples are obtained from a ChIP-seq experiment that maps
the NRSF TFBSs (1). The human genome is divided into non-overlapping windows, each
window containing 1 million base pairs. For each window, ChIP and control reads are
counted and plotted as a dot.

the same experiment (10). As an example, Fig. 9.2 shows a scat-
ter plot that compares the window read counts between a ChIP
sample and a matching negative control sample in an experi-
ment involving transcriptional repressor NRSF (1). The plot has
a positive slope and the counts from the two samples in the
same genomic window are clearly correlated. This indicates that
the rate for generating reads is locus dependent and is not a
constant across the genome. Unfortunately, in a one-sample
experiment, background reads in a particular window cannot be
separated from reads that represent biological signals in the same
window. For this reason, the locus-dependent Poisson rate cannot
be estimated without making additional assumptions. The nega-
tive binomial model makes the assumption that the background
rates A;s follow a common gamma distribution. By making this
assumption, information from all windows can be used to infer
the common parameters & and g, which are then used to describe
the background for each individual window. This is the under-
lying rationale for using a negative binomial distribution as the
background model (see Note 2 for an alternative solution).

Now consider a two-sample experiment that involves a control
sample in addition to a ChIP sample. Assume that the ChIP sam-
ple has N uniquely mapped reads in total and the control sample
has M uniquely mapped reads. For a w bp window indexed by
7, let n; be the number of ChIP reads mapped to the window,
and m; be the number of control reads. In the previous section, it
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has been shown that the read counts in background windows can
be viewed as Poisson random variables with varying rates across
the genome (which results in negative binomial marginal distri-
butions). In light of this observation, one can assume that 7; ~
Poisson(u;) and m; ~ Poisson(A;), where p; and A; are rates at
which reads are produced in window ¢ in the ChIP and control
samples, respectively, and we allow w; and X; to have different
values at different loci in the genome. For each genomic window,
w; can be decomposed into two parts p; = p;1 + io, where o
is the rate at which background reads are generated and ;) is
the rate to generate reads corresponding to signals. Often, it is
reasonable to assume that the background rates in the ChIP and
control samples, 19 and A;, are equal up to a proportionality con-
stant, i.e., (o = ci;. The proportionality constant ¢ reflects the
observation that the total numbers of reads in the ChIP and con-
trol samples are usually not the same. Under the assumption that
io = cAj, information from the negative control sample can be
used to describe the background read sampling rate in the ChIP
sample. As a result, the assumption used in the one-sample anal-
ysis that background read sampling rates from different genomic
windows follow a common probability distribution is no longer
required.

For a window that does not contain any protein—DNA inter-
actions, (; = [0 = cA;. It is known that the sum of two inde-
pendent Poisson random variables X ~ Poisson(i1) and 1 ~
Poisson(Az) follows a Poisson distribution, Poisson(A; 4+ 12), and
conditional on the sum, X, follows a binomial distribution. In
other words, X |X + 7Y = n~ Bin(n, p),where p = r1/(A1+A2)

(e P X = k| X+ T =n) = Z P = p)"h).

Using these results, the number of ChIP reads in a back-
ground window conditional on the total number of reads
in that window should follow a binomial distribution, i.e.,
;i |mi + n; ~ Bin(m; + n;, po), where po = ¢/(1 + ¢) represents
the expected proportion of ChIP reads in a background window.
If po is known, the enrichment of ChIP reads in any window can
be evaluated. This evaluation does not require the knowledge of
the actual values of the background sampling rates, ;.

In order to estimate pp, one should keep in mind that
the ratio N/(M + N) based on the total read numbers in the
two samples is a biased estimate. This is because the ChIP
sample contains both background reads and reads that repre-
sent signals, whereas po is related only to the background. If
we divide the genome into w bp long non-overlapping win-
dows (indexed by #) and assume that read numbers in dif-
ferent windows follow independent Poisson distributions, then
N~ Poisson() ; pjo + »_;mi1) and M~ Poisson() ;A;). As a
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1.3. Normalization

result, N |M + N ~ Bin(M + N, gq), where g=(c+d)/(1+
c+d)#c/(1+c)and d=3; i1 /Y ;4. It can be shown that
given A;, i1, and c, the expectation of N / (M + N) is g which is
not equal to po. An algorithm that estimates po and uses the bino-
mial distribution to evaluate the enrichment of ChIP reads will be
described in Section 3.2.2. An alternative approach to evaluate
background variability for two-sample experiments is discussed in
Note 3.

The proportionality constant ¢ = po/(1 — po) in the two-sample
analysis can be viewed as a way to normalize the read counts of
two different samples. This normalizing constant can be used to
compute the fold enrichment of ChIP reads, which is defined
by (9) as the ratio (n; + 1)/(cm; + 1). Here m; and #; are read
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numbers in the control and ChIP samples in a window indexed
by 7and a regularization constant one is added to both the numer-
ator and the denominator to avoid dividing by zero.

In most current high-throughput sequencing platforms, sequence
reads are produced from both ends of DNA fragments. Surround-
ing a TFBS on the chromosomal map, reads that are aligned to
the forward strand of the genome will form a peak upstream of
the binding site, and reads that are aligned to the reverse com-
plement strand will form a peak downstream of the binding site
(13, 14) (Fig. 9.3). This forms a characteristic peak shape that
contains useful information for distinguishing bona fide binding
sites from false positives. Predicted TFBSs without this bimodal
peak shape are often false positives and should be eliminated from
the final results. The bimodal shape is also useful for making high-
resolution binding site predictions. The bona fide binding site
should fit in between the modes of the two peaks. Using this
information, a TFBS can usually be mapped to a 50~100 bp long
region (9, 11, 14-16).

2. Software

The methods described in this chapter for building back-
ground models and detecting protein-DNA interactions from
mapped sequence reads are implemented in the open-source
software CisGenome which is available at http://www.biostat.
jhsph.edu/~hji/cisgenome (9). CisGenome provides a user-
friendly graphic interface and it can also be used to per-
form various types of subsequent analyses. Sequence reads
can be mapped to a reference genome using one of
the following software tools: Eland provided by Illumina,
Inc., Bowtie at http://bowtie.cbcb.umd.edu (17), MAQ
at http://maq.sourceforge.net/ (18), SeqMap at http://
biogibbs.stanford.edu/~jiangh/SeqMap/ (19), Corona Lite
provided by the Life Technologies (http://solidsoftwaretools.
com/gt/project/corona/), and SHRiIMP at http://compbio.cs.
toronto.edu/shrimp/ (20).

3. Methods

In this section, we describe a procedure to detect protein-DNA
interactions from ChIP-seq data. Alternative methods are dis-
cussed in Note 4.
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The first step of data analysis is to align sequence reads to a ref-
erence genome. A number of software tools have been developed
to support fast mapping of millions of short-sequence tags to
complex genomes. Examples include Eland (Cox, unpublished),
Bowtie (17), MAQ (18), SeqMap (19), and SHRIMP (20). For
data generated by the Life Technologies’ SOLiD platform, align-
ment needs to be performed in color-space using tools such as
Corona Lite (unpublished) and SHRiMP (20). From now on, we
assume that all sequence reads are mapped, and reads that are
uniquely aligned to the genome are retained for subsequent anal-
yses.

Using the mapped reads, build a background model using
CisGenome (9).

Divide the genome into non-overlapping windows. The window
size w should be chosen to roughly match the expected length
of enrichment signals. For TEBS analysis, the window size w is
typically set to 100 bp (see Note 5 for more discussions). The
entire set of windows can be viewed as a mixture of windows that
represent background noise and windows that contain protein—
DNA interactions of interest. Let ¢ denote the proportion of
background windows. ¢ is unknown and needs to be estimated
from the data.

For each window, count the number of reads that are
uniquely aligned to the window. Let #z; be the number of
reads within the sth window. It is assumed that for background
and non-background windows, z; follows two different prob-
ability distributions for which density functions are fy(#) and
f1(n), respectively. Under this assumption, the data generating
distribution for »; can be described by a mixture distribution
g(n) =mofo(n) + (1 — mo)fi(n). Use the empirical distribution of
n;, 1.e., the observed frequencies that n; = n(n =0, 1, 2,...),to
estimate g(7).

Based on the discussions in Section 1.2.1, the background
distribution fp(7) can be modeled by a negative binomial distribu-
tion NB(«, B).In order to estimate o and B, we assume that win-
dows with small number of reads are mostly background. Under
this assumption, the background parameters & and 8 can be esti-
mated using windows with no more than two reads. For a random
variable » that follows negative binomial distribution NB(er, B),
define7; =Pr(n=1)/Pr(n=0)and 7 =Pr(n=2)/Pr(n=1).
Since 1 =a/(B+1)and 7 = (¢ + 1)/[2(8 + 1)], we have a =
r1/(2ry — ) and B = 1/(27 — ) — 1. Therefore, to estimate
a and B count the number of windows that contain % reads and
denote it as #;. Use u1/ug to estimate 71 and use #y/#) to esti-
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mate 7;. Plug the estimated values of 71 and 7 into 71 /(273 — 71)
and 1/(27, — 71) — 1 to obtain the estimates of « and B.

In order to estimate mg, we assume that most windows
with no mapped read represent background noise. Under this
assumption, g(0) =~ mofp(0) and wg =~ 4(0)/f0(0). Therefore, mg

can be estimated by %/[(Zk uk)fO(O)]. Finally, using the esti-

mated 7o, fo(.) and g(.), one can estimate the local false dis-
covery rate (local FDR) for any w bp window as follows:
Ifdr (window ¢) = mofo(n;)/g(n;). Here, n; is the observed read
count for window 4.

Divide the genome into w bp long non-overlapping windows. For
each window, count the number of reads that are uniquely aligned
to the window. For window ¢, let #; and m; denote the number
of reads in the ChIP and control samples, respectively, and let
t; = n; + m; be the total read count.

Using windows for which #; is small (we usually use win-
dows that contain only one mapped read, i.e., indices z for which
t; = 1), estimate the expected proportion of ChIP reads in
background windows as py = >, n; /> ; (n; + m;). This implic-
itly assumes that windows with small read counts mainly represent
background. Estimate the normalizing constant é=g /(1 — po).

Next, group windows based on their total read counts #;. For
each group of windows for which #; = #(¢ =0, 1, 2,...), com-
pute the observed frequency that ; = n(n =0, 1, ..., ). Derive
the function gops(7|t) = {number of windows for which #; = ¢
and »n; = n} / {number of windows for which #; = ¢}. Define
fBin(n |t, po) = Pr(X = »n) where X ~ Bin(z, po). For a window
that contains # reads among which z are ChIP reads, estimate the
local FDR as fgin(7 |t, 20 )/Jobs(7 |t). When ¢ becomes big, there
will be fewer windows available for estimating gops(# |2 ). In order
to get robust local FDR estimates, if there are fewer than 100
independent windows for a particular z, we suggest extrapolat-
ing the local FDR estimates from windows with smaller total read
counts. In other words, find the biggest £ < ¢ that has more than
100 windows. For a window that contains ¢ reads and » ChIP
reads, the local FDR is estimated as fgin(7' |2, §0)/Fobs(# |£),
where 7' = I_t/ n / tJ and [x| represents the maximal integer that
is not bigger than «.

Using CisGenome (9), scan the reference genome using a w bp
long-sliding window. Compute the local FDR for each window.
For analyzing a one-sample experiment, use the estimated back-
ground model described in Section 3.2.1. For analyzing a two-
sample experiment, use the procedure described in Section 3.2.2.
For the two-sample analysis, also compute a fold enrichment for
each window: (n; + 1)/(¢m; + 1). Here »; is the number of ChIP
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reads in the window, ; is the number of control reads, and¢ is
the normalizing constant estimated using the method in Section
3.2.2.

Select all windows with local FDR smaller than a given cutoft
(usually < 10%). Merge overlapping windows into a single region.
Report all regions obtained after merging. During the process in
which windows are merged, use the smallest local FDR among the
overlapping windows as the local FDR for the merged region. For
the two-sample analysis, use the biggest fold enrichment among
all the overlapping windows as the fold change of the merged
region.

If the purpose of the ChIP-seq experiment is to locate TEBSs, the
reported regions should be further processed using CisGenome
as follows to improve the results.

Use a w bp sliding window to scan each reported region. For
each window, count reads in the ChIP sample that are aligned to
the forward strand of the genome and those that are aligned to
the reverse complement strand. This creates two smooth curves
of read counts (Fig. 9.3). Identify the locations where the two
curves achieve their maxima (i.e., the modes of the curves) and
use these locations to define boundaries of binding sites.

For each reported region, compute the distance between the
modes of the peaks on the forward and reverse complement
strands. Compute the median of all distances and denote it as
L. Shift all reads toward the center of the DNA fragments by L/2
base pairs. Reads aligned to the forward strand of the genome
are shifted toward 3" of the reference genome and reads aligned
to the reverse complement strand are shifted toward 5" of the
reference genome. Using the shifted reads, perform the analyses
described in Sections 3.2 and 3.3 again. For the reported regions,
determine the binding site boundaries using unshifted reads as
described in Section 3.4.1.

Having identified protein-binding regions, they can be analyzed
in different ways to study the biological implications. Here we
suggest a few common analyses, most of which can be carried out
using CisGenome (9). First, compute frequencies that reported
regions occur in intragenic and intergenic regions, exons, introns,
promoter regions, and other structural features of genes and
compute the average level of conservation across species for
each region. These two analyses may provide information on
functional contexts and importance of the reported regions.
Second, extract genes in the neighborhood of the reported
regions as a gene set and perform Gene Set Enrichment analysis
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(http://www.broadinstitute.org/gsea/) (21) and Gene Ontol-
ogy analysis (http://www.geneontology.org/GO.tools.shtml).
These analyses may provide information on functional categories
or pathways that are involved in the biological system in question.
Third, perform de novo motif discovery or map the known motifs
to the reported transcription factor binding regions and their
flanking regions. Identify motifs that are enriched in the binding
regions compared to control genomic regions using CisGenome.
These analyses may identify motifs that are recognized by the
transcription factor in question. They may also suggest collaborat-
ing factors. In addition, the motif analysis provides a way to verity
that the reported TFBSs are bona fide signals. For example, if the
ChIP-seq experiment studies a transcription factor and the bind-
ing motif of the transcription factor is known, then the motif is
expected to be enriched in the reported binding regions. If this is
not the case, it may indicate problems in the ChIP-seq experiment
or data analyses. Last but not least, it is always a good idea to visu-
alize the ChIP-seq data along with other structural and functional
annotations of the genome. Both the CisGenome Browser and
the Genome Browser at UCSC (http://genome.ucsc.edu/) (22)
can be used to interactively visualize the data. Interesting patterns
may emerge by simply eye balling the data. These patterns may
create new hypotheses and suggest future research directions.

4. Notes

1. Analysis of experiments with replicate samples. The meth-
ods introduced in this chapter are developed for analyzing
experiments that contain a single replicate. If an experiment
contains more than one replicates, the analysis can be car-
ried out in two steps. First, merge the replicate data into
a combined ChIP sample and a combined control sample
(there will be no control sample in a one-sample experi-
ment). The combined sample can then be analyzed using the
methods described in Section 3. Second, for the reported
peaks, extract read counts from individual replicate sam-
ples. Normalize the read counts by multiplying the raw read
numbers with the normalizing constants obtained using the
approach described in Section 3.2.2. The normalized read
counts can then be analyzed using existing methods devel-
oped for detecting differentially expressed genes in microar-
ray experiments (e.g., limma (23)) to remove regions for
which the observed ChIP enrichment over the controls can
be explained by the random variability among replicates.
Suppose that the normalized read counts are saved in a
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tab-delimited text file named “data.txt,” the R commands
below show how limma can be used to perform the analysis
in the second step.

> library(affy)

> library(limma)

> exprs <- as.matrix(read.table("data.txt",
header =TRUE,

sep="\t", row.names=1, as.is=TRUE))

> exprs <- log2 (exprs)

> eset<-new("ExXpressionSet", exprs=exprs)

> design<-cbind(Base=1, ChIP=c(1,1,1,0,0,0)) ##
3 ChIP vs.

3 controls

> fit<-1mFit (eset,design)

> fit<-eBayes (fit)

. An alternative approach to estimate background in a one-

sample experiment. Zhang et al. (15) proposed another
approach to estimate the background Poisson rate. To esti-
mate the rate A; for a genomic window (usually dozens of
base pairs in length), this approach considers a few larger
windows (usually 5 and 10 kb in a one-sample analysis)
surrounding the window in question. A; is estimated using
read occurrence rates derived from these larger windows.
The underlying assumption of this method is that small
windows (with a few dozens of base pairs) close to each
other have similar background read sampling rate and reads
in the larger surrounding windows are mostly background
reads. This is usually a reasonable assumption for analyzing
TFEBSs. However, it may not hold true in data which con-
tain broad signals or where signals occur at high frequency
in the genome. When the assumption is true, this method
may provide higher statistical power for detecting signals.

. An alternative approach to estimate background in a two-

sample experiment. Statistical significance of the observed
enrichment in the ChIP-control comparison can also be
assessed by swapping the sample labels (15). In other words,
one treats the ChIP sample as the control and treats the con-
trol sample as the ChIP. One then applies the same peak
detection procedure to detect “signals” in the label-swapped
data. Any “signals” reported in this analysis should represent
noise. The false discovery rate for a given enrichment level
in the original analysis can be estimated by the ratio {num-
ber of regions reported in the label-swapped data}/ {num-
ber of regions reported in the original data}. This approach
requires that the two samples have about the same num-
ber of background reads in order to produce correct FDR
estimates. If two samples have different number of reads, a
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random subset of reads is usually drawn from the larger sam-
ple to create a subsample that has roughly the same number
of reads as the other sample. Because this procedure excludes
some data from the analysis, it may sacrifice some statistical
power. This procedure attempts to match the total number
of reads between the two samples, which is not equivalent to
matching the number of background reads. In light of dis-
cussions in Section 1.2.2, this may introduce bias into the
FDR estimates. Compared to this approach, the approach
described in Section 3.2.2 does not require the two samples
that have the same read numbers. However, since it depends
on assumptions about the underlying data generating distri-
bution, it may produce biased estimates as well if the model
assumptions do not hold true in the data.

. Alternative approaches to detect peaks from ChIP-seq data.
Several other methods have been developed for detecting
“enrichment peaks” from ChIP-seq data. QuEST (14) (see
also Chapter 10) uses a kernel density estimation approach
to build density profiles for forward and reverse reads sep-
arately. It then combines the two profiles to detect peaks.
FDR is estimated by dividing the control sample into two
halves and comparing the two subsets of the control. This
requires one to have twice as many reads in the control
sample as in the ChIP sample. SISSRs (16) detects points
in the genome where the net difference between the for-
ward and reverse read counts in a sliding window switches
from positive to negative. It then detects statistically signif-
icant binding sites by using a constant rate Poisson model
to evaluate the enrichment of the total read counts in the
windows surrounding the detected switching points. MACS
(15) uses a sliding window to scan the genome, and uses
a locally estimated Poisson rate to detect enrichment peaks,
as discussed in Note 3. Other methods include FindPeaks
(24), USeq (25), PeakSeq (10), and a ChIP-seq processing
pipeline developed by Kharchenko et al. (11). Currently, rel-
ative performance of various methods has not been bench-
marked. However, for locating TFBSs, all these methods
provide similar spatial resolution (a few dozens of base pairs)
and the difference among them is subtle compared to the
difference between ChIP-chip and ChIP-seq.

. The choice of window size. The choice of window size
w represents a trade-off between sensitivity and specificity.
When independent information is available, it may be used
to guide the choice of w. For example, in an experiment that
locates TFBSs with known motif{s), one can map the motif
to the reported binding regions and compute the motif
occurrence rates (i.e., the number of motif sites per 1 kb).
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The motit occurrence rate is a measure of signal-to-noise
ratio. It decreases when the window size becomes too small
or too big (9). Motif occurrence rates for regions reported
using different window sizes can be compared and the win-
dow size that maximizes the rate can be selected to gener-
ate the final analysis results. If the transcription factor bind-
ing motif is not known before the study, one may first per-
form de novo motif discovery and use the method described
in (26) to identify the motif. It has been shown that the
approach described in (26) can correctly identity binding
motifs for most genome-wide ChIP studies that involve tran-
scription factors recognizing sequence-specific binding pat-
terns. If one is not able to get the motif information but
gene expression data are available, the window size may also
be chosen based on what fractions of binding regions are
associated with a particular gene expression pattern of inter-

est for different choices of window sizes.
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Chapter 10

Probabilistic Peak Calling and Controlling False Discovery
Rate Estimations in Transcription Factor Binding Site
Mapping from ChiP-seq

Shuo Jiao, Cheryl P. Bailey, Shunpu Zhang, and Istvan Ladunga

Abstract

Localizing the binding sites of regulatory proteins is becoming increasingly feasible and accurate. This
is due to dramatic progress not only in chromatin immunoprecipitation combined by next-generation
sequencing (ChIP-seq) but also in advanced statistical analyses. A fundamental issue, however, is the
alarming number of false positive predictions. This problem can be remedied by improved peak calling
methods of twin peaks, one at each strand of the DNA, kernel density estimators, and false discovery
rate estimations based on control libraries. Predictions are filtered by de novo motif discovery in the peak
environments. These methods have been implemented in, among others, Valouev et al.’s Quantitative
Enrichment of Sequence Tags (QuEST) software tool. We demonstrate the prediction of the human
growth-associated binding protein (GABPa) based on ChIP-seq observations.

Key words: Transcription factor, transcription factor binding site, regulatory protein binding, chro-
matin immunoprecipitation, next-generation sequencing, ChIP-seq, peak calling, false positive rate.

1. Introduction

Transcription from DNA to RNA in response to environmental
stimuli or internal signals is regulated by complex networks of
agents and mechanisms. These include transcription factors (TFs)
and co-factors, nucleosomes and histone modifications, DNA
methylation, microRNAs, and interactions of all of the above as
reviewed in Chapters 1, 2, 3, and 4. These interactions directly
influence the recruitment and activation of the RNA polymerase
complex. In the recent years, revolutionary progress in chro-
matin immunoprecipitation (ChIP) and ultra-high-throughput
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sequencing allowed unprecedented high-throughput mapping of
transcription factor binding sites (TFBS) to complex genomes.
To reveal these complex networks, diverse results are integrated
by sophisticated experimental and computational pipelines as dis-
cussed in Chapter 1. This chapter discusses conservative methods
for the prediction of binding sites from ChIP-seq results. This
task is not trivial since immunoprecipitation can pull down not
only the DNA directly associated with the TF of interest, but
also the DNA segments bound by a large array of other pro-
teins (Chapter 1). Inherent challenges to mapping TF binding
sites include mapping potential binding sites that may not be
functional in the cell and missing some functional binding sites
from signals below thresholds. ChIP depends on the sensitivity
and selectivity of the antibody to the TF studied. Antibodies may
frequently bind to other members of the TF family, causing a
non-specific signal. In addition, TFs may be modified or bound
by co-factors and not recognized by antibodies.

TFs, by definition, specifically bind to a limited range of
DNA sequences primarily but not exclusively in the promoter
region close to the transcription start site. TFs may also bind to
distal promoter, enhancer, intronic regions, and even to exons
(1). Since individual binding sites frequently have a footprint
on DNA as short as 5 base pairs (bp), the computational pat-
tern analysis of short TFBS in isolation is typically an infeasi-
ble problem. Fortunately though, these sites are frequently orga-
nized into cis-regulatory modules (CRMs) (2), for which compu-
tational prediction methods (se¢ Chapters 1, 6, 7, and 13) are
becoming increasingly accurate. As a rule, these computational
predictions are based on very limited samples of experimentally
verified binding sites, which considerably underrepresent the vari-
ability of the TFBS (Chapter 1). Based on such samples, general-
izing the motifs, mathematical representations of the binding sites
using expectation maximization (Chapter 6), Gibbs sampling
(Chapters 6 and 7), or positional weight matrices (PWMs,
Chapter 6) is an extremely challenging task. Considerably more
representative samples are generated by recent in vivo high-
throughput methods including chromatin immunoprecipitation
(3) combined with either genomic tiling microarrays (ChIP-chip)
(4, 5, 6) or next-generation sequencing (ChIP-seq (7)). This
chapter focuses on ChIP-seq because it provides for finer reso-
lution and higher accuracy than ChIP-chip [see Section 1.4 and
ref. (7)].

Even with these biological, experimental, and computa-
tional caveats, ChIP-seq, if and only if analyzed and inter-
preted by sophisticated computational methods, brings a leap
in understanding transcriptional regulatory networks. To ben-
efit both computational and experimental biologists, we briefly
introduce ChIP-seq, discuss the theoretical and practical aspects
of peak calling, validation by the identification of shared binding



Probabilistic Peak Calling and Controlling False Discovery Rate Estimations 163

1.1. Chromatin
Immunoprecipitation
(ChiP)

site motifs, and benchmarking the performance of the method,
including false discovery rate estimations. The computational
analyses are demonstrated on the biological example of a cell
division regulator, the growth-associated binding protein a-chain
(GABPa), and its binding sites in the human genome.

In order to anchor the protein of interest to its in vivo DNA
location, it is typically cross-linked to the DNA by formaldehyde
(Fig. 10.1). Next, the DNA is either sonicated or sheared into
few hundred base pair (bp) segments. The protein, still associated
with the DNA, is incubated in the presence of a specific antibody,
and immunoprecipitation is performed. Proteins are digested,
then the ~150-200-bp long DNA segments are sclected by

Treat cells with formaldehyde
to cross-link proteins to DNA

Release DNA with cross-linked
transcription factors by cell lysis

| Shear DNA

l Immunoprecipitate with

antibody specific to transcription
ChlP-seq/ \Ch'P"’hiP

factor of interest
Degrade proteins and select DNA by size.
Ligate primers that serve as template for
sequencing reactions.

N

l | Sequencing /
— t=

—

_ =

— e — w—

Fig. 10.1. An overview of ChIP-seq and ChIP-chip experimental steps.

Degrade proteins and select DNA
by size. Hybridize DNA to
microarray chip
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1.2. Identification
of Chromatin-Bound
DNA

gel electrophoresis. Note that this size considerably exceeds the
5-26 bp footprint of TFs on the DNA, compromising the resolu-
tion of ChIP-seq. In order to estimate background noise and false
positive rate (Section 3.6), control libraries are created by either
reversing the cross-links and ChIP, ChIP with a non-selective
antibody like IgG or with no immunoprecipitation at all. Because
in the absence of ChIP, little or no proteins are expected to be
pulled down with DNA (8), the identified DNA segments are
considered as background noise and used for estimating the false
discovery rate (Section 3.6).

ChIP-enriched DNA segments are identified either by hybridiza-
tion to genomic tiling/promoter microarrays (5-7) (ChIP-chip)
or by ultra-high-throughput sequencing (ChIP-seq). ChIP-chip
works well on small genomes; in yeast, binding sites for over 100
TFs have been determined (9). Also, ChIP-chip conveniently lim-
its the study to selected regions of the genome. Selected regions
include promoter regions, which are primary loci for TF bind-
ing (10), chromosome 22 (11), and pilot-ENCODE regions. In
the latter, carefully selected samples accounting for 1% the human
genome (1) have been analyzed. Binding sites for CREB (12), the
Polycomb group TFs (6), the mouse embryonic stem cell reg-
ulatory network (13), and the estrogen receptor (4) have been
identified with ChIP-chip. While ChIP-chip is effective in yeast
and other small genomes, its resolution is about 500 bp in higher
eukaryotes (Chapters 9 and 11). ChIP-chip is a powerful tool,
however, the high level of cross-hybridization and the need for a
pre-designed chip are major drawbacks and its performance dete-
riorates in complex mammalian genomes (14).

One of the earliest methods proposed to overcome the lim-
itations of ChIP-chip was Sequence Tag Analysis of Genomic
Enrichment (STAGE) (15, 16). Revolutionary breakthrough in
sequence coverage and affordability has brought by ultra-high-
throughput sequencing, also called next-generation sequenc-
ing. Coupled with ChIP (ChIP-seq), immunoprecipitated
DNA segments are sequenced by massively parallel technol-
ogy including the Illumina (formerly Solexa) sequencing by
synthesis (www.illumina.com) (17), Roche /454 pyrosequencing
(www.454.com) (18), and Life Technologies’s (formerly Applied
Biosystems) SOLiD (http://solid.appliedbiosystems.com) plat-
forms. ChIP-seq produces tens of millions of sequencing reads.
From these massive but noisy data sets statistically significant
peaks and binding sites can be found. Compared to ChIP-chip,
ChIP-seq has a much finer resolution (25-200 bp), increased sen-
sitivity, and selectivity by eliminating cross-hybridization effects.
ChIP-seq is free from the hurdles of microarray design and
manufacturing.

ChIP-seq revolutionizes the discovery of regulatory protein—
DNA interactions, and binding sites for a number of TFs
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1.3. Computational
Discovery of Binding
Sites from ChIP-seq
Observations

1.4. Example:
Growth-Activated
Binding Protein
(GABPo)

identified include p53 (19), NSRF (20), STAT-1 (21), c-Myc
(22), and PPARYy (23, 24).

The density distribution of sequencing reads forms the basis for
heuristic and algorithmic methods for calling peaks. From these
peaks, the actual binding sites are inferred. The resolution, sensi-
tivity, and selectivity of ChIP-seq critically depend on the choice
of the heuristics or algorithms.

The development of algorithms and software tools of the
ChIP-seq computational analyses are lagging far behind the
progress of experimental technology. A diverse array of tools has
been published as reviewed in Chapter 1. These tools implement
fundamentally different methods for background correction, nor-
malization, and analyzing bimodal (twin) peaks on opposing
strands of the DNA. Certain tools like QuEST (25) explicitly
demand a control library. CisGenome [Chapter 9, (26)], Find-
Peaks (27), and model-based analysis of ChIP-seq (MACS) (28)
work without control libraries; CisGenome [Chapter 9, (26)]
models background noise based on the negative binomial distri-
bution, while SISSRs (29) and MACS (28) use the Poisson dis-
tribution for this purpose. Peaks are ranked by binomial p-values
in USeq (30). Most recent tools improve peak calling by esti-
mating the shift between the peaks on opposing strands (see
Section 3.3). False discovery rate is calculated by QuEST (25)
and MACS (28) on the basis of the control library, while Find-
Peaks (27) and spp (31) perform Monte Carlo simulations.
ERANGE (20, 32) uses tag aggregation but calculates no p-values
or FDR. F-Seq (33) also uses kernel density estimations, GLITR
(34) and PeakSeq (35) evaluate peaks using FDR. The develop-
ment of a more realistic FDR estimation would greatly benefit the
discovery of TFBS (see Note 2).

Here we demonstrate the discovery of TFBS from ChIP-
seq observations using the Quantitative Enrichment of Sequence
Tags (QuEST) tool. QuEST was developed by Anton Valouev
and colleagues at Stanford (25). QuEST takes the advantage of
the directionality of the sequencing reads to find genomic regions
enriched in TF-bound DNA fragments. It applies a nonparamet-
ric approach called kernel density estimation method to gener-
ate smoothed sequencing reads density, for which local maxima
(regions with high density) are sought. With these approaches,
QuEST can statistically analyze peak calls that indicate a higher
likelihood of finding biologically relevant TFBS.

We demonstrate below how to use QuEST to find putative
binding sites for the growth-activated binding protein a-chain
(GABPa, also known as E4TF1-60, nuclear respiratory factor 2
subunit o) (12) in human Jurkat cells. GABPa is a member of the
Etf family of TFs, and it is both necessary and sufficient for restart-
ing cell division (36, 37). GABPa has a 10-11 bp footprint on
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1.5. Overview

the DNA, with low information content at positions 8-11 (38).
ChIP was performed by using antibodies specific to this protein
and sequencing was performed on the Illumina Genome Analyzer
platform.

We describe how to obtain and install the QuEST software and
how to format the input data in Section 2 and in Appendix 1.
In Section 3, we introduce the algorithms applied in QuEST. In
Section 4, QuUEST finds GABPa binding sites from the ChIP-seq
reads mapped to the human genome and results are interpreted.
In the Notes section, we discuss potential limitations and param-
eter settings.

Here we perform the prediction and analysis of TFBS on the basis
of the ChIP-seq reads mapped to the genome using Quantitative
Enrichment of Sequencing Tags (QuEST) tool developed by Val-
ouev et al. (25). QuEST facilitated the discovery of thousands of
binding sites for the human serum response factor (SRF), GABPa
discussed above, and neuron-restrictive silencer factor (NRSF).
The methods implemented in QuEST are discussed in Section 3.
The installation is described in Appendix 1, and the computa-
tional protocol is detailed in Appendix 2.

2. Software
and Data
3. Methods

TEBS discovery using QuEST is described in nine sub-sections.
In Section 3.1, sequence reads are mapped to the genome.
Then candidate peaks are called on both strands of the DNA
based on the density distribution of the reads (Section 3.2).
Next, the extent of the shift between the forward and reverse
strand peaks on each side of a potential binding site is estimated
(Section 3.3). This allows combining the density distributions
on the two strands (Section 3.4). Then well-separated peaks
with significant differences to the background library are called
(Section 3.5). False discovery rate is estimated in order to
reduce the number of potentially biologically irrelevant or sta-
tistically not significant peaks (Section 3.6). Running QuEST
is discussed in Section 3.7 and Appendix 2. The number of
potentially missed sites is estimated by a saturation analysis in
Section 3.8. Finally, in Section 3.9 and Appendix 3, the called



Probabilistic Peak Calling and Controlling False Discovery Rate Estimations 167

3.1. Mapping
ChiIP-seq Reads
to the Genome

3.2. Kernel Density
Estimation

peaks are displayed in the University of California Santa Cruz
Genome Browser.

ChIP-seq produces several million sequencing reads (tags) of
varying length. These sequencing reads can be mapped onto
the genome by a number of tools including Bowtie, the fastest
tool at the time of this writing (39), MAQ (http://maq.
sourceforge.net/), Eland (http://www.illumina.com), SHRiMP
(40), SSAKE (41), SHARCGS (42), Exonerate (43), Corona
Lite for the SoLiD platform (http://solidsoftwaretools.com/
gf/project/corona/), and other packages. Inputs to QuEST are
the genomic coordinates and strand of the sequencing reads. For
every genomic position z, the number of high-quality forward
reads C(7) and reverse reads C_(7) is recorded.

QuEST Version 2.4 accepts aligned reads in QuEST,
ELAND (http://illumina.com), Bowtie (39), and MAQ
(http://maq.sourceforge.net/) formats.

Loci significantly enriched in ChIP-seq reads may indicate bio-
logically functional binding sites. QuEST computes enrichment
by kernel density estimation (44), a nonparametric method of
computing smooth estimates over noisy observations. First, we
estimate the strand-specific smoothed density functions Hy(7)
from Cy(z) and H_(7) from C_(7) at nucleotide position  in the
genome for the forward strand:

1 i+3h ] _
Hi)=7 Y K (7) C(j) [
j=i—3h

and analogously for the reverse sequencing reads:

H(z)—liihzc 1= ¢ 2
()=, ) €=, 2]

j=i—3h

where K(x) = \/%7 exp (_xz_z) is the normal kernel function and

b is the kernel density bandwidth. The user-selectable kernel den-
sity bandwidth is the number of base pairs considered, used in the
estimation formulae [1] and [2]. The kernel density estimator is
a weighted moving average of the number of sequencing reads

where K (%) denotes the weight. The normal kernel is selected
here for its computational efficiency. With increasing distance of
7 from iz, the weight K (%) decreases for C1(j) or C_(j). The

bandwidth 4 is adjustable and the 30 bp default is recommended
for the binding sites of GABPa, which has a 10-11 bp footprint
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on the DNA, with low information content in the last four posi-
tions (45). The optimal selection of bandwidth depends on the
footprint width, the experimental characteristics, and the pres-
ence of co-binding proteins, and usually determined by trial and
error. While the normal kernel function is widely used, alternative
methods such as the Haar wavelets may perform better in certain
applications (sec Note 3).

3.3. Estimating the The polymerase applied in amplification and sequencing attaches
Peak Shift to the 5’ termini of the sample DNA segments. Moving toward
the 3’ end, the polymerase dissociates from the DNA with a

sharply increasing frequency. Therefore reads are overrepresented

at the 5" ends on both strands of ChIP-enriched DNA fragments

as compared to their central and 3’ regions. Reads from the two

strands form two peaks, one at each side of the binding site.

QuEST estimates peak shift, the distance between the peaks on

the forward and the reverse strands as follows (Fig. 10.2). For

shift estimation, only twin peaks with high confidence are selected

as follows. For each fixed length (default: 300 bp) sliding window

7, the highest local maximum of forward reads is M7 and of the

reverse reads is M”; the second highest local maximum of forward

reads is N and of reverse reads is N”. Window 7 is selected for

peak shift calculation if it satisfies the following three conditions:

1. Window 7 is covered by more than ¢ reads (default: 600).

This condition ensures robust estimates of local maxima.

2. M} >20N} and M" > 20N”. If the highest local max-
imum is much greater than the second highest local maxi-
mum, then the highest local maximum is more likely to be a
real peak instead of some random spike.

3. My >20c, and M” >20c", where (| and ( are
the local maxima of the same window in the pseudo-ChIP
library. This condition ensures that the peaks safely exceed

the background level.

300 bp window

M,i .
— N Nad
< <«
5,I——I . << << <
¥ = K S
M s> 2> = >
T T N i

Fig. 10.2. Selection of peak calling windows. Users can configure the fixed length (default: 300 bp) of the sliding
windows. A pair of peaks are formed by the M,.iand M_i clusters of reads.
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Let S denote the set of all selected windows. For every win-
dow r € §, we compute the 4, distance between the highest peaks
M7 and M’ . The peak shift A is estimated by ) 4,/2 M , where

VESl
M is the number of windows in S.

3.4. Combining The above estimate for the peak shift allows us to calculate the
Strand Densities combined densities of forward and reverse reads for both ChIP-
seq and control library:

H(i)= Hy(i— 1)+ H_(i+1).

The combined density is the basis for peak calling below.

3.5. Peak Calling Peaks are defined as windows of high concentration of sequenc-
ing reads at a locus on the genome that may indicate TFBSs
(Figs. 10.2 and 10.3). Candidate peaks are detected by scanning
the genome using narrow sliding windows (default: 21 bp) for
local maxima of the combined density. Let p1,. .. pp denote the
positions of the candidate peaks; and let ¢, ..., cp denote the
corresponding density in the control library. To facilitate conser-
vative binding site predictions, a candidate at position p; will be
called if and only if it satisfies all of the following criteria:

1. H(p;) = t,where tis a user-specified threshold (default: 30)
to control the false discovery rate. By definition, the false
discovery rate is the (estimated) frequency of false positives
with a score equal to ¢ or higher. Increasing ¢ decreases the
false discovery rate.

High density of Noise
sequencing reads
<, <
e
< T
<< <«
5 /} <= < %\e 3
3 ¢ TFBS ‘Z 5
— -
%9%99%% N j —
> 57 S
Kernel density from Kernel density from
forward sequencing reverse sequencing reads

reads
N threshold

Combined strand density

Fig. 10.3. Simplified depiction of peak calling by the kernel density estimator. A peak is called when the maximum value
of combined read density exceeds a threshold. Peak pairs over the density threshold are called as a candidate TFBS. The
density threshold is calculated so as the FDR would not to exceed the user-selected value.
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3.6. False Discovery
Rate

2. Background test. Either ¢; <t or H(p;)/¢c; > 7,
where ¢; is the background density at peak 7 and  is the gen-
eral background threshold, and 7 is a user-specified “rescue”
ratio, which, by default, is set to 10.

3. To ensure clear separation (“valley”) between neighboring
peaks, a minimum of 10% drop in H(s) read density is
required.

0.9 - min{H (p;—1), H(p:)} = max{H(j)|pi-1 < j < pi}

and

0.9 - min{H (p:), H(pi+1)} = max{H(j) |pi < j < pis1}-

The selection of the parameter values here are somewhat arbi-
trary. Values selected by the application of a systematic sensitivity
analysis may increase performance (see Note 4).

False discovery rate (46) is defined as the ratio of incorrect posi-
tive predictions. In the context of TFBS predictions, it is the pro-
portion of erroneously called peaks that are either not binding
sites or binding sites for proteins other than the TF of interest.
These peaks are called since they score higher than the threshold
and satisfy all the three conditions above. Conditions and thresh-
olds are selected to strike a delicate balance of maximizing true
positive and minimizing false positive predictions.

There is no reference set where each genomic position is
reliably characterized as a binder or as a non-binder. Therefore
false discovery rate is approximated by using control libraries
created by reversing the cross-links and performing no ChIP
(Section 1.1). The library with no IP is randomly split into a
pseudo-ChIP-seq library and a background set. If a satisfactory
number of pseudo-ChIP reads are available, splitting them into
more than two sets could improve the accuracy of false positive
rate estimations (see Note 5). For compatibility with the real IP
experiment, the number of reads in the pseudo-ChIP-seq library
must match the number of reads in the real ChIP-seq library. The
peak calling procedure (Sections 3.2, 3.3, and 3.4) is performed
by comparing the pseudo-ChIP-seq library to the background set.
Clearly, any pseudo-peak called in this comparison is false. Then
peaks are called for real ChIP-seq library using the same back-
ground set. The approximated false discovery rate is the number
of pseudo-peaks divided by the number of called peaks in the real
ChIP-seq analysis. Valouev et al. (25) applies a threshold of 1%,
but acceptable thresholds for false discovery rate are subject to
the individual experimenter’s discretion.
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While the above described no-IP-based approximation is
probably the best available choice, this procedure consider-
ably underestimates the real false discovery rate in a ChIP
environment. This procedure does not take into consideration
antibody binding to untargeted proteins, which is a serious issue
with large TF families with similar epitope structure, and major
cause of false positives (3, 8). Another issue is that formaldehyde
can cross-link DNA to close but unbound proteins (3). These
concerns motivate further computational validation including the
identification of shared motifs (Section 3.10.2) and correlation
analyses with TFs that co-regulate certain genes with GABPa

(Results).
3.7. Running QuEST Sequencing reads obtained by the ChIP-seq experiments of the
on ChIP-Enriched GABPa binding sites in human Jurkat lymphoblastoma cells were
Sequencing Reads aligned to the human genome (Version hgl8). Peaks are called

and evaluated as described in Appendix 2.

3.8. Peak Saturation How many peaks are missed when using one, two, or more
sequencing lanes? This question can be answered by drawing a
saturation curve where the number of peaks is a function of the
number of reads. Saturation analysis can be performed by ran-
domly selecting subsets of varying size from the original data and
calculating the number of peaks for each subset as in Sections
3.2,3.3,3.4,3.5,3.6,and 3.7.

3.9. Visualization Peaks can be visualized in a rich context of diverse genomic infor-
in the Genome mation using the University of California Santa Cruz Genome
Browser Browser (http://genome.ucsc.edu) (47). QuEST prepares sev-

eral custom tracks for this browser. Users can upload these tracks
to either the UCSC server or a local implementation of the
Genome Browser, as described in Appendix 3. As an example,
Fig. 10.4 shows the promoter region of the human G-protein

I 1100 bases
11024450 11024400 11024350 11024300 11024250 11024200 |

Minus strand
e e ‘-IIJJA‘MM‘MJI&
Wk“ihd—»u — - .

Fig. 10.4. Actual peaks and TFBS predictions in the promoter region of the gene encoding the human G-protein binding
protein CRFG (GTPBP4) as displayed by the UCSC Genome Browser using custom tracks. Note that in the promoter region
of this strand gene, sequencing reads in the forward orientation form (upper subchart) a peak upstream of the peak of
the reverse strand reads (lower subchart). The two peaks combined span over 350 bp, much wider than the 10-12 bp
footprint of the GABP TF.

Plus strand
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3.10. Results
3.10.1. Reproducibility

3.10.2. Shared Binding
Site Motifs

binding protein CRFG (GTPBP4). Sequencing reads in the
torward orientation cluster into a peak upstream of the reverse
read peak. Note the coarse resolution of ChIP-seq: high read den-

sity extends to over 350 bp, much wider than the actual footprint
of the GABPa protein on the DNA.

QuEST (25) reproduces several earlier identified target genes for
GABPa including interleukin-16, cytochrome ¢ oxidase subunits
IV and Vb, and SRF-regulated FHI.2. The resulting binding sites
are also in line with the co-occurrence of GABPa and SRF bind-
ing sites: 29% of the predicted SRF peaks were in the proximity of
GABPu sites. The original publication (25) reported 6,442 peaks,
however, using the parameters described in Section 3.3, we found
550 additional peaks. Saturation analysis performed as in Section
3.5 indicates that the sequencing depth is sufficient to identify
most peaks.

The reproducibility of peak positions and scores was
estimated using an experiment targeting another TF, the neuron-
restrictive silencer factor (NSRF). Potential binding sites of this
TF were immunoprecipitated by both monoclonal and the poly-
clonal antibodies in different experiments. Peaks were called sep-
arately from both experiments. The standard deviation of the dis-
tances between the 2,320 comparable peaks was as low as 13.5 bp,
and the scores were highly correlated (» = 0.97). These results
demonstrate the high reproducibility of both the ChIP-seq tech-
nology and the QuEST methodology.

As a rule, ChIP-enriched segments are considerably larger than
the biological TFBS. This is due to sonicating the chromatin to
~500 bp segments, then size selection of the already chromatin-
free DNA to ~150-200 bp by gel electrophoresis, experimen-
tal noise, and the presence of multiple proteins cross-linked by
formaldehyde, including others than the TF being studied (3).
Therefore a more accurate TFBS localization requires finding
common motifs in the neighborhood of each called peak. This can
be achieved by many of the ~200 motif prediction tools available
to date, with varying performance for diverse TFs (reviewed in
Chapter 8). In Valouev et al. (25), de novo motif finding in the
200 bp neighborhoods of called peaks was performed by MEME
(Multiple Expectation Maximization for Motif Elicitation (48),
discussed in Chapters 6 and 11. QuEST’s reasonable specificity
(the ability to reject false positives) is indicated by the obser-
vation that 71% of the peaks were significantly enriched in the
canonical motif. The high accuracy of localization is shown by
the 21.76 bp standard deviation of the distance between motif
and peak centers.
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4. Notes

1. The software developers recommend peak calling using
parameter set Number 2. This, however, leads to an FDR
of 12.7% for the test data. In contrast, with the more strin-
gent parameter set Number 1, the FDR was 1.23%. This falls
into the generally accepted FDR range of 1-10%.

2. We found that -logl0(g-value) is frequently in the order of
100 K even for some rejected peaks. This seems to be unre-
alistic therefore a more adequate method is required for esti-
mating FDR.

3. In Section 3.2, QuEST uses a kernel smoother to estimate
the density of both forward and reverse reads. An alternative
for smoothing densities provided by Haar wavelets (49). The
mother function of Haar wavelets can be written as

-1/v2, —-1<x<0
YU(x) =1 1/4/2, O<x<l1

0, otherwise

Based on the mother wavelet, a family of child functions can
be generated as ¥ (%) = 20124 (27x — t), where jand #are
indices for scale and location. Then the wavelet coefficients

can be defined by

WT(x)lj, 1) = / Vi (f (x)dx,

where f(x) is the original density. For smoothing, some
criteria are necessary to distinguish between wavelet coeffi-
cients that indicate true signals and those which reflect noise
and should be eliminated. The Haar wavelet method was
applied to denoise DNA copy number observations (50).
Wavelet methods proved to be particularly well suited for
handling the abrupt changes in (50), a situation similar to
ChIP-seq results.

4. In Section 3.3, there are four criteria to call peaks and the
values of several parameters are to be selected arbitrarily. A
sensitivity analysis for the changes in these parameters could
lead to more sensitive and selective predictions.
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5. To estimate the false discovery rate in Section 3.6, the con-
trol library needs to be split randomly into two data sets.
A more robust estimate of the false discovery rate could be
obtained by averaging the results from multiple randomly
split data sets.

Appendix 1:
Installing QUEST

Source code for QuEST (including PERL and C++ mod-
ules) can be downloaded from http://www.stanford.edu/
~valouev/QuEST/QuEST.html. It has been tested for the
Linux/UNIX and Mac OS operation systems but no executa-
bles are available. The above web site provides installation instruc-
tions. System requirements include a local implementation of the
Pattern Extraction and Regular Expression Language (PERL), a
yee compiler, 1 GB random access memory, and 30 MB disk space.
Unpack and untar the archive using the command:

tar -zvxf QUEST 2.4.tar.gz

Replace the filename for the current version. In the source
directory, configure QuEST by running

./configure.pl
Finally, compile and link QuEST by the
make

command to finish installation.

Appendix 2:
Running QuEST
on the
GABP-Enriched
Sequencing Reads

Download the file http://mendel.stanford.edu/SidowLab/
downloads/quest/GABP.align_25.hgl8.gz containing input,
total chromatin, sheared chromatin data and http://mendel.
stanford.edu /SidowLab/downloads /quest/Jurkat_RX_nolP.
align_25.hgl8.gz for the control library. For the reference
genome, use the Human hgl8 genome table http://
mendel.stanford.edu/SidowLab /downloads/quest/genome_
table.gz.

These files may require 30 GB free disk space. Next, configure
the parameters for the QuEST analysis (type on a single line):

<QUEST_Directory>/generate_QuEST parameters.pl
-solexa_align_ChIP <Data_Directory>/GABP.align_25.hgl8
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-solexa_align_RX _nolIP <Data_Directory>/Jurkat_RX_noIP.
align_25.hgl8

-gt <Data_Directory>/genome_table -ap <Save_directory>
/QUEST_analysis

-ChIP_name GABP_Jurkat &,

where <QUEST_Directory> is the directory where QuEST is
installed on the user’s local system; <Data_Directory>
is the directory to save unpacked data; the option
“solexa_align_ChIP” specifies the sequencing platform’s
alignment. Other options are included for QuEST align file,
Eland file, Eland extended file, Bowtie file, and MAQ file. The
option “-solexa_align_RX_noIP” refers to the control data,
where “noIP” is no immunoprecipitation, “-gt” specifies the
input for reference genome, and “-rp” indicates that the input
genome is in FASTA-files. Option “-ap” specifies the output
directory.

When prompted to run QuEST with FDR analysis, choose
yes.” For the ChIP experiment, select “1,” for the peak calling
parameters, choose “1” (see Note 1).

QuEST processes this experiment in ~1.5 h on a LINUX
server with 2.33 GHz CPU.

[19

Appendix 3:
Displaying Peaks
in the UCSC
Genome Browser

Let us visualize a particular peak, e.g., P-21-1 from the window
(region) R-21.

Go to http://genome.ucsc.edu and select “Genomes” in the
upper left corner. Then select “add custom tracks” and upload
the following files:

tracks/wig_profiles/by chr/ChIP_unnormalized/chr22.wig.gz
tracks/ChIP_calls.filtered.bed

tracks/data_bed_files/by_ chr/ChIP/GABP_Jurkat.chrll.bed.gz
tracks/bed_graph/by_chr/ChIP/GABP_Jurkat.chrll.bedGraph.gz

Then click on “Go to Genome Browser” and “jump” to the
region “chr22: 29160342-29162631”.
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Chapter 11

Sequence Analysis of Chromatin Inmunoprecipitation Data
for Transcription Factors

Kenzie D. Maclsaac and Ernest Fraenkel

Abstract

Chromatin immunoprecipitation (ChIP) experiments allow the location of transcription factors to be
determined across the genome. Subsequent analysis of the sequences of the identified regions allows
binding to be localized at a higher resolution than can be achieved by current high-throughput experi-
ments without sequence analysis and may provide important insight into the regulatory programs enacted
by the protein of interest. In this chapter we review the tools, workflow, and common pitfalls of such anal-
yses and recommend strategies for effective motif discovery from these data.

Key words: Motif discovery, sequence motifs, chromatin immunoprecipitation, ChIP-seq,
ChIP-chip, transcriptional regulation.

1. Introduction

The regulatory programs enacted by transcription factors in
response to developmental or environmental cues depend on spe-
cific interactions between these proteins and the genes whose
expression they regulate. This specificity is provided, in large part,
by short DNA sequences that are recognized and bound by tran-
scription factors, thereby localizing them to their targets (1). In
general, different transcription factors recognize different bind-
ing sites. The varying sequence specificities of these regulators
and the genomic location of the sites they bind form a regulatory
code whose decipherment has been an important area of research
in molecular biology for over 40 years (2, 3).

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
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There are a number of challenges that must be overcome in
order to decipher this code. The interactions of transcription fac-
tors with DNA are transient, making detection difficult. In addi-
tion, it is clear that in vivo binding events vary extensively in
their function; the same protein bound at different sites or at the
same site under different conditions may activate, repress, or have
no effect on transcription, depending on several factors including
which proteins bind with it (4). For these reasons, a combination
of condition-specific experimental data and computational analy-
sis is critical for understanding transcriptional regulation.

One experimental technique that has provided significant
insight into the regulatory code of eukaryotes is chromatin
immunoprecipitation (ChIP). In a ChIP experiment, the transient
interactions between proteins and DNA are stabilized by chem-
ically cross-linking in vivo. After subsequent isolation and frag-
mentation of the cross-linked chromatin, protein-bound DNA
fragments are immunoprecipitated using an antibody specific to
the transcription factor of interest. Coupling this procedure to a
high-throughput readout technique like microarrays (ChIP-chip)
or massively parallel sequencing (ChIP-seq) allows the location of
transcription factors to be experimentally profiled on a genome-
wide basis (5, 6).

ChIP data provide a starting point for many types of analysis
of transcription. In this chapter, we will focus on computational
techniques that use these data to understand how a transcription
factor is localized to its targets in a profiled tissue or cell type.
This can involve identifying the sequences that are recognized
and bound by the protein itself or sites bound by other proteins
with which it cooperates to control gene expression. Since high-
throughput ChIP experiments may have significant experimental
noise, identifying sequences that have a strong statistical associ-
ation with ChIP-enriched regions can provide additional confi-
dence in the quality of the data and increase the resolution at
which binding sites can be localized.

A variety of approaches have been proposed to represent
the specificity of protein—-DNA interactions, and the resulting
models are commonly referred to as sequence motifs (7). The
most intuitive representation of a sequence motif is the con-
sensus sequence. A consensus sequence describes the binding
site preference of a protein as a string of nucleotides. Sites
where a range of nucleotides are accommodated are denoted
using ambiguity codes. For example, the specificity of the Lrp
regulatory protein from Escherichia coli can be described as
YAGHAWATTWTDCTR (8). However, consensus sequences fail
to capture the fact that transcription factors generally have a range
of affinities for target sequences. An alternative model that con-
veys the range of affinities is the frequency matrix. Frequency
matrices describe the binding site preference of a protein as a
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set of position-specific multinomial distributions over the four
nucleotides A, C, G, and T. When an estimate of nucleotide fre-
quencies is available for regions that are not bound by the tran-
scription factor, frequency matrix motifs can be converted to
“log-odds” matrices by taking the log of each entry and then sub-
tracting the log of the background frequency for the appropriate
nucleotide.

Log-odds matrix motif models have a link to underlying bio-
physical parameters like binding free energy (9, 10). For the pur-
poses of analyzing ChIP data, biophysically based models often
have the advantage of allowing more realistic modeling of tran-
scription factor-DNA interaction. Because binding interactions
are transient, a particular binding site is occupied in only a fraction
of cells across the population. We refer to this fraction as the occu-
pancy, 6. Consider a transcription factor present in the nucleus at
a free concentration [P]. This protein can bind to a particular
unbound site, U, of length N to form a bound complex, B.

P+ U<« B

The association constant K,, which is a measure of the pro-
tein’s affinity for the site, is given by K, = %. The occupancy
of the site is related to this association constant and the tran-
scription factor concentration according to 6 = % Now
assume that the free energy of protein binding to any site is given
by a simple sum of nucleotide contributions at each position 2.
Because the association constant is related to the free energy by
K, = exp (—AG/RT), we can re-write the expression for occu-

pancy to take on a convenient logistic form:

- ! 1]

1 +exp (— log[P]+ >, Zjﬂi,f”u)

where the g;; correspond to the position-specific free energy con-
tributions (scaled by 1/RT) of each nucleotide (indexed by 7 =
1,...,4)and »;;are binary variables in a 4 by N matrix indicating
the presence or absence of nucleotide j at site 7. We now derive
a simple relationship between a standard sequence motif and the
position-specific free energy contribution of each nucleotide. Let
pi,j be the posterior probability of observing nucleotide j at posi-
tion 7 in a genomic site, given that the site is bound in vivo.
These probabilities correspond to the entries in the motif fre-
quency matrix and are given by

P (bound|n;; = 1) P (n;; = 1)

Z nP (bound|%i’j = 1) P (”i,j — 1) [2]

pij =
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where P(n;; = 1) denotes the prior probability of observing
nucleotide j (i.e., its background frequency). If we now assume
that the protein concentration is very low, then from equa-
tions [1] and [2], a site’s occupancy is approximated by

0 ~ exp (log[C] - Zjﬂi,j”%’,j)- We define an occupancy
estimate which ignores the contribution of nucleotide m at

position k as 6\0" = exp <10g [C1—=22i> ;5imi +ﬂk,mnk,m).

Then, equation [2] reduces to

[Z S\ﬂ;i’J‘P(S):| exp (gi,j)P(n,"j)

[Z 5,05 P (3)] > jexp(gi ) P(niy)

Pn,i =
[3]

__exp(gi) P(niy)
X jexp(giy) P(nij)

In equation [ 3], the sum over S§\7 (which cancels out) denotes
a summation over all possible binding site sequences holding posi-
tion 7 constant. Taking the logarithm of equation [3] and rear-
ranging gives

log pij —log P (nij) = gij — log - exp (i) P (nij)
J
=Jgij —logZ;

The entries of a log-odds matrix (the left-hand side of equa-
tion [4]), under some assumptions can be interpreted as the scaled
relative free energy contributions of those nucleotides to the bind-
ing reaction.

In a high-throughput ChIP experiment where there is both
positive and negative information about binding occupancy, it
is possible to use this information to exploit the relationship of
the biophysical and probabilistic approaches to learn accurate
and interpretable binding specificity estimates. The simple logis-
tic equation [1] relates occupancy, which has been measured in
the ChIP experiment, to energies, and thus, as we showed above,
sequence motifs. Given a set of bound and unbound example
binding sites (see Note 1), fitting a motit model can be accom-
plished by simply training a logistic regression classifier to distin-
guish the two classes (11). Similar biophysically based approaches,
making different simplifying assumptions, have been explored in
the context of ChIP-chip data analysis and have been proven to
be effective (see Chapters 9 and 10 and refs. (12, 13)).
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Fitting appropriate motit models to the ChIP data does not
end the analysis. Most de novo motif discovery algorithms pro-
duce multiple motif hypotheses, and it is often advantageous
to generate hypotheses using several different techniques. These
motifs must be assessed for statistical significance, ranked, and
clustered to reduce redundancy (se¢ Note 2). Once a core set of
non-redundant motifs has been identified, it is useful to be able to
map them back to the genome to identify putative binding sites at
high resolution (see Note 3). In this chapter we discuss tools and
techniques for obtaining transcription factor binding specificity
estimates from ChIP-chip and ChIP-seq data and for performing
the downstream analyses that allows sequence information to be
used to maximum effect alongside ChIP data.

2. Software

A wide variety of software packages exist to analyze ChIP data and
perform motif discovery and an exhaustive overview of the vari-
ous options is outside the scope of this chapter. Instead we offer
several suggestions which may be used as starting points for these
types of analyses. For identifying bound regions from a ChIP-chip
experiment, the ChIPOTle (14), TiMAT (15), COCAS (16),
and JBD (17) tools are all suitable for analysis of modern tiled
microarray data. For ChIP-seq data, the MACS (18) and USeq
(19) packages are publicly available, have demonstrated good
performance, and allow for sophisticated statistical analyses of
sequence reads. Dozens of motif discovery algorithms have been
described in the literature and are publicly available for use includ-
ing the Weeder (20), AlignACE (21), MEME (22), and MDScan
(23) algorithms. These tools have been integrated into an online
motif discovery package, WebMOTIFES (24). Suites of tools for
motif analysis have also been developed including cisGenome (see
also Chapter 22) (25), the MEME suite (26), and TAMO (27).
The performance of select methods is discussed in Chapter 8
using the Motif Tool Assessment Platform (MTAP).

3. Methods

The process of identifying biologically meaningful sequence
motifs from a ChIP-chip or ChIP-seq experiment and mapping
them back to the genome involves several steps. The overall work-
flow is summarized in the flow chart of Fig. 11.1.
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3.1. Sequence
Extraction

ChIP
data \
Extract Map back
sequence to genome

A
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Generate _ Evaluate
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Fig. 11.1. Typical sequence motif analysis workflow for ChIP data. After identification
of bound regions from the experiment, motif hypotheses are generated using de novo
motif discovery algorithms or assembled from databases. Hypothesis quality is mea-
sured against the binding data using a quality score, and statistical significance testing
is performed. Motifs may then be mapped back to the genome to improve the resolution
of binding site identification.

Motif analysis of high-throughput ChIP data begins by first
identifying and extracting the DNA sequence of bound regions
detected in the experiment. Most software packages used to ana-
lyze ChIP data will output the genomic coordinates of regions
identified as bound in the experiment. For ChIP-chip, binding
sites for the immunoprecipitated protein can be located several
hundred base pairs away from the center of the peak identified by
the ChIP analysis software. Data from ChIP-seq experiments is at
significantly higher resolution, and the majority of bound regions
identified by software packages have a putative binding site within
a 300 bp window of the peak center as shown in Fig. 11.2 for
PPARy ChIP-seq data (28). Even for ChIP-seq data, however,
when the goals of a motifanalysis include identification of binding
sites corresponding to other transcription factors that may coop-
erate with the immunoprecipitated protein to enact a regulatory
program, extending the sequences may allow these binding sites
to be better captured. Of course, extending sequences also serves
to decrease the signal-to-noise ratio in the data and makes motif
discovery more challenging. Figure 11.3 shows how the proba-
bility of observing a binding site in bound and randomly selected
unbound regions changes as sequence length increases for the
data set of Fig. 11.2. At relatively small sequence sizes, sensitiv-
ity is improved by increasing the size window since binding sites
that are offset from the peak center are excluded when the length
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Fig. 11.2. Representative distribution of distances between ChIP-seq peaks and binding
site matches. Genomic regions identified as bound by PPARy in the study of Nielsen et al.
were scanned for peroxisome proliferator response elements (PPREs) and the distribu-
tion of distances between the peak center and the closest PPRE is shown. The majority
of bound regions have a PPRE within 250 bp of the peak center.
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Fig. 11.3. Fraction of bound and unbound regions with a motif match as a function
of region size. For the PPARy ChIP data of Nielsen et al., increasing the size window
around the ChIP peak centers increases the fraction of bound regions containing a PPRE.
However, the fraction of randomly selected unbound regions that contain a PPRE also
increases.

is too small. However, the probability of randomly observing a
binding site in unbound sequence also increases. For the ChIP-
seq data in Fig. 11.3, a sequence window size of approximately
250 bp adequately balances sensitivity and specificity considera-
tions.

Once the sequences to be analyzed have been identified and
extracted, the data can be mined for sequence motifs that may
represent the binding specificity of the immunoprecipitated pro-
tein. This hypothesis generation step is often performed using
one or more de novo motif discovery algorithms (29). These
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3.3. Hypothesis
Evaluation

computer programs attempt to learn a representation of the pro-
tein’s binding specificity directly from the sequence data in an
unbiased manner and may be especially useful for immunopre-
cipitated proteins with unknown binding specificity and with no
close homologs with known binding specificities. As the relative
performance of particular algorithms has been shown to vary sig-
nificantly from data set to data set (see ref. (30)), it is recom-
mended that when de novo motif discovery is used as the primary
hypothesis generation tool in an analysis two or more different
programs be employed. It has been previously demonstrated that
this can significantly improve the chances of identitying a motif
consistent with the protein’s true binding specificity (31). An
alternate approach for generating hypotheses is to mine public
or commercial databases for previously described DNA sequence
motifs. When the DNA-binding domain family of the protein
is known, hypotheses can be limited to motifs corresponding to
transcription factors from that family (32, 33). A more compre-
hensive approach is to compile all motifs corresponding to tran-
scription factors represented in a particular species or class and
to treat these as motif hypotheses. For the PPARy data set intro-
duced in Section 3.2, we tested the large set of 101 DNA-binding
domain-derived motifs reported in (33) to see which motif best
represented the binding specificity of this transcription factor. To
better make use of the sequence information at PPARy-bound
regions, we fit each motif to the binding data using an expec-
tation maximization motif discovery approach (se¢c Chapter 6).
The resulting motifs were subsequently evaluated for quality (see
Section 3.3).

The hypotheses that have been assembled, either by de novo motif
discovery or by other methods, must be evaluated to determine
which does the best job of representing the transcription fac-
tor’s binding specificity. This involves calculating a score for each
motif that measures its quality. Although most de novo motif dis-
covery algorithms have built-in scoring methods for evaluating
and ranking motifs, these scores are usually not directly compara-
ble between different programs. Furthermore, for ChIP-chip and
ChIP-seq data, it is natural, and generally desirable, to make use
of the negative information in unbound regions from the exper-
iment when evaluating different motif hypotheses (34); many de
novo algorithms do not make use of this information. One par-
ticularly simple and useful scoring scheme is to calculate a p-value
based on the hypergeometric distribution associated with each
motif’s occurrence in bound sequences relative to its occurrence
in a pooled set of bound and unbound sequences from the exper-
iment. Although the hypergeometric enrichment calculation pro-
duces a p-value, we will see in the next section that this statistic
is not a reliable estimate of significance and should be treated
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like any other type of score. Alternatively, to avoid the difficulties
associated with defining a match threshold for position weight
matrix motif models, motif hypotheses can be ranked by evaluat-
ing the area under the receiver-operating characteristic curve for
a motif-based classifier used to distinguish bound and unbound
sequences. For the set of hypotheses generated from the PPARy
ChIP-seq data in Section 3.3, we used a similar approach, eval-
uating each motif’s ability to correctly classify held out bound
and unbound sequences. In Fig. 11.4 we show the distribution
of mean fivefold cross-validation errors for the 101 hypotheses.
The motit with the lowest mean error, tgaCCTyTgNCCy, is an
excellent match to the peroxisome proliferator response element
bound by this transcription factor in vivo (35).
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Fig. 11.4. Distribution of motif scores for PPARy ChIP-seq data. A diverse set of 101
motif hypotheses were evaluated by assessing their ability to discriminate bound and
unbound sequences. The resulting distribution of mean fivefold cross-validation errors is
shown. The motif with the lowest cross-validation error matches the previously reported
PPARy binding specificity.
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High-scoring motifs may represent biologically meaningful tran-
scription factor binding sites present in the immunoprecipitated
regions identified by the experiment. To confidently link a partic-
ular motif to the binding data, however, it is necessary to estimate
the level of statistical significance of the motif’s score. Overfitting
is a danger associated with any hypothesis generation scheme, like
de novo motif discovery, that involves fitting a model to sequence
data. Although even simple models can overfit the data, as model
complexity increases (for example, by increasing the number of
nucleotide positions in a position weight matrix model), overfit-
ting becomes an increasingly serious problem.

p-Values are frequently used to evaluate the statistical signif-
icance of a motif. For motif analyses, the definition of a p-value
is the probability of obtaining the same quality score or better
for the motif when it is not bound by the transcription factor
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3.5. Mapping Motifs
Back to the Genome

studied. A practical strategy for evaluating this probability is to
estimate the null distribution using random sampling. The basic
idea is as follows: the bound and unbound labels of the pooled
set of sequences from the experiment are randomly permuted,
the randomly sampled “bound” set is used to fit a motif model,
and this model is then scored. Repeating this process many times
allows the distribution of scores under the null hypothesis to be
estimated. By comparing the scores of interesting motif hypothe-
ses to this distribution, an empirical p-value for each motif can
be obtained. When more than one hypothesis has been tested, it
is important to account for this by performing a multiple test
correction. There are several methods of performing multiple
hypothesis correction including step-down False Discovery Rate
(FDR) methods and Bonferroni correction (36). We tested the
statistical significance of the top-ranked motif from our analysis
in Section 3.4 using this randomization strategy. After permut-
ing bound and unbound labels in the PPARy ChIP-seq data, we
then fit the motif to this randomized data by EM. The ability of
the resulting motif to classity “bound” and “unbound” sequences
was assessed. Repeating this process 25 times we observed a mean
cross-validation error of 0.49 with a standard deviation of 0.01.
By comparison, on the actual data the mean cross-validation error
of the top-ranked motif was 0.27, indicating that this motif is
quite likely to have biological relevance.

The resolution of ChIP-chip and ChIP-seq experiments has
improved tremendously, but unfortunately it still does not exceed
a level of approximately 200 bp. For this reason, it is often
of interest to identify putative in vivo transcription factor bind-
ing sites at higher resolution by mapping motifs back to the
genome. Another important consideration is the noise in the
data. Weakly bound regions with low ChIP enrichment may be
biologically relevant. However, lowering the detection thresh-
old may result in an unacceptably high level of false positives.
Identification of motif matches allows sequence information to
be used to adjust the confidence level associated with putatively
bound regions detected in the experiment. The main challenge
associated with identifying potential transcription factor binding
sites using a sequence motit is in deciding what constitutes good
enough agreement with the motif to be counted as a putative
match. For matrix models, each genomic site can be scored using
the matrix and a match threshold defined and used to identify
putative binding sites. In the past, we have found that an empiri-
cally reasonable threshold to use is 0.6 times the maximum possi-
ble score of a log-odds matrix (29). However, more statistically
principled methods for identifying motif matches can certainly
be applied. It is always possible to associate an empirical p-value
for a match score by evaluating the genome-wide distribution of
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scores for that motif. Alternatively, given a reasonable background
model of nucleotide frequency in relevant genomic regions, a
p-value can be obtained by calculating the log probability of the
sequence under the motit and background models. We can then
make the standard assumption that their ratio will be approxi-
mately chi-square distributed with degrees of freedom equal to
the difference in degrees of freedom between the motif and back-
ground models. Of course, even when such p-values can be cal-
culated, their relationship to the underlying biological reality is
still unclear, and the motif match threshold selection problem has
simply been converted into a p-value threshold selection problem.
For this reason, we recommend a data-driven approach for pick-
ing a match threshold that takes advantage of the information the
ChIP experiment has provided. By treating a motif as a feature
that discriminates bound and unbound sequences in the experi-
ment, reasonable criteria for selecting a match threshold naturally
emerge. A threshold can be selected to keep FDR below some
desired level, to minimize classification error, or to maximize sen-
sitivity subject to a reasonable penalty on false positives. We define
a true positive (TP) as a bound region in the ChIP experiment
with a match to the motif, a false negative (FN) as a bound
region with no match, a true negative (TN) as an unbound region
with no match, and a false positive (FP) as an unbound region
with a motif match. Figure 11.5 shows how, on PPARy-bound
regions and an equally sized set of unbound regions, sensitiv-
ity (TP/(TP+FN)) and specificity (TN/(TN+FP)) change as the
match threshold is increased for the PPARy motif. For these data,
a match threshold selected to maximize sensitivity while keeping
the FDR below 20% recovers 56% of the bound sequences.

sensitivity

% 0.2 0.4 0.6 0.8 1

1-specificity

Fig. 11.5. Data-driven motif match threshold selection. Shown is sensitivity vs. 1
minus specificity curve for the PPARy motif used as a classifier of bound and unbound
sequences. A threshold selected to maximize sensitivity while keeping the false discov-
ery rate below 20% recovers 56% of the bound sequences.
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4. Notes

1. Selecting a background set of unbound regions: For ChIP-

chip experiments it is often possible to use the entire set of
unbound sequences represented on the array(s) as a back-
ground for either motif hypothesis generation or evaluation.
For ChIP-seq experiments, this is infeasible and a represen-
tative set of unbound background regions often needs to
be selected by the investigator. There are two important
points to keep in mind when generating this background.
First, the size distribution of bound and unbound sequences
should be carefully matched in order to ensure that the pre-
dictive power of a particular hypothesis is accurately esti-
mated. If the length of unbound sequences is too large,
then the probability that a random unbound sequence will
contain a motif match will be quite high, masking any true
discriminative power that a particular motif may have. Sec-
ond, different genomic regions have different nucleotide
compositions. For example, promoter regions, which have
the highest density of transcription factor binding sites, often
contain GC-rich regions corresponding to CpG islands (37).
A set of bound regions from a ChIP-seq experiment is likely
to be enriched for high GC content even when the sequence
recognized and bound by the transcription factor binding
site itself is not GC rich. It is therefore often desirable to
roughly match GC content between bound and unbound
sets to avoid identifying uninformative GC-rich motifs dur-
ing motif discovery and evaluation. For ChIP-chip data col-
lected on promoter arrays, a simple and effective way of
doing this, in our experience, is to match the distribution of
distances to transcription start sites between the bound and
unbound sets. Binding sites identified by the ChIP exper-
iment that are enriched in promoter proximal regions will
then be tested against a background that is also enriched in
proximal regions, thereby controlling for the variations in
nucleotide content between promoters and more distal sites.
For ChIP-seq data, where many bound sites identified can
be distal, a better strategy is to explicitly match the mean
GC content of the bound regions and background.

. Clustering motifs: In practice, motif discovery programs

often produce several very similar, but not identical, motif
hypotheses when run on a data set. If several programs are
employed to analyze ChIP data, one is often faced with
a pool of dozens or even hundreds of motifs with signifi-
cant redundancy. Similarly, although the Jaspar database of
transcription factor binding sites (38) has made an impres-
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sive effort to eliminate redundancy, other databases do con-
tain redundant motifs. When combining motif matrices or
consensus sequences from multiple databases or literature
sources this problem is exacerbated. One way of controlling
redundancy is to employ a clustering algorithm to group
similar motifs together. A representative motif can then be
picked from each cluster to create a more manageable, non-
redundant set of motifs to work with. In order to cluster
motifs, one must first specify a motif similarity measure. For
motifs that can be treated as frequency matrices, a very effec-
tive similarity score is the mean negative Kullback—Leibler
(KL) divergence (39) between columns of the matrices. For
the multinomial distributions given by two columns P and
Q, the score is

KL(P,Q) =—-Y_P(n)log P [5]

Euclidean distance has also been used as a similarity score,
and other specialized similarity scores have been suggested
(40). No matter which measure is used, two additional issues
must be addressed when calculating the similarity between a
pair of motifs. First, both the forward and reverse comple-
ment orientations of the motifs must be considered. Second,
because motifs often have different sizes the similarity mea-
sure should account for the different possible alignments of
the matrices. One effective strategy is to evaluate the max-
imum similarity over all possible alignments (both forward
and reverse complement) while enforcing a minimum over-
lap of six to eight nucleotides and to use this maximum as
the similarity. Once a matrix of similarity scores has been cal-
culated, an algorithm like affinity propagation (41) can then
be used to perform the clustering itself.

. Mapping motifs to the genome: Picking a single threshold
to identify matches to a motif obscures a great deal of the
complexity of transcription factor binding. The occupancy
of a particular site in vivo will depend not only on the site’s
sequence but also on the protein’s concentration in the
nucleus. At low concentrations, most protein molecules will
bind to very high-affinity sites, whereas at high concentra-
tions, low-affinity sites may be bound and have biological
function. It may therefore be more reasonable to predict
an occupancy level between 0 and 100% on a site-by-site
basis rather than to assign the sites binary labels indicating
whether a site “matches” the motif. In practice, however, it
is often more convenient to divide sites into matches and
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non-matches. To this end, evaluation of sequence
conservation across related species has been used to
improve identification of functionally important transcrip-
tion factor binding sites (42, 43). While it is reasonable
to assume that conserved binding sites are likely to have
functional importance, several studies have demonstrated
that transcription factor binding can be surprisingly poorly
conserved across species (44, 45). Enforcing stringent
conservation thresholds on putative transcription factor
binding sites is therefore likely to result in an underestimate
of the true number of functional sites present in bound
regions from the experiment.
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Chapter 12

Inferring Protein—DNA Interaction Parameters from SELEX
Experiments

Marko Djordjevic

Abstract

Systematic Evolution of Ligands by EXponential enrichment (SELEX) is an experimental procedure that
allows extraction, from an initially random pool of oligonucleotides, of the oligomers with a high bind-
ing affinity for a given molecular target. The highest affinity binding sequences isolated through SELEX
can have numerous research, diagnostic, and therapeutic applications. Recently, important new modifica-
tions of the SELEX protocol have been proposed. In particular, a suitably modified SELEX experiment,
together with an appropriate computational procedure, allows inference of protein—-DNA interaction
parameters with up to now unprecedented accuracy. Such inference is possible even when there is no a
priori information on transcription factor binding specificity, which allows accurate predictions of bind-
ing sites for any transcription factor of interest. In this chapter we discuss how to accurately determine
protein—DNA interaction parameters from SELEX experiments. The chapter addresses experimental and
computational procedure needed to generate and analyze appropriate data.

Key words: In vitro selection, high-throughput SELEX, SELEX-SAGE, weight matrix, SELEX
modeling, protein—-DNA interactions, transcription factor binding sites.

1. Introduction

Systematic Evolution of Ligands by EXponential enrichment
(SELEX) is a procedure that allows rapid selection of those
oligonucleotides that have appropriate binding affinity to a given
molecular target, starting from a large initial library of oligonu-
cleotides (1). The oligonucleotide library can consist of either
single-stranded oligonucleotides (RNA, ssDNA, modified RNA,
or modified ssDNA) or double-stranded DNA (dsDNA). One
most often starts with a large library of random oligonucleotides,
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since little is known beforehand about the binding properties of
a target molecule in many cases. While molecular targets can be
either proteins or small molecules, we here concentrate on tar-
gets that are selective DNA-binding proteins (e.g., transcription
factors). The basic steps of SELEX are protein binding, selection,
and amplification. These steps are repeated successively, so that
strong binders are finally selected from the initial library.

The first SELEX experiments were performed more than
19 years ago (1-3), and SELEX by now has numerous research,
diagnostic, and therapeutic applications (4). Most of published
SELEX experiments involve single-stranded oligonucleotides,
while the experiments and applications involving dsDNA are com-
parably underrepresented. This bias is mostly due to that single-
stranded oligos obtained through SELEX have important diag-
nostic and therapeutic applications. In particular, single-stranded
oligos that bind with strong binding affinity can be identified for
a large variety of molecular targets. Those strong binders can, for
example, be used as alternatives to antibodies in many applica-
tions.

On the other hand, SELEX is also a very important tool to
infer interactions of proteins with dsDNA. This is mainly because
one often has a protein that interacts with dsDNA in vivo, but
whose binding specificity is unknown. SELEX is then performed
in order to identify dsDNA sequences that are the strongest (con-
sensus) binders to the protein of interest (e.g., (2, 5, 6)). Further-
more, appropriate modifications of the standard SELEX protocol
allow robust generation of a data set from which protein—-DNA
interaction parameters can be determined with high accuracy (7,
8). Such interaction parameters can consequently be used to accu-
rately predict binding affinity of a transcription factor to any DNA
segment of interest.

This chapter addresses how to use SELEX to enable accurate
predictions of transcription factor binding sites, so we concen-
trate on SELEX experiments in which dsDNA is used. We will
first discuss SELEX experimental protocol, and then consider how
SELEX should be modified to generate a data set suitable for fur-
ther analysis. We will then describe the computational analysis of
the data set in order to accurately determine transcription factor
binding parameters.

2. Methods

As indicated above, we here focus on SELEX experiments that are
performed with dsDNA library and where the target is a DNA-
binding protein (e.g., a transcription factor). The scheme of the
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Fig. 12.1. The schema of the SELEX procedure. A certain number of experimental
rounds (n) that consist of protein binding, selection, and amplification are performed.
Some of the sequences from the last round of the experiment are extracted and
sequenced.

SELEX procedure is shown in Fig. 12.1, and the experiments are
performed as follows. One prepares a library of dsDNA segments
that can be amplified, and the library is incubated with a DNA-
binding protein of interest. Next, in the selection step, protein-
bound DNA segments are separated from unbound ones (e.g.,
by gel shift or filtration through nitrocellulose). The selected seg-
ments are amplified by PCR. Binding, selection, and amplification
steps are then repeated for certain number of rounds, and some of
the segments that are selected in the final round of the experiment
are extracted and sequenced.

The initial library of oligonucleotides typically consists of a
large number (101°-1019) of random sequences. Larger libraries
of up to 102° oligonucleotides are technically feasible (9) but are
rarely used in practice. Each oligonucleotide consists of a cen-
tral region of random sequence, which is flanked by two regions
of fixed sequence that enable amplification. The length of the
random region is typically between 20 and 30 bps, while each
flanking region is typically 15-25 bp long. One should note that
the length of the random region is almost always larger than the
length of transcription factor binding site, which has important
implications for data analysis that will be discussed below.

We here discuss how binding sequences are selected through
different rounds of SELEX. The selection process has to be
understood in order to (i) determine how to modify standard
SELEX procedure to generate a data set suitable for further
analysis and (ii) understand how to analyze the assembled data
so that parameters of transcription factor binding specificity are
accurately determined.
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A protein—DNA interaction may or may not be sequence spe-
cific. Sequence-specific interactions are due to hydrogen bonding
and van der Waals interactions, while non-specific interactions are
due to electrostatic interactions (10-12). When the sequence of a
DNA segment is far from the consensus, interaction of the protein
with DNA becomes sequence independent (11, 13). Therefore,
most of the sequences in the starting (random) SELEX library
will interact non-specifically with the target protein.

In addition to the selected sequence-specific binders, a num-
ber of non-specific binders will also be selected in each round of
the experiment. This is a consequence of two conditions: first, a
number of sequences are bound non-specifically by the protein.
Second, during the selection step, only a partial separation is pos-
sible between bound and unbound sequences. The second effect
is termed background partitioning (1, 14).

The selection of non-specific binders is an important effect
in SELEX experiments. Non-specific interactions are typically
characterized by several orders of magnitude smaller binding
affinity compared to sequence-specific interactions (15). Also,
background partitioning probability, the probability to select a
sequence that is not bound by the protein, is likely low, e.g., 1073
(1). However, these small numbers do zot imply that the presence
of non-specific binders can be neglected. For example, about 1012
non-specific binders will be selected in the first round of the exper-
iment, just due to background partitioning, assuming the back-
ground partitioning probability of 1073 and a starting library size
of 10'% sequences. On the other hand, with protein-nucleic acid
ratio of 1073, which is typical for SELEX experiments (e.g., (1)),
less than 10'2 specific binding sequences will be selected. There-
fore, after the first round of the experiment, the number of non-
specific binders is typically comparable or even larger than the
number of specific binders. As a practical consequence, one must
be sure to eliminate substantial noise due to non-specific binding,
which would otherwise overrun useful signals. To achieve this,
multiple rounds of SELEX experiment are performed. Also, selec-
tion of non-specific binders has to be taken into account when
analyzing SELEX data, as will be discussed below.

It is important to understand how the affinity distribution of
the selected sequence-specific binders changes through different
experimental rounds. In a simple case of small protein to nucleic
acid ratio, the average binding affinity of the selected sequence-
specific binders increases exponentially with the number of per-
formed SELEX rounds (8, 16, 14). Such exponential increase in
binding affinity, during the first few rounds of the experiment,
justifies the term “exponential” in Systematic Evolution of Lig-
ands by EXponential enrichment. Finally, after a certain number
of rounds, the maximum of the affinity distribution of the selected
binders reaches an upper limit, which is determined by the atfin-
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ity of the strongest binder in the starting random library. At that
point, most of the sequences in the selected pool will consist of
the strongest binders. The observation that standard SELEX pro-
tocol rapidly selects only the strongest binders has important con-
sequences which will be discussed in the next section.

As discussed above, the standard SELEX procedure can be used
to efficiently converge to the strongest binders for a transcription
factor of interest. However, the knowledge of only the strongest
binders is usually not sufficient to determine transcription factor
binding sites in the genome. This is because binding sites typ-
ically show considerable sequence variations (17). Moreover, a
SELEX library is typically much larger than the size of a genome,
so the consensus sequence may not be present in the genome at
all. Therefore, a direct match with the consensus sequence cannot
be used to identify binding sites in most cases. Alternatively, one
may attempt to allow certain number of mismatches to the con-
sensus sequence, in order to accommodate variability of binding
sites. However, a general problem with this approach is that dif-
ferent positions in a binding site, as well as different mismatches at
a given position, generally contribute very differently to protein—
DNA interaction energy (15, 18). That is, while a certain mis-
match can almost completely abolish sequence-specific binding,
another mismatch may change the binding energy by only a small
amount. Therefore, one needs to infer a more complete set of
protein—-DNA interaction parameters, in order to appropriately
predict binding of transcription factors to DNA.

The interaction of proteins with dsDNA can be quantified by
using the so-called independent nucleotide approximation (15).
In this approximation, the binding energy of a protein to a
dsDNA sequence is equal to the sum of contributions due to
the presence of a given base at a given position in the bind-
ing site. The independent nucleotide approximation provides a
very good parametrization of the binding energy in most cases
(19-21), although there are some examples where binding at
certain positions shows strong dependence on dinucleotide pairs
(22-24).

Within the independent nucleotide approximation, one needs
a total of 3L independent parameters (L is the binding site
length),' in order to describe protein—-DNA interaction. These
parameters can be written in a form of a matrix with dimension
4x L, which is called weight matrix (15, 17). Individual weight
matrix elements are proportional to the contribution to the bind-

' One should observe that there is one parameter for each possible mismatch
from a reference sequence.
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ing energy due to the presence of a certain base at a certain posi-
tion in a binding site (15, 25). Therefore, finding an accurate
weight matrix is an important goal toward reliable predictions of
transcription factor binding sites.

Weight matrices are typically determined from a set of aligned
binding sites assembled in biological databases (26, 27). How-
ever, the majority of such weight matrices provide a low level
of both specificity and sensitivity (28). In particular, there is a
problem of a large number of false positives when most of these
weight matrices are used to search for protein-DNA binding sites
(29, 17). This problem is typically attributed to an inadequate
data set from which most weight matrices are constructed (28)
because (i) for most DNA-binding proteins, only a few binding
sites are available in databases (26, 27), which is insufficient to
accurately determine protein—-DNA interaction parameters (24),
and (ii) binding sites from databases are often assembled under
diverse and ill-characterized conditions (25). Therefore, in order
to improve the accuracy of weight matrices, it is highly desirable
to be able to generate a data set consisting of a large number of
binding sites assembled under well-controlled conditions.

Given that SELEX experiments are performed under con-
trolled (uniform) conditions, it appears that SELEX may be used
to generate such appropriate data set. However, can a standard
SELEX protocol indeed be used to generate a suitable data set or
the protocol has to be appropriately modified? To answer this, it
is useful to note a comprehensive comparison between the weight
matrices from eight available SELEX experiments with Escherichin
coli transcription factors and the corresponding weight matri-
ces constructed from natural binding sites (29). This compari-
son notes large discrepancies between the weight matrices derived
from natural binding sites and from SELEX experiments, in seven
out of those eight cases. Furthermore, in a SELEX experiment
performed with a bacterial transcription factor LRP (30), it was
noted that weight matrix scores inferred from SELEX experi-
ments show a poor agreement with measured binding affinities.
Similarly, it was noted (31) that a weight matrix constructed
directly from sequences extracted in a standard SELEX proce-
dure was not able to provide a good prediction of measured bind-
ing affinities. Therefore, it appears that the standard SELEX pro-
cedure is not appropriate to accurately determine protein-DNA
interaction parameters.

Why does the standard SELEX procedure appear to fail in so
many cases? To understand this, it is useful to consider what kind
of data set is needed to construct an accurate weight matrix. First,
a successful experiment has to eliminate non-specific binders from
the data set, as discussed above. Second, overselection should be
minimized, i.e., the selected sequences should not consist of only
the strongest binding sites. To understand the second point, it is
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useful to take the limit in which the data set consists from only
the consensus binder, when it is evident that the weight matrix
elements cannot be obtained from such information. This is also
supported by a detailed statistical analysis, which shows that a sig-
nificant fraction of medium affinity and weaker affinity binding
sequences is needed to accurately determine weight matrix ele-
ments (7).

Actually, it turns out that the above two requirements, the
elimination of non-specific binders and the absence of overselec-
tion, are very difficult to reconcile within the standard SELEX
procedure. This conclusion directly follows from the theoretical
modeling of the standard SELEX procedure (8). To intuitively
understand this result, one should note the observation that the
selected sequence-specific binders rapidly reach the highest affin-
ity binding sites, and non-specific binders may not be eliminated
from the pool of selected sequences by that time. Even if this does
not happen, it is very difficult to reliably predict when to stop
the experiment in practice, i.c., to determine in which SELEX
round is the noise eliminated while the overselection has not hap-
pened yet. The reason for this is that the protein—-DNA interaction
parameters of the target protein are typically unknown a priori.
Therefore, the appropriate number of rounds cannot be calcu-
lated. In the next section, we will discuss how the SELEX pro-
cedure can be appropriately modified in order to allow a robust
generation of a data set from which accurate protein—DNA inter-
action parameters can be determined.

To understand how to appropriately modify SELEX, we first
discuss the binding of proteins to DNA segments. The prob-
ability that a sequence § is bound by the protein, and conse-
quently selected in the next round of the experiment, is given
by the expression [¢]/(K4q(S)+ [¢]) (25). Here [¢] and K4(S)
are the concentration of free protein and the binding dissoci-
ation constant of the sequence S, respectively. Therefore, the
selection stringency is determined by the concentration of free
protein in solution. The formula for binding probability can be
rewritten in terms of binding energy and chemical potential, so
that f(E—p) =1/[exp(E— )+ 1], where E is the interac-
tion energy of the protein with the DNA sequence S and p is a
value of chemical potential, proportional to logarithm of free pro-
tein concentration. Both Eand pu are measured in units of thermal
energy (kg T'). Note that this binding probability is in statistical
mechanics called Fermi—Dirac function.

In the standard SELEX protocol, most experiments are per-
formed so that the tota/ amount of protein and DNA is the same
in each experimental round. Since the average binding affinity of
the selected sequences increases with the number of performed
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rounds, the amount of free protein will decrease as a consequence
of the increase in the amount of bound protein. Due to decrease
in the free protein concentration selection stringency increases
through the experiment. Such experimental design leads to a data
set from which protein-DNA interaction parameters cannot be
accurately determined, as we discussed above.

Let us now assume that the amount of fiee protein is con-
stant in each round of SELEX. Since the selection stringency for
any given sequence is then constant, we will further call this pro-
cedure fixed stringency SELEX. For fixed stringency SELEX, the
change of the energy distribution of selected DNA sequences can
be calculated from a theoretical model of SELEX experiments (see
Fig. 12.2 from (8)). We see that the maximum of the energy
distribution for selected sequence-specific binders remains in the
vicinity of the chemical potential, i.e., the maximum drifts very
slowly toward the higher binding energies with the additional
number of performed SELEX rounds. This is in a sharp contrast
to the standard SELEX procedure, where the maximum of the
energy distribution rapidly reaches the strongest affinity binders

energy distribution

binding energy

Fig. 12.2. The change of energy distribution through the SELEX procedure. Solid curves
are energy distributions of selected DNA sequences for different number of performed
SELEX rounds, in an experiment where the chemical potential 1« is kept constant. Num-
bers above the curves indicate SELEX round, the position of the chemical potential is
indicated by the vertical dashed line, the dash—dotted line indicates the binding proba-
bility ' (E — w) . Note that once maximum of the energy distribution reaches 1., most
of the selected sequences are in saturated regime, i.e., bound with probability close to
one. This figure was adopted from (8).
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(the strongest affinity binder corresponds to the leftmost point
on the horizontal axis of Fig. 12.2). On the other hand, one can
notice that the number of non-specific binders keeps decreasing
with the increase in the number of performed SELEX rounds.

An important practical implication is that in the fixed strin-
gency SELEX one can ensure that random binders are eliminated
by performing larger number of SELEX rounds, without the risk
that only the strongest sequences will be selected. One can theo-
retically show that the fixed stringency SELEX procedure leads to
this desired behavior for all values of experimental parameters (8).
Additionally, the procedure is robust, since it leads to a suitable
data set for a large range of performed experimental rounds (in
the example in Fig. 12.2, any round larger than two is suitable).
Therefore, in conclusion, a fixed stringency SELEX experiment
allows robust generation of a suitable data set for accurate deter-
mination of protein—-DNA interaction parameters.

How can one experimentally implement the constraint of
fixed free protein amount? An answer is a modification of the stan-
dard SELEX procedure by inclusion of the radiolabeled sequence
(probe) §* of moderate binding affinity, as described in an experi-
ment by Roulet et al. (7). Additionally, the concentration of total
DNA, added to the reaction mixture as a competitor to the radi-
olabeled probe, is adjusted in each round of the experiment, so
that a fixed fraction of the probe is bound by protein in each
SELEX round. Note that radiolabeling of the probe allows one to
determine the fraction of the probe that is bound by the protein.
Since the fraction of the bound probe is constant, the expression
[c]/([e] + K4q(S8*)) has to be constant, where Kq(§*) is the disso-
ciation constant of the probe. Therefore, the free protein amount
([¢]) has to be constant as well, since of course Kq(S8*) does not
change.

Roulet et al. (32) introduced another important extension to
combine the SELEX procedure with the SAGE (Serial Analysis
of Gene Expression) protocol. This extension allows one to effi-
ciently sequence up to several thousand binding sequences (7).
The procedure was termed high-throughput SELEX or SELEX-
SAGE protocol. As a recent development, a new generation of
non-Sanger-based sequencing (33) may be used instead of SAGE
procedure (34). In any case, the ability to generate a large data set
provides an obvious advantage for a precise estimation of protein—
DNA interaction parameters. Therefore, the combination of the
fixed stringency procedure with ability to sequence a large num-
ber of DNA segments, which we call fixed stringency/high-
throughput SELEX, allows both robust and accurate determina-
tion of protein-DNA interaction parameters. A database called
HTPSELEX, specifically developed for storing large data sets
obtained from high-throughput SELEX experiments, has recently
become available (35). This complements SELEX_DB (36) and
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TRANSFAC (26) databases, which have been assembling the data
obtained from standard SELEX experiments.

We here discuss how to accurately determine protein—-DNA
interaction parameters from sequences extracted in fixed
stringency/high-throughput SELEX procedure. One should note
that the length of the randomized part of DNA sequences is usu-
ally larger than the length of a transcription factor binding site.
Therefore, one first needs to extract actual binding sites from
these longer sequences. To do that, multiple local sequence align-
ment algorithms (MLSA) are used that allow identifying statis-
tically overrepresented motifs in a set of DNA sequences. The
algorithms for MLSA are typically based on either the Gibbs
search (37) or expectation maximization (38) (se¢ Chapter 6),
and several computational implementations of these approaches
exist.

In a typical data analysis, the set of aligned binding sites is
used to construct an information theory based weight matrix
(17). In the information theory based method, the weight matrix
elements are equal to the logarithm of the ratio of probability to
observe a given base at a given position in a collection of bind-
ing sites, compared to the base background probability. How-
ever, the information theory based weight matrix method has
drawbacks, since it does not properly incorporate saturation in
the binding probability (39, 25). That is, the information the-
ory based method assumes that the probability that sequence Sis
bound by protein is given by exp (u — E), while the correct bind-
ing probability is given by Fermi-Dirac function with sigmoid
form f (E — p) as given above. This approximation is particularly
inaccurate to use in analysis of fixed stringency SELEX experi-
ments (8), since selected sequences rapidly reach saturated bind-
ing regime, where maximum of the binding energy distribution is
in the vicinity of chemical potential (Fig. 12.2).

A procedure that correctly incorporates saturation effects is
presented in (8). A key step in the procedure is using a maximum
likelihood method: initially unknown parameters are inferred
by maximizing the likelihood that the extracted set of DNA
sequences is observed as the outcome of the experiment. The
probability of extracting the given set of DNA sequences is cal-
culated by taking into account the correct protein-DNA binding
probability (see the formula for binding probability above). The
set of equations resulting from varying the likelihood with respect
to the unknown parameters is then numerically solved to compute
the elements of the energy matrix. Computationally, we solve a
set of 3L+1 mutually coupled non-linear equations (L is length
of the binding site, and one additional equation corresponds to
solving for the unknown free protein concentration). For detailed
implementation, please refer to (8).
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While the above procedure leads to an accurate determina-
tion of protein—-DNA interaction parameters, numerically solving
a large number of coupled equations may be technically demand-
ing. Therefore, it is useful to look at a limiting case of the above
procedure, where sigmoid function is approximated by unit step
function. In statistical physics, this is called “zero temperature
approximation” and is appropriate to use in saturated binding
regime (Fig. 12.2). It can be shown that this approximation leads
to a quadratic programming procedure for determining protein—
DNA interaction parameters, and this method was consequently
termed QPMEME (25). Since the procedure involves finding the
minimum of a convex function over a convex domain, finding
a solution satisfying the Kuhn-Tucker condition (40), namely
the condition for being a local minimum, is enough to find a
global solution. There are standard numerical packages that can
be used for solving quadratic programming problem (e.g., a sim-
ple to use but robust implementation is given in MATLAB’s Opti-
mization Toolbox). While the quadratic programming method is
less accurate than the full procedure discussed above, it still leads
to a significantly better false-positive /false-negative trade-oft, as
compared to the information theory weight matrix method (25).
Due to its relative simplicity, a computational procedure for the
quadratic programming method will be described below, while
C and MATLAB codes for the method are available from the
authors of (25).

We assume that after » rounds of SELEX, set A, which
contains some number of sequences S, has been extracted and
sequenced. Furthermore, we denote by S the kth sequence in
set A, and SZ(-’? =1 if base « is present at the position ¢ in bind-

ing site, and 51(12 = 0 otherwise. Furthermore, we denote by ¢; 4

the energy matrix element that gives contribution to the bind-
ing energy due to presence of base « at position ¢ in the binding
site. As before, p is the chemical potential. With this notation, the
determination of energy matrix elements amounts to minimizing
a quadratic form subject to linear inequality conditions:

(%) s - 1]

ia ®
’ Eia 2

5 — : 2
E (M ) min [2]

i

The above equations can be solved for ¢; 4 / u (i.e., the energy
matrix elements are in the units of chemical potential) by standard
numerical packages for quadratic programming.

The above equations have the following intuitive interpre-
tation (Fig. 12.3). The figure shows such distribution of the
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Distribution of binding energies

Binding energy E

Fig. 12.3. A quadratic programming method for energy matrix determination. The dis-
tribution of binding energies for a set of random sequences is approximately Gaussian,
as indicated in the figure. The binding probability /' (E — w) and the value of chem-
ical potential 1 is also indicated. The binding energies of the selected sequences in
the final round are indicated by crosses. Width of the random energy distribution x is
also shown. The quadratic programming procedure minimizes (x /M)z, while at the
same time requiring that binding energies of all the selected sequences are below the
chemical potential.

binding energy which corresponds to random DNA sequences.
The first equation requires that binding energy of all sequences
in set A is smaller than the chemical potential. Note that in the
unit step function approximation, all sequences that have binding
energy smaller than chemical potential are bound by the tran-
scription factor with probability equal to 1. Therefore, the first
equation requires that all sequences that are selected through
SELEX procedure are bound by the transcription factor. The sec-
ond equation corresponds to minimizing the ratio of the width
of energy distribution to the value of chemical potential. Since
all DNA sequences with energy below chemical potential are
bound by transcription factor, it is straightforward to see that
equation [2] corresponds to minimizing the number of random
sequences that are bound by the transcription factor. Therefore,
the quadratic programming procedure amounts to the require-
ment that all binding sites observed in the experiment (set A)
are indeed bound by the transcription factor, while at the same
time, the “noise” (the number of bound random sequences) is
minimized.

3. Notes

An accurate energy matrix, which is obtained through an
appropriate analysis of fixed stringency,/high-throughput SELEX
data, can be used to reliably detect putative protein binding sites



Inferring Protein—-DNA Interaction Parameters 207

in genomic DNA. Therefore, such methodology can be applied to
a large number of different DNA-binding proteins, which would
facilitate comprehensive understanding of gene regulation. The
procedure described in this chapter shows how synergy of the-
oretical modeling, novel experimental developments, and data
analysis based on physical understanding of the underlying pro-
cess can significantly contribute to an important problem in com-
putational biology. We below note some practical issues relevant
for modeling and data analysis of SELEX experiments.

1. Terminology

We here note how the term “weight matrix” is used, since this
term is often associated with different meanings. The most gen-
eral definition is that weight matrix is any matrix of “weights”;
“weights” are contributions of different bases to a score used to
classify whether or not a sequence is a binding site (17). In a bio-
physical interpretation, which is also used in this chapter, weights
in the matrix are defined as contributions of different bases at
different positions to the binding energy (15). The term energy
matrix is also often associated with this biophysical interpretation
of the weight matrix (8, 25).

Other definitions of weight matrix have been frequently used,
most notably the one coming from information theory (17).
Such weight matrix is sometimes called information theory weight
matrix (25), and weights in this matrix are equal to the logarithm
of the ratio of probability to observe a given base at a given posi-
tion in a collection of binding sites, compared to the probability of
observing the base in the genome as a whole. One can show that
the biophysical and the information theory definitions coincide in
the limit of small transcription factor concentration (unsaturated
limit) (25). That is, in this limit, the information theory weight
matrix gives an accurate estimate of transcription factor binding
energy. However, when the saturation effects become important
(as in fixed stringency SELEX experiments), a different procedure
has to be used for estimating protein—-DNA interaction parame-
ters, as described above.

2. Modeling SELEX experiments

We first note that stochastic effects can be generally neglected
in SELEX experiments. This is a consequence of the fact that the
size of the oligonucleotide library is so large that the relevant
sequence space is in most cases completely saturated. For example,
each possible sequence segment of length 20 is expected to appear
about 10* times in the library of size 101°. Therefore, since bind-
ing sites of transcription factors are typically less than 20 bp long,
each possible sequence variant to which this protein can bind will
be represented in a large number in the SELEX library. Accord-
ingly, stochastic effects were not included in numerical simula-
tions (41, 14) and theoretical models (8) of SELEX experiments.
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Mutations can generally also be neglected in SELEX model-
ing. The term “evolution” in the name SELEX (Systematic Evo-
lution of Ligands by EXponential enrichment) implies that both
selection and mutation are important in the SELEX procedure,
and some mutations are necessarily present due to errors in PCR
amplification. However, it is not difficult to estimate that this
effect can be neglected (4). To observe this, the following esti-
mate is useful. High-fidelity DNA polymerase, which is typically
used in SELEX, has a mutation rate of 10~*per cycle per base
(42). Furthermore, let us assume that a total of seven SELEX
rounds are performed, that there are 10 PCR cycles per round,
and that the length of DNA sequences is 25 bp. Under these
(typical) SELEX conditions, a DNA sequence selected at the end
of the experiment experiences, on average, a total of less than one
mutation during the whole experiment (i.e., 10™* x 25 x 10 x
7 < 1). Consequently, quantitative models of SELEX do not take
mutations into account (41, 14, 8).

Finally, considerable mathematical simplifications can be
achieved in modeling by noting that the amount of free protein
in solution can be in most cases neglected. This is because the
amount of DNA used in the experiments is almost always in a
large excess over the amount of protein. Due to this most of the
protein will end up bounded by DNA, and a very small amount
of protein will remain free in solution (8).

3. Computational analysis

An issue to consider in the data analysis is how many
sequences have to be extracted from SELEX in order to be able to
extract sufficiently accurate protein-DNA interaction parameters.
An estimate for this is provided by Roulet et al. (7), who obtained
that few thousand sequences are needed to obtain an accurate
weight matrix. Another estimate is provided by O’Flanagan et al.
(24) who found that one to two sequences per weight matrix
parameter are needed, e.g., for a transcription factor with 16 bp
long binding site, one needs around 100 binding sequences.
Accordingly, Nagaraj et al. (43) reported a reasonably accurate
weight matrix for a bacterial transcription factor CRP (16 bp
long binding region) with around 70 binding sites extracted in
a SELEX procedure. Therefore, while a larger data set is an obvi-
ous advantage, it is likely that several hundred binding sites will
lead to high-quality protein—-DNA interaction parameters in most
cases.

Furthermore, a highly non-trivial step of data analysis is
to extract actual binding sites from longer sequences obtained
through SELEX. As described in Section 2, MLSA (multiple
local sequence alignment) algorithms are used for this task. How-
ever, two difficulties emerge when one does MLSA in analysis of
SELEX data. First, due to non-specific binding and background
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partitioning, some of the selected sequences will not contain tran-
scription factor binding site. This difficulty is not hard to over-
come in practice, since most MLSA methods allow that some of
the sequences do not contain the shared motif. One should, how-
ever, ensure that the noise is limited, which can be achieved by
performing sufficient number of SELEX rounds (se¢ Section 2),
so that most of the non-specific binders are eliminated.

The second difficulty is due to a large number of sequences
that are typically produced by high-throughput SELEX experi-
ments. That is, one may obtain several thousand DNA sequences
from a high-throughput SELEX procedure, and such a large data
set is very demanding to align. Indeed, most MLSA implemen-
tations have difficulty in producing an accurate alignment for a
large number of sequences. However, in the author’s experience,
an implementation of Gibbs search (The Gibbs Motif Sampler,
see also Chapter 6) (44) consistently led to reliable results, even
for very large data sets from high-throughput experiments.

Finally, the full procedure for determining protein-DNA
interaction parameters involves using Fermi—Dirac binding prob-
ability and numerically solving a set of mutually coupled non-
linear equations (see Section 2). While this procedure is techni-
cally demanding, the following simplification can be used. One
can first start by solving the zero temperature approximation,
which leads to computationally much less demanding quadratic
programming. The quadratic programming solution can then be
improved, by using it as an initial guess for solving the set of
equations in the full procedure. Such approach is equivalent to
calculating finite temperature corrections to a zero temperature
solution in statistical physics.
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Chapter 13

Kernel-Based Identification of Regulatory Modules

Sebastian J. Schultheiss

Abstract

The challenge of identifying cis-regulatory modules (CRMs) is an important milestone for the ultimate
goal of understanding transcriptional regulation in eukaryotic cells. It has been approached, among oth-
ers, by motif-finding algorithms that identify overrepresented motifs in regulatory sequences. These
methods succeed in finding single, well-conserved motifs, but fail to identify combinations of degen-
erate binding sites, like the ones often found in CRMs. We have developed a method that combines
the abilities of existing motif finding with the discriminative power of a machine learning technique
to model the regulation of genes (Schultheiss et al. (2009) Bioinformatics 25, 2126-2133). Our soft-
ware is called KIRMES, which stands for kernel-based identification of regulatory modules in eukaryotic
sequences. Starting from a set of genes thought to be co-regulated, KIRMES can identify the key CRMs
responsible for this behavior and can be used to determine for any other gene not included on that
list if' it is also regulated by the same mechanism. Such gene sets can be derived from microarrays, chro-
matin immunoprecipitation experiments combined with next-generation sequencing or promoter,/whole
genome microarrays. The use of an established machine learning method makes the approach fast to use
and robust with respect to noise. By providing easily understood visualizations for the results returned,
they become interpretable and serve as a starting point for further analysis. Even for complex regulatory
relationships, KIRMES can be a helpful tool in directing the design of biological experiments.

Key words: Kernel methods, support vector machines, machine learning, string kernels, regulatory
modules, transcription factor binding motifs, eukaryotic gene regulation, motif finding.

1. Introduction

Understanding transcriptional regulation of eukaryotic cells is a
very important challenge for computational biology. We present a
method called KIRMES that aims at predicting transcription fac-
tor target genes based on their regulatory regions. These regions
contain binding sites for transcription-regulating proteins, i.c.,

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
DOI 10.1007/978-1-60761-854-6_13, © Springer Science+Business Media, LLC 2010
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transcription factors, and are often located immediately upstream
of'a gene’s transcription start site. Often, a binding site is charac-
terized by a conserved motif that is specific to a certain transcrip-
tion factor, while most of these proteins can recognize several
distinct motifs.

Motif-finding approaches typically try to identify motifs based
on a sample of regulatory regions that have been selected for
a common reaction to external or internal perturbations, e.g.,
co-occurring expression change, or because of binding signals in
chromatin immunoprecipitation experiments. The method pro-
posed here is no exception; sets of conjointly reacting genes are
exactly the kind of input data that are expected, alongside a
list of genes that are thought not to be regulated by the same
mechanism.

We use support vector machines (SVMs), a kernel-based, dis-
criminative, and supervised machine learning method (1, 2). A
kernel is a distance measure function that has to fulfill certain
mathematical properties and can essentially calculate how similar
two input vectors (e.g., sequences) are. Discriminative means the
method will return a class label for each gene: in the positive case,
whether it belongs to a class of genes that contain similar regu-
latory elements and is thus regulated by the same (combination
of) transcription factors as other members of this class, or not,
in the negative case. Supervised means that our newly developed
SVM kernel has to be trained on input data for which the correct
classification is already known or at least strongly suspected. After
training, the kernel can be applied to data where the classification
is not yet known. The SVM output will then consist of an assigned
class for each input vector: positive if the gene is controlled by the
same regulatory mechanism as the input data and negative if not.

In addition to the classification, KIRMES returns the user-
specified number of sequence logos of the modules with the high-
est discriminative power for the positive class. This automatically
excludes strong but abundant motifs that occur in both classes
and levels background distributions of nucleotides.

A standard method to identity overrepresented oligomers in
a sample of co-expressed genes is Gibbs sampling, which tries
to capture motifs as position weight matrices (3). While being
successful for prokaryotes and even in yeast, this motif-centered
approach tends to fail in eukaryotic gene sets, where regulatory
regions are much larger, motifs are often degenerate, and a com-
bination of several binding sites is often required for a transcrip-
tion factor to bind (cooperatively).

We incorporate comparative genomic information from
related organisms and model homotypic or heterotypic combina-
tions of binding sites, known as cis-regulatory modules (CRMs),
for this method (4). CRMs are defined as a set of transcription
factor binding sites in a region of up to a few hundred bases



Kernel-Based Identification of Regulatory Modules 215

in the vicinity of the gene they regulate (5). Due to the size of
a genome and the fact that binding patterns are often degener-
ate, putative sites can be found all over the genome. Biological
experiments like chromatin immunoprecipitation show that only
a select few of these are actually bound by transcription factors
in vivo (6). Since transcription factors often bind cooperatively,
a combination of similarly spaced binding sites, even if they are
degenerate, is much more improbable to occur by chance than a
single binding site. An additional redeeming factor is the conser-
vation of important regulatory elements in related organisms (6).
Finding and modeling conserved CRMs thus allows much more
accurate predictions.

To capture these modules, we include three types of fea-
tures: positional data of binding sites relative to each other and
to the transcription start or end, sequence, and conservation (Fig.
13.1). By using SVM kernels instead of zero-order Markov chains
(position weight matrices), we can model higher order sequence
information and high-dimensional positional interdependence of
motifs.

@ sequence windows around best motif match
transcription start

regulatory sequence

® pairwise distance between each motif and
@ conservation information from a to the beginning/end of the sequence repeat ®@®
multiple genome alignment (e.g. the transcription start site) for every input sequence

Fig. 13.1. The data used by the regulatory modules kernel: Overrepresented motifs present in a majority of training
data are located in all sequences. (1) The best matching location (highlighted bars) serves as an anchor point for the
sequence window that is excised (boxed) and used in the feature vector. (2) Conservation information for this window is
retrieved from a previously computed multiple genome alignment. (3) Additionally, the pairwise distance of each window
to another and to the start of the sequence is used in the feature vector (dashed lines).

To obtain these three types of features from gene sets, we
developed the following procedure (see also Fig. 13.2 and the
Section 3).

First, a third-party motif finder, such as the INCLUSive
MotitSampler (7) or PRIORITY (8), can be used to find overrep-
resented motifs. Alternatively, we implemented a simple oligomer
counting algorithm that takes into account repeating nucleotide
sequences of length k. Additional parameters include the number
of such %-mers to be considered or a threshold on the minimum
number of times an oligomer has to occur in the sequences in
order to be considered. This simple approach has proven to be
rather powerful as it usually returns a larger number of putative
binding sites than motif finders, which often return fewer distinct
motifs.

The second step begins by combining the three feature types
for every motif into input vectors for the regulatory modules



216 Schultheiss

Positive Gene Set

Negative Gene Set

Motif Finding

Parameter Settings ) g

Positive Motif Positions Positive Sequence Windows Multiple
% Genome
Negative Motif Positions | Negative Sequence Windows M Alignment

0 Ranked List of
Sequence Logos

Co-regulated
genes

Genes that are
not co-regulated

Classifier

Fig. 13.2. Workflow of the KIRMES method: (1) The first step requires two sets of sequences, with the positives
suspected to be co-regulated and the negatives in some way confirmed to be unaffected by the same regulator(s). (2)

Parameters can then be adjuste
and optionally a multiple genom

d and a round of motif finding begins. (3) The resulting positions, sequence windows,
e alignment for conservation information are used to construct feature vectors to train

the RM kernel. (4) Along with a trained classifier, a ranked list of sequence logos is returned. The trained classifier then
can be used on any other regulatory region to determine if it is regulated by the same mechanism as the ones in the

positive training data set.

(RM) kernel, one for each input sequence. The kernel is trained
on the positive and negative data sets, determines the most signif-
icant modules, and returns them. The trained classifier can then
be applied to any gene set from the same organism to predict
whether a gene is regulated by the same mechanism as the ones
from the positive input set. We define “the same mechanism” as
the dominant signature present in the positive training examples.
Co-regulation of two genes observed in a small number of exper-
iments may well be the result of a very different combination of
transcription factors for each of them. Our approach is able to cor-
rectly predict several different CRMs in the positive set as long as
they are absent from the negative set.

In our own experiments with the regulatory network of stem
cells in Arabidopsis thalinna, we were able to show that KIRMES
outperforms a Gibbs sampler on its own and even other SVM ker-
nels (9). We used several publicly available knockdown and over-
expression microarray experiments of genes involved in the regu-
lation of the organizing center of the shoot apical meristem. Here,
the plant maintains stem cells throughout its life and we are inter-
ested which transcription factors are involved in keeping some
of these cells undifferentiated. A major player is the transcription
factor wuscHEL: it is expressed in cells of the organizing center
immediately surrounding the stem cells and is critical in keeping
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them undifferentiated. It also seems to promote the expression
of the genes CLAVATA3 and AGAMOUS. From microarray data,
we constructed positive and negative gene sets to train KIRMES,
in which we considered the regulatory region 1,500 base pairs
upstream from the annotated gene start and 500 base pairs down-
stream from the gene. KIRMES was able to identify a putative
binding site for wuscrer and confirmed it using two independent
biological assays: gel shift and SELEX (9). The site is present in
almost all genes we had previously suspected as regulatory tar-
gets of WUSCHEL. It is a palindromic octamer, suggesting that
wuscHEL binds as a homodimer. This is confirmed with the previ-
ously mentioned SELEX assay, in which the monomeric wuscHEL
protein only binds one half of the sequence. With the central pair
of nucleotides very degenerate, the binding site has been missed
by conventional motif-finding methods. This illustrates the power
of the KIRMES method.

2. Materials

e e o o [N

transcription
start site

core promoter

There are several experimental techniques that can yield input
data for the proposed method. Essentially all that is needed are
the regulatory regions of two sets of genes, a positive and a neg-
ative training data set.

Finding positive data sets is straightforward: For microar-
ray experiments, the sequence regions can be selected from any-
where around each gene’s locus where regulatory elements are
expected, which varies from one organism to another (Fig. 13.3).
In general, well-designed biological experiments will be the key to
obtain meaningtul results from the KIRMES method. The set of
differentially expressed genes (between experiment and control)
can then be selected as the positive training data.

upstream region/enhancer downstream region  intergenic region

\/ \/ \/
gene of interest i | He o o

transcription
stop

intron 1 intron 2 exon3 3-UTR

transcription

P stop codon
initiation site

Fig. 13.3. General eukaryotic gene structure. Any part that contains regulatory elements can be used as input data for

KIRMES.
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Depending on the experimental technique, there are also
other ways in which the regulatory region can be selected.
For chromatin immunoprecipitation (10), followed either by
hybridization to a microarray chip (11) or by ultra-high-
throughput sequencing (12), large bound regions that contain
the actual binding sites can be determined from the experimental
data. These regions can be used directly as the positive training
data.

Finding negative training data can be more challenging,
because it is often not known with certainty if a particular gene is
not regulated by a transcription factor under any circumstances.
See Note 1 for more details on selecting training data.

When researching the regulatory network of the response to
an external stimulus such as heat stress or drugs, time-series exper-
iments are very helpful. An individual positive data set can be cre-
ated for each step in the series.

For experimental data from complex diseases, KIRMES will
not be able to elucidate the complete regulatory network at once.
A stepwise isolation of key players and dominant signatures in the
sequences can be performed, ideally followed by another round
of carefully designed biological experiments with the newly iden-
tified transcription factors and subsequent analysis with KIRMES.
In this manner, more complex regulatory mechanisms can be
untangled.

3. Methods

KIRMES is written in Python, and its source code has been
released under the GNU General Public License. The RM ker-
nel developed for KIRMES has become a part of the large-scale
machine learning toolbox SHOGUN (13). A Web service version
of KIRMES is available publicly at http: //galaxy.fml.mpg.de/, our
Galaxy analysis workbench for genomic data. Galaxy is an open-
source, scalable workbench for tool and data integration (14). A
downloadable version with a command line interface is also avail-
able. The following procedure is applicable to both interfaces but
assumes a general knowledge of either the command line or a Web
service (Fig. 13.2).

1. The program expects two FASTA files of sequences to be
(up-)loaded for initial training of the classifier and deter-
mination of the sequence elements that are most helpful
in discriminating between the positive and negative data
sets. Sequence conservation information is not supported in
the online version, as it would require a considerably larger
infrastructure. There is no upper limit to the amount of
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input sequences, but every data set should contain at least
five sequences for cross-validation to work.

2. Several parameters can be adjusted; these are described in
detail in the documentation of the Web and command line
versions. Most importantly, the number of motifs to be con-
sidered and reported can be selected. Increasing the number
of motifs increases processing time.

3. The motifs are returned in a list ranked by their discrimi-
native power and are good starting points for further analy-
sis of downstream regulatory targets or for in vitro binding
experiments. The ranking is calculated by performing cross-
validation of a classifier trained on the set of all motifs except
one. The average difference in prediction accuracy — mea-
sured as the area under the receiver operating characteris-
tic curve (15) — versus the accuracy with the complete set
of motifs is the basis of the ranking. Motifs are returned as
sequence logos for easier interpretation (16). Internally, we
use the SVM kernel to calculate a positional oligomer impor-
tance matrix, which is described in Note 2, from which the
sequence logos are derived (17).

4. After training of the classifier, a third data set can be
uploaded containing sequences where the classification is not
known. KIRMES will predict the class of each sequence based
on the presence or absence of CRMs learned from the train-
ing data sets.

The underlying machine learning method, SVM, uses a sim-
ilarity measure known as a kernel function to determine how
similar two input vectors are. For KIRMES, we developed a new
string kernel, the RM kernel, which is able to use information
from sequences of any length, and at the same time incorporate
positional and conservation information for the sequence. The
RM kernel is based on the weighted degree kernel with shifts
(18), with added capabilities to evaluate conservation information
per nucleotide. It uses the locations of overrepresented motifs
to excise 20 base pair sequence windows from the input data.
A set of 20-200 such motifs is generated for any training data set,
using either the oligomer counting method or a Gibbs sampler.
The best matching position of each motif is determined in every
input sequence, allowing for mismatches. This position is the cen-
ter of the 20 base pair window that is excised and added to the
feature vector for this sequence. The SVM can then determine
the similarity between any two sequences by calculating the ker-
nel function (which is exactly equivalent to the scalar product) of
the two vectors representing the sequences. During training, the
SVM adjusts the kernel’s weight vector in such a way that it can
optimally distinguish between the members of the two classes of
input data.
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4. Notes

. Experimental design: For noisy data sources such as expres-

sion microarrays, well-designed experiments are key to pre-
dict regulation relatively accurately. Ideally, several experi-
mental conditions should be tested with as many replicates
as feasible, cf., (19). Time-series experiments make it pos-
sible to distinguish first-order responses from downstream
reactions to the experimental condition. If some genes are
already suspected to be transcription factors and have a large
number of genes they regulate, overexpression and knock-
down experiments are invaluable. This also applies to chro-
matin immunoprecipitation techniques, where precipitating
a knockdown control can identify promiscuous binding of
the antibody, which can be subtracted in a downstream data
preparation step.

. Regulatory region selection: Any region putatively contain-

ing transcription factor binding sites can be used for this
method (Fig. 13.3). This includes the promoter region;
the larger enhancer region; any non-coding, untranslated
sequence, either upstream or downstream from the exons;
the first intron or all introns; and even coding regions. For
instance, in our experiments with microarray data from the
plant A. thaliana, we use 1,500 base pairs upstream from the
annotated gene start and another 500 base pairs downstream
from the last exon. This will vary for other organisms.

. Negative training data: To obtain a good negative training

data set from microarray experiments, use the same regula-
tory regions as for the positive data set. Select those genes
that exhibit a uniformly high expression level (significantly
above the detection threshold of the array) and change lit-
tle between experiment and control arrays. Reasonable dif-
terences within the limits of expected variation of microar-
rays may be acceptable. This will not exclude one or the
other gene that shares a binding site with many of the pos-
itive genes, but SVMs are quite robust against mislabeled
examples.

Equally balancing the positive and negative data sets is not
necessary; in fact, when the expected distribution of positives
and negatives in the prediction data is far from the one in the
training data, balancing is counterproductive. The distribu-
tion of positives and negatives in the training data should be
as similar as possible to the one in the prediction data set
used subsequently.

. Prediction data sets: A data set for prediction with a trained

classifier can for instance be comprised of the regulatory
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regions of all genes of the organism you work with that have
been annotated so far. This can be especially helpful if the
microarray chip used for expression experiments is outdated
compared to the current genome annotation of that organ-
ism. This way, even genes without expression data can be
classified. For genes that are consistently expressed below
a reliable detection threshold that can thus not be readily
included in either the positive or the negative data set, a pre-
diction is possible as well.

. Contribution of vector features: It is of interest to know
which parts of the input vector contribute most to the dis-
criminative power. We used a representative gene set from
A. thaliana microarray experiments and considered differ-
ent combinations of the three feature types: sequence win-
dows, conservation, and position. For the complete set of
these features, we achieve an area under the receiver oper-
ating characteristic curve of 0.89 (1.0 is the maximum).
Omitting conservation, performance is reduced slightly to
0.85 and omitting positional information, prediction accu-
racy is impaired more significantly, at 0.73. Using only the
sequence windows, we get an area of only 0.69, which drops
even more sharply, to 0.51, when using the positional infor-
mation only (an area of 0.5 is equivalent to randomly guess-
ing the classification, and thus not better than a random
classifier).

Sequence windows are consistently the most important
teature, while their position can sometimes make a big dif-
ference, as in the data set discussed here. For other data
sets (data not shown), its contribution is marginal. Posi-
tional preference of transcription factors — or lack thereof—
has been studied previously (20). Conservation typically
boosts performance by about 5 percentage points. There is
work in progress to include other types of data as features,
such as position-specific histone modification or nucleosome
positions.

. Positional oligomer importance matrices (POIMs) (17):
POIMs can be calculated from a trained RM kernel. They
contain information on which part of the sequence the ker-
nel is used to distinguish between the positive and negative
training data. The idea behind this is that these sequence
peculiarities are the same ones that transcription factors rec-
ognize in vivo. POIMs are difficult to visualize in a meaning-
ful way and thus KIRMES converts them to the more familiar
sequence logos. This is not a lossless conversion; a lot of
information contained in a POIM cannot be represented in a
sequence logo. For instance, the length of the most discrim-
inative sequence cannot be shown. It may usually be seen
implicitly by the positions of the logo that are more clearly
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defined compared to others with fewer information, but the
exact length can only be estimated. Users interested in the
actual POIM of the trained kernel can instruct KIRMES to
return it in a separate results file.

. Interpretation of results: Even though SVMs are rather
robust when it comes to mislabeled training data, small data
sets can still yield misleading results, when many of the
genes are mislabeled. Generally, both negatives and posi-
tives should contain as many sequences as are available, while
remaining as stringent as possible with the criteria for the
positive data set. The sequence logos that are returned may
not match well in all of the sequences, as can be determined
by a run with a program like INCLUSive MotitLocator (2);
this is an indicator of mislabeled sequences.

A change in returned motifs from one time point in a
series to another is indicative of a downstream reaction;
most probably one of the positive genes of the previous time
points is a regulator that binds to this new motif.
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Chapter 14

Identification of Transcription Factor Binding Sites Derived
from Transposable Element Sequences Using ChiIP-seq

Andrew B. Conley and I. King Jordan

Abstract

Transposable elements (TEs) form a substantial fraction of the non-coding DNA of many eukaryotic
genomes. There are numerous examples of TEs being exapted for regulatory function by the host, many
of which were identified through their high conservation. However, given that TEs are often the youngest
part of a genome and typically exhibit a high turnover, conservation-based methods will fail to identify
lineage- or species-specific exaptations. ChIP-seq has become a very popular and effective method for
identifying in vivo DNA-protein interactions, such as those seen at transcription factor binding sites
(TEBS), and has been used to show that there are a large number of TE-derived TFBS. Many of these
TE-derived TFBS show poor conservation and would go unnoticed using conservation screens. Here,
we describe a simple pipeline method for using data generated through ChIP-seq to identify TE-derived
TFBS.

Key words: Transposable elements, ChIP-seq, gene regulation, gene expression, transcription
factors, CTCF.

1. Introduction

Transposable elements (TEs) are segments of DNA that possess
the ability to ‘transpose,” meaning that they can move themselves
to distant locations of the host genome and replicate when they
do so. TEs are present in all domains of life and are abundant in
the genomes of many sequenced eukaryotes accounting for a large
portion of non-coding DNA and the genomes as a whole (nearly
50%, ~1.4 Gb of the human genome) (1). Broadly speaking,
there are two types of TEs. Type I TEs, or retroelements, trans-
pose by a copy and paste mechanism via an RNA intermediate,
generating a new insertion. Type II TEs, or DNA transposons,

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
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1.1. Exaptation of
Transposable
Elements

1.2. Transposable
Elements Evolve
Rapidly

move by a ‘cut-and-paste’ mechanism where the actual insertion
is moved (2). Most TEs harbor their own promoters and regula-
tory sequences, and many active elements encode genes for their
own transposition. Active elements are a small minority, however,
and most TE insertions are unable to transpose.

TEs exist solely to continue their own existence; they do not,
simply by their replication, contribute anything to the host (3, 4).
It is likely that many, if not the large majority of TE insertions,
have little or no functional role for the host and are effectively
under neutral or nearly neutral selection. However, given the very
large number of TE insertions in eukaryotic genomes and the
opportunistic nature of evolution, it is only reasonable to expect
that some would be ‘exapted’ (5) over time to take on a functional
role that benefits the host, a process that could have a wide variety
of results (6, 7). A key factor in TE exaptation events is their
ability to promote their own transcription; without this ability,
they could not replicate themselves. Given this ability, it stands to
reason that TEs could be exapted to provide alternative promoters
for host genes; this has been seen a number of times (8, 9). Of
most importance to this chapter, however, is the ability of TEs to
provide new TEBS to the host. If there existed an active TE that
contained a TEFBS, then each new insertion that the TE generated
would also contain the TFBS. If the TE were highly active, it
could quickly spread the TFBS around the genome. Even if the
TE simply had a sequence that was only close to the TFBS, it
could still spread this ‘progenitor sequence’ around the genome.
Over time, point mutations in individual insertions could alter
the progenitor sequence so that it would now be bound by the
TF (10). Either way, the TE could spread the TFBS around the
genome over timer and create a network of TFBS, and in doing
so alter the expression patterns of host genes. For example, it was
recently shown that a large number of human c-myc binding sites
are located in TE insertions, possibly creating a sub-network for
c-myc control (11). For a comprehensive review of TE-derived
regulatory networks, see (12).

Transposable elements are generally the most rapidly evolving
part of a genome; so long as their insertions are not too deleteri-
ous to the host, TEs can quickly increase in copy number and then
are generally free to accumulate point mutations. The rapid activ-
ity of TEs relative to the host genome means that lineage-specific
insertions can be accumulated in a very short time frame. In the
6 million years since the human—chimpanzee divergence, for
example, there have been several thousand new TE insertions in
each genome (13). There also appears to be very little selective
pressure on the deletion of most insertions, which can result in
their chance deletion from one lineage, while they are retained in
others. Between human and mouse, there is generally very little
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conservation of non-coding regions in the genome, including
TEs. Many insertions that appear to predate the human—mouse
divergence are present in one genome, but have been lost in the
other (Fig. 14.1) (14). The rapid insertion of TEs combined
with their rapid loss means that two lineages can develop distinct
TE complements in a relatively short time after divergence. Given
that two lineages can have very different TE complements, it
could be possible for a large number of lineage or even species-
specific exaptation events (Fig. 14.1). If the exaptation events
were the creation of new TFBS or promoters, then the spread
of TEs could create species-specific patterns of gene expression
(15, 16).

a
TE
Insertion
1 ——
+ An ancient TE insertion and
- its exaptation results in the
presence of the TE across
lineages.
b -
TE
Insertion
— ——
{ A lineage specific exaptation
- results in most lineages
lacking the ancient insertion,
while  is retained in one.
=
C TE Insertion

|
v
i A lineage specific insertion
is exapted and exists only in
one lineage.
Fig. 14.1. Evolutionary scenarios related to TE exaptation events. a An ancient insertion
is exapted and the resulting regulatory sequences are shared across multiple derived
evolutionary lineages. b An ancient insertion is exapted but only selectively conserved
in some of the derived evolutionary lineages. This could result in regulatory divergence
between lineages. ¢ A recent lineage-specific insertion is exapted resulting in regulatory
differences between lineages. TEs are particularly prone to this scenario given how
dynamic and rapidly evolving they are.

[ 1

There are three widely used methods to find TFBS in genomes.
It should be noted that these approaches are not mutually exclu-
sive; indeed, the methods are often combined to more rigorously
predict and locate TFEBS.
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1.3.1. Phylogenetic
Footprinting

1.3.2. Motif Search

The first approach, phylogenetic footprinting (17), can be done
solely computationally via comparative sequence analysis. A phy-
logenetic screen attempts to find regions of different genomes
that have been conserved over time and, in the case of TFBS,
looking for conserved non-coding elements (CNEs). Screens
looking for conserved non-coding elements (CNEs) represent a
very successful technique for identifying the oldest and, due to
their conservation most likely to be essential, non-coding parts
of the genome. Shortly after the sequencing of the human and
mouse genomes, it was shown that a larger than expected num-
ber of mouse MIR and L2 elements had human orthologs (14).
Subsequently, several thousand insertions or insertion fragments
near human genes were shown to be under purifying selection,
suggesting their exaptation and possible involvement in transcrip-
tional control (18). In recent years, a number of insertions have
been shown to be enhancers for human and vertebrate genes,
many identified with phylogenetic screens. An insertion from the
CORE-SINE family was shown to be conserved across the mam-
malian lineage and to be an enhancer of the POMC gene in mice
(19). The amniote SINE 1, AmnSINE], family of TEs is a very
old family that spread early in the amniote lineage. However, a
number of conserved AmnSINE] insertions exist in the human
genome, two of which were shown to be enhancers involved in
brain development (20-22). A mammalian interspersed repeat
(MIR) was shown to have enhancer ‘boosting’ activity, in that its
presence greatly increased the action of a nearby enhancer, while
the MIR could not on its own be an enhancer (23). The prob-
lem with an approach based on conservation is that, while it will
find many important regions, the screen will miss other regions
that are also important, but also lineage specific. Lineage-specific
TEBS, such as those that could be provided by lineage-specific
TE insertions, could generate lineage-specific expression, and this
would be missed by CNE screens (16). Another case in which
older elements may be overlooked in CNE screens is one in which
an old insertion has been lost, as many are, in several lineages, but
exapted in one (Fig. 14.1). Such an insertion may well play some
role in the lineage that kept it, but it will be completely missed in
CNE screens. CNE screens will miss not only new TE exaptations
but also other non-coding functional elements. It has been shown
previously that sequences with low conservation can play impor-
tant functional roles, such as rapidly evolving, long non-coding
RNAs (24).

The second of the three methods to identify TEBS is also com-
putational and involves scanning a genome for the sequence
motif that the TF in question recognizes. REST, the RE] silenc-
ing transcription factor, is known to repress neuronal genes
in non-neuronal cells. Using experimentally identified REST
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binding sites, which contain the RE1 motif, Johnson et al. (25)
created a position-specific scoring matrix, PSSM, for the motif
and used it to screen for possible REST binding sites in the human
genome. Johnson et al. were able to show that there are a num-
ber of TE-derived REST binding sites that had the ability to bind
REST in vitro, suggesting that TEs have helped to spread the
REST network. When a PSSM is used to search for new TEBS in
a genome, false positives are controlled by shuffling the sequence
in the PSSM, re-scanning the genome with the shuffled sequence,
and comparing the number of sites identified with the original
PSSM to those found with the shuffled PSSM (26). This approach
will not work, however, for TFs that recognize motifs smaller than
the RE1 motif as there will likely be many false positives. In addi-
tion, the presence of a TFBS sequence motif does not guarantee
that the sequence that bears it is actually bound by its correspond-
ing TF, while sequences that lack similarity to the motif may in
fact be bound by that factor. These challenges to the sequence-
based computational approach necessitate an approach to iden-
tifying TFBS on a genome-wide scale that does not depend on
the sequence of the TFBS, only the binding of the TF to the
region.

The third major approach to finding TFBS is identifying in vivo
protein—-DNA interactions via chromatin immunoprecipitation
(ChIP) followed by microarray analysis (ChIP-chip) or sequenc-
ing of the captured DNA (ChIP-seq, se¢ Chapters 9, 10, and
11). Of the three approaches, this one offers the greatest sensi-
tivity and potential specificity. ChIP is able to find genomic DNA
that is bound by a transcription factor, not just those regions that
are conserved or for which there exists a well-defined TFBS motif.
ChIP is also distinguished from the other approaches in the sense
that it identifies sequences that are experimentally characterized to
be bound by transcription factors, i.e., not just computational pre-
dictions. Genome-wide ChIP assays such as ChIP-PET or ChIP-
chip have been used successfully in the past; however, a newer and
relatively inexpensive method, ChIP-seq, has quickly become the
dominant method of experimentally identifying TFBS, and it is
on ChIP-seq that we focus the rest of our discussion. The ChIP-
seq method combines ChIP with massively parallel sequencing
of the bound DNA (27). The sequencing is usually carried out
on one of the currently available short-read sequencers: Illumina
Genome Analyzer, ABI SOLiD, or Helicos HeliScope. ChIP-
seq has a number of advantages over ChIP-chip and ChIP-PET.
There is no cross-hybridization, as can occur in ChIP-chip, and
the ChIP-seq signal is a digital count of reads mapping to the
TEBS, rather than a fluorescence signal. ChIP-seq is also far less
costly than ChIP-PET, which typically relied on capillary sequenc-
ing. Using several ChIP-based data sets, including one derived
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with ChIP-seq, Bourque et al. (28) identified a large number of
TE-derived TFBS. The majority of TEBS they observed were not
well conserved, with many being lineage specific. This strongly
suggests that expansion of TEs within a genome can lead to
the concurrent expansion of transcription regulatory networks.
Below, we provide a specific example detailing how analysis of
ChIP-seq data can be used to identify TE-derived TFBS.

2. Software

All the software we describe and recommend here is publicly
available.
Bowtie (29) http://bowtie-bio.sourceforge.net/

MuMRescueLite (30) http: / /genome.gsc.riken.jp /osc/english
/dataresource /

UCSC Genome Browser (31) http://genome.ucsc.edu
UCSC Table Browser (32) http://genome.ucsc.edu

3. Methods

3.1. Methods Basics
3.1.1. Mapping

This section describes our choice of tools for the identification
of TFBS derived from TE insertions using ChIP-seq data, and we
show how these tools can be assembled into an analytical pipeline.
The tools presented were chosen for their speed, utility for anal-
ysis of TE-derived TFBS, ease of use, and good documentation.
To illuminate the use of these tools, we first provide an overview
of our analytical pipeline for the detection of TE-derived TFBS
(Fig. 14.2) and then we give a specific example of how ChIP-
seq data can be analyzed to yield genome-wide set of TE-derived
TFBS.

The first step in finding TE-derived TFBS is to map reads gen-
erated by ChIP-seq back to the genome used. Massively parallel
sequencers generate millions of reads in run of a ChIP-seq exper-
iment. Mapping these reads in a genome as large as the human
or mouse genomes with traditional techniques like BLAST (33)
or BLAT (34) quickly becomes computationally overly expen-
sive. Fortunately, a number of programs have been developed
explicitly for the mapping of short-read data. The fastest of these
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FASTQ or
FASTA Input

:

Mapping

v
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¢

Peak
Finding

v

TE Overlap

Fig. 14.2. Schematic of the analytical pipeline presented here for finding TE-derived
TFBS with ChiP-seq. Each individual step is described in detail in the text along with
important caveats, which are listed in ‘Notes’ section.

are those that employ the Burroughs—Wheeler transform (35) to
build a very dense index of the genome, then map reads using the
index. We recommend Bowtie for general mapping because of its
speed and useful options (see Note 1). Bowtie is generally the
fastest of these aligners, and it can utilize read quality information
in the FASTQ format data generated from Illumina sequencing.
However, it cannot currently use colorspace reads generated from
SOLID sequencing (sec Note 2).

Were genomes fully random sequences of the four bases, then
almost any ChIP-seq read would be mappable to a unique region
of the genome. However, due in large part to the vast number of
TE insertions, this is not the case. There are numerous repeated
sequences in eukaryotic genomes, and sequence tags derived from
these regions may not map unambiguously back to the genome,
i.e., they may map to multiple genomic regions with equal prob-
ability. The problem of such multiple-mapping ChIP-seq reads
arises in part due to their short length. ChIP-seq reads must nec-
essarily be short in order to provide good resolution protein bind-
ing locations in the genome; a 500 bp read from ChIP-seq would
be easy to unequivocally map to the genome, but would give very
little information about the exact location of the DNA—protein
interaction. A shorter read, on the order of <50 bp, as most
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3.1.3. Different Methods
of Rescue

3.1.4. Peak Calling

ChIP-seq data sets contain, gives good resolution regarding the
location of the DNA binding, but will have a much greater prob-
ability of mapping to multiple locations in the genome. If a TE
insertion provides a TFBS, the insertion is very young, and there
are many similar TEs in the genome, then it may not be possi-
ble to map the ChIP-seq reads from that insertion. For slightly
older elements, there will be far fewer possible places to map the
reads. Many studies have simply discarded multi-mapping reads
for both simplicity of analysis and a desire to be conservative in
their findings. However, this becomes an obvious problem when
studying TEs, as this will result in the loss of many of the reads
coming from TE insertions. To appropriately analyze ChIP-seq
data in regard to TEs, some ‘rescue’ method must be used to
resolve reads of the map to multiple locations.

There are currently several different schools of thought regarding
‘rescuing’ reads that map to multiple genomic locations. MAQ
(36) is a very commonly used mapping utility for short-read data.
When it encounters reads that map to multiple locations with
equal probability, it randomly chooses one of the locations to map
the tag. This poses problems for TE-derived sequences, as it will
dilute the signal from legitimate TEBS, potentially resulting in
both false positives and false negatives. This method also ignores
information on the local context of potential map positions given
by uniquely mapping reads. MUMRescueLite (30, 37) takes this
information into account and assumes that multi-mapping reads
are more likely to come from regions which already have more
uniquely mapping reads and probabilistically determines where
a read most likely came from. We recommend that MuMRes-
cueLite be used after the initial mapping to resolve multi-mapping
reads.

Quality mapping is critically important for downstream analysis,
and once this has been achieved, the first step is often finding
‘peaks’ or, more generally speaking, regions that have a density of
mapped ChIP-seq reads significantly higher than the background
(see Note 3). These peaks are the regions bound by the TF that
are being looked at in the ChIP assay and should contain the
TEBS. Methods for peak calling, and indeed the area itself, are
still new, and while there is work to be done in the area, there
are several quality software choices available for identifying peaks
in ChIP-seq data. Quantitative Enrichment of Sequence Tags
(QuEST) is reviewed in Chapter 10 and CisGenome in Chap-
ter 9. PeakSeq (38) and SISSRs (39) are two widely used utili-
ties, and in this review, we recommend SISSRs due to its good
documentation.
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3.2. Example

3.2.1. Mapping
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SISSRs attempts, and in general is highly successtul at, finding the
TEBS to within a few tens of base pairs based on the strand orien-
tations of reads forming the peak, as well as the density of reads
in the region. Ideally, the TFBS would always be at the point of
highest read density. In reality, it is very often co-located with
the highest density or if not that then very near by, and SISSRs
is correct in its predictions the large majority of the time. What
this means, practically, is that finding those regions identified by
SISSRs that are contained within TEs will tell us which TFBS are
TE derived (see Note 4). This can be accomplished in a number
of ways, the simplest being the creation of two BED-formatted
custom tracks for the UCSC Genome Browser (31), one from
the predicted TEBS and one from the TEs, and uploading them
to the browser. Then, the table browser can be used to inter-
sect the tracks (see Note 5). Below, we provide a specific step-by-
step example of how this can be done using the software cited in
Section 2.

Here we provide an example using ChIP-seq data for the
CCCTC-binding factor (CTCF) from the human ENCODE
(ENCyclopedia of DNA Elements) project (40). CTCF is
zinc finger binding protein with multiple regulatory func-
tions including both transcriptional activation and repres-
sion as well as insulator and enhancer blocking activity
(41). The ChiP-seq data for CTCF are available at http://
hgdownload.cse.ucsc.edu/goldenPath /hgl8,/encodeDCC/wg
EncodeChromatinMap/. For this example, we will be using the
first repetition of CTCF and the control. The majority of the
steps in this procedure are done from the command line in the
Unix/Linux operating system environment.

The program Bowtie requires an index for the genome that the
user wishes to map the tags to. This is accomplished with the
‘bowtie-build’ utility. It takes as input a FASTA file that contains
the genome in question, the human genome in our example:

Sbowtie-build <human genome FASTA> <index name>

Building the index typically takes several hours depending on
the machine, though once built there is no need to build it again
for different samples. Bowtie takes as input a FASTQ file and the
parameters to control the mapping (see Note 1), as well as the
index to use for the mapping:

Sbowtie -g -k 10 -m 10 --best --strata <index name>
<FASTQ> <bowtie output>

The mapping should be done for both the CTCF ChIP-seq
set and the control set. Bowtie is capable of mapping several thou-
sand reads per second, or far more, depending how many cores it
is allowed to use (see Note 1).



234 Conley and Jordan

3.2.2. Multi-mapping
Read Rescue

3.2.3. Peak Calling

3.2.4. Identification of
TE-Derived TFBS

MuMRescuelLite takes all of the information that the Bowtie out-
put has, but the information needs to be rearranged to meet the
requirements of MuMRescuelL.ite:

Sawk '/./ (print $1"\t"$7 + 1"\t"$3"\£"$2"\t"$4"\t"$4 +
length($5) "\tl"} < <bowtie output> > <MuM Input>

While the above command may appear daunting, it is simply
using awk to rearrange the columns of the Bowtie output and
put tabs between them. MuMRescuelLite is invoked with a much
simpler command:

SMuMRescueLite.py <MuM Input> <MuM Output><Window Size>

Keeping the window size small will prevent distant reads from
rescuing reads that do not really come from the location. We sug-
gest keeping the window size under 100. MuMRescueLite pro-
duces output that is the same as the input, with an additional
column that represents the calculated probability that the read in
question is from that site. Using the desired probability cutoff
for multi-mapping read, use awk to create a BED track from the
MuMRescueLite output for analysis with SISSRs:

Sawk ’$8 > <cut off> {print $3"\t"$5"\t"S$6"\t"S$4}’
< <MuM Output> > <Mapping BED>

The output should then be sorted by chromosome, then start,
then stop:

Ssort -k 1,1 -k 2n,2n -k 3n,3n -o <Mapping BED>
<Mapping BED>

As with the mapping, the rescue should be done for both sets.

SISSRs takes as input the two BED files created in the previous
step and creates another file with peak calls:

$sissrs.pl -i <CTCF File> -b <Control File> -o
<Output File>

Use the -1 option to specify the ChIP set as the input and
the -b option to specify the control set as the background. The
-o option tells SISSRs where to write the output. Formatting the
output into a BED file will allow overlap of the identified TFBS
with TEs in the UCSC genome browser:

Sawk ’/"“chr/ {print 1,2,3}’ < <Output File> >
<TFBS BED>

The final step is to upload the SISSRs-identified TEBS,
BED-formatted track to the UCSC genome browser as a cus-
tom track. The name of the track should be changed so as not to
be overwritten by later tracks. Once that is done, create another
custom track that will contain only TEs using the table browser.
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This can be done by filtering the RepeatMasker track for only
those repeats which have a ‘repClass’ of ‘LINE,” ‘SINE,” ‘LTR,’
or ‘DNA.’ Intersecting the track of CTCF TFBS with this TE-
only track will give those TFBS that reside in TE insertions. If
everything has gone right, then there should be examples like that
shown in Fig. 14.3. Here, two distinct CTCF binding sites are
shown for a solo long terminal repeat sequence from the endoge-
nous retrovirus family K (ERVK). Although these particular bind-
ing sites were identified solely based on ChIP-seq data, they can
also be seen to possess known CTCEF binding site sequence motifs
at the bound genomic intervals. Thus, a computational survey of
TE sequences that possess TEBS motifs may have turned up this
example.

Genome wide there are 326 CTCF-bound sites located
within ERVK sequences, and ERVK elements show more than an
order of magnitude greater likelihood to be bound by CTCF than
members of other ERV families. The number of CTCF-bound
ERVK sequences suggests that these TE-derived TFBS may play
some role in regulating human genes, and in fact many ERVs
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Fig. 14.3. An example of two TE-derived CTCF binding sites found using ChIP-seq data. a Two CTCF TFBS identified
by the SISSRs program are found within the long terminal repeat sequence of an endogenous retrovirus TE (ERVK). The
ChIP-seq read density shows two peaks in the ERVK that correspond to the CTCF-bound regions. Analysis of the bound
regions with a CTCF position weight matrix (PWM) (45) using the program CLOVER (46) confirms the presence of two
conserved CTCF binding site sequence motifs in the regions identified with the ChIP-seq data. The sequences of the
binding sites are shown compared to the sequence logo representing position-specific variation in the CTCF PWM. b
Regions orthologous to the ERVK insertion site from completely sequenced mammalian genomes were compared using
the vertebrate Multiz alignment. Sequence regions conserved between species are shown. Regions flanking the ERVK
element are conserved in other mammalian genomes, but the insertion itself is human specific.
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are located in close proximity to genes. For instance, the CTCF-
bound ERVK shown in Fig. 14.3 is located in the 5" regulatory
region ~6 kb upstream of the ATAD3A gene.

ERV sequences in general and members of the ERVK
family in particular are young lineage-specific elements that
are poorly conserved across species. Phylogenetic analyses
revealed that the ERVK family invaded the primate lineage
subsequent to the diversification between New World and
Old World monkeys (42). Consistent with their recent evo-
lutionary origin in the human genome, ERVK sequences
have a mean PhyloP (http://www.genome.ucsc.edu/cgi-bin/
hgTrackUirhgsid=147315896&c=chrl &g=phyloPCons28way)
base-wise conservation score of 0.22, while the genome as
a whole has a mean score of 0.47. Therefore, phylogenetic
footprinting approaches, which identify regulatory sequences in
non-coding DNA by virtue of their sequence conservation, would
be exceedingly unlikely to turn up any cases of ERVK-derived
TEBS. Indeed, comparison of the CTCF-bound ERVK insertion
shown in Fig. 14.3 with orthologous mammalian genomic
regions indicates that this particular ERVK insertion is human
specific and missing in all other mammals. Such lineage-specific
TE-derived regulatory sequences may be of particular interest in
the sense that they could be responsible for driving regulatory
divergence between species (15, 16).

4. Notes

1. Bowtie is currently the fastest short-read aligner available
and our preference for mapping short-read data, such as
that generated by ChIP-seq or RNA-seq. It has many of
the same advantages of MAQ, such as taking quality infor-
mation into account, but also has other features useful for
looking at TE-derived sequences that MAQ currently lacks.
Bowtie is also quite memory efficient and it scales well with
genome size. Bowtie can be run with the human genome on
a computer with 4 GB of RAM, though on such a com-
puter nothing else should be started in the meantime, as
when Bowtie is forced out of memory it tends not to recover.
Bowtie has a large number of options for controlling map-
ping and output, which can be listed by executing bowtie
with no arguments. The more important options are listed
and explained here:

-k <integer> this option is critically important among
those available. This option tells bowtie that it should
report more than one mapping, as by default it reports
only the first. At the current time, MAQ will not report
more than one mapping. Currently, MAQ will use the
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quality scores to choose a location and assign the mapping
a quality of 0. Output of multi-mapping reads and their
possible location is essential for the rescue and analysis of
TE-derived sequences.

--best giving this option will cause bowtie to report only
those mappings which have the highest quality and is rec-
ommended if you have the FASTQ data and not just the
FASTA data of base calls. This can greatly reduce the num-
ber of multi-mapping reads.

--strata This option is used along with the --best
option and will cause bowtie to return only the highest
quality mappings.

-m <integer> will eliminate reads that map more than
m times. We suggest making it the same as k. This will
remove reads that map to so many places in the genome
that they could likely never be placed with confidence.

One major advantage of Bowtie is that it allows for the easy

use of multiple cores, which every desktop shipped in the

last ~3 years has. Speed will become increasingly important

as the number of reads generated per run increases. On a

dual-core machine, such as a machine with an Intel Core

Duo, only one core is advisable. However, on a quad-core

machine, it is generally advisable to use two or three cores.

On an eight-core machine six cores are recommended. The

number of cores (processors) is set with the -p option. In

some unfortunate cases, FASTQ files from a ChIP-seq exper-
iment are not available, and only the base calls are supplied.

In this case, you would not supply the ‘-q’ flag to indicate

FASTQ format. It is in these cases that the rescue is espe-

cially important.

. The ABI SOLID sequencing platform does not produce base
calls like the Illumina platform, but rather ‘color’ calls that
represent transitions between two bases. Bowtie cannot cur-
rently map colorspace reads, and we suggest the SOCS pro-
gram for this purpose (43). Like Bowtie, it has generally low
memory requirem