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Preface

Transcriptional regulation controls the basic processes of life. Its complex, dynamic, and
hierarchical networks control the momentary availability of messenger RNAs for protein
synthesis. Transcriptional regulation is key to cell division, development, tissue differenti-
ation, and cancer as discussed in Chapters 1 and 2.

We have witnessed rapid, major developments at the intersection of computational
biology, experimental technology, and statistics. A decade ago, researches were struggling
with notoriously challenging predictions of isolated binding sites from low-throughput
experiments. Now we can accurately predict cis-regulatory modules, conserved clus-
ters of binding sites (Chapters 13 and 15), partly based on high-throughput chro-
matin immunoprecipitation experiments in which tens of millions of DNA segments are
sequenced by massively parallel, next-generation sequencers (ChIP-seq, Chapters 9, 10,
and 11). These spectacular developments have allowed for the genome-wide mappings of
tens of thousands of transcription factor binding sites in yeast, bacteria, mammals, insects,
worms, and plants.

Please also note the no less spectacular failures in many laboratories around the world.
Having access to chromatin immunoprecipitation, next-generation sequencing, and soft-
ware is no guarantee for success. The productive and creative use of computational and
experimental tools requires a high-level understanding of the underlying biology, the
technological characteristics, and the potential and limitation of statistical and computa-
tional solutions. This is the raison d’être of this volume, guiding scientists of all disciplines
through the jungle of regulatory regions, ChIP-seq, about 200 motif discovery tools and
others. As in previous volumes of the series Methods in Molecular BiologyTM, we help read-
ers to understand the basic principles and give detailed guidance for the computational
analyses and biological interpretations of transcription factor binding. We disclose critical
practical information and caveats that may be missing from research publications. This
volume serves not only computational biologists but experimentalists as well, who may
want to understand better how to design and execute experiments and to communicate
effectively with computational biologists, computer scientists, and statisticians. Chapter 1
helps readers to find their way in the maze of resources by a high-level overview of the
computational, biological, and some experimental solutions of transcription factor bind-
ing. Chapter 1 highlights other units in this volume and discusses some of the issues not
covered.

Why are there so many failed experiments and analyses? Consider, for an example,
ChIP-seq, where background noise accounts for more than half of the sequencing reads.
Potentially, this may lead to a vast array of false-positive observations. Careful investi-
gators, however, can apply kernel-based density estimates and other background mod-
eling and correction methods to find significantly enriched signals in such noisy obser-
vations (Chapters 9 and 10). Density estimates are followed by improved peak calling
with controlled false discovery rate (Chapter 10). Another problem is that ChIP-seq
peaks are tens to hundreds of times wider than the footprint of the transcription fac-
tor on the DNA. The highest peaks often come from amplification and sequencing bias,
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vi Preface

not from a bona fide biological signal (Chapter 1). These serious issues mandate the
identification of shared, short, and variable DNA motifs, representations of variable bind-
ing sites, from moderate-to-low resolution ChIP-seq data using computational motif dis-
covery algorithms. On the other hand, false negatives are also abundant. Consider the
temporary nature of regulation, which responds to temporary environmental and internal
stimuli. Therefore, a site is typically bound only at a fraction of time, easily missed by snap-
shot techniques like ChIP (Chapter 24). In order to reduce the number of false positives
and negatives, motifs are trained by a wide spectrum of statistical learning methods. In
spite of the diverse implementation of these tools, most of them stem from expectation
maximization and Gibbs sampling (Chapters 6, 7, and 11) or support vector machines
(Chapter 13). The trained tools can find binding sites missed by experiments in the pre-
dicted promoter regions (Chapter 5), all regulatory regions (Chapter 4), or in the whole
genome.

In itself, de novo computational motif prediction is still not accurate enough
(Chapter 8). Confidence levels can be increased greatly by integrating binding site loca-
tions with in vitro protein–DNA affinities (Chapter 12), evolutionary conserved regions
(Chapters 11, 14, and 18), and transposable DNA elements that propagate binding
sites through the genome (Chapter 14). Time-delayed co-expression as inferred from
large compendia of gene expression experiments also indicates binding sites of shared
transcription factors. This enormous wealth of information can be retrieved in computa-
tionally efficient ways from diverse databases including OregAnno (Chapter 20), Plant-
TFDB (Chapter 21), cis-Lexicon (Chapter 22), and genome browsers (Chapters 1, 10,
and 22).

The integrated observations and predictions help us to reconstruct complex, hierar-
chical, and dynamic transcriptional regulatory networks (Chapters 23 and 24). This task
demands not only new experiments but also the re-annotation of existing experimental
data and computational predictions and ongoing, major paradigm changes for all of us.

Istvan Ladunga
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Chapter 1

An Overview of the Computational Analyses and Discovery
of Transcription Factor Binding Sites

Istvan Ladunga

Abstract

Here we provide a pragmatic, high-level overview of the computational approaches and tools for the
discovery of transcription factor binding sites. Unraveling transcription regulatory networks and their
malfunctions such as cancer became feasible due to recent stellar progress in experimental techniques
and computational analyses. While predictions of isolated sites still pose notorious challenges, cis-
regulatory modules (clusters) of binding sites can now be identified with high accuracy. Further sup-
port comes from conserved DNA segments, co-regulation, transposable elements, nucleosomes, and
three-dimensional chromosomal structures. We introduce computational tools for the analysis and inter-
pretation of chromatin immunoprecipitation, next-generation sequencing, SELEX, and protein-binding
microarray results. Because immunoprecipitation produces overly large DNA segments and well over
half of the sequencing reads from constitute background noise, methods are presented for background
correction, sequence read mapping, peak calling, false discovery rate estimation, and co-localization anal-
yses. To discover short binding site motifs from extensive immunoprecipitation segments, we recommend
algorithms and software based on expectation maximization and Gibbs sampling. Data integration using
several databases further improves performance. Binding sites can be visualized in genomic and chromatin
context using genome browsers. Binding site information, integrated with co-expression in large com-
pendia of gene expression experiments, allows us to reveal complex transcriptional regulatory networks.

Key words: Transcription factor, transcription factor binding site, computational prediction, back-
ground correction, peak calling, chromatin immunoprecipitation, next-generation sequencing,
ChIP-seq, protein-binding microarrays, transcriptional regulation, data integration.

1. Introduction

Transcriptional regulation affects the fundamental biological pro-
cesses. By regulating cellular mRNA levels, it influences trans-
lation and the level of proteins. The sophistication of higher

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
DOI 10.1007/978-1-60761-854-6_1, © Springer Science+Business Media, LLC 2010
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eukaryotes resides primarily in the architecture and function-
ing of the regulatory networks, not in the number of pro-
teins. In Caenorhabditis elegans, a relatively simple eukaryote, an
adult hermaphrodite has 959 somatic cells and about 20,000
protein coding genes. Trillions of cells in a human individual
carry only about twice the number of C. elegans genes. We are
only beginning to understand the complex transcription regula-
tory networks and other mechanisms. It is vital to improve this
understanding for curing regulatory malfunctions like cancer and
autoimmune diseases. Although most of the regulators includ-
ing transcription factors and microRNAs are known in human,
the vast majority of their binding sites remain unexplored. The
enormous variability of regulatory sites poses the most difficult
challenge. For example, in the 12 half sites of the λ operators, as
few as 2 of the 8 positions are conserved and most of the others
are highly variable (1). The computational representation of such
variable sequence sets – motifs – affects the performance of motif
finder tools. Variability may also indicate differential DNA–TF
affinity. Sites with higher affinity are expected to produce more
transcripts than low-affinity regulatory sites (2). Fortunately, the
prediction of promoter regions has matured (see Chapter 5).

Long and well-characterized motifs like those of p53 (3, 4)
or PPARG (5, 6) are relatively easy to predict if some false neg-
atives can be accepted. For shorter motifs, the naïve application
of the over 200 published tools often provides somewhat incon-
sistent results [see Chapter 8 and ref. (7)]. Such moderate per-
formance mandates genome-wide experimental identification of
binding sites samples. These samples have to represent motif vari-
ation to allow the training of prediction tools, which may find
the rest of the sites including those unbound under the specific
conditions of the experiment.

Obtaining representative samples is becoming increasingly
affordable thanks to stellar progress at the intersection of biol-
ogy, computational analyses/predictions, and experimental tech-
nology. This volume focuses on mapping the binding sites of
transcription factors (TFs) to regulatory regions on the genome.
TFs are regulatory proteins that bind to promoter, enhancer, and
other DNA regions in a sequence-specific manner (Chapters 2,
3, and 4). TF binding affects the recruitment and dynamism of
RNA polymerases and hence the transcription of genes. Most
TFs provide control in one direction only: they either upregulate
or downregulate the expression of a target gene, but not both.
Certain other TFs, however, activate at low levels, but at high
concentration, they repress the transcription of the same gene.
C-proteins, for example, at low cellular concentration attach only
to high-affinity sites and activate the target gene (Chapter 17). At
high levels, C-proteins bind to the low-affinity sites as well, now
inhibiting transcription. Such complex mechanisms are abundant
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in higher eukaryotes where most genes are regulated by multiple
TFs. MicroRNAs (8), DNA methylation (9), and histone modifi-
cations (10, 11) also play major roles in transcriptional regulation.

A key message of this volume is that purist approaches,
either “pure experiments” loosely associated with service-like
computations or “pure algorithms” with marginal understand-
ing of the biology and the technology, are equally elusive. Con-
sider the most successful high-throughput experimental tech-
nique for the discovery of transcription factor binding sites
(TFBS): chromatin immunoprecipitation (ChIP) combined with
next-generation sequencing (ChIP-seq). Here tens of millions of
sequencing reads are mapped onto the genome. Researchers have
to correct for background noise and normalize between repli-
cates. The background-corrected and normalized density distri-
butions of reads allow calling peaks, significantly enriched regions
that span over TF binding sites (TFBS, Chapters 9, 10, and 11).
These 35–200 base pair wide peaks (see Chapters 9, 10, and 11)
far exceed the 4–25 base pair footprints of TFs on the DNA (12,
13). Therefore locating the actual binding sites from (tens of)
thousands of overly wide peaks requires computational discovery
of shared binding site motifs.

2. Methods

2.1. Experimental
Information

Computational binding site predictions or analyses invariably
stem from some experimental information. Such observa-
tions include genomic, mRNA, and protein sequences, three-
dimensional structures of DNA-bound TFs (Chapter 4),
chromatin immunoprecipitation, Systematic Evolution of Lig-
ands by EXponential enrichment [SELEX, Chapter 12 and
refs. (14–16)], protein-binding microarrays (17), co-expression
of genes as calculated from compendia of gene expression exper-
iments (Chapters 23 and 24), and DNAse I hypersensitive
regions that indicate nucleosome-depleted, regulatory regions
(18, 19).

Most information comes from high-throughput experiments
at the cost of low resolution, significant background noise, and
considerable systematic bias. Such undesirable features can be
reduced by computational tools that take into account criti-
cal technological characteristics and biological issues. Abundant
false positives and negatives can be reduced by motif analyses
(Chapter 6, 7, 8, 11, and 13), and integrating with Evolution
of Ligands by EXponential enrichment (SELEX, Chapter 12),
protein-binding microarrays, and co-expression results (Chapters
23 and 24). We also seek for a reasonable balance between false
positives (overly permissive analyses) and false negatives (overly
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conservative settings). At the final steps, computational analyses
converge to motif discovery and network reconstruction.

2.1.1. Perturbation
Experiments:
Mutagenesis and RNA
Interference

Experimental mutagenesis of binding sites at regulatory regions
and/or knocking out the TF genes provide for the most reliable
TFBS localization (20) at the price of extremely low throughput.
Knocking down TF genes by RNA interference (21) is a more
economical solution but incomplete silencing could impair the
results. Knockdown/knockout effects are evaluated by measuring
the expression of target genes using PCR experiments.

2.1.2. Chromatin
Immunoprecipitation
(ChIP)

Chromatin Immunoprecipitation (ChIP) is the most power-
ful experimental technique for the in vivo mapping of DNA-
associated proteins [Chapters 9, 10, 11 and refs. (11, 22, 23)].
Essentially, proteins are cross-linked to their native genomic loci
in vivo. Then cells are lysed and DNA is fragmented by sonication
or shearing. Antibody-bound chromatin is immunoprecipitated
and the extra DNA may be digested by micrococcal nuclease.
Having reversed the cross-links, proteins are digested. DNA
segments are either hybridized to promoter or tiling microar-
rays [ChIP-chip, (24)] or sequenced by ultra-high-throughput
sequencing [ChIP-seq, (11)].

2.1.2.1. ChIP-chip Immunoprecipitated, protein-free and size-selected DNA can be
hybridized to genome-wide tiling or promoter microarray chips
[ChIP-chip, (24)]. These microarrays differ from gene expression
chips in that they span the whole genome or its selected parts
like promoter regions or the ENCyclopedia of DNA Element
(ENCODE) regions (25). ChIP-chip allowed the genome-wide
mapping of TFBS in simple eukaryotes such as yeast (26, 27).
In higher eukaryotes, the accuracy of ChIP-chip is compromised
by intensive cross-hybridization between sample DNA and par-
tially matching probes on the microarray chips. When millions
of probes are crowded on a few chips, resolution (the spacing
of probes on the genome) is sacrificed (28). Mapping chromatin
around repetitive DNA elements that accounts for almost half of
the mammalian genomes (29) would require longer probes and
highly expensive microarrays. For less researched genomes, chip
design and manufacturing may be economically unattractive.

2.1.2.2. ChIP and
Next-Generation
Sequencing: ChIP-seq

The above issues motivated researchers to sequence chromatin-
immunoprecipitated DNA using next-generation sequencing
(ChIP-seq, Chapters 9, 10, and 11). ChIP-seq scales up well
even to the most complex genomes. Since there is no need
for species-specific microarrays, any genome can be sequenced.
Cross-hybridization, the most burning issue with microarrays,
is unknown in sequencing. ChIP-seq has a much finer resolu-
tion (25–200 bp) than ChIP-chip in large genomes (∼200 bp).
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The high resolution so much needed for distinguishing signal
from background can be achieved at reasonable costs by using
more fluid cells, each of them producing tens of millions of
sequencing reads. The Illumina (formerly Solexa) Genome Ana-
lyzer platform (30) generates the highest coverage of 28–100
bases per sequencing read, while the Roche/454 instrument pro-
duces 250–400 base long reads at the price of much lower cov-
erage (31). The Life Technologies (formerly Applied Biosystems,
http://solid.appliedbiosystems.com) SOLiD platform is a com-
promise between the other two machines. Due to the short, 4–30
base pair footprint of TFs on the DNA (12, 13), long reads have
no major advantages and most researchers opt for high coverage.

2.1.2.2.1. Base Calling
in ChIP-seq

Vendors of sequencing platforms supply software packages that
perform deterministic base calling. More real, probabilistic base
calling can be achieved by Rolexa (32) or Alta-Cyclic (33), which
are expected to increase the number of mappable sequencing
reads as compared to the deterministic tools.

2.1.2.2.2. Mapping
Sequencing Reads
to the Genome

Mapping tens of millions of sequencing reads to a reference
genome would take prohibitive time using traditional meth-
ods such as BLAST (34) or BLAT (35). Instead, the reference
genome is represented as a suffix tree, and using the Burrows–
Wheeler transformation, Bowtie (36) and related methods can
map millions of reads in a few hours on a LINUX/UNIX com-
puter (Chapters 9 and 10). A considerable proportion of the
sequencing reads cannot be mapped unambiguously due to repet-
itive DNA sequences that make up ∼46% of the human genome.
Sequencing errors, to some extent, can be corrected by using read
quality information. For a recent review of read mapping, confer
Trapnell et al. (37).

2.1.2.2.3. Amplification
and Sequencing Bias
and Background
Correction

ChIP produces very low amounts of DNA. Emerging technolo-
gies like the Helicos platform can sequence single molecules (38),
but samples need to be amplified for the Illumina, ABI/Life
Technologies’ SOLiD and Roche instruments. Significant ampli-
fication bias has been observed (39). The considerable extent
of amplification and sequencing bias is best studied in simple
systems free from the complications of ChIP. Whole-genome
sequencing is one such system where nonrepetitive DNA seg-
ments are expected to have equimolar concentrations in the
sample. Significant departures from the uniform distribution in
whole-genome sequencing reads over nonrepetitive DNA indi-
cate bias in amplification, sequencing, and the accessibility of
DNA. GC-rich regions tend to produce more sequencing tags
than AT-rich segments (39–41). In whole-genome sequencing,
nucleosome-depleted hence highly accessible gene boundaries
produce significantly more sequencing tags than other genomic
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regions (41). Transcriptional activity increased the number of
sequencing reads obtained: at the transcription start sites of highly
expressed genes about four times more tags were obtained than
at those of less expressed genes (41). This may be partly due
to nucleosome depletion around the promoters of transcription
(42), which makes the DNA more accessible for sequencing than
nucleosome-rich regions. It is important to note that the highest
ChIP-seq (or ChIP-chip) peaks frequently come not from bona
fide TFBS but from the most accessible regions that also have
positive amplification and sequencing bias (43).

2.1.2.2.4. Background
Correction

According to Pepke et al. (43), ∼60–90% of the sequencing reads
come from background: most of the ChIP-DNA segments come
from interactions other than the TF of interest. ChIP is lim-
ited by the specificity of the antibody used, a particularly seri-
ous issue with superclass/multigene family TFs. Four superclasses
were proposed for TFs: leucine zippers (44), basic helix-loop-
helix TFs (45), zinc fingers (46), and beta-scaffold factors with
minor groove contacts (12). For a classification of regulatory pro-
teins, see (12). Due to the moderate correlation of epitope and the
actual DNA-binding residues, designing highly specific antibod-
ies to multifamily TFs remains a major challenge (47). Also, anti-
bodies may bind to other DNA-associated proteins including his-
tones, chromatin remodeling enzymes, and chromatin scaffolding
proteins. Antibody binding to untargeted proteins raises the issue
of estimating background noise and false discovery rate (FDR)
(Chapters 9 and 10 and ref. (48)). Background noise estima-
tions can be assisted by three major experimental approaches. In
the first approach, chromatin is ligated with IgG or other non-
specific antibody (11). In this type of control experiments, we
measure the nonspecific binding of a general antibody to any part
of the chromatin. Unfortunately, this approach cannot character-
ize the reaction of the selected TF-specific antibody with other
members of the TF family. The second technique reverses the
cross-links in vitro, which allows chromatin delocalization over
the genome. The third type of control omits IP altogether and
therefore assesses only the availability of genomic segments, their
amplification, and sequencing biases. Note that each of these con-
trols underestimates antibody binding to similar TFs. The similar-
ity of epitope structures within large families may cause a drop in
selectivity resulting in many false positives.

When no control experiment is available, statisticians develop
models of background noise using theoretical distributions.
Model-based analysis of ChIP-Seq (MACS) (49) estimates back-
ground using the Poisson distribution. The negative binomial dis-
tribution generates even better estimates (Chapter 9). Recently,
most peak calling programs involve some kind of background
correction.
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2.1.2.2.5. Peak Calling ChIP-seq reads are enriched near the binding sites of the targeted
TF as compared to genomic loci unbound by the TF of inter-
est (Chapter 10, Fig. 10.4). When each strand of the ChIP-
DNA fragments is sequenced from the 5′ end, the probability of
polymerase detachment increases by progressing toward the 3′.
Therefore the 5′ termini of both the Watson and the Crick strands
are covered by more reads than their centers or 3′ ends. Two
enrichment areas emerge, one upstream and another one down-
stream of the actual binding site. Typically, neither the highest
point nor the center of the enrichment indicates exactly the bind-
ing site. Enrichment areas are somewhat irregular in shape and
extend considerably wider than the actual binding site. Recogniz-
ing, merging, and calling the location of twin peaks is still a chal-
lenging problem as indicated by the dozens of diverse peak calling
methods published. In Chapter 9, Hongkai Ji discusses model-
ing the background noise, peak calling, and as implemented in
his CisGenome (22) tool. Chapter 10 demonstrates kernel den-
sity estimates for peak calling and false discovery rate calculations
as incorporated into the Quantitative Enrichment of Sequencing
Tags software [QuEST, (50)]. For a detailed comparison of Find-
Peaks (51), SISSRs (52), USEq (53), PeakSeq (54), and dozens
of other peak calling methods, we recommend Pepke et al.’s (43)
comprehensive review.

2.1.2.2.6. False
Discovery Rate (FDR)

Noise often exceeds signal coming from bona fide binding
sites. Therefore calling peaks above any reasonable threshold
unavoidably will include false positive results. Therefore credi-
bility requires managing false positive calls and reporting their
frequency. In order to balance between false positives and false
negatives, users select an FDR threshold, input to several peak
calling tools including CisGenome [Chapter 9, (22)], QuEST
[Chapter 10, (50)], SiSSRs (52), FindPeaks (51), USEq (53),
PeakSeq (54), and many others. These tools calculate the low-
est value of the ranking statistics (e.g., density or signal-to-noise
ratio) still not exceeding the selected FDR threshold. Not know-
ing all positive binding sites, FDR has to be estimated by either
from the control experiments or from negative binomial or Pois-
son models of background noise distribution (Chapter 9, sec-
tion “Background Correction”). Certain tools like QuEST (50)
explicitly demand a control library but CisGenome [Chapter 9
and ref. (22)], FindPeaks (51), and MACS (49) work with or
without control experiments. FindPeaks (51) performs Monte
Carlo simulations. Most recent tools improve peak calling by
estimating the shift between the peaks on opposing strands (see
Chapter 10 and ref. (50)).

Having performed these analyses, researchers may find that
immunoprecipitation is not selective enough or the first run of
sequencing does not provide sufficient contrast between signal
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and background. Then a new antibody may be added and/or fur-
ther sequencing is performed. It is prudent to have a contingency
of resources for such experiments and analyses even at the cost of
studying fewer regulatory proteins.

Since the called peaks are considerably wider than the actual
TFBS, binding site motifs are further analyzed by pattern recog-
nition methods (Section 2.2).

2.1.3. Measuring In Vitro
Affinities of TFs to DNA

Transcriptional regulation is a temporal phenomenon, a condi-
tional, short-term response to changing environmental and cel-
lular conditions. Ideally, activator TFs bind only when the target
gene needs to be upregulated and inhibitor TFs bind when the
gene product is not needed at a given point of time. ChIP and
subsequent motif discovery may also miss previously uncharacter-
ized binding sites/motifs due to partial occupancy or low resolu-
tion. In 2009, Zhu et al. (55) estimated that almost half of the
in vivo TFBS in yeast remained unknown. This is plausible since
performing ChIP experiments for all possible conditions to find
all biological sites in bound state remains an elusive proposition.
Therefore, it is necessary to complement in vivo assays by in vitro
assessments of the TF’s affinity to double-stranded DNA k-mers.
In vitro proteins, if in native conformation, bind to DNA probes
by and large regardless of the conditions. It is also feasible to map
the affinities of all k-mers for k < 10 for about 100 regulatory
proteins. This can be achieved by Systematic Evolution of Lig-
ands by EXponential enrichment (SELEX) and protein-binding
microarrays as discussed below.

2.1.3.1. Systematic
Evolution of Ligands by
EXponential Enrichment
(SELEX)

Rapid selection of nucleic acids (single- or double-stranded
RNA or DNA) which have high affinity to a molecular tar-
get like a TF can be achieved by Systematic Evolution of Lig-
ands by EXponential enrichment [SELEX, Chapter 12 and refs.
(56, 57)]. SELEX has been highly productive in the discovery
of nucleic acid bound small molecule drug candidates (58) and
55 Escherichia coli TFs (14) among many other applications. The
experiments are performed in multiple rounds. From an initial
library of 1015–1016 sequences, ligand-bound DNA is separated
from free DNA and amplified. In the subsequent rounds, the
library pre-selected in the previous round is reacted with the lig-
and again, separated, and amplified. The average ligand bind-
ing affinity of the selected DNA sequences increases exponen-
tially with the number of rounds (16). While nonspecific binding
occurs at every round, at the final round, the large majority of
DNA sequences will be high-affinity binders. These DNA seg-
ments are sequenced recently using next-generation technology
(Section 2.1.2.2). Over-selection, however, should be avoided
since TFs in vivo bind to biologically important medium- or low-
affinity loci as well. Besides the biological significance, de novo
computational motif discovery critically depends on these sites as
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well. Since a typical SELEX starting library can exceed the size of
the genome, many of the selected binder sequences may be absent
from the genome. SELEX-derived affinities, consensus sequences,
and PWMs are available in the SELEX_DB (59) and TRANSFAC
(12, 13) databases. Larger data sets obtained by next-generation
sequencing can be retrieved from the HTPSELEX database (60).

2.1.3.2. Protein-Binding
Microarrays (PBMs)

Martha Bulyk and colleagues at Harvard characterize in vitro
DNA affinities using protein-binding microarrays (PBMs).
Among others, 30 previously uncharted and 59 other yeast TFs
were characterized (55). PBMs are custom-designed microar-
rays with double-stranded DNA probes that include all possi-
ble ungapped and many gapped k-mers (61). A typical analysis
applies 8-mers as follows (62). The selected TF is cloned in fusion
with glutathione S-transferase and hybridized with the DNA on
the microarray. DNA–TF–GST complexes are detected using
fluorophore-conjugated anti-GST antibodies (63). Microarrays
are scanned, mapped, background-corrected, and normalized.
Then the TF’s in vitro affinity to each k-mer is reported as a
normalized enrichment score. A major criticism of PBMs is that
in vitro affinities may differ from in vivo binding dependent
on the current state of the chromatin environment. Also, posi-
tion relative to regulatory regions matters, since in far intergenic
regions, many DNA-bound complexes have no detectable effects
on transcription as indicated by ENCODE observations (25).
PBMs may miss bona fide sites when the association requires post-
translational modifications or cofactors. Also, the cloned protein
may fold into non-native conformations (55).

Computers work efficiently with thousands of k-mer affinities
but humans cannot comprehend such massive data sets. There-
fore the CRACR algorithm (64) converts affinities into more
perceivable positional weight matrices (PWMs) to be discussed
in Section 2.2.2.1. PBM results are generally compatible with
ChIP-derived PWMs (55). In vitro observations were also
confirmed (55) by regulatory patterns derived from knockout
experiments (65) and condition-specific expression results from
a compendium of gene expression experiments with 1,693
conditions (66).

2.2. Computational
Analyses and
Predictions

2.2.1. Ab Initio
Predictions of TFBS
from 3D Structures

Ideally, a 3D structure of a TF–DNA complex (Chapter 4) could
allow us to predict binding sites. Such structures can be obtained
from X-ray/NMR determination or homology modeling. In
theory, molecular dynamics simulation and thermodynamic inte-
gration could facilitate the predictions of protein–DNA affinity
for diverse nucleic acid sequences. Successful simulations and
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predictions were reported for the yeast MAT-2 homeodomain
and GCN4 bZIP proteins (67, 68), but the widespread appli-
cability of the methods still needs to be demonstrated.

2.2.2. De Novo Motif
Discovery,
Representation,
and Validation

Binding sites of regulators evolved into often amazingly diverse
sequences that pose major challenges for computational biology.
Ten to fifteen years ago, binding sites were identified as over-
represented motifs in promoters of co-regulated genes in a sin-
gle organism. Some motifs were easier to discover like palin-
dromes where a sequence is identical with its reverse complement
(CACGTG). Spaced dyads are associated with dimeric TFs. Co-
regulated genes were identified from compendia of gene expres-
sion experiments [see Chapters 23 and 24 and ref. (69)], ChIP,
SELEX, PBM, and other experimental techniques. These meth-
ods find DNA segments that typically span much wider than the
actual binding sites. ChIP-seq currently has a resolution of 50–
200 bp (Chapters 9 and 10), and ChIP-chip has even more
coarse resolution. ChIP-PCR experiments produce minimal flank-
ing regions with scarce if any false positives. However, even
decades of work generate relatively few sequences that poorly rep-
resent TFBS diversity. At the other extreme, gene co-expression
analyses (Chapters 23 and 24) produce long lists of genes but
binding sites need to be found in the promoter regions, possibly
spanning over 1000 bp.

The task is to obtain a statistically representative sample of the
variation including low-affinity but biologically important bind-
ing sites. Input to motif discovery is a set of overly long DNA
sequences which contain the binding site for the TF in ques-
tion. It is important to reduce flanking regions and false positive
sequences as much as possible.

2.2.2.1. Computational
and Visual Motif
Representations

Motifs are concise representations of a set of TFBS. The simplest
representation is the consensus sequence, where variable posi-
tions are shown in the IUPAC ambiguity code for nucleotides,
for example, purines (A and G) are displayed as R, weak binders
(A and T) by W, and N stands for any nucleotide. Consensus
sequences, being only qualitative representations, cannot express
important quantitative nucleotide preferences at a position.

The power of the computational representation is a key to
the performance of motif discovery tools. First, we calculate
positional frequency matrices (PFMs), which indicate the P(b,i)
probability of (di)nucleotide b at position i of the motif align-
ment. The background probability of nucleotide b is denoted by
P(b,0). In order to score a DNA segment for the motif, posi-
tional weight matrices (PWMs) are computed as follows. First,
the (di)nucleotides b are counted at each position i. To avoid tak-
ing the logarithm of 0, some constant (typically 1) is added to
each count. These values are divided by the number of sequences
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plus four times the constant. The base 2 logarithms of these ratios
form the PWM (70).

2.2.2.2. k-mer (Word)
Searches

The first group of motif discovery tools searches for k-mers
(words) with c or fewer mismatches overrepresented as compared
to the background. These alignment-free, deterministic searches
are typically implemented as suffix tree algorithms. Suffix trees
have been proven efficient for finding short k-mers with few mis-
matches in Weeder (71), the most sensitive and selective tool
in Tompa et al.’s performance evaluations (7), and in the mis-
match tree algorithm (MITRA) (72). Overlapping k-mers can be
merged by graph theoretical methods in the WINNOWER (73)
and cWINNOWER (74) tools. van Helden and colleagues (75)
extended k-mer searches to include spaced dyads in a method
accurate in yeast but less effective in higher eukaryotes. In gen-
eral, k-mer search methods have the advantage of being rigorous
and exhaustive but are less effective for long words and several
mismatches than the probabilistic algorithms discussed below.

2.2.2.3. Probabilistic
Motif Finding Algorithms

The second group of methods is typically based on either expec-
tation maximization (76) or Gibbs search (77) as reviewed in
Chapter 6.

2.2.2.3.1. Expectation
Maximization

Expectation maximization (EM) (78) is a general statistical pro-
cedure that allows maximum likelihood estimates of parameters in
probabilistic models depending on latent variables. Importantly,
EM can make estimates even from incomplete data sets. For motif
discovery, EM stems from progressive multiple alignments where
the information content is being maximized. EM works with posi-
tional frequency matrices (PFMs), where P(b,i) is the probability
of (di)nucleotide b at position i. First, EM makes an initial guess
for each P(b,i) and also calculates the P(b,0) background prob-
abilities of nucleotides. In several iterations, the underlying mul-
tiple alignment and the P(b,i) probabilities are refined so as to
maximize the information in P(b,i) relative to the background
P(b,0) (Chapter 6). Initial alignment is not necessary but the
basic assumption is that each of the training sequences contains at
least one occurrence of the motif.

Note that since the initial choice of the PFM determines the
final outcome, it is prudent to improve this choice by restricting
the length of input sequences to promoter regions and by assign-
ing higher weights to alignments closer to the transcription start
sites. When the strand bias of a TF is known, the search space may
be limited to the preferred strand. Such choices are implemented
in the motif elicitation by maximizing expectation (MEME) tool
(76, 79–82). MEME can be instructed to remove the assump-
tion that each input sequences contains the motif. Also, multiple
occurrences of the same motifs within an input sequence can be
handled. MEME also reports several different motifs.
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2.2.2.3.2. Gibbs
Sampling

To relieve from the bias of the initial PFM choice in EM,
Charles Lawrence and colleagues (77) introduced random Gibbs
sampling techniques. Starting from identical data with identical
parameters, Gibbs sampling, unlike EM, typically ends up with
different solutions, and the magnitude of these differences indi-
cates the robustness of these solutions.

Gibbs sampling makes the assumption that each input
sequence contains at least one occurrence of the motif and pro-
ceeds as follows. An input sequence is selected randomly and left
out from the sample. From the remaining sequences, a random
site is chosen and a PFM is calculated possibly by adding pseu-
docounts to avoid zero values. From this PFM and the back-
ground distributions, a positional weight matrix (PWM) is cal-
culated (Section 2.2.2.1 and Chapter 6). Each occurrence of
the motif in the omitted sequence is scored using the PWM.
Weighted by these scores, one of these sites is selected. Then some
other sequence is left out, and a new PFM and the corresponding
PWM are calculated. Iterations are performed until the score does
not improve any more.

Note that Gibbs sampling cannot guarantee the global opti-
mality of the solution. Therefore one has to perform several
rounds of Gibbs sampling and analyze the convergence of solu-
tions if any. Gibbs sampling was implemented, among others, in
the BioProspector (83) and AlignACE (84) tools.

2.2.2.3.3. The Potential
and the Limitations
of EM and Gibbs
Sampling

Both EM and Gibbs sampling have been proven useful for the
de novo discovery of DNA motifs such as candidates for TFBS.
It is important to note, however, that there is no guarantee that
these methods find the motif because these methods depend
on the presence of the motif in (almost) all input sequences, an
overly strong constraint in noisy ChIP experiments for example
(see Chapter 11). The lack of statistical significance in highly
variable or short motifs may also lead to failure. PWMs are
basically additive linear models of binding sites, while the free
energy change during TF–DNA association maybe nonlinear
(Chapter 11).

EM, Gibbs sampling, and other basic algorithms have been
sophisticated in over 200 tools that apply a broad spectrum of
models. For a comprehensive assessment of DNA motif finding
algorithms, we recommend Das and Dai’s review (85).

Until now, the installation and application of these tools
had been a major burden for the users. In order to combine
diverse statistical models and learning principles in a user-friendly,
modular way, Ivo Grosse and colleagues (Chapter 7) developed
Jstacs, an object-oriented Java framework for motif discovery.
Importantly, the rapid and easy generation of diverse predictions
allows the identification of those motifs that are reproduced by
diverse models and learning principles and therefore more likely
to represent biologically relevant TFBSs.
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2.2.2.4. Performance
Estimates of the De
Novo Motif Finding
Algorithms

Over 200 tools have been published for the computational
identification of DNA motifs including those of TFBS (see
Chapter 8 and http://biobase.ist.unomaha.edu/mediawiki/
index.php/Main_Page). These methods perform the challeng-
ing statistical inference (generalization) from limited and noisy
samples to a priori unknown sites. Evaluating their performance
would require genomes where all binding sites were known but
even in yeast, about half of the TFBS, particularly the weak bind-
ing sites, remains unknown (55). Such incomplete benchmark
data sets unavoidably bias the evaluations of sensitivity and selec-
tivity. While the numerical performance values remain low, some
important lessons can be learnt. Quest and Ali (Chapter 8 and
ref. (86) introduced the motif tool assessment platform (MTAP)
to assess the performance of over 20 motif discovery tools. Some
tools excelled in a few motifs but over a diverse set of TFs and
their binding sites, there was no single tool standing out in gen-
eral performance. The balance between sensitivity and selectiv-
ity was compromised when using default parameter settings. This
may indicate that certain binding sites may require specific learn-
ing principles, methods, and parameter settings that are not easily
transferable to other motifs.

In a different study, Hu, Li, and Kihara (87) introduced an
ensemble algorithm by combining prediction results from multi-
ple runs of three heuristic motif discovery tools. This ensemble
algorithm outperformed the popular MEME tool (82) by over
50% on the E. coli RegulonDB data set (88). Although predic-
tion performance results obtained in bacterial or yeast genomes
are difficult to scale up for much larger mammalian genomes, this
finding supports the expert recommendation to analyze the same
data set by using multiple tools and diverse parameter settings.
It is also advisable to pursue not only the best hit but also the
few top motifs (7). Most importantly, the highest Mathews cor-
relation coefficient of 0.37 (Chapter 8) indicates low-to-medium
prediction accuracy and calls for utilizing several additional lines
of evidence as discussed below.

2.3. Supporting
Evidence for TFBS
Predictions

The most important evidence is the potential evolutionary con-
servation of regulatory sites in closely related genomes (Sec-
tion 2.3.1). Binding sites also tend to cluster into cis-regulatory
modules (Section 2.3.2). Further support comes from spatial
correlation of transposable DNA elements and regulatory sites
(Section 2.3.3).

2.3.1. Phylogenetic
Footprinting

Potential evolutionary conservation of binding sites in ortholo-
gous promoter regions of closely related organisms increases the
confidence in binding site predictions. This approach is termed
phylogenetic footprinting (89). In contrast to ChIP, PBMs, and
co-regulated genes, phylogenetic footprinting can work even on
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a single gene provided that sequences are available from multi-
ple related species. The performance of footprinting is greatly
improved by assigning weights to segment pairs in the function of
evolutionary distance. The power of phylogenetic footprinting is
remarkable in the case of TFBS discovery from ChIP-chip data in
yeast. The original analyses using six motif discovery tools were
limited to a single species, Saccharomyces cerevisiae (26). Later,
phylogenetic footprinting over several yeast genomes using Phy-
locon and Converge allowed to create an improved map of the
conserved regulatory sites (90). Binding sites for an additional 36
TFs, and in total, 636 novel regulatory interactions were iden-
tified. Phylogenetic footprinting is implemented in a number of
state-of-the-art tools including PhyME (91), PhyloGibbs (92),
and MITRA (72).

2.3.2. cis-Regulatory
Modules

In multicellular organisms, several TFs regulate a typical gene
and a TF may regulate a number of functionally related genes.
The binding sites of such co-regulated genes are frequently orga-
nized into clusters termed cis-regulatory modules (CRMs) (93).
These clusters are often conserved during evolution. The result-
ing spatial correlations among CRMs greatly increase the statisti-
cal power and confidence in TFBS discovery substantially as com-
pared to predictions of individual binding sites (94). To discover
new CRMs, researchers start with alignments of related genomes
(e.g., those of mammalian, Drosophila, or yeast species) using,
for example, the MULTIZ data sets (95). Either the alignments
or the individual sequences are scored against known PWMs
of TFBS, third-order Markov models are applied, and species-
specific scores are calculated. Score significance is evaluated by
the permutation test and subjected to multiple test corrections.
In Chapter 13, Sebastian Schultheiss presents KIRMES, a sup-
port vector machine-based package for the large-scale predictions
of CRMs. Gene sets that share CRMs may be compared with sets
of genes co-expressed in large compendia of transcriptional pro-
filing experiments like GNF Atlas II. Co-localization with DNase
I hypersensitivity regions (18) further increases the confidence in
the predicted CRMs.

2.3.3. Propagation of
TFBS with Transposable
Elements and Their
Spatial Correlations

Transposable elements (TEs) are DNA segments that can fre-
quently “transpose” from one genomic locus to another. TEs are
present in all domains of life and account as much as for ∼46%
of the human genome (29). TEs are not only able to promote
their own transcription but can provide alternative promoters to
genes [Chapter 14 and refs. (96, 97)]. Numerous TEs adapted to
propagate new TFBS in the host genome (98). Most notably, TEs
proliferated considerable parts of the c-myc (99) and p53 (100)
regulatory networks.



An Overview of the Computational Analyses and Discovery 15

Chapter 14 provides an example of propagation of CCCTC-
binding factor (CTCF) binding sites by TEs based on ChIP-seq
data. One can predict potential binding sites as follows. Map
sequencing reads to the genome by Bowtie (36). Then we res-
cue reads and perform the probabilistic assignments of multiple
mapping reads using MuMRescueLite (101). Peaks can be called,
among others, by the SISSRs package (52). Then the intersection
of TE and TFBS locations is calculated using the University of
California Santa Cruz Genome Browser tracks [see Section 2.5
and ref. (102)]. Intersections can be found by a simple Struc-
tured Query Language query in a relational database or in any
programming language, e.g., PERL.

2.4. Databases of TFS
and Their Binding
Sites

Computational analyses, systematic querying, and integration
with diverse genic, genomic, and epigenomic observations
require efficient (relational) databases. The scientific commu-
nity attempts to annotate and organize comprehensive infor-
mation about transcriptional regulation. The classic TRANS-
FAC (12, 13) and JASPAR (103) databases are focused on
PFMs, PWMs, sequence logos, motifs, and their genomic coor-
dinates. The latest release of JASPAR now also holds ChIP-
chip and ChIP-seq data. Databases like the Open REGula-
tory ANNOtation [OregAnno, Chapter 20 and ref. (104)]
and PAZAR (105) systematically attempt to collect and orga-
nize quality information for high-throughput experiments, liter-
ature citations, text mining, expression, evolutionary conserva-
tion, and cellular reporter gene assays. Chapters 2, 20, and 22
review regulatory databases with special emphasis on plant reg-
ulators (Chapters 2 and 20). cis-Lexicon and the Virtual Sea
Urchin database tool is introduced by Sorin Istrail and colleagues
in Chapter 22. SELEX_DB (59) stores high-quality System-
atic Evolution of Ligands by EXponential enrichment (SELEX,
Chapter 12) data and larger data sets obtained by next-
generation sequencing can be retrieved from the HTPSELEX
database (60).

2.5. Querying and
Visualization Using
Genome Browsers
and Their Databases

Genome browsers (GBs) visually display a rich context of reg-
ulatory regions, DNase hypersensitive areas, genic and genomic
landmarks, repetitive DNA, conserved regions, polymorphisms,
and numerous other features. TFBS locations or even the loca-
tions of all individual ChIP-seq reads can be visualized in GBs.
These displays facilitate the contextual analyses of TFBS with
repetitive DNA elements, binding sites of other TFs, nucleosomes
(106), or promoter, and other regulatory regions. GBs also help
us to compare peak characteristics at likely sites (e.g., promoters)
and unlikely regions (e.g., exons).

The most widely used GB was developed and is main-
tained at the University of California Santa Cruz (UCSC)
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(107) (http://genome.ucsc.edu). GBrowse (108) is a BioPERL-
based tool, the favorite choice of plant scientists. Hundreds
of genomes are displayed in the ENSEMBL Browser at the
European Bioinformatics Institute (109, 110) (http://www.
ensembl.org/info/about/species.html). CisGenome [Chapter 9
and ref. (22)] and Eagleview (111) help peak calling using cov-
erage by visualizing sequencing reads separately at each strands.
In Chapter 22, Sorin Istrail and colleagues demonstrate the cis-
GRN-Browser specifically designed for the annotation and inves-
tigation of gene regulatory networks (GRNs). GRNs cannot be
displayed in the usual one-dimensional browsers. Therefore the
above authors also introduced the Virtual Sea Urchin system, a
4D interactive tool that visualizes the genomic regulatory net-
work of the sea urchin embryo development in space and time.

All of the above GBs interface to underlying relational
databases. Users can freely download the database tables in order
to build their local MySQL or other database implementations
for comprehensive statistical analyses. Researchers can also upload
their own annotation tracks to the central UCSC server or a
local implementation of the Browser directly on the “Custom
Track” pages as described in Chapter 10. Using this opportunity,
QuEST (50) and several other peak calling tools prepare input
files for the UCSC Genome Browser (107).

2.6. Reconstruction
of Transcriptional
Regulatory Networks

Transcriptional regulation works in hierarchical, dynamic net-
works that change in response to environmental perturbations
or internal stimuli (93, 112). TF binding can be mathematically
represented as the edges of directed graphs connecting the ver-
tices, TFs, and regulatory regions of genes. Mapping binding
sites provides only qualitative information inadequate to predict
the expression level of a gene. More quantitative information is
provided by co-expression in large compendia of gene expression
experiments (69). From co-expression under diverse conditions,
we infer to sharing identical regulators. These agents may include
TFs, microRNAs (8), DNA methylation (9), and specific histone
modifications (10, 11). Lagged correlations in time series experi-
ments may indicate regulatory relationships (113).

Simple linear network inference like clustering based on cor-
relation coefficients is hindered by AND, OR, EXCLUSIVE
OR and other nonlinear regulatory relationships. Such nonlin-
ear dependencies can be captured using probabilistic methods
including B-splines, clustering hidden Markov models, and most
notably, dynamic Bayesian networks (Chapters 23 and 24).
Probabilistic methods are more tolerant to errors so prominent in
microarray experiments but require more sophisticated methods
than correlation-based techniques. Bayesian networks can reveal
causal relationships and allow the integration of heterogeneous
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data like ChIP-seq and protein–protein interactions. The first
part of a Bayesian networks is a directed acyclic graph represent-
ing conditional independent relationships among nodes (TFs and
genes). The second part is a set of parameters, which specify the
conditional distribution for each TF and gene.

To reconstruct regulatory networks, Luo and Woolf
(Chapter 23) propose three-way mutual information. 3MI mea-
sures the improvement in predictability when three variables are
analyzed jointly versus considering them separately. Enumerat-
ing mutual information for each possible gene triplets, first local
networks are built. These local structures are assembled into the
global regulatory network.

3. Conclusions

The computational discovery of cis-regulatory modules typically
produces acceptable results. For individual binding sites, motif
finding results have to be combined with evolutionary con-
servation information, transposable elements, and experimental
data. The latter includes ChIP-seq, protein-binding microarrays,
SELEX, co-expression analyses, knockout mutants and knock-
down by RNA interference, and protein–protein interactions.
Note that many of these techniques generate very noisy observa-
tions and peaks derived from ChIP-seq and ChIP-chip observa-
tion which span much wider than the actual binding sites. There-
fore, most experimental observations require filtering by compu-
tational motif discovery tools.

Although massive amounts of data are available in a wide
array of databases, about half of the TFBS remains unknown even
in such a primitive eukaryote as yeast. Major improvements are
expected from the integration of all reliable observations and pre-
dictions. Even smaller current data sets allowed us to reconstruct
sophisticated transcriptional regulatory networks in bacteria, and
subnetworks in higher organisms.
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Chapter 2

Components and Mechanisms of Regulation of Gene
Expression

Alper Yilmaz and Erich Grotewold

Abstract

The control of gene expression is a biological process essential to all organisms. This is accomplished
through the interaction of regulatory proteins with specific DNA motifs in the control regions of the
genes that they regulate. Upon binding to DNA, and through specific protein–protein interactions, these
regulatory proteins convey signals to the basal transcriptional machinery, containing the respective RNA
polymerases, resulting in particular rates of gene expression. In eukaryotes, in addition and comple-
mentary to the binding of regulatory proteins to DNA, chromatin structure plays a role in modulating
gene expression. Small RNAs are emerging as key components in this process. This chapter provides an
introduction to some of the basic players participating in these processes, the transcription factors and
co-regulators, the cis-regulatory elements that often function as transcription factor docking sites, and
the emerging role of small RNAs in the regulation of gene expression.

Key words: Promoter, DNA-binding, operon, cis-regulatory element, microRNA, small interfering
RNA.

1. Introduction

Cells can be considered as membrane-enclosed environments in
which many different proteins undertake one or several specific
functions. Thus, the proper development and the functional inte-
gration of cells within an organism depend on controlling the
accumulation of these proteins within some defined concentra-
tion restrictions, which are space and time dependent. Consistent
with the central dogma of biology, which states that the genetic
information flow is, in general terms, from DNA to RNA and
then to the proteins, the instructions on how much and when a
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protein needs to be made are encoded in the DNA. The process
of transcription transfers the code responsible for making pro-
teins, the cell workhorses, from the DNA to RNA and translation
converts a messenger RNA (mRNA) sequence into a sequence of
amino acids in a protein. Thus, protein levels can be controlled
at multiple stages, including transcription, translation as well as
mRNA and protein transport and stability. This chapter will pri-
marily focus on the control mechanisms associated with transcrip-
tion and responsible for how much mRNA is being made for each
of the thousands (or tens of thousands) protein-encoding genes
in a cell.

2. Description

2.1. Mechanisms
of Transcription

In simple terms, the process of transcription involves the unwind-
ing double stranded DNA and the chemical synthesis of RNA,
using one of the two genomic DNA strands as the template for
the RNA sequence. This is achieved by DNA-dependent RNA
polymerases (RNAP). In prokaryotes, there is a single type of
RNAP, which is responsible for the generation of various types of
RNA, such as messenger RNA (mRNA), transfer RNA (tRNA),
and ribosomal RNA (rRNA). In eukaryotes, however, there are
multiple RNAPs, each specialized in the production of particular
types of RNA species. For example, RNAP I synthesizes rRNAs,
RNAP II synthesizes mRNAs, and RNAP III synthesizes tRNAs.
In addition, there are other RNAP with functions more restricted
to particular kingdoms. For example, in plants, RNAP IV syn-
thesizes small interfering RNA (siRNAs) (1, 2) and RNAP V
transcribes intergenic and non-coding sequences, participating in
the small interfering RNA(siRNA)-mediated transcriptional gene
silencing (TGS) (3, 4).

To ensure proper gene expression levels, the activity of
prokaryotic RNAP and eukaryotic RNAP II, in particular, are
subjected to tight control. One of the best-studied mechanisms
involved in regulating RNAP II activity is through the effect of
transcription factors (TFs), which specify when and where RNAP
II (and associated factors) is tethered to DNA, how RNAP II
initiates (and re-initiates once a round of mRNA formation has
been completed) transcription, and elongates nascent mRNAs.
We define here TFs as proteins that bind DNA in a sequence-
specific fashion to particular DNA sequences (cis-regulatory ele-
ments) located in the regulatory regions of the genes that they
control. This definition excludes the large number of proteins
that can affect gene expression without binding to specific DNA
sequences. As these proteins often function by modulating the
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action of specific DNA-binding TFs, there are few common char-
acteristics that permit their easy identification.

TFs are usually classified into families, based on the pres-
ence of specific structures in their DNA-binding or protein–
protein interaction domains. In vitro, TFs usually recognize DNA
sequences 6–8-bp long, length that is clearly insufficient for the
exquisite regulatory specificity that they display in vivo, suggest-
ing that large number of TFs form the active regulatory com-
plexes and providing the bases for the principle of combinatorial
gene regulation (5).

In prokaryotes, binding of RNAP to specific regions is
achieved by a particular protein factor, the sigma (σ) subunit.
This prokaryotic TF increases the affinity of RNAP to certain pro-
moter regions while decreasing its affinity to non-specific DNA.
The σ factor responsible for the regulation of most “housekeep-
ing” genes in Escherichia coli is σ70 and σA in Bacillus subtilis,
which are responsible for initiating transcription from most pro-
moters. Other σ factors are usually stress induced, to allow organ-
isms to become virulent or adapt to any number of environmen-
tal changes such as hyperosmolarity, heat shock, oxidative stress,
nutrient deprivation, and variations in pH (6, 7).

2.2. Organization
of Gene Regulatory
Sequences

2.2.1. Operons
and Other Gene Clusters

One strategy by which prokaryotic organisms control the expres-
sion of genes that participate in a common process is to group
the genes into operons, which are usually transcribed from a
unique promoter resulting in a single (poly-cistronic) mRNA that
is translated into multiple proteins, allowing the cell to streamline
the control of transcription. Here, we describe the lac operon as
an archetypical bacterial operon, as an example of how prokary-
otes negotiate the control of gene expression (Fig. 2.1).

The lac operon encodes for three enzymes (lacZ encoding
β-galactosidase, lacY encoding a lactose permease, and lacA
encoding a trans-acetylase) necessary for the uptake and
metabolism of lactose. Only when lactose but no glucose, a more
favorable carbon source, is present in the environment, the lac
operon is expressed. When grown in glucose, for example, regard-
less of whether lactose is present or not, the lacZYA genes are
not expressed, a consequence of a repressor protein (lac repres-
sor) recognizing the operator sequence of the operon regulatory
region, preventing the recruitment of RNAP to the DNA. When
lactose is present, this small molecule recognizes the lac repressor,
preventing it from binding the operator sequence.

In eukaryotes, operon-like structures have been described,
although they clearly differ from bacterial operons, since they
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Fig. 2.1. Single RNAP transcribes multiple genes in an inducible lac operon. The repressor protein can bind to the
operator region and hinder RNAP binding to the promoter region in the absence of lactose (lac). When lac is present, this
small molecule binds to the repressor and dissociates it from operator, allowing RNAP to transcribe the lacZYA genes.

do not appear to produce poly-cistronic RNAs. Most of these
gene clusters encode enzymes that participate in a common path-
way. Plants have the best described examples. These gene clusters
encode enzymes for multiple catalytic steps that synthesize com-
pounds defending the host against pathogens (8–11). So far, the
mechanisms involved in the coordinate regulation of these com-
plex gene clusters have not been established.

2.2.2. The Organization
of the Regulatory
Regions of RNAP
II-Transcribed Genes

The region of a gene, usually proximal to the transcription start
site (TSS), to which RNAP II and associated factors are initially
recruited, consists of the core or basal promoter. It assembles as a
complex formed by the basal transcription factors (BTF). The pre-
cise boundaries of the core promoter must be empirically deter-
mined for each gene, but as a rule of thumb, it is considered to
comprise ∼50 bp to each site of the TSS. Note that the conven-
tion is to number the first nucleotide represented in the mRNA
as +1, thus this interval can be represented as [−50; +50]. Core
promoters contain a number of cis-regulatory elements, which
include the TATA box and an Initiator (Inr) element (12–14).
However, there is no cis-regulatory element that is universally
present in all core promoters. Even the broadly distributed TATA
motif involved in the recruitment of the TATA-binding protein
(TBP), a central BTF involved in the assembly of the transcrip-
tional pre-initiation complex (PIC), is present in just ∼30% of
all eukaryotic promoters (5). BTFs receive signals from other
regulatory factors, the TFs, most likely mediated by mediator
proteins (15). Textbooks indicate that the regulatory regions of
genes are usually located upstream of the TSS. However, notable
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recent evidence in large part provided by the Encyclopedia of
DNA Elements (ENCODE) consortium suggest that regulatory
sequences can be found in 5′- and 3′-untranslated regions (5′-
and 3′-UTRs), introns, and even coding regions (16). Thus, it is
clear that the definition of what the typical regulatory region of a
gene includes needs to be broadened.

2.3. Transcription
Factors as Key
Regulators of
Transcription

TFs are responsible for providing signals necessary for the cor-
rect assembly of the PIC and are therefore primarily responsible
for controlling the time, amplitude, and duration of gene tran-
scription. About 5–7% of the genome of an eukaryotic organ-
ism encodes for TFs (17), which can be grouped into 50–60 dis-
tinct groups of families. Some families have dramatically expanded
while others might be absent altogether from particular organ-
isms or kingdoms. For example, the MYB family, named after the
avian myeloblastocys virus from where the first protein harboring
this domain was first identified (18, 19), is very large in plants
(>180 members in Arabidopsis), while animal genomes contain
just a handful of genes encoding proteins with this domain.

TFs can activate or repress transcription. If they function as
transcriptional activators, they often harbor a transcriptional acti-
vation domain (TAD), responsible for interacting with mediator
or other BTFs. The structure of TADs is significantly less con-
served than the folds that characterize DNA-binding domains,
and they are classified into various types (acidic, proline-rich,
glutamine-rich, etc.) (20). The structure of the acidic TAD of
the herpes simplex virus VP16 was determined and key residues
identified for function (21).

2.3.1. De Novo
Identification of TFs and
Target Sites

Important questions that the biologist often encounters include
(1) how to determine if a protein functions as TF or not and (2)
what are the direct targets (defined as the genes directly regu-
lated) of a TF.

2.3.1.1. De Novo
Identification of TFs

For the identification of TFs from genome sequence or Expressed
Sequence Tag (EST) information, specific signatures character-
istic of TFs can be followed. As described earlier, TFs can be
classified into families based on particular folds of the respec-
tive DNA-binding domains. These structures can often share lit-
tle sequence identity, resulting in the need to investigate relat-
edness by using profiles that capture weak similarities or even
information on neighbor amino acids. The PFAM database
(http://pfam.sanger.ac.uk/) is a large collection of protein fami-
lies, each represented by multiple sequence alignments and Hid-
den Markov Model (HMM) profiles (22). Within a protein family,
multiple alignments reveal similarity in particular regions due to
conserved amino acid sequences. These protein fragments corre-
spond to one or more functional regions termed domains. PFAM
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contains profiles of domains that carry DNA-binding protein–
protein interaction functions and this information is used to pre-
dict if an unknown protein corresponds to a TF with a previously
described DNA-binding domain or not.

2.3.1.2. Identification of
Gene Directly Regulated
by a TF

The second problem that the experimentalist often encounters is
how to identify the genes that a TF directly regulates. In studying
TF function, it is important to establish which DNA sequences
they can bind to. This can be accomplished through in vitro
protein–DNA interaction techniques that include electrophoretic
mobility shift assays (EMSA) in combination with footprinting
approaches or by the systematic evolution of ligands by exponen-
tial enrichment (SELEX). Using information derived from such
experiments to predict TF targets in silico, however, is not triv-
ial, as in vitro DNA-binding specificities established, for exam-
ple, by SELEX are often not correlated with the sequences that
a TF binds in vivo – a good example being provided by E2F fac-
tors (23). Thus, the alternative is to experimentally identify the in
vivo targets of a TF. The participation of a TF in a given reg-
ulatory process can be inferred from mutant analyses or from
gene expression profile clusters. However, determining the ulti-
mate function of a TF depends on identifying which genes it
can directly activate. Two main approaches are currently avail-
able to identify direct targets of TFs: (a) by expressing a fusion
of the TF to the hormone-binding domain of the glucocorticoid
receptor and identifying the mRNAs induced/repressed in the
presence of the GR ligand (dexamethasone, DEX), in the pres-
ence of an inhibitor of translation (e.g., cycloheximide, CHX), or
(b) by identifying the DNA sequences that a TF binds in vivo,
using chromatin immunoprecipitation (ChIP) assays, which can
be coupled with next generation sequencing methods (ChIP-Seq)
(24) or by using the immunoprecipitated DNA to hybridize a
tiling or promoter array representing all the genes in an organ-
ism (ChIP-chip) (25, 26). Information on TFs and their binding
sequences for a number of species is available at several databases
(Table 2.1).

2.4. Transcriptional
Networks

TFs function in networks, in which a regulatory protein con-
trols the expression of another, which in turn may modulate the
expression of other regulatory proteins or control genes encod-
ing structural proteins or enzymes. These hierarchical arrange-
ments allow specific signals to be amplified, providing the infor-
mation necessary for given sets of genes to be deployed with par-
ticular spatial and temporal patterns motifs (27). Gene regula-
tory networks (GRNs) are formed by motifs, and the dynamic
properties of these motifs significantly contribute to the overall
behavior of the network (28). MicroRNAs and other small RNAs
(briefly described in the next section) are also emerging as key
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Table 2.1
Online TF databases for various species. Online resources related to TFs are listed
and marked for information provided on TF sequence (TFs), TF binding sequences
(TF binding), promoter sequences, and TF binding locations in target gene promot-
ers (Promoters) and regulatory networks. Circuitry of regulatory networks combines
individual TF–target gene relationships into single comprehensive view. A list of
plant cis-element resources and detailed discussion is available in (33)

Name URL TFs TF binding Promoters
Regulatory
networks Reference

AGRIS arabidopsis.med.ohio-
state.edu

√ √ √ √
(34)

DBD www.transcription
factor.org

√
(35)

GRASSIUS grassius.org
√ √ √ a (17)

JASPAR jaspar.cgb.ki.se
√

(36)
PAZAR www.pazar.info

√ √ √
(37)

PLANTTFDB planttfdb.cbi.pku.
edu.cn

√
(38)

PLNTFDB plntfdb.bio.uni-
potsdam.de

√
(39)

TFCONES tfcones.fugu-
sg.org

√ √
(40)

TFdb genome.gsc.riken.
jp/TFdb

√
(41)

TRANSFACb www.gene-
regulation.com

√ √ √ √
(42)

aPlanned feature.
bSome features are available in commercial package.

components of GRNs [e.g., (29)], often participating in mixed
network motifs (27).

2.5. Small RNAs
and Gene Expression

One of the most significant discoveries of the past few years is
the realization that most of the DNA that lies between genes is
not really “junk,” but that it participates in the formation and is
the subject of regulation of a large number of non-coding RNAs,
often groups under the term small RNA (to distinguish them
from the longer mRNA, tRNA, or rRNA populations). Small
RNAs have indeed been called the “Guardians of the Genome”
(30), and one of their main functions appears to be to keep trans-
posons (pieces of DNA that can move around the genome) at
bay, preventing major genome damage. Small RNAs can be of
different types and usually have lengths 20–30 nucleotides long.
They appear to be broadly distributed in all eukaryotes, and even
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prokaryotes express small RNAs with unique regulatory activities
(31). One class of small RNAs, the microRNAs (miRNAs) partic-
ipate in the post-transcriptional regulation of mRNA translation
and stability. In contrast, small interfering RNAs (siRNAs) con-
trol gene expression by specifically targeting particular sequences
for silencing in the process of TGS that involves histone modifi-
cations and DNA methylation (32).
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Chapter 3

Regulatory Regions in DNA: Promoters, Enhancers,
Silencers, and Insulators

Jean-Jack M. Riethoven

Abstract

One of the mechanisms through which protein levels in the cell are controlled is through transcriptional
regulation. Certain regions, called cis-regulatory elements, on the DNA are footprints for the trans-
acting proteins involved in transcription, either for the positioning of the basic transcriptional machinery
or for the regulation – in simple terms turn on or turn off – thereof. The basic transcriptional machin-
ery is DNA-dependent RNA polymerase (RNAP) which synthesizes various types of RNA and core
promoters on the DNA are used to position the RNAP. Other nearby regions will regulate the tran-
scription: in prokaryotic organisms operators are involved; in eukaryotic organisms, proximal promoter
regions, enhancers, silencers, and insulators are present. This chapter will describe the various DNA
regions involved in transcription and transcriptional regulation.

Key words: cis-regulatory element, core promoter, silencer, enhancer, insulator.

1. Introduction

The complexity of transcriptional regulation greatly increases
from prokaryotic to simple, single-cell, eukaryotic organisms
and again increases in metazoan eukaryotes. It has been postu-
lated that the increase in complexity in transcriptional regula-
tion, together with alternative splicing, post-translational modi-
fication of proteins, and chromatin modification and reordering,
is a mechanism through which a relative small number of genes
are used to produce ever-increasing complexity both physiological
and behavioral (1).
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In prokaryotes, some co-regulated genes are organized into
operons on neighboring loci, to be transcribed together via a
single promoter region. Within the promoter region, two hex-
amers help position the RNA polymerase (RNAP) I adjacent to
the transcription start site (TSS) – they are located approximately
at 10 and 35 bases upstream of the TSS (+1) and are hence in
literature often referred to as the –10 and –35 sequences. Spe-
cific σ factors bound to the RNAP I increase the affinity for these
hexamers.

Operators, other DNA motifs within the promoter, acti-
vate or repress transcription through the binding of gene reg-
ulatory proteins. Repression functions by binding of proteins
to operators and thereby blocking the binding of RNAP I
to the DNA. An example of such a mechanism is the trp
operon in Escherichia coli. When tryptophan level is low in
the cell, RNAP I can bind and transcribe the trp operon,
but when tryptophan levels increase the activated trypto-
phan repressor protein occupies the operator, disabling further
transcription (2).

Depending on the position near or within the promoter, the
same regulatory protein may act as either a repressor or an acti-
vator, e.g., the bacteriophage lambda repressor (3). Operons can
also be regulated by multiple signals, where both an activator and
a repressor motif are present within or near the promoter. The
E. coli lac operon is under dual control (4): inhibition via the
lac repressor (within the promoter) and activation via the CAP-
binding site (just upstream of the promoter). Yeast regulates its
metabolism so as to utilize glucose as the primary carbon source
and metabolize lactose only in the absence of glucose. Only
during glucose depletion, cyclic AMP binds to CAP, and only
when at the same time lactose is present, the lac repressor is not
bound to the operator, together enabling transcription of the lac
operon.

The two-signal regulation as exemplified in the lac operon is
very simple; however, the same mechanism cannot be expanded
to include many different signals as there is just not enough room
in the promoter to accomplish this. In eukaryotes, several other
agents and mechanisms have evolved to allow a more complex and
combinatorial regulation of transcription. These include gene reg-
ulatory proteins that can influence transcription even when they
are bound to DNA far away from the gene locus, basal transcrip-
tion factors that are necessary for RNAP II binding, and the pack-
aging of DNA into chromatin.

This chapter will mainly deal with the first two mechanisms
and give an overview of the core promoter, enhancer, silencer, and
insulator regions and proximal promoter and upstream activator
elements (see Fig. 3.1).
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Fig. 3.1. Transcriptional regulatory units in eukaryotes. Schematic overview (a and b not drawn to scale) of the various
elements in the transcriptional units in simple eukaryotes (a, yeast) and higher eukaryotes (b, mammalian) and a detailed
overview (c) of the promoter region in mammals. Exons are shown as gray boxes with dashes lines. a, In yeast, a promoter
region is shown with a TATA box at –70 bp and upstream activating sequences (UASs) around 250 bp upstream from
the transcription start site (TSS). b, the mammalian transcriptional unit is more complex, with a large core promoter
overlapping the first exon and upstream promoter elements (UPE, or proximal promoter elements) further upstream. The
DNA loop shows that enhancers can be brought physically close to either the core promoter or the UPE. c, detailed
architecture of the core promoter. Various elements, many of them optional, are shown roughly to scale. Darker shaded
promoter elements are more frequent. Abbreviations: TATA box (TATA), initiator element (Inr), TFIIB recognition element
(BRE, upstream and downstream), motif ten element (MTE), downstream core element (DCE, subunits 1, 2, and 3), X core
promoter element 1 (XCPE1), and the downstream promoter element (DPE). Note that the core promoter can be focused
or dispersed, here shown by one bold TSS and many smaller TSSs, respectively.

2. Regions
Involved in
Transcription and
Transcriptional
Regulation

2.1. The Core
Promoter

The classical, textbook definition of the core promoter is a region
around the TSS (+1) of a gene, which contains several DNA ele-
ments that facilitate the binding of regulatory proteins. Binding
of these proteins is required for the step-wise sequestering and
formation of the PIC (pre-initiation complex). In one promoter
architecture, the TATA box, an AT-rich sequence acts as a binding
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site for the TATA-binding protein (TBP) (5). TBP together with
TATA-associated factors (TAFs) forms the multi-subunit initiator
complex TFIID. The binding of TFIID to the TATA box is the
first step in the creation of a stable transcriptional complex. Other
basal transcription factors (TFIIA-J) together with the RNAP II
itself will bind forming the PIC.

However, it has been known for some time that the TATA
box is not the only element within the core promoter: several
other elements can recruit TFIID: the initiator element (Inr)
and the downstream promoter element (DPE). The BRE (TFIIB
recognition element) is a motif that specifically interacts with the
TFIIB complex. Furthermore, it has been shown that the assem-
bly of PIC via the TATA box, at least in mammals, is more the
exception than the rule (10–20%) (6, 7).

Separately from this, the model that a core promoter regu-
lates the initiation of a single or very narrow range of co-located
transcription start sites is not fully correct. In recent years it has
come to light that core promoters can be roughly divided into
two classes: those that have a single TSS or a distinct cluster of
TSSs over a very narrow, focused region of several nucleotides
and those that have a very broad or dispersed range of poten-
tial transcription start sites over a 50–100 bp region (8–10).
Focused core promoters often contain a TATA box (11) and are
the most ancient type of promoter conserved from Archaea to
vertebrates, while the dispersed core promoters have an over-
representation of CpG islands. Most of the genes in higher
eukaryotes are under transcriptional control of dispersed core
promoters.

In Metazoa, especially vertebrates, core promoter elements
have been best characterized while less is known about the organi-
zation of unicellular eukaryotes, for example, Saccharomyces cere-
visiae (baker’s yeast). The next section describes mainly mam-
malian, insect, and plant core promoter elements (see Table 3.1,
Fig. 3.1c) and will indicate where significant differences with sim-
pler eukaryotes exist.

2.1.1. Core Promoter
Elements

The TATA box is the best known and most ancient promoter ele-
ment (12–14). Although the exact position of the TATA box con-
sensus sequence TATAWAAR varies from 28 to 34 bp upstream
from the TSS, a strong preference to 30–31 bp is observed (15,
16). In yeast, the TATA box is located between –70 and –120 bp
(17).

The BRE element is present in a subset of the TATA-
containing core promoters and can be located immediately
upstream (BREu, consensus sequence SSRCGCC) as well as
downstream (BREd, consensus sequence RTDKKKK) of the
TATA box and can act in both a negative and a positive manner
(18–20).
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Table 3.1
Core promoter elements. Consensus sequences, (approximate) location in rela-
tion to the transcription start site (TSS), and organisms from which consensus
sequences are derived are listed for the core promoter elements that are most fre-
quently used in eukaryotic organisms. Consensus sequences are listed in IUPAC
nucleotide code

Element Consensus Location Organism Reference

Inr Initiator element YYANWYY −2 to +5 Human (46)
TCAKTY −2 to +4 Drosophila

TATA TATA box TATAWAAR −31 to −24 (10)
BREu TFIIB recognition

element (upstream)
SSRCGCC (18)

BREd TFIIB recognition
element (downstream)

RTDKKKK (19)

DPE Downstream promoter
element

RGWYVT +28 to +33 Drosophilaa (22)

MTE Motif ten element CSARCSSAAC +18 to +27 Drosophila (24)
DCE S1 Downstream core

element (subunit 1)
CTTC +6 to +11 Human (25)

DCE S2 Downstream core
element (subunit 2)

CTGT +16 to +21 Human (25)

DCE S3 Downstream core
element (subunit 3)

AGC +31 to +34 Human (25)

XCPE1 X core promoter
element 1

DSGYGGRASM −8 to +2 Human (26)

aSimilar sequences conserved from Drosophila to human.

Recent studies have shown that the Inr motif is the element
that is the most prevalent (approx. 40–60%) (17, 21) in focused
core promoters, more so than the TATA box. The Inr straddles
the TSS, and the consensus sequence is YYANWYY in humans
and TCAKTY in Drosophila, with the underlined A frequently
being the +1 start site.

The DPE (downstream promoter element) is another motif
(consensus RGWYVT in Drosophila) (22) that is important for
transcriptional activity (23) and is under the same strict positional
control as the TATA box: it is located downstream +28 to +33 bp
from the TSS and operates cooperatively with the Inr.

More core promoter elements are currently known, but are
underrepresented when compared with the TATA, Inr, BRE, and
DPE elements: the motif ten element (MTE) (24), the down-
stream core element (DCE) (25), and the X core promoter ele-
ment 1 (XCPE1) (26).
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2.2. Proximal
Promoter Elements

In Metazoa, several other promoter elements exist which are
located upstream of the core promoter: the proximal promoter
elements. They do not always act as traditional activators or
repressors; instead, it is postulated that they serve as tethering
elements for active distant enhancers, enabling these enhancers to
interact with the core promoter (27, 28).

2.3. Enhancers One of the characteristics of eukaryotic gene expression is the
existence of groups of specific DNA motifs that often from a great
distance can sequester transcription factors (TF) to upregulate the
rate of formation and binding of the pre-initiation complex to
the core promoter. These enhancer regions can be found up- and
downstream of the TSS, within exons or introns, in the 5′ and 3′
untranslated (UTR) regions of genes, and even as far as 10,000 bp
in Drosophila or 100,000 bp in human and mouse away from the
gene boundaries (1, 29, 30).

The exact mechanisms through which enhancers influence
transcriptional activity are still under debate, but it is clear that
enhancer activation often needs the binding of several transcrip-
tion factors to cis-regulatory motifs to the enhancer. Once active,
the enhancer can bind to the PIC or to tethering elements in the
proximal region of the promoter and influence (the rate of) tran-
scription by itself. Looping in chromatin (see Fig. 3.1b) plays a
role in bringing enhancers physically close to the proximal or core
promoter region of a target gene – these interactions have been
shown via Chromosome Conformation Capture (3C) technology
and successors (4C, 5C, Hi-C) (Chapters 16) (31, 32). How
the looping is effectuated is still unclear: direct-contact models
postulate that the interaction between enhancers and promoter
elements is more by chance due to free motion of the chromatin
strand; the tracking model hypotheses that the active enhancer–
protein complex somehow tracks the chromatin strand until it
encounters the promoter region.

Another model postulated to increase the transcriptional rate
is for the enhancers to be instrumental in changing the sub-
nuclear position of the target genes and bring them closer to a
ready source of RNAP II: the RNAP II loci or factories (33–35).

Many of these enhancers are non-coding sequences that are
strongly conserved over hundreds of millions of years (fish to
mouse) (36) and regulate gene expression in highly specific tis-
sues, developmental stages, or combinations of these (37). The
importance of enhancers is also illustrated in their role in disease,
where chromosome rearrangements, deletion of, or point muta-
tions in enhancers can cause abnormal phenotypes. For exam-
ple, thalassemia is a blood disease in which nonstoichiometric
quantities of α- or β-globin are produced (these subunits need
to be produced in equimolar quantities). For some patients no
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mutations or deletions could be detected in the coding region.
Further studies showed that deletion or rearrangement of the
enhancer caused the globin imbalance (38). Another example is
preaxial polydactyly caused by point mutations in the limb-specific
enhancer ZRS that regulates the sonic hedgehog (SHH) gene,
which codes for an important signaling molecule (39, 40).

In contrast to higher eukaryotes, the majority of yeast genes
do not have distant enhancer sites (see Fig. 3.1a). Yeast does,
however, have upstream activating sequences (UASs) ∼250 bp
upstream of the TSS. UASs facilitate the binding of activating
transcription factors (41). Each UAS often contains one or two
closely linked cis-acting binding sites; activating transcription fac-
tors that bind to those sites positively regulate the PIC via TAFs.
A well-studied example is the GAL4p transcription factor that
binds to a UAS with a specific motif of 5′-CGGN11CCG-3′ and
is responsible for the regulation of expression of GAL genes when
galactose is utilized as a carbon source (42).

2.4. Silencers The role of silencers in the downregulation of gene expression
has been recognized much later and much less is known about
these cis-regulatory elements than their enhancer counterparts.
Two distinct classes of silencers exist: short, position-independent
motifs that via their bound TF (repressors) proteins actively inter-
fere with the PIC assembly are called silencer elements and are
normally found upstream of the TSS and position-dependent
silencers or negative regulatory elements (NREs) that passively
prevent the binding of TFs to their respective cis-regulatory
motifs and can be found both up- and downstream of the TSS
and within introns and exons (43).

2.5. Insulators Enhancers and silencers can act on multiple genes but in certain
cases these interactions might be unwanted. Special cis-acting reg-
ulatory DNA sequence regions called insulators can block such
interactions. Two distinct types of insulators have been discov-
ered: enhancer-blocking insulators and barrier insulators (35).
The enhancer-blocking insulators protect against gene activation
by enhancers and interfere with the enhancer–promoter interac-
tion only if the insulator is located between the enhancer and the
promoter. Barrier insulators safeguard against the spread of het-
erochromatin, and thus of chromatin-mediated silencing, and lie
on the border of eu- and heterochromatin domains.

Positional requirements for enhancer-blocking insulators
were first described in the Drosophila insulator element gypsy (44).
This insulator consists of 12 repeats of the consensus sequence
YRYTGCATAYYY and is a target for the suppressor of hairy-
wing Su(Hw) protein. The Su(Hw) protein binds with other pro-
teins (CP190, modifier of mdg4, ubiquitin ligase, topoisomerase-I-
interacting protein) to form complexes that bind to the nuclear
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lamina and as a result bring insulators together to form insulator
bodies (35). This is also one of the proposed mechanisms how
insulators block enhancers: by topological separation, for exam-
ple, by resulting loop domains, of the enhancers from promoter
sites.

In vertebrates, all currently identified enhancer-blocking insu-
lators contain cis-regulatory binding motifs for the CCCTC-
binding factor (CTCF) (45) and similar mechanisms like gypsy for
enhancer-blocking activity involving CTCF-containing insulators
have been proposed.

3. Conclusion

In the last 20 years, understanding about transcriptional regu-
lation has greatly increased. It is now clear that promoters with
TATA boxes are not the rule but the exception, and that several
other less-known promoter elements are important, too. Added
to that the combinatorial complexity of enhancer and silencer
interaction, together with recent discoveries with regard to 3D
localization and epigenetic control, has made clear that the ‘text-
book’ models of gene regulation are now severely outdated.
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Chapter 4

Three-Dimensional Structures of DNA-Bound Transcriptional
Regulators

Tripti Shrivastava and Tahir H. Tahirov

Abstract

Our understanding of the detailed mechanisms of specific promoter/enhancer DNA-binding site
recognition by transcriptional regulatory factors is primarily based on three-dimensional structural studies
using the methods of X-ray crystallography and NMR. Vast amount of accumulated experimental data
have revealed the basic principles of protein–DNA complex formation paving the way for better modeling
and prediction of DNA-binding properties of transcription factors. In this review, our intent is to provide
a general overview of the three-dimensional structures of DNA-bound transcriptional regulators starting
from the basic principles of specific DNA recognition and ending with high-order multiprotein–DNA
complexes.

Key words: Transcription factor, gene expression, crystal structure, DNA-binding domain, DNA-
binding motif, protein–DNA interaction, cooperative DNA binding, DNA recognition, promoter,
enhancer.

1. Introduction

DNA-binding proteins play central roles in biology. Among other
activities, they are responsible for replicating the genome, tran-
scribing active genes, and repairing damaged DNA. One of the
largest and most diverse classes of DNA-binding proteins is the
transcription factors that regulate gene expression. Transcription
factors regulate cell development, differentiation, and cell growth
by binding to a specific DNA site (or set of sites) on promoters
and enhancers and regulating gene expression. Gene expression
requires transcription: making mRNA (messenger RNA) copies
from the DNA.
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For a deeper understanding of the transcriptional regulatory
processes, it is essential to determine the structure and analyze the
three-dimensional organization of multiprotein–DNA regulatory
complexes. This is a formidable task; progress made in this direc-
tion has evolved from understanding of the basic mechanisms of
specific DNA recognition by smaller DNA-binding motifs. Nowa-
days our knowledge is expanding based on structural studies of
complexes with several transcriptional regulatory proteins acting
cooperatively on DNA binding. In this review, our intent is to
provide a general overview of the three-dimensional structure
of DNA-bound transcriptional regulators starting from the basic
principles of specific DNA recognition and ending with more
complicated multiprotein–DNA complexes. We do not provide a
comprehensive review; instead, we present some of typical exam-
ples demonstrating how transcriptional regulatory factors adopt
the simple DNA-recognition motifs to form more complex regu-
latory assemblies.

2. Discussion

2.1. The Principle
of DNA Recognition

Inspection of protein–DNA complexes at an atomic level reveals
that contacts between DNA and protein can be explained in terms
of two broadly defined mechanisms: direct and indirect readout.
Direct readout of a DNA sequence is the sensing of base pair
identity by direct hydrogen bonding and van der Waals interac-
tions (1, 2). Indirect readout senses base pair identity without
direct base–protein contact. It utilizes the sequence-dependent
deformability of DNA (3). Consequently, indirect readout allows
the sensing of the DNA sequence at a distance.

2.1.1. Hydrogen Bonds The discovery of hydrogen bond formation in macromolecules
solved the mysteries associated with the formation of secondary
structures, i.e., α-helices and β-sheets in proteins (4) and double-
helix formation from single strands in DNA (5). The grooves
of DNA are rich in functional groups that can form hydrogen
bonds (1). AT base pairs provide N3 (H-bond acceptor) and
O2 (acceptor) atoms in the minor groove, and N7 (acceptor),
NH2 (6-amino donor), and O4 (acceptor) atoms/groups in the
major groove. GC base pairs provide NH2 (2-amino donor),
N3 (acceptor), and O2 (acceptor) in the minor groove and N7
(acceptor), O6 (acceptor), and NH2 (4-amino donor group) in
the major groove. If hydrogen bond formation were the sole
mechanism of recognition, this information should suffice to dis-
tinguish GC/CG and AT/TA base pairs from each other because
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of the order in which the acceptor and donor functional groups
appear in the grooves (6).

Hydrogen bonds are further classified into subgroups based
on the type of interaction between amino acids and base pairs.
These are either single interactions where only one hydrogen
bond exists between the amino acid and its corresponding base,
bidentate interactions where amino acids interact with bases by
two or more bonds, or complex interactions where amino acids
interact with more than one base simultaneously (7).

2.1.2. Water-Mediated
Interactions

Water molecules can participate in hydrogen bonding networks
that link side-chain and main-chain atoms with the functional
groups on bases, and the anionic oxygens of the phosphodi-
ester backbone (1). With improved crystal structure resolution
beyond 3 Å, macromolecular crystallography revealed that water
molecules can contribute significantly to stability and specificity
(8–10). These water molecules mediate interactions between the
two molecules and fill the gap arising from imperfect matching of
the protein and DNA surfaces (6).

2.1.3. van der Waals
Interactions

van der Waals contacts comprise 64.9% of all protein–DNA inter-
actions (7). Most of the contacts occur along the DNA backbone,
which is consistent with its high surface accessibility. The prefer-
ence of DNA bases for van der Waals contacts is in the following
order: thymine interacts most readily, then adenine, guanine, and
cytosine (7). The C5M methyl group of thymine often confers
the specificity of this base both by providing favorable van der
Waals contacts and repulsion of unnecessary side chains.

Not all protein–DNA complexes are highly hydrated at the
interface. For example, TATA box-binding protein (TBP) bound
to DNA exhibits a hydrophobic interface (11, 12). TBP inter-
acts along the minor groove of DNA, which is splayed open and
curves away from the protein. The driving force for such com-
plex formation seems to be primarily entropic. When a protein
and DNA form a complex, water molecules left at the interface
between the protein and DNA decrease the entropy of the sys-
tem. Consequently, the surfaces of the protein and DNA tend to
be exactly complementary so that none of the unnecessary water
molecules remain when the complex forms and the surface is ren-
dered inaccessible to solvent molecules.

2.1.4. Ionic Interactions Some theoretical and experimental studies underscore the
importance of long-range electrostatic effects in protein–DNA
complexes. The negatively charged DNA is packed with nuclear
proteins. To form chromatin, huge repulsive forces must be
overcome. The positively charged amino acids Lys and Arg of
the histone-fold domain form a distinct charged surface that
directs DNA wrapping around the histone core (13). In another
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example, the repressor in the met J repressor–operator complex
is activated by binding two positively charged S-adenosyl-
methionine (SAM) molecules. During cooperative oligomeriza-
tion, the protein undergoes small conformational changes and
its affinity for the operator increases 1,000-fold. In the ternary
complex, the positively charged SAM lies on the protein surface
opposite of DNA. The altered charge distribution resulting from
SAM binding may make the electrostatic surface more favorable
to intra-protein interactions and DNA binding (14). c-Myb onco-
gene recognizes DNA with three tandem DNA-binding domain
repeats: R1, R2, and R3. The structure of DNA-bound R1R2R3
revealed involvement of R2 and R3 in specific DNA base interac-
tions; however, no direct DNA interaction was observed for R1
(1H88) (15). Instead, the large positively charged surface of R1 is
positioned facing the DNA major groove and the phosphate back-
bone, forming long-range electrostatic interaction between R1
and the DNA. This interaction stabilizes the c-Myb–DNA com-
plex explaining the reason why R1 increases the binding affinity
of c-Myb for DNA five- to six-fold (15).

2.2. DNA Recognition
Elements

Beyond the atomic level of interaction between DNA and pro-
tein, the basic mode of interactions is based on protein secondary
structures, i.e., α-helices, β-sheets, and loops.

2.2.1. α-Helices α-Helices are the most common secondary structure elements
used by transcriptional regulators and other DNA-binding pro-
teins for base recognition. They typically interact through the
major grooves. Maximal DNA base contacts are achieved when
an α-helix inserts into the major groove with its axis parallel to
the flanking DNA backbone. Typically, base contacts are made
between the main-chain atoms and the side chain of the helix.
Interferon regulatory factor, or IRF, interacts to DNA through
the helix at the major groove of its winged helix–turn–helix
(HTH) motif (16) (Fig. 4.1a). Other examples show incidences
of α-helix involvement with bases on the minor groove. For
example, in the LacI family of proteins, the accommodation of
an α-helix at the minor groove distorts the DNA. In the purine
repressor dimer (PurR) DNA complex, each monomer contains
a helix-turn-helix domain which interacts with the major groove
bases and forms a two-turn ‘hinge’ helix contact with the minor
groove bases (17) (Fig. 4.1d).

2.2.2. β-Strands β-Strands are the next secondary structure elements most fre-
quently involved in specific DNA binding. Normally two or more
β-strands form a β-sheet to mediate interactions with DNA. The
NikR nickel-induced transcriptional repressor of the nickel ABC-
type transporter, NikABCDE, is one such example. NikR forms
a tetramer, which is arranged as dimer of dimers and binds to
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Fig. 4.1. Different modes of recognition. a α-Helix (pdb code 2IRF), b β-sheet (2HZV), and c loop (2GEQ) at major groove;
d α-helix (2KEI), e β-sheet (1NVP), and f loop (1HJB) at minor groove. All figures were produced with PyMol.

palindromic DNA (18). In each half of the DNA palindrome, the
subunits of the NikR dimer donate a β-strand to form a two-
stranded antiparallel β-sheet that interacts with the DNA in the
major groove (Fig. 4.1b). Insertion of three-stranded β-sheet
into the major groove has been observed in the plant GCC box-
binding domain (19). In contrast to the β-sheets recognition in
the major grooves, the TATA-binding protein uses a surface of
10-stranded concave β-sheet to recognize the DNA at the minor
groove (20). The insertion of 10 β-strands into the minor groove
profoundly distorts the DNA (Fig. 4.1e).

2.2.3. Loops Loops are the third type of structural element that character-
izes protein–DNA interactions. Whereas α-helices and β-sheets
provide rigid scaffolds for interaction with DNA, a superfamily
of proteins having an immunoglobulin-like fold uses the flexible
loops as their primary structural element for DNA recognition
(21). The core domain of the p53 tumor suppressor (Fig. 4.1c),
for example, forms a sandwich of antiparallel β-sheets with two
helices (H1 and H2); the H2 helix along with the preceding
loop interact with the DNA in the major groove (22). DNA
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recognition by a Runt domain of Runx1 via a minor groove dra-
matically increases its DNA-binding affinity and plays an impor-
tant regulatory role (23) (Fig. 4.1f).

2.3. DNA-Binding
Motifs

Proteins that bind DNA have common folding patterns known
as DNA-binding motifs. The helix-turn-helix (HTH), Zn-
finger (ZnF), basic leucine zipper (bZip), basic helix-loop-helix
(bHLH), and β-ribbon-containing motifs are examples of fre-
quently observed DNA-binding motifs.

2.3.1. The
Helix-Turn-Helix Motifs

HTH is the best-characterized member of the DNA-binding
motif (24, 25). Its simplest form is traditionally defined as a
20-amino acid segment of two perpendicular α-helices connected
by short linker. The second helix, known as the ‘recognition
helix,’ inserts into the DNA major groove and forms contacts with
both DNA bases and the sugar–phosphate backbone. The first
helix, while not embedded in the major groove, may make addi-
tional DNA contacts (26–28). In the simplest form of HTH, the
α-helices are connected together by a short linker of three amino
acids (29) (Fig. 4.2a). With the variation in the turn region of
the HTH motifs, several topologies have been determined where
β-sheets comprised of two or more strands interrupt, precede, or
follow the helices involved in DNA binding (Fig. 4.2b). These
β-sheets, which can participate both in DNA base and in back-
bone interactions, are packed against the helices of the motif.

Fig. 4.2. DNA-binding motifs. a A HTH motif of λ repressor (1LMB) (56), b a wHTH motif of FoxO1 (3CO6) (57), c a
Cys2His2-type ZnF of Zif268 (1AAY) (41), d a Zn2Cys6-type ZnF of GAL4 (3COQ) (58), e a bZip motif of Jun homodimer
(2H7H), f a bHLH motif of sterol regulatory element binding protein (1AM9) (59), g a β-ribbon motif of Met J repressor of
E. coli (1CMA) (14), and h a β-sheet motif of TATA box-binding protein (1NVP) (20).
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This type of motif is known as a winged HTH (wHTH) domain
(30–32).

2.3.2. Zn-Bearing Motifs Proteins containing a domain with one or more coordinated zinc
ions at their core form a superfamily of eukaryotic DNA-binding
proteins. In each of the three classes of proteins within this super-
family, zinc plays a structural role in maintaining the protein fold
and does not interact with the DNA. ZnF is the most prominent
class, where an ∼30 residue module with one Zn ion is coordi-
nated by two cysteines and two histidines (33, 34). This class is
also referred as Cys2-His2-type ZnF (Fig. 4.2c). The second class
is an ∼70 residue domain, found in steroid and related hormone
receptors. Here each of the two Zn ions is liganded by four cys-
teine residues (35). The third class was discovered in GAL4 and
other yeast activators (Fig. 4.2d), with two closely spaced Zn ions
sharing six cysteines (36).

2.3.3. Zipper Group The zipper group derives its name from its dimerization leucine
zipper region. So far, this group has only been found in eukary-
otic organisms (26, 37). The two known subfamilies in this group
are bZip and bHLH proteins. The structure of bZip proteins is
divided into two parts: the DNA-binding basic region interacting
via the major groove and the dimerization leucine zipper region
(26, 37) (Fig. 4.2e). The GCN4, C/EBP, and Jun/Fos proteins
are typical representatives of bZip family. The bHLH proteins
differ from bZip proteins due to the presence of the loop sep-
arating the basic DNA binding and dimerization leucine zipper
regions (Fig. 4.2f). This separation of the two segments by a loop
provides more flexibility for DNA binding (37). The mouse Max
protein makes a parallel, left-handed four-helix bundle that con-
tributes a second dimerization interface (38).

2.3.4. β-Sheet Group This group includes diverse DNA-binding proteins which use
a β-sheet as their principal DNA recognition element. β-
Ribbon/hairpin proteins use smaller two- or three-stranded
β-sheets or hairpin motifs to bind to either the minor or the major
grooves of the DNA (Fig. 4.2g). For example, the Met J repressor
of Escherichia coli (14) and the arc repressor of Salmonella phage
P22 (39) contain dimeric DNA-binding domains. Each dimer
subunit consists of a helical bundle and a single β-strand; the
strands from each subunit pack side by side forming an antipar-
allel β-sheet that binds DNA in the major groove. In contrast to
β-ribbon/hairpin proteins, the TATA box-binding protein inter-
acts with the DNA minor groove using its 10-stranded antiparallel
β-sheet (20) (Fig. 4.2h).

2.4. Arrangement
of Motifs

Transcriptional factors have evolved a variety of mechanisms to
target a wider range of specific sites using fewer types of DNA-
binding motifs. Well-known cases include DNA binding with a
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tandem repeat of similar motifs or formation of homo- and het-
erodimers.

2.4.1. Single Motif Pancreatic and duodenal homeobox 1 (Pdx1) is a homeodomain
transcription factor that binds to DNA as a monomer. This pro-
tein contains three α-helices and a flexible N-terminal arm. An
α-helix termed as the recognition helix binds to DNA, whereas
the N-terminal arm contacts the DNA bases through the minor
groove (40).

2.4.2. Tandem Repeats
of Motifs

Binding with tandem repeats often occurs among ZnF proteins.
For example, three tandem Cys2-His2-type ZnF motifs of Zif268
bind at the DNA major groove (Fig. 4.2c) (41). HTH proteins
also recognize DNA with tandem repeats. c-Myb contains three
tandem repeats, R1, R2, and R3. R2 and R3 bind the DNA
major groove and R1 enhances DNA-binding affinity by long-
range electrostatic contacts (Fig. 4.4e) (15).

2.4.3. Homo- or
Heterodimers

The specificity for more diverse regulatory DNA-binding sites
is frequently achieved by homo- and heterodimer formation of
highly related DNA-binding modules. Representative examples
are the DNA complexes of NFκB proteins. These proteins con-
tain two DNA-binding immunoglobulin domains connected by a
flexible linker. NFκB p50 (Fig. 4.3a) and NFκB p65 (Fig. 4.3b)
bind palindromic DNA sites as homodimers with participation
of both domains in each subunit (42, 43). The carboxy-terminal
domains of p50 and p65 form a dimerization interface between
β-sheets using conserved residues. The conservation of dimeriza-
tion interface allows the formation of a p50–p65 heterodimer
which can bind to a nonpalindromic DNA with 5-base-pair
5′ subsite for p50 and a 4-base-pair 3′ subsite for p65 (Fig.
4.3c) (44). Some transcriptional factors, including Zn2Cys6 bin-
uclear cluster proteins, contain a dimerization domain and a
DNA-binding motif that are held together by a flexible linker

Fig. 4.3. Examples of homo- and heterodimers bound to DNA. a NFκB p50 homodimer (1NFK) (42), b NFκB p65 homod-
imer (1RAM) (43), and c NFκB p50–p66 heterodimer (1VKX) (44) complexes with DNA.
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(45). Such flexibility allows variations in polarity and inter-half-
site separation of common half-site DNA sequences (45).

2.4.4. Multiprotein–DNA
Complexes

Transcription of eukaryotic genes is influenced by various reg-
ulatory elements within promoters, enhancers, and silencers
(Chapter 3). These regulatory elements constitute the sites for
the highly ordered cooperative assembly of multiprotein com-
plexes for the activation or repression of transcription (46). The
large molecular weight as well as transient and flexible nature
of such complexes makes them difficult to study by conven-
tional methods of X-ray crystallography and NMR. However,
some progress has been achieved in understanding the protein–
protein interactions leading to cooperative DNA binding. In gen-
eral these interactions can be classified into three modes: first,
those between a DNA-binding factor and a non-DNA-binding
factor; second, those between DNA-binding factors recognizing
adjacent cites on the promoter; and third, those between DNA-
binding factor recognizing widely separated cites on the promoter
(47). Among the representative structures of the first mode are
the GABPα–GABPβ–DNA (48) and Runx1–CBFβ–DNA (23,
49) complex structures. In the latter complex (Fig. 4.4a), the
non-DNA-binding CBFβ enhances the DNA-binding activity of
Runx1 by allosteric mechanism (23, 50). The structures of Ets1–
Pax5–DNA (51), MATα2–MCM1–DNA (52), and NFAT–Fos–
Jun–DNA (53) are few of representative examples exhibiting the
second mode of cooperative DNA binding (Fig. 4.4b, d). And
finally, the structure of c-Myb-C/EBPβ–DNA complex repre-
sents the third mode of cooperation (Fig. 4.4e). Within this struc-
ture the protein–protein interaction is not between c-Myb and
C/EBPβ bound to the same DNA fragment, but between these
molecules bound to different fragments. The structure mimics a
case in which c-Myb and C/EBPβ bind to widely separated sites
on mim-1 promoter and interact by mediating DNA loop forma-
tion (15).

Modeling of the obtained structures of individual parts of
enhanceosome allows better description of its cooperative assem-
bly. For example, the activation of the interferon-β (IFN-β) gene
requires assembly of an enhanceosome containing several tran-
scriptional regulatory factors. Cooperative binding of these fac-
tors to the IFN-β enhancer results in recruitment of coactiva-
tors and chromatin-remodeling proteins to the IFN-β promoter
(54). The atomic model of the IFN-β enhanceosome was build
using the structures of ATF-2/c-Jun/IRF-3/DNA (55) and IRF-
3/IRF-7/NFκB p65/NFκB p50/DNA (54). The model shows
that an association of eight proteins with the enhancer creates
a continuous surface for cooperative recognition of a composite
DNA-binding element (54).
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Fig. 4.4. High-order multiprotein–DNA complexes. a Runx1–CBFβ-C/EBPβ–DNA (1IO4), b Ets1–Pax5–DNA (1MDM) (53),
c MATα2–MCM1–DNA (1MNM) (52), d NFAT–Fos–Jun–DNA (1AO2) (51), e C/EBPβ–DNA/c-Myb–DNA (1H88) (15).

3. Conclusions

In spite of tremendous progress in structural studies of transcrip-
tional regulatory factors, many barriers remain in the complete
understanding of how these factors work. Among the frequently
facing hurdles is the missing structure of residues located beyond
the DNA-binding domains. These residues may fulfill a variety
of regulatory functions, including autoinhibition, protein–protein
interactions. However, the flexibility of these protein fragments
also interferes with crystallization of macromolecules which is
the most important step in structure determination. That is why,
alongside with biophysical methods, development of alternative
approaches, including computational biology methods capable of
building three-dimensional models of transcription factor com-
plexes, is necessary for full understanding the mechanisms of tran-
scriptional regulation.
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Chapter 5

Identification of Promoter Regions and Regulatory Sites

Victor V. Solovyev, Ilham A. Shahmuradov, and Asaf A. Salamov

Abstract

Promoter sequences are the main regulatory elements of gene expression. Their recognition by computer
algorithms is fundamental for understanding gene expression patterns, cell specificity and development.
This chapter describes the advanced approaches to identify promoters in animal, plant and bacterial
sequences. Also, we discuss an approach to identify statistically significant regulatory motifs in genomic
sequences.

Key words: Promoter prediction, animal and plant promoters, bacterial promoters, regulatory
motifs and homology inference.

1. Introduction

RNA polymerase II (Pol II) promoter is a key region that
is involved in differential transcription regulation of eukaryotic
protein-coding genes and some RNA genes. The gene-specific
architecture of promoter sequences makes it extremely difficult
to devise the general strategy for predicting promoters. Promoter
5′-flanking regions may contain dozens of short (5–10 bases long)
motifs that serve as recognition sites for proteins providing initia-
tion of transcription as well as specific regulation of gene expres-
sion.

The minimal promoter region called the core promoter is
capable of initiating basal transcription. It contains a transcription
start site (TSS) located in the initiator region (Inr), typically span-
ning from −60 to +40 bp relative to the TSS. About 30–50% of all
known promoters contain a TATA-box at a position about 30 bp

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
DOI 10.1007/978-1-60761-854-6_5, © Springer Science+Business Media, LLC 2010

57



58 Solovyev, Shahmuradov, and Salamov

upstream from the transcription start site. The TATA-box is the
most general functional signal in eukaryotic promoters. In some
cases, it can direct accurate transcription initiation by Pol II even
in the absence of other control elements. Many highly expressed
genes contain a strong TATA box in their core promoter. At the
same time, large groups of genes including housekeeping genes,
some oncogenes and growth factor genes possess TATA-less pro-
moters. In these promoters, Inr or the recently found downstream
promoter element (DPE), usually located ∼25–30 bp down-
stream of TSS, may control the exact position of the transcrip-
tion start. Many human genes are transcribed from several pro-
moters (having multiple TSS) producing alternative first exons.
Moreover, transcription initiation appears to be much less precise
than initially assumed. In the human genome, it is not uncommon
that the 5′-ends of mRNAs transcribed from the same promoter
region are spread over hundreds of nucleotides (1–3).

The core promoter recruits the general transcriptional appara-
tus and supports basal transcription, while the proximal promoter
(the region immediately upstream of the core promoter) engages
various transcriptional factors, which are necessary for appropriate
transcription activation or repression. Further upstream is located
the distal part of promoter that may also contain transcription
factor-binding sites and enhancer elements. A typical organiza-
tion of Pol II promoters is shown in Fig. 5.1. The distal pro-
moter part is usually the most variable region of promoters and

ENHANCER REPRESSOR

DISTAL  PROMOTER

CORE  PROMOTER

CpG
TATA

Inr

DPE

ENHANCER

PROXIMAL  PROMOTER

Fig. 5.1. Structural organization of RNA polymerase II promoter. Inr is the initiator region, usually containing TSS; DPE is
the downstream promoter element, often appearing in TATA-less promoters; CpG is a CpG island.
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generally poorly described; therefore, most of computational pro-
moter recognition tools use the characteristics of only the core
and/or proximal regions. A few reviews of eukaryotic promoters
structure and computational identification have been published
(2, 4–6).

To date, a number of databases provide information on
known promoter sequences. Bucher and Trifonov (7) have ini-
tiated a first collection of experimentally mapped transcription
start sites and surrounding sequences called Eukaryotic Promoter
Database (EPD). Up to Release 72 (October 2002), EPD was
a manually compiled database, relying exclusively on published
experimental evidences. With Release 73, the curators started to
exploit knowledge of 5′-ESTs from full-length cDNA clones as a
new resource for defining promoters, and about a half of the EPD
entries are based on 5′-EST sequences (8). There are few other
databases that provide information about experimentally mapped
TSSs. DBTSS (9) and PromoSer (10) are the large collections
of mammalian promoters created using clustering of expressed
sequence tag (EST) and full-length cDNA sequences. Promot-
ers of genes of the hematopoietic system have been collected in
HemoPDB, a specialized resource that provides also information
on transcription factor binding sites (11). Orthologous promot-
ers from various human/animal and plant species presented in
the OMGProm (12), DoOP (13) and CORG (14) databases.
There is a plant-specific PlantProm (15) database providing anno-
tated, non-redundant collection of proximal promoter sequences
for RNA polymerase II with experimentally determined transcrip-
tion start sites. The second release of the PlantProm database
contains 561 experimentally verified promoters and about 8,000
putative promoters with TSS predicted by using mapping full-
length cDNAs on corresponding genomic sequences.

Regulatory sequences in promoter regions are composed of
transcription factor binding sites called regulatory motifs. Often,
a motif is fairly short (5–20 bp) sequence pattern and is observed
in different genes or several times within a gene (16–18). A
relational Transcription Factor Database (TFD) including large
collection of regulatory factors and their binding sites was cre-
ated by Gosh (19, 20). Over 7,900 sequences of transcrip-
tional elements have been described in TRANSFAC database (21,
22). The other collections of functional motifs are TRRD (23),
PlantCARE (24), PLACE (25), RegSite (http://softberry. com),
PlantTFDB (see Chapter 2 and (26)), Osiris for rice (27), and
Athena for Arabidopsis (28). RegsiteDB (Plant) contains about
1,942 experimentally discovered regulatory motifs of plant genes
and detail descriptions of their functional properties. Annotat-
ing long genomic sequences using these motifs is not practical
due to their short length and degenerate nature. For example,
even if we will search for the well-described TATA-box motif
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using its weight matrix representation, there will be predicted one
false-positive at every 120–130 bp (29). Nevertheless, the above-
mentioned collections are invaluable for the detailed analysis of
gene regulation and interpretation of experimental data, includ-
ing microarray and gene networks studies.

The modular organization of transcription factors and regu-
latory sequences facilitates regulatory diversity and high level of
specificity using relatively small number of different components
(30). Therefore, to understand gene regulation, we need to study
patterns of regulatory sequences rather than single elements.
Searching for such patterns should produce much less false-
positive predictions in new sequences compared to the recogni-
tion of single motifs. The simplest examples of regulatory patterns
are composite elements (CE). They consist of modular arrange-
ments of contiguous or overlapping binding sites for various fac-
tors, providing the possibility that the bound regulatory factors
may interact directly. For example, the composite element of
proliferin promoter comprises glucocorticoid receptor (GR) and
AP-1 factor-binding sites. Both GR and AP-1 are expressed in
most cell types, but the composite element demonstrated remark-
able cell specificity: The hormone–receptor complex repressed the
reporter gene expression in CV-1 cells, but enhanced its expres-
sion in HeLa cells and had no effect in the F9 cell (31). The
database of composite elements (COMPEL) contains informa-
tion about several hundred experimentally identified composite
elements, where each element consists of two functionally linked
sites (32, 33). A computational technique that provides possibility
to identify statistically significant occurrences of motifs (or com-
posite motifs) in a query sequence is described in Section 2.5.

2. Methods

2.1. Identification
of Promoter Regions
in Human DNA

Fickett and Hatzigeorgiou (18) presented one of the first reviews
of promoter prediction programs. Among these were oligonu-
cleotide content-based (34, 35), neural network (36–38) and
the linear discriminant approaches (39). Although their relatively
small test set of 18 sequences had several problems (40), the
results demonstrated that the programs can recognize ∼ 50% of
true promoters with false-positive rate about 1 per 700–1,000 bp.
To reduce false-positive predictions located within protein-coding
genomic regions, some promoter-finding software include special
modules for recognition of coding parts of gene inside promoter
prediction programs (41, 42). However, modern gene prediction
software, such as Genscan (43) or Fgenesh (44, 45), provides
much better accuracy in the identification of coding exons and
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introns than any such procedures. Therefore, it was suggested
(46, 47) to run gene prediction software first, and then execute
promoter prediction on sequences upstream of the coding exons
of predicted genes.

In this chapter we will describe successful algorithms imple-
mented by us in a set of promoter prediction programs (TSSW,
TSSG, Fprom, TSSP, TSSP-TCM and PromH). These tools use
similar promoter features, but trained on different learning sets,
or for different classes of organisms. While the initial version of
the promoter recognition program TSSW (Transcription Start
Site, W stands for using functional motifs from the Wingender
et al. (21) database) (39)) has been developed more than 10 years
ago, the above-mentioned programs are still among the most
accurate ones (18, 46, 48, 49).

The approach implemented in TSSW will be described in
detail and its modifications in other programs will be noted. Dif-
ferent features of a promoter region may have different power for
promoter identification and might not be independent. Classical
linear discriminant analysis provides a good method to combine
such type of features in a discriminant function, which applied
to a pattern yields its class membership. The discriminant analy-
sis technique minimizes the error rate of classification (50). Let us
assume that each sequence can be described by vector X of p char-
acteristics (x1, x2, . . . , xp), which could be measured (computed)
for a given sequence fragment. The procedure of linear discrimi-
nant analysis is to find a linear combination of the measures (linear
discriminant function or LDF) that provides maximum discrimi-
nation between sequences from class 1 and class 2.

The LDF

Z =
p∑

i=1

aixi

classifies (X) into class 1 if Z > c and into class 2 if Z < c. The
vector of coefficients and threshold constant c are derived from
the training set by maximizing the ratio of the between-class vari-
ation z to within-class variation and are equal to (50):

c = →a (−→m1 + −→m2)/2,

and

�a = S−1(−→m1 − −→m2)
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where →mi are the sample mean vectors of characteristics for class
i; S is the pooled covariance matrix of characteristics,

S = 1
n1 + n2 − 2

(S1 + S2),

Si is covariance matrix and ni is the sample size of class i.
Using these formulae, we can analytically calculate the coefficients
of LDF and the threshold constant c using the values of charac-
teristics computed on the training sets and then test the accuracy
of LDF on the test set data. The significance of a given character-
istic or a set of characteristics can be estimated by the generalized
distance between two classes (the D2 Mahalonobis distance):

D2 = (−→m1 − −→m2)S−1(−→m1 − −→m2),

which is computed from values of the characteristics in the train-
ing sequences of classes 1 and 2. To find the most discrimina-
tive sequence features, a lot of possible characteristics can be gen-
erated and checked, such as score of weigh matrices, distances,
oligonucleotide preferences within different sub-regions. Selec-
tion of the subset of significant characteristics q (among the tested
p) is performed by step-wise discriminant procedure including
only those characteristics that significantly increase the Mahalono-
bis distance. The procedure to test this significance of character-
istics uses the fact that the quantity

F = n1 + n2 − p − 1
p − q

n1n2(D2
p − D2

q )

(n1 + n2)(n1 + n2 − 2) + n1n2D2
q

,

has an F (p − q, n1 + n2 − p − 1) distribution when testing
hypothesis H0: �2

p = �2
q , where �2

m is the population
Mahalonobis distance based on m variables. If the observations
come from multivariate normal populations, the posterior prob-
ability that the example belongs to class 1 may be computed as

Pr(class1/
→
X ) = 1

1 + n2
n1

exp{−Z + c} .

Potential TATA+ promoter sequences can be selected by the
value of score computed using the TATA box weight matrix
(51). Significant characteristics of promoter sequences from both
groups found by discriminant analysis are presented in Table 5.1.
This analysis shows that TATA+ and TATA– promoters should be
analysed separately as they have different sequence characteristics.
TATA– promoters have much weaker general features compar-
ing with TATA+ promoters and they will be extremely difficult to
predict by any general-purpose method.
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Table 5.1
Significance of selected characteristics of TATA+ and TATA− human promoters

Characteristics of sequences D2 (TATA+ promoters) D2 (TATA− promoters)

•Hexaplets −200 to −45 2.6 1.4 (−100 to −1)

•TATA box score 3.4 0.9
•Triplets around TSS 4.1 0.7

•Hexaplets +1 to +40 0.9
•Sp1-motif content 0.9

•TATA fixed location 0.7
•CpG content 1.4 0.7

•Similarity −200 to −100 0.3 0.7
•Motif density(MD) −200 to +1 4.5 3.2

•Direct/Inverted MD −100 to +1 4.0 3.3
Total Mahalonobis distance 11.2 4.3

No. of promoters/non-promoters 203/4,000 193/74,000

The TSSW program classifies each position of a given
sequence as TSS or non-TSS based on two linear discrimi-
nant functions (for TATA+ and TATA− promoters) where the
sequence characteristics are calculated within the (−200, +50)
region around an analysed position. If the TATA-box weight
matrix in the region ∼30 bp upstream of the potential TSS gives
a score higher than some threshold, then the position is classi-
fied based on LDF for TATA+ promoters, otherwise the LDF
for TATA-less promoters is applied. Only one prediction with
the highest LDF score is retained within any 300 bp region. If
we observe a lower scoring promoter predicted by the TATA-less
LDF near a higher scoring promoter predicted by TATA+ LDF,
then the first prediction is also retained as a potential enhancer
region.

Using the same approach but the TFD database of functional
motifs (19) to calculate the density of functional sites in potential
promoter region, we have developed the TSSG (39) program and
later its variant Fprom (47) that used different learning set of pro-
moter sequences. Examples of performance of TSSW, TSSG and
Fprom programs on sequences upstream CDS regions of 10 genes
with experimentally verified positions of transcriptional stat sites
are presented in Table 5.2. In many cases the predicted TSS is
located within a few bases of the experimental site. The programs
produce one false-positive prediction per each 2,000–4,000 bp.
TSSW outputs all potential TFBS around the predicted promot-
ers or enhancers that includes the position, the strand (±), the
TRANSFAC database identifier and the sequences of functional
motifs found.
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A critical assessment of the promoter prediction accuracy
has been done relative to the manual Havana gene annotation
(48). As few as four programs participated in ‘blind’ predic-
tions: two variants of McPromoter program (40, 52), N-scan
(53) and Fprom (47). McPromoter and Fprom derived its predic-
tions from a genomic sequence under analysis; N-scan used cor-
responding sequences of several vertebrate genomes. When the
maximum allowed mismatch of the prediction from the reference
TSS for counting true positive predictions on test sequences was
1,000 bp, N-scan achieved ∼3% higher accuracy than Fprom, the
next most accurate predictor. When the true positives predictions
required be closer than 250 bp to the experimental TSS, Fprom
demonstrated the best performance on most prediction accuracy
measures (48). In these experiments, the sensitivity of compu-
tational promoter predictions was only 30–50% (relative to the
5′-gene ends of Havana annotation), but we should note that the
TSS annotations from two experimentally derived databases also
overlapping in only 48–58%. Table 5.3 presents the relative accu-
racy of several popular promoter finding programs on genes with
known full-length mRNAs investigated by Liu and States (46).

Table 5.3
Performance of promoter finding programs for genes with known 5′-ESTs

Set 1 (133 promoters) Set 2 (120 promoters)

Program True predictions False predictions True predictions False predictions

PROSCAN1.7 32 (24%) 18 (36%) 30 (25%) 22 (42%)

NNPP2.0 56 (42%) 41 (42%) 26 (22%) 50 (66%)
PromFD1.0 88 (66%) 43 (33%) 69 (58%) 57 (45%)

Promoter2.0 8 (6%) 100 (93%) 14 (12%) 92 (88%)
TSSG 75 (56%) 10 (12%) 62 (52%) 18 (23%)

TSSW 57 (43%) 29 (34%) 58 (48%) 20 (26%)

2.2. Improving
Promoter
Identification by
Using Homologous
Sequences

The analysis of human–mouse conserved blocks in ortholo-
gous genes (those which are each other’s closest homologues
in the two organisms) specifically upregulated in skeletal mus-
cle reported by Wasserman et al. (54) shows that 98% of experi-
mentally defined transcriptional factors binding sites are confined
to the 19% of human sequences most conserved during evolu-
tion. We have suggested using several types of conserved blocks
to enhance sensitivity and specificity of promoter prediction pro-
grams by analysing alignment of orthologous genomic sequences
(55). Since the sequences of a dozen of eukaryotic genomes are
available, this strategy can be applied for improving promoter pre-
diction in many organisms.
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In most studies, researchers investigated conserved promoter
elements in particular pairs of orthologous genes (54; see also ref-
erences therein). However, we are interested in such conserved
features that can be observed in many different pairs of ortholo-
gous gene promoters. Analysing pairwise sequence alignments of
upstream regions of a set of mammalian genes, we have noticed
that general similarity of upstream regions of related genes is rel-
atively weak: for four pairs – about 30%, for five pairs − 40–50%
and only for one pair (human and rat MYL3 genes) − 61%.
But at the same time we have observed many short blocks with
very high level of conservation. We identified four classes of
such blocks making meaningful contribution for predicting ‘true’
promoters.

TATA-box conserved region: Seventeen of the twenty ‘true’
TATA-promoters have interspecies conservation level in this
region over 70% (six of them have 100%).

TSS conserved region: Thirteen of twenty-one genes have ≥77%
(five have 100%) level of similarity, six genes have 66%, one
gene has 41% and only one gene has 25%.

An average conservation level of regulatory motifs upstream of the
TSS region: Sixteen of twenty-one genes have such similarity
>70%, five genes have 45–56%.

Conservative region downstream of TSS. Thirteen of twenty-one
genes have similarity in this region more than 70% and seven
have >50%.

2.2.1. Promoter
Prediction by the PromH
Program

To take advantage of knowledge of conserved elements in 5′-
regions of homologues genes, we have developed the PromH
program that included four new features in the discriminant func-
tion, in addition to the features described in Table 5.1, conserva-
tion levels: around TSS and TATA-box (for TATA+ promoters),
in area downstream of the potential TSS (40 bp) and in regulatory
motifs observed upstream of the TSS.

The performance of the PromoterH program is shown in
Table 5.4. The program identified 20 of 21 tested TATA-
promoters. At the same time, TSSW program predicted only 15
true promoters and 3 false ones. The most TSSs predicted by
PromH differs from the annotated pre-mRNA start positions by
only 1–5 bp and the average distance between predicted and
annotated TSSs is 2 bp. Examples of promoter predictions and
their conservative blocks are shown in Fig. 5.2. The regulatory
motifs, TATA-box and TSS of predicted TATA-promoters are
highly conserved in orthologous genes, and these predictions cor-
respond closely to the promoter annotations.

Some discrepancy is found in a few genes including
H-GLUT4, M-GLUT4 and H-NPPA between the predicted and
the annotated TSS localization. There are several reasons for
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Table 5.4
Test results of PromoterH on human, Otolemur, mouse and rat sequences

Genea

GenBank
accession
number

Position of
predicted
TSSb

Conservation
of TSS,c %

Conservation
of TATA, %

Conservation
of REs,d %

Total
conservation
level, %

H-HBB U01317.1 −4mRNA 66 100 82 47

OL-HBB U60902 −10EST 77 100 85 47
H-HBD U01317.1 −4mRNA 77 81 80 30

OL-HBD U60902 −9EST 88 81 51 30
H-HBE U01317.1 +6mRNA 88 75 88 48

OL-HBE U60902 −27EST 66 71 88 48
H-HBGA U01317.1 +1mRNA 66 71 81 48

H-HBGG U01317.1 +1mRNA 66 71 81 50
OL-HBGG U60902 −53CDS 66 71 75 50

H-MYL3 M76408 −5UTR 100 87 89 61
R-MLC1V X16325 +4mRNA 41 75 79 61

H-
MLC1emb

X58851,
X55000

−1mRNA 66 25 56 28

M-MLC1F X12973 +1mRNA 25 62 45 28

H-MYF4 AF050501 −27CDS 100 100 90 43
M-MYOG M95800 −2mRNA 100 100 90 43

H-PGAM-M J05073 +1mRNA 88 81 71 40
R-PGAM2 Z17319 −1CDS 77 81 82 40

H-NPPA AL021155 −220CDS 77 47 51 31
R-NPPA J03267 +1mRNA 100 100 87 31

H-GLUT4 M91463 −105mRNA 88 25 52 30
M-GLUT4 M29660 −46mRNA 88 e 86 30

aH-HBB: human beta-hemoglobin, OL-HBB: otolemur beta-hemoglobin, H-HBD: human delta-hemoglobin, OL-
HBD: otolemur delta-hemoglobin, H-HBE: human epsilon-hemoglobin, OL-HBE: otolemur epsilon-hemoglobin, H-
HBGA: human hemoglobin gamma A, H-HBGG: human hemoglobin gamma-G, OL-HBGG: otolemur hemoglobin
gamma-G, H-MYL3: human ventricular myosin light chain, R-MLC1V: rat gene encoding alkali myosin ventricle light
chain, H-MLC1emb: human embryonic myosin alkaline light chain, M-MLC1F: mouse myosin alkali light chain, H-
MYF4: human myogenin (MYF4) gene, M-MYOG: mouse myogenin, H-PGAM-M: human phosphoglycerate mutase,
R-PGAM2: rat phosphoglycerate mutase, H-NPPA: human atrial natriuretic factor ANF precursor (atrial natriuretic
peptide ANP/prepronatriodilatin/isoform 2), R-NPPA: rat atrial natriuretic factor (ANF), H-GLUT4: human glucose
transporter (GLUT4), M-GLUT4: mouse glucose transporter.
bLocalizations of the predicted TSS are given in relation to mRNA or 5′-end of EST mapped on the promoter region,
CDS or 5′-UTR.
cInterspecies conservation level around TSS (−3 . . . TSS . . . +5).
dAverage interspecies conservation level of regulatory motifs left to TSS.
ePredicted promoter is TATA-less.
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+1

+1

-95 AGCCACACCCTaGGgTtgGCCaATCTaCTCccAGGagCAGGGAGGGCAGGAgCCAGGGC

-36 TGGGCATAAAAGtCAGGGCAGagcCatCTatTGCTTACAtTTGCTTcTGACACAA
-42 AGGGCATAAAAGgCAGGGCAGgaaCtgCTgcTGCTTATAcTTGCTTtTGACACAA

-101 AGCCACACCCTgGGtTcaGCCtATCTcCTCatAGGtaCAGGGAGGGCAGGAaCCAGGGC

(a)

(b)

-80 CCTGGAATGCTGATTGGCAGTTgGctGGggtGgGTGGGGGCTGGGAAGACacTa

-82 CCTGGAATGCTGATTGGCAGTTaG--GGctgGaGTGGGGGCTGGGAAGAC-—Tg

-26 TTATAAAGCtgggAGtG-TtgGGaAGCAGCcGTCcCC-----gTCCaGaGTCC
-28 TTATAAAGCctaaAGgGcTaaGGgAGCAGCtGTCaCCtggagcTCCtGcGTCC

+1

+1

1

1 2 3

2

-36 
TGGGCAT
AAAAGtC
AGGGCAG
agcCatC

Fig. 5.2. Location of predicted TSSs and TATA boxes (highlighted) in aligned sequences of H-HBB and OL-HBB (a) and H-
PGAM-M and R-PGAM2 (b) orthologous gene pairs. Annotated start positions of pre-mRNAs are boldfaced and italicized.
Some of the found conservative regulatory motifs are shown: in H-HBB and OL-HBB genes, 1 − HSSB I (rat; RSA01074),
2 – PERE (rat; RSA00900), 3 – P3-D (human; RSA00057); in H-PGAM-M and R-PGAM2 genes, 1 – inverted CCAAT-box
(human; RSA00526), 2 – Sp1 binding site (rat; RSA00253).

possible discrepancy between predicted and annotated promot-
ers. The GenBank annotation for the M-GLUT4 gene includes
a putative weak TATA-box, which has not been supported by
experiments. Our analysis of this region did not reveal any motif
resembling the consensus of TATA box. The comparative analy-
sis of human and mouse orthologous GLUT4 gene pairs revealed
that the upstream regions of both genes contain two high-scoring
and well-conserved non-TATA promoters.

These results indicate that the information from alignment
of orthologous genomic sequences can substantially improve
the quality of promoter identification. The found conserva-
tion characteristics independent of gene type can be extracted
from alignments of orthologous genes by using SCAN2-like
(http://www.softberry.com/berry.phtml?topic=scan2&group=
programs&subgroup=scanh) alignment programs parametrized
for weak but significant similarities. This program was specifically
designed to compare genomic sequences and aligning about
10,000 bp of a pair of 5′-regions for a second. This work also
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demonstrates that using orthologous sequences one can identify
the start of transcription within about 1–5 bases for TATA-
promoters, while a similar prediction of TATA-less promoters
remains an open problem.

2.3. Plant Promoter
Identification

To identify plant promoter regions, we have developed the TSSP
program that uses the sequence features described in Section
2.1 and has been trained on a set of plant promoter sequences
(56). Promoter characteristic, including functional motifs density,
was derived from our RegSite DB of plant regulatory elements
(http://softberry. com) that contains ∼1,800 known plant reg-
ulatory sequences. Recent tests demonstrated a high accuracy of
plant promoter identification by TSSP: Sn = 0.88 and Sp = 0.90
(see Table 5 in ref. 49). Here we describe a variant of this pro-
gram called TSSP_TCM developed by using a new learning and
discriminative technique called Transductive Confidence Machine
(57). Beyond making predictions, it also provides valid measures
of confidence in the predictions for each individual example in the
test set. Validity in our method means that if we set up a confi-
dence level, say, 95%, then we are not expected to have more than
5 errors out of 100 examples.

Table 5.5
Statistics of testing procedure for 40 TATA and 25 TATA-less promoter sequences of
351 bpa

Promoter type
Mean prediction
error in

Negative samples
from CDSs, %

Negative samples
from introns, %

TATA Positive samples 7.4 3.5

Negative samples 6.0 8.7
TATA-less Positive samples 18.6 14.0

Negative samples 16.9 29.5

aForty various sets of 1,000 negative samples of the same length (351 bp), randomly chosen from CDSs (20 sets, totally
20,000 sequences) and introns (20 sets, totally 20,000 samples) of known plant genes. Confidence and credibility
levels were =0.9 (90%) and = 0.06 (6%), respectively.

Learning machines such as the support vector machine (SVM;
58) perform well in a wide range of applications without requir-
ing any parametric statistical assumptions about the source of
data; the only assumption made is that the examples are gen-
erated from the same probability distribution independently of
each other. However, a typical drawback of techniques such as
the SVM is that they usually do not provide any useful measure
of confidence in the predicted examples. Transductive confidence
machine (TCM; 58–60) allows us to compute prediction of pro-
moters and estimate its confidence.
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2.3.1. Estimating the
Confidence of Prediction

Here we outline the application of TCM and SVM techniques as
implemented in TSSP-TCM program, following closely Shahmu-
radov et al. (56).

Suppose we are given a training set of examples
(x1, y1), . . . , (xl , yl), where xi is a vector of attributes and
yi is a label, and our goal is to predict the classifications
yl+1, . . . , yl+k for a test set xl+1, . . . , xl+k. We make only i.i.d.
(identically and independently distributed) assumption about
the data generating mechanism. When predicting yl+1, we can
estimate the ‘randomness’ (or ‘conformity’) of the sequence(
x1, y1

)
, . . . ,

(
xl , yl

)
,
(
xl+1 , Y

)
with respect to the i.i.d. model

for every possible value Y of yl+1. The prediction can be confi-
dent if and only if exactly one of these two (in the case of binary
classifications) sequences is typical.

If the randomness level can be computed, we can provide
an algorithm for making predictions complemented by some
measures of confidence and credibility. Let assume that we
have training set (x1, y1), . . . , (xl , yl) and test set xl+1, . . . , xl+k
(usually k = 1) and that our goal is to predict the classifi-
cations yl+1, . . . , yl+k for xl+1, . . . , xl+k, then we can do the
following:

1. Consider all possible values Y1, . . . , Yk for labels
yl+1, . . . , yl+k and compute (in practice, approximate)
the randomness level of every possible completion

(x1, y1), . . . , (x1, y1), (xl+1, Y1), . . . , (xl+k, Yk)

2. Predict the set Y1, . . . , Yk corresponding to the completion
with the highest randomness level.

3. Output as the confidence in this prediction one minus the
second largest randomness level.

4. Output as the credibility of this prediction the randomness
level of the output prediction Y1, . . . , Yk (i.e. the largest
randomness level for all possible predictions).
To illustrate the intuition behind confidence, let us choose

a conventional ‘significance level’ such as 1%. If the confidence
in our prediction exceeds 99% and the prediction is wrong, the
actual data sequence belongs to an a priori chosen set of prob-
ability less than 1% (namely, the set of all data sequences with
randomness level less than 1%). Low credibility means that either
the training set is non-random or the test examples are not repre-
sentative of the training set.

The randomness level can be approximated using the SVM
technique. Let us consider the problem of binary classification
with one test example. The basic idea of a support vector machine
is to map the original set of vectors into a higher dimensional fea-
ture space, and then to construct a linear separating hyperplane in
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this feature space. In SVM approach, we should select a separating
hyperplane with a small number of errors and a large margin by
finding the minimum of the objective function

1
2

(w · w) + C

( l∑

i=1

ξi

)
→ min (1)

subject to the constraints

yi((xi · w) + b) ≥ 1 − ξ , i = 1, . . . , l.

Here C is a fixed positive constant (maybe 8), w denotes the
weights, b is the intercept, and ξi stands for the non-negative
‘slack variables’.

As the mapping of the original set of vectors often leads
to a problem in dealing with a very large number of param-
eters, Vapnik (57) suggested reformulating the problem using
Lagrangian multipliers and replacing the original setting of the
problem by the dual setting: maximize a quadratic form

l∑

i=1

αi − 1
2

l∑

i,j=1

yiyjαiαj K(xi, xj ) → max

subject to the constraints

0 ≤ αi ≤ C, i = 1, 2, . . . , l.

Here, K is the kernel and the values αi, i = 1, . . . , l are the
Lagrangian multipliers corresponding to the training vectors. For
each non-zero αi the corresponding vector xi is called a support
vector. The number of support vectors is typically a small fraction
of the training set. If x is a new vector, the prediction ŷ is

ŷ = sign

( l∑

i=1

αiyiK(xi, x) + b

)
.

With every possible label Y ∈ {−1, 1} for xl+1, we associate
the SVM optimization problem for the l+1 examples (the train-
ing examples plus the test example labelled with Y). The solu-
tions (Lagrangian multipliers) α1, α2, . . . , αl+1, to this problem
reflect the ‘strangeness’ of the examples (αi being the strangeness
of (xi, yi), i = 1, . . . , l, and αl+1, being the strangeness of the
(xl+1, Y )). By using Lagrangian multipliers αi, we can approxi-
mate from below randomness deficiency. Gammerman et al. (58)
did that by introducing a function:
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p(z1, . . . , zl+1) = f (α1) + · · · + f (αl+1)
f (αl+1)(l + 1)

(2)

Here f is some monotonic non-decreasing function with
f (0) = 0 as an upper bound for the randomness level. The sug-
gested specific function f(α) was f (α) = sign α (that is, f (0) = 0
and f (α) = 1 when α > 0). Gammerman et al.’s method (58)
corresponds to using the SVM method for prediction and using
function [2] for estimating confidence and credibility. The αi
variables are non-negative and, in practice, only few of them are
different from zero (the support vectors). An easily computable
approximation of the randomness level is given by the p-values
associated with every completion (x1, y1), . . . , (xl , yl), (xl+1, Y ):

#{i : αi ≥ αl+1}
l + 1

.

So, the p-value is the proportion of α’s, which are at least as
large as the last α. It is possible to show that these p-values are
valid in the sense that they define a randomness test.

2.3.2. Predicting Plant
Promoters by TSSP-TCM
Program

To characterize promoter sequences, we use sequence content
and signal features that were found in our previous works as being
significantly different in promoter and non-promoter sequences
(see Table 5.1). For training, we used 132 TATA and 104 TATA-
less promoters. Forty genes with the TATA promoter anno-
tated and 25 genes with the TATA-less promoter annotated were
selected for the testing. All promoter sequences and other infor-
mation were taken from the PlantProm DB (15). As negative
samples (non-promoter sequences), 50,000 sequences of CDS
and 50,000 sequences of introns of plant genes annotated in Gen-
Bank were extracted. The accuracy of recognition is shown in
Table 5.5.

While testing on sets of promoter and non-promoter
sequences demonstrated a good classification accuracy of the sug-
gested approach, in practice we need to identify the most prob-
able promoter location in long genomic sequences. For test-
ing our recognition function on such sequences, we used the
genomic sequences of the same 65 test genes. The performance
of the TSSP_TCM program is presented in Table 5.6. For 35
of 40 TATA promoters (87.5%) and 21 of 25 TATA-less pro-
moters (84%), TSS very close to the known one was predicted.
For 29 TATA promoter genes (72.5%) and 14 TATA-less pro-
moter genes (67%), the distances between known and nearest
predicted TSS were 0–5 bp (Fig. 5.3). As upstream regions of
plant genes usually ∼2 kb, the developed approach having the
rate of true predictions ∼ 85% and one false-positive prediction
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Table 5.6
Prediction accuracy of TSSP-TCM on plant genomic sequencesa

Forty TATA promoters Twenty-five TATA-less promoters

False negatives 5 4

False positives 14 9
False positives’ density 1 per 5,375 bp 1 per ∼4,720 bp

aThe confidence level for prediction of both promoter classes was 95% or higher. The credibility level was ≥35%
for TATA promoters and ≥60% for TATA-less promoters. For every class of promoters only one predicted TSS with
highest credibility level in an interval of 300 bp was taken.
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Fig. 5.3. The distance between the experimental and the closest predicted TSS in base
pairs: a 35 (out of 40) genes with the annotated TATA promoters; b 21 (out of 25) genes
with the annotated TATA-less promoters.

in ∼ 4,000–5,000 bp can be successfully applied for identifying
promoters in plant genomes.

2.4. Prediction of
Bacterial Promoters

To identify discriminative features of bacterial promoter regions,
we searched for conserved sequences in a set of known promoters
from the Escherichia coli genome, which has the largest number
of experimentally verified promoters. This set was used earlier
in developing promoter prediction algorithm and described in
Gordon et al. (61). Five relatively conserved sequence motifs
represented by their weight matrices have been selected for a
bacterial promoter model. Two most conserved motifs corre-
spond to the well-characterized −10 and −35 sequence elements
of promoters regulated by sigma70 factors. The third motif
(upstream of the −35 box) with a length of 7 bp is searched in
the area [−60 to −40]; the fourth motif (downstream of −10
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block) with length 7 bp is searched in the area [−11 to +10]
and the fifth motif (between −35 and −10 boxes) has length
5 bp and is searched in the area [−31 to −22] of potential
promoter sequences. We applied linear discriminant analysis
to derive the recognition function for discrimination between
promoter and non-promoter sequences using as the ‘negative’
set of sequences from inner regions of protein-coding ORFs. We
also considered the distance between −10 and −35 elements
and the ratio of densities of octanucleotides overrepresented
in known bacterial transcription factor binding sites relative
to their occurrence in the coding regions. We used bacterial
functional sites collected in the DPInteract database (62).
The last feature was calculated similar to the one used in the
eukaryotic promoter recognition programs such as PromoterScan
(63) and TSSW (39). The linear discriminant function (LDF)
implemented in Bprom demonstrated a sensitivity 83% and a
specificity 84% in recognition of promoter and non-promoter
sequences not included in the learning set. Bprom could
be run at web servers of Royal Holloway (http://mendel.
cs.rhul.ac.uk/mendel.php?topic=fgen) and Softberry, Inc.
http://www.softberry.com/berry.phtml?topic=bprom&group=
programs&subgroup=gfindb) or in combination with a hundred
other bioinformatics software modules within the MolQuest
package developed for Windows, MAC OS and Linux oper-
ation systems (http://www.molquest.com). Bprom has been
used in numerous functional characterizations of bacterial
sequences (64–67).

To reduce the rate of false-positive predictions, we recom-
mend restricting prediction of promoters to the upstream regions
of predicted ORFs in the annotation pipeline. The predicted pro-
moters can help to refine the boundaries of operons as well.

2.5. Finding
Statistically
Significant
Regulatory Motifs

Depending on cell/tissue type, developmental stage and extracel-
lular signals (hormonal induction, stress, etc.) transcription fac-
tors (TFs) interact with their DNA-binding sites (regulatory ele-
ments, REs) and control gene expression. A gene expression pat-
tern is primarily determined by the architecture of the promoter
region including cooperativity and binding sites for alternatively
functioning multiple TFs (for review, see: 68–70). The identifica-
tion of REs is one of the critical steps in deciphering mechanisms
of transcription regulation. Although large collections of vari-
ous REs and corresponding TFs documented in several databases
(20, 23–25, 33, 71) have been experimentally identified, we are
extremely far from understanding a complex regulatory content
of promoter regions. Moreover, as the experimental identification
of TFs and their binding sites require enormous time and material
resources, computer methods for predicting REs have particular
significance.
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There are two major approaches to this problem. The first
one includes methods that identify REs based on available biolog-
ical knowledge. The second approach relies on comparative anal-
ysis of homologous sequences (54, 72–74). To search for REs,
most methods of the first type use real site consensus sequences
expressed in terms of the IUPAC ambiguous nucleotide code or
weight matrices (75–81). Pattern identification programs: SIG-
NAL SCAN (76), weight matrix-based approaches: ConsInspec-
tor (79), MatInspector (82) and MATRIX SEARCH (77) belong
to this group. There are more complex approaches also have been
applied to REs identification such as neural networks (83, 84),
hidden Markov models (85, 86) and machine-learning methods
(87). Benham (88) suggested detecting putative REs based on
the prediction of possible sites of DNA duplex destabilization.

To account for involving multiple TFs/REs in the transcrip-
tion regulation network, Kel et al. (89) created a COMPELL
database of composite REs affecting gene transcription in ver-
tebrates. Quandt et al. (80) have developed a software pack-
age GenomeInspector to detect potentially synergistic signals in
genomes. A number of other computer-assisted promoter recog-
nition methods devoted to the problem of combinatorial regula-
tion of transcription have been published (63, 90). Thakurta and
Stormo (91) reported a Co-Bind algorithm (Cooperative BIND-
ing) for discovering DNA target sites of cooperatively acting TFs.
At the same time for many promoter regions, information on their
REs is not available yet and more complex composite REs are still
remain to be discovered. In this connection, we should mention
a group of methods for computational discovery of novel motifs
(92–99; for a recent review, see: 100).

When we search for occurrence of functional motif in a
query sequence, we consider the best alignments of the motif
sequence with some of the sequence fragments. To assess whether
a given alignment constitutes evidence for potential function of
the aligned sequence, it helps to know how often such alignment
can be expected from chance alone. We have suggested a prob-
abilistic model to assess the statistical significance of the motif
similarity (101).

2.5.1. Estimating the
Statistical Significance
of RE Sequences

Let us search for a site in a random nucleotide sequence of length
N where the nucleotide frequencies are denoted by PA, PT(U), PG
and PC, respectively. If P1 = PA, P2 = PG , P3 = PT , P4 = PC ,
then the frequencies of the nucleotides of the other classes Pj (j =
5, . . . , 15) are determined as sums of frequencies of nucleotides
of all the types included to the j-th class.

Simple (one – block) site. Let us consider a site of length
L characterized by the values Nl(l = 1, . . .15), where Nl is the
number of nucleotides of the lth class belonging to the site and
N1 + N2 + . . .N15 = L.
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Let assume that the site has M conserved positions
characterized by the values Ml(l = 1, . . . , 14), where Ml
is the number of conserved nucleotides of the lth class
(M1 + M2 + . . .+ M14 = M ). Then k(k = 0, 1, . . .) mismatches
between the site and the segment of length L belonging to the
sequence under consideration are allowed only at L−M vari-
able positions. The number of mismatches between the consen-
sus and the DNA segment of the lth class, Rl(l = 1, . . . , 14),
should meet the following conditions: 0 ≤ R1 ≤ min(k, N1 −
M1), 0 ≤ R2 < min(k − R1, N2 − M2), . . ., 0 ≤ R14 < min K −
R1 − R2 − . . .− R13, N14 − M14).

Assuming binomial distribution for matches and mismatches,
the probability P(L−k) of detecting the segment (L, k) of length
L with mismatches in k variable positions between it and the site is

P( L, k) =
min(k,N1−M1)∑

Rl=0
. . .

min(k−R1−R2...R14,N14−M15)∑
R15=0

CR1
N1−M1

PN1−P1
1 (1 − P1)R1 . . .CR15

N15−M15
PN15−R15

15 (1 − P15)R15

[3]

In this case the expected number T̄ (L, k) of structures (L, k)
in a random sequence of length N is

T̄ (L, k) = P(L, k) × FL

Here FL is the number of possible site positions in the
sequence: FL = N − L + 1.

Let us assume that the mean number of motifs (L, k) in the
random sequence is less than 1 or close to it. Then the probability
of having precisely T structures (L, k) in the sequence may be
estimated using the binomial distribution:

P(T ) = CT
FL

PT (L, k)[1 − P(L, k)]FL−T . [4]

The probability of detecting in the sequence T structures with
k or less mismatches is

P(T ) =
k∑

z=0

CT
FL

PT (L, z)[1 − P(L, z)]FL−T . [5]

Now we can derive the upper boundary of the confidence
interval T0 (with the significance level q) for the expected number
of structures in the random sequence:

T0−1∑

t=0

P(t) < q and
T0∑

t=0

P(t) ≥ q [6]
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If the number of (L, k) structures detected in the sequence
meets the condition T ≥ T0, they can be considered as potential
functional sites with significance level q.

Composite (two – block) site. Let us consider a composite
site containing two blocks of lengths L1 and L2 at a distance
Dt (D1 < D < D2), i.e. D1 and D2 are, respectively, the minimum
and maximum allowed distances between the blocks). Let N1l
and N2l be the number of nucleotides of the lth class in the first
and second blocks, respectively (l = 1, . . . , 15). It is clear that
Nj1 + Nj2 + . . .+ Nj15 = Lj (j = 1, 2).

Let the first and second blocks have M1l and M2l conserved
positions of the nucleotides of lth class. Then the probability
P(Lj , kj ) of finding in random sequence the segment (Lj , kj ) of
size Lj differing in kj non-conserved positions from the jth block
of the site is calculated using equation [3] with the substitutions
of L, k, Nl and Ml by Lj, kj, Njl and Mjl(l = 1, . . . , 14; j = 1, 2),
respectively. The probability of simultaneous and independent
occurrence of the segments (L1, k1) and (L2, k2) in the random
sequence is

P(L1, k1, L2, k2) = P(L1, k1) × P(L2, k2) [7]

The number of possible ways of arranging the segments
(L1, k1) and (L2, k2) in the random sequence of length N is

F (L1, L2, D1, D2) = (D2 − D1 + 1)[N −L1−L2− D1 + D2

2
+1]

[8]
Thus, the expected number of structures (L1, k1, L2,

k2, D1, D2) is

T̄ (L1, k1, L2, k2, D1, D2) = F (L1, L2, D1, D2) × P(L1, k1, L2, k2)

The probability P(T) of detecting T structures
(L1, k1, L2, k2, D1, D2) in the random sequence is com-
puted using equations [4] and [5] with the substitutions of F
and P(L, k) by F (L1, L2, D1, D2) and P(L1, k1, L2, k2) given in
equations [7] and [8]. At last, using the obtained values P(T), the
upper boundary of the confidence interval T0 can be computed
from the conditions [6].

2.5.2. The Nsite, NsiteM
and NsiteH Programs
for Identification of
Functional Promoter
Elements

To search for regulatory motifs in human or animal genomic
sequences, we can use available collections of functional elements
such as TRANSFAC (102), TRANSCompel (33), TFD (20).
Analysis of plant genomic sequences can be done with Regsite
DB (http://linux1.softberry.com/berry.phtml?topic=regsite).
Applying the statistical model described above, we have devel-
oped a group of computer programs for identification of
statistically significant regulatory motifs including the Nsite,
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Table 5.7
Web software for gene, promoters and functional signals prediction

Program & task WWW address

Fgenesh
HMM-based gene prediction (human,

Drosophila, dicots, monocots, C. elegans,
S. pombe, etc.)

http://sun1.softberry.com/berry.phtml?topic=
fgenesh&group=programs&subgroup=gfind

Genscan
HMM-based gene prediction (human,

Arabidopsis, maize)

http://genes.mit.edu/GENSCAN.html

HMM-gene
HMM-based gene prediction (human,

C.elegans)

http://www.cbs.dtu.dk/services/HMMgene/

Fgenes
Discriminative gene prediction (human)

http://sun1.softberry.com/berry.phtml?topic=
fgenes&group=programs&subgroup=gfind

Fgenesh-M
Prediction of alternative gene structures (human)

http://sun1.softberry.com/berry.phtml?topic=
fgenesh-m&group=programs&subgroup=gfind

Fgenesh+/Fgenesh_c
Gene prediction with the help of similar pro-

tein/EST

http://sun1.softberry.com/berry.phtml?topic=
index&group=programs&subgroup=gfind

Fgenesh-2
Gene prediction using two sequences of close

species

http://sun1.softberry.com/berry.phtml?topic=
fgenes_c&group=programs&subgroup=gfs

BESTORF
Finding best CDS/ORF in EST (human, plants,

Drosophila)

http://sun1.softberry.com/berry.phtml?topic=
bestorf&group=programs&subgroup=gfind

FgenesB
Gene, operon, promoter and terminator predic-

tion in bacterial sequences

http://sun1.softberry.com/berry.phtml?topic=
index&group=programs&subgroup=gfindb

Mzef
Internal exon prediction (human, mouse, Ara-

bidopsis, yeast)

http://rulai.cshl.org/tools/genefinder/

FPROM/TSSP
Promoter prediction (human/animals, plants)
NSITE
Search for functional motifs

http://sun1.softberry.com/berry.phtml?topic=
index&group=programs&subgroup=promoter

Promoter 2.0
Promoter prediction

http://www.cbs.dtu.dk/services/Promoter/

CorePromoter
Promoter prediction

http://rulai.cshl.org/tools/genefinder/
CPROMOTER/index.htm

SPL/SPLM
Splice site prediction (human, Drosophila, plants,

etc.)

http://www.softberry.com/berry.phtml?topic=
spl&group=programs&subgroup=gfind

NetGene2/NetPGene
Splice site prediction (human, C. elegans, plants)

http://www.cbs.dtu.dk/services/NetPGene/

Scan2
Searching for similarity in genomic sequences

and its visualization

http://sun1.softberry.com/berry.phtml?topic=
scan2&group=programs&subgroup=scanh

RNAhybrid
Prediction of microRNA target duplexes

http://bibiserv.techfak.uni-
bielefeld.de/rnahybrid/
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NsiteM and NsiteH programs. Each of these programs performs
searches for motifs of human/animal or plant REs, depending on
the user’s choice.

The Nsite program searches for one- or two-boxes statistically
non-random REs using their sequences or consensuses in a
single or a set of query sequences.

The NsiteM program searches for statistically significant REs
motifs observed in a user defined percentage (default 50%)
of a set of homologous sequences. The last condition serves
as an additional criterion for selecting putative REs. As input
data, it requires two or more sequences in FASTA format.

The NsiteH program discovers RE motifs with a given conser-
vation level in a pair of aligned orthologous (homologous)
sequences. Sequences are aligned beforehand by the SCAN2
program (http://softberry.com/scan.html).

3. Conclusions

For the prediction of promoters and the analysis of regulatory
motifs, a wide array of programs are available through web servers
(Table 5.7). The current accuracy is still not enough for their
successful implementation as independent sub-modules to predict
promoters on the whole genome sequences. It would be wise to
use them in known or predicted upstream gene regions in com-
bination with gene-recognition software tools. Many promoter
prediction algorithms that use propensities of particular TF bind-
ing do not take into account the mutual orientation and posi-
tioning of these motifs. It would limit their performance, as the
transcriptional regulation is a highly cooperative process involv-
ing simultaneous binding of many transcription factors. To make
future progress in promoter identification, we need to study spe-
cific patterns of regulatory sequences, where definite mutual ori-
entation and location of individual regulatory elements are nec-
essary requirements for successful transcription initiation or its
particular regulation.
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Chapter 6

Motif Discovery Using Expectation Maximization
and Gibbs’ Sampling

Gary D. Stormo

Abstract

Expectation maximization and Gibbs’ sampling are two statistical approaches used to identify transcrip-
tion factor binding sites and the motif that represents them. Both take as input unaligned sequences
and search for a statistically significant alignment of putative binding sites. Expectation maximization is
deterministic so that starting with the same initial parameters will always converge to the same solution,
making it wise to start it multiple times from different initial parameters. Gibbs’ sampling is stochastic
so that it may arrive at different solutions from the same initial parameters. In both cases multiple runs
are advised because comparisons of the solutions after each run can indicate whether a global, optimum
solution is likely to have been achieved.

Key words: Expectation maximization, Gibbs’ sampling, transcription factor binding sites, motif
discovery, position weight matrices, position frequency matrices, regulatory sites, motif modeling.

1. Introduction

Frequently one can identify DNA segments that contain bind-
ing sites for specific transcription factors (TFs) but the resolution
is not sufficient to identify the exact binding site positions. For
example, one may have a set of genes that are controlled by a
common TF and therefore expect to find binding sites for that
TF in the regulatory regions of those genes. Depending on the
species this may localize the binding site to a region of about
100 base pairs (bp) in bacteria, to several thousand base pairs
(kbp) in higher eukaryotes. Another type of data is the physical
evidence of binding of the TF to a specific region of DNA. For
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example, chromatin-immunoprecipitation (ChIP) of DNA that is
cross-linked to a TF can be hybridized to an array (ChIP-chip)
or sequenced (ChIP-seq) to obtain regions that contain binding
sites (see Chapters 9, 10, and 11), and the resolution is often
a few hundred base pairs. One might also perform selections of
binding sites in vitro from random pools containing a large num-
ber of potential binding sites. Often the randomized regions are
on the order of 10–30 bp, large enough that the exact location
of the binding site may not be immediately obvious and some
alignment procedure is necessary to find them. In each of these
data sets the binding sites themselves are not precisely given, but
one only has regions of sequences that can be inferred to con-
tain them. In order to find the actual binding sites one employs
a model that describes the features of the binding sites and an
algorithm that attempts to find sites that conform to the model
and are statistically significant. The motif should represent the
specificity of the TF, and its high scoring occurrences in the set
of sequences are predicted to be the individual binding sites.
Figure 6.1 is an abstract view of this type of data. Each line repre-
sents a sequence, such as one of the genomic regions identified as
containing a binding site, and the thick segments within each line
represent the unknown positions of the binding sites. The goal of
motif discovery algorithms is to find the binding sites within the
DNA segments and, in the process, determine the parameters of
the motif that represent the specificity of the TF.

This type of problem has existed for many years, ever since
one could sequence DNA and wished to determine the impor-
tant features of regulatory sites. In the earliest days the seg-
ments containing the sites were generally quite short and there
was extensive experimental data available that allowed one to

Fig. 6.1. A general schematic of the motif finding problem. Each long thin line represents a single DNA sequence. The
dark segments within each line represent the binding sites whose positions are unknown in advance and we are trying
to discover.
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find the main features, such as the consensus sequence, “by eye”
(1, 2). Within a few years an algorithm was published to auto-
mate the process of discovering consensus sequences from col-
lections of unaligned DNA segments known to contain bind-
ing sites for a common factor (3). In the ensuing years many
other approaches for discovering consensus sequences for regu-
latory sites have been published [for example (4, 5)]. The prob-
lem is non-trivial because individual binding sites are all sim-
ilar to a consensus sequence but often have variations, which
require that the algorithms for finding them must tolerate mis-
matches. However, it was also discovered in those early days
that consensus sequences were limited in their ability to accu-
rately represent the features of regulatory sites. Not only are mis-
matches to the consensus sequence common, but different posi-
tions within the binding sites have different degrees of variabil-
ity, with some being highly conserved and others much less con-
served (6). A weight matrix model (or position weight matrix,
PWM) solves this problem by allowing different mismatches from
the consensus sequence to have different scores. First developed
using a discriminative learning procedure to find a PWM that
would score known regulatory sites higher than similar, but non-
functional sites (7), it was later used in a probabilistic model
where the base distributions of the known sites were used directly
in the PWM (8). Figure 6.2 shows an example of this approach.
Figure 6.2a is an aligned set of 10 binding sites for some TF.
Figure 6.2b is just the count of each base at each position in
the aligned set of sites, and Fig. 6.2c converts those directly to
frequencies, which are sometimes referred to as a position fre-
quency matrix (PFM). To convert to a PWM, in which the scores
at each position are added to give the score for the entire site,
the logarithms of the PFM elements are used in the PWM (8).
Figure 6.2d shows a modified version of the PFM in which +1
has been added to each of the counts of the matrix of Fig. 6.2b
before computing the frequencies because a small sample size may
not represent the true distribution [and to avoid assigning a value
to log(0)]. The use of PWMs for motif discovery was initially
developed using a progressive multiple alignment approach where
an alignment with maximum information content was sought (9).
Over the next few years new statistical approaches were intro-
duced and in the intervening years many different algorithms for
identifying TF binding motifs from unaligned DNA sequences
have been developed (10, 11). The purpose of this chapter is to
provide a primer on two important statistical methods, expec-
tation maximization and Gibbs’ sampling, that were initially
adapted for the purpose of motif finding in biological sequences
(both DNA and protein) by Charles E. Lawrence and colleagues
(12, 13).
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A.

ATTCCGA
ATCACAA
TTTACGA
ATTGCGG
ACTTCGA
ATTAGGA
GTTACGA
ACTACCA
GTCTCGA
ATTTTGA

B.

Pos: 1 2 3 4 5 6 7
A 7 0 0 5 0 1 9
C 0 2 2 1 8 1 0
G 2 0 0 1 1 8 1
T 1 8 8 3 1 0 0

C.

Pos: 1 2 3 4 5 6 7
A 0.7 0.0 0.0 0.5 0.0 0.1 0.9
C 0.0 0.2 0.2 0.1 0.8 0.1 0.0
G 0.2 0.0 0.0 0.1 0.1 0.8 0.1
T 0.1 0.8 0.8 0.3 0.1 0.0 0.0

D.

Pos: 1 2 3 4 5 6 7
A 0.57 0.07 0.07 0.43 0.07 0.14 0.71
C 0.07 0.21 0.21 0.14 0.64 0.14 0.07
G 0.21 0.07 0.07 0.14 0.14 0.64 0.14
T 0.14 0.64 0.64 0.29 0.14 0.07 0.07

Fig. 6.2. a Alignment of binding sites. b The count matrix that shows how many each
base (A, C, G, T) occurs at each position in the aligned sites. c The position frequency
matrix (PFM) that converts the count matrix to a probability matrix by dividing by the total
in each column. d An alternative PFM for the same data in which +1 has been added to
each of the elements of the matrix of part b. This prevents any of the elements of the
PFM from being 0 and may be important when the PFM is based on a small sample of
binding sites.

2. Methods

2.1. Expectation
Maximization

Expectation maximization (EM) is a general statistical procedure
that allows for inferences when working with incomplete or miss-
ing data (14, 15). Its use in motif discovery is easily described in
reference to Fig. 6.1. We assume that each of the sequences is
composed of two parts, a background genomic sequence and the
embedded binding site, and that those two parts have different
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statistical properties. The binding sites are modeled as a PFM, as
in the PFM of Fig. 6.2c, where the probability of observing a spe-
cific base depends on the position within the binding site. We refer
to the specific probability of a base at a position within a binding
site as P(b,i), where b is the base (A,C,G or T) and i is the position
(between 1 and l, the length of the binding site). We also assume
that the background can be described by an overall probability for
each of the four bases. We will refer to this probability at P(b,0)
where 0 refers to the base coming from the background sequence
rather than any of the positions in the binding site. In the sim-
plest case this would just be 25% each of A, C, G, and T, but may
be different in different species. It can probably be well estimated
just from the overall composition of all the sequences, especially if
the embedded binding sites make up only a small fraction of the
total sequence. Consider each of the following scenarios where
different information is available.

Scenario 1: If we had complete information, we knew P(b,i)
for the binding sites and P(b,0) for the background, and we were
also told where the binding site was located in each sequence,
then we could calculate the probability of the observed collec-
tion of sequences. For example, suppose we know that there is a
binding site at position J in the first sequence. Then the probabil-
ity for the l positions starting at J (J to J–l+1) would be product
of the P(b,i) values from the PFM for the bases at each position
in the binding site. All other positions in the sequence would
be assigned the probabilities from the P(b,0) distribution, and
the product of the probabilities of every base in the sequence
would be the product of those individual probabilities. And the
probability of the entire set of sequences would be the product
of the probabilities from each separate sequence. That value, by
itself, will not be very useful. Since all of the probabilities are <1,
and there are a very large number of bases in the entire data set,
the total probability of any particular data set will be exceedingly
small. But comparing different probabilities can be very useful,
especially if there is some uncertainty in the information we are
given.

Scenario 2: Suppose we are given the PFM for the bind-
ing sites, P(b,i), and P(b,0) for the background, but we are not
told where the binding site is in each sequence. We could con-
sider each possible position of the binding site, from J=1 to
J = L − l + 1 (if the entire sequence is L-long) and for each pos-
sible choice of J calculate the probability of the entire sequence.
A comparison of those probabilities will tell us which is the most
likely (highest probability) choice for the binding site position J.
And since each sequence is independent of the other sequences,
we could do that for each sequence separately to get the most
likely position of the binding site in each sequence and the prob-
ability of all the sequences assuming those binding sites.
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Scenario 3: Suppose instead we are given the binding site posi-
tions in each sequence, but we are given neither the PFM, P(b,i),
for the TF nor P(b,0). Now we could simply line up the bind-
ing sites, as we do in Fig. 6.2, to determine the PFM for the TF.
Then we would know everything, the same as in Scenario 1 above,
and we can calculate the probability of all the sequences with their
designated binding sites. In fact, it is easy to show that if we are
given the binding site positions, the most likely values of the PFM
(the values that create the highest probability for the entire set of
sequences) are obtained by the procedure of Fig. 6.2a–c.

Scenario 4: We are given only the sequences but neither the
PFM for the binding site (assume we are given its length l,
although this is not necessary) nor the binding site locations. We
now have the task of determining both the binding site locations,
J, in each sequence and the PFM for the TF, P(b,I), and the back-
ground probability P(b,0). This is the classic motif finding prob-
lem and the EM algorithm we now describe comes from (12).

Step 1: Make a guess for an initial PFM. In (12), the initial
PFM is derived by assuming all of the possible binding sites, every
position in every sequence, are equally likely to be the true bind-
ing site. The PFM is then obtained from an alignment of all possi-
ble binding sites, each weighted by 1/(L − l + 1) so that the sum
of the probabilities on each sequence equal 1. P(b,0) comes from
the overall probability of each base in all of the sequences. It is
possible that doing this would end up with equal probability of
each base at each position, so that P(b, i) = P(b, 0) for all i, in
which case there would be no information to use in the follow-
ing steps to distinguish between possible binding sites. But this
is highly unlikely and even a small divergence from equal proba-
bility can be used in the subsequent steps to increase the overall
probability.

Step 2: Given the P(b,i) and P(b,0) values from the previous
step, one calculates the probability of each sequence for all possi-
ble choices of the binding site, for J = 1 to L − l + 1. In general
some possible binding sites will now have higher probability than
the average and some will have lower.

Step 3: A new PFM is derived from the alignment of all pos-
sible binding sites, but each one weighted by its probability as
determined in Step 2. Because the individual sequences are no
longer equally weighted, the PFM, and the values of P(b,i), will
change after this step. The background probability is taken over
all of the bases in each sequence, but now weighted by the prob-
ability that they are not part of the binding site, which will lead
to new values for P(b,0).

Step 4: Repeat Steps 2 and 3 until convergence, when the val-
ues of P(b,i), P(b,0), and the predicted binding site probabili-
ties no longer change. The total probability of the sequences is
guaranteed by this procedure to increase after every step, until
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it finally converges. Regardless of the initial choice of the PFM,
this method converges to some answer, which includes the pre-
dicted binding sites and their associated PFM. However, there is
no guarantee that it will converge to the correct solution, or the
solution with the highest probability over all possible choices. It is
generally suggested that one starts the procedure, at Step 1, with
different choices of the initial PFM. If it always converges to the
same solution it is more likely to be correct than if it converges to
many different ones.

2.1.1. Further
Considerations

We started with the assumption that we knew the length of
the binding site, but usually this is not the case. We can rerun
the whole procedure with different choices and pick the one
with the highest probability. It is also true that we may get the
correct locations of the binding sites even if we do not know
the correct length exactly. In that case we can often determine
the correct length by aligning the sites after convergence and see
if there is significant non-randomness in the adjacent positions. If
so, use that length and rerun again to get the best model.

Since the choice of the initial PFM determines the final answer
(the method is deterministic), it not only makes sense to start it
with more than one initial guess, but any prior information that
can be used to improve that guess is useful. For example, in bac-
teria the binding site is most likely to be within about 100 bp of
the start of the gene, and so that region is used as the starting
sequence, but it is more likely to be closer than that so one might
weight the closer regions somewhat higher in the initial estimate
of the PFM. One may have reason to expect the protein binds as
a homodimer, a common occurrence in bacterial TFs, and there-
fore the PFM is likely to be symmetric. If the binding site is not
symmetric, it might occur in different orientations in different
examples, so one may need to consider both DNA strands in the
search for a common motif. If one knows the type of transcription
factor that is binding to the sites, for example, a zinc finger pro-
tein or a homeodomain protein, that provides information about
the type of motif being sought and an initial bias toward that
motif can help to find it (16). Other types of useful information
can be applied to increase the likelihood that the EM procedure
will converge to the correct solution (17).

The MEME program suite (17–20) implements the EM algo-
rithm with many options that may be useful. For instance, one can
specify that there may be more than one site per sequence. Or per-
haps one is concerned that some of the sequences have no binding
sites, so the program can be instructed to not require that every
sequence contribute a site to the estimate of the PFM. One can
run it to identify multiple motifs within the set of sequences, since
in many cases TFs act coordinately to control gene expression so
it would not be surprising to find more than one significant motif.
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And once motifs are found they can be used directly in the search
of genomic sequences to identify more predicted binding sites.

2.2. Gibbs’ Sampling The Gibbs’ sampling (13, 21) procedure has some similarities to
EM, but also some important differences. The most important
difference is that it is not deterministic but rather uses a ran-
dom sampling step. This means that multiple runs, starting with
the same initial parameters may end up in different solutions.
The practical consequence is that Gibbs’ sampling is less likely
than EM to get stuck in local optima and more likely to find
a global optimum if run long enough. It can still benefit from
multiple independent initializations, but it is better at exploring
the “search space” of possible solutions than is EM and therefore
more likely to find the best solution for the set of sequences. The
following steps, in parallel with the steps of EM, describe the basic
Gibbs’ sampling algorithm and its differences from EM.

Step 1: From the set of sequences, leave one out and from the
others choose a single site at random. If there are a total of N
sequences, this gives an alignment of N–1 sites, as in Fig. 6.2a.
From this set of sites one determines a PFM, but because N may
not be a large number it is important to add pseudocounts, as in
Fig. 6.2d, to avoid any of the P(b,i) values being 0. If N is large
the addition of a pseudocount of +1 has a very small effect, but
it can be critical if N is small. The pseudocount may be some-
thing other than +1 and it may be different for different bases, for
example, it may be proportional to the background probabilities
for each base, P(b,0), but the choice of +1 is fairly typical.

Step 2: Using the current PFM, calculate the binding proba-
bility of each potential site in the sequence that was left out. Since
this sequence did not contribute to the PFM the probabilities
of all its sites are independent estimates of binding probability,
given the current values of P(b,i). Rather than using the proba-
bility based on P(b,i) alone, one usually computes the probability
ratio for each potential site coming from the PFM versus coming
from the background model, P(b,0) (13). For computational effi-
ciency this can be done directly by converting the PFM to a PWM
by taking the logarithm of the ratio of the sites model, P(b,i), to
the background model, P(b,0) to get the PWM:

W (b, i) = ln
P(b, i)
P(b, 0)

and then summing W(b,i) over the positions of each potential
binding site, rather than multiplying the P(b,i) values of the
PFM (6).

Step 3: From the probability ratios for each potential bind-
ing site (from the log probability ratios if one uses the PWM)
one chooses a single site from the sequence where the choice is
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weighted by that probability ratio. That is, the higher the prob-
ability ratio the more likely a specific site will be chosen, but any
site within the sequence has some probability of being selected.
One of the sequences that was used in the previous step is now
left out, and its site, which contributed to the previous PFM, is
replaced by this new site. A new PFM is made from the alignment
of this current set of sites as in Fig. 6.2 (and a PWM if desired).

Step 4: Steps 2 and 3 are repeated as many times as desired.
Unlike EM this procedure does not converge, although it tends
to increase in score [generally a log-likelihood ratio score such
as “information content” (6, 13)] until reaching a plateau that it
fluctuates around. How long this takes is unknown, and indepen-
dent runs may take quite different times [see Fig. 3 of ref. (13)].
Usually the program is run multiple times for a fixed number of
steps each time and then the final results after each run are com-
pared. If they are all the same, or very similar, it has probably
found the global optimum, but if they are each different it could
be that none is really the optimum solution.

2.2.1. Further
Considerations

Variations of the basic Gibbs’ sampling approach have been devel-
oped by different groups, sometimes customized for specific types
of data [for example (22, 23)]. The basic Gibbs’ sampling pro-
cedure described can easily be extended to allow these multi-
ple sites per sequence, as well as looking for multiple different
motifs. Other constraints, as in the EM algorithm, can also be
applied, such as requiring symmetric sites. And similar to the EM
approach, prior information can be incorporated that biases the
initial PFM toward the expected motif which can increase the
likelihood of finding the correct solution.

3. Conclusions

EM and Gibbs’ Sampling are both powerful statistical methods
that are capable of identifying motifs and binding site de novo,
without any prior information. There is no guarantee that they
will succeed, either in finding the correct solution or in finding
the highest probability of all possible solutions. Multiple runs that
return the same solution are likely to be correct, but if many
different solutions are found perhaps none are correct. Prior
information of various types can be used to help find the correct
solution. And it is easy to look for multiple motifs that may corre-
spond to sets of factors that coordinately control gene expression.

Despite their usefulness, methods such as EM and Gibbs’
sampling may fail to find the correct solution or any significant
solution. This could be simply because the sequence set contains



94 Stormo

enough “incorrect data” (sequences that do not actually contain
binding sites) that the motif occurrence is not statistically signifi-
cant. It is also possible that the motif is present but does not con-
form to the PFM model. For example, the PFM model assumes
that the positions of the binding sites contribute independently to
the binding activity and that is an approximation that may or may
not be true (24). Another potential problem is that the probabil-
ity model of the PFM does not fit well and an energy model that
takes into account the non-linear relationship between binding
energy and binding probability is needed instead (25, 26). But
even in such cases one may be able to get a good approximation
to the true specificity of the factors being studied.

References

1. Pribnow, D. (1975) Nucleotide sequence of
an RNA polymerase binding site at an early
T7 promoter. Proc Natl Acad Sci USA 72,
784–788.

2. Rosenberg, M., and Court, D. (1979) Reg-
ulatory sequences involved in the promotion
and termination of RNA transcription. Annu
Rev Genet 13, 319–353.

3. Galas, D.J., Eggert, M., and Waterman, M.S.
(1985) Rigorous pattern-recognition meth-
ods for DNA sequences. Analysis of promoter
sequences from Escherichia coli. J Mol Biol
186, 117–128.

4. Pavesi, G., Mauri, G., and Pesole, G. (2001)
An algorithm for finding signals of unknown
length in DNA sequences. Bioinformatics
17(Suppl. 1), S207–S214.

5. Marschall, T., and Rahmann, S. (2009) Effi-
cient exact motif discovery. Bioinformatics
25, i356–i364.

6. Stormo, G.D. (2000) DNA binding sites:
representation and discovery. Bioinformatics
16, 16–23.

7. Stormo, G.D., Schneider, T.D., Gold, L.,
and Ehrenfeucht, A. (1982) Use of the ‘Per-
ceptron’ algorithm to distinguish transla-
tional initiation sites in E. coli. Nucleic Acids
Res 10, 2997–3011.

8. Staden, R. (1984) Computer methods to
locate signals in nucleic acid sequences.
Nucleic Acids Res 12, 505–519.

9. Stormo, G.D., and Hartzell, G.W., 3rd.
(1989) Identifying protein-binding sites
from unaligned DNA fragments. Proc Natl
Acad Sci USA 86, 1183–1187.

10. Das, M.K., and Dai, H.K. (2007) A survey of
DNA motif finding algorithms. BMC Bioin-
formatics 8(Suppl. 7), S21.

11. GuhaThakurta, D. (2006) Computational
identification of transcriptional regulatory

elements in DNA sequence. Nucleic Acids
Res 34, 3585–3598.

12. Lawrence, C.E., and Reilly, A.A. (1990) An
expectation maximization (EM) algorithm
for the identification and characterization
of common sites in unaligned biopolymer
sequences. Proteins 7, 41–51.

13. Lawrence, C.E., Altschul, S.F., Boguski,
M.S., Liu, J.S., Neuwald, A.F., and Wootton,
J.C. (1993) Detecting subtle sequence sig-
nals: a Gibbs sampling strategy for multiple
alignment. Science 262, 208–214.

14. Dempster, A.P., Laird, N.M., and Rubin,
D.B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. J R
Stat Soc. Ser B (Methodol) 39, 1–38.

15. Little, R.J.A., and Rubin, D.B. (2002).
Statistical analysis with missing data, 2nd
edn. Wiley, New York, NY.

16. Narlikar, L., Gordân, R., Ohler, U., and
Hartemink, A.J. (2006) Informative priors
based on transcription factor structural class
improve de novo motif discovery. Bioinfor-
matics 22, e384–e392.

17. Bailey, T.L., and Elkan, C. (1995) The value
of prior knowledge in discovering motifs with
MEME. Proc Int Conf Intell Syst Mol Biol 3,
21–29.

18. Bailey, T.L., and Elkan, C. (1994) Fit-
ting a mixture model by expectation max-
imization to discover motifs in biopoly-
mers. Proc Int Conf Intell Syst Mol Biol 2,
28–36.

19. Bailey, T.L., and Elkan, C.P. (1995) Unsu-
pervised learning of multiple motifs in
biopolymers using expectation maximization.
Mach Learn 21, 51–80.

20. Bailey, T.L. (2002) Discovering novel
sequence motifs with MEME. Curr Protoc
Bioinformatics Chapter 2, Unit 2.4.



Motif Discovery Using Expectation Maximization and Gibbs’ Sampling 95

21. Liu, J.S., Neuwald, A.F., and Lawrence,
C.E. (1995) Bayesian models for multi-
ple local sequence alignment and Gibbs
sampling strategies. J Am Stat Assoc 90,
1156–1170.

22. Roth, F.P., Hughes, J.D., Estep, P.W., and
Church, G.M. (1998) Finding DNA reg-
ulatory motifs within unaligned noncod-
ing sequences clustered by whole-genome
mRNA quantitation. Nat Biotechnol 16,
939–945.

23. Liu, X., Brutlag, D.L., and Liu, J.S. (2001)
BioProspector: discovering conserved DNA
motifs in upstream regulatory regions of co-

expressed genes. Pac Symp Biocomput 2001,
127–138.

24. Benos, P.V., Bulyk, M.L., and Stormo, G.D.
(2002) Additivity in protein-DNA interac-
tions: how good an approximation is it?
Nucleic Acids Res 30, 4442–4451.

25. Djordjevic, M., Sengupta, A.M., and
Shraiman, B.I. (2003) A biophysical
approach to transcription factor binding site
discovery. Genome Res 13, 2381–2390.

26. Zhao, Y., Granas, D., and Stormo, G.D.
(2009) Inferring binding energies from
selected binding sites. PLoS Comp Bio, 5,
e1000590.



Chapter 7

Probabilistic Approaches to Transcription Factor Binding
Site Prediction
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Abstract

Many different computer programs for the prediction of transcription factor binding sites have been
developed over the last decades. These programs differ from each other by pursuing different objectives
and by taking into account different sources of information. For methods based on statistical approaches,
these programs differ at an elementary level from each other by the statistical models used for individual
binding sites and flanking sequences and by the learning principles employed for estimating the model
parameters. According to our experience, both the models and the learning principles should be chosen
with great care, depending on the specific task at hand, but many existing programs do not allow the
user to choose them freely. Hence, we developed Jstacs, an object-oriented Java framework for sequence
analysis, which allows the user to combine different statistical models and different learning principles in
a modular manner with little effort. In this chapter we explain how Jstacs can be used for the recognition
of transcription factor binding sites.

Key words: Transcription factor binding sites, probabilistic models, generative learning, discrimi-
native learning.

1. Introduction

Hundreds of different computer programs for the prediction of
transcription factor binding sites have been developed over the
last decades. However, many of them yield contradictory predic-
tions, leading to long debates and a lot of frustration on the hall-
ways of many biology departments all over the world. One of the
reasons why there are so many different programs is that binding
of transcription factors to their binding sites, and unbinding from
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them, is an extremely complex process. Existing programs differ
by taking into account different aspects of that complexity, by
modeling the same aspects in a different manner, by taking into
account different sources of additional information, and by pur-
suing different objectives.

Programs for de novo motif discovery, for example, (1–6)
obtain as input a set of promoter sequences containing unaligned
binding sites of unknown binding motifs. In contrast, programs
for the recognition or classification of binding sites (7–13) are sup-
plied with sets of known binding motifs. Orthologous promoters
are used as additional information in approaches of phylogenetic
footprinting (14, 15) or phylogenetic shadowing (16) and expres-
sion data (6, 17) and/or ChIP-Seq data (18) can be used as valu-
able additional information, too.

In addition to these differences, programs for the prediction
of transcription factor binding sites often differ at an elementary
level by the statistical models used for individual binding sites and
flanking sequences and by the learning principles employed for
estimating the model parameters. Many existing programs for the
prediction of transcription factor binding sites do not allow the
user to choose the statistical models or the employed learning
principle. However, according to our experience, both should be
chosen with great care, depending on the specific task at hand.
Hence, we developed Jstacs (www.jstacs.de), an object-oriented
Java framework for sequence analysis, which allows the user to
combine different statistical models and different generative and
discriminative learning principles in a modular manner with little
effort.

In this chapter, we focus on the recognition of transcription
factor binding sites and explain step by step how Jstacs can be
used for this task. By choosing a simple example we illustrate
how models can be learned based on different learning principles,
how each of the model combinations can be evaluated based on
independent test sets, and how the resulting classifier can finally
be used for the prediction of binding sites of steroid hormone
receptors in human promoter sequences. We provide the com-
plete program combining all of the source code snippets used in
this chapter as well as example data sets as supplementary material
at www.jstacs.de/index.php/MiMB.

2. Software

All code examples are based on Jstacs, an open-source Java
framework for statistical analysis and classification of biological
sequences. Jstacs is easy to use and readily extensible due to its
strictly object-oriented design.
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Jstacs comprises an efficient representation and convenient
handling of sequence data and provides ready-to-use implementa-
tions of many statistical models for sequence data (Section 3.2).
These models can be learned generatively (Section 3.3) or dis-
criminatively (Section 3.4) and can be combined to constitute
classifiers. Jstacs comes with assessment methods which are used
for comparing different classifiers on test data sets or by hold-out
experiments. For evaluating classifiers, the user may choose from
several performance measures, e.g., sensitivity or specificity. Jstacs
also provides classes for de novo motif discovery spanning from
generative approaches using the EM algorithm (See Chapter 6,
This volume) to more recent discriminative (19, 20) discovery
algorithms.

Jstacs is capable of handling a great variety of data and is not
restricted to DNA sequences. Data sets are called Samples in
Jstacs and consist of a number of Sequences. For convenience,
we implement the class DNASample that allows to easily load data
sets comprising DNA sequences.

Jstacs comes not only with implementations of statistical
models for sequence analysis, which help experimentalists to ana-
lyze their data, but it is also based on an object-oriented infras-
tructure, which assists the implementation and assessment of new
models. To this end, Jstacs provides interfaces and abstract classes
for statistical models, e.g., AbstractModel, and classifiers, e.g.,
AbstractClassifier. New statistical models that implement
and extend the required interfaces and abstract classes may be
combined for obtaining a classifier without further implementa-
tion overhead. If that classifier extends a predefined abstract class,
it is ready to be trained and to be evaluated on given data and to
be used for classification of new data.

To get started with Jstacs, a Java Runtime Environment
(JRE)1 of at least version 5 is required. The easiest way to run
the example code is to download the Jstacs binaries, which are
publicly available at www.jstacs.de, and extract them into a direc-
tory of your choice. Download the example Java code file and
the data sets from www.jstacs.de/index.php/MiMB and follow
the instructions given in Getting started.

We present and explain parts of the example code in the
sequel. Line numbers in front of the code snippets allow to
quickly identify these parts in the example-code file, where also
detailed comments are supplied.

1 www.sun.com/java
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3. Methods

In this section we present some of the theoretical concepts for
probabilistic prediction of binding sites and demonstrate these
concepts using some of the basic functions of Jstacs. As a spe-
cific example we choose the prediction of binding sites of mam-
malian transcription factors – namely androgen receptors (AR),
glucocorticoid receptors (GR), and progesterone receptors (PR)
– from the family of steroid hormone receptors, which we refer
to as AR/GR/PR, in a set of human promoter sequences. Specif-
ically, we present how to load the training data of experimentally
verified AR/GR/PR binding sites into Jstacs and how to obtain
the binding motif of these sites using different learning princi-
ples. Subsequently we show how to evaluate the performance of
the resulting classifiers and how to perform the final recognition
of AR/GR/PR binding sites in human promoter sequences using
the resulting classifier.

3.1. Classification Taking a probabilistic approach to transcription factor binding site
prediction requires the definition of probabilities for each possible
sequence x = (x1, x2, . . . , xL) corresponding to a putative bind-
ing site of fixed length L, where each x� is from the alphabet
� = {A, C, G, T } of the four nucleotides A, C, G, and T. Our
goal is to distinguish binding sites – called foreground sequences
and abbreviated by fg – from flanking regions – called background
sequences and abbreviated by bg. Hence, we need likelihoods
P(x|c, θ) with parameters θ for the occurrence of a sequence for
both classes c ∈ C = {fg, bg}.

For classification it is common to use the Bayes classifier that
decides for class c∗ with

c∗ = argmax
c∈C

P(c|x, θ) = argmax
c∈C

P(c, x|θ) [1]

where P(c|x, θ) denotes the posterior probability of class c given
sequence x and parameters θ and where P(c, x|θ) denotes the joint
likelihood of class c and sequence x given parameters θ . In case
of two classes and a properly chosen threshold, this classifier is
equivalent to the likelihood ratio classifier, which decides for the
foreground if P(x|fg, θ)/P(x|bg, θ) exceeds a given threshold and
which decides for the background otherwise.

The main challenge for probabilistic approaches is to esti-
mate the likelihood P(x|c, θ). In addition, an estimation of the
class probability P(c|θ) is formally required, although is not crit-
ical in most applications. For classification, we are in the case
of supervised learning and are given a data set of N labeled
data points (xn, cn), which we denote by D = (x1, . . . , xN ) and
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c = (c1, . . . , cN ) in the following. The data points (xn, cn) are
assumed to be independent and identically distributed (i.i.d.)
according to the joint likelihood P(c, x|θ).

Approaches for obtaining these probabilities from a set of
training data differ mainly by the families of statistical models
(Section 3.2) chosen for the likelihoods P(x|c, θ) and by the
learning principle (Sections 3.3 and 3.4) chosen for estimating
the parameters θ of these models.

To solve any classification problem we need to handle data
sets. The package de.jstacs.data of Jstacs contains Java
classes to represent data. Here we use the class DNASample for
handling the foreground and background data, assuming that the
training sequences are stored in FastA-files foreground.fa and
background.fa:

________________________________________________

53 Sample fgData = new DNASample( "foreground.fa" );

54 Sample bgData = new DNASample( "background.fa" );

_________________________________________________

The data sets fgData and bgData are subsequently used for
training statistical models. Jstacs also supports plain text files and,
via the BioJavaAdapter, all formats and data bases accessible
from BioJava.

3.2. Statistical
Models

To characterize the distribution of binding sites, the prevalent sta-
tistical model is currently still the position weight matrix (PWM)
model (e.g. (7, 8), See Chapter 6, this volume). This model
assumes statistical independence of the nucleotides observed at
different positions. As a consequence, the likelihood of a sequence
decomposes as

P(x|fg, θ fg) =
L∏

�=1

P�(x�|fg, θ fg) [2]

where the parameter2 θ fg denotes the matrix of four rows and L
columns called PWM. Here, the matrix element in row 1, 2, 3,
or 4 and column � contains the probability of finding nucleotide
A, C, G, or T, respectively, at position � in the binding site of
length L (7, 8) (See Chapter 6, this volume). The index � in
P�(x�|fg, θ fg) emphasizes that these probabilities may vary from
position to position. Figure 7.1 shows the PWM of binding
sites of the AR/GR/PR-family and the corresponding consensus
sequence and sequence logo (21). The first three entries of row 1

2 Note that the parameters θ contain the parameters for each class, e.g., θ fg, θbg,
and the class probabilities.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A 0.14 0.44 0.26 0.25 0.23 0.05 0.01 0.05 0.11 0.01 0.14 0.23 0.26 0.24 0.30 0.31
C 0.53 0.13 0.21 0.22 0.30 0.02 0.02 0.04 0.25 0.97 0.12 0.29 0.15 0.26 0.23 0.21
G 0.17 0.16 0.21 0.13 0.23 0.03 0.92 0.00 0.11 0.00 0.00 0.20 0.29 0.28 0.24 0.22
T 0.16 0.26 0.32 0.39 0.24 0.90 0.05 0.91 0.53 0.02 0.74 0.28 0.30 0.22 0.23 0.26

C N N N N T G T T C T N N N N N

Fig. 7.1. Sequence logo, position weight matrix, and consensus sequence of the binding sites of the AR/GR/PR family.

of this PWM show that nucleotide A occurs with a probability of
0.14 at position 1, 0.44 at position 2, and 0.26 at position 3 of the
binding sites of the AR/GR/PR family. The consensus sequence
is composed of the consensus nucleotides, i.e., the nucleotides
with the highest probability at each position. Here, we replaced
consensus nucleotides with a probability of less than 0.5 by N.

As this strong assumption of independence is questionable in
general (4), inhomogeneous Markov models (iMMs) of higher
order have been used for modeling bindings sites (22, 23). In
these models the probability of observing a nucleotide at a given
position depends on nucleotides observed at previous positions.
This results in the likelihood:

P(x|fg, θ fg) =
L∏

�=1

P�(x�|x�−m�
, . . . , x�−1, fg, θ fg) [3]

where x�−m�
, . . . , x�−1 with m� = min{m, �− 1} defines the con-

text of at most m nucleotides on which the nucleotide at position
� depends on. The maximal length m of the context defines the
model order of the Markov model. Clearly, the PWM is an iMM
of order zero. Note 1 provides an intuitive justification and fur-
ther extensions of Markov models.

3.3. Generative
Learning Principles

Generative learning principles aim at an accurate description of
the probability distributions of binding sites and background
sequences. This may seem the only sensible way of estimating
model parameters, but we see in the next sections that other learn-
ing principles are conceivable and potentially superior in many
applications of binding site recognition.

3.3.1. Maximum
Likelihood Principle

The maximum likelihood (ML) principle is probably the most
popular learning principle (Chapter 5). It suggests to choose
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those parameters θ that maximize the joint likelihood P(D, c|θ)
of the labeled data set (D, c):

θ̂
ML = argmax

θ

P(D, c|θ) [4]

The estimate θ̂
ML

is used in rule (1) for the decision of the
classifier. Note that the parameters θ contain the parameters for
each class – according to the chosen family of distributions – and
the class probabilities.

If the parameters of different classes are assumed to be inde-
pendent, which is usually appropriate, maximization can be per-
formed for each class separately. In case of PWM models, ML
estimation amounts to counting frequencies of nucleotides in the

data set, i.e., the �th column of the ML estimate θ̂
ML
fg contains

the relative frequencies of the four nucleotides A, C, G, and T at
position �. For example, the AR/GR/PR data set contains 104
binding sites, out of which 15 binding sites start with an A, 46
binding sites have an A at position 2, and 27 binding sites have an
A at position 3, resulting in the relative frequencies 15

104 = 0.14,
46
104 = 0.44, and 27

104 = 0.26. Figure 7.1 contains the full 4 × L

matrix θ̂
ML
fg .

As with all estimation methods, care must be taken with
regard to overfitting, which is the effect of over-adaptation of the
estimated parameters to noise and/or randomness in the train-
ing data. Overfitting results in a weak ability of generalizing to
new data, i.e., of predicting transcription factor binding sites in
promoter sequences not used for training. In general, the risk of
overfitting increases with decreasing sample size and with increas-
ing model complexity. For a PWM model overfitting can easily be
understood for a case where at some position � some nucleotide
was not observed by chance in the training data set, resulting in an
estimated probability of zero for this nucleotide at this position.
This essentially “forbids” such sites, although they may not occur
in the training data just by chance. To alleviate this problem, often
pseudo-counts are added to the data.

3.3.2. Maximum A
Posteriori Principle

The maximum a posteriori (MAP) principle takes a Bayesian view
on parameter estimation. This learning principle employs a prior
density P(θ |α) for the parameters θ , which is used for represent-
ing prior knowledge or assumptions. The prior is chosen from a
family of distributions and α denotes the hyperparameters of the
prior. For the MAP principle, the objective is to choose those
parameters θ that maximize the posterior. Decomposing the pos-
terior yields

θ̂
MAP = argmax

θ

P(θ |D, c,α) = argmax
θ

P(D, c|θ)P(θ |α) [5]
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This shows that maximizing the posterior can be viewed as maxi-
mizing the data likelihood multiplied by the corresponding den-
sity of the parameters. Furthermore, the posterior can be inter-
preted as the knowledge we have about the parameters updating
the prior with the observed data. Note 2 presents more informa-
tion on Bayesian approaches.

If we choose the prior from the family of Dirichlet distri-
butions (Note 3) using consistent hyperparameters α (Note 4),
the resulting MAP estimator corresponds to using pseudo-counts
derived from a set of virtually observed pseudo-data. The amount
of pseudo-data used is called the equivalent sample size (ESS) and
determines the influence of the prior on the parameter estimate.
In analogy to the ML estimate of a PWM, the MAP estimate of
a PWM can be easily obtained from absolute frequencies of the
data plus pseudo-counts stemming from the prior distribution.
For more complex models the product-Dirichlet prior can be used
and allows alleviating the problem of overfitting (Note 4).

3.3.3. ML and MAP
Learning in Jstacs

The Jstacs package de.jstacs.models and its sub-packages
contain classes for models that can be trained genera-
tively. The class BayesianNetworkModel of the sub-
package de.jstacs.models.discrete.inhomogeneous
is a ready-to-use implementation of a Bayesian network. Inho-
mogeneous Markov models (Section 3.2), which we use for rep-
resenting foreground and background sequences, are special cases
of Bayesian networks.

In our example, we choose order 0 for the foreground
model and the background model, i.e., we decide for a PWM
model for both classes. We decide for MAP parameter estima-
tion with ESS = 4 for the foreground model and ESS = 1, 024
for the background model. For the foreground model, we create
a BayesianNetworkModelParameterSet, which is a con-
tainer of external model parameters, and which can be used for
instantiating a BayesianNetworkModel:

____________________________________________________
59 BayesianNetworkModelParameterSet pars =
60 new BayesianNetworkModelParameterSet(
61 fgData.getAlphabetContainer(),
62 fgData.getElementLength(), 4, "fg model",
63 ModelType.IMM, (byte)0, LearningType.ML_OR_MAP );

_____________________________________________________

External parameters are the alphabet, the length of the
sequences, the ESS, a description of the model, the type of
the model, and the order of the model. The last external
parameter determines how the parameters are estimated, where
LearningType.ML_OR_MAP indicates that the ML or the MAP
learning principle is used. If we set t the ESS to 0 instead of 4, we
obtain ML instead of MAP parameter estimation.
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We instantiate the foreground model by calling

_________________________________________________

69 Model fgModel = new BayesianNetworkModel( pars );

_________________________________________________

We construct the background model bgModel in analogy to the
foreground model. Details are given in the example code file.

As described above, we can estimate the parameters of the
foreground model, the background model, and the a priori prob-
abilities of the classes independently of each other. While we could
perform these steps by hand, Jstacs provides a convenient imple-
mentation in the class ModelBasedClassifier of package
de.jstacs.classifier.modelBased.

______________________________________________

85 ModelBasedClassifier cl =
86 new ModelBasedClassifier( fgModel, bgModel );

______________________________________________

A ModelBasedClassifier is a subclass of Abstract
Classifier. As such it has a method train(Sample...),
which can be used for training the models as well as the class
probabilities.

____________________________________________

87 cl.train( fgData, bgData );

____________________________________________

The variable cl now holds a classifier that comprises a gen-
eratively trained PWM model as foreground model and a
generatively trained PWM model as background model. We
can next assess the classification performance of that classifier
(Section 3.5.3) or we can use it for recognizing binding sites
(Section 3.6).

3.4. Discriminative
Learning Principles

Discriminative learning principles (Note 5) have been introduced
to bioinformatics in the last decade as a promising alternative to
generative learning principles. While the latter aim at an accurate
representation of the probability distributions of the data in each
of the classes, discriminative learning principles focus on an accu-
rate discrimination of the data.

3.4.1. Maximum
Conditional Likelihood
Principle

The maximum conditional likelihood (MCL) principle (19, 24)
is the discriminative analog of the ML principle. It suggests to
choose those parameters θ that maximize the conditional likeli-
hood P(c|D, θ):

θ̂
MCL = argmax

θ

P(c|D, θ) [6]
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The maximization of the conditional likelihood is motivated
by the classification rule (1) and the MCL principle was suc-
cessfully applied to the classification of biological sequences
(25, 13).

Solving this maximization problem is more involved than for
the ML and MAP principles. First, maximization cannot be per-
formed for the classes independently. Second and more severely,
optimization cannot be done analytically for many popular fami-
lies of distributions including Markov models. For Markov mod-
els considered in this chapter, numerical methods converging to
the global maximum are available for a properly chosen param-
eterization of the Markov model and its prior distribution (e.g.,
(19)). A sensible choice of the initial values of the parameters are
the corresponding generative estimates, which are called plug-in
parameters in Jstacs. In general, the resulting numerical methods
are computationally more demanding than the analytical solution
in the generative setting.

3.4.2. Maximum
Supervised Posterior

The effects of overfitting due to limited data may be even more
severe when using the discriminative MCL principle compared
to the generative ML principle (24). To overcome this problem,
the maximum supervised posterior (MSP) principle has been pro-
posed as another discriminative learning principle (20). The MSP
principle suggests to choose those parameters that maximize

θ̂
MSP = argmax

θ

P(c|D, θ ,α)P(θ |α) [7]

Comparing this equation [7] to equation [6], we see that the
MSP principle is the Bayesian analog of the non-Bayesian MCL
principle. Comparing equations [7] to [5], we see that it can
also be interpreted as the discriminative analog of the generative
MAP principle, because the supervised posterior is defined as the
product of the conditional likelihood [6] and the prior P(θ |α).
As for the MAP principle, prior knowledge on the parameters is
introduced via the distribution P(θ |α) and again frequencies of
zero are compensated for. The remarks made with regard to opti-
mization for the MCL principle apply to the MSP principle as
well.

Figure 7.2 summarizes the four learning principles described.

non-Bayesian Bayesian
Generative ML MAP
Discriminative MCL MSP

Fig. 7.2. The tableau distinguishes the four learning principles introduced with regard
to the generative or discriminative objective and with regard to the use of prior
knowledge.
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3.4.3. MCL and MSP
Learning in Jstacs

In Section 3.3.3 we have seen how Jstacs can be used for
creating a BayesianNetworkModel. The discriminative
counterpart of that model is the BayesianNetworkScoring
Function located at de.jstacs.scoringFunctions.
directedGraphicalModels. In analogy to the instantiation
of a BayesianNetworkModel, we first define the external
parameters of the foreground model:

__________________________________________________

92 BayesianNetworkScoringFunctionParameterSet parsD =
93 new BayesianNetworkScoringFunctionParameterSet(

94 fgData.getAlphabetContainer(),

95 fgData.getElementLength(), 4, true,

96 new InhomogeneousMarkov( 0 ) );

__________________________________________________

where true in line 95 indicates that we use plug-
in parameters for initializing the parameters. Using new
InhomogeneousMarkov(0) results in an inhomogeneous
Markov model of order 0, i.e., a PWM model, and the remaining
parameters have the same meaning as in the generative case. We
use these parameters for instantiating the foreground model by

______________________________________________

13 BayesianNetworkScoringFunction fgFun =
14 new BayesianNetworkScoringFunction( parsD );

______________________________________________

We instantiate the background model bgFun accordingly with
ESS = 1, 024 instead of 4. Details can be found in the example
code file.

We combine these models in a MSPClassifier of package
de.jstacs.classifier.scoringFunctionBased.msp,
which learns the parameters of the models by the discriminative
MSP principle. To instantiate this classifier, we specify its external
parameters by

_______________________________________________

112 GenDisMixClassifierParameterSet clPars =
113 new GenDisMixClassifierParameterSet(

114 fgData.getAlphabetContainer(),

115 fgData.getElementLength(),

116 Optimizer.QUASI_NEWTON_BFGS, 1E-6, 1E-6, 1,

117 false, KindOfParameter.PLUGIN, true, 1 );

_______________________________________________

where QUASI_NEWTON_BFGS, 1E-6, 1E-6, 1 define the
method for numerical optimization and parameters thereof.
KindOfParameter.PLUGIN indicates that we want to use
plug-in parameters for the class probabilities as well.
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We instantiate the classifier from these parameters by

_________________________________________________

125 MSPClassifier cll = new MSPClassifier(

126 clPars, new CompositeLogPrior(), fgFun, bgFun );

_________________________________________________

where new CompositeLogPrior() may be replaced by
null for obtaining the MCL principle.

We can now train this classifier in analogy to the generative
case by calling

_______________________________________________

133 cll.train( fgData, bgData );

_______________________________________________

which starts the numerical optimization and results in an discrim-
inatively trained classifier. In Section 3.5.3 we show how the clas-
sification performance of such a classifier can be assessed and in
Section 3.6 we show how it might be used for the recognition of
binding sites.

3.5. Comparison of
Models and Learning
Principles

In the previous sections, we considered Markov models of differ-
ent orders on the one hand and different learning principles on
the other. However, we do not know in advance which combina-
tion of models and learning principle is best for a certain problem
and a certain data set. Hence, we typically scrutinize the perfor-
mance of different classifiers – using different pairs of models and
different learning principles – on the specific data set using several
performance measures and we strongly recommend this approach
to everyone working on the recognition of transcription factor
binding sites.

3.5.1. Performance
Measures

All performance measures considered in this chapter can be
derived from the confusion matrix. The general schema of a con-
fusion matrix is depicted in Fig. 7.3. Given that the data are

Actual
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fg TP = 51 FP = 959 p̄ = 1,010

bg FN = 1 TN = 27,556 n̄ = 27,557

p = 52 n = 28,515 N ′ = 28,567

Fig. 7.3. Confusion matrix. The entries of the matrix are computed for PWM models on
the AR/GR/PR data set using a classification threshold of 1, corresponding to a threshold
of 0 on the log-likelihood ratios.
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partitioned into a training and a test data set and that a classi-
fier has been learned on the training data set, we use this classifier
for predicting the class of each of the sequences in the test data
set. Subsequently we determine the number of correctly classi-
fied sequences from the foreground class (true positives, TP) and
background class (true negatives, TN) as well as the number of
sequences classified incorrectly as belonging to the foreground
class (false positives, FP) or background class (false negatives,
FN). The sum TP + FN is equal to the number of foreground
sequences p, FP + TN is equal to the number of background
sequences n, TP + FP is the number of sequences p̄ classified into
the foreground class, and TN + FN is the number of sequences n̄
classified into the background class. Finally, p + n = p̄ + n̄ = N ′
is the size of the test data set.

It is important to note that the class labels of the data points
in the training and the test data set do not reflect some absolute
truth, but only some relative truth based on currently available
experiments. For example, if a set of sequences is partitioned into
those that are bound by a given transcription factor and those that
are not, then this partitioning is based on some data set, for exam-
ple, some set of ChIP-Seq data. However, these data are intrin-
sically noisy, containing both biological and technical variation.
Hence, the foreground set of ChIP-Seq-positive sequences is typ-
ically contaminated by some sequences that are not bound by the
immuno-precipitated transcription factor and vice versa. Hence,
class labels do not correspond to biological reality, but strictly
speaking they correspond only to currently available experimen-
tal observation. In case of ChIP-Seq data, the degree of cross-
contamination is still quite high, which often leads to frustratingly
low classification performance.

Based on the entries of the confusion matrix, several perfor-
mance measures can be computed:

• Classification rate cr = TP+TN
N ′ is the percentage of correct

predictions (27,607
28,567 = 0.9664 in the example).

• Sensitivity Sn = TP
p = TP

TP+FN is the percentage of fore-
ground sequences correctly predicted (0.9898).

• Positive predictive value ppv = TP
p̄ = TP

TP+FP is the percent-
age of correct predictions among the sequences predicted as
foreground (0.0505).

• Specificity Sp = TN
n = TN

FP+TN is the percentage of correctly
predicted background sequences (0.9664).

• False-positive rate fpr = 1 − Sp is the percentage of erro-
neously predicted background sequences (0.0336).

From the confusion matrices for different thresholds
(Section 3.1), we can compute pairs of Sn and fpr, which can
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Fig. 7.4. ROC curve (left) and PR curve (right) for PWM models on the AR/GR/PR data set. The cross on the ROC curve
illustrates the pair of Sn and fpr for a threshold of 0 on the log-likelihood ratios, corresponding to the confusion matrix
presented in Fig. 7.3, and the cross on the PR curve illustrates the corresponding pair of ppv and Sn. The ROC curve is
biased by the unbalanced sizes of the foreground and background data set, yielding a spuriously inflated area under the
ROC curve close to 1, whereas the PR curve gives a more realistic view on the performance of the classifier.

be used for plotting a receiver operating characteristic (ROC)
curve. Another view on the classification performance can be
obtained by plotting ppv against Sn resulting in the precision–
recall (PR) curve. Examples for both curves are given in Fig. 7.4.
On first sight, the ROC curve indicates an almost perfect classi-
fication. However, the test data set contains approximately 600
times as many background sequences as foreground sequences,
which strongly biases the ROC curve (see also Note 6). In con-
trast to the ROC curve, the PR curve reveals that ppv decreases
by approximately the same amount as Sn can be increased. Hence,
in cases of very unbalanced data sets, the PR curve is a more ade-
quate measure of classification performance.

If a large number of classifiers need to be compared, the visual
comparison of curves is not always manageable. In this case, it is
helpful to aggregate the ROC and PR curves into scalar values
by computing the areas under the curves, denoted by AUC-ROC
and AUC-PR, respectively. Note 6 contains additional recom-
mendations regarding performance measures.

3.5.2. Cross-Validation
and Holdout Sampling

Data are limited for many applications in bioinformatics. This is
especially true for transcription factor binding sites, where typi-
cal data sets of verified binding sites comprise 20–250 sequences,
although chromatin immunoprecipitation combined with next
generation sequencing produces several thousand low-confidence
sites. For such small data sets a simple approach of splitting all data
available in training and test data does not yield reliable results.

Here we discuss two approaches for a reliable assessment
of classifiers on small data sets. The first approach is a k-fold
cross-validation: partition the data set into k non-overlapping
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parts of approximately the same size. Successively use each of the
k data sets for testing and train the classifier on the remaining
k−1 data sets. Finally, average the performance measures of the
results over the k folds. The maximum possible number k of cross-
validation folds is the number of sequences in the data set, which
results in a leave-one-out cross-validation.

Another approach is holdout sampling: randomly partition
the data set into a training and a test data set, comprising, for
example, 90 and 10% of the original data set, respectively. Use
the training data set to train the classifier and test its performance
on the test data set. Repeat this procedure k times and average
the performance measures over the k runs. Holdout sampling
allows the possibility of choosing a large number k of repetitions
even for small data sets. However, it cannot be assured that each
sequence is used exactly once for testing, which is the case for
cross-validation.

For cross-validation as well as holdout sampling, it is recom-
mended to partition the data in a stratified manner, i.e., to assure
that the proportion of foreground and background sequences
remains approximately the same for the training and the test
partition.

3.5.3. Assessment of
Classifiers in Jstacs

First, we demonstrate how to assess an already trained classi-
fier on a separate test data set. To this end, each subclass of
AbstractClassifier including ModelBasedClassifier
and CLLClassifier contains a method evaluateAll.

We first choose the desired performance mea-
sures by instantiating MeasureParameters of package
de.jstacs.classifier:

___________________________________________________
175 MeasureParameters mp =
176 new MeasureParameters( true, 0.999, 0.95, 0.95 );

___________________________________________________

where 0.999 is the fixed Sp for computing Sn and the two values
of 0.95 correspond to the fixed Sn for computing fpr and ppv,
respectively (Note 6).

Next we call the evaluateAll-method on the trained
classifier cl on the foreground and background test data sets
fgTest and bgTest.

_____________________________________________

183 ResultSet rs =
184 cl.evaluateAll( mp, true, fgTest, bgTest );

185 System.out.println(rs);

_____________________________________________

We obtain a ResultSet as a container for the performance
measures, which can be printed using standard methods. An
example output is depicted in Fig. 7.5. In this case, the



112 Posch et al.

0.9664 = Classification rate (...)
0.5577 = Sensitivity for fixed specificity (...)
3.9974 = Threshold for sensitivity (...)
...
0.9942 = Area under ROC curve (...)
0.4770 = Area under PR curve (...)
[table] Receiver operating characteristic curve (...)
[table] Precision recall curve (...)

Fig. 7.5. Output of the evaluation of a classifier. The last two entries indicate that the
ROC curve and the PR curve have been computed in the evaluation.

ResultSet also contains the points of the ROC and PR curves,
which can be directly plotted using R (26) from within Jstacs,
resulting in the plots of Fig. 7.4. The example-code file contains
helpful comments for setting up communication between R and
Jstacs.

The package de.jstacs.classifier.assessment
contains classes for cross-validation and holdout sampling. In the
following we decide for a 1,000-fold stratified holdout sampling.
Again, we must first define the external parameters

_________________________________________________

230 RepeatedHoldOutAssessParameterSet parsA =
231 new RepeatedHoldOutAssessParameterSet(

232 Sample.PartitionMethod.PARTITION_BY_NUMBER_OF

_SYMBOLS,

233 fgData.getElementLength(), true, 1000,

234 new double[]{ 0.1, 0.1 } );

_________________________________________________

where Sample.PartitionMethod.PARTITION_BY_
NUMBER_OF_SYMBOLS indicates that we want to measure the
size of the partitions by the number of symbols, 1,000 is the
number of repetitions, and the array of doubles defines the rela-
tive size of the sampled foreground and background test data sets.

We assess the performance of the classifiers cl and cll by
calling

________________________________________________________
240 RepeatedHoldOutExperiment exp =
241 new RepeatedHoldOutExperiment( cl, cll );
242 ListResult lr = exp.assess( mp, parsA, fgData, bgData );
243 System.out.println( lr );

________________________________________________________

where mp are MeasureParameters as before. By printing the
ListResult to standard out, we obtain a table of the classifiers
and corresponding values of the performance measures. We can
use these results for comparing the performance of different
classifiers.

As an example, we present the results of a 1,000-fold strati-
fied holdout sampling on the AR/GR/PR data set in Fig. 7.6. We
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Fig. 7.6. Results of a 1,000-fold stratified holdout sampling for PWM models on the
AR/GR/PR data set. The parameters of the PWM models have been trained by the
ML, MAP, MCL, and MSP learning principle. Whiskers indicate the two-fold standard
error. While we find no significant differences regarding ppv, we find a just significantly
improved performance of the classifier learned by the MSP principle on this data set
considering the area under the PR curve.

compare the performance of PWM models learned by the genera-
tive ML and MAP learning principles as well as the discriminative
MCL and MSP learning principles considering ppv and AUC-
PR as performance measures. We find no significant differences
regarding ppv, but we find a significantly improved performance
of the classifier learned by the MSP principle on this data set con-
sidering AUC-PR (Note 7). These results suggest we use such
a classifier for recognizing new AR/GR/PR binding sites in the
next section.

3.6. Recognition The final goal is to predict transcription factor binding sites
in some set of genomic regions such as promoters of dif-
ferentially expressed genes, regions bound by one or several
TFs obtained by ChIP-Chip or ChIP-Seq experiments, or con-
served regions of orthologous promoters of evolutionarily related
species. Here, we consider the specific example of predicting
the putative binding sites of the AR/GR/PR-family of tran-
scription factors in a set of human promoter sequences, each
of length 500 bp, obtained from the human promoter database
(http://zlab.bu.edu/mfrith/HPD.html). Since PWM models
learned by the MSP principle achieved the best performance
of the classifiers we studied (Section 3.5), we now use such a
classifier for recognizing AR/GR/PR binding sites. The cho-
sen classifier cll has a method getScore(sub,class), which
returns a score for sequence sub belonging to class class. Here
class=0 means foreground and class=1 means background.

We load the promoter sequences into Jstacs and compute the
log-likelihood ratio for each sub-sequence of length 16 bp of each
promoter sequence.

________________________________________________________
258 Sample promoters = new DNASample( "human_promoters.fa" );
259
260 for( Sequence seq : promoters ){
261 for(int l=0;l<seq.getLength()-cll.getLength()+1;l++){
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262 Sequence sub = seq.getSubSequence( l, cll.getLength() );
263 llr = cll.getScore( sub, 0 ) - cll.getScore( sub, 1 );
264 out.print( llr + "\t" );
265 }
266 out.println();
267 }

____________________________________________________________

In this example, we consider only the forward strand of
the promoters. The same analysis can be repeated for
the backward strand, if we replace getSubSequence by
reverseComplement. The log-likelihood ratios are printed
for further analysis. In Fig. 7.7, we present a plot of the log-
likelihood ratios for a sub-sequence of one of these promoter
sequences. We apply a threshold of 2 in this example and pre-
dict one potential occurrence (“CATTTTGTCCTAAACA”) of
a putative AR/GR/PR binding site within this sub-sequence.
Comparing this occurrence to the sequence logo of Fig. 7.1 we
find that this occurrence is in good accordance with the motif
of the AR/GR/PR-family. Interestingly, despite its large log-
likelihood ratio, this putative binding site cannot be found by
searching for the consensus sequence, as it does not match the
consensus “T” at position 9 of the motif.
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Fig. 7.7. Plot of the log-likelihood ratios for a sub-sequence of a promoter sequence, where the log-likelihood ratios for
each sub-sequence of length 16 bp, which is the length of AR/GR/PR binding sites, are plotted above its first nucleotide.
If we apply a classification threshold of 2 (horizontal line), we recognize one putative AR/GR/PR binding site (boldface
letters). The position of this binding site is determined by the log-likelihood ratio at its first nucleotide (from 5′ to 3′ end)
and the length of AR/GR/PR binding sites.

4. Notes

1. One way of understanding inhomogeneous Markov models
(Section 3.2) is to start with the standard factorization of
an arbitrary distribution P(x), where we omit the class and
parameters for brevity:

P(x) = P1(x1)
L∏

�=2

P�(x�|x1, . . . , x�−1) [8]
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This factorization holds for arbitrary distributions, whereas
an iMM(m) restricts the context to a maximal length of m
nucleotides. This may tempt us to use large model orders m
for capturing all potential dependencies. However, the num-
ber of parameters increases exponentially with the model
order m, resulting in difficulties in estimating the parameters
from data due to overfitting (Section 3.3.1). To overcome
this problem, variable order Markov models have been intro-
duced in (27) and applied to DNA and protein sequence
analysis, e.g., in (28, 29). The idea is to shorten the context
in those cases where the training data suggest that a longer
context does not contain “strong additional” dependencies.

Depending on the problem at hand a shortcoming of
iMMs is the strict sequential order imposed on the depen-
dencies. Generally this is appropriate for time series, but
not obviously for binding sites (4, 9). Bayesian networks
(BNs) (30) do not suffer from this limitation. BNs allow,
for each position � = 1, . . . , L, statistical dependencies on an
arbitrary set of other positions as long as no cycles of sta-
tistical dependencies are induced. Alternatively this can be
understood by first imposing a suitable permutation on the
L positions of the sequence, applying the standard factoriza-
tion, and choosing for each position appropriate predeces-
sors to which statistical dependencies are allowed. Examples
of applications to sequence data are (4, 12, 31). The web
server VOMBAT available at https://www2.informatik.uni-
halle.de:8443/VOMBAT/ allows the recognition of tran-
scription factor binding sites based on variable order Markov
models and variable order Bayesian trees (32, 33).

2. The MAP principle introduced in Section 3.3.2 is some-
times called the first level of Bayesian analysis and sometimes
not considered truly Bayesian. Loosely speaking, this contro-
versy stems from the fact that the MAP principle uses only
the location of the maximum of the posterior and ignores all
other information of the posterior. To exploit all information
of the posterior, the classification rule of [1] can be adapted
as follows:

c∗ = argmax
c∈C

P(c|x, D, c, α)

= argmax
c∈C

∫

θ

P(c, x|θ)P(θ |D, c, α) dθ

[9]

Here, the decision takes not only one, but all of the possible
parameter values into account, and weighs the class proba-
bilities accordingly for making a decision.
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3. For the MAP and MSP learning principle (Sections 3.3.2
and 3.4.2), a prior density P(θ |α) is needed that represents
the prior knowledge or assumptions about the parameters
θ . In case of inhomogeneous Markov models including the
PWM model (Section 3.2), a popular prior is the product-
Dirichlet prior defined as a product of Dirichlet densities.
For a PWM model it is a product of L four-dimensional
Dirichlet densities with hyperparameters α equal to the
pseudo-counts mentioned in Section 3.3.2. The extension
of the product-Dirichlet prior to inhomogeneous Markov
models of higher order and to more complex models such as
variable order Markov models, Bayesian networks, or vari-
able order Bayesian networks (Note 1) is straightforward.

4. The values of the hyperparameters α for the product-
Dirichlet prior should be chosen with care, as they can
strongly influence the recognition and thus all subsequent
results. Fortunately, there is an intuitive interpretation of the
hyperparameters of a product-Dirichlet prior.

The sum of all α�,a of position � is called equivalent sample
size and denoted by ESS. Often, it is beneficial to use hyper-
parameters α that satisfy the consistency condition (34, 35),
resulting in an identical ESS at each position. Under this
condition, each hyperparameter α�,a can be interpreted as
the – possibly real valued – amount of pseudo-data observed.
The product-Dirichlet prior cannot be used for different
Markov models without further premises, since these models
differ in the number of parameters. Building on the consis-
tency condition, it is advisable to use hyperparameters that
represent uniform pseudo-data in order to avoid artificial
biases (34) that favor certain models over others. The gen-
eral assumption of uniform pseudo-data does not prevent
different ESS in different classes and this freedom can and
should be used for representing different a priori class prob-
abilities.

5. Discriminative learning approaches have a long tradition in
bioinformatics. For example, the first application of weight
matrices in bioinformatics (7) employs a discriminative
learning algorithm called perceptron algorithm. The weight
matrix of (7) contains integer values instead of probabilities
as it is the case for discriminatively trained PWMs. Another
very popular example for discriminatively learned classifiers
are support vector machines (SVMs) (36). SVMs aim at find-
ing a number of support vectors, i.e., examples of the training
data, which define a hyperplane separating the foreground
and the background class. Although SVMs achieve good per-
formance for many sequence classification tasks (e.g., (37)),
their parameters are less easy to interpret than those of the
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probabilistic approaches presented in this chapter. However,
the interpretability of SVMs has been improved lately using
so-called positional oligomer importance matrices (POIMs)
(38).

6. The entries of the confusion matrix and, consequently, the
point measures cr, Sn, ppv, Sp, and fpr, depend on the
threshold (Section 3.1) used for classification. By varying
the threshold, it is trivial to yield, e.g., a sensitivity of one,
where all sequences are classified as binding sites, obviously
at the price of a specificity of zero. Hence, one typically
chooses the threshold in such a way that one of the per-
formance measures is fixed to a predefined value and then
reports the resulting value of a second performance mea-
sure. For example, we may choose the threshold such that
the specificity is fixed to 0.999 and then use the sensitivity
as performance measures, which quantifies the sensitivity if
one false prediction per 1,000 negative sequences is allowed.
Another common example is to use the false-positive rate
for a fixed sensitivity of 0.95, which quantifies the amount
of false positives if 95% of the binding sites are predicted
correctly.
Not all measures are suited for unbalanced test data sets. For
example, the test data set may comprise 9,900 background
and 100 foreground sequences. We can easily achieve a cr
of 0.99 if we classify all sequences into the background class
without considering sequence information. A similar prob-
lem can be encountered for the ROC curve, which is also
dominated by a large number of background sequences.
Consider the case of Section 3.5, where the test data set
comprises 600 times as many background sequences as fore-
ground sequences. Assume that we achieve Sn = 1 for some
threshold, i.e., all foreground sequences in the test data set
are classified correctly. Further assume that for the same
threshold we observe for each correct positive prediction on
average 10 additional, however, incorrect, positive predic-
tions. This would result in an fpr of approximately 0.0167
for an Sn of 1, although we would consider the classification
result as far from perfect.

In such cases, measuring the ppv or the PR curve is more
adequate for quantifying differences in the performance of
classifiers.

7. Irrespective of the value of k chosen for cross-validation or
holdout sampling, the obtained results depend on the cho-
sen data sets, and typically the results vary substantially from
data set to data set. Hence, we recommend to not rely on the
error bars obtained from cross-validation or holdout sam-
pling of only one data set, but to repeat all studies on several



118 Posch et al.

different data sets. The choice of appropriate data sets, how-
ever, is a highly non-trivial task and due to the condition that
the final results strongly depend on the chosen data sets we
recommend this choice to be made with great care and in a
problem-specific manner. This choice is typically influenced
by a priori knowledge on both the expected binding sites
and the targeted genome regions. Examples of features that
are often considered when choosing appropriate data sets are
the GC content of the target region, their association with
CpG islands, or their size and proximity to transcription start
sites.
Carefully choosing appropriate training and test data sets
is of additional advantage if the set of targeted genome
regions is not homogeneous, e.g., comprising both GC-rich
and GC-poor regions, CpG islands and CpG deserts, TATA-
containing and TATA-less promoters, upstream regions with
and without binding sites of another transcription factor.
In this case, one often finds that different combinations of
models and/or different learning principles work well for
different subgroups, providing the possibility of choosing
subgroup-specific prediction approaches. These considera-
tions are vital for a successful prediction of transcription fac-
tor binding sites, but beyond the scope of this chapter, so
we choose only one foreground data set and only one back-
ground data set in the presented example. Specifically, we
choose the data set of second exons used for training the
PWM models of Transfac, implying that the specific results
obtained in Section 3.5 are probably optimistic.
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Chapter 8

The Motif Tool Assessment Platform (MTAP)
for Sequence-Based Transcription Factor Binding Site
Prediction Tools

Daniel Quest and Hesham Ali

Abstract

Predicting transcription factor binding sites (TFBS) from sequence is one of the most challenging
problems in computational biology. The development of (semi-)automated computer-assisted predic-
tion methods is needed to find TFBS over an entire genome, which is a first step in reconstructing
mechanisms that control gene activity. Bioinformatics journals continue to publish diverse methods for
predicting TFBS on a monthly basis. To help practitioners in deciding which method to use to predict for
a particular TFBS, we provide a platform to assess the quality and applicability of the available methods.
Assessment tools allow researchers to determine how methods can be expected to perform on specific
organisms or on specific transcription factor families. This chapter introduces the TFBS detection prob-
lem and reviews current strategies for evaluating algorithm effectiveness. In this chapter, a novel and
robust assessment tool, the Motif Tool Assessment Platform (MTAP), is introduced and discussed.

Key words: Transcription Factor Binding Sites (TFBS), prediction algorithms, assessment tools,
Motif Tool Assessment Platform (MTAP).

1. Introduction

Transcription factors and other regulatory proteins bind to DNA
primarily around the transcription start site, interact with RNA
polymerase, and then facilitate or inhibit transcription of the gene.
Most transcription factors bind to DNA at sequence-specific posi-
tions along the chromosome, called transcription factor binding
sites (TFBS). The (partially) conserved sequence pattern found
at several sites bound by the same transcription factor is called
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a motif. Motifs co-occur near transcription start sites for genes
that are regulated by the same transcription factor. Many com-
putational approaches have been developed to find conserved
motifs in the regulatory regions upstream of genes that have sim-
ilar expression patterns. Computational approaches complement
experimental approaches because they are less labor intensive and
costly. In addition, a predictive computational model is very use-
ful when experimental data are limited.

1.1. TFBS Detection
Problem

In prokaryotes, given a set of genes that are differentially
expressed, i.e., partially controlled by the same set of transcrip-
tion factors, the TFBS identification problem is to mark conserved
patterns in the regulatory regions of the differentially expressed
genes. The patterns can be represented as a set of k-mers (words
of length k) or as a Position Specific Scoring Matrix (PSSM)
among others. When the pattern is represented as a set of k-mers,
the objective function to be minimized is the number of mis-
matches in the set of words such that there exists a binding site in
close proximity to the transcription start site for each differentially
expressed gene. When the pattern is represented as a PSSM, the
objective is to maximize the probability that a PSSM of a given
length co-occurs in the promoters of each of the differentially
expressed genes (1).

Regardless of the approach taken to represent motifs at the
binding sites, practitioners must balance a set of complex trade-
offs when building tools to solve the TFBS detection problem.
Hence, in the detection process, motif representation is the first
step. After motifs are represented, all possible motif instances in
the differentially expressed promoters are indexed. Then, a dis-
tance function is used to discriminate motif instances that exist
in the promoters of the differentially expressed genes but do
not exist in background sequence. Finally, likely matches are
extracted, ranked, and reported.

Currently, there are almost 200 tools to find TFBS motifs
given a set of differentially expressed genes. For the current
list, refer to http://biobase.ist.unomaha.edu/mediawiki/index.
php/Main_Page. For many practitioners, the most pressing ques-
tion is ‘what prediction tool should I use?’ Experts in the field
commonly recommend running a set of tools and manually com-
paring the outputs. This has some merit, but a more formal
methodology is needed to rank tools for different problem char-
acteristics.

1.2. Algorithm
Evaluation

One way of choosing the most appropriate tool for a specific
problem is to run each possible tool on a related problem where
there is experimental evidence. The experimental evidence can
then be used as a standard to measure tool predictive perfor-
mance. Ideally, one would just run each tool as a black box to
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Fig. 8.1. Evaluating TFBS discovery algorithms. a First, all known regulatory regions from a genome are assembled into
a database. We then apply a reduction function, t, over all regulatory elements to determine a set of co-bound regulatory
sequences (a). Function t uses evidence from ChIP-chip, ChIP-seq, or a TFBS database to include only regions bound
by transcription factor i. The result of this pruning is shown in B. This results in n subsets B1, B2, . . ., Bn one for each
transcription factor. For each regulatory subset (Bi) we apply additional functions, h1, h2, . . ., hn, to collect background
sequence data, to collect the orthologous regulatory regions in other genomes. These sequences are then fed into the
prediction pipeline (D), which calculates the background probability of a pattern in the sequences in (a) and from any
other sequences collected in (c). The pipeline then generates a set of predictions corresponding to possible binding sites.
Prediction positions are marked in a standard format shown in (e).

mark TFBS and then compare the TFBS predictions with the
known binding sites found in the database. The most appropriate
tool for a problem is one that correctly predicts the largest per-
centage of known binding sites (true positive predictions) while
at the same time marking the least amount of non-sites, regions
that have similar sequence composition to known motifs but are
not known to be bound by a transcription factor (false-positive
predictions).

Each prediction algorithm requires multiple and different
stages in order to make a prediction. Each stage corresponds
to a unique added value implemented by the method. Some
methods implement novel approaches for modeling background
sequences, other methods implement cross-species conservation
models, while others include data from other sources such as
expression arrays. Thus, diverse TFBS prediction algorithms can-
not be treated as black boxes with the same input and outputs.
Evaluation of several different TFBS detection methods requires
that we build pipelines for all methods. These pipelines allow
access to all of the same data sources and standardize the outputs
so that they can be compared (Fig. 8.1). Once the predictions
are generated from all of the tools, statistics are collected that
measure the number of overlaps found between predictions and
known TFBS.

2. Materials

The software discussed in this chapter, Motif Tool Assessment
Platform (MTAP), was implemented in Python, C/C++, Java,
and Perl. A large assortment of languages was used because
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many effective algorithm techniques from other authors are
included in the MTAP download and are implemented in
several different languages. MTAP is open source, free, and
community supported. Enhancements are welcome. A com-
munity supported list of known TFBS finding algorithms
can be viewed at http://biobase.ist.unomaha.edu/mediawiki/
index.php/Main_Page. MTAP and a User’s Manual can also be
downloaded from this site. The installation of MTAP, due to its
complex dependencies, is far from being trivial as described in
Note 1. For running MTAP, see Note 2.

3. Methods

3.1. Algorithms The central challenge in evaluating how well tools predict TFBS
is collecting data sets that in some way constitute a meaningful
representation of a (small) part of the transcription regulatory
networks. It is likely that the large number of prediction tools
exists primarily because the problem is difficult to pose. Despite
this, computational predictions have proven useful in narrow-
ing the search space for many known TFBS. Recently, databases
have been developed that contain binding site information for a
large number of transcription factors. High-throughput sequenc-
ing technologies and high-density micro-array-based technologies
enable the construction of such TFBS databases. One applica-
tion of these databases is to use it as a source of comparison
with prediction algorithms, which should enable refinement of
the tools and models used for TFBS prediction. The ability to
accurately evaluate how well TFBS prediction algorithms corre-
spond to TFBS databases is critical to understanding the faults of
current methods and possible avenues for improvement.

3.2. TFBS Databases As experimental evidence mounts, TFBS locations have been col-
lected and entered into regulatory databases. Significant progress
has been made identifying regulatory genes, signaling path-
ways, and transcription factor binding sites. Pathways responsi-
ble for a wide variety of cellular processes have been identified
in Escherichia coli, Bacillus subtilis, yeast, worms, fruit flies, sea
urchins, zebra fish, frogs, chicken, mice, and humans, just to
name a few. The most substantial progress in constructing multi-
cellular organism regulatory maps has been with the sea urchin
embryo (2), the characterization of the dorsal–ventral patterning
of early Drosophila embryo (3), and the detailed map of Ciona
intestinalis (4).
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The E. coli regulatory map (5) has been built by combining
the work of Shen-Orr et al. (6), the curators of RegulonDB (7)
and the maintainers of EcoCyc (8). This unique annotation con-
tains a large network topology representing current understand-
ing of gene regulation in E. coli K12. The annotation includes
binding positions derived from experimental evidence for E. coli
K12 regulatory proteins. Transfac (9), DBTBS (10), RegTrans-
Base (11), and Prodoric (12) are all examples of TFBS databases
that have been developed in recent years to annotate the regula-
tory network in other organisms.

A standard for annotating binding sites is still emerging. In
most databases, a TFBS is annotated in a database with a start
position, end position, and strand information. Some databases
contain additional information such as the genes regulated, the
protein family of the transcription factor, and the type of reg-
ulation (e.g., activation or repression). The information found
in these databases has not been standardized. Consequently,
many useful properties such as the strength of the interaction
between the transcription factor and the binding site are not avail-
able. Some databases differentiate between DNA regions that are
bound by transcription factor and those that lie between interact-
ing sites. Despite the need for protein–DNA interaction informa-
tion in protein structure data, few databases incorporate structure
data in the annotation. The structure and representation of TFBS
information in the database limit the accuracy of TFBS detec-
tion. Many researchers currently believe that even the most com-
prehensive databases miss many sites, especially those with weak
interactions. Some researchers build synthetic data sets to circum-
vent these issues, but these approaches are limited by the level
of fidelity of synthetic test representing the biology of transcrip-
tion factor binding. Appropriate evaluation metrics are essential
for determining the type and structure of data that should be cat-
aloged to improve TFBS prediction.

3.3. Core Evaluation
Statistics

Algorithm performance is evaluated by comparing the positions
of predicted sites to the positions of known sites. For each posi-
tion marked, seven core statistics are collected. The first four core
statistics, shown in Table 8.1, are nTP – nucleotide true pos-
itives, nFN – nucleotide false negatives, nFP – nucleotide false
positives, and nTN – nucleotide true negatives. They are collected
by adding the number of each occurrence for each position in the
regulatory regions.

The site-level statistics (sTP – site true positives, sFN – site
false negatives, and sFP – site false positives) are the final three
core statistics. A site-level statistic encompasses the idea that a
group of adjacent nucleotides, marked as binding positions for
a specific transcription factor, is representative of a binding site
annotation (Fig. 8.2). A site is a true positive if the prediction
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Table 8.1
Nucleotide-level statistics. ui,j is the upstream
regulatory sequence j at position i

Statistic Definition

nTP ui,j is both annotated and predicted

nFN ui,j is annotated but not predicted
nFP ui,j is predicted but not annotated

nTN ui,j is neither annotated nor predicted

Fig. 8.2. The seven core statistics collected to assess the accuracy of TFBS detection tools.

overlaps the annotation by no less than τ percent (a threshold) of
the site. Site true negatives (sTN) represent any collection of adja-
cent bases that are not predicted or annotated to be a site. The
total number of such sites grows as a triangular number (13).
However, once a site is annotated or predicted, all possible over-
lapping sites can no longer be marked a sTN. This makes sTN less
meaningful because it can increase or decrease depending on the
number of predictions and annotations in the data set. In prac-
tice, it is best to set this number sufficiently large so that it is
always greater than sTP, sFN, and sFP and always positive and
consistent regardless of the number of predictions and annota-
tions in the regulatory regions. Our convention sets this value
to the length of all sequences in the upstream set, nTP + nFN +
nFP + nTN divided by the number of sequences in the co-bound
set. We then subtract the number of predictions and annotations



The MTAP for Sequence-Based Transcription Factor Binding Site Prediction Tools 127

Table 8.2
Site-level statistics

Statistic Definition

sTP Number of known sites overlapped by predicted sites

sFN Number of known sites not overlapped by predicted sites
sFP Number of predicted sites not overlapped by known sites

sTN sTN = nTP+nFP+nFN+nTN
Number Sequences − sTP − sFN − sFP

from this total when calculating statistics. This ensures that sTN
will always be a strictly positive number that is independent of the
number of predicted and annotated sites. The site-level statistics
are shown in Table 8.2.

When evaluating site-level statistics, setting the value of the
threshold τ is important. Tompa et al. (14) set τ to 25%. Assum-
ing this overlap, if an experimentalist were to remove the site,
a change in expression should be observed. In some organisms,
such as bacteria, this threshold is too strict because the width of
known binding sites is too large for some tools to ever achieve
a sTP. Many motif discovery programs have fixed motif widths
(e.g., 8 base pairs), a threshold of 25% would not be sufficient
to mark sTPs (e.g., an annotated site of width 60 and a site pre-
diction of length 8). Site-level motifs could be ranked based on a
percentage of the prediction width instead of the motif width in
the annotated database, but this would give an unfair advantage
to methods that predict larger sites. In the example benchmarks in
this chapter, τ is set equal to the maximum annotated site width
in the data set divided by the minimum expected motif width
predicted by the suite of programs times 25%. A degree of over-
lap indicates that computational and biological refinement of site
predictions can still find the site. Table 8.3 illustrates the seven
core statistics collected for algorithm evaluation.

Table 8.3
Statistics for evaluating motif prediction algorithm implementations

Sensitivity xSN = xTP
xTP+xFN [1]

Specificity nSP = nTN
nTN+nFP [2]

Positive predictive value xPPV = xTP
xTP+xFP [3]

Matthews correlation coefficient nCC = nTP∗nTN−nFN ∗nFP√
(nTP+nFN )(nTN+nFP)(nTP+nFP)(nTN+nFN )

[4]

Correlation coefficient xPC = xTP
xTP+xFN+xFP [5]

Site-level average site performance sASP = sSN+sPPV
2 [6]
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For each transcription factor, a set of regulatory regions n
bases upstream of the controlled genes is collected, and each
of the seven core statistics is collected for each of the upstream
regions. Note that a given tool will be run for each set of co-
bound regulatory regions separately but that the annotation is
considered only once. For example, consider a set of regulatory
regions bound by two transcription factors, A and B. A and B
cooperate in the same regulon to control a set of genes X (those
genes only controlled by A), Y (those genes controlled by both
A and B), and Z (those genes only controlled by B). Consider
the set of regulatory regions collected to calculate the TFBS for
A (regulatory regions for X and Y). Predictions from regulatory
regions regulating Y that overlap B’s TFBS can be marked as false
positives because they predict a TFBS other than the protein of
interest.

The allowed prediction threshold indicates how many TFBS
predictions are allowed by a tool. TFBS predictions come in sets
and each set represents a highest scoring representative of bind-
ing sites for one transcription factor. In many cases, the highest
scoring representative is just a sequence that happens to co-occur
in the co-bound regulatory sequences and is not representative
of a TFBS. For this reason, practitioners often accept more than
one prediction. Allowing more predictions than one from a tool
has the advantage that more true sites can be detected and tools
can then better represent the combinatorial and co-operative reg-
ulatory cellular interactions that often occur. Varying the allowed
prediction threshold has dramatic impacts on tool performance
characteristics.

3.4. Derived
Evaluation Statistics

More advanced metrics for performance evaluation can be cal-
culated from the seven core statistics. Tompa et al. (14) recom-
mended the six informative statistics shown in Table 8.3. Each of
these statistics has its merit and is informative in different ways,
depending on the objectives of the assessment. It is difficult to
build tools that have high sensitivity and specificity. The sensitiv-
ity/specificity trade-off and the Matthews correlation coefficient,
nCC (nCC takes values −1 to 1 with 0 representing not corre-
lated), are often viewed as an overarching measurement for per-
formance.

There are two central problems in the TFBS databases used
for evaluation. First, most data sets are incomplete, since many
TFBS are not annotated in the data set. The best way to avoid
misleading scoring of a TFBS detection method is to construct a
data set that is as complete as possible to diminish the possibility
of false positives. The second problem shows up when a method is
over-fit to the known data repositories. Over-fitting occurs when
the method training set and testing set are too similar. Because so
little data have been available on TFBS, many methods have been
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optimized to find binding sites that have already been discovered.
It is impossible to say how well tools will detect unknown binding
sites in the future.

In the machine learning community, cross-validation is often
used in supervised learning problems. Leave one out cross-
validation refers to training of an algorithm on a subset of the
available data and testing on the subset of the data that is left
out. Leave n out cross-validation refers to an iterative training
and testing process where the data are partitioned into many sets.
At a given stage in the cross-validation process a subset of the data
is either used for training or testing. All sets are eventually used
for both training and testing. The benchmark of algorithm per-
formance is constructed from combining the values from multiple
benchmarks on each partition of the data set dedicated to testing.
In the context of new algorithm development, MTAP can be used
in either of these ways. Historically, most algorithm developers
did not view the TFBS detection problem as a supervised learn-
ing problem; instead it was viewed as an unsupervised learning
problem. In other words, tool developers did not divide known
TFBS instances into testing and training sets, actually, most often
a training set did not exist. Instead, the goal was to build methods
that could discover the first TFBS with the eventual goal of con-
structing large data sets for supervised learning. Most often, this
was because of the lack of known TFBS. It is impossible to deter-
mine what TFBS influenced tool developers in the development
process and should therefore be discarded in evaluation metrics.
The most common goal of MTAP is to rank tools on a particular
data set given a recommended runtime procedure recommended
by the tool author. The data set used in this evaluation is assumed
to be independent from the data used by the algorithm developer
to construct the technique.

3.5. Combining,
Viewing, and
Evaluating Data Sets

Once each tool is run over data sets D = {d1, d2, . . .}, the results
need to be illustrated in a meaningful way. There is an ongo-
ing discussion on the best approach. Tompa et al. (14) proposed
three methods for combining the results into one graph. Sandve
et al. (15) proposed a method for evaluating results based on how
well instances of the motif conform to known binding models.
We proposed a method based on ROC (receiver operating char-
acteristic) curves for combining and evaluating data sets and rela-
tive performance graphs for viewing data sets relative performance
over a suite of tools. This chapter covers five known statistics for
each data set in D.:

(1) Arithmetic mean. The arithmetic mean of M scores is calcu-
lated after the derived statistics are calculated for each data
set in D.

(2) Normalized. For each data set in D, normalize the score
by subtracting the mean score over all tools then divide
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by the standard deviation. Combine scores by calculating
the arithmetic mean of M normalized scores. Note that this
procedure is called standardization in statistics.

(3) Combined. For each data set in D add nTP, nFP, nFN,
nTN, sTP, sFP, and nFN as if it were one data set. Calculate
the derived statistical measures over the summed totals.

(4) Relative Performance Graph. Do not combine the M
scores. Construct a graph with each data set along the
X-axis and relative performance of the T tools along the
Y-axis. Construct one graph for each derived statistics.

(5) Receiver Operating Characteristic (ROC) Graph. Deter-
mine an algorithm parameter P. Vary P so that algorithm
sensitivity continues to increase while 1–specificity contin-
ues to decrease. The area under the curve (AUC) is an abso-
lute measure of performance, comparable across methods.

Over most derived statistics, Mean, Average, Normalized and
Combined summing methods correlate reasonably well on cur-
rent data sets (14, 16). Figure 8.3 shows the predictions of five
different motif prediction methods. Therefore, none of those
methods reported false positives on this region. When a tool fails
to make predictions over a large number of regions like this,
it appears (unfairly) that the tool is specific in locating bind-
ing sites because the number of false positives is small. On the
other extreme, many tools tend to predict nearly the entire region
instead of localizing to the TFBS. Thus, when reading the derived
statistics it would appear that such methods are sensitive, when
they are in fact predicting large contiguous regions of binding
sites. For this reason, genome-wide comparisons of binding sites
and predicted sites serve as an important sanity check when eval-
uating statistics.

ROC curves are excellent for comparing the sensitiv-
ity/specificity trade-offs of a single parameter (16). ROC curves
track the performance of an algorithm over changes over a sin-
gle parameter. Traditionally, ROC curves have been applied to
changing internal algorithm parameters from tight thresholds to
more lenient thresholds. This produces a ROC curve that travels
straight up and then to the right when the algorithm corresponds
exactly to the data set. Algorithms that poorly represent the prob-
lem or problems that are ill-conceived produce a curve that will
travel straight to the right and then up. Random predictions pro-
duce a diagonal line.

We applied ROC analysis to (1) the width of the regulatory
regions taken upstream of the gene, (2) the class (protein family)
of transcription factor, (3) internal algorithm prediction param-
eters, and (4) cross-species regulatory region extraction tech-
niques. The methods presented here provide insights into the
overall trends but some information is lost. Generalization is dif-
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ficult since some data sets consist of a few examples, while others
have motif instances in the hundreds; some motif instances are
highly conserved while others contain a great variability.

3.6. Results This section presents three illustrative example results of bench-
marks that can be generated using a robust database of almost all
transcription factor binding sites in the cell and several TFBS pre-
diction methods. Figure 8.4 illustrates derived statistics summed
via the combined method introduced in the previous section. For
each transcription factor in RegulonDB, all TFBS were used to
create D = {d1, d2, . . .} where D represents the series of all

–0.2 0 0.2 0.4 0.6 0.8 1 1.2

ANN-Spec

AlignACE

Gibbs

Glam

Elph

MEME

Mitra

MotifSampler

Weeder

E1: Statistics for 9 Methods  Run E. coli K12 (All TFBS)

nSn

nSP

sASP

sSn

nPPV

sPPV

nPC

nCC

Fig. 8.4. Derived statistics for nine regulatory motif detection methods.
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tests and d1, d2, . . . each represent a set of co-bound genes, each
bound by the same transcription factor. Pipelines were developed
for nine different TFBS detection methods and run over D and
predictions compared to RegulonDB annotations to determine
the core statistics. Each tool was allowed to make three predic-
tions for a single transcription factor. All of the tools in Fig. 8.4
illustrate performance profiles that could be improved. Mitra (17)
is an example that, at the thresholds in this example, is sensi-
tive but not specific. Mitra predicts sites over the entire regula-
tory region. For this reason, it discovers many of the annotated
sites, but not because the algorithm is able to find patterns that
correspond to sites. Elph, Glam (16), and Gibbs (18) are at the
other extreme. These make very few predictions on this data set,
resulting in perceived high specificity. Weeder (19), MotifSam-
pler (20), MEME (21), AlignACE (22), and ANN-Spec (23) all
appear to strike a better balance; however nCC remains between
0 and 0.37 for all approaches. There is some possibility that
further refinement of tool parameters could yield better perfor-
mance. Assessments like this provide an overview of where current
methods stand and suggest ways of improvements. Figure 8.5
shows seven-motif discovery methods evaluated in an ROC curve.
Both single species and cross-species techniques are represented.
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Fig. 8.5. PhyloMEME (a version of MEME run on regulatory regions from multiple species), PhyME, PhyloGibbs-MP, Phylo-
Weeder, ANN-Spec, Motifsampler, and Mitra represent state-of-the-art motif detection algorithms. This composite ROC
curve shows a side-by-side comparison of phylogenetic-assisted and purely sequence-based tools. At the nucleotide
level, performance is virtually random. At the site level, phylogenetics-based tools such as PhyloGibbs-MP outperform
single-genome methods. However, several methods perform hardly better than random. This result is expected given the
performance of several methods shown in Fig. 8.4. Tools cover large portions of the regulatory region with predictions,
many of them overlapping known binding sites.
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The benchmark was originally generated using over 20 motif dis-
covery methods but only the top seven tools were plotted for clar-
ity. The ROC curves were generated by running each of the algo-
rithms 10 times and increasing the amount of predictions each
algorithm was allowed to produce (using algorithmic thresholds)
after each run. This plot shows some advantages of incorporating
cross-species information. Not every tool maintains good predic-
tion accuracy as it is allowed to make additional predictions. On
this data set, PhyloGibbs-MP appears to continue to make good
predictions as the algorithmic thresholds are lowered.

An example using a relative performance graph is shown in
Fig. 8.6. All relative performance graphs contain at least three
axes, one for the tools in the study, and one for the transcription
factor classes in the study, and one for the performance metric.
Relative performance graphs are advantageous because they show
an in-depth look at relative performance over parts of the data
set for one statistic. The figure shows an in-depth look at nCC
over the RegulonDB data set. Along the X-axis is each TFBS
evaluated in the assessment. The top graph shows the relative
total correlation for all tools in the assessment combined. On
the bottom is the relative contribution for each tool for a specific
TFBS. Note that columns in the graph have no relationship to
one another. TFBS are sorted in this graph by conservation of the
sequence at the binding site. This graph illustrates that sequence
conservation at the binding site is not enough for accurate TFBS
detection.

Figure 8.6 also demonstrates that no tool in this assessment
is clearly dominant in detecting all binding sites of the same tran-
scription factor. Some tools are very good at detecting TFBS for
some sites, but not others. Some sites are more easily detected by
all tools and some sites challenge all tools. These results indicate
that one tool for detecting all TFBS may not be possible, instead
multiple methods for different classes of problems may be more
appropriate.

�
Fig. 8.6. (continued) content at the conserved site (bottom) to low-information con-
tent (top). nCC values do not increase as conservation at the site increases, most likely
due to competing background signals in the upstream regulatory regions. In this table,
nCC is negatively impacted for ELPH, Gibbs, Glam, PhyloMEME, PhyloGibbs, PhyloGibb-
sMP, and PhyME because the number of predictions is low (easily overcome for some
tools by considering more sites). Binding sites for some TFs such as AgaR are relatively
accurately predicted by many tools. Other TFs such as EvgA pose a greater challenge.
JAMM-b is a Bayesian filter for combining multiple methods. JAMM-i is the same filter,
with a length-based constraint relative to the promoter. No tool is clearly dominant for
every transcription factor.
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3.7. Conclusions We introduced an assessment methodology for the performance
of TFBS detection algorithms. Platforms such as MTAP make it
easier to rank algorithms on multiple criteria and to find effective
techniques that solve. We provided a new methodology and tool
to compare methods and rank them based on how well they per-
form on certain subsets of the TFBS detection problem. The key
is finding sub-problems of the overall TFBS detection problem
that can be solved with reasonable expectation that the algorithm
results correspond to real binding sites.

This new methodology is not without problems. First, high-
quality data sets of TFBS locations need to be standardized and
collected in order to use this technology effectively. Second, great
care needs to be taken when looking at benchmarking outcomes,
as numerical summaries cannot always convey intuition about why
certain approaches fail.

We introduced four principal methods for understanding the
TFBS detection problem: (1) tabulated results of derived statis-
tics; (2) ROC graphs; (3) sedimentation graphs; and (4) genome-
wide prediction visualization. We also introduced a platform,
MTAP, for performing these comparisons. MTAP provides the
raw data needed to perform comparisons shown in this section.
These raw outputs can be customized by the users for diverse
interpretations. A possible application is to compare the pipelines
implemented in MTAP with new methods.

When performing assessment, it is important to consider the
assumptions of the assessment and ensure that they are in line
with the assumptions of the tools being assessed. MTAP was built
to assess how well current tools work at automated annotation
of genomes. Current tools are expected to perform much bet-
ter with hand-picked motifs from TFBS databases, although this
introduces a certain bias. Assessment must be viewed as a part
of the overall system of discovery and verification. It is therefore
important that any assessment has a scope consistent with predic-
tion objectives.

4. Notes

1. Installing MTAP: MTAP was developed and tested on
Ubuntu Linux. To set up an MTAP run, the user needs to
(1) install motif tool dependencies – this will install tools
such as BLAST and MLAGANS that many TFBS tools use
as part of their pipelines, (2) install motif discovery tools,
(3) format known motif databases, (4) configure MTAP,
and (5) run the MTAP analysis. To install MTAP, download
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the mtap.tar.gz file from http://biobase.ist.
unomaha.edu/mediawiki/index.php/Main_Page
and place it in a directory indicated by the $MTAP_ HOME
environmental variable. Untar and unzip MTAP to $MTAP_
HOME with the command: tar -xzvf mtap.tar.gz. In
this chapter, we will set $MTAP_HOME=/home. Then the
tar command will create the following directory structure:

/home/mtap/pipeline/bin bin contains useful scripts for running MTAP and
installing motif tools

/home/mtap/pipeline/conf conf contains configuration files for use by scripts in
bin

/home/mtap/pipeline/dumpdir dumpdir is the location MTAP will place all tool pre-
diction and raw statistics

/home/mtap/pipeline/lib lib contains libraries needed to run MTAP. Make sure
to run compile Java.py before attempting to run
MTAP

/home/mtap/pipeline/motifTools motifTools contains TFBS prediction software from
other institutions

/home/mtap/pipeline/reqs reqs contains libraries and tools for motif prediction
tools

/home/mtap/pipeline/src src contains the MTAP source code
/home/mtap/pipeline/tmp tmp is where TFBS databases are placed for MTAP

runs and where intermediate results are stored in tool
pipelines

1.1 Install tool dependencies: Scripts to install tool depen-
dencies exist in /home/mtap/pipeline/bin. First install
biopython, bioperl, and Java SDK and place them in your
path. To install system-level dependencies run from bin:
./installPrereqs/home/matp/pipeline/motif
Tools/Linux-i386/. Cross-species regulatory region
detection requires RSD. Install RSD with the
following command: ./installRSDreqs/home/mtap/
pipeline/reqs/RSD-bin/.

Some motif tools can be distributed with MTAP. For these
tools, we provide an automated script for installation. To
install run ./installMotifTools/home/matp/pipe
line/motifTools/Linux-i386/ More information
on motif tools is in the next section. MTAP is made
aware of the dependencies for your specific architecture
through the MTAPglobals.py file found in /home
/mtap/pipeline/src/runManager/MTAPglobals.
py. Edit MTAPglobals.py to change RUNMANAGERPATH
and PROGHOME to
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• RUNMANAGERPATH = "/home/mtap/pipeline
/src/runManager"

• PROGHOME = "/home/dquest/mtap/pipeline".

MTAPglobals.py also contains many variables to change
the MTAP runtime characteristics such as number of predic-
tions allowed, number of sequences required, threshold for
site true positives, and other concepts discussed earlier in
the chapter. Edit the following variable lines to make MTAP
aware of the local installation:

motifToolBinHOME = "/home/mtap/pipeline/motifTools

/Linux-i386"

REQSPATH = "/home/mtap/pipeline/motifTools/"

PHYLOREQS = "/home/mtap/pipeline/motifTools/"

1.2. Installing TFBS Databases: To create an MTAP run,
one needs to first create the setup files in /tmp. First make
a directory for the name of the run. MTAP includes several
examples (e.g., /tmp/pito) that can be copied and mod-
ified to create new MTAP runs. Following is the directory
structure that is needed to create new runs (creating a new
run called “Run1”):

/home/mtap/pipeline/tmp/Run1 The root directory ($RUN) for the new run

$RUN/accoc Used to hold the accocs.txt association file for relating
TFBS location data to Genbank files

$RUN/conf Used to backup MTAP configuration files for this specific
run

$RUN/gbks Holds Genbank files containing genome sequences
$RUN/kmraws Holds databases for known TFBS-binding locations

$RUN/motiflists Holds the motif.list file containing a unique listing of every
transcription factor annotated in the kmraw database

$RUN/phylo Holds the Phylo.txt file for relating the .gbk files and
for storing 16sRNA phylogenetic trees and multiple
sequence alignments

$RUN/protein Holds translated .faa files for each coding sequence in the
.gbk file and blast databases for searching

$RUN/RSD Holds ortholog tables for cross-species comparisons

$RUN/xmls Location to store xml configuration files used by java
components

Once the directory structure is made, the MTAP user
needs only to copy Genbank files into the gbks directory,
copy tab-delimited TFBS data into the kmraw directory, cre-
ate the phylo.txt file, and create the accocs.txt file.
MTAP automatically creates the rest of the needed infor-
mation for the run. Then the MTAP user should change
the settings for the MTAP run in MTAPglobals.py
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and MTAPdbSetup.py to ensure MTAP will run cor-
rectly. At this time, they are ready to run MTAP
(python /home/bin/MTAP.py). Examples of known
motif databases acceptable by MTAP and Genbank files are
in the MTAP.tar.gz download for reference.

2. Running Motif Detection Tools: Motif tools are as variable as
the people that develop them. Each takes a multi-Fasta file
representing multiple regulatory regions. That is where the
similarities end. Each tool produces a specifically formatted
output file and takes a specific array of inputs. MTAP unifies
all tools by converting each arbitrary output into a unified
format (.gff) that represents predicted features from each
tool in the data set. MTAP also produces each arbitrary input
needed by the program. When MTAP is run, it creates a
run database consisting of all run tests in the database. This
database consists of run tuples of the form:

["runName","phylo/genic","#bpUpstream","cr/sr",

"real/markov",",

"MotifList","GenbankFile","knownmotifDatabase",

"fastaUpstreamFile",

"MotifName","MotifTool"]

These run tuples are constructed dynamically by per-
muting all options available in the src/runManager/
MTAPdbSetup.py configuration file and from the data
found in the TFBS database in /tmp (see previous sec-
tion). Each MTAP run consists of all possible permu-
tations of the variables found in MTAPdbSetup.py file.
These permutations are translated into jobs. The collec-
tion of all MotifTool pipeline jobs in a single MTAP
run is logged in a file called RUNFILE. RUNFILE exists
in /home/dumpdir/runName/RUNFILE. The directory
structure under /home/dumpdir/ corresponds to the
tuples in the RUNFILE. For example, consider a run using
Weeder to find binding sites for the CRP transcription fac-
tor in E. coli K12 (NC_000913.gbk). Assume RegulonDB
is the data set we wish to use for evaluation and that we
want to take 400 bp upstream of every gene regulated by
CRP as annotated in RegulonDB. The MotifList file for all
unique motifs in RegulonDB is called v2008_NC_000913.
Assuming we call the run “Run1”, the tuple for this job will
look like

["Run1","genic","400","cr","real","v2008_NC_000913",

"knownmotifs.regulondb.v2008","NC_000913","CRP",

"Weeder"]

The job tuple indicates the location where the tool will be
run on the local file structure. The above example will be
run in $RUNDIR =/home/mtap/pipeline/dumpdir
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/Run1/genic/400/cr/real/. Unified .gff files for
plotting in tools such as gbrowse are available in
$RUNDIR/gff. The raw statistics files for analy-
sis are available in $RUNDIR/stats. Specific tool
thresholds and pipelines can be modified by chang-
ing the tool driver scripts found in /home/mtap/
pipeline/src/runManager/motifTools. Sophisti-
cated data collection scripts for analyzing gene regulatory
networks with graph theory and for plotting changes across
run parameters are available in src/runManager.
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Chapter 9

Computational Analysis of ChIP-seq Data

Hongkai Ji

Abstract

Chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) is a new technol-
ogy to map protein–DNA interactions in a genome. The genome-wide transcription factor binding site
and chromatin modification data produced by ChIP-seq provide invaluable information for studying gene
regulation. This chapter reviews basic characteristics of ChIP-seq data and introduces a computational
procedure to identify protein–DNA interactions from ChIP-seq experiments.

Key words: Transcription factor binding site, high-throughput sequencing, peak detection, false
discovery rate.

1. Introduction

Chromatin immunoprecipitation (ChIP) followed by massively
parallel sequencing (ChIP-seq) is a new technology to map
protein–DNA interactions in genomes (1–4). In this technology,
a protein of interest (POI) is cross-linked to chromatin. Chro-
matin is sheared into small fragments. The POI and its bound
chromatin fragments are immunoprecipitated using an antibody
specific to the protein. After reversing the cross-links, a DNA sam-
ple called “ChIP sample” is obtained. In many studies, a negative
control sample is prepared in parallel using a similar protocol that
bypasses the immunoprecipitation step. Compared to the control
sample, the ChIP sample is enriched in DNA fragments bound
by the protein of interest. After size selection and further process-
ing, DNA fragments in the samples are sequenced from both ends
using one of the recently developed high-throughput sequencing

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
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Fig. 9.1. Workflow for ChIP-seq.

platforms (5). This produces tens of millions of sequence tags,
also known as sequence reads. By computationally mapping these
reads to a reference genome and looking for genomic regions
where ChIP reads are enriched, genomic loci with protein–DNA
interactions can be identified (Fig. 9.1). Currently, this tech-
nology is widely used to study transcription factor binding sites
(TFBS) (1, 2) and chromatin modifications (3, 4). The genome-
wide transcription factor binding site and chromatin state data
produced by ChIP-seq provide invaluable information for study-
ing gene regulation.

An earlier technology to map protein–DNA interactions in
genomes is ChIP-chip (6, 7), which uses chromatin immuno-
precipitation to enrich protein-bound DNAs and hybridizes the
enriched DNA fragments to genome tiling arrays. Compared to
ChIP-chip, ChIP-seq has several advantages (8). First, ChIP-seq
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does not rely on array hybridization. As a result, it does not suf-
fer from the biases and noise caused by cross-hybridization, the
varying GC content of probe sequences and other issues related
to hybridization chemistry, although ChIP-seq may have its own
biases that are not well understood currently. Second, ChIP-
chip measures enrichment by intensities of hybridization which
may saturate at high signal, whereas ChIP-seq measures enrich-
ment by tag counts which can handle signals in a much broader
dynamic range. Third, protein–DNA interactions detected by
ChIP-chip are restricted to genomic regions for which probes are
available. Repetitive regions in the genome usually are excluded
from the array design. In contrast, ChIP-seq can be used to
study protein–DNA interactions in any part of the genome as
long as reads can be unambiguously aligned to places where
they are originally produced. For this reason, ChIP-seq is able
to offer much less biased genome coverage. Fourth, for map-
ping TFBS, ChIP-seq is able to locate binding sites at 50–100
base pair (bp) resolution. This represents a significantly improved
precision compared to the 300–1,000 bp resolution provided by
ChIP-chip. Other advantages of ChIP-seq include requirement
of less input materials and ability to provide extra information to
study allele-specific protein binding. Thanks to these advantages,
as the cost of high-throughput sequencing continues to decrease,
ChIP-seq has the potential to become the dominant technology
for creating genome-wide maps of protein–DNA interactions.

ChIP-seq creates unprecedented amounts of data. Extracting
information from the data is not trivial. Typically, the analysis is
a multiple step procedure (Fig. 9.1). First, raw sequence reads
are mapped to the reference genome. Next, genomic regions
in which ChIP reads are enriched are identified and the statis-
tical significance of the predicted genomic regions is evaluated.
Regions that satisfy certain significance criteria are reported. Sub-
sequently, the reported regions are analyzed in various ways to
help scientists understand their functional implications. These
include adding gene annotations, finding or mapping transcrip-
tion factor binding motifs, and correlating the protein–DNA
interactions with gene expression information. The purpose of
this chapter is to briefly review some basic characteristics of ChIP-
seq data and introduce a computational procedure to analyze the
data. We will mainly focus on describing a method to identify
protein–DNA interactions and estimate the false discovery rates
(FDR). Tools to perform subsequent analyses will be discussed
briefly.

1.1. Types
of ChIP-seq
Experiments

We focus on two types of ChIP-seq experiments, namely the
“one-sample experiment” and the “two-sample experiment.” A
two-sample experiment involves sequencing both a ChIP sam-
ple and a negative control sample. In contrast, a one-sample
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experiment only involves sequencing a ChIP sample. Readers are
referred to Note 1 for a discussion on how to analyze experiments
that have technical or biological replicates.

Compared to the two-sample experiment, the one-sample
design is more cost effective. However, the negative control sam-
ple in the two-sample experiment allows one to build a better
model to describe locus-dependent background noise, which can
significantly reduce the number of false positives and false nega-
tives in the subsequent data analyses (9, 10).

1.2. Models for
Background Noise

In both one-sample and two-sample experiments, protein–DNA
interactions can be identified by searching for enrichment of ChIP
reads. A key component of ChIP-seq data analysis is to under-
stand what level of enrichment is required to distinguish signals
from noise.

1.2.1. Background
Model for One-Sample
Experiments

First consider a one-sample experiment. Assume that the length
of the genome is L bps and the sample has N uniquely mapped
reads in total. Consider a w bp window in the genome, and let n
be the number of reads mapped to the window. Studies of neg-
ative control samples show that if the window does not contain
any protein–DNA interaction of interest, n can be approximately
modeled by a negative binomial distribution NB(α, β) (9). In

other words, Pr(n = k) =
(

k + α − 1
α − 1

)(
β

β + 1

)α (
β

β + 1

)k
.

Here all background windows in the genome have the same values
of α and β. Based on this result, one approach to characterize the
background noise is to find appropriate parameter values of α and
β using the observed data. When estimating α and β, one should
keep in mind that the data (i.e., the ChIP sample) usually consist
of a mixture of background windows and windows that contain
signals; however, α and β are parameters to describe background
noise only. An algorithm that estimates the background parame-
ters α and β from a mixture of signal and noise windows will be
described in Section 3.2.1.

Another natural way to model the read count of a back-
ground window is to assume that n follows a Poisson distribu-
tion with a rate parameter λ (i.e., Pr(n = k) = λke−λ/k!). Recent
studies show that the Poisson distribution with a fixed rate λ
does not perform well to characterize the background variabil-
ity in real data (9–11). For example, in Table 9.1, a negative
control sample from a ChIP-seq experiment in mouse embry-
onic stem cells (12) is analyzed by both the Poisson background
model and the negative binomial model. The genome is divided
into 100 bp long non-overlapping windows and the number of
uniquely mapped reads in each window is counted. The negative
control sample contains no protein–DNA interactions of interest;
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Table 9.1
Comparison of the Poisson and negative binomial background model

Read count Observed frequency Expected by Poisson Expected by NB

0 0.792664 0.792664 0.792230

1 0.164843 0.164843 0.164753
2 0.034140 0.017140 0.034122

3 0.006587 0.001188 0.007057
4 0.001320 0.000062 0.001459

5 0.000288 0.000003 0.000301
6 0.000075 0.000000 0.000062

7 0.000023 0.000000 0.000013
. . . . . . . . . . . .

hence all windows represent background noise. The second col-
umn of the table shows the observed frequency that a window
contains k reads. The third and fourth columns show frequencies
expected by the Poisson and negative binomial models, respec-
tively. This table clearly shows that the Poisson model is not able
to describe the heavy tail of the empirical read count distribution
and the negative binomial model performs much better.

Using a fixed rate Poisson model assumes that background
reads are generated at the same rate for all loci in the genome
or, in other words, background reads are distributed uniformly
across the genome. Table 9.1 illustrates that this assumption
does not fit well with the real data. In the negative binomial
model, it is implicitly assumed that the background reads are
generated by Poisson distributions with different rates at dif-
ferent loci, and as a result, the background reads are not uni-
formly distributed across the genome. In order to see this, we
note that a negative binomial distribution can be related to a
Poisson distribution via a hierarchical model. Let us divide the
genome into w bp long non-overlapping windows and assume
that different windows generate reads independently. Let λi be
the rate to generate reads in the ith window, ni be the number
of reads in window i, and assume that ni |λi ∼ Poisson (λi). If
we allow λi to vary across the genome but assume that λi’s are
random samples drawn independently from a locus-independent
gamma distribution Gamma(α, β) (the probability density func-
tion for Gamma(α, β) is f (x) = βα

�(α)xα−1e−βx), then the marginal
distribution of ni of a background window, Pr(ni = k|α, β) =∫

Pr(ni = k|λi)f (λi|α, β)dλi, has the same probability density
function as that of the NB(α, β).

The hypothesis that read sampling rates vary across the
genome is supported by analyses of independent samples from
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Fig. 9.2. Correlation of read numbers at the same genomic loci between a ChIP sample
and a control sample. The samples are obtained from a ChIP-seq experiment that maps
the NRSF TFBSs (1). The human genome is divided into non-overlapping windows, each
window containing 1 million base pairs. For each window, ChIP and control reads are
counted and plotted as a dot.

the same experiment (10). As an example, Fig. 9.2 shows a scat-
ter plot that compares the window read counts between a ChIP
sample and a matching negative control sample in an experi-
ment involving transcriptional repressor NRSF (1). The plot has
a positive slope and the counts from the two samples in the
same genomic window are clearly correlated. This indicates that
the rate for generating reads is locus dependent and is not a
constant across the genome. Unfortunately, in a one-sample
experiment, background reads in a particular window cannot be
separated from reads that represent biological signals in the same
window. For this reason, the locus-dependent Poisson rate cannot
be estimated without making additional assumptions. The nega-
tive binomial model makes the assumption that the background
rates λis follow a common gamma distribution. By making this
assumption, information from all windows can be used to infer
the common parameters α and β, which are then used to describe
the background for each individual window. This is the under-
lying rationale for using a negative binomial distribution as the
background model (see Note 2 for an alternative solution).

1.2.2. Background
Model for Two-Sample
Experiments

Now consider a two-sample experiment that involves a control
sample in addition to a ChIP sample. Assume that the ChIP sam-
ple has N uniquely mapped reads in total and the control sample
has M uniquely mapped reads. For a w bp window indexed by
i, let ni be the number of ChIP reads mapped to the window,
and mi be the number of control reads. In the previous section, it
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has been shown that the read counts in background windows can
be viewed as Poisson random variables with varying rates across
the genome (which results in negative binomial marginal distri-
butions). In light of this observation, one can assume that ni ∼
Poisson(μi) and mi ∼ Poisson(λi), where μi and λi are rates at
which reads are produced in window i in the ChIP and control
samples, respectively, and we allow μi and λi to have different
values at different loci in the genome. For each genomic window,
μi can be decomposed into two parts μi = μi1 + μi0, where μi0
is the rate at which background reads are generated and μi1 is
the rate to generate reads corresponding to signals. Often, it is
reasonable to assume that the background rates in the ChIP and
control samples, μi0 and λi, are equal up to a proportionality con-
stant, i.e., μi0 = cλi. The proportionality constant c reflects the
observation that the total numbers of reads in the ChIP and con-
trol samples are usually not the same. Under the assumption that
μi0 = cλi, information from the negative control sample can be
used to describe the background read sampling rate in the ChIP
sample. As a result, the assumption used in the one-sample anal-
ysis that background read sampling rates from different genomic
windows follow a common probability distribution is no longer
required.

For a window that does not contain any protein–DNA inter-
actions, μi = μi0 = cλi. It is known that the sum of two inde-
pendent Poisson random variables X ∼ Poisson(λ1) and Y ∼
Poisson(λ2) follows a Poisson distribution, Poisson(λ1 + λ2), and
conditional on the sum, X, follows a binomial distribution. In
other words, X

∣∣X + Y = n ∼ Bin(n, p) , where p = λ1/(λ1+λ2)

(i.e., Pr(X = k | X + Y = n) =
(

n
k

)
pk(1 − p)n−k).

Using these results, the number of ChIP reads in a back-
ground window conditional on the total number of reads
in that window should follow a binomial distribution, i.e.,
ni
∣∣mi + ni ∼ Bin(mi + ni, p0) , where p0 = c/(1 + c) represents

the expected proportion of ChIP reads in a background window.
If p0 is known, the enrichment of ChIP reads in any window can
be evaluated. This evaluation does not require the knowledge of
the actual values of the background sampling rates, λi.

In order to estimate p0, one should keep in mind that
the ratio N/(M + N ) based on the total read numbers in the
two samples is a biased estimate. This is because the ChIP
sample contains both background reads and reads that repre-
sent signals, whereas p0 is related only to the background. If
we divide the genome into w bp long non-overlapping win-
dows (indexed by i) and assume that read numbers in dif-
ferent windows follow independent Poisson distributions, then
N∼ Poisson(

∑
i μi0 +∑

i μi1) and M∼ Poisson(
∑

i λi). As a
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result, N
∣∣M + N ∼ Bin(M + N , q) , where q = (c + d)/(1 +

c + d) �= c/(1 + c) and d = ∑
i μi1

/∑
i λi. It can be shown that

given λi, μi1, and c, the expectation of N / (M + N) is q which is
not equal to p0. An algorithm that estimates p0 and uses the bino-
mial distribution to evaluate the enrichment of ChIP reads will be
described in Section 3.2.2. An alternative approach to evaluate
background variability for two-sample experiments is discussed in
Note 3.

1.3. Normalization The proportionality constant c = p0/(1 − p0) in the two-sample
analysis can be viewed as a way to normalize the read counts of
two different samples. This normalizing constant can be used to
compute the fold enrichment of ChIP reads, which is defined
by (9) as the ratio (ni + 1)/(cmi + 1). Here mi and ni are read

Fig. 9.3. Peak shape for a TFBS. a Reads are generated from both ends of DNA frag-
ments. b 5′ reads are aligned to the forward strand of the reference genome, and 3′
reads are aligned to the reverse complement strand. These two types of reads form two
separate peaks. The binding site is located between the modes of the peaks. From top
to bottom, the four signal tracks are the number of 5′ reads aligned to each genomic
position, number of 3′ reads aligned to each position, 5′ read count in a 100 bp sliding
window, and 3′ read count in a 100 bp sliding window. The read counts in sliding win-
dows form smooth curves. The modes of the curves define boundaries of binding sites.
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numbers in the control and ChIP samples in a window indexed
by i and a regularization constant one is added to both the numer-
ator and the denominator to avoid dividing by zero.

1.4. Peak Shape In most current high-throughput sequencing platforms, sequence
reads are produced from both ends of DNA fragments. Surround-
ing a TFBS on the chromosomal map, reads that are aligned to
the forward strand of the genome will form a peak upstream of
the binding site, and reads that are aligned to the reverse com-
plement strand will form a peak downstream of the binding site
(13, 14) (Fig. 9.3). This forms a characteristic peak shape that
contains useful information for distinguishing bona fide binding
sites from false positives. Predicted TFBSs without this bimodal
peak shape are often false positives and should be eliminated from
the final results. The bimodal shape is also useful for making high-
resolution binding site predictions. The bona fide binding site
should fit in between the modes of the two peaks. Using this
information, a TFBS can usually be mapped to a 50∼100 bp long
region (9, 11, 14–16).

2. Software

The methods described in this chapter for building back-
ground models and detecting protein–DNA interactions from
mapped sequence reads are implemented in the open-source
software CisGenome which is available at http://www.biostat.
jhsph.edu/∼hji/cisgenome (9). CisGenome provides a user-
friendly graphic interface and it can also be used to per-
form various types of subsequent analyses. Sequence reads
can be mapped to a reference genome using one of
the following software tools: Eland provided by Illumina,
Inc., Bowtie at http://bowtie.cbcb.umd.edu (17), MAQ
at http://maq.sourceforge.net/ (18), SeqMap at http://
biogibbs.stanford.edu/∼jiangh/SeqMap/ (19), Corona Lite
provided by the Life Technologies (http://solidsoftwaretools.
com/gf/project/corona/), and SHRiMP at http://compbio.cs.
toronto.edu/shrimp/ (20).

3. Methods

In this section, we describe a procedure to detect protein–DNA
interactions from ChIP-seq data. Alternative methods are dis-
cussed in Note 4.
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3.1. Align Sequence
Reads

The first step of data analysis is to align sequence reads to a ref-
erence genome. A number of software tools have been developed
to support fast mapping of millions of short-sequence tags to
complex genomes. Examples include Eland (Cox, unpublished),
Bowtie (17), MAQ (18), SeqMap (19), and SHRiMP (20). For
data generated by the Life Technologies’ SOLiD platform, align-
ment needs to be performed in color-space using tools such as
Corona Lite (unpublished) and SHRiMP (20). From now on, we
assume that all sequence reads are mapped, and reads that are
uniquely aligned to the genome are retained for subsequent anal-
yses.

3.2. Building
Background Models

Using the mapped reads, build a background model using
CisGenome (9).

3.2.1. Background
Model for Analyzing
One-Sample
Experiments

Divide the genome into non-overlapping windows. The window
size w should be chosen to roughly match the expected length
of enrichment signals. For TFBS analysis, the window size w is
typically set to 100 bp (see Note 5 for more discussions). The
entire set of windows can be viewed as a mixture of windows that
represent background noise and windows that contain protein–
DNA interactions of interest. Let π0 denote the proportion of
background windows. π0 is unknown and needs to be estimated
from the data.

For each window, count the number of reads that are
uniquely aligned to the window. Let ni be the number of
reads within the ith window. It is assumed that for background
and non-background windows, ni follows two different prob-
ability distributions for which density functions are f0(n) and
f1(n), respectively. Under this assumption, the data generating
distribution for ni can be described by a mixture distribution
g(n) = π0f0(n) + (1 − π0)f1(n). Use the empirical distribution of
ni, i.e., the observed frequencies that ni = n(n = 0, 1, 2, . . .), to
estimate g(n).

Based on the discussions in Section 1.2.1, the background
distribution f0(n) can be modeled by a negative binomial distribu-
tion NB(α, β). In order to estimate α and β, we assume that win-
dows with small number of reads are mostly background. Under
this assumption, the background parameters α and β can be esti-
mated using windows with no more than two reads. For a random
variable n that follows negative binomial distribution NB(α, β),
define r1 = Pr(n = 1)/Pr(n = 0) and r2 = Pr(n = 2)/Pr(n = 1).
Since r1 = α/(β + 1) and r2 = (α + 1)/[2(β + 1)], we have α =
r1/(2r2 − r1) and β = 1/(2r2 − r2) − 1. Therefore, to estimate
α and β count the number of windows that contain k reads and
denote it as uk. Use u1/u0 to estimate r1 and use u2/u1 to esti-
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mate r2. Plug the estimated values of r1 and r2 into r1/(2r2 − r1)
and 1/(2r2 − r1) − 1 to obtain the estimates of α and β.

In order to estimate π0, we assume that most windows
with no mapped read represent background noise. Under this
assumption, g(0) ≈ π0f0(0) and π0 ≈ g(0)/f0(0). Therefore, π0

can be estimated by u0

/
[(
∑

k uk) ˆf 0(0)]. Finally, using the esti-
mated π0, f0(.) and g(.), one can estimate the local false dis-
covery rate (local FDR) for any w bp window as follows:
lfdr (window i) = π0f0(ni)/g(ni). Here, ni is the observed read
count for window i.

3.2.2. Background
Model for Analyzing
Two-Sample
Experiments

Divide the genome into w bp long non-overlapping windows. For
each window, count the number of reads that are uniquely aligned
to the window. For window i, let ni and mi denote the number
of reads in the ChIP and control samples, respectively, and let
ti = ni + mi be the total read count.

Using windows for which ti is small (we usually use win-
dows that contain only one mapped read, i.e., indices i for which
ti = 1), estimate the expected proportion of ChIP reads in
background windows as p̂0 = ∑

i ni
/∑

i (ni + mi). This implic-
itly assumes that windows with small read counts mainly represent
background. Estimate the normalizing constant ĉ= p̂0

/
(1 − p̂0).

Next, group windows based on their total read counts ti. For
each group of windows for which ti = t(t = 0, 1, 2, . . .), com-
pute the observed frequency that ni = n(n = 0, 1, . . . , t). Derive
the function gobs(n |t ) = {number of windows for which ti = t
and ni = n} / {number of windows for which ti = t}. Define
fBin(n

∣∣t , p0 ) = Pr(X = n) where X ∼ Bin(t , p0). For a window
that contains t reads among which n are ChIP reads, estimate the
local FDR as fBin(n

∣∣t , p̂0 )/gobs(n |t ). When t becomes big, there
will be fewer windows available for estimating gobs(n |t ). In order
to get robust local FDR estimates, if there are fewer than 100
independent windows for a particular t, we suggest extrapolat-
ing the local FDR estimates from windows with smaller total read
counts. In other words, find the biggest t’ < t that has more than
100 windows. For a window that contains t reads and n ChIP
reads, the local FDR is estimated as fBin(n′ ∣∣t ′, p̂0 )/gobs(n′ ∣∣t ′ ),
where n′ = ⌊

t ′n
/

t
⌋

and 
x� represents the maximal integer that
is not bigger than x.

3.3. Detect
Protein–DNA
Interactions

Using CisGenome (9), scan the reference genome using a w bp
long-sliding window. Compute the local FDR for each window.
For analyzing a one-sample experiment, use the estimated back-
ground model described in Section 3.2.1. For analyzing a two-
sample experiment, use the procedure described in Section 3.2.2.
For the two-sample analysis, also compute a fold enrichment for
each window: (ni + 1)/(ĉmi + 1). Here ni is the number of ChIP
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reads in the window, mi is the number of control reads, andĉ is
the normalizing constant estimated using the method in Section
3.2.2.

Select all windows with local FDR smaller than a given cutoff
(usually ≤ 10%). Merge overlapping windows into a single region.
Report all regions obtained after merging. During the process in
which windows are merged, use the smallest local FDR among the
overlapping windows as the local FDR for the merged region. For
the two-sample analysis, use the biggest fold enrichment among
all the overlapping windows as the fold change of the merged
region.

3.4. Improve
Predictions
of Transcription
Factor Binding Sites

If the purpose of the ChIP-seq experiment is to locate TFBSs, the
reported regions should be further processed using CisGenome
as follows to improve the results.

3.4.1. Determine the
Binding Site Boundary

Use a w bp sliding window to scan each reported region. For
each window, count reads in the ChIP sample that are aligned to
the forward strand of the genome and those that are aligned to
the reverse complement strand. This creates two smooth curves
of read counts (Fig. 9.3). Identify the locations where the two
curves achieve their maxima (i.e., the modes of the curves) and
use these locations to define boundaries of binding sites.

3.4.2. Adjust for DNA
Fragment Length

For each reported region, compute the distance between the
modes of the peaks on the forward and reverse complement
strands. Compute the median of all distances and denote it as
L. Shift all reads toward the center of the DNA fragments by L/2
base pairs. Reads aligned to the forward strand of the genome
are shifted toward 3′ of the reference genome and reads aligned
to the reverse complement strand are shifted toward 5′ of the
reference genome. Using the shifted reads, perform the analyses
described in Sections 3.2 and 3.3 again. For the reported regions,
determine the binding site boundaries using unshifted reads as
described in Section 3.4.1.

3.5. Subsequent
Analyses

Having identified protein-binding regions, they can be analyzed
in different ways to study the biological implications. Here we
suggest a few common analyses, most of which can be carried out
using CisGenome (9). First, compute frequencies that reported
regions occur in intragenic and intergenic regions, exons, introns,
promoter regions, and other structural features of genes and
compute the average level of conservation across species for
each region. These two analyses may provide information on
functional contexts and importance of the reported regions.
Second, extract genes in the neighborhood of the reported
regions as a gene set and perform Gene Set Enrichment analysis
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(http://www.broadinstitute.org/gsea/) (21) and Gene Ontol-
ogy analysis (http://www.geneontology.org/GO.tools.shtml).
These analyses may provide information on functional categories
or pathways that are involved in the biological system in question.
Third, perform de novo motif discovery or map the known motifs
to the reported transcription factor binding regions and their
flanking regions. Identify motifs that are enriched in the binding
regions compared to control genomic regions using CisGenome.
These analyses may identify motifs that are recognized by the
transcription factor in question. They may also suggest collaborat-
ing factors. In addition, the motif analysis provides a way to verify
that the reported TFBSs are bona fide signals. For example, if the
ChIP-seq experiment studies a transcription factor and the bind-
ing motif of the transcription factor is known, then the motif is
expected to be enriched in the reported binding regions. If this is
not the case, it may indicate problems in the ChIP-seq experiment
or data analyses. Last but not least, it is always a good idea to visu-
alize the ChIP-seq data along with other structural and functional
annotations of the genome. Both the CisGenome Browser and
the Genome Browser at UCSC (http://genome.ucsc.edu/) (22)
can be used to interactively visualize the data. Interesting patterns
may emerge by simply eye balling the data. These patterns may
create new hypotheses and suggest future research directions.

4. Notes

1. Analysis of experiments with replicate samples. The meth-
ods introduced in this chapter are developed for analyzing
experiments that contain a single replicate. If an experiment
contains more than one replicates, the analysis can be car-
ried out in two steps. First, merge the replicate data into
a combined ChIP sample and a combined control sample
(there will be no control sample in a one-sample experi-
ment). The combined sample can then be analyzed using the
methods described in Section 3. Second, for the reported
peaks, extract read counts from individual replicate sam-
ples. Normalize the read counts by multiplying the raw read
numbers with the normalizing constants obtained using the
approach described in Section 3.2.2. The normalized read
counts can then be analyzed using existing methods devel-
oped for detecting differentially expressed genes in microar-
ray experiments (e.g., limma (23)) to remove regions for
which the observed ChIP enrichment over the controls can
be explained by the random variability among replicates.
Suppose that the normalized read counts are saved in a
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tab-delimited text file named “data.txt,” the R commands
below show how limma can be used to perform the analysis
in the second step.

> library(affy)

> library(limma)

> exprs <- as.matrix(read.table("data.txt",

header =TRUE,
sep="\t", row.names=1, as.is=TRUE))
> exprs <- log2(exprs)

> eset<-new("ExpressionSet", exprs=exprs)
> design<-cbind(Base=1, ChIP=c(1,1,1,0,0,0)) ##

3 ChIP vs.

3 controls

> fit<-lmFit(eset,design)

> fit<-eBayes(fit)

2. An alternative approach to estimate background in a one-
sample experiment. Zhang et al. (15) proposed another
approach to estimate the background Poisson rate. To esti-
mate the rate λi for a genomic window (usually dozens of
base pairs in length), this approach considers a few larger
windows (usually 5 and 10 kb in a one-sample analysis)
surrounding the window in question. λi is estimated using
read occurrence rates derived from these larger windows.
The underlying assumption of this method is that small
windows (with a few dozens of base pairs) close to each
other have similar background read sampling rate and reads
in the larger surrounding windows are mostly background
reads. This is usually a reasonable assumption for analyzing
TFBSs. However, it may not hold true in data which con-
tain broad signals or where signals occur at high frequency
in the genome. When the assumption is true, this method
may provide higher statistical power for detecting signals.

3. An alternative approach to estimate background in a two-
sample experiment. Statistical significance of the observed
enrichment in the ChIP-control comparison can also be
assessed by swapping the sample labels (15). In other words,
one treats the ChIP sample as the control and treats the con-
trol sample as the ChIP. One then applies the same peak
detection procedure to detect “signals” in the label-swapped
data. Any “signals” reported in this analysis should represent
noise. The false discovery rate for a given enrichment level
in the original analysis can be estimated by the ratio {num-
ber of regions reported in the label-swapped data}/ {num-
ber of regions reported in the original data}. This approach
requires that the two samples have about the same num-
ber of background reads in order to produce correct FDR
estimates. If two samples have different number of reads, a
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random subset of reads is usually drawn from the larger sam-
ple to create a subsample that has roughly the same number
of reads as the other sample. Because this procedure excludes
some data from the analysis, it may sacrifice some statistical
power. This procedure attempts to match the total number
of reads between the two samples, which is not equivalent to
matching the number of background reads. In light of dis-
cussions in Section 1.2.2, this may introduce bias into the
FDR estimates. Compared to this approach, the approach
described in Section 3.2.2 does not require the two samples
that have the same read numbers. However, since it depends
on assumptions about the underlying data generating distri-
bution, it may produce biased estimates as well if the model
assumptions do not hold true in the data.

4. Alternative approaches to detect peaks from ChIP-seq data.
Several other methods have been developed for detecting
“enrichment peaks” from ChIP-seq data. QuEST (14) (see
also Chapter 10) uses a kernel density estimation approach
to build density profiles for forward and reverse reads sep-
arately. It then combines the two profiles to detect peaks.
FDR is estimated by dividing the control sample into two
halves and comparing the two subsets of the control. This
requires one to have twice as many reads in the control
sample as in the ChIP sample. SISSRs (16) detects points
in the genome where the net difference between the for-
ward and reverse read counts in a sliding window switches
from positive to negative. It then detects statistically signif-
icant binding sites by using a constant rate Poisson model
to evaluate the enrichment of the total read counts in the
windows surrounding the detected switching points. MACS
(15) uses a sliding window to scan the genome, and uses
a locally estimated Poisson rate to detect enrichment peaks,
as discussed in Note 3. Other methods include FindPeaks
(24), USeq (25), PeakSeq (10), and a ChIP-seq processing
pipeline developed by Kharchenko et al. (11). Currently, rel-
ative performance of various methods has not been bench-
marked. However, for locating TFBSs, all these methods
provide similar spatial resolution (a few dozens of base pairs)
and the difference among them is subtle compared to the
difference between ChIP-chip and ChIP-seq.

5. The choice of window size. The choice of window size
w represents a trade-off between sensitivity and specificity.
When independent information is available, it may be used
to guide the choice of w. For example, in an experiment that
locates TFBSs with known motif(s), one can map the motif
to the reported binding regions and compute the motif
occurrence rates (i.e., the number of motif sites per 1 kb).
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The motif occurrence rate is a measure of signal-to-noise
ratio. It decreases when the window size becomes too small
or too big (9). Motif occurrence rates for regions reported
using different window sizes can be compared and the win-
dow size that maximizes the rate can be selected to gener-
ate the final analysis results. If the transcription factor bind-
ing motif is not known before the study, one may first per-
form de novo motif discovery and use the method described
in (26) to identify the motif. It has been shown that the
approach described in (26) can correctly identify binding
motifs for most genome-wide ChIP studies that involve tran-
scription factors recognizing sequence-specific binding pat-
terns. If one is not able to get the motif information but
gene expression data are available, the window size may also
be chosen based on what fractions of binding regions are
associated with a particular gene expression pattern of inter-
est for different choices of window sizes.
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Chapter 10

Probabilistic Peak Calling and Controlling False Discovery
Rate Estimations in Transcription Factor Binding Site
Mapping from ChIP-seq

Shuo Jiao, Cheryl P. Bailey, Shunpu Zhang, and Istvan Ladunga

Abstract

Localizing the binding sites of regulatory proteins is becoming increasingly feasible and accurate. This
is due to dramatic progress not only in chromatin immunoprecipitation combined by next-generation
sequencing (ChIP-seq) but also in advanced statistical analyses. A fundamental issue, however, is the
alarming number of false positive predictions. This problem can be remedied by improved peak calling
methods of twin peaks, one at each strand of the DNA, kernel density estimators, and false discovery
rate estimations based on control libraries. Predictions are filtered by de novo motif discovery in the peak
environments. These methods have been implemented in, among others, Valouev et al.’s Quantitative
Enrichment of Sequence Tags (QuEST) software tool. We demonstrate the prediction of the human
growth-associated binding protein (GABPα) based on ChIP-seq observations.

Key words: Transcription factor, transcription factor binding site, regulatory protein binding, chro-
matin immunoprecipitation, next-generation sequencing, ChIP-seq, peak calling, false positive rate.

1. Introduction

Transcription from DNA to RNA in response to environmental
stimuli or internal signals is regulated by complex networks of
agents and mechanisms. These include transcription factors (TFs)
and co-factors, nucleosomes and histone modifications, DNA
methylation, microRNAs, and interactions of all of the above as
reviewed in Chapters 1, 2, 3, and 4. These interactions directly
influence the recruitment and activation of the RNA polymerase
complex. In the recent years, revolutionary progress in chro-
matin immunoprecipitation (ChIP) and ultra-high-throughput
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sequencing allowed unprecedented high-throughput mapping of
transcription factor binding sites (TFBS) to complex genomes.
To reveal these complex networks, diverse results are integrated
by sophisticated experimental and computational pipelines as dis-
cussed in Chapter 1. This chapter discusses conservative methods
for the prediction of binding sites from ChIP-seq results. This
task is not trivial since immunoprecipitation can pull down not
only the DNA directly associated with the TF of interest, but
also the DNA segments bound by a large array of other pro-
teins (Chapter 1). Inherent challenges to mapping TF binding
sites include mapping potential binding sites that may not be
functional in the cell and missing some functional binding sites
from signals below thresholds. ChIP depends on the sensitivity
and selectivity of the antibody to the TF studied. Antibodies may
frequently bind to other members of the TF family, causing a
non-specific signal. In addition, TFs may be modified or bound
by co-factors and not recognized by antibodies.

TFs, by definition, specifically bind to a limited range of
DNA sequences primarily but not exclusively in the promoter
region close to the transcription start site. TFs may also bind to
distal promoter, enhancer, intronic regions, and even to exons
(1). Since individual binding sites frequently have a footprint
on DNA as short as 5 base pairs (bp), the computational pat-
tern analysis of short TFBS in isolation is typically an infeasi-
ble problem. Fortunately though, these sites are frequently orga-
nized into cis-regulatory modules (CRMs) (2), for which compu-
tational prediction methods (see Chapters 1, 6, 7, and 13) are
becoming increasingly accurate. As a rule, these computational
predictions are based on very limited samples of experimentally
verified binding sites, which considerably underrepresent the vari-
ability of the TFBS (Chapter 1). Based on such samples, general-
izing the motifs, mathematical representations of the binding sites
using expectation maximization (Chapter 6), Gibbs sampling
(Chapters 6 and 7), or positional weight matrices (PWMs,
Chapter 6) is an extremely challenging task. Considerably more
representative samples are generated by recent in vivo high-
throughput methods including chromatin immunoprecipitation
(3) combined with either genomic tiling microarrays (ChIP-chip)
(4, 5, 6) or next-generation sequencing (ChIP-seq (7)). This
chapter focuses on ChIP-seq because it provides for finer reso-
lution and higher accuracy than ChIP-chip [see Section 1.4 and
ref. (7)].

Even with these biological, experimental, and computa-
tional caveats, ChIP-seq, if and only if analyzed and inter-
preted by sophisticated computational methods, brings a leap
in understanding transcriptional regulatory networks. To ben-
efit both computational and experimental biologists, we briefly
introduce ChIP-seq, discuss the theoretical and practical aspects
of peak calling, validation by the identification of shared binding
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site motifs, and benchmarking the performance of the method,
including false discovery rate estimations. The computational
analyses are demonstrated on the biological example of a cell
division regulator, the growth-associated binding protein α-chain
(GABPα), and its binding sites in the human genome.

1.1. Chromatin
Immunoprecipitation
(ChIP)

In order to anchor the protein of interest to its in vivo DNA
location, it is typically cross-linked to the DNA by formaldehyde
(Fig. 10.1). Next, the DNA is either sonicated or sheared into
few hundred base pair (bp) segments. The protein, still associated
with the DNA, is incubated in the presence of a specific antibody,
and immunoprecipitation is performed. Proteins are digested,
then the ∼150–200-bp long DNA segments are selected by

Fig. 10.1. An overview of ChIP-seq and ChIP-chip experimental steps.
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gel electrophoresis. Note that this size considerably exceeds the
5–26 bp footprint of TFs on the DNA, compromising the resolu-
tion of ChIP-seq. In order to estimate background noise and false
positive rate (Section 3.6), control libraries are created by either
reversing the cross-links and ChIP, ChIP with a non-selective
antibody like IgG or with no immunoprecipitation at all. Because
in the absence of ChIP, little or no proteins are expected to be
pulled down with DNA (8), the identified DNA segments are
considered as background noise and used for estimating the false
discovery rate (Section 3.6).

1.2. Identification
of Chromatin-Bound
DNA

ChIP-enriched DNA segments are identified either by hybridiza-
tion to genomic tiling/promoter microarrays (5–7) (ChIP-chip)
or by ultra-high-throughput sequencing (ChIP-seq). ChIP-chip
works well on small genomes; in yeast, binding sites for over 100
TFs have been determined (9). Also, ChIP-chip conveniently lim-
its the study to selected regions of the genome. Selected regions
include promoter regions, which are primary loci for TF bind-
ing (10), chromosome 22 (11), and pilot-ENCODE regions. In
the latter, carefully selected samples accounting for 1% the human
genome (1) have been analyzed. Binding sites for CREB (12), the
Polycomb group TFs (6), the mouse embryonic stem cell reg-
ulatory network (13), and the estrogen receptor (4) have been
identified with ChIP-chip. While ChIP-chip is effective in yeast
and other small genomes, its resolution is about 500 bp in higher
eukaryotes (Chapters 9 and 11). ChIP-chip is a powerful tool,
however, the high level of cross-hybridization and the need for a
pre-designed chip are major drawbacks and its performance dete-
riorates in complex mammalian genomes (14).

One of the earliest methods proposed to overcome the lim-
itations of ChIP-chip was Sequence Tag Analysis of Genomic
Enrichment (STAGE) (15, 16). Revolutionary breakthrough in
sequence coverage and affordability has brought by ultra-high-
throughput sequencing, also called next-generation sequenc-
ing. Coupled with ChIP (ChIP-seq), immunoprecipitated
DNA segments are sequenced by massively parallel technol-
ogy including the Illumina (formerly Solexa) sequencing by
synthesis (www.illumina.com) (17), Roche/454 pyrosequencing
(www.454.com) (18), and Life Technologies’s (formerly Applied
Biosystems) SOLiD (http://solid.appliedbiosystems.com) plat-
forms. ChIP-seq produces tens of millions of sequencing reads.
From these massive but noisy data sets statistically significant
peaks and binding sites can be found. Compared to ChIP-chip,
ChIP-seq has a much finer resolution (25–200 bp), increased sen-
sitivity, and selectivity by eliminating cross-hybridization effects.
ChIP-seq is free from the hurdles of microarray design and
manufacturing.

ChIP-seq revolutionizes the discovery of regulatory protein–
DNA interactions, and binding sites for a number of TFs
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identified include p53 (19), NSRF (20), STAT-1 (21), c-Myc
(22), and PPARγ (23, 24).

1.3. Computational
Discovery of Binding
Sites from ChIP-seq
Observations

The density distribution of sequencing reads forms the basis for
heuristic and algorithmic methods for calling peaks. From these
peaks, the actual binding sites are inferred. The resolution, sensi-
tivity, and selectivity of ChIP-seq critically depend on the choice
of the heuristics or algorithms.

The development of algorithms and software tools of the
ChIP-seq computational analyses are lagging far behind the
progress of experimental technology. A diverse array of tools has
been published as reviewed in Chapter 1. These tools implement
fundamentally different methods for background correction, nor-
malization, and analyzing bimodal (twin) peaks on opposing
strands of the DNA. Certain tools like QuEST (25) explicitly
demand a control library. CisGenome [Chapter 9, (26)], Find-
Peaks (27), and model-based analysis of ChIP-seq (MACS) (28)
work without control libraries; CisGenome [Chapter 9, (26)]
models background noise based on the negative binomial distri-
bution, while SISSRs (29) and MACS (28) use the Poisson dis-
tribution for this purpose. Peaks are ranked by binomial p-values
in USeq (30). Most recent tools improve peak calling by esti-
mating the shift between the peaks on opposing strands (see
Section 3.3). False discovery rate is calculated by QuEST (25)
and MACS (28) on the basis of the control library, while Find-
Peaks (27) and spp (31) perform Monte Carlo simulations.
ERANGE (20, 32) uses tag aggregation but calculates no p-values
or FDR. F-Seq (33) also uses kernel density estimations, GLITR
(34) and PeakSeq (35) evaluate peaks using FDR. The develop-
ment of a more realistic FDR estimation would greatly benefit the
discovery of TFBS (see Note 2).

Here we demonstrate the discovery of TFBS from ChIP-
seq observations using the Quantitative Enrichment of Sequence
Tags (QuEST) tool. QuEST was developed by Anton Valouev
and colleagues at Stanford (25). QuEST takes the advantage of
the directionality of the sequencing reads to find genomic regions
enriched in TF-bound DNA fragments. It applies a nonparamet-
ric approach called kernel density estimation method to gener-
ate smoothed sequencing reads density, for which local maxima
(regions with high density) are sought. With these approaches,
QuEST can statistically analyze peak calls that indicate a higher
likelihood of finding biologically relevant TFBS.

1.4. Example:
Growth-Activated
Binding Protein
(GABPα)

We demonstrate below how to use QuEST to find putative
binding sites for the growth-activated binding protein α-chain
(GABPα, also known as E4TF1-60, nuclear respiratory factor 2
subunit α) (12) in human Jurkat cells. GABPα is a member of the
Etf family of TFs, and it is both necessary and sufficient for restart-
ing cell division (36, 37). GABPα has a 10–11 bp footprint on
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the DNA, with low information content at positions 8–11 (38).
ChIP was performed by using antibodies specific to this protein
and sequencing was performed on the Illumina Genome Analyzer
platform.

1.5. Overview We describe how to obtain and install the QuEST software and
how to format the input data in Section 2 and in Appendix 1.
In Section 3, we introduce the algorithms applied in QuEST. In
Section 4, QuEST finds GABPα binding sites from the ChIP-seq
reads mapped to the human genome and results are interpreted.
In the Notes section, we discuss potential limitations and param-
eter settings.

2. Software
and Data

Here we perform the prediction and analysis of TFBS on the basis
of the ChIP-seq reads mapped to the genome using Quantitative
Enrichment of Sequencing Tags (QuEST) tool developed by Val-
ouev et al. (25). QuEST facilitated the discovery of thousands of
binding sites for the human serum response factor (SRF), GABPα

discussed above, and neuron-restrictive silencer factor (NRSF).
The methods implemented in QuEST are discussed in Section 3.
The installation is described in Appendix 1, and the computa-
tional protocol is detailed in Appendix 2.

3. Methods

TFBS discovery using QuEST is described in nine sub-sections.
In Section 3.1, sequence reads are mapped to the genome.
Then candidate peaks are called on both strands of the DNA
based on the density distribution of the reads (Section 3.2).
Next, the extent of the shift between the forward and reverse
strand peaks on each side of a potential binding site is estimated
(Section 3.3). This allows combining the density distributions
on the two strands (Section 3.4). Then well-separated peaks
with significant differences to the background library are called
(Section 3.5). False discovery rate is estimated in order to
reduce the number of potentially biologically irrelevant or sta-
tistically not significant peaks (Section 3.6). Running QuEST
is discussed in Section 3.7 and Appendix 2. The number of
potentially missed sites is estimated by a saturation analysis in
Section 3.8. Finally, in Section 3.9 and Appendix 3, the called
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peaks are displayed in the University of California Santa Cruz
Genome Browser.

3.1. Mapping
ChIP-seq Reads
to the Genome

ChIP-seq produces several million sequencing reads (tags) of
varying length. These sequencing reads can be mapped onto
the genome by a number of tools including Bowtie, the fastest
tool at the time of this writing (39), MAQ (http://maq.
sourceforge.net/), Eland (http://www.illumina.com), SHRiMP
(40), SSAKE (41), SHARCGS (42), Exonerate (43), Corona
Lite for the SoLiD platform (http://solidsoftwaretools.com/
gf/project/corona/), and other packages. Inputs to QuEST are
the genomic coordinates and strand of the sequencing reads. For
every genomic position i, the number of high-quality forward
reads C+(i) and reverse reads C−(i) is recorded.

QuEST Version 2.4 accepts aligned reads in QuEST,
ELAND (http://illumina.com), Bowtie (39), and MAQ
(http://maq.sourceforge.net/) formats.

3.2. Kernel Density
Estimation

Loci significantly enriched in ChIP-seq reads may indicate bio-
logically functional binding sites. QuEST computes enrichment
by kernel density estimation (44), a nonparametric method of
computing smooth estimates over noisy observations. First, we
estimate the strand-specific smoothed density functions H+(i)
from C+(i) and H−(i) from C−(i) at nucleotide position i in the
genome for the forward strand:

H+(i) = 1
h

i+3 h∑

j=i−3 h

K
(

j − i
h

)
C+(j) [1]

and analogously for the reverse sequencing reads:

H−(i) = 1
h

i+3 h∑

j=i−3 h

K
(

j − i
h

)
C−(j), [2]

where K (x) = 1√
2π

exp
(
− x2

2

)
is the normal kernel function and

h is the kernel density bandwidth. The user-selectable kernel den-
sity bandwidth is the number of base pairs considered, used in the
estimation formulae [1] and [2]. The kernel density estimator is
a weighted moving average of the number of sequencing reads
where K

(
j−i
h

)
denotes the weight. The normal kernel is selected

here for its computational efficiency. With increasing distance of
j from i, the weight K

(
j−i
h

)
decreases for C+(j) or C−(j). The

bandwidth h is adjustable and the 30 bp default is recommended
for the binding sites of GABPα, which has a 10–11 bp footprint
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on the DNA, with low information content in the last four posi-
tions (45). The optimal selection of bandwidth depends on the
footprint width, the experimental characteristics, and the pres-
ence of co-binding proteins, and usually determined by trial and
error. While the normal kernel function is widely used, alternative
methods such as the Haar wavelets may perform better in certain
applications (see Note 3).

3.3. Estimating the
Peak Shift

The polymerase applied in amplification and sequencing attaches
to the 5′ termini of the sample DNA segments. Moving toward
the 3′ end, the polymerase dissociates from the DNA with a
sharply increasing frequency. Therefore reads are overrepresented
at the 5′ ends on both strands of ChIP-enriched DNA fragments
as compared to their central and 3′ regions. Reads from the two
strands form two peaks, one at each side of the binding site.
QuEST estimates peak shift, the distance between the peaks on
the forward and the reverse strands as follows (Fig. 10.2). For
shift estimation, only twin peaks with high confidence are selected
as follows. For each fixed length (default: 300 bp) sliding window
r, the highest local maximum of forward reads is M r+ and of the
reverse reads is M r−; the second highest local maximum of forward
reads is N r+ and of reverse reads is N r−. Window r is selected for
peak shift calculation if it satisfies the following three conditions:

1. Window r is covered by more than t reads (default: 600).
This condition ensures robust estimates of local maxima.

2. M r+ > 20N r+ and M r− > 20N r−. If the highest local max-
imum is much greater than the second highest local maxi-
mum, then the highest local maximum is more likely to be a
real peak instead of some random spike.

3. M r+ > 20cr+ and M r− > 20cr−, where cr+ and cr− are
the local maxima of the same window in the pseudo-ChIP
library. This condition ensures that the peaks safely exceed
the background level.

300 bp window

M+i
N+i

M–i
N– i

5′
3′

Fig. 10.2. Selection of peak calling windows. Users can configure the fixed length (default: 300 bp) of the sliding
windows. A pair of peaks are formed by the M+i and M−i clusters of reads.
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Let S denote the set of all selected windows. For every win-
dow r ∈ S, we compute the dr distance between the highest peaks
M r+ and M r−. The peak shift λ is estimated by

∑
r∈S1

dr/2 M , where

M is the number of windows in S.

3.4. Combining
Strand Densities

The above estimate for the peak shift allows us to calculate the
combined densities of forward and reverse reads for both ChIP-
seq and control library:

H (i) = H+(i − λ) + H−(i + λ).

The combined density is the basis for peak calling below.

3.5. Peak Calling Peaks are defined as windows of high concentration of sequenc-
ing reads at a locus on the genome that may indicate TFBSs
(Figs. 10.2 and 10.3). Candidate peaks are detected by scanning
the genome using narrow sliding windows (default: 21 bp) for
local maxima of the combined density. Let p1, . . . pB denote the
positions of the candidate peaks; and let c1, . . . , cB denote the
corresponding density in the control library. To facilitate conser-
vative binding site predictions, a candidate at position pi will be
called if and only if it satisfies all of the following criteria:

1. H (pi) ≥ t , where t is a user-specified threshold (default: 30)
to control the false discovery rate. By definition, the false
discovery rate is the (estimated) frequency of false positives
with a score equal to t or higher. Increasing t decreases the
false discovery rate.

High density of
sequencing reads

5′

3′
TFBS

Noise

3′

5′

threshold

Combined strand density

Kernel density from
forward sequencing
reads

Kernel density from
reverse sequencing reads

Fig. 10.3. Simplified depiction of peak calling by the kernel density estimator. A peak is called when the maximum value
of combined read density exceeds a threshold. Peak pairs over the density threshold are called as a candidate TFBS. The
density threshold is calculated so as the FDR would not to exceed the user-selected value.
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2. Background test. Either ci ≤ τ or H (pi)/ci > r,
where ci is the background density at peak i and τ is the gen-
eral background threshold, and r is a user-specified “rescue”
ratio, which, by default, is set to 10.

3. To ensure clear separation (“valley”) between neighboring
peaks, a minimum of 10% drop in H (j) read density is
required.

0.9 · min{H (pi−1), H (pi)} ≥ max{H (j)|pi−1 < j < pi}

and

0.9 · min{H (pi), H (pi+1)} ≥ max{H (j)
∣∣pi < j < pi+1 }.

The selection of the parameter values here are somewhat arbi-
trary. Values selected by the application of a systematic sensitivity
analysis may increase performance (see Note 4).

3.6. False Discovery
Rate

False discovery rate (46) is defined as the ratio of incorrect posi-
tive predictions. In the context of TFBS predictions, it is the pro-
portion of erroneously called peaks that are either not binding
sites or binding sites for proteins other than the TF of interest.
These peaks are called since they score higher than the threshold
and satisfy all the three conditions above. Conditions and thresh-
olds are selected to strike a delicate balance of maximizing true
positive and minimizing false positive predictions.

There is no reference set where each genomic position is
reliably characterized as a binder or as a non-binder. Therefore
false discovery rate is approximated by using control libraries
created by reversing the cross-links and performing no ChIP
(Section 1.1). The library with no IP is randomly split into a
pseudo-ChIP-seq library and a background set. If a satisfactory
number of pseudo-ChIP reads are available, splitting them into
more than two sets could improve the accuracy of false positive
rate estimations (see Note 5). For compatibility with the real IP
experiment, the number of reads in the pseudo-ChIP-seq library
must match the number of reads in the real ChIP-seq library. The
peak calling procedure (Sections 3.2, 3.3, and 3.4) is performed
by comparing the pseudo-ChIP-seq library to the background set.
Clearly, any pseudo-peak called in this comparison is false. Then
peaks are called for real ChIP-seq library using the same back-
ground set. The approximated false discovery rate is the number
of pseudo-peaks divided by the number of called peaks in the real
ChIP-seq analysis. Valouev et al. (25) applies a threshold of 1%,
but acceptable thresholds for false discovery rate are subject to
the individual experimenter’s discretion.
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While the above described no-IP-based approximation is
probably the best available choice, this procedure consider-
ably underestimates the real false discovery rate in a ChIP
environment. This procedure does not take into consideration
antibody binding to untargeted proteins, which is a serious issue
with large TF families with similar epitope structure, and major
cause of false positives (3, 8). Another issue is that formaldehyde
can cross-link DNA to close but unbound proteins (3). These
concerns motivate further computational validation including the
identification of shared motifs (Section 3.10.2) and correlation
analyses with TFs that co-regulate certain genes with GABPα

(Results).

3.7. Running QuEST
on ChIP-Enriched
Sequencing Reads

Sequencing reads obtained by the ChIP-seq experiments of the
GABPα binding sites in human Jurkat lymphoblastoma cells were
aligned to the human genome (Version hg18). Peaks are called
and evaluated as described in Appendix 2.

3.8. Peak Saturation How many peaks are missed when using one, two, or more
sequencing lanes? This question can be answered by drawing a
saturation curve where the number of peaks is a function of the
number of reads. Saturation analysis can be performed by ran-
domly selecting subsets of varying size from the original data and
calculating the number of peaks for each subset as in Sections
3.2, 3.3, 3.4, 3.5, 3.6, and 3.7.

3.9. Visualization
in the Genome
Browser

Peaks can be visualized in a rich context of diverse genomic infor-
mation using the University of California Santa Cruz Genome
Browser (http://genome.ucsc.edu) (47). QuEST prepares sev-
eral custom tracks for this browser. Users can upload these tracks
to either the UCSC server or a local implementation of the
Genome Browser, as described in Appendix 3. As an example,
Fig. 10.4 shows the promoter region of the human G-protein

Minus strand

Plus strand

Fig. 10.4. Actual peaks and TFBS predictions in the promoter region of the gene encoding the human G-protein binding
protein CRFG (GTPBP4) as displayed by the UCSC Genome Browser using custom tracks. Note that in the promoter region
of this strand gene, sequencing reads in the forward orientation form (upper subchart) a peak upstream of the peak of
the reverse strand reads (lower subchart). The two peaks combined span over 350 bp, much wider than the 10–12 bp
footprint of the GABP TF.
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binding protein CRFG (GTPBP4). Sequencing reads in the
forward orientation cluster into a peak upstream of the reverse
read peak. Note the coarse resolution of ChIP-seq: high read den-
sity extends to over 350 bp, much wider than the actual footprint
of the GABPα protein on the DNA.

3.10. Results

3.10.1. Reproducibility QuEST (25) reproduces several earlier identified target genes for
GABPα including interleukin-16, cytochrome c oxidase subunits
IV and Vb, and SRF-regulated FHI.2. The resulting binding sites
are also in line with the co-occurrence of GABPα and SRF bind-
ing sites: 29% of the predicted SRF peaks were in the proximity of
GABPα sites. The original publication (25) reported 6,442 peaks,
however, using the parameters described in Section 3.3, we found
550 additional peaks. Saturation analysis performed as in Section
3.5 indicates that the sequencing depth is sufficient to identify
most peaks.

The reproducibility of peak positions and scores was
estimated using an experiment targeting another TF, the neuron-
restrictive silencer factor (NSRF). Potential binding sites of this
TF were immunoprecipitated by both monoclonal and the poly-
clonal antibodies in different experiments. Peaks were called sep-
arately from both experiments. The standard deviation of the dis-
tances between the 2,320 comparable peaks was as low as 13.5 bp,
and the scores were highly correlated (r = 0.97). These results
demonstrate the high reproducibility of both the ChIP-seq tech-
nology and the QuEST methodology.

3.10.2. Shared Binding
Site Motifs

As a rule, ChIP-enriched segments are considerably larger than
the biological TFBS. This is due to sonicating the chromatin to
∼500 bp segments, then size selection of the already chromatin-
free DNA to ∼150–200 bp by gel electrophoresis, experimen-
tal noise, and the presence of multiple proteins cross-linked by
formaldehyde, including others than the TF being studied (3).
Therefore a more accurate TFBS localization requires finding
common motifs in the neighborhood of each called peak. This can
be achieved by many of the ∼200 motif prediction tools available
to date, with varying performance for diverse TFs (reviewed in
Chapter 8). In Valouev et al. (25), de novo motif finding in the
200 bp neighborhoods of called peaks was performed by MEME
(Multiple Expectation Maximization for Motif Elicitation (48),
discussed in Chapters 6 and 11. QuEST’s reasonable specificity
(the ability to reject false positives) is indicated by the obser-
vation that 71% of the peaks were significantly enriched in the
canonical motif. The high accuracy of localization is shown by
the 21.76 bp standard deviation of the distance between motif
and peak centers.
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4. Notes

1. The software developers recommend peak calling using
parameter set Number 2. This, however, leads to an FDR
of 12.7% for the test data. In contrast, with the more strin-
gent parameter set Number 1, the FDR was 1.23%. This falls
into the generally accepted FDR range of 1–10%.

2. We found that –log10(q-value) is frequently in the order of
100 K even for some rejected peaks. This seems to be unre-
alistic therefore a more adequate method is required for esti-
mating FDR.

3. In Section 3.2, QuEST uses a kernel smoother to estimate
the density of both forward and reverse reads. An alternative
for smoothing densities provided by Haar wavelets (49). The
mother function of Haar wavelets can be written as

ψ(x) =

⎧
⎪⎨

⎪⎩

−1/
√

2, − 1 < x < 0
1/

√
2, 0 < x < 1

0, otherwise

Based on the mother wavelet, a family of child functions can
be generated as ψj ,t (x) = 2j/2ψ(2j x − t), where j and t are
indices for scale and location. Then the wavelet coefficients
can be defined by

WT (x){j , t} =
∫
ψj ,t (x)f (x)dx,

where f (x) is the original density. For smoothing, some
criteria are necessary to distinguish between wavelet coeffi-
cients that indicate true signals and those which reflect noise
and should be eliminated. The Haar wavelet method was
applied to denoise DNA copy number observations (50).
Wavelet methods proved to be particularly well suited for
handling the abrupt changes in (50), a situation similar to
ChIP-seq results.

4. In Section 3.3, there are four criteria to call peaks and the
values of several parameters are to be selected arbitrarily. A
sensitivity analysis for the changes in these parameters could
lead to more sensitive and selective predictions.
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5. To estimate the false discovery rate in Section 3.6, the con-
trol library needs to be split randomly into two data sets.
A more robust estimate of the false discovery rate could be
obtained by averaging the results from multiple randomly
split data sets.

Appendix 1:
Installing QuEST

Source code for QuEST (including PERL and C++ mod-
ules) can be downloaded from http://www.stanford.edu/
∼valouev/QuEST/QuEST.html. It has been tested for the
Linux/UNIX and Mac OS operation systems but no executa-
bles are available. The above web site provides installation instruc-
tions. System requirements include a local implementation of the
Pattern Extraction and Regular Expression Language (PERL), a
gcc compiler, 1 GB random access memory, and 30 MB disk space.
Unpack and untar the archive using the command:

tar -zvxf QuEST_2.4.tar.gz

Replace the filename for the current version. In the source
directory, configure QuEST by running

./configure.pl

Finally, compile and link QuEST by the

make

command to finish installation.

Appendix 2:
Running QuEST
on the
GABPα-Enriched
Sequencing Reads

Download the file http://mendel.stanford.edu/SidowLab/
downloads/quest/GABP.align_25.hg18.gz containing input,
total chromatin, sheared chromatin data and http://mendel.
stanford.edu/SidowLab/downloads/quest/Jurkat_RX_noIP.
align_25.hg18.gz for the control library. For the reference
genome, use the Human hg18 genome table http://
mendel.stanford.edu/SidowLab/downloads/quest/genome_
table.gz.

These files may require 30 GB free disk space. Next, configure
the parameters for the QuEST analysis (type on a single line):

<QuEST_Directory>/generate_QuEST_parameters.pl

-solexa_align_ChIP <Data_Directory>/GABP.align_25.hg18
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-solexa_align_RX_noIP <Data_Directory>/Jurkat_RX_noIP.

align_25.hg18

-gt <Data_Directory>/genome_table -ap <Save_directory>

/QuEST_analysis

-ChIP_name GABP_Jurkat &,

where <QuEST_Directory> is the directory where QuEST is
installed on the user’s local system; <Data_Directory>
is the directory to save unpacked data; the option
“solexa_align_ChIP” specifies the sequencing platform’s
alignment. Other options are included for QuEST align file,
Eland file, Eland extended file, Bowtie file, and MAQ file. The
option “-solexa_align_RX_noIP” refers to the control data,
where “noIP” is no immunoprecipitation, “-gt” specifies the
input for reference genome, and “-rp” indicates that the input
genome is in FASTA-files. Option “-ap” specifies the output
directory.

When prompted to run QuEST with FDR analysis, choose
“yes.” For the ChIP experiment, select “1,” for the peak calling
parameters, choose “1” (see Note 1).

QuEST processes this experiment in ∼1.5 h on a LINUX
server with 2.33 GHz CPU.

Appendix 3:
Displaying Peaks
in the UCSC
Genome Browser Let us visualize a particular peak, e.g., P-21-1 from the window

(region) R-21.
Go to http://genome.ucsc.edu and select “Genomes” in the

upper left corner. Then select “add custom tracks” and upload
the following files:

tracks/wig_profiles/by_chr/ChIP_unnormalized/chr22.wig.gz
tracks/ChIP_calls.filtered.bed
tracks/data_bed_files/by_chr/ChIP/GABP_Jurkat.chr11.bed.gz
tracks/bed_graph/by_chr/ChIP/GABP_Jurkat.chr11.bedGraph.gz

Then click on “Go to Genome Browser” and “jump” to the
region “chr22: 29160342-29162631”.
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Chapter 11

Sequence Analysis of Chromatin Immunoprecipitation Data
for Transcription Factors

Kenzie D. MacIsaac and Ernest Fraenkel

Abstract

Chromatin immunoprecipitation (ChIP) experiments allow the location of transcription factors to be
determined across the genome. Subsequent analysis of the sequences of the identified regions allows
binding to be localized at a higher resolution than can be achieved by current high-throughput experi-
ments without sequence analysis and may provide important insight into the regulatory programs enacted
by the protein of interest. In this chapter we review the tools, workflow, and common pitfalls of such anal-
yses and recommend strategies for effective motif discovery from these data.

Key words: Motif discovery, sequence motifs, chromatin immunoprecipitation, ChIP-seq,
ChIP-chip, transcriptional regulation.

1. Introduction

The regulatory programs enacted by transcription factors in
response to developmental or environmental cues depend on spe-
cific interactions between these proteins and the genes whose
expression they regulate. This specificity is provided, in large part,
by short DNA sequences that are recognized and bound by tran-
scription factors, thereby localizing them to their targets (1). In
general, different transcription factors recognize different bind-
ing sites. The varying sequence specificities of these regulators
and the genomic location of the sites they bind form a regulatory
code whose decipherment has been an important area of research
in molecular biology for over 40 years (2, 3).
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There are a number of challenges that must be overcome in
order to decipher this code. The interactions of transcription fac-
tors with DNA are transient, making detection difficult. In addi-
tion, it is clear that in vivo binding events vary extensively in
their function; the same protein bound at different sites or at the
same site under different conditions may activate, repress, or have
no effect on transcription, depending on several factors including
which proteins bind with it (4). For these reasons, a combination
of condition-specific experimental data and computational analy-
sis is critical for understanding transcriptional regulation.

One experimental technique that has provided significant
insight into the regulatory code of eukaryotes is chromatin
immunoprecipitation (ChIP). In a ChIP experiment, the transient
interactions between proteins and DNA are stabilized by chem-
ically cross-linking in vivo. After subsequent isolation and frag-
mentation of the cross-linked chromatin, protein-bound DNA
fragments are immunoprecipitated using an antibody specific to
the transcription factor of interest. Coupling this procedure to a
high-throughput readout technique like microarrays (ChIP-chip)
or massively parallel sequencing (ChIP-seq) allows the location of
transcription factors to be experimentally profiled on a genome-
wide basis (5, 6).

ChIP data provide a starting point for many types of analysis
of transcription. In this chapter, we will focus on computational
techniques that use these data to understand how a transcription
factor is localized to its targets in a profiled tissue or cell type.
This can involve identifying the sequences that are recognized
and bound by the protein itself or sites bound by other proteins
with which it cooperates to control gene expression. Since high-
throughput ChIP experiments may have significant experimental
noise, identifying sequences that have a strong statistical associ-
ation with ChIP-enriched regions can provide additional confi-
dence in the quality of the data and increase the resolution at
which binding sites can be localized.

A variety of approaches have been proposed to represent
the specificity of protein–DNA interactions, and the resulting
models are commonly referred to as sequence motifs (7). The
most intuitive representation of a sequence motif is the con-
sensus sequence. A consensus sequence describes the binding
site preference of a protein as a string of nucleotides. Sites
where a range of nucleotides are accommodated are denoted
using ambiguity codes. For example, the specificity of the Lrp
regulatory protein from Escherichia coli can be described as
YAGHAWATTWTDCTR (8). However, consensus sequences fail
to capture the fact that transcription factors generally have a range
of affinities for target sequences. An alternative model that con-
veys the range of affinities is the frequency matrix. Frequency
matrices describe the binding site preference of a protein as a
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set of position-specific multinomial distributions over the four
nucleotides A, C, G, and T. When an estimate of nucleotide fre-
quencies is available for regions that are not bound by the tran-
scription factor, frequency matrix motifs can be converted to
“log-odds” matrices by taking the log of each entry and then sub-
tracting the log of the background frequency for the appropriate
nucleotide.

Log-odds matrix motif models have a link to underlying bio-
physical parameters like binding free energy (9, 10). For the pur-
poses of analyzing ChIP data, biophysically based models often
have the advantage of allowing more realistic modeling of tran-
scription factor–DNA interaction. Because binding interactions
are transient, a particular binding site is occupied in only a fraction
of cells across the population. We refer to this fraction as the occu-
pancy, θ . Consider a transcription factor present in the nucleus at
a free concentration [P]. This protein can bind to a particular
unbound site, U, of length N to form a bound complex, B.

P + U ↔ B

The association constant Ka, which is a measure of the pro-
tein’s affinity for the site, is given by Ka = [B]

[U ][P] . The occupancy
of the site is related to this association constant and the tran-
scription factor concentration according to θ = Ka[P]

1+Ka[P] . Now
assume that the free energy of protein binding to any site is given
by a simple sum of nucleotide contributions at each position i.
Because the association constant is related to the free energy by
Ka = exp (−�G/RT ), we can re-write the expression for occu-
pancy to take on a convenient logistic form:

θ = 1

1 + exp
(

− log [P] +∑
i
∑

j gi,j ni,j

) [1]

where the gi,j correspond to the position-specific free energy con-
tributions (scaled by 1/RT) of each nucleotide (indexed by j =
1, . . . , 4) and ni,j are binary variables in a 4 by N matrix indicating
the presence or absence of nucleotide j at site i. We now derive
a simple relationship between a standard sequence motif and the
position-specific free energy contribution of each nucleotide. Let
pi,j be the posterior probability of observing nucleotide j at posi-
tion i in a genomic site, given that the site is bound in vivo.
These probabilities correspond to the entries in the motif fre-
quency matrix and are given by

pi,j = P
(
bound|ni,j = 1

)
P
(
ni,j = 1

)
∑

nP
(
bound|ni,j = 1

)
P
(
ni,j = 1

) [2]
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where P(nij = 1) denotes the prior probability of observing
nucleotide j (i.e., its background frequency). If we now assume
that the protein concentration is very low, then from equa-
tions [1] and [2], a site’s occupancy is approximated by

θ ≈ exp
(

log [C] −∑
i
∑

j gi,j ni,j

)
. We define an occupancy

estimate which ignores the contribution of nucleotide m at

position k as θ\k,m = exp
(

log [C] −∑
i
∑

j gi,j ni,j + gk,mnk,m

)
.

Then, equation [2] reduces to

pn,i =
[∑

S\iθ
\i,j
S P(S)

]
exp(gi,j)P(ni,j)

[∑
S\iθ

\i,j
S P(S)

]∑
j exp(gi,j)P(ni,j)

= exp(gi,j)P(ni,j)∑
j exp(gi,j)P(ni,j)

[3]

In equation [3], the sum over S\i (which cancels out) denotes
a summation over all possible binding site sequences holding posi-
tion i constant. Taking the logarithm of equation [3] and rear-
ranging gives

log pi,j − log P
(
ni,j
) = gi,j − log

∑
j

exp
(
gi,j
)

P
(
ni,j
)

= gi,j − log Zi

[4]

The entries of a log-odds matrix (the left-hand side of equa-
tion [4]), under some assumptions can be interpreted as the scaled
relative free energy contributions of those nucleotides to the bind-
ing reaction.

In a high-throughput ChIP experiment where there is both
positive and negative information about binding occupancy, it
is possible to use this information to exploit the relationship of
the biophysical and probabilistic approaches to learn accurate
and interpretable binding specificity estimates. The simple logis-
tic equation [1] relates occupancy, which has been measured in
the ChIP experiment, to energies, and thus, as we showed above,
sequence motifs. Given a set of bound and unbound example
binding sites (see Note 1), fitting a motif model can be accom-
plished by simply training a logistic regression classifier to distin-
guish the two classes (11). Similar biophysically based approaches,
making different simplifying assumptions, have been explored in
the context of ChIP-chip data analysis and have been proven to
be effective (see Chapters 9 and 10 and refs. (12, 13)).
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Fitting appropriate motif models to the ChIP data does not
end the analysis. Most de novo motif discovery algorithms pro-
duce multiple motif hypotheses, and it is often advantageous
to generate hypotheses using several different techniques. These
motifs must be assessed for statistical significance, ranked, and
clustered to reduce redundancy (see Note 2). Once a core set of
non-redundant motifs has been identified, it is useful to be able to
map them back to the genome to identify putative binding sites at
high resolution (see Note 3). In this chapter we discuss tools and
techniques for obtaining transcription factor binding specificity
estimates from ChIP-chip and ChIP-seq data and for performing
the downstream analyses that allows sequence information to be
used to maximum effect alongside ChIP data.

2. Software

A wide variety of software packages exist to analyze ChIP data and
perform motif discovery and an exhaustive overview of the vari-
ous options is outside the scope of this chapter. Instead we offer
several suggestions which may be used as starting points for these
types of analyses. For identifying bound regions from a ChIP-chip
experiment, the ChIPOTle (14), TiMAT (15), COCAS (16),
and JBD (17) tools are all suitable for analysis of modern tiled
microarray data. For ChIP-seq data, the MACS (18) and USeq
(19) packages are publicly available, have demonstrated good
performance, and allow for sophisticated statistical analyses of
sequence reads. Dozens of motif discovery algorithms have been
described in the literature and are publicly available for use includ-
ing the Weeder (20), AlignACE (21), MEME (22), and MDScan
(23) algorithms. These tools have been integrated into an online
motif discovery package, WebMOTIFS (24). Suites of tools for
motif analysis have also been developed including cisGenome (see
also Chapter 22) (25), the MEME suite (26), and TAMO (27).
The performance of select methods is discussed in Chapter 8
using the Motif Tool Assessment Platform (MTAP).

3. Methods

The process of identifying biologically meaningful sequence
motifs from a ChIP-chip or ChIP-seq experiment and mapping
them back to the genome involves several steps. The overall work-
flow is summarized in the flow chart of Fig. 11.1.
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Evaluate
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Evaluate
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significance

Map back
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motif

discovery

Fig. 11.1. Typical sequence motif analysis workflow for ChIP data. After identification
of bound regions from the experiment, motif hypotheses are generated using de novo
motif discovery algorithms or assembled from databases. Hypothesis quality is mea-
sured against the binding data using a quality score, and statistical significance testing
is performed. Motifs may then be mapped back to the genome to improve the resolution
of binding site identification.

3.1. Sequence
Extraction

Motif analysis of high-throughput ChIP data begins by first
identifying and extracting the DNA sequence of bound regions
detected in the experiment. Most software packages used to ana-
lyze ChIP data will output the genomic coordinates of regions
identified as bound in the experiment. For ChIP-chip, binding
sites for the immunoprecipitated protein can be located several
hundred base pairs away from the center of the peak identified by
the ChIP analysis software. Data from ChIP-seq experiments is at
significantly higher resolution, and the majority of bound regions
identified by software packages have a putative binding site within
a 300 bp window of the peak center as shown in Fig. 11.2 for
PPARγ ChIP-seq data (28). Even for ChIP-seq data, however,
when the goals of a motif analysis include identification of binding
sites corresponding to other transcription factors that may coop-
erate with the immunoprecipitated protein to enact a regulatory
program, extending the sequences may allow these binding sites
to be better captured. Of course, extending sequences also serves
to decrease the signal-to-noise ratio in the data and makes motif
discovery more challenging. Figure 11.3 shows how the proba-
bility of observing a binding site in bound and randomly selected
unbound regions changes as sequence length increases for the
data set of Fig. 11.2. At relatively small sequence sizes, sensitiv-
ity is improved by increasing the size window since binding sites
that are offset from the peak center are excluded when the length
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Fig. 11.2. Representative distribution of distances between ChIP-seq peaks and binding
site matches. Genomic regions identified as bound by PPARγ in the study of Nielsen et al.
were scanned for peroxisome proliferator response elements (PPREs) and the distribu-
tion of distances between the peak center and the closest PPRE is shown. The majority
of bound regions have a PPRE within 250 bp of the peak center.

Fig. 11.3. Fraction of bound and unbound regions with a motif match as a function
of region size. For the PPARγ ChIP data of Nielsen et al., increasing the size window
around the ChIP peak centers increases the fraction of bound regions containing a PPRE.
However, the fraction of randomly selected unbound regions that contain a PPRE also
increases.

is too small. However, the probability of randomly observing a
binding site in unbound sequence also increases. For the ChIP-
seq data in Fig. 11.3, a sequence window size of approximately
250 bp adequately balances sensitivity and specificity considera-
tions.

3.2. Hypothesis
Generation

Once the sequences to be analyzed have been identified and
extracted, the data can be mined for sequence motifs that may
represent the binding specificity of the immunoprecipitated pro-
tein. This hypothesis generation step is often performed using
one or more de novo motif discovery algorithms (29). These
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computer programs attempt to learn a representation of the pro-
tein’s binding specificity directly from the sequence data in an
unbiased manner and may be especially useful for immunopre-
cipitated proteins with unknown binding specificity and with no
close homologs with known binding specificities. As the relative
performance of particular algorithms has been shown to vary sig-
nificantly from data set to data set (see ref. (30)), it is recom-
mended that when de novo motif discovery is used as the primary
hypothesis generation tool in an analysis two or more different
programs be employed. It has been previously demonstrated that
this can significantly improve the chances of identifying a motif
consistent with the protein’s true binding specificity (31). An
alternate approach for generating hypotheses is to mine public
or commercial databases for previously described DNA sequence
motifs. When the DNA-binding domain family of the protein
is known, hypotheses can be limited to motifs corresponding to
transcription factors from that family (32, 33). A more compre-
hensive approach is to compile all motifs corresponding to tran-
scription factors represented in a particular species or class and
to treat these as motif hypotheses. For the PPARγ data set intro-
duced in Section 3.2, we tested the large set of 101 DNA-binding
domain-derived motifs reported in (33) to see which motif best
represented the binding specificity of this transcription factor. To
better make use of the sequence information at PPARγ-bound
regions, we fit each motif to the binding data using an expec-
tation maximization motif discovery approach (see Chapter 6).
The resulting motifs were subsequently evaluated for quality (see
Section 3.3).

3.3. Hypothesis
Evaluation

The hypotheses that have been assembled, either by de novo motif
discovery or by other methods, must be evaluated to determine
which does the best job of representing the transcription fac-
tor’s binding specificity. This involves calculating a score for each
motif that measures its quality. Although most de novo motif dis-
covery algorithms have built-in scoring methods for evaluating
and ranking motifs, these scores are usually not directly compara-
ble between different programs. Furthermore, for ChIP-chip and
ChIP-seq data, it is natural, and generally desirable, to make use
of the negative information in unbound regions from the exper-
iment when evaluating different motif hypotheses (34); many de
novo algorithms do not make use of this information. One par-
ticularly simple and useful scoring scheme is to calculate a p-value
based on the hypergeometric distribution associated with each
motif’s occurrence in bound sequences relative to its occurrence
in a pooled set of bound and unbound sequences from the exper-
iment. Although the hypergeometric enrichment calculation pro-
duces a p-value, we will see in the next section that this statistic
is not a reliable estimate of significance and should be treated
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like any other type of score. Alternatively, to avoid the difficulties
associated with defining a match threshold for position weight
matrix motif models, motif hypotheses can be ranked by evaluat-
ing the area under the receiver-operating characteristic curve for
a motif-based classifier used to distinguish bound and unbound
sequences. For the set of hypotheses generated from the PPARγ

ChIP-seq data in Section 3.3, we used a similar approach, eval-
uating each motif’s ability to correctly classify held out bound
and unbound sequences. In Fig. 11.4 we show the distribution
of mean fivefold cross-validation errors for the 101 hypotheses.
The motif with the lowest mean error, tgaCCTyTgNCCy, is an
excellent match to the peroxisome proliferator response element
bound by this transcription factor in vivo (35).

Fig. 11.4. Distribution of motif scores for PPARγ ChIP-seq data. A diverse set of 101
motif hypotheses were evaluated by assessing their ability to discriminate bound and
unbound sequences. The resulting distribution of mean fivefold cross-validation errors is
shown. The motif with the lowest cross-validation error matches the previously reported
PPARγ binding specificity.

3.4. Evaluating the
Statistical
Significance
of Motifs

High-scoring motifs may represent biologically meaningful tran-
scription factor binding sites present in the immunoprecipitated
regions identified by the experiment. To confidently link a partic-
ular motif to the binding data, however, it is necessary to estimate
the level of statistical significance of the motif’s score. Overfitting
is a danger associated with any hypothesis generation scheme, like
de novo motif discovery, that involves fitting a model to sequence
data. Although even simple models can overfit the data, as model
complexity increases (for example, by increasing the number of
nucleotide positions in a position weight matrix model), overfit-
ting becomes an increasingly serious problem.

p-Values are frequently used to evaluate the statistical signif-
icance of a motif. For motif analyses, the definition of a p-value
is the probability of obtaining the same quality score or better
for the motif when it is not bound by the transcription factor
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studied. A practical strategy for evaluating this probability is to
estimate the null distribution using random sampling. The basic
idea is as follows: the bound and unbound labels of the pooled
set of sequences from the experiment are randomly permuted,
the randomly sampled “bound” set is used to fit a motif model,
and this model is then scored. Repeating this process many times
allows the distribution of scores under the null hypothesis to be
estimated. By comparing the scores of interesting motif hypothe-
ses to this distribution, an empirical p-value for each motif can
be obtained. When more than one hypothesis has been tested, it
is important to account for this by performing a multiple test
correction. There are several methods of performing multiple
hypothesis correction including step-down False Discovery Rate
(FDR) methods and Bonferroni correction (36). We tested the
statistical significance of the top-ranked motif from our analysis
in Section 3.4 using this randomization strategy. After permut-
ing bound and unbound labels in the PPARγ ChIP-seq data, we
then fit the motif to this randomized data by EM. The ability of
the resulting motif to classify “bound” and “unbound” sequences
was assessed. Repeating this process 25 times we observed a mean
cross-validation error of 0.49 with a standard deviation of 0.01.
By comparison, on the actual data the mean cross-validation error
of the top-ranked motif was 0.27, indicating that this motif is
quite likely to have biological relevance.

3.5. Mapping Motifs
Back to the Genome

The resolution of ChIP-chip and ChIP-seq experiments has
improved tremendously, but unfortunately it still does not exceed
a level of approximately 200 bp. For this reason, it is often
of interest to identify putative in vivo transcription factor bind-
ing sites at higher resolution by mapping motifs back to the
genome. Another important consideration is the noise in the
data. Weakly bound regions with low ChIP enrichment may be
biologically relevant. However, lowering the detection thresh-
old may result in an unacceptably high level of false positives.
Identification of motif matches allows sequence information to
be used to adjust the confidence level associated with putatively
bound regions detected in the experiment. The main challenge
associated with identifying potential transcription factor binding
sites using a sequence motif is in deciding what constitutes good
enough agreement with the motif to be counted as a putative
match. For matrix models, each genomic site can be scored using
the matrix and a match threshold defined and used to identify
putative binding sites. In the past, we have found that an empiri-
cally reasonable threshold to use is 0.6 times the maximum possi-
ble score of a log-odds matrix (29). However, more statistically
principled methods for identifying motif matches can certainly
be applied. It is always possible to associate an empirical p-value
for a match score by evaluating the genome-wide distribution of
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scores for that motif. Alternatively, given a reasonable background
model of nucleotide frequency in relevant genomic regions, a
p-value can be obtained by calculating the log probability of the
sequence under the motif and background models. We can then
make the standard assumption that their ratio will be approxi-
mately chi-square distributed with degrees of freedom equal to
the difference in degrees of freedom between the motif and back-
ground models. Of course, even when such p-values can be cal-
culated, their relationship to the underlying biological reality is
still unclear, and the motif match threshold selection problem has
simply been converted into a p-value threshold selection problem.
For this reason, we recommend a data-driven approach for pick-
ing a match threshold that takes advantage of the information the
ChIP experiment has provided. By treating a motif as a feature
that discriminates bound and unbound sequences in the experi-
ment, reasonable criteria for selecting a match threshold naturally
emerge. A threshold can be selected to keep FDR below some
desired level, to minimize classification error, or to maximize sen-
sitivity subject to a reasonable penalty on false positives. We define
a true positive (TP) as a bound region in the ChIP experiment
with a match to the motif, a false negative (FN) as a bound
region with no match, a true negative (TN) as an unbound region
with no match, and a false positive (FP) as an unbound region
with a motif match. Figure 11.5 shows how, on PPARγ-bound
regions and an equally sized set of unbound regions, sensitiv-
ity (TP/(TP+FN)) and specificity (TN/(TN+FP)) change as the
match threshold is increased for the PPARγ motif. For these data,
a match threshold selected to maximize sensitivity while keeping
the FDR below 20% recovers 56% of the bound sequences.

Fig. 11.5. Data-driven motif match threshold selection. Shown is sensitivity vs. 1
minus specificity curve for the PPARγ motif used as a classifier of bound and unbound
sequences. A threshold selected to maximize sensitivity while keeping the false discov-
ery rate below 20% recovers 56% of the bound sequences.
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4. Notes

1. Selecting a background set of unbound regions: For ChIP-
chip experiments it is often possible to use the entire set of
unbound sequences represented on the array(s) as a back-
ground for either motif hypothesis generation or evaluation.
For ChIP-seq experiments, this is infeasible and a represen-
tative set of unbound background regions often needs to
be selected by the investigator. There are two important
points to keep in mind when generating this background.
First, the size distribution of bound and unbound sequences
should be carefully matched in order to ensure that the pre-
dictive power of a particular hypothesis is accurately esti-
mated. If the length of unbound sequences is too large,
then the probability that a random unbound sequence will
contain a motif match will be quite high, masking any true
discriminative power that a particular motif may have. Sec-
ond, different genomic regions have different nucleotide
compositions. For example, promoter regions, which have
the highest density of transcription factor binding sites, often
contain GC-rich regions corresponding to CpG islands (37).
A set of bound regions from a ChIP-seq experiment is likely
to be enriched for high GC content even when the sequence
recognized and bound by the transcription factor binding
site itself is not GC rich. It is therefore often desirable to
roughly match GC content between bound and unbound
sets to avoid identifying uninformative GC-rich motifs dur-
ing motif discovery and evaluation. For ChIP-chip data col-
lected on promoter arrays, a simple and effective way of
doing this, in our experience, is to match the distribution of
distances to transcription start sites between the bound and
unbound sets. Binding sites identified by the ChIP exper-
iment that are enriched in promoter proximal regions will
then be tested against a background that is also enriched in
proximal regions, thereby controlling for the variations in
nucleotide content between promoters and more distal sites.
For ChIP-seq data, where many bound sites identified can
be distal, a better strategy is to explicitly match the mean
GC content of the bound regions and background.

2. Clustering motifs: In practice, motif discovery programs
often produce several very similar, but not identical, motif
hypotheses when run on a data set. If several programs are
employed to analyze ChIP data, one is often faced with
a pool of dozens or even hundreds of motifs with signifi-
cant redundancy. Similarly, although the Jaspar database of
transcription factor binding sites (38) has made an impres-
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sive effort to eliminate redundancy, other databases do con-
tain redundant motifs. When combining motif matrices or
consensus sequences from multiple databases or literature
sources this problem is exacerbated. One way of controlling
redundancy is to employ a clustering algorithm to group
similar motifs together. A representative motif can then be
picked from each cluster to create a more manageable, non-
redundant set of motifs to work with. In order to cluster
motifs, one must first specify a motif similarity measure. For
motifs that can be treated as frequency matrices, a very effec-
tive similarity score is the mean negative Kullback–Leibler
(KL) divergence (39) between columns of the matrices. For
the multinomial distributions given by two columns P and
Q, the score is

KL
(
P , Q

) = −
∑

j

P
(
nj
)

log
P
(
nj
)

Q
(
nj
) [5]

Euclidean distance has also been used as a similarity score,
and other specialized similarity scores have been suggested
(40). No matter which measure is used, two additional issues
must be addressed when calculating the similarity between a
pair of motifs. First, both the forward and reverse comple-
ment orientations of the motifs must be considered. Second,
because motifs often have different sizes the similarity mea-
sure should account for the different possible alignments of
the matrices. One effective strategy is to evaluate the max-
imum similarity over all possible alignments (both forward
and reverse complement) while enforcing a minimum over-
lap of six to eight nucleotides and to use this maximum as
the similarity. Once a matrix of similarity scores has been cal-
culated, an algorithm like affinity propagation (41) can then
be used to perform the clustering itself.

3. Mapping motifs to the genome: Picking a single threshold
to identify matches to a motif obscures a great deal of the
complexity of transcription factor binding. The occupancy
of a particular site in vivo will depend not only on the site’s
sequence but also on the protein’s concentration in the
nucleus. At low concentrations, most protein molecules will
bind to very high-affinity sites, whereas at high concentra-
tions, low-affinity sites may be bound and have biological
function. It may therefore be more reasonable to predict
an occupancy level between 0 and 100% on a site-by-site
basis rather than to assign the sites binary labels indicating
whether a site “matches” the motif. In practice, however, it
is often more convenient to divide sites into matches and
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non-matches. To this end, evaluation of sequence
conservation across related species has been used to
improve identification of functionally important transcrip-
tion factor binding sites (42, 43). While it is reasonable
to assume that conserved binding sites are likely to have
functional importance, several studies have demonstrated
that transcription factor binding can be surprisingly poorly
conserved across species (44, 45). Enforcing stringent
conservation thresholds on putative transcription factor
binding sites is therefore likely to result in an underestimate
of the true number of functional sites present in bound
regions from the experiment.
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Chapter 12

Inferring Protein–DNA Interaction Parameters from SELEX
Experiments

Marko Djordjevic

Abstract

Systematic Evolution of Ligands by EXponential enrichment (SELEX) is an experimental procedure that
allows extraction, from an initially random pool of oligonucleotides, of the oligomers with a high bind-
ing affinity for a given molecular target. The highest affinity binding sequences isolated through SELEX
can have numerous research, diagnostic, and therapeutic applications. Recently, important new modifica-
tions of the SELEX protocol have been proposed. In particular, a suitably modified SELEX experiment,
together with an appropriate computational procedure, allows inference of protein–DNA interaction
parameters with up to now unprecedented accuracy. Such inference is possible even when there is no a
priori information on transcription factor binding specificity, which allows accurate predictions of bind-
ing sites for any transcription factor of interest. In this chapter we discuss how to accurately determine
protein–DNA interaction parameters from SELEX experiments. The chapter addresses experimental and
computational procedure needed to generate and analyze appropriate data.

Key words: In vitro selection, high-throughput SELEX, SELEX-SAGE, weight matrix, SELEX
modeling, protein–DNA interactions, transcription factor binding sites.

1. Introduction

Systematic Evolution of Ligands by EXponential enrichment
(SELEX) is a procedure that allows rapid selection of those
oligonucleotides that have appropriate binding affinity to a given
molecular target, starting from a large initial library of oligonu-
cleotides (1). The oligonucleotide library can consist of either
single-stranded oligonucleotides (RNA, ssDNA, modified RNA,
or modified ssDNA) or double-stranded DNA (dsDNA). One
most often starts with a large library of random oligonucleotides,
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since little is known beforehand about the binding properties of
a target molecule in many cases. While molecular targets can be
either proteins or small molecules, we here concentrate on tar-
gets that are selective DNA-binding proteins (e.g., transcription
factors). The basic steps of SELEX are protein binding, selection,
and amplification. These steps are repeated successively, so that
strong binders are finally selected from the initial library.

The first SELEX experiments were performed more than
19 years ago (1–3), and SELEX by now has numerous research,
diagnostic, and therapeutic applications (4). Most of published
SELEX experiments involve single-stranded oligonucleotides,
while the experiments and applications involving dsDNA are com-
parably underrepresented. This bias is mostly due to that single-
stranded oligos obtained through SELEX have important diag-
nostic and therapeutic applications. In particular, single-stranded
oligos that bind with strong binding affinity can be identified for
a large variety of molecular targets. Those strong binders can, for
example, be used as alternatives to antibodies in many applica-
tions.

On the other hand, SELEX is also a very important tool to
infer interactions of proteins with dsDNA. This is mainly because
one often has a protein that interacts with dsDNA in vivo, but
whose binding specificity is unknown. SELEX is then performed
in order to identify dsDNA sequences that are the strongest (con-
sensus) binders to the protein of interest (e.g., (2, 5, 6)). Further-
more, appropriate modifications of the standard SELEX protocol
allow robust generation of a data set from which protein–DNA
interaction parameters can be determined with high accuracy (7,
8). Such interaction parameters can consequently be used to accu-
rately predict binding affinity of a transcription factor to any DNA
segment of interest.

This chapter addresses how to use SELEX to enable accurate
predictions of transcription factor binding sites, so we concen-
trate on SELEX experiments in which dsDNA is used. We will
first discuss SELEX experimental protocol, and then consider how
SELEX should be modified to generate a data set suitable for fur-
ther analysis. We will then describe the computational analysis of
the data set in order to accurately determine transcription factor
binding parameters.

2. Methods

As indicated above, we here focus on SELEX experiments that are
performed with dsDNA library and where the target is a DNA-
binding protein (e.g., a transcription factor). The scheme of the



Inferring Protein–DNA Interaction Parameters 197

Fig. 12.1. The schema of the SELEX procedure. A certain number of experimental
rounds (n) that consist of protein binding, selection, and amplification are performed.
Some of the sequences from the last round of the experiment are extracted and
sequenced.

SELEX procedure is shown in Fig. 12.1, and the experiments are
performed as follows. One prepares a library of dsDNA segments
that can be amplified, and the library is incubated with a DNA-
binding protein of interest. Next, in the selection step, protein-
bound DNA segments are separated from unbound ones (e.g.,
by gel shift or filtration through nitrocellulose). The selected seg-
ments are amplified by PCR. Binding, selection, and amplification
steps are then repeated for certain number of rounds, and some of
the segments that are selected in the final round of the experiment
are extracted and sequenced.

The initial library of oligonucleotides typically consists of a
large number (1015–1016) of random sequences. Larger libraries
of up to 1020 oligonucleotides are technically feasible (9) but are
rarely used in practice. Each oligonucleotide consists of a cen-
tral region of random sequence, which is flanked by two regions
of fixed sequence that enable amplification. The length of the
random region is typically between 20 and 30 bps, while each
flanking region is typically 15–25 bp long. One should note that
the length of the random region is almost always larger than the
length of transcription factor binding site, which has important
implications for data analysis that will be discussed below.

2.1. Selection
of Binding
Sequences Through
SELEX

We here discuss how binding sequences are selected through
different rounds of SELEX. The selection process has to be
understood in order to (i) determine how to modify standard
SELEX procedure to generate a data set suitable for further
analysis and (ii) understand how to analyze the assembled data
so that parameters of transcription factor binding specificity are
accurately determined.
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A protein–DNA interaction may or may not be sequence spe-
cific. Sequence-specific interactions are due to hydrogen bonding
and van der Waals interactions, while non-specific interactions are
due to electrostatic interactions (10–12). When the sequence of a
DNA segment is far from the consensus, interaction of the protein
with DNA becomes sequence independent (11, 13). Therefore,
most of the sequences in the starting (random) SELEX library
will interact non-specifically with the target protein.

In addition to the selected sequence-specific binders, a num-
ber of non-specific binders will also be selected in each round of
the experiment. This is a consequence of two conditions: first, a
number of sequences are bound non-specifically by the protein.
Second, during the selection step, only a partial separation is pos-
sible between bound and unbound sequences. The second effect
is termed background partitioning (1, 14).

The selection of non-specific binders is an important effect
in SELEX experiments. Non-specific interactions are typically
characterized by several orders of magnitude smaller binding
affinity compared to sequence-specific interactions (15). Also,
background partitioning probability, the probability to select a
sequence that is not bound by the protein, is likely low, e.g., 10−3

(1). However, these small numbers do not imply that the presence
of non-specific binders can be neglected. For example, about 1012

non-specific binders will be selected in the first round of the exper-
iment, just due to background partitioning, assuming the back-
ground partitioning probability of 10−3 and a starting library size
of 1015 sequences. On the other hand, with protein–nucleic acid
ratio of 10−3, which is typical for SELEX experiments (e.g., (1)),
less than 1012 specific binding sequences will be selected. There-
fore, after the first round of the experiment, the number of non-
specific binders is typically comparable or even larger than the
number of specific binders. As a practical consequence, one must
be sure to eliminate substantial noise due to non-specific binding,
which would otherwise overrun useful signals. To achieve this,
multiple rounds of SELEX experiment are performed. Also, selec-
tion of non-specific binders has to be taken into account when
analyzing SELEX data, as will be discussed below.

It is important to understand how the affinity distribution of
the selected sequence-specific binders changes through different
experimental rounds. In a simple case of small protein to nucleic
acid ratio, the average binding affinity of the selected sequence-
specific binders increases exponentially with the number of per-
formed SELEX rounds (8, 16, 14). Such exponential increase in
binding affinity, during the first few rounds of the experiment,
justifies the term “exponential” in Systematic Evolution of Lig-
ands by EXponential enrichment. Finally, after a certain number
of rounds, the maximum of the affinity distribution of the selected
binders reaches an upper limit, which is determined by the affin-
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ity of the strongest binder in the starting random library. At that
point, most of the sequences in the selected pool will consist of
the strongest binders. The observation that standard SELEX pro-
tocol rapidly selects only the strongest binders has important con-
sequences which will be discussed in the next section.

2.2. The Standard
SELEX Protocol
Cannot Be Used
to Accurately
Determine
Protein–DNA
Interaction
Parameters

As discussed above, the standard SELEX procedure can be used
to efficiently converge to the strongest binders for a transcription
factor of interest. However, the knowledge of only the strongest
binders is usually not sufficient to determine transcription factor
binding sites in the genome. This is because binding sites typ-
ically show considerable sequence variations (17). Moreover, a
SELEX library is typically much larger than the size of a genome,
so the consensus sequence may not be present in the genome at
all. Therefore, a direct match with the consensus sequence cannot
be used to identify binding sites in most cases. Alternatively, one
may attempt to allow certain number of mismatches to the con-
sensus sequence, in order to accommodate variability of binding
sites. However, a general problem with this approach is that dif-
ferent positions in a binding site, as well as different mismatches at
a given position, generally contribute very differently to protein–
DNA interaction energy (15, 18). That is, while a certain mis-
match can almost completely abolish sequence-specific binding,
another mismatch may change the binding energy by only a small
amount. Therefore, one needs to infer a more complete set of
protein–DNA interaction parameters, in order to appropriately
predict binding of transcription factors to DNA.

The interaction of proteins with dsDNA can be quantified by
using the so-called independent nucleotide approximation (15).
In this approximation, the binding energy of a protein to a
dsDNA sequence is equal to the sum of contributions due to
the presence of a given base at a given position in the bind-
ing site. The independent nucleotide approximation provides a
very good parametrization of the binding energy in most cases
(19–21), although there are some examples where binding at
certain positions shows strong dependence on dinucleotide pairs
(22–24).

Within the independent nucleotide approximation, one needs
a total of 3L independent parameters (L is the binding site
length),1 in order to describe protein–DNA interaction. These
parameters can be written in a form of a matrix with dimension
4×L, which is called weight matrix (15, 17). Individual weight
matrix elements are proportional to the contribution to the bind-

1 One should observe that there is one parameter for each possible mismatch
from a reference sequence.
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ing energy due to the presence of a certain base at a certain posi-
tion in a binding site (15, 25). Therefore, finding an accurate
weight matrix is an important goal toward reliable predictions of
transcription factor binding sites.

Weight matrices are typically determined from a set of aligned
binding sites assembled in biological databases (26, 27). How-
ever, the majority of such weight matrices provide a low level
of both specificity and sensitivity (28). In particular, there is a
problem of a large number of false positives when most of these
weight matrices are used to search for protein–DNA binding sites
(29, 17). This problem is typically attributed to an inadequate
data set from which most weight matrices are constructed (28)
because (i) for most DNA-binding proteins, only a few binding
sites are available in databases (26, 27), which is insufficient to
accurately determine protein–DNA interaction parameters (24),
and (ii) binding sites from databases are often assembled under
diverse and ill-characterized conditions (25). Therefore, in order
to improve the accuracy of weight matrices, it is highly desirable
to be able to generate a data set consisting of a large number of
binding sites assembled under well-controlled conditions.

Given that SELEX experiments are performed under con-
trolled (uniform) conditions, it appears that SELEX may be used
to generate such appropriate data set. However, can a standard
SELEX protocol indeed be used to generate a suitable data set or
the protocol has to be appropriately modified? To answer this, it
is useful to note a comprehensive comparison between the weight
matrices from eight available SELEX experiments with Escherichia
coli transcription factors and the corresponding weight matri-
ces constructed from natural binding sites (29). This compari-
son notes large discrepancies between the weight matrices derived
from natural binding sites and from SELEX experiments, in seven
out of those eight cases. Furthermore, in a SELEX experiment
performed with a bacterial transcription factor LRP (30), it was
noted that weight matrix scores inferred from SELEX experi-
ments show a poor agreement with measured binding affinities.
Similarly, it was noted (31) that a weight matrix constructed
directly from sequences extracted in a standard SELEX proce-
dure was not able to provide a good prediction of measured bind-
ing affinities. Therefore, it appears that the standard SELEX pro-
cedure is not appropriate to accurately determine protein–DNA
interaction parameters.

Why does the standard SELEX procedure appear to fail in so
many cases? To understand this, it is useful to consider what kind
of data set is needed to construct an accurate weight matrix. First,
a successful experiment has to eliminate non-specific binders from
the data set, as discussed above. Second, overselection should be
minimized, i.e., the selected sequences should not consist of only
the strongest binding sites. To understand the second point, it is
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useful to take the limit in which the data set consists from only
the consensus binder, when it is evident that the weight matrix
elements cannot be obtained from such information. This is also
supported by a detailed statistical analysis, which shows that a sig-
nificant fraction of medium affinity and weaker affinity binding
sequences is needed to accurately determine weight matrix ele-
ments (7).

Actually, it turns out that the above two requirements, the
elimination of non-specific binders and the absence of overselec-
tion, are very difficult to reconcile within the standard SELEX
procedure. This conclusion directly follows from the theoretical
modeling of the standard SELEX procedure (8). To intuitively
understand this result, one should note the observation that the
selected sequence-specific binders rapidly reach the highest affin-
ity binding sites, and non-specific binders may not be eliminated
from the pool of selected sequences by that time. Even if this does
not happen, it is very difficult to reliably predict when to stop
the experiment in practice, i.e., to determine in which SELEX
round is the noise eliminated while the overselection has not hap-
pened yet. The reason for this is that the protein–DNA interaction
parameters of the target protein are typically unknown a priori.
Therefore, the appropriate number of rounds cannot be calcu-
lated. In the next section, we will discuss how the SELEX pro-
cedure can be appropriately modified in order to allow a robust
generation of a data set from which accurate protein–DNA inter-
action parameters can be determined.

2.3. Fixed
Stringency/High-
Throughput SELEX
Experiments

To understand how to appropriately modify SELEX, we first
discuss the binding of proteins to DNA segments. The prob-
ability that a sequence S is bound by the protein, and conse-
quently selected in the next round of the experiment, is given
by the expression [c]/(Kd(S) + [c]) (25). Here [c] and Kd(S)
are the concentration of free protein and the binding dissoci-
ation constant of the sequence S, respectively. Therefore, the
selection stringency is determined by the concentration of free
protein in solution. The formula for binding probability can be
rewritten in terms of binding energy and chemical potential, so
that f (E − μ) = 1/[exp (E − μ)+ 1] , where E is the interac-
tion energy of the protein with the DNA sequence S and μ is a
value of chemical potential, proportional to logarithm of free pro-
tein concentration. Both E and μ are measured in units of thermal
energy (kB T ). Note that this binding probability is in statistical
mechanics called Fermi–Dirac function.

In the standard SELEX protocol, most experiments are per-
formed so that the total amount of protein and DNA is the same
in each experimental round. Since the average binding affinity of
the selected sequences increases with the number of performed
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rounds, the amount of free protein will decrease as a consequence
of the increase in the amount of bound protein. Due to decrease
in the free protein concentration selection stringency increases
through the experiment. Such experimental design leads to a data
set from which protein–DNA interaction parameters cannot be
accurately determined, as we discussed above.

Let us now assume that the amount of free protein is con-
stant in each round of SELEX. Since the selection stringency for
any given sequence is then constant, we will further call this pro-
cedure fixed stringency SELEX. For fixed stringency SELEX, the
change of the energy distribution of selected DNA sequences can
be calculated from a theoretical model of SELEX experiments (see
Fig. 12.2 from (8)). We see that the maximum of the energy
distribution for selected sequence-specific binders remains in the
vicinity of the chemical potential, i.e., the maximum drifts very
slowly toward the higher binding energies with the additional
number of performed SELEX rounds. This is in a sharp contrast
to the standard SELEX procedure, where the maximum of the
energy distribution rapidly reaches the strongest affinity binders

Fig. 12.2. The change of energy distribution through the SELEX procedure. Solid curves
are energy distributions of selected DNA sequences for different number of performed
SELEX rounds, in an experiment where the chemical potential μ is kept constant. Num-
bers above the curves indicate SELEX round, the position of the chemical potential is
indicated by the vertical dashed line, the dash–dotted line indicates the binding proba-
bility f (E − μ) . Note that once maximum of the energy distribution reaches μ, most
of the selected sequences are in saturated regime, i.e., bound with probability close to
one. This figure was adopted from (8).
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(the strongest affinity binder corresponds to the leftmost point
on the horizontal axis of Fig. 12.2). On the other hand, one can
notice that the number of non-specific binders keeps decreasing
with the increase in the number of performed SELEX rounds.

An important practical implication is that in the fixed strin-
gency SELEX one can ensure that random binders are eliminated
by performing larger number of SELEX rounds, without the risk
that only the strongest sequences will be selected. One can theo-
retically show that the fixed stringency SELEX procedure leads to
this desired behavior for all values of experimental parameters (8).
Additionally, the procedure is robust, since it leads to a suitable
data set for a large range of performed experimental rounds (in
the example in Fig. 12.2, any round larger than two is suitable).
Therefore, in conclusion, a fixed stringency SELEX experiment
allows robust generation of a suitable data set for accurate deter-
mination of protein–DNA interaction parameters.

How can one experimentally implement the constraint of
fixed free protein amount? An answer is a modification of the stan-
dard SELEX procedure by inclusion of the radiolabeled sequence
(probe) S∗ of moderate binding affinity, as described in an experi-
ment by Roulet et al. (7). Additionally, the concentration of total
DNA, added to the reaction mixture as a competitor to the radi-
olabeled probe, is adjusted in each round of the experiment, so
that a fixed fraction of the probe is bound by protein in each
SELEX round. Note that radiolabeling of the probe allows one to
determine the fraction of the probe that is bound by the protein.
Since the fraction of the bound probe is constant, the expression
[c]/([c] + Kd(S∗)) has to be constant, where Kd(S∗) is the disso-
ciation constant of the probe. Therefore, the free protein amount
([c]) has to be constant as well, since of course Kd(S∗) does not
change.

Roulet et al. (32) introduced another important extension to
combine the SELEX procedure with the SAGE (Serial Analysis
of Gene Expression) protocol. This extension allows one to effi-
ciently sequence up to several thousand binding sequences (7).
The procedure was termed high-throughput SELEX or SELEX-
SAGE protocol. As a recent development, a new generation of
non-Sanger-based sequencing (33) may be used instead of SAGE
procedure (34). In any case, the ability to generate a large data set
provides an obvious advantage for a precise estimation of protein–
DNA interaction parameters. Therefore, the combination of the
fixed stringency procedure with ability to sequence a large num-
ber of DNA segments, which we call fixed stringency/high-
throughput SELEX, allows both robust and accurate determina-
tion of protein–DNA interaction parameters. A database called
HTPSELEX, specifically developed for storing large data sets
obtained from high-throughput SELEX experiments, has recently
become available (35). This complements SELEX_DB (36) and
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TRANSFAC (26) databases, which have been assembling the data
obtained from standard SELEX experiments.

2.4. Computational
Analysis of Fixed
Stringency/High-
Throughput SELEX
Data

We here discuss how to accurately determine protein–DNA
interaction parameters from sequences extracted in fixed
stringency/high-throughput SELEX procedure. One should note
that the length of the randomized part of DNA sequences is usu-
ally larger than the length of a transcription factor binding site.
Therefore, one first needs to extract actual binding sites from
these longer sequences. To do that, multiple local sequence align-
ment algorithms (MLSA) are used that allow identifying statis-
tically overrepresented motifs in a set of DNA sequences. The
algorithms for MLSA are typically based on either the Gibbs
search (37) or expectation maximization (38) (see Chapter 6),
and several computational implementations of these approaches
exist.

In a typical data analysis, the set of aligned binding sites is
used to construct an information theory based weight matrix
(17). In the information theory based method, the weight matrix
elements are equal to the logarithm of the ratio of probability to
observe a given base at a given position in a collection of bind-
ing sites, compared to the base background probability. How-
ever, the information theory based weight matrix method has
drawbacks, since it does not properly incorporate saturation in
the binding probability (39, 25). That is, the information the-
ory based method assumes that the probability that sequence S is
bound by protein is given by exp (μ− E), while the correct bind-
ing probability is given by Fermi–Dirac function with sigmoid
form f (E − μ) as given above. This approximation is particularly
inaccurate to use in analysis of fixed stringency SELEX experi-
ments (8), since selected sequences rapidly reach saturated bind-
ing regime, where maximum of the binding energy distribution is
in the vicinity of chemical potential (Fig. 12.2).

A procedure that correctly incorporates saturation effects is
presented in (8). A key step in the procedure is using a maximum
likelihood method: initially unknown parameters are inferred
by maximizing the likelihood that the extracted set of DNA
sequences is observed as the outcome of the experiment. The
probability of extracting the given set of DNA sequences is cal-
culated by taking into account the correct protein–DNA binding
probability (see the formula for binding probability above). The
set of equations resulting from varying the likelihood with respect
to the unknown parameters is then numerically solved to compute
the elements of the energy matrix. Computationally, we solve a
set of 3L+1 mutually coupled non-linear equations (L is length
of the binding site, and one additional equation corresponds to
solving for the unknown free protein concentration). For detailed
implementation, please refer to (8).



Inferring Protein–DNA Interaction Parameters 205

While the above procedure leads to an accurate determina-
tion of protein–DNA interaction parameters, numerically solving
a large number of coupled equations may be technically demand-
ing. Therefore, it is useful to look at a limiting case of the above
procedure, where sigmoid function is approximated by unit step
function. In statistical physics, this is called “zero temperature
approximation” and is appropriate to use in saturated binding
regime (Fig. 12.2). It can be shown that this approximation leads
to a quadratic programming procedure for determining protein–
DNA interaction parameters, and this method was consequently
termed QPMEME (25). Since the procedure involves finding the
minimum of a convex function over a convex domain, finding
a solution satisfying the Kuhn–Tucker condition (40), namely
the condition for being a local minimum, is enough to find a
global solution. There are standard numerical packages that can
be used for solving quadratic programming problem (e.g., a sim-
ple to use but robust implementation is given in MATLAB’s Opti-
mization Toolbox). While the quadratic programming method is
less accurate than the full procedure discussed above, it still leads
to a significantly better false-positive/false-negative trade-off, as
compared to the information theory weight matrix method (25).
Due to its relative simplicity, a computational procedure for the
quadratic programming method will be described below, while
C and MATLAB codes for the method are available from the
authors of (25).

We assume that after n rounds of SELEX, set A, which
contains some number of sequences S, has been extracted and
sequenced. Furthermore, we denote by S(k) the kth sequence in
set A, and S(k)i,α = 1 if base α is present at the position i in bind-

ing site, and S(k)i,α = 0 otherwise. Furthermore, we denote by εi,α
the energy matrix element that gives contribution to the bind-
ing energy due to presence of base α at position i in the binding
site. As before, μ is the chemical potential. With this notation, the
determination of energy matrix elements amounts to minimizing
a quadratic form subject to linear inequality conditions:

∑

i,α

(
εi,α

μ

)
S(k)i,α > 1 [1]

∑

i,α

(
εi,α

μ

)2
= min [2]

The above equations can be solved for εi,α
/
μ (i.e., the energy

matrix elements are in the units of chemical potential) by standard
numerical packages for quadratic programming.

The above equations have the following intuitive interpre-
tation (Fig. 12.3). The figure shows such distribution of the
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Fig. 12.3. A quadratic programming method for energy matrix determination. The dis-
tribution of binding energies for a set of random sequences is approximately Gaussian,
as indicated in the figure. The binding probability f (E − μ) and the value of chem-
ical potential μ is also indicated. The binding energies of the selected sequences in
the final round are indicated by crosses. Width of the random energy distribution χ is
also shown. The quadratic programming procedure minimizes (χ/μ)2, while at the
same time requiring that binding energies of all the selected sequences are below the
chemical potential.

binding energy which corresponds to random DNA sequences.
The first equation requires that binding energy of all sequences
in set A is smaller than the chemical potential. Note that in the
unit step function approximation, all sequences that have binding
energy smaller than chemical potential are bound by the tran-
scription factor with probability equal to 1. Therefore, the first
equation requires that all sequences that are selected through
SELEX procedure are bound by the transcription factor. The sec-
ond equation corresponds to minimizing the ratio of the width
of energy distribution to the value of chemical potential. Since
all DNA sequences with energy below chemical potential are
bound by transcription factor, it is straightforward to see that
equation [2] corresponds to minimizing the number of random
sequences that are bound by the transcription factor. Therefore,
the quadratic programming procedure amounts to the require-
ment that all binding sites observed in the experiment (set A)
are indeed bound by the transcription factor, while at the same
time, the “noise” (the number of bound random sequences) is
minimized.

3. Notes

An accurate energy matrix, which is obtained through an
appropriate analysis of fixed stringency/high-throughput SELEX
data, can be used to reliably detect putative protein binding sites
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in genomic DNA. Therefore, such methodology can be applied to
a large number of different DNA-binding proteins, which would
facilitate comprehensive understanding of gene regulation. The
procedure described in this chapter shows how synergy of the-
oretical modeling, novel experimental developments, and data
analysis based on physical understanding of the underlying pro-
cess can significantly contribute to an important problem in com-
putational biology. We below note some practical issues relevant
for modeling and data analysis of SELEX experiments.

1. Terminology

We here note how the term “weight matrix” is used, since this
term is often associated with different meanings. The most gen-
eral definition is that weight matrix is any matrix of “weights”;
“weights” are contributions of different bases to a score used to
classify whether or not a sequence is a binding site (17). In a bio-
physical interpretation, which is also used in this chapter, weights
in the matrix are defined as contributions of different bases at
different positions to the binding energy (15). The term energy
matrix is also often associated with this biophysical interpretation
of the weight matrix (8, 25).

Other definitions of weight matrix have been frequently used,
most notably the one coming from information theory (17).
Such weight matrix is sometimes called information theory weight
matrix (25), and weights in this matrix are equal to the logarithm
of the ratio of probability to observe a given base at a given posi-
tion in a collection of binding sites, compared to the probability of
observing the base in the genome as a whole. One can show that
the biophysical and the information theory definitions coincide in
the limit of small transcription factor concentration (unsaturated
limit) (25). That is, in this limit, the information theory weight
matrix gives an accurate estimate of transcription factor binding
energy. However, when the saturation effects become important
(as in fixed stringency SELEX experiments), a different procedure
has to be used for estimating protein–DNA interaction parame-
ters, as described above.

2. Modeling SELEX experiments

We first note that stochastic effects can be generally neglected
in SELEX experiments. This is a consequence of the fact that the
size of the oligonucleotide library is so large that the relevant
sequence space is in most cases completely saturated. For example,
each possible sequence segment of length 20 is expected to appear
about 104 times in the library of size 1015. Therefore, since bind-
ing sites of transcription factors are typically less than 20 bp long,
each possible sequence variant to which this protein can bind will
be represented in a large number in the SELEX library. Accord-
ingly, stochastic effects were not included in numerical simula-
tions (41, 14) and theoretical models (8) of SELEX experiments.
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Mutations can generally also be neglected in SELEX model-
ing. The term “evolution” in the name SELEX (Systematic Evo-
lution of Ligands by EXponential enrichment) implies that both
selection and mutation are important in the SELEX procedure,
and some mutations are necessarily present due to errors in PCR
amplification. However, it is not difficult to estimate that this
effect can be neglected (4). To observe this, the following esti-
mate is useful. High-fidelity DNA polymerase, which is typically
used in SELEX, has a mutation rate of 10−4per cycle per base
(42). Furthermore, let us assume that a total of seven SELEX
rounds are performed, that there are 10 PCR cycles per round,
and that the length of DNA sequences is 25 bp. Under these
(typical) SELEX conditions, a DNA sequence selected at the end
of the experiment experiences, on average, a total of less than one
mutation during the whole experiment (i.e., 10−4 × 25 × 10 ×
7 < 1). Consequently, quantitative models of SELEX do not take
mutations into account (41, 14, 8).

Finally, considerable mathematical simplifications can be
achieved in modeling by noting that the amount of free protein
in solution can be in most cases neglected. This is because the
amount of DNA used in the experiments is almost always in a
large excess over the amount of protein. Due to this most of the
protein will end up bounded by DNA, and a very small amount
of protein will remain free in solution (8).

3. Computational analysis

An issue to consider in the data analysis is how many
sequences have to be extracted from SELEX in order to be able to
extract sufficiently accurate protein–DNA interaction parameters.
An estimate for this is provided by Roulet et al. (7), who obtained
that few thousand sequences are needed to obtain an accurate
weight matrix. Another estimate is provided by O’Flanagan et al.
(24) who found that one to two sequences per weight matrix
parameter are needed, e.g., for a transcription factor with 16 bp
long binding site, one needs around 100 binding sequences.
Accordingly, Nagaraj et al. (43) reported a reasonably accurate
weight matrix for a bacterial transcription factor CRP (16 bp
long binding region) with around 70 binding sites extracted in
a SELEX procedure. Therefore, while a larger data set is an obvi-
ous advantage, it is likely that several hundred binding sites will
lead to high-quality protein–DNA interaction parameters in most
cases.

Furthermore, a highly non-trivial step of data analysis is
to extract actual binding sites from longer sequences obtained
through SELEX. As described in Section 2, MLSA (multiple
local sequence alignment) algorithms are used for this task. How-
ever, two difficulties emerge when one does MLSA in analysis of
SELEX data. First, due to non-specific binding and background
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partitioning, some of the selected sequences will not contain tran-
scription factor binding site. This difficulty is not hard to over-
come in practice, since most MLSA methods allow that some of
the sequences do not contain the shared motif. One should, how-
ever, ensure that the noise is limited, which can be achieved by
performing sufficient number of SELEX rounds (see Section 2),
so that most of the non-specific binders are eliminated.

The second difficulty is due to a large number of sequences
that are typically produced by high-throughput SELEX experi-
ments. That is, one may obtain several thousand DNA sequences
from a high-throughput SELEX procedure, and such a large data
set is very demanding to align. Indeed, most MLSA implemen-
tations have difficulty in producing an accurate alignment for a
large number of sequences. However, in the author’s experience,
an implementation of Gibbs search (The Gibbs Motif Sampler,
see also Chapter 6) (44) consistently led to reliable results, even
for very large data sets from high-throughput experiments.

Finally, the full procedure for determining protein–DNA
interaction parameters involves using Fermi–Dirac binding prob-
ability and numerically solving a set of mutually coupled non-
linear equations (see Section 2). While this procedure is techni-
cally demanding, the following simplification can be used. One
can first start by solving the zero temperature approximation,
which leads to computationally much less demanding quadratic
programming. The quadratic programming solution can then be
improved, by using it as an initial guess for solving the set of
equations in the full procedure. Such approach is equivalent to
calculating finite temperature corrections to a zero temperature
solution in statistical physics.
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Chapter 13

Kernel-Based Identification of Regulatory Modules

Sebastian J. Schultheiss

Abstract

The challenge of identifying cis-regulatory modules (CRMs) is an important milestone for the ultimate
goal of understanding transcriptional regulation in eukaryotic cells. It has been approached, among oth-
ers, by motif-finding algorithms that identify overrepresented motifs in regulatory sequences. These
methods succeed in finding single, well-conserved motifs, but fail to identify combinations of degen-
erate binding sites, like the ones often found in CRMs. We have developed a method that combines
the abilities of existing motif finding with the discriminative power of a machine learning technique
to model the regulation of genes (Schultheiss et al. (2009) Bioinformatics 25, 2126–2133). Our soft-
ware is called KIRMES, which stands for kernel-based identification of regulatory modules in eukaryotic
sequences. Starting from a set of genes thought to be co-regulated, KIRMES can identify the key CRMs
responsible for this behavior and can be used to determine for any other gene not included on that
list if it is also regulated by the same mechanism. Such gene sets can be derived from microarrays, chro-
matin immunoprecipitation experiments combined with next-generation sequencing or promoter/whole
genome microarrays. The use of an established machine learning method makes the approach fast to use
and robust with respect to noise. By providing easily understood visualizations for the results returned,
they become interpretable and serve as a starting point for further analysis. Even for complex regulatory
relationships, KIRMES can be a helpful tool in directing the design of biological experiments.

Key words: Kernel methods, support vector machines, machine learning, string kernels, regulatory
modules, transcription factor binding motifs, eukaryotic gene regulation, motif finding.

1. Introduction

Understanding transcriptional regulation of eukaryotic cells is a
very important challenge for computational biology. We present a
method called KIRMES that aims at predicting transcription fac-
tor target genes based on their regulatory regions. These regions
contain binding sites for transcription-regulating proteins, i.e.,

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
DOI 10.1007/978-1-60761-854-6_13, © Springer Science+Business Media, LLC 2010
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transcription factors, and are often located immediately upstream
of a gene’s transcription start site. Often, a binding site is charac-
terized by a conserved motif that is specific to a certain transcrip-
tion factor, while most of these proteins can recognize several
distinct motifs.

Motif-finding approaches typically try to identify motifs based
on a sample of regulatory regions that have been selected for
a common reaction to external or internal perturbations, e.g.,
co-occurring expression change, or because of binding signals in
chromatin immunoprecipitation experiments. The method pro-
posed here is no exception; sets of conjointly reacting genes are
exactly the kind of input data that are expected, alongside a
list of genes that are thought not to be regulated by the same
mechanism.

We use support vector machines (SVMs), a kernel-based, dis-
criminative, and supervised machine learning method (1, 2). A
kernel is a distance measure function that has to fulfill certain
mathematical properties and can essentially calculate how similar
two input vectors (e.g., sequences) are. Discriminative means the
method will return a class label for each gene: in the positive case,
whether it belongs to a class of genes that contain similar regu-
latory elements and is thus regulated by the same (combination
of) transcription factors as other members of this class, or not,
in the negative case. Supervised means that our newly developed
SVM kernel has to be trained on input data for which the correct
classification is already known or at least strongly suspected. After
training, the kernel can be applied to data where the classification
is not yet known. The SVM output will then consist of an assigned
class for each input vector: positive if the gene is controlled by the
same regulatory mechanism as the input data and negative if not.

In addition to the classification, KIRMES returns the user-
specified number of sequence logos of the modules with the high-
est discriminative power for the positive class. This automatically
excludes strong but abundant motifs that occur in both classes
and levels background distributions of nucleotides.

A standard method to identify overrepresented oligomers in
a sample of co-expressed genes is Gibbs sampling, which tries
to capture motifs as position weight matrices (3). While being
successful for prokaryotes and even in yeast, this motif-centered
approach tends to fail in eukaryotic gene sets, where regulatory
regions are much larger, motifs are often degenerate, and a com-
bination of several binding sites is often required for a transcrip-
tion factor to bind (cooperatively).

We incorporate comparative genomic information from
related organisms and model homotypic or heterotypic combina-
tions of binding sites, known as cis-regulatory modules (CRMs),
for this method (4). CRMs are defined as a set of transcription
factor binding sites in a region of up to a few hundred bases
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in the vicinity of the gene they regulate (5). Due to the size of
a genome and the fact that binding patterns are often degener-
ate, putative sites can be found all over the genome. Biological
experiments like chromatin immunoprecipitation show that only
a select few of these are actually bound by transcription factors
in vivo (6). Since transcription factors often bind cooperatively,
a combination of similarly spaced binding sites, even if they are
degenerate, is much more improbable to occur by chance than a
single binding site. An additional redeeming factor is the conser-
vation of important regulatory elements in related organisms (6).
Finding and modeling conserved CRMs thus allows much more
accurate predictions.

To capture these modules, we include three types of fea-
tures: positional data of binding sites relative to each other and
to the transcription start or end, sequence, and conservation (Fig.
13.1). By using SVM kernels instead of zero-order Markov chains
(position weight matrices), we can model higher order sequence
information and high-dimensional positional interdependence of
motifs.

transcription start
regulatory sequenceTFBM

 sequence windows around best motif match

.

.

.
 conservation information from a

multiple genome alignment
repeat 

for every input sequence

 pairwise distance between each motif and
to the beginning/end of the sequence 

(e.g. the transcription start site)

Fig. 13.1. The data used by the regulatory modules kernel: Overrepresented motifs present in a majority of training
data are located in all sequences. (1) The best matching location (highlighted bars) serves as an anchor point for the
sequence window that is excised (boxed) and used in the feature vector. (2) Conservation information for this window is
retrieved from a previously computed multiple genome alignment. (3) Additionally, the pairwise distance of each window
to another and to the start of the sequence is used in the feature vector (dashed lines).

To obtain these three types of features from gene sets, we
developed the following procedure (see also Fig. 13.2 and the
Section 3).

First, a third-party motif finder, such as the INCLUSive
MotifSampler (7) or PRIORITY (8), can be used to find overrep-
resented motifs. Alternatively, we implemented a simple oligomer
counting algorithm that takes into account repeating nucleotide
sequences of length k. Additional parameters include the number
of such k-mers to be considered or a threshold on the minimum
number of times an oligomer has to occur in the sequences in
order to be considered. This simple approach has proven to be
rather powerful as it usually returns a larger number of putative
binding sites than motif finders, which often return fewer distinct
motifs.

The second step begins by combining the three feature types
for every motif into input vectors for the regulatory modules
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Fig. 13.2. Workflow of the KIRMES method: (1) The first step requires two sets of sequences, with the positives
suspected to be co-regulated and the negatives in some way confirmed to be unaffected by the same regulator(s). (2)
Parameters can then be adjusted and a round of motif finding begins. (3) The resulting positions, sequence windows,
and optionally a multiple genome alignment for conservation information are used to construct feature vectors to train
the RM kernel. (4) Along with a trained classifier, a ranked list of sequence logos is returned. The trained classifier then
can be used on any other regulatory region to determine if it is regulated by the same mechanism as the ones in the
positive training data set.

(RM) kernel, one for each input sequence. The kernel is trained
on the positive and negative data sets, determines the most signif-
icant modules, and returns them. The trained classifier can then
be applied to any gene set from the same organism to predict
whether a gene is regulated by the same mechanism as the ones
from the positive input set. We define “the same mechanism” as
the dominant signature present in the positive training examples.
Co-regulation of two genes observed in a small number of exper-
iments may well be the result of a very different combination of
transcription factors for each of them. Our approach is able to cor-
rectly predict several different CRMs in the positive set as long as
they are absent from the negative set.

In our own experiments with the regulatory network of stem
cells in Arabidopsis thaliana, we were able to show that KIRMES
outperforms a Gibbs sampler on its own and even other SVM ker-
nels (9). We used several publicly available knockdown and over-
expression microarray experiments of genes involved in the regu-
lation of the organizing center of the shoot apical meristem. Here,
the plant maintains stem cells throughout its life and we are inter-
ested which transcription factors are involved in keeping some
of these cells undifferentiated. A major player is the transcription
factor WUSCHEL: it is expressed in cells of the organizing center
immediately surrounding the stem cells and is critical in keeping
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them undifferentiated. It also seems to promote the expression
of the genes CLAVATA3 and AGAMOUS. From microarray data,
we constructed positive and negative gene sets to train KIRMES,
in which we considered the regulatory region 1,500 base pairs
upstream from the annotated gene start and 500 base pairs down-
stream from the gene. KIRMES was able to identify a putative
binding site for WUSCHEL and confirmed it using two independent
biological assays: gel shift and SELEX (9). The site is present in
almost all genes we had previously suspected as regulatory tar-
gets of WUSCHEL. It is a palindromic octamer, suggesting that
WUSCHEL binds as a homodimer. This is confirmed with the previ-
ously mentioned SELEX assay, in which the monomeric WUSCHEL

protein only binds one half of the sequence. With the central pair
of nucleotides very degenerate, the binding site has been missed
by conventional motif-finding methods. This illustrates the power
of the KIRMES method.

2. Materials

There are several experimental techniques that can yield input
data for the proposed method. Essentially all that is needed are
the regulatory regions of two sets of genes, a positive and a neg-
ative training data set.

Finding positive data sets is straightforward: For microar-
ray experiments, the sequence regions can be selected from any-
where around each gene’s locus where regulatory elements are
expected, which varies from one organism to another (Fig. 13.3).
In general, well-designed biological experiments will be the key to
obtain meaningful results from the KIRMES method. The set of
differentially expressed genes (between experiment and control)
can then be selected as the positive training data.

chromosome gene genegene of interest gene

intergenic regiondownstream regionupstream region/enhancer

transcription 
start site

transcription 
initiation site

core promoter

exon 1 exon 2 exon 3intron 1 intron 2

stop codon

transcription 
stop

Fig. 13.3. General eukaryotic gene structure. Any part that contains regulatory elements can be used as input data for
KIRMES.
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Depending on the experimental technique, there are also
other ways in which the regulatory region can be selected.
For chromatin immunoprecipitation (10), followed either by
hybridization to a microarray chip (11) or by ultra-high-
throughput sequencing (12), large bound regions that contain
the actual binding sites can be determined from the experimental
data. These regions can be used directly as the positive training
data.

Finding negative training data can be more challenging,
because it is often not known with certainty if a particular gene is
not regulated by a transcription factor under any circumstances.
See Note 1 for more details on selecting training data.

When researching the regulatory network of the response to
an external stimulus such as heat stress or drugs, time-series exper-
iments are very helpful. An individual positive data set can be cre-
ated for each step in the series.

For experimental data from complex diseases, KIRMES will
not be able to elucidate the complete regulatory network at once.
A stepwise isolation of key players and dominant signatures in the
sequences can be performed, ideally followed by another round
of carefully designed biological experiments with the newly iden-
tified transcription factors and subsequent analysis with KIRMES.
In this manner, more complex regulatory mechanisms can be
untangled.

3. Methods

KIRMES is written in Python, and its source code has been
released under the GNU General Public License. The RM ker-
nel developed for KIRMES has become a part of the large-scale
machine learning toolbox SHOGUN (13). A Web service version
of KIRMES is available publicly at http://galaxy.fml.mpg.de/, our
Galaxy analysis workbench for genomic data. Galaxy is an open-
source, scalable workbench for tool and data integration (14). A
downloadable version with a command line interface is also avail-
able. The following procedure is applicable to both interfaces but
assumes a general knowledge of either the command line or a Web
service (Fig. 13.2).

1. The program expects two FASTA files of sequences to be
(up-)loaded for initial training of the classifier and deter-
mination of the sequence elements that are most helpful
in discriminating between the positive and negative data
sets. Sequence conservation information is not supported in
the online version, as it would require a considerably larger
infrastructure. There is no upper limit to the amount of
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input sequences, but every data set should contain at least
five sequences for cross-validation to work.

2. Several parameters can be adjusted; these are described in
detail in the documentation of the Web and command line
versions. Most importantly, the number of motifs to be con-
sidered and reported can be selected. Increasing the number
of motifs increases processing time.

3. The motifs are returned in a list ranked by their discrimi-
native power and are good starting points for further analy-
sis of downstream regulatory targets or for in vitro binding
experiments. The ranking is calculated by performing cross-
validation of a classifier trained on the set of all motifs except
one. The average difference in prediction accuracy – mea-
sured as the area under the receiver operating characteris-
tic curve (15) – versus the accuracy with the complete set
of motifs is the basis of the ranking. Motifs are returned as
sequence logos for easier interpretation (16). Internally, we
use the SVM kernel to calculate a positional oligomer impor-
tance matrix, which is described in Note 2, from which the
sequence logos are derived (17).

4. After training of the classifier, a third data set can be
uploaded containing sequences where the classification is not
known. KIRMES will predict the class of each sequence based
on the presence or absence of CRMs learned from the train-
ing data sets.

The underlying machine learning method, SVM, uses a sim-
ilarity measure known as a kernel function to determine how
similar two input vectors are. For KIRMES, we developed a new
string kernel, the RM kernel, which is able to use information
from sequences of any length, and at the same time incorporate
positional and conservation information for the sequence. The
RM kernel is based on the weighted degree kernel with shifts
(18), with added capabilities to evaluate conservation information
per nucleotide. It uses the locations of overrepresented motifs
to excise 20 base pair sequence windows from the input data.
A set of 20–200 such motifs is generated for any training data set,
using either the oligomer counting method or a Gibbs sampler.
The best matching position of each motif is determined in every
input sequence, allowing for mismatches. This position is the cen-
ter of the 20 base pair window that is excised and added to the
feature vector for this sequence. The SVM can then determine
the similarity between any two sequences by calculating the ker-
nel function (which is exactly equivalent to the scalar product) of
the two vectors representing the sequences. During training, the
SVM adjusts the kernel’s weight vector in such a way that it can
optimally distinguish between the members of the two classes of
input data.
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4. Notes

1. Experimental design: For noisy data sources such as expres-
sion microarrays, well-designed experiments are key to pre-
dict regulation relatively accurately. Ideally, several experi-
mental conditions should be tested with as many replicates
as feasible, cf., (19). Time-series experiments make it pos-
sible to distinguish first-order responses from downstream
reactions to the experimental condition. If some genes are
already suspected to be transcription factors and have a large
number of genes they regulate, overexpression and knock-
down experiments are invaluable. This also applies to chro-
matin immunoprecipitation techniques, where precipitating
a knockdown control can identify promiscuous binding of
the antibody, which can be subtracted in a downstream data
preparation step.

2. Regulatory region selection: Any region putatively contain-
ing transcription factor binding sites can be used for this
method (Fig. 13.3). This includes the promoter region;
the larger enhancer region; any non-coding, untranslated
sequence, either upstream or downstream from the exons;
the first intron or all introns; and even coding regions. For
instance, in our experiments with microarray data from the
plant A. thaliana, we use 1,500 base pairs upstream from the
annotated gene start and another 500 base pairs downstream
from the last exon. This will vary for other organisms.

3. Negative training data: To obtain a good negative training
data set from microarray experiments, use the same regula-
tory regions as for the positive data set. Select those genes
that exhibit a uniformly high expression level (significantly
above the detection threshold of the array) and change lit-
tle between experiment and control arrays. Reasonable dif-
ferences within the limits of expected variation of microar-
rays may be acceptable. This will not exclude one or the
other gene that shares a binding site with many of the pos-
itive genes, but SVMs are quite robust against mislabeled
examples.

Equally balancing the positive and negative data sets is not
necessary; in fact, when the expected distribution of positives
and negatives in the prediction data is far from the one in the
training data, balancing is counterproductive. The distribu-
tion of positives and negatives in the training data should be
as similar as possible to the one in the prediction data set
used subsequently.

4. Prediction data sets: A data set for prediction with a trained
classifier can for instance be comprised of the regulatory
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regions of all genes of the organism you work with that have
been annotated so far. This can be especially helpful if the
microarray chip used for expression experiments is outdated
compared to the current genome annotation of that organ-
ism. This way, even genes without expression data can be
classified. For genes that are consistently expressed below
a reliable detection threshold that can thus not be readily
included in either the positive or the negative data set, a pre-
diction is possible as well.

5. Contribution of vector features: It is of interest to know
which parts of the input vector contribute most to the dis-
criminative power. We used a representative gene set from
A. thaliana microarray experiments and considered differ-
ent combinations of the three feature types: sequence win-
dows, conservation, and position. For the complete set of
these features, we achieve an area under the receiver oper-
ating characteristic curve of 0.89 (1.0 is the maximum).
Omitting conservation, performance is reduced slightly to
0.85 and omitting positional information, prediction accu-
racy is impaired more significantly, at 0.73. Using only the
sequence windows, we get an area of only 0.69, which drops
even more sharply, to 0.51, when using the positional infor-
mation only (an area of 0.5 is equivalent to randomly guess-
ing the classification, and thus not better than a random
classifier).

Sequence windows are consistently the most important
feature, while their position can sometimes make a big dif-
ference, as in the data set discussed here. For other data
sets (data not shown), its contribution is marginal. Posi-
tional preference of transcription factors – or lack thereof–
has been studied previously (20). Conservation typically
boosts performance by about 5 percentage points. There is
work in progress to include other types of data as features,
such as position-specific histone modification or nucleosome
positions.

6. Positional oligomer importance matrices (POIMs) (17):
POIMs can be calculated from a trained RM kernel. They
contain information on which part of the sequence the ker-
nel is used to distinguish between the positive and negative
training data. The idea behind this is that these sequence
peculiarities are the same ones that transcription factors rec-
ognize in vivo. POIMs are difficult to visualize in a meaning-
ful way and thus KIRMES converts them to the more familiar
sequence logos. This is not a lossless conversion; a lot of
information contained in a POIM cannot be represented in a
sequence logo. For instance, the length of the most discrim-
inative sequence cannot be shown. It may usually be seen
implicitly by the positions of the logo that are more clearly
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defined compared to others with fewer information, but the
exact length can only be estimated. Users interested in the
actual POIM of the trained kernel can instruct KIRMES to
return it in a separate results file.

7. Interpretation of results: Even though SVMs are rather
robust when it comes to mislabeled training data, small data
sets can still yield misleading results, when many of the
genes are mislabeled. Generally, both negatives and posi-
tives should contain as many sequences as are available, while
remaining as stringent as possible with the criteria for the
positive data set. The sequence logos that are returned may
not match well in all of the sequences, as can be determined
by a run with a program like INCLUSive MotifLocator (2);
this is an indicator of mislabeled sequences.

A change in returned motifs from one time point in a
series to another is indicative of a downstream reaction;
most probably one of the positive genes of the previous time
points is a regulator that binds to this new motif.
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Chapter 14

Identification of Transcription Factor Binding Sites Derived
from Transposable Element Sequences Using ChIP-seq

Andrew B. Conley and I. King Jordan

Abstract

Transposable elements (TEs) form a substantial fraction of the non-coding DNA of many eukaryotic
genomes. There are numerous examples of TEs being exapted for regulatory function by the host, many
of which were identified through their high conservation. However, given that TEs are often the youngest
part of a genome and typically exhibit a high turnover, conservation-based methods will fail to identify
lineage- or species-specific exaptations. ChIP-seq has become a very popular and effective method for
identifying in vivo DNA–protein interactions, such as those seen at transcription factor binding sites
(TFBS), and has been used to show that there are a large number of TE-derived TFBS. Many of these
TE-derived TFBS show poor conservation and would go unnoticed using conservation screens. Here,
we describe a simple pipeline method for using data generated through ChIP-seq to identify TE-derived
TFBS.

Key words: Transposable elements, ChIP-seq, gene regulation, gene expression, transcription
factors, CTCF.

1. Introduction

Transposable elements (TEs) are segments of DNA that possess
the ability to ‘transpose,’ meaning that they can move themselves
to distant locations of the host genome and replicate when they
do so. TEs are present in all domains of life and are abundant in
the genomes of many sequenced eukaryotes accounting for a large
portion of non-coding DNA and the genomes as a whole (nearly
50%, ∼1.4 Gb of the human genome) (1). Broadly speaking,
there are two types of TEs. Type I TEs, or retroelements, trans-
pose by a copy and paste mechanism via an RNA intermediate,
generating a new insertion. Type II TEs, or DNA transposons,
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move by a ‘cut-and-paste’ mechanism where the actual insertion
is moved (2). Most TEs harbor their own promoters and regula-
tory sequences, and many active elements encode genes for their
own transposition. Active elements are a small minority, however,
and most TE insertions are unable to transpose.

1.1. Exaptation of
Transposable
Elements

TEs exist solely to continue their own existence; they do not,
simply by their replication, contribute anything to the host (3, 4).
It is likely that many, if not the large majority of TE insertions,
have little or no functional role for the host and are effectively
under neutral or nearly neutral selection. However, given the very
large number of TE insertions in eukaryotic genomes and the
opportunistic nature of evolution, it is only reasonable to expect
that some would be ‘exapted’ (5) over time to take on a functional
role that benefits the host, a process that could have a wide variety
of results (6, 7). A key factor in TE exaptation events is their
ability to promote their own transcription; without this ability,
they could not replicate themselves. Given this ability, it stands to
reason that TEs could be exapted to provide alternative promoters
for host genes; this has been seen a number of times (8, 9). Of
most importance to this chapter, however, is the ability of TEs to
provide new TFBS to the host. If there existed an active TE that
contained a TFBS, then each new insertion that the TE generated
would also contain the TFBS. If the TE were highly active, it
could quickly spread the TFBS around the genome. Even if the
TE simply had a sequence that was only close to the TFBS, it
could still spread this ‘progenitor sequence’ around the genome.
Over time, point mutations in individual insertions could alter
the progenitor sequence so that it would now be bound by the
TF (10). Either way, the TE could spread the TFBS around the
genome over timer and create a network of TFBS, and in doing
so alter the expression patterns of host genes. For example, it was
recently shown that a large number of human c-myc binding sites
are located in TE insertions, possibly creating a sub-network for
c-myc control (11). For a comprehensive review of TE-derived
regulatory networks, see (12).

1.2. Transposable
Elements Evolve
Rapidly

Transposable elements are generally the most rapidly evolving
part of a genome; so long as their insertions are not too deleteri-
ous to the host, TEs can quickly increase in copy number and then
are generally free to accumulate point mutations. The rapid activ-
ity of TEs relative to the host genome means that lineage-specific
insertions can be accumulated in a very short time frame. In the
6 million years since the human–chimpanzee divergence, for
example, there have been several thousand new TE insertions in
each genome (13). There also appears to be very little selective
pressure on the deletion of most insertions, which can result in
their chance deletion from one lineage, while they are retained in
others. Between human and mouse, there is generally very little
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conservation of non-coding regions in the genome, including
TEs. Many insertions that appear to predate the human–mouse
divergence are present in one genome, but have been lost in the
other (Fig. 14.1) (14). The rapid insertion of TEs combined
with their rapid loss means that two lineages can develop distinct
TE complements in a relatively short time after divergence. Given
that two lineages can have very different TE complements, it
could be possible for a large number of lineage or even species-
specific exaptation events (Fig. 14.1). If the exaptation events
were the creation of new TFBS or promoters, then the spread
of TEs could create species-specific patterns of gene expression
(15, 16).

Fig. 14.1. Evolutionary scenarios related to TE exaptation events. a An ancient insertion
is exapted and the resulting regulatory sequences are shared across multiple derived
evolutionary lineages. b An ancient insertion is exapted but only selectively conserved
in some of the derived evolutionary lineages. This could result in regulatory divergence
between lineages. c A recent lineage-specific insertion is exapted resulting in regulatory
differences between lineages. TEs are particularly prone to this scenario given how
dynamic and rapidly evolving they are.

1.3. Detection
of Functional
TE-Derived
Non-coding
Sequences

There are three widely used methods to find TFBS in genomes.
It should be noted that these approaches are not mutually exclu-
sive; indeed, the methods are often combined to more rigorously
predict and locate TFBS.
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1.3.1. Phylogenetic
Footprinting

The first approach, phylogenetic footprinting (17), can be done
solely computationally via comparative sequence analysis. A phy-
logenetic screen attempts to find regions of different genomes
that have been conserved over time and, in the case of TFBS,
looking for conserved non-coding elements (CNEs). Screens
looking for conserved non-coding elements (CNEs) represent a
very successful technique for identifying the oldest and, due to
their conservation most likely to be essential, non-coding parts
of the genome. Shortly after the sequencing of the human and
mouse genomes, it was shown that a larger than expected num-
ber of mouse MIR and L2 elements had human orthologs (14).
Subsequently, several thousand insertions or insertion fragments
near human genes were shown to be under purifying selection,
suggesting their exaptation and possible involvement in transcrip-
tional control (18). In recent years, a number of insertions have
been shown to be enhancers for human and vertebrate genes,
many identified with phylogenetic screens. An insertion from the
CORE-SINE family was shown to be conserved across the mam-
malian lineage and to be an enhancer of the POMC gene in mice
(19). The amniote SINE 1, AmnSINE1, family of TEs is a very
old family that spread early in the amniote lineage. However, a
number of conserved AmnSINE1 insertions exist in the human
genome, two of which were shown to be enhancers involved in
brain development (20–22). A mammalian interspersed repeat
(MIR) was shown to have enhancer ‘boosting’ activity, in that its
presence greatly increased the action of a nearby enhancer, while
the MIR could not on its own be an enhancer (23). The prob-
lem with an approach based on conservation is that, while it will
find many important regions, the screen will miss other regions
that are also important, but also lineage specific. Lineage-specific
TFBS, such as those that could be provided by lineage-specific
TE insertions, could generate lineage-specific expression, and this
would be missed by CNE screens (16). Another case in which
older elements may be overlooked in CNE screens is one in which
an old insertion has been lost, as many are, in several lineages, but
exapted in one (Fig. 14.1). Such an insertion may well play some
role in the lineage that kept it, but it will be completely missed in
CNE screens. CNE screens will miss not only new TE exaptations
but also other non-coding functional elements. It has been shown
previously that sequences with low conservation can play impor-
tant functional roles, such as rapidly evolving, long non-coding
RNAs (24).

1.3.2. Motif Search The second of the three methods to identify TFBS is also com-
putational and involves scanning a genome for the sequence
motif that the TF in question recognizes. REST, the RE1 silenc-
ing transcription factor, is known to repress neuronal genes
in non-neuronal cells. Using experimentally identified REST
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binding sites, which contain the RE1 motif, Johnson et al. (25)
created a position-specific scoring matrix, PSSM, for the motif
and used it to screen for possible REST binding sites in the human
genome. Johnson et al. were able to show that there are a num-
ber of TE-derived REST binding sites that had the ability to bind
REST in vitro, suggesting that TEs have helped to spread the
REST network. When a PSSM is used to search for new TFBS in
a genome, false positives are controlled by shuffling the sequence
in the PSSM, re-scanning the genome with the shuffled sequence,
and comparing the number of sites identified with the original
PSSM to those found with the shuffled PSSM (26). This approach
will not work, however, for TFs that recognize motifs smaller than
the RE1 motif as there will likely be many false positives. In addi-
tion, the presence of a TFBS sequence motif does not guarantee
that the sequence that bears it is actually bound by its correspond-
ing TF, while sequences that lack similarity to the motif may in
fact be bound by that factor. These challenges to the sequence-
based computational approach necessitate an approach to iden-
tifying TFBS on a genome-wide scale that does not depend on
the sequence of the TFBS, only the binding of the TF to the
region.

1.3.3. ChIP-seq or
ChIP-chip

The third major approach to finding TFBS is identifying in vivo
protein–DNA interactions via chromatin immunoprecipitation
(ChIP) followed by microarray analysis (ChIP-chip) or sequenc-
ing of the captured DNA (ChIP-seq, see Chapters 9, 10, and
11). Of the three approaches, this one offers the greatest sensi-
tivity and potential specificity. ChIP is able to find genomic DNA
that is bound by a transcription factor, not just those regions that
are conserved or for which there exists a well-defined TFBS motif.
ChIP is also distinguished from the other approaches in the sense
that it identifies sequences that are experimentally characterized to
be bound by transcription factors, i.e., not just computational pre-
dictions. Genome-wide ChIP assays such as ChIP-PET or ChIP-
chip have been used successfully in the past; however, a newer and
relatively inexpensive method, ChIP-seq, has quickly become the
dominant method of experimentally identifying TFBS, and it is
on ChIP-seq that we focus the rest of our discussion. The ChIP-
seq method combines ChIP with massively parallel sequencing
of the bound DNA (27). The sequencing is usually carried out
on one of the currently available short-read sequencers: Illumina
Genome Analyzer, ABI SOLiD, or Helicos HeliScope. ChIP-
seq has a number of advantages over ChIP-chip and ChIP-PET.
There is no cross-hybridization, as can occur in ChIP-chip, and
the ChIP-seq signal is a digital count of reads mapping to the
TFBS, rather than a fluorescence signal. ChIP-seq is also far less
costly than ChIP-PET, which typically relied on capillary sequenc-
ing. Using several ChIP-based data sets, including one derived
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with ChIP-seq, Bourque et al. (28) identified a large number of
TE-derived TFBS. The majority of TFBS they observed were not
well conserved, with many being lineage specific. This strongly
suggests that expansion of TEs within a genome can lead to
the concurrent expansion of transcription regulatory networks.
Below, we provide a specific example detailing how analysis of
ChIP-seq data can be used to identify TE-derived TFBS.

2. Software

All the software we describe and recommend here is publicly
available.

Bowtie (29) http://bowtie-bio.sourceforge.net/
MuMRescueLite (30) http://genome.gsc.riken.jp/osc/english

/dataresource/
UCSC Genome Browser (31) http://genome.ucsc.edu
UCSC Table Browser (32) http://genome.ucsc.edu

3. Methods

This section describes our choice of tools for the identification
of TFBS derived from TE insertions using ChIP-seq data, and we
show how these tools can be assembled into an analytical pipeline.
The tools presented were chosen for their speed, utility for anal-
ysis of TE-derived TFBS, ease of use, and good documentation.
To illuminate the use of these tools, we first provide an overview
of our analytical pipeline for the detection of TE-derived TFBS
(Fig. 14.2) and then we give a specific example of how ChIP-
seq data can be analyzed to yield genome-wide set of TE-derived
TFBS.

3.1. Methods Basics

3.1.1. Mapping The first step in finding TE-derived TFBS is to map reads gen-
erated by ChIP-seq back to the genome used. Massively parallel
sequencers generate millions of reads in run of a ChIP-seq exper-
iment. Mapping these reads in a genome as large as the human
or mouse genomes with traditional techniques like BLAST (33)
or BLAT (34) quickly becomes computationally overly expen-
sive. Fortunately, a number of programs have been developed
explicitly for the mapping of short-read data. The fastest of these
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Fig. 14.2. Schematic of the analytical pipeline presented here for finding TE-derived
TFBS with ChIP-seq. Each individual step is described in detail in the text along with
important caveats, which are listed in ‘Notes’ section.

are those that employ the Burroughs–Wheeler transform (35) to
build a very dense index of the genome, then map reads using the
index. We recommend Bowtie for general mapping because of its
speed and useful options (see Note 1). Bowtie is generally the
fastest of these aligners, and it can utilize read quality information
in the FASTQ format data generated from Illumina sequencing.
However, it cannot currently use colorspace reads generated from
SOLiD sequencing (see Note 2).

3.1.2. Read Rescue Were genomes fully random sequences of the four bases, then
almost any ChIP-seq read would be mappable to a unique region
of the genome. However, due in large part to the vast number of
TE insertions, this is not the case. There are numerous repeated
sequences in eukaryotic genomes, and sequence tags derived from
these regions may not map unambiguously back to the genome,
i.e., they may map to multiple genomic regions with equal prob-
ability. The problem of such multiple-mapping ChIP-seq reads
arises in part due to their short length. ChIP-seq reads must nec-
essarily be short in order to provide good resolution protein bind-
ing locations in the genome; a 500 bp read from ChIP-seq would
be easy to unequivocally map to the genome, but would give very
little information about the exact location of the DNA–protein
interaction. A shorter read, on the order of <50 bp, as most
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ChIP-seq data sets contain, gives good resolution regarding the
location of the DNA binding, but will have a much greater prob-
ability of mapping to multiple locations in the genome. If a TE
insertion provides a TFBS, the insertion is very young, and there
are many similar TEs in the genome, then it may not be possi-
ble to map the ChIP-seq reads from that insertion. For slightly
older elements, there will be far fewer possible places to map the
reads. Many studies have simply discarded multi-mapping reads
for both simplicity of analysis and a desire to be conservative in
their findings. However, this becomes an obvious problem when
studying TEs, as this will result in the loss of many of the reads
coming from TE insertions. To appropriately analyze ChIP-seq
data in regard to TEs, some ‘rescue’ method must be used to
resolve reads of the map to multiple locations.

3.1.3. Different Methods
of Rescue

There are currently several different schools of thought regarding
‘rescuing’ reads that map to multiple genomic locations. MAQ
(36) is a very commonly used mapping utility for short-read data.
When it encounters reads that map to multiple locations with
equal probability, it randomly chooses one of the locations to map
the tag. This poses problems for TE-derived sequences, as it will
dilute the signal from legitimate TFBS, potentially resulting in
both false positives and false negatives. This method also ignores
information on the local context of potential map positions given
by uniquely mapping reads. MUMRescueLite (30, 37) takes this
information into account and assumes that multi-mapping reads
are more likely to come from regions which already have more
uniquely mapping reads and probabilistically determines where
a read most likely came from. We recommend that MuMRes-
cueLite be used after the initial mapping to resolve multi-mapping
reads.

3.1.4. Peak Calling Quality mapping is critically important for downstream analysis,
and once this has been achieved, the first step is often finding
‘peaks’ or, more generally speaking, regions that have a density of
mapped ChIP-seq reads significantly higher than the background
(see Note 3). These peaks are the regions bound by the TF that
are being looked at in the ChIP assay and should contain the
TFBS. Methods for peak calling, and indeed the area itself, are
still new, and while there is work to be done in the area, there
are several quality software choices available for identifying peaks
in ChIP-seq data. Quantitative Enrichment of Sequence Tags
(QuEST) is reviewed in Chapter 10 and CisGenome in Chap-
ter 9. PeakSeq (38) and SISSRs (39) are two widely used utili-
ties, and in this review, we recommend SISSRs due to its good
documentation.
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3.1.5. Finding
TE-Derived TFBS

SISSRs attempts, and in general is highly successful at, finding the
TFBS to within a few tens of base pairs based on the strand orien-
tations of reads forming the peak, as well as the density of reads
in the region. Ideally, the TFBS would always be at the point of
highest read density. In reality, it is very often co-located with
the highest density or if not that then very near by, and SISSRs
is correct in its predictions the large majority of the time. What
this means, practically, is that finding those regions identified by
SISSRs that are contained within TEs will tell us which TFBS are
TE derived (see Note 4). This can be accomplished in a number
of ways, the simplest being the creation of two BED-formatted
custom tracks for the UCSC Genome Browser (31), one from
the predicted TFBS and one from the TEs, and uploading them
to the browser. Then, the table browser can be used to inter-
sect the tracks (see Note 5). Below, we provide a specific step-by-
step example of how this can be done using the software cited in
Section 2.

3.2. Example Here we provide an example using ChIP-seq data for the
CCCTC-binding factor (CTCF) from the human ENCODE
(ENCyclopedia of DNA Elements) project (40). CTCF is
zinc finger binding protein with multiple regulatory func-
tions including both transcriptional activation and repres-
sion as well as insulator and enhancer blocking activity
(41). The ChiP-seq data for CTCF are available at http://
hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wg
EncodeChromatinMap/. For this example, we will be using the
first repetition of CTCF and the control. The majority of the
steps in this procedure are done from the command line in the
Unix/Linux operating system environment.

3.2.1. Mapping The program Bowtie requires an index for the genome that the
user wishes to map the tags to. This is accomplished with the
‘bowtie-build’ utility. It takes as input a FASTA file that contains
the genome in question, the human genome in our example:

$bowtie-build <human genome FASTA> <index name>

Building the index typically takes several hours depending on
the machine, though once built there is no need to build it again
for different samples. Bowtie takes as input a FASTQ file and the
parameters to control the mapping (see Note 1), as well as the
index to use for the mapping:

$bowtie -q -k 10 -m 10 --best --strata <index name>

<FASTQ> <bowtie output>

The mapping should be done for both the CTCF ChIP-seq
set and the control set. Bowtie is capable of mapping several thou-
sand reads per second, or far more, depending how many cores it
is allowed to use (see Note 1).
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3.2.2. Multi-mapping
Read Rescue

MuMRescueLite takes all of the information that the Bowtie out-
put has, but the information needs to be rearranged to meet the
requirements of MuMRescueLite:

$awk ′/./ {print $1"\t"$7 + 1"\t"$3"\t"$2"\t"$4"\t"$4 +

length($5)"\t1"}′ < <bowtie output> > <MuM Input>

While the above command may appear daunting, it is simply
using awk to rearrange the columns of the Bowtie output and
put tabs between them. MuMRescueLite is invoked with a much
simpler command:

$MuMRescueLite.py <MuM Input> <MuM Output><Window Size>

Keeping the window size small will prevent distant reads from
rescuing reads that do not really come from the location. We sug-
gest keeping the window size under 100. MuMRescueLite pro-
duces output that is the same as the input, with an additional
column that represents the calculated probability that the read in
question is from that site. Using the desired probability cutoff
for multi-mapping read, use awk to create a BED track from the
MuMRescueLite output for analysis with SISSRs:

$awk ’$8 > <cut off> {print $3"\t"$5"\t"$6"\t"$4}’
< <MuM Output> > <Mapping BED>

The output should then be sorted by chromosome, then start,
then stop:

$sort -k 1,1 -k 2n,2n -k 3n,3n -o <Mapping BED>

<Mapping BED>

As with the mapping, the rescue should be done for both sets.

3.2.3. Peak Calling SISSRs takes as input the two BED files created in the previous
step and creates another file with peak calls:

$sissrs.pl -i <CTCF File> -b <Control File> -o

<Output File>

Use the -i option to specify the ChIP set as the input and
the -b option to specify the control set as the background. The
-o option tells SISSRs where to write the output. Formatting the
output into a BED file will allow overlap of the identified TFBS
with TEs in the UCSC genome browser:

$awk ’/ˆchr/ {print 1,2,3}’ < <Output File> >

<TFBS BED>

3.2.4. Identification of
TE-Derived TFBS

The final step is to upload the SISSRs-identified TFBS,
BED-formatted track to the UCSC genome browser as a cus-
tom track. The name of the track should be changed so as not to
be overwritten by later tracks. Once that is done, create another
custom track that will contain only TEs using the table browser.
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This can be done by filtering the RepeatMasker track for only
those repeats which have a ‘repClass’ of ‘LINE,’ ‘SINE,’ ‘LTR,’
or ‘DNA.’ Intersecting the track of CTCF TFBS with this TE-
only track will give those TFBS that reside in TE insertions. If
everything has gone right, then there should be examples like that
shown in Fig. 14.3. Here, two distinct CTCF binding sites are
shown for a solo long terminal repeat sequence from the endoge-
nous retrovirus family K (ERVK). Although these particular bind-
ing sites were identified solely based on ChIP-seq data, they can
also be seen to possess known CTCF binding site sequence motifs
at the bound genomic intervals. Thus, a computational survey of
TE sequences that possess TFBS motifs may have turned up this
example.

Genome wide there are 326 CTCF-bound sites located
within ERVK sequences, and ERVK elements show more than an
order of magnitude greater likelihood to be bound by CTCF than
members of other ERV families. The number of CTCF-bound
ERVK sequences suggests that these TE-derived TFBS may play
some role in regulating human genes, and in fact many ERVs

Fig. 14.3. An example of two TE-derived CTCF binding sites found using ChIP-seq data. a Two CTCF TFBS identified
by the SISSRs program are found within the long terminal repeat sequence of an endogenous retrovirus TE (ERVK). The
ChIP-seq read density shows two peaks in the ERVK that correspond to the CTCF-bound regions. Analysis of the bound
regions with a CTCF position weight matrix (PWM) (45) using the program CLOVER (46) confirms the presence of two
conserved CTCF binding site sequence motifs in the regions identified with the ChIP-seq data. The sequences of the
binding sites are shown compared to the sequence logo representing position-specific variation in the CTCF PWM. b
Regions orthologous to the ERVK insertion site from completely sequenced mammalian genomes were compared using
the vertebrate Multiz alignment. Sequence regions conserved between species are shown. Regions flanking the ERVK
element are conserved in other mammalian genomes, but the insertion itself is human specific.
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are located in close proximity to genes. For instance, the CTCF-
bound ERVK shown in Fig. 14.3 is located in the 5′ regulatory
region ∼6 kb upstream of the ATAD3A gene.

ERV sequences in general and members of the ERVK
family in particular are young lineage-specific elements that
are poorly conserved across species. Phylogenetic analyses
revealed that the ERVK family invaded the primate lineage
subsequent to the diversification between New World and
Old World monkeys (42). Consistent with their recent evo-
lutionary origin in the human genome, ERVK sequences
have a mean PhyloP (http://www.genome.ucsc.edu/cgi-bin/
hgTrackUi?hgsid=147315896&c=chr1&g=phyloPCons28way)
base-wise conservation score of 0.22, while the genome as
a whole has a mean score of 0.47. Therefore, phylogenetic
footprinting approaches, which identify regulatory sequences in
non-coding DNA by virtue of their sequence conservation, would
be exceedingly unlikely to turn up any cases of ERVK-derived
TFBS. Indeed, comparison of the CTCF-bound ERVK insertion
shown in Fig. 14.3 with orthologous mammalian genomic
regions indicates that this particular ERVK insertion is human
specific and missing in all other mammals. Such lineage-specific
TE-derived regulatory sequences may be of particular interest in
the sense that they could be responsible for driving regulatory
divergence between species (15, 16).

4. Notes

1. Bowtie is currently the fastest short-read aligner available
and our preference for mapping short-read data, such as
that generated by ChIP-seq or RNA-seq. It has many of
the same advantages of MAQ, such as taking quality infor-
mation into account, but also has other features useful for
looking at TE-derived sequences that MAQ currently lacks.
Bowtie is also quite memory efficient and it scales well with
genome size. Bowtie can be run with the human genome on
a computer with 4 GB of RAM, though on such a com-
puter nothing else should be started in the meantime, as
when Bowtie is forced out of memory it tends not to recover.
Bowtie has a large number of options for controlling map-
ping and output, which can be listed by executing bowtie
with no arguments. The more important options are listed
and explained here:
-k <integer> this option is critically important among

those available. This option tells bowtie that it should
report more than one mapping, as by default it reports
only the first. At the current time, MAQ will not report
more than one mapping. Currently, MAQ will use the
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quality scores to choose a location and assign the mapping
a quality of 0. Output of multi-mapping reads and their
possible location is essential for the rescue and analysis of
TE-derived sequences.

--best giving this option will cause bowtie to report only
those mappings which have the highest quality and is rec-
ommended if you have the FASTQ data and not just the
FASTA data of base calls. This can greatly reduce the num-
ber of multi-mapping reads.

--strata This option is used along with the --best
option and will cause bowtie to return only the highest
quality mappings.

-m <integer> will eliminate reads that map more than
m times. We suggest making it the same as k. This will
remove reads that map to so many places in the genome
that they could likely never be placed with confidence.

One major advantage of Bowtie is that it allows for the easy
use of multiple cores, which every desktop shipped in the
last ∼3 years has. Speed will become increasingly important
as the number of reads generated per run increases. On a
dual-core machine, such as a machine with an Intel Core
Duo, only one core is advisable. However, on a quad-core
machine, it is generally advisable to use two or three cores.
On an eight-core machine six cores are recommended. The
number of cores (processors) is set with the -p option. In
some unfortunate cases, FASTQ files from a ChIP-seq exper-
iment are not available, and only the base calls are supplied.
In this case, you would not supply the ‘-q’ flag to indicate
FASTQ format. It is in these cases that the rescue is espe-
cially important.

2. The ABI SOLiD sequencing platform does not produce base
calls like the Illumina platform, but rather ‘color’ calls that
represent transitions between two bases. Bowtie cannot cur-
rently map colorspace reads, and we suggest the SOCS pro-
gram for this purpose (43). Like Bowtie, it has generally low
memory requirements and is also capable of using multiple
cores when available.

3. Though many peaks from ChIP-seq data will be quite large
and obvious, others may be closer to the background noise.
Complicating this is that the background in ChIP-seq is
non-random and tends to form peaks of its own. Most peak-
finding utilities will look for peaks with just the ChIP-seq
data alone, but many also allow the use of both the ChIP-
seq data and a control set. By comparing the control set and
the experimental set, false positives that result from peaks
not related to the ChIP can be removed.
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4. While SISSRs and other peak finders do a very good job of
finding the actual TFBS from ChIP-seq data, they may still
be off on occasion. A more accurate way to find the exact
TFBS is to scan the identified TFBS, along with their flanks,
with a PSSM for the TFBS motif with a program such as
MAST (44). This will give the exact location of the TFBS if
it exists in the peak region.

5. In this chapter, we suggest using the UCSC Genome
Browser and table browser for the overlap of the identified
TFBS and transposable elements. This is very simple to do,
but requires loading BED-formatted tracks to the browser
and (relatively) lots of manual work. ‘Kent Source Tree’
is a large series of utilities, many of which form the back
end of the browser. One such utility, ‘bedOverlap,’ will
overlap two sets of tracks without having to upload them
to the browser. Numerous other useful utilities include the
‘bedItemOverlapCount’ utility that can produce custom
‘wiggle’ tracks for the UCSC Genome Browser, which
visualize the density of ChIP-seq reads, and hence protein
binding intensity, along the genome. Compilation and
installation of the Kent Source Tree is not always easy, but
is recommended if possible.
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Chapter 15

Target Gene Identification via Nuclear Receptor
Binding Site Prediction

Gabor Varga

Abstract

In spite of numerous advances in recent years, the complete list of direct target genes for nuclear receptors
remains elusive. The integrated application of new computational and experimental methods reviewed in
this chapter provides insight into the complex network of regulatory pathways mediated by nuclear recep-
tors which is expected to improve the understanding of the physiology and the pathology of metabolism,
development, homeostasis, and other fundamental processes.

Key words: Predictive modeling, nuclear receptor binding site, target gene identification, integra-
tive informatics, liver X receptor, ChIP-chip, composite binding element, cooperative binding.

1. Introduction

Nuclear receptors form a superfamily of proteins which act as
sensors of hormone, vitamin, or cholesterol levels and other
important molecular signals (1). They play key roles in the tran-
scriptional regulation of many gene pathways implicated in preva-
lent diseases. In addition, some nuclear receptors can respond
to elevated levels of xenobiotics, such as pollutants and foreign
chemicals, and mediate the response via increasing the transcrip-
tion of detoxifying enzymes. The cognate gene programs reg-
ulated by nuclear receptors affect virtually all aspects of cellular
processes, including embryogenesis, homeostasis, reproduction,
cell growth, and death (1). This makes them appealing targets for
drug discovery. Thirteen percent of FDA-approved drugs interact
with nuclear receptors (2), making them the second most targeted
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class of proteins. Examples of widely used therapeutics interacting
with nuclear receptors include rosiglitazone for type II diabetes,
cortisol for topical inflammation, the oncology drugs tamoxifen
and raloxifene for osteoporosis.

Nuclear receptors are classified as transcription factors
because they have the ability to directly bind DNA, although
some receptors can also exert their activity via tethering to other
nuclear receptors. They are multidomain proteins which often
form homo or heterodimers. The N-terminal domain of nuclear
receptors is the least conserved evolutionarily. This region is sub-
ject to alternative splicing and differential promoter usage. The
majority of known nuclear receptor isoforms differ in this region.
The C-terminal domain acts as the ligand binding (often referred
to as hormone binding) domain. The N- and C-terminal domains
have been described for several nuclear receptors as transcrip-
tion activation domains based on structure–function studies (1).
The DNA binding domain is located in between the above two
domains and confers sequence-specific recognition of DNA bind-
ing sites (also referred to as response elements or REs). X-ray
and NMR experiments have shown that this region contains four
zinc-finger motifs and helical regions which are involved in RE
selection. Downstream of the DNA binding domain is the vari-
able length hinge region which is thought to allow the more con-
served regions to adopt multiple conformations without creating
steric hindrance problems. For some receptors the hinge region
also contains elements of the nuclear compartmentalization
signal.

1.1. Computational
Models

The computational models constructed for target gene identi-
fication make use of the known transactivation mechanisms of
nuclear receptors. The transactivation involves the transcription
factor protein binding to an RE in the promoter or enhancer
region of the target genes. The binding event triggers the recruit-
ment of co-activator proteins and initiates the transcription of the
genes (1).

Structures of the RE sequence motifs share common charac-
teristics across the four types of nuclear receptors. Steroid recep-
tors (i.e., estrogen, androgen, and glucocorticoid receptors) form
homodimers (3, 4). Dimeric orphan receptors [i.e., hepatocyte
nuclear factor 4 (HNF-4)] also form homodimers. The third
type of nuclear receptors [i.e., liver X receptor (LXR) or vitamin
D receptor (VDR) or peroxisome proliferator-activated receptor
gamma (PPARG)] can form heterodimers with the RXR protein,
but in some instances can form homodimers with different bind-
ing specificity (5). The dimers then bind to RE sites consisting of
two half-sites separated by a variable length spacer DNA (typically
one to four nucleotides long DNA with low levels of sequence
conservation). The core recognition sequence of the half-site can
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be repeated in three different ways to form either a direct repeat
(DR, the orientation of the two half-sites is the same), a palin-
dromic inverted repeat (IR, the orientation of the second half-site
is reversed), or an everted repeat (ER, the orientation of the first
half-site is reversed). The fourth type of nuclear receptors, the
monomeric/tethered orphan receptors [i.e., RAR-related orphan
receptor alpha (RORA) and Rev-Erb], also form heterodimers
with the RXR protein, but bind to an RE that consists of only a
half-site.

2. Methods

2.1. Generalized
Modeling
Approaches for
Nuclear Hormone
Receptor Binding
Site Recognition

The half-site sequence for the nuclear receptor REs is often
represented as a hexamer with a canonical sequence of
5′-AG(G|T)TCA-3′. The variations in the half-site sequence, their
relative orientation, and the length of the spacer sequence allow
for a wide range of RE configurations. This enables the different
nuclear receptor dimers to bind with different specificities and to
modulate the transcription of a unique set of target genes. How-
ever, when multiple nuclear receptors have affinity for an RE,
receptors compete for the binding site creating cross talk between
signaling pathways.

The simplest method for nuclear receptor binding site recog-
nition involves the matching of the canonical sequence (in terms
of regular expressions or the IUPAC ambiguous nucleotide code)
to the DNA sequence being examined. However, binding site
sequences which differ from the canonical sequence are not iden-
tified by this approach as only a match/no match decision can
be made at each position. Consequently, such regular expression-
type pattern matching methods produce low selectivity and are
not used for the genome scale analysis of binding sites.

Multiple approaches have been developed to improve the
modeling and the detection of nuclear receptor binding sites in
genome sequences. One popular approach is to represent the
nucleotide preferences, in a given binding motif, using a position
weight matrix (PWM) (6, 7) profile where the profile is derived
from a set of nucleotide sequences experimentally demonstrated
to bind the transcription factor (Fig. 15.1).

When multiple sites can be derived from the experimental
binding data then multiple profiles can be defined to represent
them. For example, the MatInspector database (7) contains two
separate PWM profiles for PPARG, the Pal3 motif (same as the
Pal3 motif in the JASPAR database that was referenced earlier)
and the DR1 (direct repeat motif with a single nucleotide spacer)
binding site, both of which were previously confirmed using gel
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Fig. 15.1. Sequence logo representation of the PPARG nuclear receptor profile (MA0066.1) from the JASPAR database
(6). The profile is based on the Pal3 palindromic binding motif for the PPARG homodimer (5) consisting of two half-sites
(5′-AGGTCA-3′ and 5′-TGACCT-3′) separated by a three-nucleotide spacer with low level of sequence conservation.

shift assay experiments (5). As new experimental data become
available, the PWM profile can be easily extended. For instance,
the PPARG DR1 motif published by Okuno et al. (5) was based
on an alignment of 24 binding sites. Lemay et al. (8) later refined
the profile using an alignment of 73 confirmed sites.

JASPAR and MatInspector represent PWM profile-based
approaches that provide a rich resource for covering a broad range
of protein–DNA binding interactions, but are not optimized for
the sensitive and selective recognition of the unique characteris-
tics of nuclear receptors. For example, the weight matrix models
are not able to represent the variable spacing and inversions of
half-sites. The NUBIScan algorithm (9) provides improved speci-
ficity for the recognition of nuclear receptor binding sites com-
pared to the PWM profile-based method by utilizing the two
hexamer half-site separated by spacer structure. NUBIScan uses
weighted nucleotide distribution matrices to recognize and score
single half-sites in the DNA sequence of interest. The product of
the individual matrix scores gives the overall score for the desired
arrangement and spacing of the half-sites.

Moehren et al. (10) identified selective androgen receptor
elements (sAREs) using an extended version of the NUBIScan
algorithm (the new features are available now as options when
running the program). The first extension allows the definition
of different positional weight matrices for each of the two hex-
amer half-sites. The second extension introduces the notion of
scaled positional weight factor to enable the highly conserved
positions to contribute more to the score than the variable posi-
tions. Androgen receptor (AR) is known to interact with two
different sets of AREs. One set known as the classical steroid-
hormone-response elements (cAREs) are recognized by the other
receptors that belong to the same subgroup of nuclear receptor
superfamily. AR also interacts with a second set of REs, referred
to as sAREs that are three-nucleotide-spaced partial direct repeats
of the 5′-TGTTCT-3′ monomer binding element. Other recep-
tors that belong to the same subgroup of nuclear receptors, such
as the glucocorticoid receptor (GR), do not bind these elements.
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The extended version of the NUBIScan algorithm was configured
using the sARE binding site information and applied to screen
the regulatory regions of 85 known human androgen-responsive
genes. The most promising hits were followed up by in vitro DNA
binding (band-shift) assay experiment. The result of the com-
bined in silico prediction and experimental validation was that
the elements found in two genes, the aquaporin-5 and the Rad9
genes, showed selective AR versus GR binding. This conferred
the ability of the extended NUBIScan algorithm to identify REs
which mediate androgen, but not glucocorticoid, responsiveness
in reporter gene expression.

NUBIScan utilizes a single half-site model using weight
matrix methodology and evaluates pairs of half-sites with a pre-
selected configuration (for example, DR1) that must be prese-
lected by the user. NUBIScan reports predictions which exceed
a Z-score threshold, where the Z-scores are derived from the dis-
tribution of all scores generated from the input sequence. This
makes the predictions for a given threshold dependent on the
length and composition of the input sequence (11). An alter-
native approach was introduced by the NHR-scan model (11).
NHR-scan uses a hidden Markov model (HMM) framework to
recognize DR, IR, and ER elements. The model is capable of
high-sensitivity recognition of DNA binding sites while maintain-
ing the selectivity comparable to weight matrix profile approaches
(11).

2.2. Application of a
Specialized Binding
Site Model to Liver
X Receptor Target
Gene Discovery

While both NUBIScan and NHR-scan improve the sensitivity and
maintain the selectivity of identifying the presence of an RE com-
pared to earlier models, they cannot distinguish between nuclear
receptor subtypes or identify which receptor is most likely to
bind to the predicted site. The extended version of NUBIScan
takes an important step in this direction by allowing the defini-
tion of different positional weight matrices for each of the two
hexamer half-sites. To combine the strengths and to improve
upon the shortcomings of previously reported models, Varga
et al. (12) developed a library of hidden Markov models as part
of the LXRE.HMM algorithm with special focus on recogniz-
ing the REs of a single nuclear receptor, the liver X receptor
(LXR).

LXR is a steroid nuclear hormone receptor that plays a piv-
otal role in the regulation of fatty acid, cholesterol, and glucose
metabolism. Studies identifying LXR target genes gave insights
into the regulatory pathways affecting metabolic diseases, such as
diabetes and atherosclerosis. The canonical consensus sequence
for the LXR response element (LXRE) half-sites is 5′-AGGTCA-
3′. However, due to the diversity of the LXRE sequences, neither
the pattern matching approach using the canonical sequence nor
the available LXRE weight matrix model in the MatInspector tool
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is able to recognize experimentally verified LXRE sites with accu-
racy. These findings exacerbated the need for the development of
an improved LXRE model (12).

As the first step toward building an improved model, a set of
35 non-redundant LXREs were examined. The analysis revealed
three LXRE types: DR with a single-nucleotide spacer (DR1),
DR with a four-nucleotide spacer (DR4), and IR with a single-
nucleotide spacer (IR1). Subsequent phylogenetic analysis of the
28 DR4 LXREs showed five distinct DR4 subtypes and four sin-
gleton groups based on the evolutionary distance. To enable the
classification of LXREs into types and subtypes, a total of 11
models were built forming a library of models available via the
LXRE.HMM algorithm.

The predictive accuracy of LXRE.HMM was measured using
cross-validation, while selectivity was evaluated against the EPD
vertebrate promoter database (13). Using the optimal cutoff
score, the sensitivity of the predictions was 96.7% and the selec-
tivity was 93.8%. The LXRE.HMM method markedly improved
the sensitivity of identifying LXR binding sites compared to pre-
viously available tools while maintaining a high level of selectivity.
These results enabled the in silico screening of large data sets for
LXR target gene identification.

2.3. Functional
Characterization
of Binding Events

Because of the importance of known LXR target genes in
metabolic diseases, it is of great value to identify novel LXR target
genes that can be used as therapeutic targets or disease biomarkers
to support personalized medicine approaches. Stayrook et al. (14)
applied LXRE.HMM predictions in conjunction with an LXR
alpha ChIP-chip (chromatin immunoprecipitation followed by
promoter or genome-wide tiling microarray) experiment to iden-
tify a novel LXR target. First, regions of the genome with signifi-
cant LXR occupancy sites, as determined by chromatin immuno-
precipitation followed by hybridization to genome-wide microar-
ray chips (ChIP-chip, see Chapters 9, 10, and 11) active regions,
were screened using the LXRE.HMM method. The active regions
then were mapped to the human genome to identify genes in
1 kb proximity as potential LXRalpha target genes. The screen
identified a putative binding site in the promoter region of the
human 3alpha-hydroxy steroid dehydrogenase (AKR1C4) gene
for the LXRalpha isoform, which is the physiological receptor for
oxidized cholesterol metabolites (oxysterols) (15). Next, follow-
up experiments showed that LXRalpha binds this LXRE and
increases the transcription and protein expression of AKR1C4.
Since AKR1C4 has a key role in bile acid synthesis (14), the results
suggest that LXRalpha may modulate the bile acid biosynthetic
pathway, and other AKR1C4 pathways, such as the metabolism
of steroid hormones and xenobiotics (14).
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Wang et al. (15) compared the gene list obtained by
the LXRE.HMM screen of the occupancy regions from the
LXRalpha ChIP-chip experiment, as described previously, with
microarray data obtained from mice liver treated with LXR-
directed antisense oligonucleotide. This allowed the identifica-
tion of genes with LXRalpha occupancy, at least one predicted
LXRE and with significantly altered liver gene expression in the
LXR-directed antisense oligonucleotide knockdown experiment.
Two of these genes, squalene synthase (FDFT1) and lanosterol
14-alpha-demethylase (CYP51A1), showed reduced gene expres-
sion in liver. This led to the novel finding that LXRalpha can act as
a gene silencer. Furthermore, both genes encode for key proteins
in the cholesterol biosynthesis pathway (15). Since oxysterols, the
endogenous ligands of LXRalpha, are the end products of choles-
terol biosynthesis, a negative feedback regulation of cholesterol
biosynthesis exists and it is mediated by LXRalpha. Taken the
results together, the identification of novel LXREs combined with
gene expression data led to intriguing findings which indicate
that LXRalpha plays an important role in end product inhibition
of cholesterol biosynthesis, in addition to its role in cholesterol
reverse transport and elimination.

Further analysis of the data set obtained via the LXRE.HMM
screen of occupancy sites from the LXRalpha ChIP-chip experi-
ment revealed a putative LXRE in the selective Alzheimer’s dis-
ease indicator-1 (Seladin-1/DHCR24) gene. Wang et al. (16)
characterized the novel LXRE in the second intron of the gene
and found that it confers LXR-specific ligand responsiveness in
a reporter gene assay. This finding, taken together with results
from follow-up experiments, suggests that Seladin-1 is an LXR
direct target gene and that LXR may regulate lipid raft forma-
tion via modulation of Seladin-1. Lipid raft formation is known
to be associated with Alzheimer’s disease. Thus the findings pro-
vide a link between the LXR and the processes associated with
Alzheimer’s disease (16).

The above results illustrate the strategy of the integrated
application of new computational and experimental methods for
the genome-wide identification of LXR direct target genes. To
avoid the need to scan the entire genome, only regions of the
genome with significant LXR occupancy sites from the ChIP-chip
experiment were screened. The screening was performed with a
specialized model (LXRE.HMM) which improved both sensitiv-
ity and selectivity of recognizing putative LXR binding sites and
associated genes. This was followed by a selection of a set of
genes based either on results from an independent gene expres-
sion experiment or on biological significance. Follow-up experi-
ments further validated that the genes are direct targets of LXR
and provided insights into novel aspects of LXR regulation of key
processes associated with disease biology.
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3. Notes

1. Single RE prediction does not take cooperative binding sites
into consideration. Transcriptional activation is a dynamic
process involving a complex of proteins and also depends on
events other than a single transcription factor binding to an
RE site. The sequence features surrounding a given binding
site may provide important clues of cooperative binding by
other proteins which influence the activation of target genes.
Recent advances of developing algorithms for the detection
of cooperative (also referred to as composite) binding site
recognition (17, 18) may enable the recognition of nuclear
receptor binding sites with increased accuracy. Furthermore,
cooperative binding site recognition may provide insights
into tissue-specific binding preferences of nuclear receptors
and the complex cross talk between regulatory pathways.

2. Pitfalls of mapping occupancy sites to genes. In the method
described above ChIP-chip active regions were screened
using the LXRE.HMM algorithm to predict LXR occupancy
sites in the genome. The predicted sites were then mapped
to genes in 1 kb proximity to predict LXRalpha target genes.
This mapping identifies LXREs adjacent to the transcription
initiation site (i.e., in the promoter region) of the putative
target genes. However, enhancer regions which contain REs
and regulate target gene expression can be located much fur-
ther away. Thus, the occupancy site to gene mapping based
on 1 kb proximity will not detect enhancer regions asso-
ciated with target genes. Improved algorithmic and exper-
imental methods will be needed in the future to identify
enhancers and their corresponding genes.
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Chapter 16

Computing Chromosome Conformation

James Fraser, Mathieu Rousseau, Mathieu Blanchette,
and Josée Dostie

Abstract

The “Chromosome Conformation Capture” (3C) and 3C-related technologies are used to measure
physical contacts between DNA segments at high resolution in vivo. 3C studies indicate that genomes
are likely organized into dynamic networks of physical contacts between genes and regulatory DNA
elements. These interactions are mediated by proteins and are important for the regulation of genes.
For these reasons, mapping physical connectivity networks with 3C-related approaches will be essen-
tial to fully understand how genes are regulated. The 3C-Carbon Copy (5C) technology can be used
to measure chromatin contacts genome-scale within (cis) or between (trans) chromosomes. Although
unquestionably powerful, this approach can be challenging to implement without proper understand-
ing and application of publicly available bioinformatics tools. This chapter explains how 5C studies are
performed and describes stepwise how to use currently available bioinformatics tools for experimental
design, data analysis, and interpretation.

Key words: Chromosome Conformation Capture (3C), 3C-Carbon Copy (5C), microarrays, high-
throughput DNA sequencing, spatial genome organization, three-dimensional modeling, gene
expression.

1. Introduction

Understanding the transcriptional responses triggered by cellu-
lar pathways is a fundamental question in biology. Although
significant advances were recently made in describing transcrip-
tion networks involved in different processes such as cellular
differentiation (1–3), the coordination of genes in response to
environmental cues remains poorly understood. Gene regula-
tion is known to involve both local and long-range changes in
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chromatin structure (Fig. 16.1) (4–9). Local gene regulation pri-
marily involves changes in post-translational histone modifica-
tions, in the association of proteins, and the position of nucle-
osomes at promoters and regulatory DNA elements (4, 10).
In contrast, changes in long-range chromatin architecture also
involves altering physical contacts between genes and/or DNA
elements. Long-range interactions between genes and elements
located either on the same (cis) or different (trans) chromo-
somes were found to be essential for the regulation of genes
from various cellular pathways (11–29). Interestingly, long-range
contacts have also been found between co-regulated genes (30,
31). Together these studies indicate that long-range contacts rep-
resent a general mechanism to control the expression of genes
and that genomes are likely organized into dynamic networks
of physical contacts, which are required for coordinated tran-
scriptional responses. Therefore, mapping the three-dimensional

Transcription
Factory

cis-Interactions

trans-Interactions

Genomic DNA

10 nm Fiber

30 nm Fiber

Higher-level
Chromatin

Organization

A B

Fig. 16.1. Genomic DNA organization in the nucleus in vivo. a DNA packaging. The double helix (top) is wrapped around
nucleosomes, which are shown as spheres, to form the 10 nm fiber. This fiber is further packaged into a “solenoid” or
30 nm fiber by wrapping onto itself. The mostly uncharacterized higher level in vivo chromatin organization is represented
by a thick coil (bottom). b Functional DNA interactions in the genome. Curved lines represent different chromosomes
featuring both cis and trans interactions. Rectangles represent promoters, and the arrows represent their transcriptional
start sites. Physical interactions between promoters and enhancers (ellipse) or silencers (hexagon) are mediated by
protein complexes illustrated by circles. Actively transcribed genes are further organized into transcription factories,
represented by a shaded area at the center of the diagram.
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organization of genomes will be essential to fully understand gene
regulation.

1.1. Mapping
Three-Dimensional
Genome Organization
with 3C Technology

The “Chromosome Conformation Capture” (3C) technology
remains the method primarily used to measure changes in
both local and long-range chromatin contacts (32–34). The
3C approach is shown in Fig. 16.2 and involves first gener-
ating a library of DNA contacts captured in vivo by chemi-
cal cross-linking. Detailed protocols describing how to prepare
high-quality 3C libraries have been published elsewhere (34, 35).
Briefly, 3C libraries are generated by treating cells with formalde-
hyde, digesting with a restriction enzyme and ligating with T4
DNA ligase in dilute conditions (Fig. 16.2A). Thus, 3C libraries
contain entire genomes digested and re-ligated into a wide vari-
ety of “head-to-head,” “tail-to-tail,” “tail-to-head,” and “head-
to-tail” products between restriction fragments. Since these four
configurations exist at equimolar ratios in libraries, only one (e.g.,

1. Agarose Gel
2. TaqMan Probe

P1. High Throughput Sequencing
2. Custom Microarray Analysis

Restriction
Digest

X-linked
DNA

Ligation
Cross-link
Removal

3C Library

B

C

Anneal
5C Primers

Ligation

Taq Ligase
5C Library

Amplification
& Detection

Amplification
& Detection

3C 5C

A

3. SYBR Green I
    Melting Curve 

Fig. 16.2. Overview of 3C and 5C methodologies. a Generation of a 3C library. A cis genomic contact, mediated by a
protein complex represented by a circle is shown as an example. Arrowheads indicate both the location of restriction cut
sites and the directionality of restriction fragments. Formaldehyde cross-linked chromatin is first digested with a restric-
tion enzyme, ligated under dilute conditions to favor intermolecular ligation of cross-linked fragments, and deproteinated
to remove cross-links. Resulting 3C libraries contain DNA contacts derived from the entire genome, where the amount
of each ligation product is inversely proportional to the in vivo spatial proximity between DNA segments. A “head-to-
head” ligation product is illustrated as an example of in vivo 3C contact. b Conventional analysis of 3C products by
semi-quantitative PCR detection, TaqMan quantitative real-time PCR, or melting curve analysis (36). The junctions of 3C
ligation products are usually PCR-amplified individually with specific 3C primer pairs. c 5C detection of 3C products. 5C
primers are first annealed to 3C libraries in a highly multiplexed setting to detect up to millions of different chromatin
contacts simultaneously. 5C analysis required both forward and reverse 5C primers to detect “head-to-head” 3C junc-
tions. Forward and reverse 5C primers anneal immediately next to each other on the same DNA strand and are then
quantitatively ligated by Taq DNA ligase to generate 5C libraries containing “Carbon-Copies” of existing 3C contacts. This
5C library is finally amplified by PCR with primers specific to universal T3 and T7 5C tail sequences. 5C libraries can be
analyzed on either custom microarrays or by high-throughput DNA sequencing.
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the “head-to-head”) is typically measured during 3C. An impor-
tant consideration while selecting a restriction enzyme to pro-
duce 3C libraries is whether the presence of SDS and Triton
X-100 substantially affects enzymatic activity. Commonly used
restriction enzymes that work well under these experimental con-
ditions include EcoRI, BglII, or HindIII. DNA ligation is con-
ducted under dilute conditions to favor intermolecular ligation of
cross-linked DNA fragments, and cross-links are finally removed
by treating with proteinase K and phenol–chloroform DNA
extraction.

The key to 3C detection lies at the ligation step. By diluting
the reaction tenfold, the enzyme preferentially ligates genomic
DNA fragments held together through protein cross-links. Frag-
ments located close to each other in the nuclear space in vivo
will be cross-linked more frequently and form a larger number of
3C products than fragments located very far apart. The level of
these ligation products in a 3C Library is approximately inversely
proportional to the original three-dimensional distance separating
the pair of genomic regions in vivo. 3C products are convention-
ally measured semi-quantitatively by individual PCR amplification
of predicted “head-to-head” ligation junctions and agarose gel
detection or melting curve analysis (Fig. 16.2B) (36). Although
more costly, predicted 3C products may also be more accurately
quantified with TaqMan probes (37).

1.2. Limitations to
the 3C Approach

A major limitation to the 3C technology is the lack of scalabil-
ity. During 3C, a minimum of three PCR reactions must be pre-
pared individually for each predicted contact to be interrogated
and for each tested cellular condition. Also, since 3C relies on
the individual PCR amplification of predicted ligation junctions
with specific primers, differences in primer pair efficiency must
be corrected. This normalization step is achieved by generating
PCR triplicates in control 3C libraries containing equimolar ratios
of all predicted contacts as previously described (34). Thus, 3C
requires that at least six PCR reactions be resolved and quan-
tified on agarose gels or measured by quantitative real-time PCR
with TaqMan probes. For this reason, obtaining detailed informa-
tion about the three-dimensional organization of transcriptional
networks or even single genomic regions is tedious and can be
very expensive with the conventional 3C approach. Other impor-
tant limitations to the 3C method include occasional low speci-
ficity of the PCR amplification, the frequent need to re-design 3C
primers, and the identification of amplified 3C junctions based on
size rather than sequence.

1.3. The 5C
Technology

The “3C-Carbon Copy” (5C) technique was more recently devel-
oped to increase the throughput of 3C (38–41). 5C analysis
combines 3C library production with highly multiplexed ligation-



Computing Chromosome Conformation 255

mediated amplification (LMA) to quantify up to millions of
ligation junctions simultaneously (Fig. 16.2C). To characterize
three-dimensional chromatin organization with 5C, 5C primers
are first annealed to the 3C library in a highly multiplexed setting.
5C primers are designed to include both a specific sequence cor-
responding to the 3′ end of restriction fragments and a universal
primer sequence used for PCR amplification of 5C libraries. Since
5C also detects predicted “head-to-head” 3C ligation products,
one 5C forward and one 5C reverse primer must be used to quan-
titatively detect 3C junctions. Only 5C primers annealed imme-
diately next to each other on the same strand at 3C junctions can
be ligated together by the Taq DNA ligase. This process quanti-
tatively converts existing 3C contacts into “3C-Carbon Copies”,
which are then amplified with universal primers in a single PCR
step. This “5C library” can be analyzed either on custom microar-
rays or by ultra-high-throughput DNA sequencing (38).

1.4. The Challenge
of 5C Technology

In contrast to 3C, 5C analysis cannot be performed manually
and requires the use of several computer programs for experi-
mental design, analysis, and data interpretation. Understanding
the function and limitations of these programs is key for suc-
cessful 5C analysis. First, forward and reverse 5C primers must
be designed for selected networks or throughout the regions of
interest. Since 5C is typically used to generate large genomic
organization data sets, hundreds to thousands of primers must
be predicted for experimental design. This task can be performed
using the “5CPrimer” program as described in Section 3.2 below.
5C products can be detected by deep sequencing or on cus-
tom microarrays. While ultra-high-throughput DNA sequencing
offers the advantage of greater linear detection range, microarray
analysis remains the most affordable analysis method to char-
acterize low-complexity 5C libraries. However, since the com-
plexity of 5C libraries can increase exponentially with increasing
primer numbers, the only viable detection method to character-
ize high-complexity libraries remains deep sequencing. Custom
5C microarrays can be designed with our “5CArrayBuilder” pro-
gram. This program uses 5C primer lists generated with 5CPrimer
and is described in Section 3.3. Raw microarray signals must then
be normalized for background levels, the inherent signal vari-
ability due to array synthesis, and signal saturation. Corrected
data from cellular and control 5C libraries must also be pro-
cessed to calculate interaction frequencies (IFs) for each pre-
dicted contact. These corrected IFs can be estimated with our
“IFCalculator” program described in Section 3.4. Although IFs
are usually catalogued in the form of heatmaps that may be ana-
lyzed systematically with programs such as Excel, 5C data sets
can also be interpreted with several bioinformatics tools, includ-
ing “5C3D” and “Microcosm.” The 5C3D program integrates
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all 5C data in the form of a three-dimensional model, which can
then be analyzed further to measure defined sets of metrics useful
for comparing different genomic features. The program Micro-
cosm uses 5C3D output models to estimate local DNA base den-
sities surrounding given genomic features. These programs are
described in Sections 3.5 and 3.6.

2. Software

The software described in this chapter can be found on our
website under the “Tools” section at the following address:
http://dostielab.biochem.mcgill.ca. All software is available for
download as command line applications and should run well on
any computer capable of running C (5CPrimer, 5CArrayBuilder)
and Java (5C3D, Microcosm) programs. Additionally, 5CPrimer
is available through an easy to use web interface on our website.

3. Methods

This section describes the computational steps required to con-
duct 5C analysis.

3.1. Genomic
Annotation

The first step in conducting any 5C study involves selecting the
restriction enzyme to generate 3C libraries. The chosen enzyme
should preferentially yield restriction fragments that are uniform
in size throughout the region of interest. The enzyme should also
generate few very small or very large fragments. For example,
when a 6-cutter enzyme is selected, fragments should be between
500 and 8,000 bp in length. Restriction digest patterns can be
predicted with any DNA analysis software and for hypothesis-
based projects, we highly suggest creating a reference file cata-
loging restriction sites, primers, genes, regulatory DNA elements,
and other important genomic features. These reference files are
usually updated throughout the project and routinely consulted
to verify or optimize experimental design.

3.2. 5CPrimer Once a restriction enzyme has been selected and a reference file
created, the next computational step in 5C analysis is to design
forward and reverse 5C primers throughout the region of interest.
5C primers can be designed with the “5CPrimer” computer pro-
gram that we developed recently (42). This program is written in
the C programming language and has a web interface easily acces-
sible from our website (http://dostielab.biochem.mcgill.ca).
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5CPrimer predicts both forward and reverse 5C primers for any
given region digested with most restriction enzymes. The pro-
gram first locates cutting sites in a DNA sequence for a restriction
enzyme selected by the user and designs 5C primers iteratively
from the center of each cut site. Primer length is set at a minimum
of 18 bp, although the final length is affected by both the primer’s
melting point (Tm) and the number of cycles required to synthe-
size corresponding products onto microarrays. Both parameters
are user customizable, and default settings represent values used
in our laboratory. The Tm is calculated using Nearest-Neighbor
thermodynamics as described by Breslauer et al. (43). We restrict
the length of our primers to the maximum number of correspond-
ing cycles required to generate the full-length feature on arrays to
harmonize 5C primer and array design. After selecting the spe-
cific genomic region of primers, the 5CPrimer program attaches
the universal T7 tail sequence on forward primers and the com-
plementary T3 (T3c) sequence on reverse primers (Fig. 16.3A).
These common sequences are used to PCR-amplify 5C libraries.

5CPrimer also offers the option of using the Repeat-
Masker program to identify repetitive DNA sequences and
low-complexity regions within primers and eliminate poten-
tially problematic primers (44). These sequences introduce high
background levels and therefore must be avoided (38). 5CPrimer
does not perform a BLAST search yet to verify the uniqueness
of primers. Therefore these searches have to be done manually.
5C primers sharing homology with other regions of the human
genome such as conserved gene-coding sequences cannot be
used in order to avoid cross-hybridization. The final output of
5CPrimer is a tab-delimited text file containing all the informa-
tion necessary to place an order with vendors.

3.3. 5CArrayBuilder The “5CArrayBuilder” computer program can be used to design
custom arrays from 5CPrimer output files. This program is writ-
ten in the C programming language and is currently only avail-
able for command line, although a web interface is currently
under development. To design custom 5C arrays, the user spec-
ifies a list or a range of both forward and reverse primers from
each of the 5CPrimer output files, and 5CArrayBuilder predicts
every possible 5C product from the selected primers. Specifically,
5CArrayBuilder generates eight different probes of varying length
centered at the restriction cut site, for each predicted 5C product
(sense and anti-sense strand) (Fig. 16.3B). The first predicted fea-
ture is typically 30 bp long and used as a background signal when
calculating interaction frequencies. The remaining seven probes
vary in length from 36 bp to 48 bp in 2 bp increments. The
output of 5CArrayBuilder is simply a text file where every line
consists of a user-specified tag used for extracting array infor-
mation, followed by the sequence of the probe. This file can
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Fig. 16.3. 5C analysis using custom microarrays. a 5C experimental design. Forward and reverse 5C primers are illus-
trated at the top and bottom of the DNA double helix, respectively. Both forward and reverse 5C primers are designed to
anneal at the 3′ end of restriction fragments immediately upstream of restriction sites, which are represented by vertical
lines. Since forward and reverse 5C primers are complementary to each other, only one primer per fragment, either for-
ward or reverse, can be used at one time to generate 5C libraries. For this reason, the maximum coverage possible per
5C library is 50%. Possible ligation products between forward 5C primer 1 with the reverse 5C primers in the remaining
restriction fragments are indicated by arrows at the top of panel. b Anatomy of a “head-to-head” 5C ligation product. 5C
primers are shown annealed to a “head-to-head” 3C ligation product. Forward primers typically include a T7 universal
sequence at the 5′ end, which is shown, angled away from the sequence specific to genomic DNA. Reverse primers also
feature specific genomic sequences corresponding to the reverse complement of the 3′ end of restriction fragments.
Reverse primers also include a universal T3 complementary (T3c) tail and a 5′ phosphate used in the ligation reaction
with Taq DNA ligase. c Hybridization of 5C ligation products on custom microarrays. Microarray probes generated with
the “5CArrayBuilder” computer program are shown vertically attached to the array surface. Probe sizes usually range
from 30 nt (background) to 48 nt (maximum signal intensity) as indicated above each feature. Partial hybridization of a 5C
library product to the 30 nt feature is shown on the left and complete binding to a full-length array feature is illustrated
on the right. Signal intensity and specificity are predicted to increase with increasing array feature length.

be manually modified to exclude select feature sets, combined to
other files, or sent out directly to vendors for microarray synthesis.

3.4. IFCalculator We recommend conducting 5C analysis with custom arrays featur-
ing half-site probe lengths of 15, 18, 19, 20, 21, 22, 23, and 24 nt
as described above in Section 3.3 “5CArrayBuilder.” The 15 nt
half-site probe signal is representative of background noise and is
used to determine which of the remaining probe values should be
included to calculate the average interaction frequency (IF) of its
corresponding fragment pair. The “IFCalculator” program auto-
matically excludes points close to background signal. For each
interaction, and starting from the longest half-site, IFCalculator
first compares the signal of each probe to the value of the corre-
sponding 15 bp probe. If a signal is found to be less than 150%
of it’s 15 bp value, that half-site signal is discarded along with
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all remaining shorter probe length values. Corresponding 15 bp
signals are then subtracted from the remaining values to remove
background from each entry. Corrected values are used to calcu-
late IFs by dividing cellular and control 5C signals of correspond-
ing feature lengths. Interaction frequencies are finally averaged
and the variance, count, and 95% confidence interval are reported
in the output 5C data set. If all probe length values are rejected
for being too close to the background signal, an IF value of 0 is
reported and is indicated as a missing data point.

3.5. 5C3D 5C IF data sets can be analyzed three dimensionally by gen-
erating average three-dimensional models with the 5C3D pro-
gram. 5C3D converts all non-zero interaction frequencies to dis-
tances (D) as follows: D(i, j) = 1/IF(i, j), where IF(i, j) is the
IF between points i and j and D(i, j) is the three-dimensional
Euclidean distance between points i and j (1 ≤ i, j ≤ N ). Each
point represents a single restriction fragment. Next, the program
initializes a virtual three-dimensional DNA strand represented as
a piecewise linear three-dimensional curve defined on N points
distributed randomly in a cube. The program then follows a gra-
dient descent approach to find the best conformation, aiming to
minimize the Misfit (M) between the desired values in the dis-
tance matrix D and the actual Euclidean distance E(i, j):

M =
√√√√

∑

1≤i, j≤N , i �=j

(
D(i, j) − E(i, j)

E(i, j)

)2

Each point is considered one-at-a-time and is moved in the
inverse direction of the gradient, ∇, of the misfit function (for
which an analytical function is easily obtained), using a step size
equal to d∗ |∇|. Small values of d(d = 5 × 10−5) were used to
ensure convergence of the method but increase the number of
iterations needed. The process of iteratively moving each point in
the virtual DNA strand in order to decrease the misfit is repeated
until convergence (change in misfit between successive iterations
less than 0.001). The gradient descent approach converges rela-
tively rapidly, with a running time of a few minutes on a desk-
top workstation. The resulting set of points is then considered
to be the best fit for the experimental data and is represented
as a piecewise linear three-dimensional curve. This curve is then
annotated with differently colored transparent spheres centered
at the transcription start sites of the genes present along the DNA
sequence (or any other specified feature locations). An example
of 5C3D output models highlighting spatial chromatin changes
in the HoxA cluster during THP-1 differentiation is shown in
Fig. 16.4 (42). THP-1 cells are myelomonocytes that can be
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Fig. 16.4. 5C3D output models of the human HoxA cluster. 5C3D models were generated with 5C data from either
undifferentiated a or differentiated b THP-1 cells. Shaded spheres represent transcriptional start sites (TSSs) of genes as
indicated in the legend below. TSSs displaying the greatest change between the two states are labeled (HoxA 6, 9, and
11). The lines do not represent genomic DNA, but are simply used to connect the different vertices generated by 5C3D
that represent the different DNA fragments.

terminally differentiated into macrophages in the presence of
phorbol myristate acetate (PMA). These cells are often used as
a model system to study acute myeloid leukemia (AML). In fact,
the dynamic transcription factor network involved in differenti-
ation and growth arrest was extensively described by the FAN-
TOM4 Consortium. We previously showed that transcriptional
silencing of the HoxA9, 10, 11, and 13 genes following THP-
1 differentiation is accompanied by clustering of repressed genes
(42). Interestingly, HoxA9 and 10 are oncogenes important in
promoting cellular proliferation in these cells. Understanding the
relationship between transcription repression and spatial chro-
matin remodeling may uncover important information about the
mechanism by which these genes are regulated and regulate other
genes.

3.6. Microcosm The “Microcosm” program is designed to empirically analyze
5C3D structural models by measuring local base density along
the structure’s length. The input data includes the average IF
values, variance, counts (or number of technical replicates), and
95% confidence intervals for each pair of points, as obtained from
the IFCalculator program. To establish the robustness and sig-
nificance of the observed measurements, Microcosm selects, for
each fragment pair, an IF at random from a normal distribution
with the mean and standard deviation corresponding to it. This
process is repeated for each fragment pair to generate “randomly
sampled” 5C array data sets based on original 5C data. Each
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randomly sampled data set is then used individually by 5C3D to
infer the best fitting model.

The final models are analyzed to determine the local density
of the environment surrounding each feature F. The local density
is defined as the total number of DNA base pairs from any DNA
segment that lies within the sphere of a fixed radius centered at
F ’s genomic position. The radius should be chosen with respect
to the overall size of the model. To remain significant, the radius
should not be too large in order to avoid including too much of
the model, or too small to exclude most surrounding DNA as
indicated in Section 4. The process described above is repeated
100 times for each original 5C data set to generate 100 individ-
ual models and local density estimates around each feature. It is
relatively computationally inexpensive to generate and analyze the
100 models required, with a running time of a couple of hours on
a desktop workstation. The average local density, its variance, and
95% confidence interval for the mean are then calculated for each
feature and reported in a graphical format called a local density
plot. Local density plots can be compared between experimental
states to identify features with significant differences in local den-
sity. If such a comparison is performed, then a p-value is calculated
for each difference and corresponds to the probability of incor-
rectly predicting a difference in local densities assuming normality
of the data. A low p-value therefore indicates that the difference
in local densities of a feature’s environment between two states
is likely to be real. An example of Microcosm output is shown
in Fig. 16.5. This figure presents a local base density plot of the
human HoxA cluster in undifferentiated (solid) and differentiated
(dashed) THP-1 cells. In agreement with 5C3D output models,
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Fig. 16.5. Example of a local base density analysis by Microcosm. We previously examined the conformational changes
in the HoxA cluster during differentiation of THP-1 cells. Microcosm was used to analyze 5C data from the HoxA gene
cluster before differentiation (solid line) and after differentiation (dotted line). The horizontal axis shows the position
along chromosome 7 (ENCODE, Mar. 2006 Assembly), while the vertical axis measures the density of DNA in the three-
dimensional area.
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this example shows that based density is considerably higher in
differentiated cells where gene expression is repressed.

3.7. Conclusion 5C is a powerful tool for examining changes in three-dimensional
chromatin architecture. The software described in this chapter
should promote the use of 5C for hypothesis-based research and
other functional chromatin studies. The identification of HoxA
chromatin conformation signatures (CCSs) referred throughout
this chapter represents the second 5C analysis of a genomic
region. 5C was previously used to characterize the three-
dimensional chromatin organization of the human beta-globin
cluster in different cell lines (38). In that study, the locus control
region (LCR) was shown to physically interact specifically with
the transcribed genes. These interactions were recapitulated by
conventional 3C analysis. Importantly, analysis of the beta-globin
locus with 5C identified a new long-range interaction between the
LCR and the transcribed pseudogene thereby demonstrating the
tremendous power of 5C to identify physical contacts de novo. A
flowchart summarizing the various molecular and computational
steps involved in 5C analysis is presented in Fig. 16.6.

5CPrimer

5CArrayBuilder

IFCalculator

Microcosm 5C3D

Sequencing Microarray

3C Library

Genomic
Annotation

RenumberFragments

5CiPrimer

5C Library

Fig. 16.6. 5C analysis flowchart. Computational steps are represented by rectangles
and molecular biology experiments by ovals.
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4. Notes

1. Using 5C iPrimers for quality control of 5C libraries
Since 5C products are similar in size to primer dimer arti-

facts, we recommend verifying the identity and integrity of
5C products in libraries before proceeding with microarray
hybridization or high-throughput DNA sequencing. Qual-
ity control of 5C libraries can be performed by serial dilu-
tion and semi-quantitative PCR amplification of represen-
tative DNA contacts with internal 5C primers as described
previously (38). This approach offers the advantage of both
distinguishing legitimate products from artifacts and verify-
ing the linearity of 5C libraries. iPrimers correspond partially
to universal primer sequence selected as tail and to specific
sequences homologous to genomic DNA. These primers can
be designed with our “5CiPrimer” computer program from
5C primer lists generated by 5CPrimer. 5C products can also
be distinguished from primer dimers in “bulk” by digest-
ing entire libraries with restriction enzymes cutting reconsti-
tuted restriction sites at the junction of ligated 5C forward
and reverse primers.

2. Coverage limitation in individual 5C libraries
Since forward and reverse 5C primers are complementary

to each other, only one primer per restriction fragment can
be used at one time, and a maximum interaction coverage
of 50% per 5C library can be attained. Fifty percent cov-
erage is achieved using alternating forward and reverse 5C
primers for consecutive restriction fragments (Fig. 16.3).
Although often sufficient to identify overall changes in
three-dimensional genome organization, certain long-range
looping contacts may not be resolved using this experimen-
tal design. To solve this problem, merging complementary
5C data sets was previously suggested in order to increase
overall interaction coverage. For example, the typical R-F-
R-F configuration could be complemented with R-R-F-R-
R-F, and R-R-R-F-R-R-R-F configurations to achieve up to
87.5% coverage. However, since there are currently no avail-
able tools for merging complementary libraries and obtain
higher coverage, this process must be done manually. Higher
interaction coverage can also be achieved by analyzing 3C
libraries generated with 4-cutter restriction enzymes.

3. Limitations in primer design
Genomic regions are not always perfectly compatible with

5C analysis. For example, when a genomic domain contains
a large number of repetitive DNA sequences, few 5C primers
may be successfully designed for a given restriction pattern.
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5C primers homologous to repetitive DNA sequences gen-
erate high background levels in 5C libraries and must be
excluded. 5C primer design is restricted to regions imme-
diately adjacent to restriction cut sites and for that reason,
5C primers may not be suitable if cut sites fall within repeats
or within very low-complexity regions. Different restriction
enzymes should be considered before producing 3C libraries
when highly repetitive genomic domains are characterized in
order to maximize coverage during 5C library production.

4. File formats
Interaction frequencies (IFs): The microarray signals used

as input to the IFCalculator program need to be in a single
tab-delimited file. The format of this file is specified in the
readme file included with the IFCalculator program down-
load.

Feature locations: The genomic positions of the features
analyzed must be specified in a single input file. The format
of this file is specified in the readme file included with the
5C3D program download.

Fragment lengths: The length of the genomic fragments
(in base pairs) must be specified as start and stop base indices
in a single tab-delimited file. The format of this file is spec-
ified in the readme file included with the 5C3D program
download.

5. IFCalculator
IFCalculator considers that listed entries are consecutive.

If some fragments were excluded from the analysis, gaps will
be present in the numbering of fragments and the output
data file by IFCalculator should be first converted with the
“RenumberFragments” program before pursuing data anal-
ysis and interpretation. The output from RenumberFrag-
ments can then be used instead of the IFCalculator file for
subsequent steps with the 5C3D and Microcosm programs.

Although IFCalculator typically applies a 150% cutoff for
background as described above, the user can specify a differ-
ent value as a command line parameter. For example a 150%
cutoff may not be optimal when detecting changes between
low IF signals. In this case, the cutoff may be reduced to
include more noise but detect small changes. Conversely, a
150% background signal cutoff may not be appropriate for
data sets with higher background levels. In that case, the cut-
off may be increased to highlight higher confidence changes
in IFs. Thus, increasing the value will increase the stringency
of the filter and vice versa.

6. 5C3D
If the gradient descent process is not converging (oscil-

lating) or is converging too slowly, the value of epsilon (the
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step size) is inappropriate. The user can specify a different
value as a command line parameter (use a bigger value to
speed up the process; use a smaller value to improve conver-
gence problem).

7. Microcosm
The user can specify the radius of the sphere as a com-

mand line parameter. If the selected radius of the sphere is
too large, the local base density measurements will include
too much of the structure and will not correctly character-
ize the environment of genomic locations. Measurements
will be very high and similar throughout the structure. In
this case, the value for the radius of the sphere should be
reduced.

If the selected radius of the sphere is too small, the local
base density measurements will not include sufficient sur-
rounding DNA and will not correctly reflect actual local
base densities. Measurements will be very low and similar
throughout the structure. In this case, the value for the
radius of the sphere should be increased.

8. Interpretation of three-dimensional models
Several important considerations must be taken into

account when interpreting three-dimensional models gener-
ated from 5C data sets. First, because of the inherent nature
of 3C and 5C, the output models generated with 5C3D rep-
resent averaged structural models rather than true individual
in vivo structures. Nonetheless, these models can be used to
identify three-dimensional changes in chromatin organiza-
tion by comparing the same genomic region under various
cellular conditions. Also, three-dimensional modeling inte-
grates all contacts into individual possible “structures” to
generate averaged models of compatible IFs. This process
reduces the incidence of false positives by considering each
IF in context of entire data sets and by not favoring strong
gain or loss of contacts.

Second, in 5C3D output models, straight lines represent
the shortest path between the endpoints of each fragment
rather than actual chromatin. Indeed, this information is
excluded from our models since there is no actual infor-
mation regarding the structure of chromatin between end
points. Therefore, straight lines cannot be trusted as “true”
structures.

Third, since small IF values are less accurate than large
IF 5C values, points that are far away from others should
be considered less importantly in overall models. Indeed,
because we consider distances to be inversely proportional to
IFs, small IF values are converted to large distances in mod-
els and points that are far away from everything else have
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very little constraints on their location in space in the three-
dimensional model. Such points have a very high degree of
flexibility in their position and should therefore not be inter-
preted as actually being located at any one point in space.
A safer interpretation would be that such points are “far”
away from the rest of the structure but the exact position of
such points relative to the rest of the structure should not be
trusted when considering the models.

9. Reproducibility of 5C data
Since 5C libraries derive from populations of cells, repro-

ducibility between biological replicates is greatly influenced
by growth conditions. We find that general trends such as
long-range contacts and compaction levels are conserved
between libraries generated from similarly treated cells,
although relative IFs may vary between biological repeats.
We are currently examining the variability and noise levels
between 5C technical repeat in order to assess the repro-
ducibility of 5C technology. To minimize biological noise,
we recommend fixing cells at a fixed point of their growth
curve. Synchronizing cells and collecting at a defined point
after release may also reduce variability between prepara-
tions. To reduce technical noise between libraries, we rec-
ommend using the same reagents (provider, lot numbers,
etc.) and a standard operating protocol each time to gener-
ate libraries.
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Chapter 17

Large-Scale Identification and Analysis of C-Proteins

Valery Sorokin, Konstantin Severinov, and Mikhail S. Gelfand

Abstract

The restriction-modification system is a toxin–antitoxin mechanism of bacterial cells to resist phage
attacks. High efficiency comes at a price of high maintenance costs: (1) a host cell dies whenever it loses
restriction-modification genes and (2) whenever a plasmid with restriction-modification genes enters a
naïve cell, modification enzyme (methylase) has to be expressed prior to the synthesis of the restriction
enzyme (restrictase) or the cell dies. These phenomena imply a sophisticated regulatory mechanism. Dur-
ing the evolution several such mechanisms were developed, of which one relies on a special C(control)-
protein, a short autoregulatory protein containing an HTH-domain. Given the extreme diversity among
restriction-modification systems, one could expect that C-proteins had evolved into several groups that
might differ in autoregulatory binding sites architecture. However, only a few C-proteins (and the cor-
responding binding sites) were known before this study. Bioinformatics studies applied to C-proteins
and their binding sites were limited to groups of well-known C-proteins and lacked systematic analysis.
In this work, the authors use bioinformatics techniques to discover 201 C-protein genes with predicted
autoregulatory binding sites. The systematic analysis of the predicted sites allowed for the discovery of
10 structural classes of binding sites.

Key words: Restriction-modification systems, C-proteins, DNA-binding proteins, bioinformatics,
transcription regulation.

1. Introduction

1.1. Restriction-
Modification
Systems

The restriction-modification (RM) phenomenon was first discov-
ered more than 50 years ago during the studies of bacterial anti-
phage defense (1, 2). Of the three types of RM systems, type
II is the simplest and most prevalent. Restriction endonucleases
encoded by type II systems are widely used in molecular cloning.
A typical type II RM system is essentially a two-component
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toxin–antitoxin system. A type II restriction endonuclease (toxin)
cleaves unprotected or unmodified DNA at specific sites trigger-
ing DNA degradation and cell death. A methyltransferase (anti-
toxin) protects DNA from cleavage by methylating the same
DNA sites (3, 4). Most RM systems’ genes are plasmid borne
and capable of horizontal spread through bacterial populations.
A bacterial cell that acquires an RM system becomes resistant to
infection by phages whose genomes contain unmethylated sites in
their DNA. On the other hand, plasmids harboring RM systems’
genes behave like selfish genetic elements, because a loss of an
RM plasmid leads to cell death since methyltransferase (antitoxin)
is shorter living than the corresponding restriction endonuclease
(toxin).

The horizontal transfer of an RM system among naïve (i.e.,
lacking such genes) bacteria imposes constrains on RM genes
expression. Since the corresponding genomic DNA sites in a naïve
cell are unmethylated and therefore vulnerable to cleavage by the
restriction endonuclease, the methylase must be synthesized first,
while the appearance of restriction endonuclease activity must
be delayed until all sites are methylated. On the other hand,
once an RM system is established in the host cell, a steady-state
ratio of restriction endonuclease and methyltransferase activity
needs to be maintained. Too low endonuclease activity (or exces-
sive methyltransferase activity) could lead to a loss of protection
against bacteriophage infection and cell (and RM plasmid) death.

One of the most prevalent regulation strategies involves a
dedicated transcription regulator encoded by a separate gene.
These regulators are called control(C)-proteins and they influence
the level of the endonuclease gene (and sometimes methylase
gene) transcription in many RM systems. Since computational
analysis of this type of regulation relies on the standard structure
of C-containing RM-loci, we shall describe them in more detail.

1.2. Regulation
of Transcription by
C-Proteins

C-protein-dependent regulation was first described for the PvuII
system (5). The X-ray analysis of the C.AhdI and C.BclI
C-proteins revealed a 5-alpha-helical protein, which could be
assigned to the Xre family of transcriptional regulators (6, 7).
Of the five alpha helices, two represent a typical helix-turn-
helix (HTH) domain. The remaining three alpha helices allow
for effective dimerization of the protein. The similarity between
C-proteins and the Xre family regulators (Fig. 17.1) suggests that
like the latter, C-proteins activate transcription by directly inter-
acting with the σ70 subunit of RNA polymerase.

The endonuclease gene is usually localized immediately
downstream of the C-protein gene, forming a single CR
(C-protein-restriction endonuclease) transcription unit (8). The
methylase gene constitutes a separate transcription unit, either
convergent or divergent with respect to the CR unit. In all
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Fig. 17.1. Overlaid structures and protein alignment of C-protein C.Ahd I (black) and
cytosine regulator CylR2 (gray), an Xre-subfamily protein.

experimentally studied systems, the region upstream of the C-
protein gene contains two C-protein binding sites. The distal site
(located further from the C-protein translation start site) has a
higher affinity. A weak promoter is usually positioned downstream
of the two binding sites. Thus, the basal level of the CR unit
transcription is low. After a sufficient amount of C-protein has
been produced, the C-protein dimerizes and binds to the distal
site activating the CR promoter. Upon further C-protein accu-
mulation, a second dimer binds to the weaker proximal site and
represses the further transcription of the CR unit. These positive
and negative feedback loops allow for maintaining a steady level
of the endonuclease transcript (9, 10).

In some RM systems, C-proteins also affect the transcription
of the methylase gene. One (indirect) way of doing this operates
when the M and CR transcription units are divergent. The dis-
tance between the transcription units is so small that the methy-
lase gene promoter overlaps with the C-protein binding sites.
Upon binding to the distal site, the C-protein dimer prevents
the RNA polymerase from binding to the methylase promoter.
This regulatory mechanism is operational in the EcoRV RM sys-
tem (11).

Another direct way of affecting the methylase gene transcrip-
tion has been recently described for the Esp1396I RM system
(12), where the M and CR transcription units are convergent.
A single, high-affinity C-protein binding site was found upstream
of the methylase gene. Because of the high affinity, the C-protein
dimer binds to this site early on, repressing the methylase gene
transcription. As larger quantities of C-protein are produced,
the C-protein binds first to the distal and then to the proximal
sites located upstream of the C-protein gene, causing activation
then repression of endonuclease gene transcription as described
above. The schema of genetic organization of several C-protein-
dependent RM system loci is shown in Fig. 17.2.
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Fig. 17.2. The genetic organization of several known C-protein-dependent RM systems.

1.3. Computational
Analysis of
Transcription
Regulation by
C-Proteins

C-protein binding sites were first reported in 1995 (13). The
analysis of upstream sequences of six then known C-protein
genes revealed a conserved 12-bp region with the consen-
sus sequence of ACTTATAGTCTG, later extended to 18 bp
(aCTYATaGTCYGTNGNYt) (14). Newly discovered C-proteins
changed the binding site motif (15). The authors argued that
the 18-bp sites were unnecessarily long for monomer bind-
ing while lacking the dyad symmetry expected for dimer-
binding sites. Based on these considerations, short binding
sites (C.SmaI: AATGCTACT; C.NmeSI: TGCTACTTATAG;
C.BglII: GATACTTATAGTC) were proposed. These sites were
considered to interact with C-protein monomers.

As of July 2007, the main repository of RM systems, Rebase,
contained as few as 48 C-proteins and 8 confirmed C-protein
binding sites. The binding sites formed three structural groups,
each named after its archetypical representative, with two groups
containing only one member. The largest group with six bind-
ing sites was named after C.PvuII. It contained binding sites
that lacked a pronounced palindromic structure expected for the
dimeric form of C-proteins. The remaining binding sites of the
C.EcoRV and C.EcoO109I group were palindromic.

The C.PvuII-like group of C-protein binding sites was
subsequently extended to include 24 binding sites for known
S-proteins from Rebase (16). A typical C.PvuII-like site was
found to have a complex structure with a highly conserved
tetranucleotide between two copies of the palindrome. Each
palindrome arm is called a C-box, and the entire site thus
contains four C-boxes. Interestingly, the proximal (3′) palin-
drome was less similar to the consensus, i.e., was “weaker”
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Fig. 17.3. Sequence logo showing the structure of C.PvuII-like binding sites (16).
Framed tetranucleotides represent C-boxes. A pair of C-boxes constitutes a palin-
drome. Additionally, the motifs contain highly conserved GT-core nucleotides and self-
complementary dinucleotides at motif termini.

than the distal (5′) one, consistent with the above transcription
regulatory mechanism. The observed palindromic structure
(Fig. 17.3) likely reflects the dimeric form of C-proteins binding
to the sites.

2. Methods

2.1. Large-Scale
Identification
and Analysis of
C-Proteins

A systematic study of candidate C-proteins and their binding sites
was reported in (17). All data related to the study can be found
at http://iitp.bioinf.fbb.msu.ru/vsorokin.

Forty-six C-proteins from Rebase were used as queries in a
BLAST (18) search against the non-redundant GenBank (19)
nucleotide collection (tblastn, threshold: 1e-05, see Note 1).
After manual curation, 245 unique hits were retained for further
analysis.

The upstream sequences of candidate C-protein genes were
analyzed in order to identify conserved regions that could corre-
spond to the binding sites. Since there is no reason to expect a
single conserved motif for all C-proteins, this was done separately
in groups of closely related C-proteins. Specifically, a multiple
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alignment of all 291 proteins (46 known Rebase C-proteins and
245 putative C-proteins) was built using MUSCLE (20) (default
parameters) and the maximum likelihood tree was constructed
using the PROML procedure from the PHYLIP (21) package
using the default parameter settings (see Note 2). Examination
of the resulting phylogenetic tree revealed several large, separate
branches. A slightly reduced variant of the original tree, contain-
ing only those proteins for which the putative binding motifs
could be identified (see below), is shown in Fig. 17.4.

2.2. Identification of
Candidate C-Protein
Binding Motifs

Each major branch of the C-protein phylogenetic tree was
analyzed independently. Hundred-base pairs long sequences
upstream of most closely related genes were aligned using

Fig. 17.4. The structure of motifs of predicted C-protein binding sites (17). Clustering was performed using ClusterTree-
RS (22). C-boxes are highlighted, arrows represent palindromes formed by pairs of C-boxes.
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MUSCLE (20) with the default parameter settings. If the align-
ment contained many highly conserved regions, the alignment
was further extended by adding more distant members of the
branch (see Note 3). The extension process terminated when
alignments deteriorated completely. The resulting alignments
were analyzed manually and the conserved islands that remained
were considered to correspond to C-protein binding sites.

To identify additional binding sites, and, in particu-
lar, to account for a possibility of incorrectly annotated
start codons of some predicted C-proteins, conserved sites
obtained as described above were used to build HMM profiles
(http://hmmer.wustl.edu, see Note 4), and the latter were used
to scan by hmmer using default parameters for matches in regions
from −100 to +50 relative to annotated start codons of all pre-
dicted C-protein genes. As expected, the majority of matches
coincided with already predicted binding sites. However, several
new matches were found and some matches were at a different
location than the initially identified sites. A small overall number
of corrections indicated the overall consistency of the prediction
procedure. In total, 201 binding sites were predicted.

2.3. Validation of
Predicted C-Protein
Binding Sites

Candidate binding sites were predicted for 201 of the total of
291 C-proteins. As mentioned above, C-protein binding sites for
eight Rebase RM systems have been identified experimentally and
24 more sites computationally (16). All these sites were present
among the sites identified by our procedure.

2.4. The Structure
of Binding Motifs

Previously known binding sites were assigned to one structural
group named after its archetype C.PvuII and two single-member
groups: C.EcoRV and C.EcoO109I. The C.PvuII-group sites had
a structure of two short palindromes separated by highly con-
served tetranucleotides (16). Two palindrome arms represent
the so-called C-boxes, which are likely binding sites of individ-
ual C-protein monomers when they form dimers. Pairs of con-
served, complementary positions outside the palindromes were
disregarded in (16). Unlike the C.PvuII-like sites, the binding
sites of C.EcoRV and C.EcoO109I are single palindromes.

The set of newly predicted sites from (17) was split into clus-
ters [ClusterTree-RS procedure (22)], which we will refer to as
motifs. This procedure yielded 10 stable motifs (Fig. 17.5), which
comprised 181 (90%) of the 201 predicted binding sites. While
the remaining sites resembled motifs 1–6 (see below) the pro-
cedure failed to cluster them, probably due to the search strin-
gency. The motifs logos (Fig. 17.5) are described below, while
their main features are listed in Table 17.1.

Motifs 7 and 8
Motifs 7 and 8 correspond to the previously recognized
C.EcoRV and C.EcoO109I groups, respectively. However, the
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Fig. 17.5. The structure of motifs of predicted C-protein binding sites (17). Clustering was performed using ClusterTree-
RS (22). C-boxes are highlighted. Arrows represent palindromes formed by pairs of C-boxes.

constructed motifs are longer due to additional conserved
positions.

Motifs 1–6
Motifs 1–6 have the same length and share common structural
features, described by the scheme

Z-X-N-X∗-[GT-rich spacer]-x-n-x∗-Z∗,

where Z denotes conserved complementary trinucleotides, X
represents palindrome-forming C-boxes, and asterisks denote



Large-Scale Identification and Analysis of C-Proteins 277

Table 17.1
The classification of C-proteins and their binding motifs

Group 1 Group 2 Group 3
C.PvuII-like sites Palindromic sites Possible false positives

Motifs 1–4 Motifs 7, 8,10 Motif 9
• Length: 35 bp
• GT-rich central area
• Double palindromes (four C-boxes)
• Conserved terminal complementary

trinucleotides (except motif 3)

• Single palindromes (two
C-boxes)

• Additional downstream
palindromes

• Form three separate,
individual branches on the
C-protein tree

• Unusually short
• No pronounced

palindromic structure
• A separate branch on the

C-protein tree

Motifs 5,6
• Length: 35 bp
• GT-rich central area
• No pronounced C-boxes
• Conserved terminal complementary

trinucleotides

complementary elements. The uppercase X-N-X∗ indicates that
the 5′-copy is much closer to the overall palindromic consen-
sus than the 3′-copy. The conserved spacer between the copies
is unique for each motif.

Motifs 1, 2, and 4 fit the above scheme exactly. Motif 3
lacks external trinucleotides. Motifs 5 and 6 lack the palindromic
structure but retain the highly conserved complementary external
trinucleotides. All previously identified C.PvuII-like binding sites
conform to the motif 2 structure.

Motif 9

Motif 9 is rather short (10 bp) but well conserved. It lacks any
palindromic symmetry and reveals no other structural features.
While these could be false positive, predicted binding sites for six
C-proteins from Rebase belong to this motif. Hence, this predic-
tion, while tentative, warrants experimental verification.

Motif 10

This single palindromic motif is not related to other motifs.
Rebase contains no C-proteins predicted to bind to this motif.
Again, this prediction requires experimental verification.

2.5. Downstream
Sites

X-ray analysis revealed the dimeric nature of C-proteins C.AhdI
and C.BclI (7, 8). Indeed, all experimentally studied C-protein
binding events involved paired binding sites. Activation required
their interaction with the high-affinity promoter-distal site. This
is followed by repression through interaction with the low-
affinity promoter-proximal site of the CR transcription unit.
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Thus, if the predicted sites are functional, additional weaker sites
could be expected in close vicinity and downstream of predicted
“single” sites.

Motifs 1–4 already consisted of two palindromes representing
promoter-distal and promoter-proximal binding sites. Consis-
tent with the existing model, the consensus of the proxi-
mal palindrome was weaker than the consensus of the distal
palindrome.

Motifs 7, 8, and 10 include single palindromes. A special pro-
cedure was applied to search for additional sites downstream of
these motifs. First, HMM profiles were constructed for each motif
(see Note 4). Next, upstream sequences of C-protein genes con-
taining sites forming a motif were searched for profile matches.
As expected, a strong match coinciding with already predicted
binding site was observed in all cases. Importantly, all “second
best” matches were downstream of primary matches and were
predicted to be the downstream binding sites. The consensus of
proximal (downstream) sites was weaker than that of distal sites.
This result agrees with the established model of C-protein tran-
scription regulation involving activation upon C-protein binding
to the upstream site and subsequent repression following binding
to the downstream site.

Unlike the case for motifs 1–4, the distance varies between the
distal and proximal copies for motifs 7, 8, and 10. This suggests

Fig. 17.6. Sequence logo of distal (top) and proximal (bottom) pairs of C-boxes from
identified binding sites (17). Notation is as in Fig. 17.5.



Large-Scale Identification and Analysis of C-Proteins 279

Fig. 17.6. (continued)

that C-protein dimers bound to these sites do not interact with
each other, unlike C-proteins with constant distances.

No downstream copies were observed for C.PvuII-like motifs
5 and 6 (lacking palindromic structure) as well as for non-
palindromic motif 9. It is therefore unclear whether these binding
sites, if real, operate using the same activation-repression mecha-
nism as other C-proteins. The distal and proximal pairs of C-boxes
are shown in Fig. 17.6.

3. Conclusions

Candidate C-proteins and predicted binding sites were consis-
tently identified by a set of computational methods. Having
started with known C-proteins from Rebase, we retrieved from
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GenBank nucleotide sequences which could represent C-protein
genes. A multi-step manual analysis was applied to remove possi-
ble false positives followed by the prediction of autoregulatory
binding sites in upstream regions of C-protein genes. Manual
analysis of the multiple alignments of closely related upstream
sequences allowed for the identification of highly conserved
islands, which were predicted to be the binding sites. Indeed, the
predicted binding sites completely matched all known sites. The
predicted binding sites were clustered into 10 motifs, of which
only three had been known previously.

The work resulted in 201 predicted C-protein genes with
predicted autoregulatory binding sites.

4. Notes

1. The use of such a liberal BLAST e-value threshold requires
considerable care. On the other hand, since the typical
C-protein length is only about 70 amino acids, stricter
thresholds could yield loss of relevant hits. In (17), the
authors controlled for several factors to avoid false posi-
tives. First, multiple alignment of all candidates was con-
structed and the presence of a pronounced HTH domain
was verified. Second, manual analysis of hit annotations
demonstrated that the set of candidates did not contain
transcription factors with known, unrelated function. The
third filter was the requirement of upstream regulatory sites,
as described in the text.

2. The construction of phylogenetic trees requires high-quality
multiple alignments. In case of distantly related proteins,
computer-generated alignments need to be inspected man-
ually. Alignments lacking a relatively conserved region (i.e.,
regions with a small number of mismatches and gaps) were
refined as follows. The most distant sequences were removed
until the conserved region appeared. Also, constructing a
maximum likelihood tree of 300 proteins is a highly CPU-
intensive task. If the purpose is to obtain a guide for iterative
alignment of gene upstream regions, as here, the time may
be decreased by temporarily removing very similar proteins.
Subtrees for individual groups may then be constructed with
complete data.

3. The “phylogenetic footprinting” approach (23) is used
when candidate sites are expected to occur upstream of
orthologous genes. This procedure is based on the assump-
tion that the binding sites are more conserved than the
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surrounding upstream regions. To achieve the sharpest con-
trast between the putative sites and the rest of the region,
one needs to find the best set of sequences to be aligned.
This is done heuristically by gradually adding more and more
distant sequences until the alignment disintegrates. The
alignment constructed at the last step before that is the one,
where the conserved islands likely correspond to the binding
sites. It is useful to constrain the alignment by retaining in
the sequences to be aligned some part of the protein-coding
region, which normally is sufficiently strongly conserved to
be uniformly alignable at the nucleotide level.
Since for the RM-systems, due to frequent horizontal trans-
fer, orthology relationships are challenging to establish, the
evolutionary distance between the C-proteins (the regula-
tors encoded by the regulated genes at the same time) was
used as a guide for the progressive alignment of the upstream
regions. The phylogenetic tree of C-proteins sets the order
in which the upstream regions are considered. However,
when the alignment starts to deteriorate, one should try to
add several different sequences, since the exact topology of
the tree is not very reliable.

4. Given the short extent of the binding sites (here, at most
35 bp), HMM profiles needs to be calibrated by the
hmmcalibrate procedure. This allows one to increase pre-
cision of the e-value estimation when the e-value falls within
the range of [1e-05, 1].
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Chapter 18

Evolution of cis-Regulatory Sequences in Drosophila

Xin He and Saurabh Sinha

Abstract

Cross-species comparison is an emerging paradigm for identifying cis-regulatory sequences and under-
standing their function and evolution. In this chapter, we review probabilistic models of evolution of
transcription factor binding sites, which provide the theoretical basis for a number of new bioinformatics
tools for comparative sequence analysis. We illustrate how important functional and evolutionary insights
on binding site gain and loss can be acquired through sequence comparison. This includes the obser-
vation that binding site turnover follows a molecular clock and that its rate correlates with the strength
of binding sites and the presence of other sites in the neighborhood. We also comment on emerging
trends that go beyond individual binding sites to a more holistic study of regulatory evolution. We point
out common technical challenges, such as reliable sequence alignment and binding site prediction, when
doing comparative regulatory sequence analysis and note some potential solutions thereof.

Key words: cis-regulatory modules, regulatory evolution, transcription factor binding sites,
probabilistic models, binding site turnover.

1. Introduction

The spatial–temporal expression patterns of genes are controlled
by regulatory sequences often in the neighborhood of genes,
through binding of transcription factors (TFs) to their binding
sites (TFBSs) within these sequences. TFBSs tend to be clustered
in ∼1 kbp length sequences, forming “cis-regulatory modules”
(CRMs) (1). Unlike coding sequences, CRM sequences are not
surrounded by identifiable canonical elements, nor are their com-
positional rules as well understood, thus predicting their positions
in genomes remains a difficult problem (2, 3). Despite intense
efforts, we lack a good understanding of the organizational
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principles of CRMs, e.g., how the arrangement of binding sites
within a CRM affects their function. Cross-species comparisons
provide a major opportunity to address these challenges: (i) CRM
sequences tend to possess certain evolutionary signatures, which
could be exploited to identify yet unknown CRMs (4), and (ii) the
evolution of CRM sequences is constrained by functional require-
ments, so the study of CRM evolution should allow us to infer the
underlying sequence–function relationships (5, 6). Finally, it has
been argued that the change of regulatory sequences is a major
source of evolutionary novelty in animal development, therefore,
the study of CRM evolution will help to shed light on the path
“from DNA to diversity” (7). The goal of this chapter is to intro-
duce ideas and models pertaining to cis-regulatory evolution and
illustrate how they can be leveraged to extract information from
sequence comparison. We will focus on two aspects: probabilis-
tic modeling of binding site evolution and the empirical study of
binding site gain and loss during evolution.

Traditionally, TFBSs are identified by matching sequences
with the binding specificities of TFs, represented as simple prob-
abilistic objects called position weight matrices (PWMs) (8). For
a TF with binding sites of length w, the PWM is defined as an
ordered set of w multinomial distributions, each distribution rep-
resenting the nucleotide frequencies of the corresponding posi-
tion in the binding sites. A PWM is often visualized as a sequence
logo, following the convention in (9) (Fig. 18.1). Since PWMs
are generally short (usually less than 20 bp) and degenerate (one
position of PWM may be occupied by diverse nucleotides with dif-
ferent probabilities), simply matching a sequence segment with a
PWM tends to produce many false positives in large genomes (3).
Furthermore, scoring by PWM implicitly makes the assumption
that each position in a binding site is independent, thus ignoring

Fig. 18.1. The position weight matrices (PWMs) for the binding sites of Bicoid (Bcd) and Kruppel (Kr), two transcription
factors involved in the segmentation of D. melanogaster. At each position, the height of each nucleotide is proportional
to the frequency of this nucleotide at that position, and the total height of four nucleotides is equal to the information
content.
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the cases where different positions may be correlated (10). A key
idea to improve the accuracy of prediction is to note that bind-
ing sites tend to be more evolutionarily constrained than neutral
sequences, thus conservation across species enhances the signal
for functional sites. Several methods have been developed to iden-
tify TFBSs based on their conservation, e.g., only sequences that
match a PWM in two species will be reported as candidate sites
(11–13). The formal way to utilize cross-species information is
through a probabilistic model of evolution of TFBSs, which we
explain below in detail. Because of the inherent randomness of
evolutionary processes, a statistical framework based on such a
model is essential for proper assessment of the statistical signifi-
cance of binding site conservation or change.

Several studies have demonstrated that a functional binding
site is not necessarily preserved throughout evolution; instead, a
more complex and dynamic picture has emerged from these stud-
ies. Emberly et al. (14) found that binding sites are not substan-
tially more conserved than their adjacent sequences in Drosophila.
Gain and loss of TFBS were found to be common in promoters
or known CRM sequences (14–16) and in regions experimentally
found to be occupied by TFs in vivo (17, 18). However, what
leads to this frequent loss and gain is far from being resolved. For
example, are the binding sites with higher affinities more likely
to be conserved in evolution? How does the local context of a
site, i.e., the presence of other sites in the neighborhood, affect
its likelihood of being lost during evolution? Understanding the
causes of binding site turnover will be crucial to our understand-
ing of the function and evolution of cis-regulatory sequences and
to our efforts of building realistic quantitative models.

2. Methods

2.1. Evolutionary
Models of
Transcription Factor
Binding Sites

A probabilistic model of sequence evolution estimates the prob-
ability of one sequence evolving to another during a specified
time span. Comparisons of protein or DNA sequences across
species have generally relied on such models. Nucleotide substitu-
tion models have been the cornerstone of many successful meth-
ods for reconstructing phylogenetic trees (19) and related tasks
such as sequence alignment (20). The same class of models has
found uses in regulatory sequence evolution as well. For exam-
ple, a type of substitution model, commonly referred to as F81
model (21), was incorporated into several popular tools of bind-
ing site prediction (22, 23). The nucleotide substitution model
uses a Markov chain of four states to represent the evolutionary
transitions among four nucleotides at any position in a sequence.
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The F81 model is parameterized by an equilibrium distribution π
and a rate parameter α (19, 24). The “rate matrix” of the model
is given by

Q =

⎡

⎢⎢⎢⎢⎣

−(πC + πG + πT )α πCα πGα πTα

πAα −(πA + πG + πT )α πGα πTα

πAα πCα −(πA + πC + πT )α πTα

πAα πCα πGα −(πA + πC + πG)α

⎤

⎥⎥⎥⎥⎦

[1]

where πA, πG , πC , πT specify the equilibrium distribution of
nucleotides. The transition probability matrix of the Markov chain
is P(t) = {

Pij (t)
} = eQ (t), where Pij(t) is the probability that the

descendent nucleotide is j after time t conditioned on the ances-
tral nucleotide i. To adopt the nucleotide substitution models to
binding sites of a TF, one simply sets the equilibrium distribution
at any position to be the distribution of that position in the PWM
of the TF, while α is set to the neutral mutation rate inferred from
other studies. In other words, the nucleotide at each position in
a TFBS is assumed to evolve independently, with evolutionary
dynamics dictated by the F81 model parameterized by the corre-
sponding position of the PWM.

Halpern and Bruno (25) developed a model that also consid-
ers the evolution of binding sites as independent substitutions of
nucleotides, but explicitly treats mutation and natural selection.
Letting μ(a, b) denote the mutation rate of nucleotide a to b in
the absence of selection (26), and N denote the population size,
the substitution rate u(a, b) can be written as the product of the
total mutation rate in the population, 2 Nμ(a, b), and the prob-
ability of fixation of the a to b mutation. According to population
genetics theory (27), this rate is equal to

u(a, b) = 2 Nμ(a, b)
1 − exp[−2(F (b) − F (a))]

1 − exp[−4 N (F (b) − F (a))]
[2]

where F(·) is the relative “fitness” of a nucleotide. The key idea
in the Halpern–Bruno (HB) model is to relate the fitness of a
nucleotide to the equilibrium distribution: the greater the fitness,
the larger the probability in the equilibrium distribution. By for-
malizing this intuition, Halpern and Bruno were able to derive
the following equation for functional sequences:

u(a, b) = μ(a, b)
log

π(b)μ(b, a)
π(a)μ(a, b)

1 − π(a)μ(a, b)
π(b)μ(b, a)

[3]
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where π(·) is the equilibrium distribution of the functional
nucleotide, which in the case of TFBSs is the nucleotide distri-
bution of the corresponding position in the PWM (28).

A key assumption of the above models is that each position of
a binding site evolves independently. Clearly, this may not always
be true. The same mutation can have a very different effect on
the functionality of a site depending on how strong the site was
to begin with. A site that is close to optimal will probably remain
a site even if an important nucleotide is mutated, thus this substi-
tution is likely to be fixed in the population. On the other hand,
the same nucleotide mutation inside a weak site may have a larger
functional consequence (the site loses its binding functionality),
thus will be less likely to be fixed. This intuition is captured in a
model called the “Site-level Selection” or “SS” model that treats
binding sites as single evolutionary units (29). The model assumes
that the fitness of a binding site may take two values: 1 if the bind-
ing affinity of this site is below some threshold (non-functional)
and 1 + s if the affinity is above this threshold (functional), for s >
0. (This approach to modeling genotypic variations with differing
fitness consequences is standard practice in population genetics,
for example (30).) By applying equation [2] where a and b now
refer to sites, we have the substitution rate u(a, b) = μ(a, b), the
neutral mutation rate, if both a and b are functional sites or both
are non-functional sites. When a is non-functional and b is func-
tional, we have

u(a, b) = μ(a, b)
4Ns

1 − e−4Ns [4]

For the opposite situation, we have

u(a, b) = μ(a, b)
4Ns

e4Ns − 1
[5]

Note that N and s are inseparable in the above equations,
so we will use the single quantity 4Ns to represent the intensity
of selection. There are additional models of differing complexi-
ties that treat binding sites as evolutionary units, based on similar
ideas. Interested readers should refer to (31–34).

The last two models of TFBS evolution differ in one key
assumption: the HB model assumes that each position of a TFBS
evolves independently, while the SS model assumes that the entire
TFBS evolves as one unit. Is there a way to determine which of
these two models (or assumptions) is more realistic? One way to
answer this question is to simulate the evolution of TFBSs fol-
lowing each model and ascertain which model gives better agree-
ment with real multi-species data. This test was performed in
(29) as described next. First, a set of CRMs involved in blas-
toderm development of D. melanogaster was obtained. Next,
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predicted binding sites were collected for seven TFs – Bicoid,
Caudal, Dstat, Hunchback, Knirps, Kruppel, and Tailless – in
these CRMs in D. melanogaster, along with their respective
aligned sequences (whether designated binding sites or not) in
a closely related species (Drosophila yakuba). Let us (arbitrarily)
call the sites in the former species as “ancestral” and the latter as
“descendant.” Assigning an “energy score” to each site based on
its similarity to the PWM of the corresponding TF (35), the dif-
ference in energy scores was calculated between the ancestral and
descendant sites and used as the statistic to represent binding site
evolution. For each TF, the histogram of this “energy difference”
statistic was computed. This formed the real data used in the test.
Another data set was constructed by simulating TFBS evolution
(by each model separately) for an amount of time equaling the
divergence time of the two species and noting the difference in
strengths between each pair of ancestral and evolved sites. (The
evolutionary simulation procedure is described below.) Simulated
data from the SS model was seen to provide a significantly better
fit to the real data than the HB model, regardless of the TF whose
sites were used in the test (Fig. 18.2). This result thus provides
support to the notion that there are significant epistatic interac-
tions among different positions in a TFBS and a proper model
should view binding sites instead of individual positions as units
of evolution.

Simulation of TFBS evolution. The simulation procedure con-
sists of the following steps: (i) compute the rate of each substi-

Fig. 18.2. Distributions of evolutionary changes in observed binding sites (Observed)
and those simulated by the Halpern–Bruno (HB) and Site-level Selection (SS) models for
the transcription factor Bcd in D. melanogaster and D. yakuba species pair. The x- and
y-axes represent energy difference and frequency, respectively. SSE denotes the sum of
squared errors between the observed and the simulation-based distributions and “4Ns”
denotes the optimal value of this free parameter of the SS model. Reproduced from the
authors’ publication in PLoS Genetics (29).
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tution event at each position according to equation [3] for HB
model or equations [4] and [5] for SS model; (ii) choose a sub-
stitution event with probability proportional to the rate of the
event; (iii) update the TFBS according to this event and incre-
ment the “clock” by an exponential random variable with mean
equal to the inverse of the total rates of all events. The procedure
is run until the “clock” reads a pre-specified time (the divergence
between the species studied). This procedure simulates the evolu-
tion of a single TFBS, and repeating the procedure several times
provides the data required.

2.2. Patterns
of Binding Site Gain
and Loss

The previous section presented models of TFBS evolution that try
to quantitatively describe the dynamics of TFBS evolution. They
do not attempt to explain the evolutionary forces underlying this
phenomenon. For instance, we do not yet know what causes the
gain and loss of TFBSs. They could be caused simply by chance
(a process called random drift (30)) or be the consequences of
changes in the forces of selection favoring gain of new sites or
loss of existing ones (adaptive selection) (36). One way to inves-
tigate this issue is to test if gains and losses of TFBSs during evo-
lution follow a “molecular clock” (29). According to the neutral
theory of evolution, when mutations follow the molecular clock,
this may suggest the absence of adaptive selection (26). To exam-
ine this hypothesis, let us calculate the fraction of binding sites in
D. melanogaster that have an orthologous site (above the thresh-
old) in a second species and plot this fraction as a function of evo-
lutionary divergence from the second species. For all transcription
factors, the fraction of conserved binding sites is seen to decrease
linearly (R2 > 0.90) as the divergence time increases, a clear sign
of a molecular clock (Fig. 18.3). Even though we cannot exclude
the presence of adaptive selection in individual cases, this result
seems to suggest that selection mainly acts to maintain the exist-
ing functional sites during evolution, coupled with the occasional
losses of binding sites due to random drift.

Next, let us look into the specific causes that influence the
evolutionary fate of binding sites, as reported in (29). To begin
with, we need a measure of TFBS turnover. For each set of orthol-
ogous TFBSs in 12 Drosophila species, let us construct a phy-
logenetic tree by labeling a leaf node as 1 if its corresponding
species has the site and 0 otherwise. A subtree rooted at the least
common ancestor of leaf nodes labeled 1 is then identified. The
turnover rate of this TFBS is defined as the parsimony cost cal-
culated for the subtree (i.e., the number of branches that carry
a change in label, either 0 to 1 or 1 to 0) divided by the sum
of branch lengths of the subtree (Fig. 18.4). The overall turnover
rate across multiple sets of orthologous TFBSs is defined similarly,
where summations of both parsimony costs and branch lengths
are over all orthologous TFBS sets. With formal definitions of
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Fig. 18.3. The fraction of D. melanogaster TFBSs that are conserved in a related species
(y-axis), as a function of the divergence time to that species (x-axis), for transcription
factors Cad. Reproduced from the authors’ publication in PLoS Genetics (29).

Fig. 18.4. Calculation of the TFBS turnover rate. Only three of the six species have a
binding site (rectangles at the leaves). The subtree rooted at the least common ancestor
of the binding sites is identified (in the dashed circle). There is one loss event in the
subtree and, thus, the turnover rate is 1 (the number of events) divided by the sum of t1
though t6 (branch lengths in the subtree). Reproduced from the authors’ publication in
PLoS Genetics (29).

TFBS turnover in hand, we are now ready to see if their observed
values correlate with measurements of other variables that repre-
sent potential causes of turnover.
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One factor that may affect the rate of loss of existing sites
is the strength of those sites, which may be related to their
functional importance. To test the correlation between binding
site strengths and their turnover rates, let us define the strength
of a site as the degree of match of this site to the correspond-
ing motif, as measured by a log-likelihood ratio (LLR) score (8).
Using turnover rates as defined above, significant negative corre-
lations are observed between TFBS strength and turnover, for six
of the seven TFs analyzed (Table 5 in (29)). A simple explanation
for this finding is that stronger sites are more likely to be impor-
tant to CRM function, thus under stronger constraint (37). An
alternative explanation is that the functionality of a site is deter-
mined by a strength threshold, and once a site drops below that
threshold, it is impervious to selective forces. Assuming this is
true, a weaker site is closer to the threshold than a stronger site
and may thus be lost more easily as supported by (34).

Binding sites often interact with the sites of other factors in
their neighborhood (38, 39). It is therefore natural to speculate
that evolutionary constraints on a TFBS would depend on the
presence of its interacting partner sites in close proximity. Since
we do not know, in general, the interacting pairs of sites a pri-
ori, we may ask if there is a correlation between TFBS turnover
and the presence of any other TFBS in close proximity. Follow-
ing a procedure similar to that of Hare et al. (40), let us clas-
sify a TFBS as belonging to the proximal, distal, or overlap class
depending on whether the closest site of another factor is within
10 bp, more than 10 bp away, or overlaps with this site. The
sites in the overlap or proximal categories are found to be more
conserved (present in all 12 species) than the sites in the distal
category (p = 4.39 × 10−5, hypergeometric test). The same test
is then repeated individually for each factor. Comparing the prox-
imal and distal classes (Table 7 in (29), column “P versus D”), we
find Dstat and Tailless sites are significantly more conserved when
they have a proximal partner site (p = 0.021 and 0.027, respec-
tively). In a similar comparison of the overlap class with its com-
plement (proximal or distal) (Table 7 in (29), column “O versus
NO”), Caudal, Hunchback, and Kruppel sites are found to be
more conserved when having an overlapping partner (p = 0.002,
0.017, and 0.039, respectively). In summary, five of the seven
TFs show a significant tendency to be conserved when they have
a partner either overlapping with or proximal to them. To under-
stand these results we note that different mechanisms of local
interactions between TFBSs are known in developmental CRMs,
e.g., cooperative binding between two factors (38, 41), short-
range quenching (39, 42), competitive binding to overlapping
sites (41). In all these cases, the loss of a single binding site may
disrupt the interactions and create a large change of gene expres-
sion. As a consequence, these locally interacting pairs of binding
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sites may be under stronger selection. A recent paper reported
similar results for four CRMs of the even-skipped gene (40).

Finally, we note that the validity of all evolutionary analyses
presented above relies on the accuracy of the underlying bioin-
formatics methods used in evolutionary comparisons, primarily
the alignment of orthologous sequences (Section 3.1) and the
prediction of TFBS (Section 3.2).

2.3. Evolution
of Entire
cis-Regulatory
Modules

We have seen above evidence that a realistic model of binding site
evolution should treat sites as whole units. The individual binding
sites, however, are only part of an intermediate level of organiza-
tion of genome sequences. The function of regulatory sequences
is to control the expression of their target genes, which requires
coordination of multiple binding sites. Therefore, it is more nat-
ural to consider entire cis-regulatory modules as the appropriate
functional units for evolution. Under this scenario, the evolution-
ary process of a CRM starts with a random mutation that may
create a new site, or change the affinity of an existing site, or
even destroy one. The fixation of this mutation in the population
will depend on its functional consequence, in other words, the
change of fitness of the new sequence. This mutation selection
cycle is repeated over many generations. The critical component
of such a model is the fitness function of a sequence, which may
be defined as, for example, whether the sequence matches cer-
tain pre-specified constraints (e.g., it must contain certain com-
binations of binding sites) or the similarity between the expres-
sion pattern directed by this sequence and the desired pattern.
This approach centered on entire functional sequences has led
to several simulation-based studies which reveal unique insights
of cis-evolution (43–45). We believe this line of work promises to
reveal more intimate connections between function and evolution
of regulatory sequences.

3. Notes

3.1. Alignment
of Regulatory
Sequences

Evolutionary comparison crucially depends on alignment of
orthologous sequences, but in general, alignments cannot be per-
fectly determined and may be a source of biased conclusion. It has
been shown that the alignment procedure may seriously affect the
results of comparative genomic analysis including reconstruction
of phylogenetic trees and detection of adaptive selection (46).
We illustrate this problem with an example of sequence align-
ment on one CRM sequence using the popular tool, LAGAN
(Fig. 18.5a). If one knows the relevant motifs of the regula-
tory sequences being studied, it may be possible to develop cus-
tomized tools to take advantage of their unique structural and
evolutionary properties. This is the aim of several recent studies.
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Fig. 18.5. D. melanogaster–D. pseudoobscura alignment of part of the CRM, “hb anterior activator.” Shown in the D.
melanogaster sequence (top) are the FlyReg sites of Bcd and Hb and shown in the D. pseudoobscura sequence are
the predicted sites in this region. a Lagan; b EMMA. Reproduced from the authors’ publication in PLoS Computational
Biology (51).

Among them, the programs CONREAL (47), EEL (48), and
SimAnn (49) align putative CRM sequences with scoring schemes
that favor the alignment of multiple sites matching the same TFBS
profiles. Developing on the same ideas, the more recent tools
Morph (50) and EMMA (51) use evolutionary models of bind-
ing sites and allow binding sites to occur in only one species,
but not the other (all these tools construct pairwise alignments).
Figure 18.5b demonstrates the benefits of using TF motif infor-
mation to improve alignment of regulatory sequences from
EMMA. In the study on which much of the results in this chap-
ter are based (29), a multiple alignment tool called ProbCons-
Morph was used that combines the strengths of Morph in pair-
wise alignment with those of a probabilistic multiple alignment
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framework called ProbCons (52). The best strategy for dealing
with alignment when analyzing regulatory sequences seems to be
using customized tools such as EEL and EMMA when the motifs
are known a priori and comparing a few different common align-
ment tools when the motifs are unknown so that the results are
robust to the specific tool used.

3.2. Prediction
of Transcription
Factor Binding Sites

Another important issue when doing regulatory sequence analysis
across species is the prediction of TFBSs. Since this step relies
on a PWM (TF binding specificity) that was characterized in one
species, we first need to examine whether the PWM is conserved
in different species. Researchers have found examples in yeast
where the change of TF binding specificities is an important part
of the evolutionary change of regulatory networks (53). In the
context of the results shown in this chapter, there is prior com-
putational evidence that the binding specificities of the TFs stud-
ied have not changed significantly between D. melanogaster and
Drosophila pseudoobscura (54). The next issue to consider is the
potentially high false-positive rate associated with prediction of
binding sites using PWMs. We suggest several ideas to address this
problem, while noting that the problem is difficult as at molec-
ular level, the interactions between TFs and their binding sites
are stochastic and quantitative, and it may not be appropriate
to have a binary classification of sequences. (1) If possible, one
should limit the PWM search regions to sequences that are likely
to be functional. In (29), the sequences that were scanned for
TFBSs had been experimentally determined previously to be reg-
ulatory sequences. The increasingly common data from genome-
wide ChIP-chip or ChIP-seq experiments also provide excellent
constraints for putative functional sequences (55, 56). A PWM
match in sequences with such experimental validation is much
more like to be a true functional binding site. (2) If applicable,
one should use inter-species conservation to boost the signals
for functional binding sites. Tools such as rVista (11), MONKEY
(57), and EMMA (51) serve this purpose. If the goal is to study
evolution of sites, in particular, their gain and loss, one reasonable
strategy is to predict binding sites from a subset of species and
analyze the evolution in other species not used for site prediction.
This is meant to avoid “ascertainment bias,” because most TFBS
prediction tools already assume the binding sites tend to be con-
served. (3) If none of these ideas is applicable, one will need to
estimate the false-positive (FP) rates and make certain corrections
in reaching conclusions. To estimate the FP rates, for example,
one can treat all putative sites as a mixture of functional and neu-
tral sites. If the relevant parameters of functional and neutral sites
(e.g., substitution rates, the probability of being conserved across
species, or the density of sites) are known, then the ratio of neutral
sites can be inferred from the overall patterns (18, 29).
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Chapter 19

Regulating the Regulators: Modulators of Transcription
Factor Activity

Logan Everett, Matthew Hansen, and Sridhar Hannenhalli

Abstract

Gene transcription is largely regulated by DNA-binding transcription factors (TFs). However, the TF
activity itself is modulated via, among other things, post-translational modifications (PTMs) by specific
modification enzymes in response to cellular stimuli. TF-PTMs thus serve as “molecular switchboards”
that map upstream signaling events to the downstream transcriptional events. An important long-term
goal is to obtain a genome-wide map of “regulatory triplets” consisting of a TF, target gene, and a
modulator gene that specifically modulates the regulation of the target gene by the TF. A variety of
genome-wide data sets can be exploited by computational methods to obtain a rough map of regulatory
triplets, which can guide directed experiments. However, a prerequisite to developing such computa-
tional tools is a systematic catalog of known instances of regulatory triplets. We first describe PTM-
Switchboard, a recent database that stores triplets of genes such that the ability of one gene (the TF)
to regulate a target gene is dependent on one or more PTMs catalyzed by a third gene, the modifying
enzyme. We also review current computational approaches to infer regulatory triplets from genome-wide
data sets and conclude with a discussion of potential future research. PTM-Switchboard is accessible at
http://cagr.pcbi.upenn.edu/PTMswitchboard/

Key words: Transcription factor, post-translational modification, modifying enzyme, regulatory
network, computational biology.

1. Introduction

Gene transcription is regulated, in large part, by transcription
factor (TF) proteins that bind to genomic cis-regulatory ele-
ments in a sequence-specific fashion. The activities of the TFs
are often modulated by other proteins. One class of modula-
tors consists of modifying enzymes that, through direct physical
interaction with the TF, chemically modify specific residues of the
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TF protein, thereby altering its nuclear transport, protein degra-
dation, DNA-binding, or co-factor interactions (1). Hundreds
of distinct types of post-translational modification (PTM), such
as phosphorylation, acetylation, methylation, glycosylation, have
been reported (2, 3), at least a dozen of which are known to regu-
late TF activities, as reviewed in (1, 4–10). TF-PTMs therefore act
as “molecular switchboards” that map inputs from cell signaling
pathways to gene transcripts (5, 6). On one extreme, such regula-
tion can be simple and binary – i.e., PTMs that serve as “on/off”
switches for TF activity. More often, however, this regulation is
highly complex (11), with multiple signaling inputs integrated
into tightly regulated transcript levels, and each PTM affecting
each target gene in a manner dependent on the larger promoter
context (12).

The characterized instances of TF-PTMs are biased largely
toward well-studied TFs, e.g., the cAMP-response element bind-
ing protein (CREB) (13), and PTM types, e.g., phosphoryla-
tion (8). For example, Ser133 phosphorylation on mammalian
CREB is a heavily studied regulatory TF-PTM (Fig. 19.1).
This modification has long been characterized as a key event
in protein kinase A (PKA) signaling that results in the activa-
tion of target genes. The primary serine phosphorylation allows
CREB to interact with its co-activator, CBP, thereby recruiting
the core transcriptional machinery (5). Initially, this appeared to
be a simple “on/off” switch, but further experimentation has
revealed that other kinases also activate different downstream

Fig. 19.1. The regulatory mechanism of cAMP-response element binding protein
(CREB). CREB is a well-studied TF that exemplifies the complexity of TF-PTM regulatory
circuits. Canonical CREB regulation begins with phosphorylation (diamond) of Ser133
by protein kinase A (PKA), which facilitates interaction with CREB binding protein (CBP)
to recruit RNA polymerase II (RNAPII) and promote transcription of target genes. Other
kinases can also regulate CREB through Ser133 and other phosphorylations, CBP can
further regulate CREB activity through multiple acetylations (circles), and glycosylation
(triangle) can disrupt the activating effect of the Ser133 phosphorylation.
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transcriptional programs through this same TF-PTM. Other
PTMs that alter CREB activity have also been discovered, includ-
ing additional phosphorylations, acetylations, and interestingly,
an O-linked N-acetyl glycosylation that antagonizes the primary
activating phosphorylation. These modifications are reviewed in
further detail in (5). CREB exemplifies the potential complex-
ity of TF-PTM regulatory programs beyond simple “on/off”
switches, and the emerging appreciation for modifications other
than phosphorylation.

Few TFs have been studied as extensively as CREB. Many
TF-PTMs remain to be discovered and/or linked to specific mod-
ifying enzymes and downstream transcriptional programs. A com-
plete mechanistic understanding of transcriptional regulation crit-
ically requires a map of the connectivity between TF-modifying
enzymes, TFs, and target genes. The potential combinations of
modifying enzymes, TFs, and target genes, even in relatively sim-
ple organisms such as Saccharomyces cerevisiae, are overwhelming.
Experimental identification of these regulatory relationships on a
genome-wide scale is currently not feasible. Fortunately, a variety
of high-throughput data sources can be exploited via computa-
tional methods to predict the most likely regulatory relationships,
which can then be used to prioritize experiments. Moreover, a
comprehensive view of the TF-PTM landscape would provide
clues to broader biological questions, such as the process-specific
roles of individual types of PTMs, and the common functional
and evolutionary principles underlying TF-PTM circuits.

In this chapter we focus on the problem of mapping what
we term “regulatory triplets” where the regulation of a target
gene by a TF is dependent on a third modulator gene. A special
case of regulatory triplet is what we term a “modifier-factor-gene
(MFG) triplet” (14), where the regulatory relationship between
F and G is modulated by a modifying enzyme M via direct PTM
of F. We first describe a publicly available database designed to
catalog experimentally determined MFG triplets, which can serve
as a reference set for validating new computational methods. We
then review existing computational methods designed to detect
regulatory triplets. We conclude with future ideas for integrative
model-based approaches to detect MFG triplets.

2. Methods

2.1.
PTM-Switchboard:
A Database of MFG
Triplets

While the current knowledge of TF-PTMs is limited to a subset of
TFs and modifying enzymes, it is nevertheless highly valuable for
the development of computational models. Thus, there is a need
for a catalog of experimentally derived regulatory triplets, not
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Fig. 19.2. MFG triplet example. A factor (F) is unable to bind the promoter of target gene
(G) in its unmodified state. Modification is catalyzed by the enzyme (M), which transitions
F to a new state (marked with a star) at which point it is able to bind the promoter and
regulate G.

only to allow researchers to quickly assess what is already known
about a given triplet but also to benchmark the performance of
computational methods. Such a database system would further
provide a framework in which to organize future computational
predictions and experimental validations. Everett et al. (14) have
developed PTM-Switchboard, a database that stores the regulatory
relationships as triplets that include modulators of the TF-gene
relationships. In this critical aspect PTM-Switchboard differs from
previous molecular pathway databases (15–17), which support
only pair-wise relationship between genes. PTM-Switchboard is
specifically focused on MFG triplets, in which the modulator
is a direct modifying enzyme of the TF (Fig. 19.2), and cur-
rently contains over 500 experimentally characterized triplets in
the model organism S. cerevisiae – a sufficient set to train and
benchmark computational methods.

The MFG triplet representation is designed specifically to
support target-specific effects of a TF-PTM (see Note 1), and
PTM-Switchboard includes a summary of additional experimen-
tal evidence gleaned from the literature. For instance, when the
specific residues in the TF protein targeted by the modifier have
been mapped, these are included in the database. The effect (acti-
vation or repression) of regulatory relationships is also provided.
In some especially complex cases, such as Sko1, the TF can act as
both an activator and a repressor, depending on the activity of the
modifying enzyme, i.e., Hog1 (18). PTM-Switchboard provides
several fields to describe the behavior in all cases (see Note 2).

As an exploratory tool for molecular biologists, PTM-
Switchboard provides a considerable amount of supporting data
for the curated instances of the MFG triplets, including links to
external annotation resources (16, 19). All genes are recorded
using both their gene symbol and ORF ID according to the Sac-
charomyces Genome Database (SGD) (20), thus directly linking
each gene to its SGD annotation page. All information contained
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in PTM-Switchboard is annotated with links to the relevant liter-
ature or other knowledge bases from which it was derived.

PTM-Switchboard is also intended to seed a larger com-
munity effort to build a more comprehensive database of MFG
triplets, as they are extremely laborious to search and curate from
the literature. Text-mining approaches (21, 22) are currently lim-
ited to identifying pair-wise interactions from individual articles.
MFG triplets are rarely studied together as part of a single paper,
and therefore require the integration of knowledge from multiple
literature sources (see Note 3). Furthermore, while genetic exper-
iments alone can detect regulatory relationships, they cannot dis-
tinguish MFG triplets from other types of regulatory triplets. For
example, a modifying enzyme that modulates a TF in a genetic
experiment may be further upstream from the TF in a signaling
pathway. Many kinases are also known to operate as co-factors,
i.e., they bind TFs at promoters to help recruit, activate, or block
the core transcriptional machinery (23–25). Thus, it is also essen-
tial to combine literature featuring both genetic and biochemical
methods.

To date, Everett et al. have manually curated 519 experi-
mentally validated MFG triplets (as opposed to more general
regulatory triplets) covering 14 modifying enzymes, 15 TFs,
and 212 target genes. The contents of the database can serve
as an ideal “reference set” for training and testing computa-
tional models of MFG or regulatory triplets. For example, this
database was used in part to validate and benchmark the Mimosa
algorithm (26), discussed later in this chapter. In the future, com-
putational predictions can be conveniently compiled in PTM-
Switchboard and made accessible to molecular biologists for
experimental validation. PTM-Switchboard is available on the
web at: http://cagr.pcbi.upenn.edu/PTMswitchboard/

2.2. Computational
Methods for
Predicting
Modulators of
Transcription

The prediction of MFG triplets can be viewed as a special case
of the more general problem of predicting TF modulators, i.e.,
genes that directly or indirectly affect the ability of a TF to reg-
ulate its target genes. Other examples of TF modulators include
co-factors, chromatin modifying enzymes, and upstream signaling
molecules. An even more general problem is the study of condi-
tional TF regulation – inferring those conditions under which a
TF is active. Conditional regulation is relevant to modulator pre-
diction because the activity of modulator genes determines the
conditions under which TF-target regulation occurs. Therefore,
computational methods developed for these problems are rele-
vant, and in some cases already applied, to the study of TF-PTMs
and MFG triplets.

Most computational methods for studying TF activity pri-
marily use gene expression profiles generated in targeted exper-
iments, usually deposited in publicly available databases such as
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the Gene Expression Omnibus (GEO) (27). Many functionally
related genes, including members of a pathway, biological pro-
cess, or a protein complex, tend to have similar expression pat-
terns (28, 29). Indeed, co-expression has been used extensively
to infer functional relatedness (30–33). Various metrics have been
proposed to quantify the correlated expression, such as Pear-
son and Spearman correlations (29, 31), and mutual information
(MI) (32, 34–37). However, these measures are symmetric and
they neither provide the causality relationships nor do they dis-
criminate between direct and indirect relations. For instance, two
co-expressed genes may be co-regulated, or one may regulate the
other, either directly or indirectly. Despite this limitation, such
methods have been used to successfully infer direct regulatory
relationships. Other forms of data, such as TF binding site loca-
tions, can be used to strengthen the inference that a particular
relationship is direct and regulatory in nature (38).

An initial motivation for studying conditional TF regulation is
the observation that the activities of most TFs are likely restricted
to specific cell types and/or experimental conditions (39). Thus
the common practice of using large compendia of gene expression
data to estimate functional relatedness is likely to include irrele-
vant expression samples that add noise to the co-expression signal.
Furthermore, it has been observed that the conditional associa-
tion between TFs and their target genes can be used to infer the
modulator genes upon which these associations depend (40). The
methods discussed below are therefore useful both for improv-
ing the inference of TF-gene relationships and for detecting rel-
evant modulators of such relationships, including TF-modifying
enzymes.

Previous computational methods developed to study the
aforementioned problems fall broadly into two categories: single-
condition methods, which model TF behavior separately in
each experimental condition, and partition-based methods, which
model TF behavior collectively over many experimental condi-
tions. In one example of a single-condition method, McCord
et al. (41) identified differentially expressed genes in specific
experimental conditions, then searched the upstream promoter
regions of those genes for enrichment of specific TF-binding
motifs, thereby inferring which TFs are active in each condition.
In an alternative approach, Boorsma et al. (42) used TF-binding
data to first establish “regulons” for each TF, and test these reg-
ulons for differential expression in each individual experimental
condition. These methods generally allow for the identification
of conditions in which a TF is active, but can also be used to
infer individual modulator genes in cases where the experimental
conditions correspond to specific perturbations of those modu-
lators. For instance, to infer the dependence of TF activity on
histone modification enzymes, Steinfeld et al. (43) analyzed the
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expression of TF regulons in yeast samples where specific his-
tone modification enzymes were knocked out. Cheng et al. (44)
applied a similar method in yeast strains with knockouts of par-
ticular kinases related to life span, thereby inferring likely MFG
triplets, although their approach does not guarantee direct inter-
actions between the identified kinases and the TFs.

In contrast, partition-based methods search for broader pat-
terns across many conditions. Such methods typically start by
splitting a set of conditions into two or more partitions based
on certain biological information. Once a partition structure
has been established, these methods either calculate the differ-
ential association of gene pairs across partitions or attempt to
fit each partition to a separate model of gene regulation. Hu
et al. (45) have proposed a non-parametric test to detect differen-
tially correlated gene pairs in two sets of expression samples from
different disease classes. In a different study, Hudson et al. (46)
analyzed two sets of expression data in cattle, a less-muscular wild-
type and another with mutant TF myostatin. They found that
the co-expression of myostatin with another gene, MYL2, was
significantly different between the mutant and the wild-type sets
of expression. This differential co-expression led them to detect
a change in myostatin activity even though the expression of
myostatin gene itself was not significantly different between the
mutant and the wild type.

Larger compendia of expression profiles can also be parti-
tioned based on the expression profile of a potential modulator
gene, and then used to infer modulation of regulatory pairs or
regulons that behave differently between the partitions. Zhang
et al. (47) have proposed a method in which each potential mod-
ulator is first analyzed for bimodality in its expression profile, and
this information is subsequently used to split the samples in the
expression compendium. Regulatory pairs are then tested for a
significant difference in correlation between the two partitions.
Wang et al. (40) proposed a similar approach called MINDY, in
which the expression compendium is partitioned into equal sizes
according to the highest and lowest expression values of a selected
modulator, and then regulatory pairs are tested for a significant
difference in mutual information. This method has been applied
to infer the kinases and other signaling molecules that directly
or indirectly modulate TF activity in B cells (48). Segal et al.
(49) proposed a related approach in which multiple partitions are
learned according to a decision tree combining TFs and signaling
molecules, and each partition is fit to a normal expression model
for a particular module of genes. This method was applied in yeast
to infer modules of genes regulated by a combination of TFs and
upstream signaling genes. A different approach, termed Liquid
Association, explicitly tries to detect gene triplets (X,Y, Z) where
the change in correlation between X and Y varies continuously
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with the changes in the value of Z (50). However, methods that
must exhaustively analyze many triplet combinations are generally
inefficient when applied at a genome-wide scale. For example, the
MINDY method is limited to a relatively small number of mod-
ulators and TFs of interest, rather than exhaustively searching all
possible triplets. In the next section, we discuss a specific method-
ology that has been adapted from the partitioning paradigm to
overcome this limitation.

2.3. Mimosa: A
Mixture Model of
Co-expression Data
for Detecting TF
Modulators

A major drawback of the partition-based methods reviewed above
is that they require a priori partitioning of the expression data,
based on a pre-selected modulator or condition. This typically
limits the application of these methods to a particular list of
known modulators and results in considerable combinatorial
complexity when testing many regulatory triplets. It is not clear
how to detect differentially co-expressed gene pairs with these
methods when the appropriate partition of the expression samples
is not provided and cannot be derived from the description of the
experiments. This problem is an important practical challenge for
large expression compendia that cover many diverse experimen-
tal conditions and for organisms with poor gene annotations or a
large number of potential modulators.

The Mimosa algorithm (26) is a novel approach to mine
expression data and detect potential modulators of regulatory
interactions. In contrast to other methods that begin by selecting
a modulator of interest, Mimosa begins with a known or pre-
dicted TF-target regulatory interaction, finds an appropriate par-
tition structure in the co-expression data, and then infers a list
of potential modulator genes, which are differentially expressed
between these partitions (Fig. 19.3). A more detailed explana-
tion of the Mimosa algorithm and preliminary results are provided
below.

For a pair of genes with expression data across a set of con-
ditions/samples, Mimosa assumes that the pair has correlated
expression only in a subset of conditions and uncorrelated expres-
sion in all other conditions. Mimosa infers the hidden partition
of the expression samples (the correlated and uncorrelated sub-
sets) by fitting a mixture model to the pair of overall expression
profiles using a maximum likelihood estimation (MLE) approach
(see Note 4). At the end of this step, each sample is assigned a
probability of originating from the correlated partition, which is
more informative than an absolute partitioning of the data. The
putative modulator genes, including TF-modifying enzymes, are
inferred as those whose expression is significantly correlated with
the vector of sample probabilities.

Mimosa has been validated on a number of expression data
sets. The algorithm identifies with high accuracy the parti-
tion between wild type and mutant in a bovine data set from
(46) using many of the known regulatory pairs. Specifically,
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Fig. 19.3. The intuition behind Mimosa. Consider a TF gene X and a potential target
gene Y. The expression values of X and Y for all expression samples are shown as a
heat plot and as a scatter plot. We presume that X and Y expressions are correlated
only in an unknown subset of samples (depicted by “+”) and not in the remaining sam-
ples (denoted by “–”). Mimosa computes the maximum likelihood partition of samples.
Then given the sample partition probabilities, a third gene Z with expression profile cor-
related to the partition structure may represent a potential modifier. More exactly, we
assign a partition probability to each sample as opposed to a binary partition (adapted
from ref. 26).

the detected sample probabilities were significantly correlated
(p ≤ 0.05) with the true sample partitions in 26% of the gene pairs
tested. From a yeast expression compendium, Mimosa identified
known MFG triplets from PTM-Switchboard (14) among the
top 5% of predicted regulatory triplets. Mimosa was also applied
to B-cell expression data (33) to predict modulators of the TF
STAT1, and identified several known STAT1 modifiers as well
as interesting candidates from pathways known to have essential
roles in B-cell regulation and cross-talk with JAK-STAT signal-
ing. It is always possible that a putative modulator predicted by
this method is further upstream of the TF (indirect), or is actu-
ally another downstream target of the actual modulator (parallel).
However, the list of putative modulators is still useful in that it
can be filtered or used to infer undetected modulators through
the analysis of other data types. Other relevant data sources and
possible methods for integrating these data sources directly into
the modeling procedure are discussed in the next section.

2.4. Looking Ahead:
Integrative Modeling
of MFG Triplets and
TF-PTMs

The number of methods for studying conditional regulation con-
tinues to grow, but the specific problem of detecting MFG triplets
remains to be addressed directly. MFG triplets differ from other
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regulatory triplets primarily in the physical interaction between
the modifying enzyme and the TF, which yields a covalent chem-
ical change in the TF protein. A wide range of additional data
involving the detection and modeling of enzyme–substrate inter-
actions and PTMs can be applied to the study of MFG triplets. In
this section, we focus on the issue of integrating additional data
sources into MFG triplet prediction.

The substrate specificity of protein-modifying enzymes is a
field of intense study, with a vast and rapidly growing set of com-
putational models available to predict the likelihood that a partic-
ular protein is modified by a particular enzyme in vivo. Below we
briefly highlight some of the most recent advances and remain-
ing challenges for PTM prediction. The most widely applicable
methods predict the likelihood of modification at a particular
residue based on the surrounding (proximal) protein sequence
(see Note 5). Computational models range from basic statistical
representations such as position-specific scoring matrices (51) to
advanced machine learning classifiers (52). The sequence-based
modeling of kinase specificity has been particularly successful due
to decades of experimental study and the fact that the catalytic
subunits have a large influence on the substrate profile (51). On
the other hand, the substrate specificity of phosphatases is, in large
part, determined by combinations of secondary adaptor proteins,
and therefore phosphatase specificity models are not yet as effec-
tive as those for kinases (53, 54). Experimental investigation of
other classes of modifying enzymes, such as acetyltransferases and
methyltransferases, have primarily focused on a small set of sub-
strates, e.g., histones (10), and the data are thus insufficient to
build enzyme-specific substrate models (55–57).

Tandem mass spectrometry (MS/MS) data are applicable to
PTM prediction in several important ways. Protein sequencing by
mass spectrometry inherently identifies modified residues (58),
and this information can be used to generate improved models
of enzyme specificity. PTM sites identified by MS/MS without
knowledge of the modifying enzymes responsible can also be used
to limit the application of pre-existing computational models,
thus lowering the false-positive rate compared to scanning entire
protein sequences. For example, Linding (59) used a combination
of sequence-based specificity models and protein–protein inter-
action networks to predict the most likely modifying enzymes
for thousands of phosphorylation sites identified in MS/MS
experiments.

Protein–protein interaction networks represent another class
of experimental data potentially useful for inferring MFG triplets.
These networks do not specify which residues in the protein
sequence are modified, but can still be useful for the inference
of MFG and other regulatory triplets because they provide evi-
dence for a direct interaction between the modulator and the TF.
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Common methods such as yeast-2-hybrid (Y2H) (60) can pro-
vide useful knowledge about regulatory triplets in general, but
should be used with caution in the case of MFG triplets because
they cannot distinguish enzyme–substrate interactions from non-
catalytic protein–protein interactions. A more informative tool for
detecting enzyme-substrate interactions is the protein microarray
(61). For instance, Ptacek et al. (62) used an array of thousands
of yeast proteins to identify the in vitro protein substrates of over
80 major yeast kinases. Lin et al. (63) used a similar method to
identify in vitro substrates for the yeast acetyltransferase NuA4.

Many of the most promising data sources discussed here are
in their infancy, and have not yet generated data at a scale compa-
rable to gene expression profiles (27). It is also a non-trivial task
to integrate such data properly with the current expression-based
methods for predicting regulatory triplets. One solution to the
problem of integrating heterogeneous data types is to use explicit
Bayesian models that describe the expected behavior of the differ-
ent experiments.

Chen et al. (38) proposed a regression model where target
gene expression is presumed to be a function of TF-gene regu-
latory interactions (with prior probabilities determined by ChIP-
chip and TF-binding motifs), synergistic TF–TF interactions, and
TF transcript expression. Estimating the parameters of this model
implicitly provides a probabilistic prediction of each TF’s target
genes as well as TF–TF interactions. This model can be naturally
extended to the problem of predicting modifier–TF interactions
by adding modifier–TF interaction terms akin to the TF–TF inter-
action terms. The additional data sources discussed above can be
used to estimate the priors for the modifier–TF interaction vari-
ables. While it is conceptually straightforward to develop more
complex and realistic models, estimating the model parameters
remains a major challenge due to insufficient data and computa-
tional limitations (see Note 6).

3. Conclusions

Given the importance of PTMs in determining the TF activity and
the eventual control of gene transcription, it is imperative that
models of transcriptional regulation incorporate PTMs and TF-
modifying enzymes. Current network reconstruction approaches
rely primarily on expression data (26, 40, 47, 49, 50) and
genetic manipulations (43, 44) to infer modulators based on
perturbations to the TF–gene interactions. These methods are
likely to predict indirect modulators, such as upstream signaling
molecules. To extend the existing view of TF–gene connectivity to
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modifier–TF–gene connectivity, a more principled and integrative
model will be needed, which directly incorporates the modifying
enzymes. As new types of protein-level data become available on
a scale comparable to that of transcript expression, there will be
a growing need for computational techniques that can combine
heterogeneous data in a practical and informed manner to develop
a comprehensive view of transcriptional regulation.

4. Notes

1. A particular TF-PTM may affect only specific target genes
rather than uniformly affecting all genes regulated by the
TF. Therefore, triplets contained in PTM-Switchboard may
share one or two members when a TF-PTM affects multiple
target genes. For example, the kinase Hog1 regulates the
overall transcriptional activity of Sko1 at a set of target gene
promoters, and therefore a separate triplet is included in the
database for each target.

2. In any MFG triplet, the modifier can either have a posi-
tive or negative effect on the activity of the TF, and like-
wise the TF can be an activator or repressor of each target
gene. PTM-Switchboard summarizes the overall activity of
the triplet by recording the influence of the TF on the tar-
get gene (positive, negative, or neutral) in each of two cases:
when the modifying enzyme is active and when the modify-
ing enzyme is inactive. For example, in Fig. 19.2, the rela-
tionship between F and G is neutral when M is inactive, and
positive when M is active.

3. The experimental evidence for a particular MFG triplet is
usually spread across multiple journal articles. For example,
the overall effects of a PTM on a TF’s cellular localization,
degradation, or DNA-binding activity may be studied in one
reference, while the gene targets of the TF are studied inde-
pendent of any PTMs in another reference. In some cases
MFG triplets can be inferred from these references together,
but only with careful consideration of the molecular mech-
anisms involved – a task clearly beyond current text-mining
methods. Therefore, manual curation remains the only reli-
able way to extract MFG triplets from the literature.

4. The mixture model used in Mimosa has two free parame-
ters. The mixing parameter is the overall proportion of sam-
ples in the expression compendium that fit the correlated
model and is denoted by f. The strength of the correla-
tion within that model is denoted as α. These parameters
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are estimated by maximizing the likelihood using a quasi
Newton-Raphson method. The most informative models
have f close to 0.5 (even partition sizes, indicative of a corre-
lation model that is truly condition dependent) and |α| close
to 1 (strong correlation in one partition). Therefore, only
TF-gene mixture models meeting these criteria are used to
search for potential modulators.

5. Some models of PTM prediction predict the likelihood of
modification by a specific enzyme, while others simply pre-
dict the likelihood of modification in general. This is an
important distinction in the context of MFG triplet pre-
diction. Enzyme-specific models are of primary interest,
because they can be used to strengthen an inferred connec-
tion between a TF and a particular modifier.

6. In general, models with increased numbers of parameters
require a larger set of input data in order to maintain the
statistical rigor of the estimates. Overly complex models can
also be ill-behaved in typical estimation techniques such
as Gibbs Sampling. Even so, based on preliminary stud-
ies, the model-based approach described in Section 2.4
holds promise and provides a rational framework in which
to integrate heterogeneous data from disparate experiments
[Everett and Hannenhalli, 2009, unpublished results].
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Chapter 20

Annotating the Regulatory Genome

Stephen B. Montgomery, Katayoon Kasaian, Steven J.M. Jones,
and Obi L. Griffith

Abstract

Determining the timing and molecular repertoire responsible for gene expression is fundamental to
understanding a gene’s function. Heritable differences in this character are increasingly regarded as
explanatory for complex and common traits. For many known trait-predisposing genes, studies have
sought to elucidate the associated logic behind gene regulation. However, there exist many challenges
in deciphering these mechanisms. Among them, it is recognized that we have limited understanding of
regulatory complexity, the current models of gene regulation have low specificity and any gene’s regula-
tory logic is dependent on biological context. Addressing these limitations and defining the regulatory
genome is an ongoing challenge for molecular biology. We discuss current efforts to define and annotate
the regulatory genome by focusing on curation and text-mining activities. We further highlight the type
of information and curation process for describing regulatory elements within the ORegAnno database
(www.oreganno.org) and how the general standards for such information are changing.

Key words: Annotation, curation, gene regulation, database, open regulatory annotation,
ORegAnno, transcription, transcription factor binding site.

1. Introduction

The timing and location of molecular interactions within an
individual are the defining features of its biology. Differences
in the character of these interactions during growth and devel-
opment, homeostasis and metabolism and in response to stim-
uli are the basis of phenotypic diversity. The heritability of this
character from parent to progeny is predominantly encoded
within each individual’s genome, and phenotypic differences have
been considered the product of sequence variation within genes.
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However, it has been increasingly recognized that sequence varia-
tion affecting the functional elements that coordinate the expres-
sion of genes is a major determinant in trait aetiology. Such reg-
ulatory changes are posited to be as explanatory as protein-level
changes for human and chimpanzee evolution since the time of
our most recent common ancestor (1, 2). They are regarded as
intrinsic to an organism’s developmental program as has been rel-
atively well characterized in the fruit fly, Drosophila melanogaster,
and sea urchin, Strongylocentrotus purpuratus (3, 4). They are also
robust in their ability to generate within species phenotypic diver-
sity (5). Furthermore, the role of gene regulation and regulatory
variation is crucial to our ability to predict and treat complex and
common disease as increasing numbers of genome-wide associa-
tion studies have implicated regulatory variants (6).

There are some major challenges in annotating the regulatory
fraction of any complex genome. Compared to genic sequences,
the rules defining regulatory sequences are degenerate and with-
out functional testing or other a priori knowledge are likely to be
specious. Estimates of the regulatory fraction have largely taken
advantage of cross-species genome comparisons where evolution-
ary constraint has implied functional importance; initial sequenc-
ing of the mouse genome indicated that as much as 2.5–3.5%
of the non-coding genome between human and mouse is con-
strained (7). Estimates using additional genomes have largely
remained the same (8). Recent functional characterization of 1%
of the human genome within the ENCODE project has sug-
gested that at least 60% of these constrained sequences (including
the coding fraction) have experimentally verifiable function (9).
However, functional analysis of the regulatory activity of deeply
constrained sequences has demonstrated limited success (10).
Furthermore, an important consequence of using cross-species
genome comparisons is that they are dependent on underlying
evolutionary dynamics and as such will be hindered in detecting
functional sites that are species-specific or tolerant of turnover
(11). Estimates of the human-specific regulatory fraction have
been harder to ascertain since many computational techniques
have been reliant on limited information regarding the location of
true regulatory elements and even scarcer information on the frac-
tion that is species specific. The role of the species-specific fraction
is likely not negligible as experimental characterization of uncon-
strained functional elements in ENCODE suggests that there is
a similar proportion of constrained to unconstrained regulatory
elements. Such studies further highlight that there is extensive
intrinsic regulatory character to the genome and a salient goal is
determining the regulatory code.

Currently, promoters and enhancers are thought to be the
primary functional elements of the regulatory genome. The role
of the promoter is to initiate transcription by positioning the
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core transcription machinery. Enhancers facilitate transcriptional
activity for one or many genes in response to stimuli or as part
of a developmental programme. Characterization of well-known
regulatory regions has demonstrated that there are typically
four to eight transcription factor binding sites per promoter or
enhancer (12). However, some promoters (e.g. haemoglobin
beta chain) can have as many as ∼50 binding sites. These sites are
the protein–DNA interfaces that enhance or suppress the rate of
gene transcription by recruiting individual transcription factors
and transcription factor complexes. Characteristically, they are
on the order of 5–30 bp, exhibit a range of sequence variability
and are co-located and interact with neighbouring transcription
factor binding sites. Adding further to regulatory complexity,
in humans, there are an estimated 1,900 transcription factors,
which evolved in families based on their protein–DNA binding
domains (13).

Although there is limited information describing the organi-
zation of regulatory regions and their associated transcription fac-
tors within humans, genome-wide association studies have high-
lighted the biomedical relevance of variation in gene expression.
Surveying genome-wide gene expression with respect to natural
variation within families and populations has demonstrated that
gene expression variation is heritable and widespread (14–22).
Targeted analysis of non-coding polymorphisms has identified
variants associated with conditions like cancer (23, 24), depres-
sion (25), systemic lupus erythematosus (26), perinatal HIV-1
transmission (27), and response to type 1 interferons (28). Sys-
tems biology-based approaches have used gene expression data
to implicate gene regulatory pathways involved in obesity (29).
While genetic prediction is possible by understanding the gen-
eral impact of genetic variation on gene expression, therapeutic
intervention will benefit from understanding the direct processes
involved in the perturbation of expression. In this respect, sys-
tematic approaches to annotating the regulatory genome are as
important as ongoing comprehensive gene and non-coding RNA
annotation.

Systematic approaches have been undertaken to annotate
and curate the regulatory genome. Databases such as Jaspar
and Transfac have been designed to annotate transcription factor
binding site recognition sequences and compute sequence speci-
ficity profiles (30, 31). Typically, these models are generated using
in vitro experiments like SELEX (see also Chapter 12) such that in
vivo transcription factor binding sites can be inferred (32). How-
ever, very low specificity and an incomplete knowledge of the cel-
lular repertoire of transcription factors have made robust deter-
mination of in vivo sites challenging. Efforts to determine the
set of transcription factors have taken several forms, from pro-
tein function prediction in the DBD database (33) to literature
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curation in the TFcat database (34). Several databases have been
designed to independently organize the sites of promoter activ-
ity (35–40), transcription factor binding (31, 41–43) and regula-
tory variation (44–46). Unfortunately, the information recorded
in many of these databases is disparate and has limited support-
ing information to be able to dissect the reliability and context of
the information. New databases like ORegAnno (47) and PAZAR
(48) have sought to improve the annotation of regulatory regions
by providing richer semantic definitions, tools for mining the lit-
erature and support for curator activities. Central to this is also
providing facilities to integrate large-scale gene regulation data
sets from genome-scale assays like Chip-Seq. In this review, we
will highlight activities central to mining the regulatory literature,
archival of annotation and improvement of annotation standards.
We also provide practical guides for regulatory annotation using
the ORegAnno system.

2. Methods
and Data

2.1. Strategies for
Mining Regulatory
Literature

A central challenge in curating regulatory elements from litera-
ture is determining a priori the scope of information available.
Recently, we were involved in an effort to ascertain the extent
of relevant information available (49). A training set of papers
was selected from Pubmed using the query ‘transcript AND reg-
ulation AND “binding site” AND (promoter OR enhancer)’.
These papers were used to create a vocabulary to score 16 million
Pubmed abstracts available at that time. From this, 200 ‘evenly
spaced’ papers (according to relevance score) were selected across
the top 100,000 abstracts and were evaluated by an expert as to
their ‘curatability’ (i.e. whether they would lead to a successful
transcription factor binding site annotation). The point at which
the positive predictive value of the text-mined corpus was equiva-
lent to that achieved through annotation of papers recommended
directly from experts (54.4%) was 58,000 abstracts. Therefore, at
the time of the study, ∼30,000 papers were deemed to have rel-
evant information that would lead to one or more annotations.
This is more than an order of magnitude greater than the cur-
rent size of the RegulonDB and ORegAnno corpuses. Also, while
many of these additional papers may yield redundant annotation,
many will also likewise contain multiple annotation or further
experimental support for regulatory activity in different condi-
tions or biological contexts.

Considering that the regulatory corpus is larger than exist-
ing databases and that human curation is costly, one solution
has been to determine whether a proportion of the regulatory
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genome can be confidently extracted from the literature using
text mining techniques. One such effort used a rule-based text
mining approach to extract regulatory networks from Saccha-
romyces cerevisiae and was able to achieve ∼30% coverage and
83% accuracy in the evaluation corpus (6,640 abstracts) where
the regulator and target protein and their direction of effect were
correct when identified (50). Another approach also used rule-
based text mining to mine regulatory interactions in Escherichia
coli and was able to recover 45% of the human-curated Regu-
lonDB network and identified 19% more regulatory interactions
that had been missed during initial human-curation (51). This
has highlighted that even human triage and curation of the reg-
ulatory literature is not perfect and that text-mining tools can
help to refine evaluation and curation. We have supplemented
ORegAnno with >54,000 abstracts that matched human triage
accuracy from our rule-based text-mining of Pubmed (47). Each
of these records has been added to our publication queue with
an associated text-mining relevancy score to allow annotators to
select papers on the presumptive relevance. However, as the util-
ity of text-mining approaches has been dependent on the breadth
of human-curated annotation, ORegAnno has attempted to dis-
tinguish which records were curated through text-mining triage
or which were curated through human triage of the literature as
well as the controlled reasons for why a recommended paper has
failed curation. Despite these efforts, the information that defines
success or failure for a potential annotation is dependent on the
constraints adopted by the curation system.

To harmonize the essential features of what defines a regu-
latory annotation and consequently what information should be
mined and what information can be safely ignored, several efforts
have been established to build and use ontologies that define
key features of gene regulation (47, 48, 52). The Gene Regula-
tion Ontology has been designed to cover semantic relationships
and elements (like promoters or transcription factors) related to
gene regulation. By defining the key features and their relation-
ships, text-mining activities can focus on and be evaluated by their
ability to populate a consistent semantic representation of the
data. Databases such as ORegAnno and PAZAR have begun to
use such ontologies and have integrated the eVOC and Brenda
ontologies respectively to describe cell type and tissues under
study (53, 54). ORegAnno has further defined its own gene reg-
ulation experiment ontology, which encompasses the major types
of protocols that validate gene regulatory elements. Such formal
computable definitions support text-mining extraction, but even
within these constraints the information that defines a successful
annotation is heterogeneous. The definition of success for individ-
ual databases, independent of ontology, could be anything from
confirming ‘X regulates Y’ to ‘X binds sequence W to positively
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regulate Y by N-fold induction in cell-type Z under conditions A,
B and C confirmed by experiments E and F.’ A pragmatic question
remains as how to proceed forward and capture the majority of
the desired information with the minimum amount of complexity.

2.2. Archiving
Regulatory
Annotation

Archival of known gene regulatory element information has been
provided through many databases (Table 20.1). The majority
of these databases are curated internally and provided in-house
experimental validation or links to literature. However, databases
like ORegAnno and PAZAR provide facilities to support commu-
nity annotation.

Community-based archival of regulatory element informa-
tion requires managing the state of activity such that curators are
not investing redundant effort discovering or curating the same
publications. To address this, we have developed a publication
queue that tracks user-recommended publications and their cura-
tion state. Publications can be added to the queue by a user sup-
plying one or many Pubmed identifiers. All papers that do not
exist in the queue already are added with the state of ‘Pending.’
‘Pending’ papers can be checked out by individual curators. When
a paper is checked out its state is set to ‘Open.’ While, the state
is ‘Open,’ the curator has ownership of curation activities in the
database for this publication. A limit of five publications can be
checked out by any curator. These are also the only papers that
the curator can provide annotation in the database for. Once asso-
ciated annotation has been added to the database, the publication
state can be set to ‘Closed’ where one of four different sub-states
is provided describing the success or failure conditions for the
publication. These sub-states are ‘success’ when the paper leads
to a successful regulatory annotation or one of three ‘failure’ sub-
states when the publication does not describe a regulatory ele-
ment, a publication describes a regulatory element but there is
not enough evidence to annotate it or the paper has been closed
with no information. Alternatively, a publication can be set back
to the state of ‘Pending’ if further work is required, allowing the
curator to come back to it later or another curator to check it
out. The advantages of this type of system are that researchers can
suggest papers for annotation; these papers can be maintained in
the system until a curator decides to annotate one; the process
of checking out a paper and curating it is controlled to prevent
wasted effort and the ultimate state of the curation is recorded
with a controlled state. The latter specifically provides a control
set for further text-mining validation activities. The current set
of ‘expert entry’ papers in the queue was obtained from existing
sources of curated publications including the Drosophila DNase I
Footprint Database (42), REDfly (55), a catalogue of regulatory
elements for muscle-specific regulation of transcription (56, 57),
ABS (58), TRED (59), ooTFD (60), DBTGR (61), or added
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Table 20.1
Experimentally determined gene regulatory element databases

Database Description

The Arabidopsis gene
regulatory information
server (86)

AGRIS consists of Arabidopsis promoters, transcription factor bind-
ing sites and regulatory network information

Argonaute (87) Literature curation of mammalian miRNA and their known or pre-
dicted targets

Database of tunicate gene
regulation (61)

Describes 12 transcription factors and 140 promoters from pub-
lished experimental work

EdgeDB (88) EdgeDB is a C. elegans differential gene expression database.
It includes information regarding protein–protein and protein–
DNA interactions, including expression patterns conferred by reg-
ulatory elements

FlyTF (79) FlyTF is a database of fruit fly transcription factors. It contains exper-
imentally verified transcription factor binding sites and position
weight matrices

JASPAR (30) An alternative to TRANSFAC, this database is open access. JAS-
PAR contains tightly controlled binding profiles with strict quality
restrictions. Furthermore, it provides a programming API for ease
of data access

The liver-specific gene
promoter database (LSPD)
(89)

LSPD contains liver-specific promoters and transcription factor
binding sites. It contains 178 specific genes listed with 368 regu-
latory elements

ORegAnno (47) ORegAnno is an open-access database of community curated regu-
latory regions, transcription factors and regulatory mutations

PAZAR (48) PAZAR is an open-access, community-annotated database of tran-
scription factor and regulatory sequence annotation

REDfly 2.0 (90) REDfly is a curated collection of known Drosophila transcriptional
cis-regulatory modules (CRMs). It contains 737 CRMs and 1,342
TFBSs for 83 transcription factors

RegulonDB (91) Describes transcriptional network information for Escherichia coli
K12. Release 6.4 contains 1,771 promoters, 1,584 transcription
factor binding sites and 169 transcription factors

TFcat (34) A curated catalogue of mouse and human transcription factors
TRANSFAC (92) Curated transcription factor binding sites and position weight

matrices

TRED (59) TRED is a mammalian regulatory element database. It contains
genome-wide predictions of core promoters for human, mouse
and rat. It also contains expert-curated transcription factor bind-
ing sites for cell-cycle factors either computationally or experimen-
tally determined

TRRD (41) TRRD contains information on structural and functional organiza-
tion of transcription regulatory regions of eukaryotic genes. It
contains over 10,000 transcription factor binding sites and 3,490
regulatory regions curated from 7,609 references
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manually by individual ORegAnno users from literature searches
and review articles. The expert entry queue currently contains
4,458 gene regulation papers of which 3,491 are open or pend-
ing and 967 are closed. An additional 54,351 papers were added
to the queue by text-mining Pubmed as described above and in
greater detail by Aerts et al. (49).

Users in the gene regulation community can check out papers
from the publication queue and begin manual curation. A typ-
ical record entry consists of species, sequence type, sequence
(plus sufficient flanking sequence for genome alignment), tar-
get gene, binding factor, experimental outcome and one or more
detailed lines of experimental evidence demonstrating function of
the sequence. Records are cross-referenced to Ensembl (62) or
Entrez Gene identifiers (63), Pubmed (63) and dbSNP (63) (for
regulatory polymorphisms). Before committing a record to the
database, ORegAnno performs a number of error checks (e.g.
that the sequence has not been entered previously, the exter-
nal database identifiers are valid and sufficient information has
been provided to uniquely map the record) and asks the user
to verify its contents before submission. Once submitted, the
record is added to the database and an email is generated con-
taining an XML representation of this record to members of the
ORegAnno developers’ mailing list (oreganno-guts@bcgsc.ca).
A BLAST-based mapping agent then assigns genome coordi-
nates to each sequence, allowing it to be viewed as a track in
the Ensembl or UCSC genome browsers. Once finished with a
paper, a user will then set the publication state to ‘Closed’ in the
queue and assign an annotation result. Existing records can be
commented by any registered user and scored (positive if verified
as correct; negative if a problem is identified), updated or replaced
by a ‘validator’ user. The complete database or any subset can be
searched or downloaded in a number of formats or accessed pro-
grammatically. A detailed walkthrough of the annotation process
is provided below (Section 2.4). In some cases a user will have
a large set of regulatory sequences, which are too numerous to
add to ORegAnno using the manual annotation pages. For exam-
ple, they may have hundreds or thousands of binding sites from
a high-throughput experiment such as Chip-Seq. In such cases,
users may upload their data using the ORegAnno XML template.
Typically sequences and their associated experimental details are
converted from a database or flat file to XML using a parsing lan-
guage such as Perl or Python. The resulting XML file can then
be uploaded using the web-based XML uploader for small data
sets (∼100 records) or a Perl DBI uploader for larger data sets.
The XML template as well as an explanation of all required and
optional elements are provided in Appendix 1. Users wishing to
submit data sets by XML should contact an ORegAnno adminis-
trator at oreganno@bcgsc.ca.
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At the time of writing, the ORegAnno database held 52,027
records. This total includes 37,489 regulatory regions, 14,360
TFBSs, and 178 regulatory variants (polymorphisms and haplo-
types) from 20 species (Fig. 20.1). Of these sequence records
50,543 have been mapped to one of 15 species, representing a
mapping success rate of 97.1%. A large fraction of these sites was
obtained from previous large-scale collections such as the FlyReg
resource (42), a large set of muscle/liver-specific regulatory sites
curated by Wasserman, Fickett and others (56, 57), rSNP_DB
(64), a large set of human promoters (65), the REDfly resource
(55), HBB and Erythroid modules (66, 67), the Vista Enhancer
data set (68), ChIP-chip sites for CTCF (69), Esr1 (mouse)
(70) and multiple yeast TFs (71, 72), ChIP-Seq sites for STAT1
(73), REST (74), ESR1 (75), RELA (76) and FOXA2 (77), the
NFIRegulomeDB database and a set of ancient phylogenetically
conserved non-coding elements (PCNEs) (78). However, exten-
sive manual curation of the literature has produced an additional
1,322 original sequence records. In total, 959 publications have
been curated by 46 contributing users (from >550 registered

Fig. 20.1. Summary of ORegAnno data contents.
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users). The complete set of records contains regulatory sequences
for 4,093 genes and 545 TFs. The majority of records (99.3%)
had positive experimental outcomes (i.e. the experiments demon-
strated the sequence to be functional), but a small set of negative
or neutral results have also been catalogued. Annotation activities
follow a power-law relationship with the vast majority of contri-
butions made by a minority of contributors. Over 90% of records
(70% if high-throughput data sets excluded) were contributed
by ∼10% of the user base (Fig. 20.2). Indeed, the most pro-
lific user contributed over 50% (20% if high-throughput data sets
excluded) of all records. Contributions also tend to be sporadic
with periods of intense activity followed by less active periods.

Fig. 20.2. ORegAnno record contributions by user.

The ORegAnno Database is freely available in a num-
ber of formats. Nightly XML data dumps and periodic flat
file dumps are posted on the web site (http://www.oreganno.
org/oregano/Dump.jsp). Human (hg18), fly (dm3) and yeast
(sacCer2) records are available through the UCSC genome
browser (http://genome.ucsc.edu/) as a standard track under
the ‘Regulation’ or ‘Expression and Regulation’ tab. Program-
matic interaction with ORegAnno is available through web ser-
vices using the Perl SOAP modules. Requests for the entire
database (e.g. a MySQL dump) or other formats can be
addressed to the authors. The ORegAnno web application is
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available open-source under the Lesser GNU Public License at
https://oreganno.dev.java.net/.

2.3. Improving
Annotation
Standards

Considerable efforts are being made to improve the standards for
regulatory annotation. Of the databases that exist, there are dis-
parate levels of supporting evidence regarding gene regulatory
activity. Much of this is due to the lack of comprehensive and con-
trolled sources of information regarding gene regulation. Perhaps
central to this is the ensemble of transcription factor complexes
involved in gene regulation and their biological contexts as these
are known to act in tissue- and stage-dependent fashion. Effort
has been undertaken to curate the ensemble of transcription fac-
tors native to each organism. Projects like TFcat and flyTF aim
to address this through expert curation and controlled ontology
regarding support for classification (34, 79). Other projects like
TFdb and DPTF aim to combine known and predicted informa-
tion (43, 80). Currently, only PAZAR integrates standardized TF
information with regulatory element annotation features.

We conducted a workshop called RegCreative, which aimed
to assess inter-annotator agreement in annotation for the ORe-
gAnno database. Through analysis of redundant annotation, we
identified a need for improved data standardization and develop-
ment of associated regulatory ontologies. Specifically, this should
include the open access development and integration of transcrip-
tion factor naming conventions and sequence, cell type, cell line,
tissue, and evidence ontologies. However, learning-based ontol-
ogy development was widely regarded as an essential feature of
the annotation process, such that annotators are not restricted
from annotating based on the limitations of the controlled vocab-
ulary and that these exceptions can be used to further develop
the backbone ontologies. Furthermore, the development of these
backbone ontologies should be decentralized from any one anno-
tation system to provide an implementation-free core standard. It
was also determined that current annotation systems were either
too generic or too species-specific with no intermediate solution
available.

A specific focus of the workshop was addressing the role of
text-mining in facilitating regulatory annotation and improving
annotation standards. It was recognized that beyond summariz-
ing the regulatory corpus many text-mining activities could help
facilitate discovery and then curation of regulatory information.
Specifically, incorporating data from text-mining based efforts
can help identify regulatory networks and transcription factor
relationships (81–83). Furthermore, it was recognized that
text-mining could improve inter-annotator agreement by extract-
ing relevant key words that may be missed due to annotator
error, such as tissue type, organism, sequence and experimental
protocol.
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2.4. ORegAnno
Annotation
Walkthrough

Regulatory element records in ORegAnno are collected from
users worldwide. Contributors can submit new records using the
annotation functionality of the ORegAnno web interface. This
section outlines the steps involved in annotating a publication and
adding a new record to the database. The paper used as an exam-
ple in this annotation walkthrough is from Schilling et al. (84).

2.4.1. Logging In To start the annotation, existing users are asked to log in to ORe-
gAnno using their usernames and passwords. New users will have
to register for new accounts.

2.4.2. Adding a Paper
to the ORegAnno
Publication Queue

The first step in annotating a scientific publication is to add it to
the publication queue. To do so, the user chooses the ‘queue’
option from the menu bar located on the right-hand side of
the home page (http://www.oreganno.org/) and then from the
Publication Queue page, the option ‘Add paper(s) to publication
queue (must be logged in)’ (Fig. 20.3). This will take the user to
a page to input the necessary information. The first required field
is the PubMED Reference ID of the publication; for Schilling
et al., it is 19615968. The second field specifies the criteria for the
selection of the paper, ‘Expert entry’ or ‘Predicted automatically
by text mining entry’. In this case, the publication was selected by
an ORegAnno user from a literature search and thus the option
‘Expert entry’ is chosen. Providing a transcription factor name
and comment is optional (Fig. 20.4).

Fig. 20.3. The publication queue page.

2.4.3. Opening the
Paper for Annotation

After adding the paper to the queue, the status of the paper in
the queue is set to ‘PENDING’. The next step is to search for
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Fig. 20.4. The web form for adding a publication to the queue.

the paper in the queue, using its PubMED ID for instance, and
choose to ‘OPEN/ANNOTATE’ the paper (Fig. 20.5). Only
the user who has opened the publication will then be allowed
to annotate it.

2.4.4. Specifying the
Type of the Annotation

Using the ‘OPEN/ANNOTATE’ option from the publication
queue automatically opens the publication for annotation, takes
the user to the annotation page and pre-fills the Pubmed ID. An
alternative is to use the ‘OPEN’ option or identify a paper in
the queue that the user has previously opened. To annotate such
a paper, go directly to the annotation page by choosing ‘anno-
tate’ from the user menu and then enter the correct Pubmed ID
manually. The first step in annotating a regulatory sequence is to
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Fig. 20.5. Opening a publication in the queue for annotation.

specify the type of annotation. Acceptable annotation types in the
ORegAnno database are:

• Transcription factor binding site
• Regulatory region
• Regulatory polymorphism
• Regulatory haplotype

The regulatory sequence described in the Schilling et al. paper
is a transcription factor binding site (Fig. 20.6). The results sec-
tion of the publication states that the wild-type p53 transcription
factor directly binds to the intronic binding site of the CD95
gene. The authors have confirmed their results by conducting
electrophoretic mobility shift assays, reporter gene assays and
mutagenesis analyses.

2.4.5. Adding the New
Record to the Database

After specifying the annotation type, the user is asked to pro-
vide detailed information to add the new record to the database.
The information in a typical record includes the gene of interest,
the binding factor, the sequence of the regulatory region as well
as its flanking sequence, the taxonomy ID of the species under
study and the types of experiments and evidence the authors have
used to validate their results. The information fields for adding a
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Fig. 20.6. Specifying the type of the annotation.

transcription factor binding site record to the database are out-
lined here:

• Field 1. Stable ID
This is a unique record identifier generated by ORegAnno
for each record in the database. This ID is set automatically
by ORegAnno; however, the user can regenerate it if they
wish to do so.

• Field 2. Data Set:
Several data sets have been annotated in ORegAnno (Refer
to the ORegAnno home page for a list of these data sets,
http://www.oreganno.org). If the new annotation is asso-
ciated with any one of them, that data set can be selected;
otherwise the data set ‘OregAnno’ can be chosen. This func-
tionality allows external curators to manage particular sets
of annotation using ORegAnno’s curation tools. It is also
possible to create new data sets. However, only ORegAnno
administrator(s) can create a data set using information such
as the description of the data set, the URL for the data source
and the citation for the original publication describing the
data set.

• Field 3. Target Gene:
This field identifies the gene whose regulation is being stud-
ied. The gene ID and the source with which it is associated
are specified here. The gene can either be user-defined or
it can be one that has a record entry in Ensembl and/or
NCBI. If Ensembl is chosen as the source, the database
version needs to be specified as well. All entered information
is cross-referenced against NCBI or Ensembl before a
record is saved to the databases. The gene of interest in the
Schilling et al. paper is CD95. Searching NCBI Entrez for
this gene reveals that CD95 is also known as TNF receptor
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superfamily, member 6 (FAS) and its NCBI gene ID is 355
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&
term=355).

• Field 3b. Transcription Factor:
This field describes the transcription factor ID and its
source, similar to the ‘Target gene’ field mentioned
above. In the Schilling et al. paper, the transcription fac-
tor is p53 (TP53) and its NCBI gene ID is 7157 (http://
www.ncbi.nlm.nih.gov/sites/entrez?db=gene&term=7157).
The transcription factor does not have to be known for a
record to be entered as a transcription factor binding site.

• Field 4. Loci Name:
Some regulatory regions have loci names associated with
them; these can be user-defined or they can refer to other
ORegAnno records. If the locus name is known, it should be
entered as part of the annotation. In the case of the walk-
through example, the locus name is unknown so the field is
left blank.

• Field 5. Target Species:
This field identifies the species under study, using its tax-
onomy ID. From the title of the Schilling et al. paper,
it is clearly human. It is also stated in the ‘Materi-
als and methods’ section of the publication that the
authors conducted their experiments using Hep3B cells,
human liver carcinoma deficient in p53. The species
Homo sapiens has the taxonomy ID of 9606 (NCBI,
http://www.ncbi.nlm.nih.gov/Taxonomy).

• Field 6. Sequence:
Regulatory Sequence Entry: This entry refers to the sequence
of the regulatory sequence being studied. In the exam-
ple, the binding site of the p53 transcription factor is
shown to be located in the first intronic region of the
CD95 gene. The sequence of this region, composed of
20 base pairs, is GGACAAGCCCTGACAAGCCA (Fig. 2C of
Schilling et al. paper). Before final entry of the sequence, a
check against the current reference genome with sequence
alignment programs should be preformed to confirm that
the sequence aligns unambiguously and with no unex-
pected base discrepancies. The location of the p53 tran-
scription factor binding site (TFBS) in the FAS gene
was confirmed using Blat (http://genome.ucsc.edu/cgi-
bin/hgBlat?command=start) (85). The 20-nucleotide long
sequence was aligned to the human genome build hg19
assembly. The results showed only one match for the align-
ment of this sequence against the human genome. All 20
nucleotides were aligned to the reference and the match has
a 100% identity, which was significant and highly likely to
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indicate a p53 binding site. Navigating to the details of this
match, we can see that the genomic location of the TFBS
is on chromosome 10 at coordinates 90751066-90751085,
and examining the genome browser confirms that these coor-
dinates are located in the first intronic region of the FAS
gene. BLAST could also be used to find the genomic coor-
dinates of the sequence.
Sequence with Flank Entry: This field is the sequence of the
regulatory region plus 35 to 50 base pairs flanking it (on
each side). This field can be useful for genome mapping
purposes. The regulatory region is usually entered in upper
case and the flank in lower case. In the case of the p53
binding site in the CD95 gene, we can find the flanking
sequence from the alignment of the p53 TFBS to the
human genome. Thus, the sequence with flank entry is:
tttagggtcgctggagggggaccccggttggagagaggagcgg
aactcctGGACAAGCCCTGACAAGCCAagccaaaggtccgctc
cggcgcgggtgggtgagtgcgcgccgccccgcgg
Search Space Entry: Search space is the region that has been
assayed to find the regulatory sequence(s). In some cases,
two or more regulatory regions might be discovered in the
same search space. This field is typically used for experiments
such as ‘promoter-bashing’ where a large sequence is system-
atically assayed for functional sub-sequences. If this sequence
is not known, as is the case in the Schilling et al. paper, the
field can be left blank.
Note: For the three sequence fields, an alternative to entering
the nucleotide sequence is to provide chromosome, strand
and genomic coordinates (start and end). If the exact coordi-
nates for a specific Ensembl genome build are known, choose
the ‘Load from EnsEMBL’ option.

• Field 7. Reference:
This field, the PubMED ID, is automatically entered by
ORegAnno.

• Field 8. Evidence:
This field describes one or more pieces of evidence pre-
sented in the publication, supporting the claim about
the gene under study and its regulatory element(s).
The evidence classes, types and subtypes as well as the
information on cell types (if known) must be recorded.
Description of the evidence classes, types and subtypes
can be found on the help documentation page under
the heading ‘EVIDENCE: Evidence in OregAnno’
(http://www.oreganno.org/oregano/evidenceview.action).
ORegAnno uses the eVOC cell-type ontology
(http://www.evocontology.org/) to describe the dif-
ferent types of cells. Each line of evidence should also



330 Montgomery et al.

be accompanied by an evidence comment providing
in detail the specific implementation and results of the
experiment.

The classes, types and subtypes of the evidence described
in the paper as well as the cell types and evidence comments
are as follows:
1. Evidence Type: Protein Binding Assay

Evidence Subtype: Western Blot Assay
Evidence Class: Transcription regulator
Cell Type: Hepatocyte (EV:0200061)
Evidence Comment: Paragraph 3 of the “Results” sec-
tion states that “Western blotting shows p53 expres-
sion in nuclear extracts of Hep3B cells transduced with
rAd-p53 (Replication-deficient adenoviral vectors encod-
ing the complete human wt p53 cDNA together with
GFP). Incubation with the 32P-labeled oligonucleotide
of the p53 intronic binding site resulted in the formation
of a protein/DNA complex in the extracts of rAd-p53-
but not of rAd-GFP (vectors with GFP alone)-transduced
Hep3B cells.” This experiment shows the expression of
p53 protein in nuclear extracts of Hep3B cells following
rAd-GFP transfer (refer to Fig. 2A of the paper).

2. Evidence Type: Electrophoretic mobility shift assay
(EMSA)
Evidence Subtype: Gel shift competition
Evidence Class: Transcription regulator
Cell Type: Hepatocyte (EV:0200061)
Evidence Comment: Paragraph 3 of the “Results” sec-
tion explains that “competition using a 100-fold molar
excess of unlabeled wild type intronic p53-binding site
has led to an inhibition of the DNA/protein com-
plex, whereas 100× addition of the oligonucleotide of
a mutated p53 intronic binding site or of the unspecific
oligonucleotides Sp-1 and Oct-1 did not inhibit the com-
plex”. This observation shows the specific binding of wild
type p53 to the intronic p53-binding site of the CD95
gene (refer to Fig. 2B of the paper).

3. Evidence Type: Electrophoretic mobility shift assay
(EMSA)
Evidence Subtype: Supershift
Evidence Class: Transcription regulator
Cell Type: Hepatocyte (EV:0200061)
Evidence Comment: Paragraph 3 of the “Results” sec-
tion states that “supershift of the complex upon addition
of the p53 antibody DO-1 demonstrated p53-specificity.
This result implies that activation of the CD95 gene is
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mediated primarily via specific tight binding of wt p53 to
the intronic p53-binding site” (refer to Fig. 2B of the
paper).

4. Evidence Type: Reporter gene assay
Evidence Subtype: Transient transfection luciferase assay
Evidence Class: Transcription regulator site
Cell Type: Hepatocyte (EV:0200061)
Evidence Comment: Paragraph 1 of the “Results” sec-
tion explains that “several luciferase-based reporter plas-
mids were constructed and assayed by transient transfec-
tion. The CD95 promoter alone was only minimally (up
to 2-fold) activated by wt p53. This suggests that this pro-
moter contains only weak p53-responsive elements. When
the CD95 promoter was placed in conjunction with the
p53-binding intronic CD95 DNA region, transcriptional
activity became strongly (up to 80-fold) stimulated by wt
p53.” Thus, the reporter assay shows that the intronic
p53 binding site is necessary for maximal transcription of
the CD95 gene (see Fig. 1 of the paper).

5. Evidence Type: Mutagenesis
Evidence Subtype: Site-directed
Evidence Class: Transcription regulator site
Cell Type: Hepatocyte (EV:0200061)
Evidence Comment: Paragraphs 4 and 5 in the “Results”
section of the paper describe how the “p53-dependent
transactivation of the CD95 gene was totally abrogated
when the experimenters used CD95 luciferase constructs
with mutated intronic p53-binding sites in transient trans-
fection assays. The extent of stimulation by wt p53 was
dramatically reduced from 50-fold to 2-fold by muta-
tion of only one additional critical core nucleotide and
decreased further by additional mutation of one or
two crucial nucleotides. Mutation of two less important
nucleotides for binding of wt p53 resulted in less but still
highly significant reduction of CD95 gene transactivation
(50-fold to 5-fold). These data imply that the first intron
of the CD95 gene harbors a p53-responsive enhancer ele-
ment that is essential for CD95 gene transactivation” (see
Figs. 2C and 2D of the paper).

• Field 9. Experimental Outcome:
Based on the experimental results, each record should be
associated with a positive, neutral or negative outcome. If a
sequence is shown to bind to a transcription factor, as in this
example, then the record has a positive outcome. Records
with uncertain value and inconclusive results will have a neu-
tral outcome.
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• Field 10. Comment (Optional):
This is an optional field for further comments and clarifica-
tions. It can be used to explain specific problems with anno-
tation or important conclusions or data for which no appro-
priate field exists in the database.

• Field 11. Meta data (Optional):
Each annotation in ORegAnno is optionally associated with
several administrator-defined meta data types. This can be
additional pieces of data relevant to a specific type of annota-
tion or those captured in important data sets that would be
useful to append to an ORegAnno annotation. Each added
meta data element must match a pattern defined by the
administrator for these meta data types.

• Field 12. Annotated by:
The username of the annotator and the date of the
annotation.

• Field 13. Review Record (Before Commit):
This final field allows the review of all the completed fields
before committing the record to the database. However,
the “Review Record” page will not appear if the cross-
referencing of the annotation against the necessary exter-
nal databases is not successful. After the record is reviewed
and added to the database, the user is informed of the ORe-
gAnno stable ID (e.g. OREG0040664) associated with this
record. A sample of a completed record (before committing
to database) is shown in Fig. 20.7.

2.4.6. Setting the Status
of the Publication
to ‘CLOSED’

Having finished the annotation, the user should set its status to
‘CLOSED’ in the publication queue and assign a reason for clo-
sure. In our example, the record was added to the database suc-
cessfully; therefore the reason for closure is ‘Success’ (Fig. 20.8).
This process prevents users from creating redundant records or
annotating the same publication concurrently.

2.4.7. Final Notes As mentioned before, the stable ID of a record can be used to
uniquely identify it in the database. For instance, searching ORe-
gAnno with the stable ID of OREG0040664 directs the user to
the record on the Schilling et al. paper (Fig. 20.9).

Records in ORegAnno can be commented on by any user.
These comments provide extra insight into the associated publi-
cation or function of these annotations. This also helps capture
metadata that can be used by future validators in verifying anno-
tation. Once a user has logged into ORegAnno, search results
will return with the extra option of being able to ‘Add comment’
to any returned record (in addition to being able to ‘View com-
ments’ for those not logged in).
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Fig. 20.7. The web form for adding a new record to the database.
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Fig. 20.8. Closing a paper in the publication queue.

ORegAnno has three roles designed to help annotate and ver-
ify the data, users, validators and administrators. Users are allowed
to annotate new records and make comments on existing ones.
Validators are allowed to modify records in addition to annotat-
ing new records and commenting on them. For a record modifica-
tion, a new record is created and the old record is marked as being
deprecated by the newer record. Validators can also score records
positive if verified as correct or negative if a problem is identi-
fied. Administrators have the additional responsibilities of adding
new evidence classes, types and subtypes to the database as well
as new data sets. They can also upload batch sets of records con-
tributed from high-throughput experiments (see Appendix 1). To
add batch sets of records, new data sets, evidence classes, types,
or subtypes, or submit questions about the curation process, users
can contact administrators through the ORegAnno mailing list at
oreganno@bcgsc.ca.
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Fig. 20.9. Result for searching the database with the stable ID OREG0040664.

3. Conclusions

Gene expression is a principal cellular function that is charac-
teristic of the state and stage of the cell. However, the sites of
transcription factor interactions and the downstream effects on
expression are still largely uncharacterized. Effort has been made
to dissect the role of expression in genetics and in the aetiol-
ogy of disease. Likewise, effort has been made to understand the
functional sites and constituent molecules that drive expression.
New experimental methods such as Chip-Seq provide the ability
to screen the genome for transcription factor binding sites and
histone methylation marks characteristic of active promoter and
enhancer activity. Integrating large amounts of new information
with enhanced knowledge of the ensemble of transcription factors
and with finer resolution regarding the sites of binding and their
context-specific effect on expression will be central to determin-



336 Montgomery et al.

ing the molecular mechanisms that define organismal biology and
phenotypic diversity.

4. Notes

This section describes some of the problems that may occur
during manual curation (Section 2.4) or batch uploading
(Appendix 1) of larger data sets as well as tips on how to identify
and overcome them.

1. Manual curation
1.1. General issues with the annotation process
When adding a new record to the database (Section 2.4.5), it is
a good idea to assemble all the necessary information in a sepa-
rate text document before entering them into ORegAnno. When
ready, the data can be uploaded at once into the database. This
prevents loss of information due to network timeout or unex-
pected hardware crashes. Another common problem while adding
a new record to the database is encountered when a publication
has identified a regulatory region (e.g. a promoter) composed of
several TFBS. In these cases, separate ORegAnno records should
be created for the regulatory region and each TFBS. Before a
record can be created, the source publication must be entered into
the publication queue and ‘opened’ for curation (Section 2.4.3).
However, each ORegAnno user can have only five publications
open for annotation at any time; opening a sixth publication will
cause an error. In this case, one or more of the ‘Open’ papers
should be reverted to ‘Pending’ or ‘Closed’.

1.2. Problems with determining the ‘type’ of annotation
Every record in ORegAnno has a type associated with it.
The types of record allowed in the database are ‘Transcrip-
tion factor binding site’, ‘Regulatory region’, ‘Regulatory poly-
morphism’ and ‘Regulatory haplotype’ (Section 2.4.4). The
description of these different types of annotation can be
found on the help documentation page under the head-
ing ‘RECORDS: Understanding ORegAnno record types’
(http://www.oreganno.org/oregano/Help.jsp). In some cases,
the type of the regulatory sequence might be ambiguous. A ‘Reg-
ulatory region’ is a noncoding DNA sequence that is known to
alter the expression of a particular gene. It may contain one or
more specific binding sites or be bound by a specific binding fac-
tor whose exact binding site has not been fully localized (e.g.
ChIP-Seq sites). Canonical examples of regulatory regions are
promoters and enhancers. A ‘Transcription factor binding site’,
on the other hand, is a noncoding DNA sequence that is bound
by a particular transcription factor to alter the expression of a par-
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ticular gene. A ‘Regulatory polymorphism’ is a noncoding DNA
sequence that may or may not be bound by a known transcrip-
tion factor in vivo, but has a variant that is confirmed to alter the
expression of a particular gene. Statistical association between a
non-coding variant and a condition is not sufficient evidence of a
regulatory polymorphism as this may simply represent linkage dis-
equilibrium (see ‘regulatory haplotype’). The publication should
specifically demonstrate the functional significance of the variant
on gene expression, protein binding, etc. A ‘regulatory haplotype’
record is a noncoding DNA sequence that contains several alleles
in linkage disequilibrium (LD), which are confirmed to alter the
expression of a particular gene or binding of a particular protein
factor. This is different from a regulatory polymorphism as the
specific causal variant may not be known, only the alleles that are
in LD with it.

1.3 Problems with identifying target gene or transcription factor
Entering target genes and transcription factors into ORegAnno
requires specifying their Ensembl or Entrez gene IDs (Section
2.4.5, Fields 3 and 3b). However, curators also have the option
of specifying a ‘User-defined’ gene as a last resort. For species
where Ensembl or Entrez genes are not yet well defined or where
another gene identification system is preferred (e.g. SGD ID for
S. cerevisiae), using the ‘User-defined’ option is recommended.
Other situations where the ‘User-defined’ option might be used
include (1) cases where the transcription factor is an unknown
member of a protein family or binding is non-specific for several
family members; (2) a regulatory region such as an enhancer has
more than one proximal gene that might be influenced by it.

1.4 Problems with identifying the species of interest
The taxonomy ID of the species under study must be speci-
fied when adding a new record to the database (Section 2.4.5,
Field 5). The species under study should be explicitly stated in
the source publication. However, if it is not, the species can be
inferred with caution by the gene identifier or sequence. One
source of problems with specifying a species is when a regula-
tory sequence for one species is tested in an experimental system
of another species. In these cases, the species for the regulatory
sequence should be specified. For example, a study that has tested
human regulatory sequences in a mouse in vivo model system
will have Homo sapiens as its target species. This allows correct
mapping of the sequence to the appropriate genome. The exper-
imental/model system should be fully explained in the evidence
comment field.

There are also instances where the Entrez taxonomy IDs
are ambiguous and both species and subspecies entry could be
chosen as the target species. An example is Takifugu rubripes
(taxonomy id=31033) and Takifugu rubripes rubripes (taxon-
omy id=47633). In these situations, the curator should use
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the most specific taxonomy entry that is accurate; if still in
doubt, the convention of existing ORegAnno records should be
followed.

1.5 Problems with identifying regulatory sequence
Each annotation should include the functional or bound sequence
as reported in the publication (Section 2.4.5, Field 6). A prob-
lem often encountered by users is publications that do not clearly
specify the identified regulatory sequence. A surprising num-
ber of studies describe experimental evidence for a binding site
without providing any reliable means of locating that sequence
in the appropriate genome. Using relative coordinates can help
in finding the general search region; however, caution should
be taken in using relative coordinates. They can be mislead-
ing if the exact genome version is not specified. The binding
site then can be located in the search region. If site-specific
mutagenesis or oligonucleotide competitions were performed,
there may be PCR primers or oligonucleotide sequences that
can be aligned to the genome in order to locate the binding
site. There are also several tools at the ORegAnno web site
(http://www.oreganno.org/oregano/Tools.jsp), which can help
in locating the sequence of interest.

To facilitate mapping to the current genome, sufficient flank-
ing sequence should be provided for each regulatory region. The
minimum sequence length allowed by ORegAnno is 40 base pairs,
but the recommended length is 100 base pairs or more. When
choosing the amount of flank, the user should align the sequence
using either Blat or BLAST to the appropriate genome to ensure
a single unambiguous high-scoring alignment.

A sequence can also be specified using its coordinates.
In that case, the correct Ensembl genome version, corre-
sponding to the provided coordinates, must be selected. For
example, if the sequence of interest was ‘chr21:45316682-
45316701’ relative to the ‘hg18’ reference genome, this
would correspond to the March 2006 human reference
sequence (NCBI Build 36.1) (http://genome.ucsc.edu/cgi-
bin/hgGateway?org=Human&db=hg18). Therefore, only an
Ensembl version based on the human Build 36 genome would be
appropriate. This is indicated by the last number in the Ensembl
database version name (home_sapiens_core_47_36i). If the nec-
essary Ensembl version is not available in the ORegAnno drop-
down list, coordinates can be converted between genome builds
using the UCSC LiftOver tool (http://genome.ucsc.edu/cgi-
bin/hgLiftOver).

In some cases, a sequence in the publication does not match
the sequence in the current reference genome version due to
small differences between the reported sequence and the cur-
rent reference genome. These might represent errors in an
earlier assembly or different alleles at variant positions. These
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sequences are acceptable as long as the differences do not chal-
lenge the accuracy of the experimental results. However, it is
recommended that the most current sequence is used in order
to facilitate mapping. If it is believed that a particular allele
(for a known variant) is of functional importance, the variant
sequence can be used. As mentioned, sufficient flank for an
unambiguous alignment to the correct genome location must be
included.

Before final entry of the sequence, a check against the current
reference genome with sequence alignment programs should be
performed to confirm that the sequence aligns unambiguously,
with no unexpected base discrepancies, to the expected location
relative to the target gene. If the sequence is too short and thus
Blat cannot be used to perform an alignment to the genome,
BLAST, having more parameter options for short sequence align-
ments, should be used.

1.6 Problems with missing PubMED ID
Each annotation must reference a valid PubMED article (Section
2.4.2). This ensures that any record can be verified or validated
by referring back to the original source. However, a single record
or data set for a publication being prepared for submission or in
press (with no PMID) can be added to the database by contact-
ing ORegAnno administrators. The batch uploading method can
be used to upload records with PMID set to ‘PENDING’. The
ORegAnno accession number(s) then can accompany a journal
submission.

1.7 Problems with describing the experimental evidence
Each annotation specifies an evidence type, subtype and class
describing the biological technique cited to discover the reg-
ulatory sequence. Each annotation can have multiple entries
from any evidence class, type and subtype describing each piece
of experimental evidence for the regulatory sequence and/or
binding protein. As a minimum, a record must have at least
one piece of in vivo or in vitro experimental evidence to
be considered suitable for entry into ORegAnno. In silico or
indirect evidence (e.g. evidence type: ‘Sequence conservation’)
should be entered as supplemental evidence only (Section 2.4.5,
Field 8).

Evidence classes are broken into two categories: the ‘regu-
lator’ classes which describe evidence for the specific protein(s)
that bind a site and the ‘regulatory site’ classes which describe
evidence for the function of a regulatory sequence itself. These
two categories are further divided into three levels of regulation
(transcription, transcript stability and translation). Thus, a total
of six evidence classes currently exist. For instance, ‘transcription
regulator site’ describes evidence for the identity of a sequence
that regulates transcription (e.g. transcription factor binding site)
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and ‘transcription regulator’ describes evidence for the identity
of the protein that binds a transcription regulator sequence (e.g.
transcription factor).

In many cases, the functional validation of a regulatory
sequence depends on the context under which it was assayed.
One important factor determining this context is the cell type.
Therefore, wherever possible, the cell type in which experiments
were conducted should be recorded for each piece of experi-
mental evidence. If a particular experiment (e.g. a reporter gene
assay) is performed in several different cell types (e.g. different
cell lines), these can be considered multiple pieces of evidence
(one for each cell type). ORegAnno currently uses the eVOC cell-
type ontology for this purpose. If a specific cell type is not in the
ORegAnno list but is present in eVOC, users can contact ORe-
gAnno administrators regarding this. However, if the cell type
is also missing from eVOC, the eVOC administrators should be
contacted.

If there are any missing evidence types and subtypes, a request
can be sent to ORegAnno administrators in order to add them
to the evidence ontology. Evidence types describe the generic
assay used while subtypes define specific implementations of these
assays. For regulatory polymorphisms or haplotypes, association
studies (evidence type: ‘Association study’) alone should not be
considered sufficient evidence as these studies typically cannot dis-
tinguish a functional polymorphism from a non-functional poly-
morphism in linkage disequilibrium with the functional poly-
morphism (see discussion above). The evidence type ‘Literature
derived’ should only be used in cases where sequences were man-
ually curated by another group of experts adhering to standards
materially equivalent to those outlined in this document but
where specific experiments were not recorded or cannot be confi-
dently mapped to the evidence ontology.

2. Batch upload
In the case of batch uploading, the most common problem

is that the template is not followed closely enough or a data field
is not used properly. Refer to Appendix 1 for an example of the
template and detailed explanation of each field.

Another issue is that the ORegAnno accession IDs are used
for data set, evidence, and cell-type fields instead of their names
(as in manual curation). The correct data set IDs can be found
by following the link to the appropriate data set from the ORe-
gAnno home page (http://www.oreganno.org). The correct evi-
dence IDs can be determined from the ORegAnno evidence page
(http://www.oreganno.org/oregano/evidenceview.action). The
user must make certain that the evidence subtypes are
correctly matched to their parent evidence types in the
ontology.
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Appendix 1.
ORegAnno XML
Sample

The method for manual annotation detailed in Section 2.4
of the ‘Methods and data’ is recommended for individual
low-throughput studies. In some cases, a user may wish to upload
a large collection of previously annotated publications, an exist-
ing database, or the results of a high-throughput experiment. To
allow this, an alternative ‘batch upload’ method is provided. This
makes use of the ORegAnno XML template. Data may be con-
verted into an XML format using the following example. Many
of the required fields overlap with those explained in Section 2.4.
However, each field is also explained in Table 20.2. Please con-
tact the ORegAnno administrators (oreganno@bcgsc.ca) for help
with creating and uploading an XML batch file.
<?xml version="1.0" encoding="ISO-8859-1"?>
<oreganno>

<recordSet>
<record>

<id></id>
<stabled></stabled>
<type>REGULATORY REGION</type>
<outcome>NEGATIVE OUTCOME</outcome>
<geneId>ENSDARG00000062484</geneId>
<geneName>ptprf</geneName>
<geneSource>ENSEMBL</geneSource>
<geneVersion>danio_rerio_core_42_6c</geneVersion>
<tfId></tfId>
<tfName></tfName>
<tfSource></tfSource>
<tfVersion></tfVersion>
<lociName></lociName>
<speciesName>Danio rerio</speciesName>
<reference>19704032</reference>
<date>5-Aug-2009</date>
<sequence>

<internalSequenceType>sequence</internalSequenceType>
<sequence>GGTTAAGAGTGAAAAGAACCAACCTCCTCGAGGGTCTATGAGATGA
GGTGAGAGTTTGACCGGGTGATTTAATGGA</sequence>
<ensembl_database_name>danio_rerio_core_42_6c</ensembl
_database_name>
<sequence_region_name>2</sequence_region_name>
<start>14342892</start>
<end>14342967</end>
<strand>1</strand>
<verified>true</verified>

</sequence>
<sequenceWithFlank>

<internalSequenceType>sequence_with_flank</internal
SequenceType>
<sequence>ttgacacagataacaactagcctgaacgaaatataacattgctcttg
catctcttttaatgcaggctcatgcaagtcacctgacacaacacattcagcctgaac
acaaaggtgaggggcggcataacgcagggagtgggattgata acaagggtctctga
ttaaagatggatccaggttggggtctgcaagcggcGGTTAAGAGTGAAAAGAACCAA
CCTCCTCGAGGGTCTATGAGATGAGGTGAGAGTTTGACCGGGTGATTTAATGGAgat
gaaattgaaagacagagacaaatggaaaacaagagaacatgaaaagacatttgtgaa
caatttcatggctgttagaaaaaaaaagaaacacaatggaaatttttaaaagacaga
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cacaaaagcataacattcacagaaaagtcggatattctaccatatttcatacatatt
gcagcaacatccccaatg</sequence>
<ensembl_database_name>danio_rerio_core_42_6c</ensembl_
database_name>
<sequence_region_name>2</sequence_region_name>
<start>14342697</start>
<end>14343159</end>
<strand>1</strand>
<verified>true</verified>

</sequenceWithFlank>
<searchSpace>

<internalSequenceType>searchSpace</internalSequenceType>
<sequence>ttgacacagataacaactagcctgaacgaaatataacattgctcttg
catctcttttaatgcaggctcatgcaagtcacctgacacaacacattcagcctgaac
acaaaggtgaggggcggcataacgcagggagtgggattgataacaagggtctctga
ttaaagatggatccaggttggggtctgcaagcggcGGTTAAGAGTGAAAAGAACCAA
CCTCCTCGAGGGTCTATGAGATGAGGTGAGAGTTTGACCGGGTGATTTAATGGAgat
gaaattgaaagacagagacaaatggaaaacaagagaacatgaaaagacatttgtgaa
caatttcatggctgttagaaaaaaaaagaaacacaatggaaatttttaaaagacaga
cacaaaagcataacattcacagaaaagtcggatattctaccatatttcatacatatt
gcagcaacatccccaatg</sequence>
<ensembl_database_name>danio_rerio_core_42_6c</ensembl_
database_name>
<sequence_region_name>2</sequence_region_name>
<start>14342697</start>
<end>14343159</end>
<strand>1</strand>
<verified>true</verified>

</searchSpace>
<dataset>OREGDS00016</dataset>
<evidenceSet>

<evidence>
<evidenceClassStableId>OREGEC00001</evidenceClassStableId>
<evidenceTypeStableId>OREGET00002</evidenceTypeStableId>
<evidenceSubtypeStableId>OREGES00021
</evidenceSubtypeStableId>
<comment>Each candidate conserved regulatory region was
amplified by PCR and co-injected with an EGFP reporter
construct into zebrafish embryos produced from natural
matings between the 1-4 cleavage stages. Embryos were
then assayed for GFP expression on the second day of
development (approximately 24-16 hpf). The conserved
region is recorded here as "sequence," and the entire
tested PCR product is recorded as "searchSpace." This
element contains the PCNE 67-Dr_ECR7_C2.</comment>
<date>5-Aug-2009</date>
<userName>hufton</userName>

</evidence>
</evidenceSet>
<commentSet>

<comment>
<comment>Ancient phylogenetically conserved non-coding
elements (PCNEs) were identified around gene families
from mouse, zebrafish, fugu, and the invertebrate
chordate amphioxus. 42 of these elements were tested
for enhancer activity in transgenic zebrafish embryos,
including 22 amphioxus elements and 20 fish elements.
Results for each of these elements, and 9 randomly
chosen negative control elements, are described in
this dataset.</comment>
<date>5-Aug-2009</date>
<userName>hufton</userName>

</comment>
</commentSet>
<scoreSet></scoreSet>
<variationSet></variationSet>
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<metaDataSet></metaDataSet>
<deprecatedByDate></deprecatedByDate>
<deprecatedByStableID></deprecatedByStableID>
<deprecatedByUser></deprecatedByUser>
</record>

</recordSet>
<speciesSet>

<species>
<name>Danio rerio</name>
<taxonId>7955</taxonId>

</species>
</speciesSet>
<userName>hufton</userName>

</oreganno>

Table 20.2
Explanation of data fields in ORegAnno XML template (In order of appearance)

XML tag Description

oreganoa The root element of an ORegAnno xml file. Contains all other child
elements detailed below

recordSeta Contains one or more ORegAnno record elements
recorda The main parent element for an ORegAnno record

Id The internal ID assigned to each record. For initial upload, leave empty
and one will be assigned automatically

stableId The stable display ID assigned to each record (e.g. OREG0040664).
For initial upload, leave empty and one will be assigned automatically

typea Type of regulatory sequence. Currently one of: ‘REGULATORY
REGION’, ‘TRANSCRIPTION FACTOR BINDING SITE’,
‘REGULATORY POLYMORPHISM’ or ‘REGULATORY HAP-
LOTYPE’

outcomea Indicates whether the experimental evidence confirms or refutes regu-
latory function of the sequence. ‘NEGATIVE OUTCOME’ for con-
firmed negative control sequences (demonstrated lack of regulatory
function). ‘POSITIVE OUTCOME’ for sequences with experimen-
tal evidence for regulatory function. ‘NEUTRAL OUTCOME’ for
sequences with uncertain experimental outcome

geneIda Entrez Gene Id (e.g. 7157) or Ensembl Gene Id (e.g.
ENSG00000141510). If Entrez/Ensembl is unknown or unavail-
able, a user-defined Gene ID can be used from any another gene
identification system

geneNamea Entrez Gene Name (e.g. TP53) or Ensembl Gene Name (e.g. TP53).
If Entrez/Ensembl is unknown or unavailable, a user-defined Gene
Name can be used from any another gene identification system

geneSourcea Indicates source of geneId and geneName (NCBI, ENSEMBL or
USER DEFINED)

geneVersion If geneSource is ENSEMBL, provide Ensembl database version (e.g.
danio_rerio_core_42_6c)

tfId
tfName Same as for gene details (i.e. geneId, geneName, geneSource and gen-

eVersion), except referring to transcription factor (if known) that
has been shown to bind the regulatory sequence being described

tfSource
tfVersion

(continued)
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Table 20.2 (continued)

XML tag Description

lociName Name for gene locus

speciesNamea Name of species to which regulatory sequence belongs (e.g. Danio
rerio)

referencea A valid Pubmed ID (PMID) for the source publication describing
the regulatory sequence and its experimental evidence. If submit-
ting sequences as prerequisite for an unpublished but accepted pub-
lication, use ‘PENDING’ and then update ORegAnno admin upon
assignment of PMID

datea Date of record creation. Specified as dd-mmm-yyyy (e.g. 5-Aug-2009)
sequencea

sequenceWithFlanka

searchSpace

Each record must be accompanied by the functional/bound sequence
plus sufficient flanking sequence to permit unambiguous alignment
to the genome. The sequence of interest should be in upper case and
the flanking sequence in lower case (e.g. aagatggatctgcaTTAATG-
GAgatgaaatttgg). The sequenceWithFlank must be at least 40 bp
in length, but ∼100 bp is recommended to ensure mapping suc-
cess. If a larger sequence region was assayed before narrowing down
to a smaller functional region (e.g. promoter bashing experiment),
then this sequence can be entered as the searchSpace. Sequences
will be aligned to current genome builds of the specified species for
the record. However, you can also provide position details explicitly
(genome version, chr, start, end, strand) with the optional elements
(details below)

internalSequenceTypea One of ‘sequence’, ‘sequenceWithFlank’ or ‘searchSpace’
sequencea Nucleotide sequence
ensembl_database_name If providing sequence coordinates, also provide the appropriate

Ensembl database version to establish which genome build these
coordinates correspond to (e.g. danio_rerio_core_42_6c)

sequence_region_name Chromosome or contig name

start Genomic base position of start of sequence
end Genomic base position of end of sequence

strand Strand of sequence (1 or −1)
verifieda For XML upload, this can be set to ‘true’

dataset ORegAnno dataset stable ID for the dataset that the record belongs
to (e.g. OREGDS00016). Typically used only if record belongs to
a defined external dataset (e.g. an existing database of regulatory
sequences or a logical collection of sequences such as ChIPseq sites
for a particular transcription factor). If the uploader wishes to orga-
nize their records as a dataset, they can contact the ORegAnno
administrators to have a new dataset created for them

evidenceSeta Contains one or more evidence elements. Each ORegAnno record
must have at least one experimental evidence element

evidencea The main parent element for each piece of evidence in the evidence-
Set. Contains several child elements describing details of the exper-
imental evidence including cell type, comment, class, type and sub-
type. The complete ORegAnno evidence ontology can be found at:
http://www.oreganno.org/oregano/evidenceview.action

(continued)
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Table 20.2 (continued)

XML tag Description

cellType The cell type in which experiments were conducted if known. Uses the
eVOC cell type ontology (e.g. EV:0200034)

comment A detailed comment describing the experimental evidence and how it
demonstrates the identity or function of a regulatory sequence

datea Date of evidence entry. Specified as dd-mmm-yyyy (e.g. 5-Aug-2009)

evidenceClassStableIda Evidence classes are broken into two categories: the ‘regulator’ classes
describe evidence for the specific protein(s) that bind a site. The
‘regulatory site’ classes describe evidence for the function of a reg-
ulatory sequence itself. These two categories are further divided
into three levels of regulation (transcription, transcript stability and
translation). The most common class ‘Transcription regulator site’
(OREGEC00001) describes evidence for the identity of a sequence
(e.g. transcription factor binding site) that regulates transcription.
The ‘Transcription regulator’ (OREGEC00002) class describes evi-
dence for the identity of the protein (e.g. transcription factor) that
binds a transcription regulator site

evidenceTypeStableIda Stable ID for an ORegAnno evidence type describing a type of biolog-
ical assay. This is a generic type of experiment that may have several
subtypes of experimentation associated with it, e.g. OREGET00002
- Reporter gene assay

evidenceSubtypeStableIda Stable IDd for an ORegAnno evidence subtype describing a subtype of
biological assay. This is the specific biological assay that was used in
the associated literature, e.g. OREGES00004 – Transient transfec-
tion luciferase assay

userNamea ORegAnno user ID for evidence entry (e.g. kkasaian)
commentSet Contains one or more comments. These can be added at record cre-

ation and also appended to a record at a later date by any user with
sufficient permissions

comment (child) Each comment (child) element includes a comment (sub-child) ele-
ment as well as date and user elements

comment (sub-child) The actual descriptive text for the comment
date Date of comment creation specified as dd-mmm-yyyy (e.g. 5-Aug-

2009)

userName ORegAnno user ID for comment
scoreSet Normally empty for a new entry. Records history of scores entered

through ORegAnno’s voting-based validation system

variationSet Used only for records of type ‘REGULATORY POLYMORPHISM’
or ‘REGULATORY HAPLOTYPE’. Details sequence variants (with
respect to reference) shown to affect regulatory function of a
sequence

metaDataSet Typically used for import of existing databases of regulatory sequences
with data fields not represented in the ORegAnno data model

deprecatedByDate Date of deprecation of record. Used only in cases where a record has
been updated or replaced. Not used for initial data upload. Record
deprecation is handled internally by the ORegAnno web application

(continued)
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Table 20.2 (continued)

XML tag Description

deprecatedByStableID ORegAnno Stable ID of record that the record has been deprecated by

deprecatedByUser Name of user (userName) who initiated deprecation of record
speciesSeta Contains one or more species elements for each species represented in

the XML upload

speciesa The main parent element for each species in the speciesSet. Contains
child elements for name and taxon ID of each species

namea Standard nomenclature for species (e.g. Danio rerio). Matches the
‘speciesName’ element associated with each record

taxonIda NCBI Entrez taxonomy ID for the species. Can be found at:
http://www.ncbi.nlm.nih.gov/sites/entrez?db=Taxonomy

userNamea ORegAnno user ID. Before an XML file can be uploaded, the
uploader must create an ORegAnno user account: (http://www.
oreganno.org/oregano/createuserpre.action). The userName ele-
ment is specified once for the entire file, and also for each comment
and evidence element. In this way, multiple users can comment and
describe evidence for the same record

aIndicates required elements for upload of new dataset to ORegAnno. Note, optional unused elements should still be
specified as either ‘<dataset><dataset/>’ or ‘<dataset />’.
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Chapter 21

Computational Identification of Plant Transcription Factors
and the Construction of the PlantTFDB Database

Kun He, An-Yuan Guo, Ge Gao, Qi-Hui Zhu, Xiao-Chuan Liu,
He Zhang, Xin Chen, Xiaocheng Gu, and Jingchu Luo

Abstract

Transcription factors (TFs) play an important role in gene regulation. Computational identification and
annotation of TFs at genome scale are the first step toward understanding the mechanism of gene expres-
sion and regulation. We started to construct the database of Arabidopsis TFs in 2005 and developed a
pipeline for systematic identification of plant TFs from genomic and transcript sequences. In the fol-
lowing years, we built a database of plant TFs (PlantTFDB, http://planttfdb.cbi.pku.edu.cn) which
contains putative TFs identified from 22 species including five model organisms and 17 economically
important plants with available EST sequences. To provide comprehensive information for the putative
TFs, we made extensive annotation at both the family and gene levels. A brief introduction and key ref-
erences were presented for each family. Functional domain information and cross-references to various
well-known public databases were available for each identified TF. In addition, we predicted putative
orthologs of the TFs in other species. PlantTFDB has a simple interface to allow users to make text
queries, or BLAST searches, and to download TF sequences for local analysis. We hope that PlantTFDB
could provide the user community with a useful resource for studying the function and evolution of
transcription factors.

Key words: Transcription factors, database construction, plant genome, HMMER search,
Ortholog.

1. Introduction

Transcription factors (TFs) bind selectively to specific DNA
sequences in order to turn on or off the transcription of their
target genes. Eukaryotes have a much more sophisticated tran-
scription regulation mechanism than prokaryotes. For example,
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eukaryotic RNA polymerase complexes cannot turn on the gene
transcription by themselves. Instead, TFs are needed to recognize
and bind to the cis-regulatory elements that primarily reside in
the promoter region of the target genes and to recruit the RNA
polymerase complex for the initiation of transcription. The special
sequence region in a TF that interacts directly with DNA is called
the DNA-binding domain (DBD). Based on the sequence pat-
terns and structural features of DBDs, TFs can be classified into
diverse families (1).

Multicellular eukaryotes have to deal with cell differentiation
with the aid of more sophisticated regulatory mechanism using a
larger number of TFs (2). Larger genomes usually have higher
numbers of TFs. It has been recently reported that a normal
human somatic cell was turned into a fully functional stem cell
by introducing four TFs into it (3). Therefore, deciphering the
binding relationship and regulatory network is a key step to the
understanding of the process of development and many other bio-
logical phenomena (4). Identification of TFs at the genome level
and construction of knowledge databases for the TFs using com-
putational approach have therefore become the fundamental step
in studies on the regulation of gene expression.

TRANSFAC is one of the earliest attempts to build a TF
knowledgebase with experimentally proven TFs, their binding
sites, and regulated target genes (5). The January 2009 release
contains 12,183 factors and 24,745 binding sites from various
taxa including plants, mammals, fungi, and bacteria. It started
to collect data identified by high-throughput technologies, such
as chromatin immunoprecipitation on chip (ChIP-chip). Several
databases of plant TFs have been developed after the completion
of the Arabidopsis genome sequencing in 2000 as well as several
other plant model organisms such as rice and poplar in the fol-
lowing years (Table 21.1).

AtTFDB is the first Arabidopsis TF databases hosted by the
Arabidopsis gene regulatory information server (AGRIS) at the
Ohio State University [see Chapter 2 and ref. (6)]. It classi-
fied TFs into different families based on the type of the cor-
responding DBDs. Recently, AtTFDB further integrated infor-
mation about the potential regulatory relationship among TFs
which makes it a useful resource for regulatory network analy-
sis of Arabidopsis. The Arabidopsis TF database (RARTF) hosted
by the RIKEN BioResource Center in Japan applies PSI-BLAST
and InterProScan to the identification of all putative TFs in Ara-
bidopsis (7). Sequence information, InterPro domains, and links
to public Arabidopsis genome databases such as TAIR, MIPS, and
TIGR are provided for each predicted TF. Recently, a database of
tobacco TFs (TOBFAC) has been built by the University of Vir-
ginia (8). TOBFAC contains about 2,500 putative tobacco TF
genes predicted from the data source of both gene-space reads
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Table 21.1
Databases of plant transcription factors

Name Data source Website and institution References

TRANSFAC Mainly Arabidopsis http://www.gene-regulation.com/
BIOBASE, Germany

(5)

AtTFDB Arabidopsis http://arabidopsis.med.ohio-
state.edu/AtTFDB/
The Ohio State University, USA

(6)

RARTF Arabidopsis http://rarge.psc.riken.jp/rartf/
RIKEN BioResource Center, Japan

(7)

TOBFAC Tobacco http://compsysbio.achs.virginia.edu/
tobfac/
University of Virginia, USA

(8)

LegumeTFDB Glycine max, Lotus
japonicus, Medicago
truncatula

http://legumetfdb.psc.riken.jp/
RIKEN BioResource Center, Japan

PlnTFDB Genome sequences
(19 species)

http://plntfdb.bio.uni-potsdam.de/
University of Potsdam, Germany

(9)

PlantTFDB Genome sequence
(5 species)

EST sequence (17 species)

http://planttfdb.cbi.pku.edu.cn/
Peking University, China

(10)

and EST sequences. LegumeTFDB, a database of three legume
plants (Glycine max, Lotus japonicus, Medicago truncatula) has
been available online at the RIKEN BioResource Center, Japan.
Interestingly, the number of predicted soybean (Glycine max) TFs
listed in LegumeTFDB exceeds the number of predicted tobacco
TFs by a factor of 2. Up to date, the two most comprehen-
sive plant TF databases are the PlnTFDB developed by Univer-
sity of Potsdam, Germany (http://plntfdb.bio.uni-potsdam.de/)
(9) and the PlantTFDB constructed by Peking University, China
(http://planttfdb.cbi.pku.edu.cn/) (10). Both PlnTFDB and
PlantTFDB attempt to collect plant TFs from all available data
sources and provide comprehensive annotation at both the family
and gene level.

In this chapter, we describe our computational approaches
to the genome-wide identification of plant TFs, construction
of the TF databases, and annotation of TF genes. In 2002,
several research groups from China and the United States ini-
tiated a collaborative project for the genome-wide ORFeome
cloning and analysis of Arabidopsis genes which encode TFs (11).
As the only bioinformatics group involved in this project, we
started to construct the database of Arabidopsis TFs (DATF)
which became publicly available in 2005 (12). With the avail-
able genome sequences of two rice sub-species (Oryza sativa, ssp.



354 He et al.

japonica and Oryza sativa, ssp. indica) and poplar (Populus tri-
chocarpa), two databases of rice TFs (DRTF) (13) and poplar TFs
(DPTF) (14) were further built up in the following years.

Based on the experiences obtained from the construction of
these three plant TF databases, we have built an in silico pipeline
for the systematic identification of the putative TFs from var-
ious plant genomes and developed a comprehensive plant TF
database PlantTFDB. To provide a comprehensive data source
for plant biologists, PlantTFDB contains TFs identified from 5
model organisms with whole genome sequences and 17 econom-
ically important plants with abundant transcripts (Table 21.2).

Table 21.2
TFs and ortholog numbers in PlantTFDB

Data
source
(version) Name Species TFsa

TFs with
orthologs

TAIR (v6) Arabidopsis Arabidopsis thaliana 2290 1346

JGI (v1.1) Poplar Populus trichocarpa 2576 2042
TIGR

(v4.0)
Rice Oryza sativa (ssp. indica) 2025 1763

Oryza sativa
(ssp. japonica)

2384 2124

JGI(v1.1) Moss Physcomitrella patens 1170 524
JGI(v3.0) Green alga Chlamydomonas

reinhardtii
205 64

PlantGDB
(v155a)

Crops Barley Hordeum vulgare 618 595
Maize Zea mays 764 734
Sorghum Sorghum bicolor 397 372
Sugarcane Saccharum officinarum 1177 1157
Wheat Triticum aestivum 1127 1074

Fruits Apple Malus x domestica 1025 938
Grape Vitis vinifera 867 793
Orange Citrus sinensis 599 541

Trees Pine Pinus taeda 950 644
Spruce Picea glauca 440 383

Economic
plants

Cotton Gossypium hirsutum 1567 1430
Potato Solanum tuberosum 1340 1243
Soybean Glycine max 1891 1774
Sunflower Helianthus annuus 513 435
Tomato Lycopersicon esculentum 998 917
Lotus Lotus japonicus 457 434
Medicago Medicago truncatula 1022 914

aThe TF numbers of Arabidopsis and rice japonica are the gene model numbers including alternative splicing.
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TFs predicted from newly sequenced genomes are being added
to PlantTFDB.

PlantTFDB attempts to provide comprehensive informa-
tion for the identified TFs both at the family and at the
gene level. A brief introduction can be found for each
family. In addition to common sequence features derived
from well-known domain database (15, 16) and Gene
Ontology (http://www.geneontology.org/) (17), expression
profiling data derived from UniGene and NCBI GEO reposi-
tory are also available for each predicted TF. Moreover, auto-
matically annotated homologs in related species can also be
found for each TF. With a user-friendly Web interface, all
sequences and annotation information are freely available online
(http://planttfdb.cbi.pku.edu.cn/).

2. Materials

2.1. Sequence Data Whole proteome sequences of five model organisms with com-
pleted genomes were downloaded from genome sequencing
centers (Table 21.3). The Arabidopsis Information Resource
(TAIR) maintains a database of genomic data for the model
plant Arabidopsis thaliana (http://www.arabidopsis.org/). The
genome sequence of the rice sub-species japonica was orig-
inally hosted at The Institute of Genome Research (TIGR)
and moved to Michigan State University in 2007 (http://rice.
plantbiology.msu.edu/), while another rice sub-species indica

Table 21.3
Data source of PlantTFDB

Species and data type Website and institutiona

Arabidopsis genome sequence http://www.arabidopsis.org/
The Arabidopsis Information Resource (TAIR), USA

Rice (japonica) genome sequence http://rice.plantbiology.msu.edu/
Michigan State University, USA

Rice (indica) genome sequence http://rise.genomics.org.cn/
Beijing Genome Institute, China

Poplar, Moss, Green Algae genome
sequence

http://www.jgi.doe.gov/
DOE Joint Genome Institute (JGI), USA

Plant unique transcripts (PUTs) of 17
plants assembled by PlantGDB

http://www.plantgdb.org/
Plant Genome Database (PlantGDB), USA

aRice (japonica) was originally hosted at The Institute for Genomic Research (TIGR) and moved to Michigan State
University in 2007.
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was sequenced by the Beijing Genome Institute (BGI), China
(http://rise.genomics.org.cn/). All other genome sequences are
obtained from the Joint Genome Institute (JGI), the US Depart-
ment of Energy (http://www.jgi.doe.gov/).

For the 17 plants whose genomic sequences were not avail-
able in 2007 when we started to construct PlantTFDB, we
downloaded the assembled transcripts from the Plant Genome
Database (PlantGDB, http://www.plantgdb.org/). By assem-
bling mRNA and EST sequences available in public databanks,
PlantGDB predicted a set of plant unique transcripts (PUTs) for
each organism. Based on those transcripts, we further identified
open reading frames and derived protein sequences using the
framefinder program (http://www.ebi.ac.uk/~guy/estate/).

2.2. Software Tools All data and information are stored in a MySQL relational
database on a Linux server. MySQL is an open source database
management system widely used for both small and large database
applications (http://dev.mysql.com). Queries to the database
are implemented in PHP scripts running in an Apache/PHP
environment. Graphics are drawn using the PHP module of
the GD graphics library. Three-dimensional structure illustration
was created using Molscript (http://www.avatar.se/molscript/)
(18).

The NCBI BLAST tool kit (19) is installed locally for
sequence similarity search. The HMMER package (http://
hmmer.janelia.org/) (20) is used for Hidden Markov Model
(HMM) profile search. HMM profiles of known DNA-
binding domains are obtained from the Pfam database
(http://pfam.sanger.ac.uk/) (16). The ClustalW (21) program
is used for multiple sequence alignment. The Phylip pack-
age (http://evolution.genetics.washington.edu/phylip.html) is
implemented for the construction of the phylogeny trees. The
InterProScan (15) program is employed to identify protein
domains and assign Gene Ontology (GO) (17) terms to the puta-
tive TFs.

3. Methods

3.1. Classification
of TF Families

Like most other homologous proteins, TFs are usually grouped
into families based on the conserved sequences of their DBDs.
DBDs are responsible for the recognition of the cis-regulatory
elements in the promoter and other regulatory regions of target
genes. As stated above, the DBD is used to determine whether
or not a protein could be considered as a putative TF. However,
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domain shuffling and horizontal gene transfer events have been
abundant during evolution. Some of the TFs may contain more
than one type of DBD so the classification of TFs into families is
not always straightforward.

Richemann et al. (1) systematically compared families among
Arabidopsis and other species and summarized the relationship
between DBDs and TF families. Based on the convention they
proposed, we classify all known Arabidopsis TFs into 64 families
(Fig. 21.1). Table 21.4 lists the TF number of each family in
Arabidopsis and the other four model plant species.

There are three different relationships between TF families
and their DNA-binding domains: required, possible, or forbidden
domain. A required domain means that a TF in a certain fam-
ily must contain the corresponding domain. Using two TF fam-
ilies CCAAT-Dr1 and CCAAT-HAP3 as examples (bottom left
in Fig. 21.1), the existence of a Dr1 or HAP3 domain in either
family is required to classify this TF as a CCAAT-Dr1 or CCAAT-
HAP3 family member. A possible domain is defined such that a
TF from a certain family might contain this domain in addition to
the required domain. For instance, a member of CCAAT-HAP3
family might contain a Dr1 domain besides the required HAP3
domain. Finally, a forbidden domain means that it should not be
contained in the TF of a certain family. In the above example, a
CCAAT-Dr1 family member should not contain a HAP3 domain,
otherwise it will be classified as a CCAAT-HAP3 member. In sum-
mary, if a protein contains a HAP3 domain, it is classified into
the CCAAT-HAP3 family no matter whether it contains a Dr1
domain or not. On the other hand, a protein containing only the
Dr1 domain but not the HAP3 domain will be classified into the
CCAAT-Dr1 family.

3.2. Prediction of TFs We combine automated search with manual curation for the iden-
tification of Arabidopsis TFs (Fig. 21.2). A list of 64 TF fami-
lies was obtained based on the fundamental work by Riechmann
et al. (1) as well as from a literature survey. HMM Profiles (20)
are statistical models of multiple sequence alignments and con-
tain position-specific information about the occurrence probabil-
ities of all possible residues for each column in the alignment.
HMMER (http://hmmer.janelia.org/) is an implementation of
profile HMMs for biological sequence analysis. HMMER can be
used to construct profile according to multiple sequence align-
ments, and it can also use a given profile to search for sequences
belonging to the same family with the given profile. Pfam (16) is
a database of protein domains represented by multiple sequence
alignments and HMM profiles built using HMMER. HMM pro-
files of 48 TF families can be found in Pfam and are used in
HMMER search. For the remaining 16 families where HMM pro-
files were not available at the time when we started to construct
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Fig. 21.1. Schemetic representation of the relationship between Arabidopsis TF families and their DNA-binding domains
(DBDs). Squares denote TF families, circles show DBDs obtained from the Pfam database, circles with latches inside indi-
cate the DBDs we constructed. A double-headed arrow connects the DBD which must be contained in the corresponding
TF family, dashed lines link one or more DBDs which might exist within this TF family, dotted lines demonstrate one or
more DBDs which should not be contained in this family.

the database of Arabidopsis TFs, seed sequences were retrieved
from the public protein sequence databases such as GenPept and
Swiss-Prot and were taken as query sequence for BLAST search
against the protein sequences of the Arabidopsis genome. With
more plant genome sequences available, we have accumulated
more data for each of the above 16 families and built HMM
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48 DBD profiles 16 Seed sequences

References

64 TF Families

HMM/BLAST Hits

1922 predicted TFs

Manual inspection

Literature survey

BLAST searchHMMER search

Find seed sequencesRetrieve  DBD profiles

Fig. 21.2. Flowchart of the computational approach for genome-wide identification of
transcription factors from Arabidopsis thaliana. Literature survey through published ref-
erences is the first step to find all TFs characterized by experimental studies. A list of
64 TF families was constructed. HMM profiles of 48 DBDs were retrieved from the Pfam
database and used in HMMER search. Seed sequences of DBDs for 16 families with-
out HMM profiles were retrieved from the public protein sequence databases for BLAST
search. Both HMMER and BLAST search results were manually checked to remove false
positives. A total of 1,922 putative TFs were predicted from the Arabidopsis genome.

profiles for each DBD which can be used in the prediction of TFs
in other species with either whole genome sequence or EST data.

3.3. Annotation To provide sufficient information about the putative TFs, we
made various annotations at both the family and gene levels.
For each TF family, PlantTFDB gives a brief introduction includ-
ing the potential function, the three-dimensional structure of the
DBD, the characterization of the cis-regulatory element bound
by the DBD of the family. For individual TFs, PlantTFDB
shows general information such as database identifier, gene name,
DNA sequence of both genomic and coding region, and protein
sequence. The database of Arabidopsis TFs has the most com-
prehensive annotations benefiting from the rich published results
of genetic and functional investigations of this model organ-
ism (Fig. 21.3). In addition to the general information, DATF
includes the unique information as to whether a TF has been
cloned (11) which can be browsed and searched in the “clone
information” field. BLAST search was performed against well-
known public databases and cross-references are linked to vari-
ous public databases. Putative functional domains are identified
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Gene Information

Splice variants

Gene Sequence

Binding site

Gene structure

Clone information

GOPubMed Reference

Orthologs

Duplication

UniGene

mRNA

CDS Sequence

Protein Information

NLS

PDB hits

SCOP

Prosite

Domain

Pfam

Protein Sequence InterPro 

Gene alias

RefSeq

Fig. 21.3. Schematic demonstration of the annotation for individual TF genes in the PlantTFDB. Two ellipses show
the key fields of “Gene Information” and “Protein Information” linked by “Splice Variants.” Round squares with lines
connected to either “Gene Information” or “Protein Information” show the annotation retrieved from various resources or
cross-references to related databases.

and annotated by InterProScan, and Gene Ontology annotations
are further extracted. In addition, the expression profiles collected
from UniGene EST/cDNA information are also available.

3.4. Ortholog
Identification

Recent genomic studies have already discovered several TF fam-
ilies that are specifically expanded in the plant kingdom. The
ortholog information among different species is predicted using
the BLAST score ratio (BSR), which is widely adopted by
ENSEMBL (http://www.ensembl.org/) and other studies. An
all-against-all BLASTP search with a strict cutoff E-value <1 ×
10–20 was performed, and the BSR value was calculated for each
hit. After comparing results at different BSR values, we chose the
BSR value 0.4 as the cutoff and we retrieved the top sequences in
a species with the largest BSR value as the putative ortholog(s).
Using the bZIP family TF HY5 as an example, we identified
orthologs of HY5 in 13 species (Table 21.5).

HY5 is an important activator for photomorphogenesis,
which is essential for most of the land plants. As expected, all four
land plants with completed genome data have HY5 orthologs.
It was reported that the closest HY5 homologs in green algae
has no COP complex interaction site detected, suggesting that
HY5 might not be essential for this aquatic plant. The fact that
HY5 orthologs have not been found in green algae could also be
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Table 21.5
The orthologs of AtHY5 among different plant species

Species PlantTFDB ID Score ratio Coverage Identity E-value

Physcomitrella patens 213225 0.43 0.82 0.58 4×10−35

Populus trichocarpa fgenesh4_pm.C_LG
_XVIII000127

0.78 0.99 0.78 2×10−68

Oryza sativa
(japonica)

LOC_Os02g10860.1 0.58 0.98 0.69 7×10−49

Oryza sativa
(indica)

OsIBCD000496 0.53 0.95 0.65 2×10−44

Citrus sinensis PTCs00574.1 0.77 0.98 0.81 1×10−68

Glycine max PTGm01858.1 0.59 0.93 0.65 6×10−51

Helianthus annuus PTHa00512.1 0.54 0.71 0.74 3×10−46

Lycopersicon
esculentum

PTLe00971.1 0.69 0.94 0.77 4×10−60

Lotus japonicus PTLj00452.1 0.59 0.92 0.64 6×10−51

Malus x domestica PTMx01004.1 0.76 0.98 0.78 2×10−67

Picea glauca PTPg00432.1 0.43 0.55 0.76 3×10−35

Solanum tuberosum PTSt01300.1 0.64 0.86 0.79 7×10−56

Vitis vinifera PTVv00842.1 0.59 0.8 0.76 4×10−51

due to our overly stringent criteria and the sequence difference
between green alga and other plants. For the species from which
HY5 orthologs were not detected, either genome sequence or
more EST data should be used in the future.

4. Notes

1. Data source and database updating
With the rapid progress of next-generation sequencing tech-
nology, more and more plant genomes have been already or
are being sequenced. Sequence data of both genomic DNA
and mRNA transcripts of different plant lineages become a
rich source for computational identification of plant TFs at
the genome level. We shall update PlantTFDB with the new
release of sequence data of the five model organisms, as well
as other newly sequenced genomes.1

1 The PlantTFDB was updated to version 2.0 in July 2010, with predicted TFs
from more species, and a new interface.
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2. Family name and classification
There is no standard nomenclature for the name of TF fam-
ilies. Some of the families were named after the biologi-
cal processes in which they are involved, and others by the
three-dimensional structures of their DBDs. For example,
the family ARF is referring to a group of auxin responsive
factors, while bHLH is given to a group of TFs with con-
served DBDs that form basic helix loop helix structures. For
the former group, it is reasonable to expect most if not all
of the members are involved in auxin responses-related pro-
cesses.
Although distinct functions might be seen in different TF
families, the family classification implemented in PlantTFDB
should not be taken as the reflection of their biological func-
tions. Functions of the TFs from the same family could be
dramatically different. On the other hand, TFs from differ-
ent families can recognize similar or even identical binding
sites and be involved in the same biological process. For
example, many bZIP family TFs share similar binding motifs
with the bHLH family TFs, and MYB12 was found to coop-
erate with HY5 to regulate the expression of genes from the
anthocyanin pathway.

3. Prediction
During the construction procedure of DATF when the
HMM profiles for some families were not available, we used
DBDs rather than the full-length protein sequence as seed
sequences in BLAST search since members of the same TF
family may share sequence conservation only at the DBD
regions. On the other hand, non-TF proteins which do not
contain DBDs may share sequence similarity with TFs in
other regions in the flanking region of DBDs. We built the
HMM profiles for those families and used them to pre-
dict TFs in other genomes. The best score ratio method
used for ortholog prediction may result in both false posi-
tives and false negatives. On the other hand, phylogenetic
methods reported for small-scale analysis are computation-
ally too expensive for large TF families with dozens or even
hundreds of members. New approaches such as comparative
genomics are being investigated and hopefully can be suc-
cessfully implemented in the future.

4. Annotation
The gene regulatory system is so complex that no single cur-
rent available technology is sufficient to decipher the mech-
anism behind the complex networks. The simple model of
one-to-one relationship between TFs and their binding sites
may not reflect the real world of the regulatory network.
Not only the same binding motif could be recognized by
different TFs from the same or even different families, but
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also the same TF could bind to more than one known cis-
regulatory element. The nonlinear relationship between TFs
and their target genes is the basis of co-regulation underly-
ing the very complex life processes. However, most of the
current TF databases are using relational database systems
such as MySQL. More complex schema or object-oriented
database systems are required to handle more sophisticated
regulatory network information.

In conclusion, the information provided by PlantTFDB
for the predicted TFs should not be taken as a unique ref-
erence. Rather, it may serve as a starting point for further
biological investigations using experimental approaches of
genetic and molecular biology.
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Chapter 22

Practical Computational Methods for Regulatory
Genomics: A cisGRN-Lexicon and cisGRN-Browser for Gene
Regulatory Networks

Sorin Istrail, Ryan Tarpine, Kyle Schutter, and Derek Aguiar

Abstract

The CYRENE Project focuses on the study of cis-regulatory genomics and gene regulatory networks
(GRN) and has three components: a cisGRN-Lexicon, a cisGRN-Browser, and the Virtual Sea Urchin
software system. The project has been done in collaboration with Eric Davidson and is deeply inspired
by his experimental work in genomic regulatory systems and gene regulatory networks. The current
CYRENE cisGRN-Lexicon contains the regulatory architecture of 200 transcription factors encoding
genes and 100 other regulatory genes in eight species: human, mouse, fruit fly, sea urchin, nematode,
rat, chicken, and zebrafish, with higher priority on the first five species. The only regulatory genes
included in the cisGRN-Lexicon (CYRENE genes) are those whose regulatory architecture is validated
by what we call the Davidson Criterion: they contain functionally authenticated sites by site-specific muta-
genesis, conducted in vivo, and followed by gene transfer and functional test. This is recognized as the
most stringent experimental validation criterion to date for such a genomic regulatory architecture. The
CYRENE cisGRN-Browser is a full genome browser tailored for cis-regulatory annotation and inves-
tigation. It began as a branch of the Celera Genome Browser (available as open source at http://
sourceforge.net/projects/celeragb/) and has been transformed to a genome browser fully devoted to
regulatory genomics. Its access paradigm for genomic data is zoom-to-the-DNA-base in real time. A
more recent component of the CYRENE project is the Virtual Sea Urchin system (VSU), an interactive
visualization tool that provides a four-dimensional (spatial and temporal) map of the gene regulatory
networks of the sea urchin embryo.

Key words: cis-regulatory architecture, gene regulatory networks, transcription factors, cisGRN-
Lexicon, cisGRN-Browser, virtual sea urchin.

1. Introduction

When the GRN context is clear, we will use at times the
shorthands “cis-Lexicon” and “cis-Browser”. The cis-Lexicon and
the cis-Browser are conceptually two separate entities, a database
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and a visualization tool; however, from the user’s point of view,
they are intertwined into one integrated software environment for
regulatory genomics.

The cisGRN-Lexicon is a database containing the regulatory
architecture (the genomic regulatory region) of a set of transcrip-
tion factor-encoding genes as well as of a number of other regula-
tory genes. This architecture is presented with full genomic struc-
ture known to date, including transcription factor binding site
sequences, the organization into cis-regulatory modules (CRMs),
and various other types of functional genomics (e.g., logic func-
tions) annotations of the DNA regulatory region revealed by
cis-regulatory analyses and systematic experimental perturbations
of gene regulatory networks. The cisGRN-Lexicon annotations,
accessible though the cisGRN-Browser, include the transcription
factor binding site, the trans acting factor, the protein family to
which the trans acting factor belongs, the cis-Regulatory Mod-
ule (CRM) boundaries, the spatial and temporal functionality of
the CRM, and the molecular function of the encoded protein.
The cisGRN-Lexicon is embedded in and accessed through the
cisGRN-Browser and is supported by various software libraries
of tools for cisGRN-Lexicon annotators. One such system under
development is CLOSE (cis-Lexicon Search Engine), a set of
algorithmic strategies for literature extraction of cis-regulation
articles to speed identification of new CYRENE genes and esti-
mate the “dimension” of the CYRENE gene universe.

We describe the current state of the CYRENE cisGRN-
Browser: its detailed architecture and its planned improvement
in partnership with scientists from the Davidson Lab at the Cali-
fornia Institute of Technology, where the cis-Browser has been in
use for the past few years (18).

The Virtual Sea Urchin software system aims at giving a three-
dimensional representation of the embryo’s cellular anatomy
stages in which gene expression is represented in time and within
specific cell types. It will be integrated with the cisGRN-Browser
and BioTapestry (19, 20) to present a View from the GRNs.

1.1. Algorithms for
CRM Regulatory
Architecture
Prediction

The object of the cis-Lexicon is to create a data set that makes pos-
sible the prediction of cis-regulatory elements in DNA sequences
of unknown function. To achieve a better prediction algorithm,
the data set used must not be contaminated by low-quality data.
Furthermore, the categories for annotation of a gene into the lexi-
con must be based on a relevant model of evolution and biological
function.

Helpful surveys describing the state of the art of algorithms
for prediction of sites, modules, and organization of regula-
tory regions are refs. 21–24. Many algorithms presented in the
literature have aimed at addressing various aspects of the com-
putational prediction problems related to regulatory genomics
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(25–44, 19, 45–47). The present work aims at providing a
database of cis-regulatory architectures, experimentally validated
at the highest level as a basis for the design of the next generation
of regulatory prediction algorithms.

1.2. CYRENE Genes
and GRNs

The cisGRN-Lexicon presently contains the regulatory archi-
tecture of 200 transcription factors encoding genes and 100
other regulatory genes in eight species: human, mouse, fruit fly,
sea urchin, nematode, rat, chicken, and zebrafish. The regula-
tory architecture of each of these CYRENE genes contains only
functionally authenticated sites by site-specific mutagenesis, con-
ducted in vivo, and followed by gene transfer and functional test.
As the objective is to determine how genes are regulated in vivo, it
follows that only in vivo cis-regulation studies should be admitted
to the cis-Lexicon.

This database differs from other databases of gene regula-
tion in several ways. It will be displayed in an interactive way
that presents on one page the whole genome, a workspace for
cis-regulatory analysis, and all the relevant gene functions. Many
annotation categories and functions are unique to the cis-Lexicon.
Experimental evidence required for admittance to the lexicon is
stringently examined.

1.3. The Need for
Integrated Cell
Models

Combining GRN inference experiments (identification of regula-
tory genes (41, 48–50), perturbation experiments (51–52, 49,
53), cis-regulatory analysis (11, 13, 54, 55), etc.) with recent
developments in systems biology imaging (56, 57) will make pos-
sible the construction of a full 4D spatiotemporal map of the
sea urchin embryo. Such a map will fully describe the intra- and
intercellular interactions of the GRN in the developing sea urchin
embryo. The analysis and visualization tools needed to interpret
these data seem to have lagged far behind experiments. Thus, we
have been developing a natural visualization and analysis environ-
ment – the Virtual Sea Urchin (VSU) – that allows researchers to
interrogate the developmental atlas at any time and at any posi-
tion in the developmental process.

2. Materials

2.1. cisGRN-Browser:
Software

The CYRENE cis-Browser was developed in the Eclipse IDE
for Java Developers (http://www.eclipse.org). The foun-
dation of the cis-Browser is the Celera Genome Browser
(58), whose source code is available free on Source-
Forge.net (http://sourceforge.net/projects/celeragb/). The
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cis-Lexicon is stored as an Apache Derby Database (http://db.
apache.org/derby/).

2.2. Virtual Sea
Urchin: Software

Our system is composed of OGRE (an open-source 3D graphics
engine), a C++ visualization application, and data describing the
GRN such as transcription factor binding site affinity and prod-
ucts, cell-signaling pathways, etc. Three-dimensional sea urchin
embryonic models were created using Blender. Future directions
will include the integration of the regulatory network simulator
BioTapestry (19, 20) and the cisGRN-Browser Cyrene. Portions
of the embryo viewing application were provided by OgreMax
(http://www.ogremax.com).

3. Methods

3.1. Cis-Lexicon

3.1.1. Anatomy of the
Lexicon

The clues given by biology for the rules of cis-regulation are copi-
ous; the difficulties lie in creating criteria to represent the clues
in a meaningful way. We must thus develop a classification system
that neither oversimplifies biology, so that categories lose their
physical meaning, nor overcomplicates the issues by creating more
categories than necessary. While biology is inherently resistant to
precise definitions, categories are necessary for the sake of high-
throughput data clustering. The many challenges in creating con-
trolled vocabularies are discussed shortly. The vocabularies of the
cis-Lexicon are based on two guiding principles: (1) vocabularies
should represent phenomena in a way that fits their physical inter-
action and (2) vocabularies should facilitate comparison. Where
possible, the vocabularies are externally linked in such a way that
when the vocabulary is updated, so is the cis-Lexicon.

Cis-Lexicon annotations include the transcription factor
binding site (TFBS), the function of the TFBS, the trans acting
factor, the protein family to which the trans acting factor belongs,
the cis-regulatory module (CRM), the spatial and temporal func-
tionality of the CRM, and the molecular function of the encoded
protein. These categories in the cis-Lexicon were developed for
useful data clustering. When a gene could not be annotated accu-
rately within the constraints of our chosen vocabulary, new cate-
gories were created in order to categorize the cis-regulatory archi-
tecture in a biologically relevant manner.

3.1.2. cis-Regulatory
Ontology

Transcription factor binding sites (TFBS) usually span 6 to 8 bp,
though sometimes many more. Every TFBS in the lexicon is
annotated as performing one or more of the following functions
(more functions may exist in the natural world, but this is the set
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Fig. 22.1. Screenshot from the cis-Browser of the Drosophila transcription factor encoding gene, eve.

of all functions encountered so far) [See Fig. 22.1 for an example
of cis-regulatory function in the cisBrowser]:

• Repression – Indicates that mutating the TFBS increases
gene expression or produces ectopic expression. Repressors
may act “long range,” when the repression effect may tar-
get more than one enhancer, or “short range,” when repres-
sion affects only neighboring activators (59, 60). The func-
tion of repression applies in cases where the repressors inter-
act with the basal transcription apparatus either directly or
indirectly (61).

• Activation – Indicates that mutation decreases gene expres-
sion. An activator TFBS may act over a large genomic dis-
tance or short. See Latchman (62) for further discussion of
some of the many ways a transcription factor can accomplish
activation.

• Signal response – Indicates that the transcription factor has
been shown to be activated by a ligand such as a hormone
(phosphorylation is not included) (63).

• DNA looping – Indicates that the binding factor is involved
in a protein–protein interaction with another binding factor
some distance away that causes the DNA to form one or
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more loops. This looping brings distant regulatory elements
closer to the basal transcription apparatus (64).

• Booster – Indicates that the TFBS does not increase gene
expression on its own but can augment activation by other
TFBSs.

• Input into AND logic – Indicates that the TFBS can activate
gene expression only when two or more cooperating TFBSs
are bound. Assigned to one of at least two TFBSs (14).

• Input into OR logic – Indicates that the TFBS can activate
gene expression when either or both of two or more coop-
erating TFBSs are bound. Assigned to one of at least two
TFBSs (14).

• Linker – Indicates that a TFBS is responsible for communi-
cating between CRMs.

• Driver – Indicates that this TFBS is the primary determining
factor of gene expression. The binding factor appears only in
certain developmental situations and thus is the key input for
directing gene expression. TFBSs that are not drivers usually
bind ubiquitous factors (65).

• Communication with BTA (basal transcription apparatus).
• Insulator – Indicates that the TFBS causes cis-regulatory ele-

ments to be kept separate from one another. Insulators can
separate the cis-regulatory elements of different genes as well
as act as a barricade to keep active segments of DNA free of
histones and remain active (66).

3.1.3. The trans Acting
Factor

The transcription factor binding to the regulatory DNA is anno-
tated as the gene name given in NCBI rather than the name given
to the factor in the literature. For example, while Inagaki refers
to human TF c-Jun (67), this is annotated in the cis-Lexicon as
JUN for consistency. Each transcription factor in the lexicon is
also assigned to a leaf of a transcription factor hierarchy adapted
from TRANSFAC (68) (see Figs. 22.2 and 22.3)). More closely-
related transcription factors may behave more similarly, so that
when the data in the cis-Lexicon are clustered, patterns may be
found by grouping transcription factors according to their evolu-
tionary origins.

3.1.4. cis-Regulatory
Modules

TFBSs occur in groups and each grouping usually directs gene
expression in one temporal and spatial location. The CRM (1)
includes the binding sites responsible for gene expression as well
as the neighboring sequence established to enable the TBFSs
to function correctly. Each CRM in the lexicon is annotated as
functioning in a specific spatial and temporal location. There is
currently no associated ontology for annotating this location in
the lexicon. Exhaustively naming all locations and time points of
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Fig. 22.2. Transcription factor hierarchy (homeodomain family expanded as an example).

an organism’s development is beyond the scope of this project,
though a controlled vocabulary of body parts and stages would
be useful.

3.1.5. Gene Functions Each gene whose cis-regulatory architecture is annotated in the
lexicon is assigned to one of seven gene function categories.
Many ontologies of gene functions already exist, such as the Gene
Ontology (69) and Panther Classification System (70), but the
cis-Lexicon Gene Functions ontology was created with the spe-
cific intent of grouping gene functions so that genes with similar
cis-regulatory architecture are grouped together. The hypothesis
is that housekeeping genes have cis-regulatory architecture dis-
tinct from transcription factor-encoding genes or signaling genes.
GO annotations for each gene indicated in brackets show simi-
larities and differences in gene function annotation between GO
and the cis-Lexicon. See Fig. 22.4 for gene functions in the cis-
Lexicon.
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Fig. 22.3. Distribution of transcription factor encoding genes annotated in the cis-Lexicon categorized by transcription
factor family (68).
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• Cell cycle – Genes involved in cell division that decide when
to replicate DNA, when to divide the cell, etc., especially
before cells terminally differentiate. Example: cyclins run in
the cis-Lexicon: IL3 (Homo sapiens) (71) [extracellular space,
cytokine activity, growth factor activity, etc.]; BCL2 (H. sapi-
ens) (72) [apoptosis, etc.].

• Cytoskeletal – Genes involved in maintaining the structure of
the cell, for example, actin and tubulin. In the cis-Lexicon:
myh4 (M. musculus) (73) [actin binding, myosin filament,
etc.; ASL (G. gallus) (74) [structural constituent of eye lens].

• Differentiation – Genes “expressed in the final stages of given
developmental processes. . . They receive rather than gener-
ate developmental instructions” (2). In the cis-Lexicon: mal-
pha (Drosophila melanogaster) (75) [cell fate specification,
notch signaling pathway, sensory organ development].

• Extracellular – Genes whose product is released from the
cell, such as hormones. These do not include membrane pro-
teins, which could be categorized as housekeeping or signal-
ing. In the cis-Lexicon: Col5A2 (H. sapiens) (76) [eye mor-
phogenesis, skin development, extracellular matrix structural
constituent, etc.]; SOD3 (H. sapiens) (77) [cytoplasm, extra-
cellular region, zinc ion binding, etc.].

• Housekeeping – Genes continuously expressed that regulate
processes inside the cell such as transcription apparatus, ribo-
somes, degradation proteins, and many enzymes. In the cis-
Lexicon: btl (D. melanogaster) (78, 79) [endoderm develop-
ment, glial cell migration, negative regulation of axon exten-
sion, etc.]; BACE1 (Homo sapiens) (80) [proteolysis, pepti-
dase activity, etc.].

• Transcription factor – Genes whose product binds to DNA in
a sequence-specific manner to affect gene expression. Does
not include basal transcription factors. In the cis-Lexicon:
twi (D. melanogaster) (81–84), [specific RNA polymerase II
transcription factor activity, etc.]; Hoxa4 (H. sapiens) (85);
Foxa2 (Mus musculus) (86, 87) [RNA polymerase II tran-
scription factor activity, enhancer binding, etc].

• miRNA – Genes encoding micro RNAs. In the cis-Lexicon:
DmiR-1 (D. melanogaster) (88) [cardiac cell differentiation,
regulation of notch signaling].

• Signaling – Genes acting as part of a signaling pathway
such as hormones, hormone receptors, and kinases. In the
cis-Lexicon: IL4 (M. musculus) (89) [extracellular space, B
cell activation, interleukin-4 receptor binding, etc.]; ins2
(R. norvegicus) (90) [cytoplasm, extracellular space, hor-
mone activity, etc.].
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3.1.6. Quintessential
Diagram Problem

The categories used in the literature to classify the function of
a TFBS are often described in simple terms that prevent the
annotator from fully describing the function according to the cis-
regulatory ontology (see Section 3.1.2). In the literature, a TFBS
is generally declared an “activator” if deletion lowers output and
a “repressor” if deletion increases output. Other more complex
mechanisms may cause increased or decreased expression, such as
DNA looping, communication with basal transcription apparatus,
etc., but these are often unreported in the literature. Ideally, these
more complex mechanisms would be known for each trans act-
ing factor in the cis-Lexicon. Such biochemical clues would make
possible effective data clustering, thus presenting clues for pre-
dicting cis-regulation. For example, DNA looping between two
TFBSs cannot occur at less than a certain minimum distance,
while Su(H), a transcription factor activated by signaling, may
have a maximum distance from the transcription start site while
still being able to direct gene expression of the sea urchin gene,
gcm (9). Our lexicon is designed to handle more complex fields,
but this information is not always available.

Perhaps more cis-regulatory information can be derived from
the quantitative data obtained by mutating a TFBS (Fig. 22.5).
Most literature containing data that meet the criteria of the
cis-Lexicon contains a bar chart quantitatively describing gene
expression as a result of mutating each of the TFBSs individu-
ally and in combination (18). Gene expression is thus a function
of each of the inputs. Gene expression, the output of the function,
is the combined effect of each of the individual inputs. This func-
tion is not simply the sum of the effect of each individual input;
rather, the output depends on the interaction of the inputs. Thus,
describing the gene expression requires a more complicated func-
tion than summing the effects of mutating each TFBS individ-
ually. A generalized mathematical function has been suggested,
but applying the function to a broad range of mutational studies
is difficult (15).

The cis-Lexicon currently does not handle the annotation of
the quantitative data from literature. Knowing the relative impact
of each TFBS on gene expression is important in properly describ-
ing cis-regulatory architecture. Thus a format for collecting these
data that describe the biology effectively needs to be implemented
from quantitative experimental data. Since gene expression can
depend on which nucleotides are mutated within a TFBS, there is
a relatively low certainty associated with these quantitative data,
adding further complexity to the problem.

3.1.7. Examples in the
Lexicon

See Figs. 22.6 and 22.7.
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Fig. 22.6. Comparison of four pax genes in the cis-Lexicon (axis not to scale). The purple
square represents the first exon, the yellow double-ended bar represents the CRM, and
the orange blocks represent the TFBS.
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Fig. 22.7. Annotation progress for transcription factor encoding genes. The percent in parentheses is the percentage of
transcription factor encoding genes in the corresponding genome that have been annotated in the cis-Lexicon. Genome-
wide transcription factor encoding gene totals were taken from the following sources: ∗ – DBD (93), ∗∗ – Panther (70),
† – SpBASE (48), ‡ – (94).

3.2. cis-Browser

3.2.1. Development of
the cis-Browser

The CYRENE cis-Browser is a genome browser tailored for cis-
regulatory annotation and investigation. It began as a branch of
the Celera Genome Browser, which is available as open source at
http://sourceforge.net/projects/celeragb/. The features of the
original Celera Genome Browser centered on viewing and anno-
tating gene transcripts, so many new capabilities were added to
address our new focus.

First, support for cis-regulatory modules (CRMs) and tran-
scription factor binding sites (TFBSs) was added. Each of these
new genomic features possesses several unique properties and
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associated information. Unlike gene transcripts, whose borders
are determined solely by their exons, the boundaries of CRMs can
extend beyond the known binding sites contained inside (e.g., if
evidenced by sequence conservation). It is often known whether
or not whole CRMs or individual binding sites are conserved
across species, and this information can be added and viewed via
the cis-Browser. Each TFBS has a specific factor (or, occasionally,
a family of related factors) that binds there. The NCBI GeneID
or name for this factor and its effect on gene expression can be
annotated and viewed in the cis-Browser. Support for new types
was added by creating new Java classes. For example, the class
CuratedCRM was created to represent CRMs, and the existing
class CuratedTranscript (from the Celera Genome Browser) was
used as a reference, since transcripts and CRMs share key traits.

The focus of the cis-Browser is on annotations that are sup-
plemental to known genes, rather than on discovering transcripts.
Therefore, instead of requiring annotators to input the genes
themselves, the capability was added to download genes directly
from NCBI. Within the cis-Browser application, the user can
search for genes (see Fig. 22.8) just as in the NCBI Entrez Gene
web site. When a gene is selected from the results, the genomic
sequence of the region is downloaded and all the gene’s tran-
scripts and exons are automatically displayed. Data are accessed
via the NCBI Entrez Programming Utilities service (http://
eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html).

In the Celera Genome Browser, properties of genomic enti-
ties could be of two types: plain text (e.g., names) or a choice from
a list of options (e.g., evidence type: cis-mutation, footprinting,
etc). Properties could be nested, so that a single (parent) property
could contain inside it several additional (child) properties. For
cis-regulatory annotation, we required accurate recording of com-
plex properties. First, we needed to support properties containing

Fig. 22.8. Searching NCBI Entrez Gene within the cis-Browser.
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multiple interdependent parts: for example, when annotating the
factor that binds at a certain site, we must keep track of the fac-
tor name, its NCBI GeneID, and any synonyms mentioned in
the literature, so that they do not fall out of sync. Second, we
needed to support multiple values for a single property: multiple
synonyms, multiple cis-regulatory functions, and conservation in
multiple species.

For properties with multiple parts, we created rich dialog
boxes ensuring that the user enters correct information. It would
be tedious to ask the user to flip back and forth between the cis-
Browser and the NCBI Entrez Gene web site to find GeneIDs for
each binding factor, and it would be error-prone to make the user
type in the factor names and GeneIDs, especially when the same
factor binds at several sites for a single target gene. Therefore, the
cis-Browser provides a special window for annotating the factor
that binds to each site (see Fig. 22.9), so that the user can search
the Entrez Gene site from within the browser; the search is auto-
matically restricted to the species being annotated. If the same
factor binds at multiple sites, for the second and later sites the
user can select the gene from a menu rather than re-entering the
information. There are similar windows for annotating conserved
species (which searches NCBI for the correct scientific names
and NCBI ID) and cis-regulatory functions (which ensures that
the cis-regulatory ontology is followed in naming the regulatory

Fig. 22.9. Bound factor annotation with search results.
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Fig. 22.10. Conserved species annotation with search results.

functions and verifies that PMIDs are typed correctly) – see Figs.
22.10 and 22.11.

Three different mechanisms were tested to support pro-
perties with multiple values; the first two are described in
Notes section below. The problem was that in the Cel-
era Genome Browser data model, only one property value
can be assigned to a given name. In the GAME XML
format supported by the browser, this is represented by
the tag <property name=“property-name” value=
“property-value”/>. It is not valid to give the same prop-
erty more than one value; e.g., <property name=“synonym”
value=“gcm”/><property name=“synonym” value=
“spgcm”/>. We ultimately decided to represent a set of
values for a single property as one property containing mul-
tiple child properties, one for each of the desired values,
where each child has a unique name, for example <property
name=“synonyms” value=“gcm, spgcm”><property
name=“synonym1” value=“gcm”/><property name=
“synonym2” value=“spgcm”/></property> (the child
property names do not matter, since only their values are used).
The value of the parent property is generally a human-readable
summary of the contents, for convenience of display, but again
this does not matter, since only the values of the children are
used in computations and searches.

The Celera Genome Browser was one part of a three-
tiered architecture and communicated with an application server
to access a relational database back end. It supported loading
genomic features from files, but this was meant to supplement the
database (with, for example, output from bioinformatics tools),
not replace it. Initially, our cis-Lexicon was simply a collection of
these XML files. Searching the lexicon required the cis-Browser
to open, read, and process every one of these files – and this was
repeated for every individual search request.
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Fig. 22.11. Regulatory function annotation.

At one point we created an ad hoc index as an interim measure
to allow certain restricted queries (e.g., list all genes in the lexicon
or ask whether a given gene is in the lexicon). Later, we imple-
mented the cis-Lexicon as a true database using Apache Derby,
an open-source relational database engine. Since Apache Derby
is implemented entirely in Java, the cis-Browser remains entirely
cross-platform. Derby can be run either in embedded mode,
where the database is stored and accessed locally, or as a network
client, where the database is stored remotely and accessed via a
server. This allows the cis-Lexicon to be packaged with the cis-
Browser, for ease of access, or to be stored in one central loca-
tion, for ease of updating. Relational databases such as Derby
support automatic indexing of specific fields in a database record.
By indexing the NCBI GeneID field of gene records, for exam-
ple, searching for genes by GeneID immediately becomes fast.
Relational databases also support foreign keys, which ensure that
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values intended to reference other entities are actually valid. For
example, if the bound factor for a binding site is recorded as gene
373400, then the database either ensures that gene 373400 is
present in the cis-Lexicon or rejects the annotation.

3.2.2. The CYRENE
cis-Browser Interface

The cis-Browser interface has the same organization as the orig-
inal Celera Genome Browser. The cis-Browser application win-
dow is split into four regions (clockwise from top left): the Out-
line View, the Annotation View, the Subview Container, and the
Property Inspector View (see Fig. 22.12). The Outline View dis-
plays in a hierarchical tree format the species, chromosomes, and
sequences loaded by the cis-Browser and ready for analysis. The
Annotation View displays the locations of genomic features (e.g.,
transcripts, CRMs) on the sequence currently being examined.
The Subview Container shows the user a set of views specific to
the currently selected feature, and the Property Inspector View
shows the properties of the selected feature in textual form.

The Annotation View allows real-time zooming from a
chromosome-wide view down to the individual nucleotide level.
When the user clicks on a genomic feature, information specific to
the feature is visible in the Subview Container and the Property
Inspector View. The Annotation View displays genomic features
in tiers (horizontal rows grouping features according to their
source) so that information from multiple sources is not inter-
mixed and confused; in Fig. 22.13, for example, mapped Solexa

Fig. 22.12. The cis-Browser window.
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reads are grouped separately from genomic transcripts. One spe-
cial tier in the Annotation View is the workspace, which is the tier
that contains genomic features currently being edited. Features
loaded from data sources such as XML files or the cis-Lexicon
are considered immutable, so a copy must be made and placed in
the workspace before it can be modified. New features added by
the annotator, such as CRMs and binding sites, are always in the
workspace.

Each type of genomic feature has particular traits that dis-
tinguish it from other types. For example, transcripts are trans-
lated into proteins and BLAST hits are the result of comparisons
between different sequences. Therefore, viewing the translation
of codons into amino acids is relevant only for transcripts, while
examining the differences between the current sequence and a
sequence that was searched against it is relevant only for BLAST
hits. The Subview Container is the location for views such as
these. When a feature is selected in the Annotation View, only the
views relevant to that type of feature are shown in the Subview
Container. Only one such view is shown at a time, to maximize
the visible area; the rest are shown as tabs that the user may click
on to switch to that view.

Every genomic feature has certain associated properties, such
as name, NCBI accession number, or date of curation. The Prop-
erty Inspector View displays these properties as a two-column
table giving the name of each property on the left and the value
on the right. Properties can be edited by double-clicking the cur-
rent value. If the value is a simple string, then it can be edited
in place; if it is more complex, such as binding factors, then a
dialog box appears. Property changes affecting how the feature
appears in the Annotation View are reflected in real time: when
the name of a gene or CRM is modified, the new name appears
immediately.

One subview (i.e., view appearing in the Subview Container)
of critical importance is the Consensus Sequence View, which dis-
plays the sequence of the selected feature and the surrounding
region and is also used to mark the location of new features. The
user simply clicks and drags to select a sequence. Right-clicking
shows a menu with options to create a transcript, CRM, or TFBS.
The seqFinder feature quickly locates the exact coordinates of
a sequence appearing in a published paper. Given a region of
sequence to search within (e.g., a gene and its flanking sequence),
the seqFinder lets the user type in only the minimum number of
nucleotides to uniquely find the paper’s sequence. For each letter
the user types, the seqFinder tells whether the sequence typed so
far is found more than once (i.e., multiple ambiguous matches,
so more input is necessary), exactly once (i.e., a perfect match; no
more typing needed), or never (i.e., a typo or possibly a true mis-
match between the paper’s sequence and the reference genome).
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The user need only type a few letters from the beginning and then
from the end to uniquely identify the entire sequence. When the
start and end coordinates are known, the seqFinder automatically
selects the sequence within the Consensus Sequence View. Typing
the minimum sequence necessary lets the user locate the precise
coordinates quickly yet accurately.

3.2.3. Annotation with
the cis-Browser

To enter a genomic feature, the annotators first input the coordi-
nates by locating them with the seqFinder. The relevant proper-
ties such as names, binding factors, cis-regulatory functions, and
sequence conservation are set via the Property Inspector View.
The Annotation View lets one do quick sanity checks – are the
binding sites located upstream, downstream, or within introns of
the regulated gene, as is usually the case? Are the CRMs of a rea-
sonable size?

The annotators’ work is saved as XML files in the GAME for-
mat, rather than directly input into the cis-Lexicon. This allows
easy backup and sharing of past work and also prevents clutter-
ing the database with half-finished or faulty annotations. A spe-
cial software tool is required to move the annotations from these
intermediate files into the cis-Lexicon; forcing the use of inter-
mediate files and preventing unauthorized annotators from mod-
ifying the cis-Lexicon directly lets us keep the database at a strict
high quality. An experienced annotator can verify the work of a
trainee before it is entered into the cis-Lexicon.

3.3. Virtual Sea
Urchin

We have worked closely with the Davidson laboratory at CalTech
to produce a Virtual Sea Urchin prototype. The VSU uses spatial
models and a graphics engine to simulate the four-dimensional
sea urchin embryo, allowing the researcher to probe the GRN at
levels of granularity from the multicellular embryo to the gene-
regulatory network of an individual cell type. The embryo models
were created by extrapolating to three dimensions cross-sectional
color-coded tracings from photomicrographs (17).

The Virtual Sea Urchin currently provides models for the
Strongylocentrotus purpuratus embryo at 6, 10, 15, 20, and 24 h.
Cell types are defined by ambient and diffuse coloring as well as
shape. Gene expression data are visible at a glance on an embry-
onic cell type using emission coloring (intensity of coloring is pro-
portional to intensity of expression).

The VSU model of embryonic development will eventually
be configurable, featuring realistic cell models and dynamics sim-
ulators. In toto imaging (56, 57) of the sea urchin embryo will
enhance the model’s accuracy and resolution, letting researchers
probe the regulatory network activity per cell. We will ulti-
mately combine the cis-regulatory sequence-analysis capabilities
of CYRENE and the network building, visualization, and simu-
lation capabilities of BioTapestry with the temporal and spatial
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Fig. 22.14. Virtual Sea Urchin, BioTapestry, and Cyrene integration. In order to model the gene regulatory network of the
developing sea urchin embryo completely, tools that specialize in analyzing different perspectives of the network must be
integrated. BioTapestry operates at the network level, allowing users to manipulate and simulate network interactions.
Cyrene operates at the DNA level, providing cis-regulatory module and binding site definition and other DNA sequence
analysis. The Virtual Sea Urchin maps regulatory network information into space and time. The interoperability among
these three views is a central component of future work.

analysis of the 4D Virtual Sea Urchin to yield a complete charac-
terization of the GRN (see Fig. 22.14).

4. Notes

1. Gene naming
Creating a controlled vocabulary starts with the name of
the gene, as discussed previously (18), although there has
been a large effort to establish common names across species
(95). We would like to know the primary ortholog of some
gene we have annotated to observe the similarities of cis-
regulatory architecture across species. Our efforts toward
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Table 22.1
Examples for gene name translation between mouse and
Drosophila

Mouse Drosophila References

Beta-catenin Armadillo van Noort et al. (2002) (103)

Cux-1 Cut Sharma et al. (2004) (104)
TLE-4 Groucho Sharma et al. (2004) (104)

six3, six6 So López-Ríos et al. (2003) (105)

such a gene name translation table are only in the nascent
stages. Examples for gene name translation between mouse
and Drosophila are shown in Table 22.1. A gene occurring
in two species is more likely to have a similar cis-regulatory
architecture if the two genes are related by evolution and
have a conserved function. Sets of genes meeting these cri-
teria we have termed Davidson Orthologs. The method usu-
ally employed for determining homology is by sequence
rather than conserved function. orthoMCL (96) and inpara-
noid (97) are examples of this kind of ortholog table. While
the latter definition of ortholog is more easily searched in a
database of genes automatically, the definition is not as strin-
gent.

2. CRM boundaries
TFBSs are usually well described and require no guesswork
by the annotator, but CRMs are often not well defined in
the literature. Some of this confusion stems from the lack
of a precise definition of the function of a CRM; addition-
ally, many research groups are not interested in finding the
boundaries of CRMs and limit their scope to discovery of
TFBSs. When annotating the cis-regulatory architecture of a
gene, the annotator often must make certain assumptions
about the boundaries of a CRM that can be classified as
follows (examples are referenced): (1) CRMs are not dis-
cussed in the literature and the annotator defines the CRM
by the minimal sequence that correctly directs gene expres-
sion, usually approximated to within 100 bp (96). (2) CRMs
are not discussed in the literature, but a graph in the paper
shows sequence similarity to the same gene in other species
(98). The annotator defines the CRM as the sequence most
conserved in other species. If a sequence remains highly sim-
ilar over a great evolutionary distance, there must be selec-
tive pressure to conserve the sequence, and therefore the
sequence probably plays an important role in the organ-
ism. (3) CRMs are not discussed in the literature and the
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annotator defines the CRM by most extreme TFBSs deter-
mined to act in a specific location (99). That is, if three
TFBSs are found to drive gene expression in a cell, the CRM
annotation goes from the first nucleotide of the first TFBS to
the last nucleotide of the last TFBS. Overall uncertainty and
lack of consistency in CRM annotation reduce the quality of
data on CRM boundaries.

3. Caveats in Davidson criteria
While the cis-Lexicon seeks to collect only the most reliable
data, many uncertainties remain. Mutational studies show
that a certain TFBS is important for correct gene expression,
but the factor that binds to the site is not immediately cer-
tain. The sequence probably contains a transcription factor
binding motif, so the factor that binds can often be guessed.
In some annotations, the experimentalist has shown that a
particular transcription factor binds to the TFBS in an assay
(100) or that knockdown of the transcription factor also
causes a change in gene expression. Such confirmations of
trans acting factor are not always reported in the literature.

4. Uncertainty in identifying the trans acting factor
Often in the literature the exact transcription factor bind-
ing to a TFBS is not known, but the transcription factor
family to which the trans acting factor belongs is reported;
Shen and Ingraham (101) report an E-Box trans activator.
Sometimes the authors report that the trans acting factor
could be one of several; for instance, Clark et al. (102) report
that either an RAR/RAR or RAR/RXR dimer activates tran-
scription. The TFBS cannot be compared to others in the
cis-Lexicon since the trans acting factor is not known, and
the TFBS loses its usefulness in the data set for clustering
and prediction. The transcription factor hierarchy described
above (Fig. 22.2) was added as an annotation tool to com-
bat this problem. Trans acting factors can be clustered at
different levels of the transcription factor hierarchy.

5. cis-Lexicon search engine
A great challenge in the annotation process has been find-
ing literature relevant to building the cis-Lexicon. So far the
literature has been located by PubMed or Google Scholar
searches or by browsing references describing previously
annotated genes (Fig. 22.15 shows journals cited in the cis-
Lexicon). A formalized search process will rapidly uncover
relevant literature; in addition, it will help determine the
number of genes studied according to the Davidson crite-
ria and give an estimate of cis-Lexicon completeness. When
the cis-Lexicon is declared complete, searches will have to be
performed continually to find new data. To accomplish these
goals, the CLOSE Project (cis-Lexicon Ontology Search
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Fig. 22.15. Journals referenced in the cis-Lexicon.

Engine) aims to create a set of algorithmic strategies for lit-
erature extraction of cis-regulation articles.
PubMed cannot perform unrestricted phrase search-
ing of citations and abstracts; only phrases in the
PubMed Index are found. If a phrase is not in the
Index, then a PubMed search cannot return exact
matches, even if it appears in citations or abstracts.
Instead, the query is treated as a standard non-phrase
search, yielding almost entirely irrelevant results (http://
www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_450.
html). This prevents the use of PubMed for advanced
text-based queries. MeSH terms are not assigned consis-
tently enough to make possible comprehensive searches by
keyword alone (see, for example, Yuh et al. (13), which is
not assigned a term for Base Sequence). Google does not
yet offer an API to access Google Scholar, and the results
of searching PubMed via standard search engines (Google,
Yahoo, etc.) lack known important papers (unpublished
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data). All of these point to the need for a specialized search
engine to find the most relevant papers.

6. Complex annotations in the cis-Browser
Three different mechanisms for making complex annota-
tions with multiple values were tested. The first was to
extend the GAME XML format with a new tag for each
new type of data. This method was explored first because
supporting multiple complex values appeared analogous
to storing annotator comments, which was already sup-
ported by the Celera Genome Browser. According to the
Genome Browser data model, comments are completely dis-
tinct from properties. In the XML format, each comment
was stored in a <comment> tag containing custom author
and date attributes. It therefore seemed reasonable to add
a <cisreg_function> tag with function location and
time attributes. Multiple <cis_reg_function> tags can
be associated with a single genomic entity, allowing mul-
tiple functions to be annotated. This required significant
work in modifying not only the XML parser itself but all
of the loading code governing the interactions between the
XML parser (and other possible storage implementations)
and the browser. A more general solution was deemed nec-
essary with the prospect of additional complex annotations,
since it would be infeasible to make similar changes multiple
times.
The second mechanism was the addition of “facts,” a new
data type differing from properties in that multiple
facts can be associated with the same name. Custom
attributes could be replaced by child facts. This led to
a straightforward conversion of <cisreg_function>
tags to nested facts: <cisreg_function func-
tion=“booster” location=“mesoderm” time=
“24h”/> became <fact name=“cisreg_function”
value = “booster”><fact name = “location”
value=“mesoderm”/><fact name=“time” value
=“24h”/></fact>. New facts could be added to store
interspecies conservation and bound factors without modi-
fying the parser or loading code. However, the format was
still not standard GAME XML, and therefore could not be
read by the Celera Genome Browser (which, being open
source, is still under development) or other applications
using the GAME format.
The desire to keep compatibility with the Genome Browser
led us to consider the third option of using only nested prop-
erties, described in Section 3.

7. Java XML parsing
Two significant issues arose in XML parsing with Java, the
first concerning external DTD loading. XML data received
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from the NCBI Entrez Programming Utilities service always
refer to DTDs located on NCBI’s servers. The XML lan-
guage requires parsers always to access the DTD, and the
extra time required to download the DTD whenever such
an XML file is parsed led to difficult-to-trace slowdowns
in the cis-Browser application. The correct solution was a
custom org.xml.sax.EntityResolver implementation return-
ing cached copies of NCBI files. Once given to an XML-
Reader object, it will utilize the cached copies rather than
fetching the remote originals.
Second, computers with an old version of Java 6
may run out of memory when parsing large XML
files, even when using efficient parsing methods (see
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=
6536111). The easiest solutions are to use Java 5 if available
or to upgrade to a more recent version of Java 6.

8. Virtual Sea Urchin embryo modeling
Producing the three-dimensional models for the Virtual
Sea Urchin’s 3D graphics engine is currently laborious;
an embryology domain expert works with a 3D computer
graphics and modeling software expert to create the embry-
onic models using a software suite such as Maya or Blender.
These models are then exported and integrated into a format
compatible with the VSU.

We can streamline this process by animating the anatom-
ical structure using a hierarchy of cells and cell types that
completely categorize the embryo at all relevant time slices.
This hierarchical tree representation, in which each tree level
defines the embryo at a specific time and which is defined
by the experimentalist, can be visualized by meiotically split-
ting cells into appropriate cell types. With this new embryo
representation, experimentalists can interact directly with the
VSU and easily define embryo development without need-
ing outside expertise.

Acknowledgments

The support of the National Science Foundation under grant DBI
0645955 is acknowledged with gratitude. We would also like to
acknowledge the tremendous impact on this work of our collabo-
rator, Eric H. Davidson of the California Institute of Technology,
who has guided every step of our efforts. This work would not
have been possible without the contributions of three generations



Practical Computational Methods for Regulatory Genomics 395

of annotators, most notably Tim Johnstone, Jake Halpert, and
David Moskowitz. (The first generation was David Moskowitz,
Rohan Madamsetti, and Sanjay Trehan; the second generation
was Tamar Melman, Mark Grabiner, and Kyle Schutter; the third
generation is Tim Johnstone, Jake Halpert, Mei Cao, Kenneth
Estrellas, Nicole Noronha, and Daniel Yang.) We would also like
to thank Andy Ransick, Andy Cameron and Russell Turner for
many discussions and valuable suggestions. Last but not least,
many thanks go to Erin Klopfenstein for her outstanding work
and many valuable contributions to the CYRENE Project.

References

1. Davidson, E.H. (2001) Genomic regulatory
systems: In Devel and evol, Academic Press,
San Diego, CA.

2. Davidson, E.H., and Erwin, D. (2006) Gene
regulatory networks and the evolution of ani-
mal body plans. Science 311, 796–800.

3. Davidson, E.H. (1968) Gene activity in early
development. Academic Press, New York, NY.

4. Sea Urchin Genome Consortium. (2006)
The genome of the sea urchin Strongy-
locentrotus purpuratus. Science 314,
941–952.

5. Samanta, M.P., Tongprasit, W., Istrail, S.
et al. (2006) The transcriptome of the sea
urchin embryo. Science 314, 960–962.

6. Erwin, D.H., and Davidson, E.H. (2009)
The evolution of hierarchical gene regulatory
networks. Nature Rev Gen 10, 141–148.

7. Davidson, E.H., Rast, J.P., Oliveri, P. et al.
(2002) A genomic regulatory network for
development. Science 295, 1669–1678.

8. Britten, R.J., and Davidson, E.H. (1969)
Gene regulation for higher cells: a theory. Sci-
ence 165, 349–357.

9. Ransick, A., and Davidson, E. (2006) cis-
regulatory processing of Notch signaling
input to the sea urchin glial cells missing gene
during mesoderm specification. Dev Biol 297,
587–602.

10. Oliveri, P., Tu, Q., and Davidson, E.H.
(2008) Global regulatory logic for specifica-
tion of an embryonic cell lineage. Proc Natl
Acad Sci USA 105, 5955–5962.

11. Yuh, C.H., and Davidson, E.H. (1996)
Modular cis-regulatory organization of
Endo16, a gut-specific gene of the sea urchin
embryo. Development, 122, 1069–1082.

12. Yuh, C.H., Bolouri, H., and Davidson, E.H.
(1998) Genomic cis-regulatory logic: exper-
imental and computational analysis of a sea
urchin gene. Science 279, 1896–1902.

13. Yuh, C.H., Dorman, E.R., Howard, M.L.
et al. (2004) An otx cis-regulatory mod-

ule: a key node in the sea urchin endomeso-
derm gene regulatory network. Dev Biol 269,
536–551.

14. Istrail, S., De-Leon, S.-T., and Davidson, E.
(2007) The regulatory genome and the com-
puter. Dev Biol 310, 187–195.

15. Istrail, S., and Davidson, E. (2005) Logic
functions of the genomic cis-regulatory
code 2005. Proc Natl Acad Sci USA 102,
4954–4959.

16. Levine, M., and Davidson, E.H. (2005)
Gene regulatory networks for develop-
ment. Proc Natl Acad Sci USA 102,
4936–4942.

17. Davidson, E.H. (2006) The regulatory
genome: gene regulatory networks in develop-
ment and. Academic Press, San Diego, CA.

18. Tarpine, R., and Istrail, S. (2009) On the
concept of Cis-regulatory information: from
sequence motifs to logic functions. Algo-
rithmic Bioprocesses In (Condon, A., Harel,
D., Kok, J.N., Salomaa, A., and Winfree, E.
Eds.) pp. 731–742 Springer-Verlag, Berlin
Heidelberg.

19. Longabaugh, W.J.R., Davidson, E.H., and
Bolouri, H. (2005) Computational represen-
tation of developmental genetic regulatory
networks. Dev Biol 283, 1–16.

20. Longabaugh, W.J.R., Davidson, E.H., and
Bolouri, H. (2009) Visualization, documen-
tation, analysis, and communication of large-
scale gene regulatory networks. Biochem Bio-
phys Acta 1789, 363–374.

21. Stormo, G.D. (2000) DNA binding sites:
representation and discovery. Bioinformatics
16, 16–23.

22. Wasserman, W.W., and Sandelin, A. (2004)
Applied bioinformatics for the identification
of regulatory elements. Nature Rev Gen 5,
276–287.

23. Sandelin, A. (2004) In silico prediction of cis-
regulatory elements. Karolinska Institutet.
Stockholm, Sweden, 4–130.



396 Istrail et al.

24. Tompa, M., Li, N., Bailey, T.L. et al. (2005)
Assessing computational tools for the dis-
covery of transcription factor binding sites.
Nature Biotechnol 23, 137–144.

25. Hannenhalli, S., and Levy, S. (2001) Pro-
moter prediction in the human genome.
Bioinformatics 17, S90–S96.

26. Hannenhalli, S., and Levy, S. (2002) Predict-
ing transcription factor synergism. Nucleic
Acids Res 30, 1–8.

27. Hannenhalli, S., Putt, M.E., Gilmore, J.M.
et al. (2006) Transcriptional genomics asso-
ciates FOX transcription factors with human
heart failure. Circulation J Am Heart Assoc
114, 1269–1276.

28. Singh, L.N., Wang, L.S., and Hannenhalli,
S. (2007) TREMOR—a tool for retriev-
ing transcriptional modules by incorporating
motif covariance. Nucleic Acids Res 35,
7360–7371.

29. Markstein, M., Markstein, P., Markstein, V.
et al. (2002) Genome-wide analysis of clus-
tered dorsal binding sites identifies putative
target genes in the Drosophila embryo. Dev
Biol 99, 763–768.

30. Linhart, C., Halperin, Y., and Shamir, R.
(2008) Transcription factor and microRNA
motif discovery: the Amadeus platform and
a compendium of metazoan target sets.
Genome Res 18, 1180–1189.

31. Tompa, M. (1999) An exact method for
finding short motifs in sequences, with appli-
cation to the ribosome binding site problem.
7th International Conference Intelligent Sys-
tems for Molecular Biology, 262–271.

32. Sinha, S., and Tompa, M. (2003) Perfor-
mance comparison of algorithms for finding
transcription factor binding sites. Proceedings
of the 3rd IEEE Symposium on Bioinformatics
and Bioengineering, 213.

33. Blanchette, M., Schwikowski, B., and
Tompa, M. (2002) Algorithms for phy-
logenetic footprinting. J Comput Biol 9,
211–223.

34. Wasserman, W.W., and Fickett, J.W. (1998)
Identification of regulatory regions which
confer muscle-specific gene expression. J Mol
Biol 278, 167–181.

35. Benos, P.V., Bulyk, M.L., and Stormo, G.D.
(2002) Additivity in protein-DNA interac-
tions: how good an approximation is it?
Nucleic Acids Res 30, 4442–4451.

36. Keich, U., and Pevzner, P.A. (2002) Sub-
tle motifs: defining the limits of motif
finding algorithms. Bioinformatics 18,
1382–1390.

37. Ng, P., Nagarajan, N., Jones, N. et al. (2006)
Apples to apples: improving the performance
motif finders and their significance analy-

sis in the Twilight Zone. Bioinformatics 22,
e393–e401.

38. Badis, G., Berger, M., Philippakis, A. et al.
(2009) Diversity and complexity in DNA
recognition by transcription factors. Science
324, 1720–1723.

39. Berger, M., Badis, G., Gehrke, A. et al.
(2008) Variation in homeodomain DNA
binding revealed by high-resolution anal-
ysis of sequence preferences. Cell 133,
1266–1276.

40. Noyes, M.B., Christensen, R.G.,
Wakabayashi, A. et al. (2008) Analysis of
homeodomain specificities allows the family-
wide prediction of preferred recognition
sites. Cell 133, 1277–1289.

41. Cameron, R.A., Rast, J.P., and Brown, C.T.
(2004) Genomic resources for the study of
sea urchin development. Methods Cell Biol
74, 733–757.

42. He, X., Ling, X., and Sinha, S. (2009) Align-
ment and prediction of cis-regulatory mod-
ules based on a probabilistic model of evolu-
tion. PLoS Comput Biol 5, e100299.

43. Li, N., and Tompa, M. (2006) Analysis of
computational approaches for motif discov-
ery. Algorithms Mol Biol 1, 1–8.

44. Li, X., Zhong, S., and Wong, W.H. (2005)
Reliable prediction of transcription fac-
tor binding sites by phylogenetic verifi-
cation. Proc Natl Acad Sci USA 102,
16945–16950.

45. Papatsenko, D., and Levine, M. (2005)
Quantitative analysis of binding motifs medi-
ating diverse spatial readouts of the dorsal
gradient in the Drosophila embryo. Proc Natl
Acad Sci USA 102, 4966–4971.

46. Pilpel, Y., Sudarsana, P., and Church, G.M.
(2001) Identifying regulatory networks by
combinatorial analysis of promoter elements.
Nature Genet 29, 153–159.

47. Zhu, Z., Pilpel, Y., and Churge, G.M. (2002)
Computational identification of transcription
factor binding sites via a transcription-factor-
centric clustering (TFCC) algorithm. J Mol
Biol 318, 71–81.

48. Howard-Ashby, M., Materna, S.C., Brown,
C.T. et al. (2006) Identification and charac-
terization of homeobox transcription factor
genes in Strongylocentrotus purpuratus, and
their expression in embryonic development.
Dev Biol 300,74–89.

49. Oliveri, P., Carrick, D.M., and Davidson,
E.H. (2002) A regulatory gene network that
directs micromere specification in the sea
urchin embryo. Dev Biol 246, 209–228.

50. Calestani, C., Rast, J.P., and Davidson, E.H.
(2003) Isolation of pigment cell specific
genes in the sea urchin embryo by differen-



Practical Computational Methods for Regulatory Genomics 397

tial macroarray screening. Development 130,
4587–4596.

51. Imai, K.S., Levine, M., Satoh, N. et al.
(2006) Regulatory blueprint for a chordate
embryo. Science 312, 1183–1187.

52. Ransick, A., Rast, J.P., Minokawa, T.
et al. (2002) New early zygotic regulators
expressed in endomesoderm of sea urchin
embryos discovered by differential array
hybridization. Dev Biol 246, 132–147.

53. Stathopoulos, A., Van Drenth, M., Erives,
A. et al. (2002) Whole-genome analysis of
dorsal-ventral patterning in the Drosophila
embryo. Cell 111, 687–701.

54. Revilla-i-Domingo, R., Minokawa, T., and
Davidson, E.H. (2004) R11: a cis-regulatory
node of the sea urchin embryo gene network
that controls early expression of SpDelta in
micromeres. Dev Biol 274, 438–451.

55. Lickert, H., and Kemler, R. (2002) Func-
tional analysis of cis-regulatory elements con-
trolling initiation and maintenance of early
Cdx1 gene expression in the mouse. Dev Dyn
225, 216–220.

56. Megason, S., and Fraser, S. (2003) Digitizing
life at the level of the cell: high-performance
laser-scanning microscopy and image analy-
sis for in toto imaging of development. Mech
Dev 120, 1407–1420.

57. Megason, S., and Fraser, S. (2007) Imaging
in systems biology. Cell 130, 784–795.

58. Turner, R., Chaturvedi, K., Edwards, N.
et al. (2001) Visualization challenges
for a new cyberpharmaceutical computing
paradigm, Proceedings of the Symposium on
Large-Data Visualization and Graphics, San
Diego, CA.

59. Gray, S., Szymanski, P., and Levine, M.
(1994) Short-range repression permits mul-
tiple enhancers to function autonomously
within a complex promoter. Genes Dev 8(15),
1829–1838.

60. Courey, A., and Jia, S. (2001) Transcriptional
repression: the long and the short of it. Genes
Dev 15, 2786–2796.

61. Nakao, T., and Ishizawa, A. (1994) Develop-
ment of the spinal nerves in the mouse with
special reference to innervation of the axial
musculature. Anat Embryol 189, 115–138.

62. Latchman, D. (2008) Eukaryotic transcrip-
tion factors. Fifth Edition, Academic Press,
London.

63. Barolo, S., and Posakony, J. (2002) Three
habits of highly effective signaling path-
ways: principles of transcriptional control by
developmental cell signaling. Genes Dev 16 ,
1167–1181.

64. Zeller, R., Griffith, J., Moore, J. et al.
(1995) A multimerizing transcription fac-

tor of sea urchin embryos capable of loop-
ing DNA. Proc Natl Acad Sci USA 92,
2989–2993.

65. Smith, J., and Davidson, E. (2008) A new
method, using cis-regulatory control, for
blocking embryonic gene expression. Dev
Biol 318, 360–365.

66. West, A., Gaszner, M., and Felsenfeld, G.
(2002) Insulators: many functions, many
mechanisms. Genes Dev 16, 271–288.

67. Inagaki, N., Maekawa, T., Sudo, T. et al.
(1992) c-Jun represses the human insulin
promoter activity that depends on multiple
cAMP response elements. Proc Natl Acad Sci
89, 1045–1049.

68. Matys, V., Kel-Margoulis, O., Fricke, E.
et al. (2006) TRANSFAC and its module
TRANSCompel: transcriptional gene regu-
lation in eukaryotes. Nucleic Acids Res 34,
D108–D110.

69. Ashburner, M., Ball, C., Blake, J. et al.
(2000) Gene ontology: tool for the unifica-
tion of biology. The Gene Ontology Consor-
tium. Nat Genet 25, 25–29.

70. Mi, H., Guo, N., Kejariwal, A. et al. (2007)
PANTHER version 6: protein sequence and
function evolution data with expanded rep-
resentation of biological pathways. Nucleic
Acids Res 35, D247–D252.

71. Gottschalk, L., Giannola, D., and
Emerson, S. (1993) Molecular regulation
of the human IL-3 gene: inducible T cell-
restricted expression requires intact AP-1 and
Elf-1 nuclear protein binding sites. J Exp Med
178, 1681–1692.

72. Regl, G., Kasper, M., Schnidar, H. et al.
(2004) Activation of the BCL2 promoter
in response to Hedgehog/GLI signal trans-
duction is predominantly mediated by GLI2.
Cancer Res 64, 7724–7731.

73. Wheeler, M., Snyder, E., Patterson, M. et al.
(1999) An E-box within the MHC IIB gene
is bound by MyoD and is required for gene
expression in fast muscle. Am J Physiol 276,
C1069–C1078.

74. Sekido, R., Murai, K., Funahashi, J. et al.
(1994) The delta-crystallin enhancer-binding
protein delta EF1 is a repressor of E2-box-
mediated gene activation. Mol Cell Bio 14,
5692–5700.

75. Castro, B., Barolo, S., Bailey, A. et al.
(2005) Lateral inhibition in proneural clus-
ters: cis-regulatory logic and default repres-
sion by suppressor of hairless. Development
132, 3333–3344.

76. Penkov, D., Tanaka, S., Di Rocco, G. et al.
(2000) Cooperative interactions between
PBX, PREP, and HOX proteins modu-
late the activity of the alpha 2(V) colla-



398 Istrail et al.

gen (COL5A2) promoter. J Biol Chem 275,
16681–16689.

77. Zelko, I., Mueller, M., and Folz, R. (2008)
Transcription factors sp1 and sp3 regulate
expression of human extracellular superoxide
dismutase in lung fibroblasts. Am J Respir
Cell Mol Biol 39, 243–251.

78. Murphy, A., Lee, T., Andrews, C. et al.
(1995) The breathless FGF receptor
homolog, a downstream target of Drosophila
C/EBP in the developmental control of cell
migration. Development 121, 2255–2263.

79. Ohshiro, T., and Saigo, K. (1997) Tran-
scriptional regulation of breathless FGF
receptor gene by binding of TRACHEA-
LESS/dARNT heterodimers to three central
midline elements in Drosophila developing
trachea. Development 124, 3975–3986.

80. Christensen, M., Zhou, W., Qing, H.
et al. (2004). Transcriptional regulation of
BACE1, the beta-amyloid precursor protein
beta-secretase, by Sp1. Mol Cell Biol 24,
865–874.

81. Pan, D., Huang, J., and Courey, A. (1991)
Functional analysis of the Drosophila twist
promoter reveals a dorsal-binding ventral
activator region. Genes Dev 5, 1892–1901.

82. Thisse, C., Perrin-Schmitt, F., Stoetzel, C.
et al. (1991) Sequence-specific transactiva-
tion of the Drosophila twist gene by the dorsal
gene product. Cell 65, 1191–1201.

83. Jiang, J., Kosman, D., Ip, Y. et al.
(1991) The dorsal morphogen gradient reg-
ulates the mesoderm determinant twist in
early Drosophila embryos. Genes Dev 5,
1881–1891.

84. Akimaru, H., Hou, D., and Ishii, S. (1997)
Drosophila CBP is required for dorsal-
dependent twist gene expression. Nature
Genet 17, 211–214.

85. Doerksen, L., Bhattacharya, A., Kannan, P.
et al. (1996) Functional interaction between
a RARE and an AP-2 binding site in the regu-
lation of the human HOX A4 gene promoter.
Nucleic Acids Res 24, 2849–2856.

86. Sasaki, H., Hui, C., Nakafuku, M. et al.
(1997) A binding site for Gli proteins is
essential for HNF-3beta floor plate enhancer
activity in transgenics and can respond to Shh
in vitro. Development 124, 1313–1322.

87. Yoon, J., Kita, Y., Frank, D. et al. (2002)
Gene expression profiling leads to identifi-
cation of GLI1-binding elements in target
genes and a role for multiple downstream
pathways in GLI1-induced cell transforma-
tion. J Biol Chem 277, 5548–5555.

88. Sokol, N., and Ambros, V. (2005) Mesoder-
mally expressed Drosophila microRNA-1 is
regulated by Twist and is required in mus-

cles during larval growth. Genes Dev 19,
2343–2354.

89. Ho, I., Hodge, M., Rooney, J. et al. (1996)
The proto-oncogene c-maf is responsible
for tissue-specific expression of interleukin-4.
Cell 85, 973–983.

90. Kajihara, M., Sone, H., Amemiya, M.
et al. (2003) Mouse MafA, homologue of
zebrafish somite Maf 1, contributes to the
specific transcriptional activity through the
insulin promoter. Biochem Biophys Res Com-
mun 312, 831–842.

91. Matsuo, I., and Yasuda, K. (1992) The coop-
erative interaction between two motifs of
an enhancer element of the chicken alpha
A-crystallin gene, alpha CE1 and alpha CE2,
confers lens-specific expression. Nucleic Acids
Res 20, 3701–3712.

92. Belkin, D., Allen, D., and Leinwand, L.
(2006) MyoD, Myf5, and the calcineurin
pathway activate the developmental myosin
heavy chain genes. Dev Biol 294, 541–553.

93. Wilson, D., Charoensawan, V., Kummerfeld,
S., et al. (2008) DBD—taxonomically broad
transcription factor predictions: new con-
tent and functionality. Nucleic Acids Res 36,
D88–D92.

94. Haerty, W., Artieri, C., Khezri, N. et al.
(2008) Comparative analysis of function and
interaction of transcription factors in nema-
todes: extensive conservation of orthology
coupled to rapid sequence evolution. BMC
Genomics 9, 399.

95. Bult, C., Eppig, J., Kadin, J. et al. (2008)
The mouse genome database (MGD): mouse
biology and model systems. Nucleic Acids Res
36, D724–D728.

96. Chen, F., Mackey, A., Stoeckert, C. et al.
(2006) OrthoMCL-DB: querying a compre-
hensive multi-species collection of ortholog
groups. Nucleic Acids Res 34, D363–D368.

97. Berglund, A.-C., Sjölund, E., Ostlund, G.
et al. (2008) InParanoid 6: eukaryotic
ortholog clusters with inparalogs. Nucleic
Acids Res 36(database issue), D263–D266.

98. Delporte, F., Pasque, V., Devos, N. et al.
(2008) Expression of zebrafish pax6b in pan-
creas is regulated by two enhancers contain-
ing highly conserved cis-elements bound by
PDX1, PBX and PREP factors. BMC Dev Biol
8, 53.

99. Warren, D., Simpkins, C., Cooper, M. et al.
(2005) Modulating alloimmune responses
with plasmapheresis and IVIG. Curr Drug
Targets Cardiovasc Haematol Disord 5,
215–222.

100. Annicotte, J.-S., Fayard, E., Swift, G.
et al. (2003) Pancreatic-duodenal home-
obox 1 regulates expression of liver recep-



Practical Computational Methods for Regulatory Genomics 399

tor homolog 1 during pancreas development.
Mol Cell Biol 23, 6713–6724.

101. Shen, J.-C., and Ingraham, H. (2002)
Regulation of the orphan nuclear receptor
steroidogenic factor 1 by Sox proteins. Mol
Endocrinol (Baltimore, MD) 16, 529–540.

102. Clark, A., Wilson, M., London, N. et al.
(1995) Identification and characterization of
a functional retinoic acid/thyroid hormone-
response element upstream of the human
insulin gene enhancer. Biochem J 309,
863–870.

103. van Noort, M., van de Wetering, M., and
Clevers, H. (2002) Identification of two
novel regulated serines in the N terminus of
beta-catenin. Exp Cell Res 276, 264–72.

104. Sharma, M., Fopma, A., Brantley, et al.
(2004) Coexpression of Cux-1 and notch
signaling pathway components during kidney
development. Dev Dyn 231(4), 828–838.

105. López-Ríos, J., Tessmar, K., Loosli F. et al.
(2003) Six3 and Six6 is moduated by mem-
bers of the groucho family. Development 130,
185–195.



Chapter 23

Reconstructing Transcriptional Regulatory Networks Using
Three-Way Mutual Information and Bayesian Networks

Weijun Luo and Peter J. Woolf

Abstract

Probabilistic methods such as mutual information and Bayesian networks have become a major cate-
gory of tools for the reconstruction of regulatory relationships from quantitative biological data. In this
chapter, we describe the theoretic framework and the implementation for learning gene regulatory net-
works using high-order mutual information via the MI3 method (Luo et al. (2008) BMC Bioinformatics
9, 467; Luo (2008) Gene regulatory network reconstruction and pathway inference from high throughput
gene expression data. PhD thesis). We also cover the closely related Bayesian network method in detail.

Key words: Three-way mutual information, high-order mutual information, information theory,
Bayesian network, systems biology, probabilistic graphical model, gene regulatory network (GRN),
transcriptional regulation, microarray, gene expression data.

1. Introduction

Gene regulatory network (GRN) reconstruction is to infer GRN
models from data. These models reveal the operational mech-
anism of biological systems at the molecular level. With the
development of high-throughput technologies such as microar-
rays (1, 2), we can profile the expression of the whole genome
at a time. This brings the potential to study biology at the
whole transcriptome level. Correspondingly, we can reconstruct
GRNs involving large number of genes in one study. Learning
GRNs from high-throughput expression data (3) has become a
major challenge in systems biology and a major focus of statistical
learning.

Previous efforts to learn GRNs from gene expression data can
be broadly divided into linear correlation and probability based

I. Ladunga (ed.), Computational Biology of Transcription Factor Binding, Methods in Molecular Biology 674,
DOI 10.1007/978-1-60761-854-6_23, © Springer Science+Business Media, LLC 2010

401



402 Luo and Woolf

methods. Methods based on linear correlation, such as clustering
(4, 5), correlation networks (6, 7) and graphical Gaussian mod-
els (8), are computationally fast and relatively easy to interpret.
However, a key limitation with these methods is that they assume
linear relationships between variables. While some components of
any transcriptional regulatory network are linear, nonlinear events
such as OR-, AND-, and XOR-type transcriptional regulations are
relatively commonplace (9). These nonlinear interactions would
not be captured with a linear model, leading to spurious relation-
ships between variables.

Probability based methods form the second class of meth-
ods commonly used for reconstructing GRNs from biological
data. Representative probability methods include Bayesian net-
works (10–13) and mutual information networks (14, 15). Prob-
ability based methods can capture both linear and nonlinear regu-
latory relationships and are relatively noise tolerant. Probabilistic
graphical models use directed edges to represent causal relation-
ship rather than correlative relationships. However, probabilistic
methods require significantly more data than correlation based
methods. They can be computationally slow.

A Bayesian network is a directed graphical probabilistic model
that represents the joint probability distribution among variables
in a decomposed form (16). A Bayesian network has two com-
ponents: a directed acyclic graph (DAG), G, which encodes con-
ditional independent relationships among nodes (variables); and
parameter, θ , which specifies the conditional distribution for each
variable given its parents. Bayesian networks have been widely
used in modeling gene regulatory systems (10–13). These tools
have several major advantages: (1) the ability to handle imperfect
(incomplete and noisy) data sets; (2) the ability to identify causal
relationships; (3) the ability to combine domain knowledge and
data. A less obvious problem with Bayesian networks is that the
joint probability score decomposes into local conditional proba-
bility terms. Conditional probability is still a generalized correla-
tive metric for the two-way dependency between the target and
the parent set, hence cannot effectively tell the real causal relation-
ships from confounding ones based on observational data. This
issue becomes severe when there are a large number of correlative
variables, such as co-regulated genes in microarray data.

Mutual information is a probabilistic quantity defined in
information theory to measure the similarity or dependency
between two variables. Mutual information has been widely used
to model gene networks (14, 15, 17). Mutual information cap-
tures both linear and nonlinear relationships between two genes,
hence can replace correlation to learn more robust relevance or
association networks. Mutual information may also work in place
of conditional probability to capture dependency between target
gene and parent gene set and learn directed causal networks (18).
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Indeed, we will show below that mutual information is equiva-
lent to conditional probability in local regulatory model learning
(Eq. 14). In both cases, mutual information measures the two-
way dependency between two variables (genes or gene sets). Real
biological systems frequently involve more complicated, higher
order relationships, such as transcriptional regulation coordinated
by multiple transcription factors, binding interactions in protein
complexes, etc. The definition of mutual information has been
extended to higher dimensional spaces to measure such high-
order relationships among multiple variables (19–21).

To overcome the limitations of Bayesian networks and clas-
sic mutual information, we developed a novel statistical learn-
ing strategy, MI3 (22), which uses high-order mutual informa-
tion scoring metric to capture high-order interactions. True causal
relationships like genetic regulation feature positive higher order
interactions (19, 20), the non-additive effect above the sum of the

Table 23.1
The non-additive property of high order interactions, i.e., I(T;R1,R2)− I(T;R1)−
I(T;R2) = I(T;R1,R2) > 0 shown by common types of regulatory relationships involv-
ing two independent parents (R1 and R2) and a target (T). Entropies (H’s) and mutual
information (I’s) are calculated according to definitions in Section 2.1. These are
ideal cases. In reality, we do not always get positive high-order interactions due to
the data quality and absence of real regulators in the data. Hence, we do not impose
any threshold on high-order interaction alone. Table is copied, with permission, from
(22)

Relationship OR AND XOR

Contigency table p R1 R2 T p R1 R2 T p R1 R2 T
1/4 0 0 0 1/4 0 0 0 1/4 0 0 0
1/4 1 0 1 1/4 1 0 0 1/4 1 0 1
1/4 0 1 1 1/4 0 1 0 1/4 0 1 1
1/4 1 1 1 1/4 1 1 1 1/4 1 1 0

H(T) 2−0.75×log23 2−0.75×log23 1
H(R1)=H(R2) 1 1 1

H(T,R1)=H(T,R2) 1.5 1.5 2
H(R1,R2) 2 2 2

H(T,R1,R2) 2 2 2
I(T;R1)=I(T;R2)= H(T)+

H(R1)− H(T,R1)
1.5−0.75×log23 1.5−0.75×log23 0

I(T;R1,R2)= H(T)+
H(R1,R2) −H(T,R1,R2)

2−0.75×log23 2−0.75×log23 1

I(T;R1,R2)−
I(T;R1)−I(T;R2)

0.75×log23−1
=0.189

0.75×log23−1
=0.189

1
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lower order interactions (20). For example, consider cases where
two regulators effect a target via OR-, AND-, XOR-type relation-
ships. The two regulators together account for much more in the
target than they individually can (Table 23.1). Intuitively, such a
non-additive effect can be described as coordination or synergy
between parents (with respect to the target, more description in
Section 2.3). On the other hand, confounding models commonly
have zero or negative higher order interactions, such as redun-
dant parents. We propose that when such high-order interaction
is considered, we can better differentiate true causal models from
confounding models.

We tested the MI3 algorithm using both synthetic and exper-
imental data (22). In synthetic data experiment (Figs. 23.1
and 23.2a, detailed in (22)), MI3 achieved absolute sensitiv-
ity/precision of 0.77/0.83 and relative sensitivity/precision both
of 0.99, and consistently and significantly outperformed the con-
trol methods including Bayesian networks, two-way mutual infor-
mation, and a discrete version of MI3. We then used MI3 and
control methods to infer a regulatory network centered at the
MYC transcription factor from a published microarray data set
(Fig. 23.2b, detailed in (22)). Unlike control methods, MI3
effectively differentiated true causal models from confounding
models (22). MI3 recovered major MYC cofactors, and revealed
major mechanisms involved in MYC-dependent transcriptional
regulation, which are strongly supported by literature (22). The
MI3 network (Fig. 23.2b) showed that limited sets of regulatory
mechanisms are employed repeatedly to control the expression of
large number of genes (22).

In this chapter, we describe the theoretic framework for learn-
ing GRN models using high-order mutual information via the
MI3 method. We also discuss Bayesian network and classical
mutual information-based methods, which are closely related to
MI3. One other significant feature of MI3 is learning continuous
probabilistic models for transcriptional regulation based on kernel
density estimation (22). The same approach can be directly trans-
planted to learn more accurate regulatory models using Bayesian
network and classical mutual information (22).

2. Theory

2.1. Mutual
Information
Definition, Extension,
and Calculation

In information theory, for a discrete variable, X, Shannon entropy
H(X) is defined as (24)

H (X ) = −
mx∑

i=1

P(xi) log2 P(xi) [1]
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where X = xi (i = 1, 2, mx), corresponds to mx different states of
the variable X. The Shannon entropy is a measure for the random-
ness or unpredictability of variable distribution. Thus, the higher
the Shannon entropy, the harder it is to predict the value of this
variable. The corresponding definition for continuous variables is
the same (17), except that the summation becomes integration.

The entropy of joint distribution of two discrete variables X
and Y is similarly defined as (24)

H (X , Y ) = −
mx∑

i=1

my∑

j=1

P(xi, yj ) log2 P(xi, yj ) [2]

where Y = yj (j = 1, 2, my) corresponds to my different states of
the variable Y.

The mutual information between two variables X and
Y , I (X ; Y ) is defined based on Shannon entropy (24, 25):

I (X ; Y ) = H (X ) + H (Y ) − H (X , Y ) [3]

Mutual information measures the difference in predictability
when considering two variables together versus considering them
independently. In other words, mutual information measures the
interdependency between variables. High dependency or mutual
information usually occurs when either there is causal relationship
between variables or a common causal factor is influencing both
variables. Therefore, mutual information can be used to identify
correlative or even causal relationships.

For three variables X, Y, and Z, we can define three types
of three-way mutual information measuring different types of
dependency: total correlation C(X ; Y ; Z ) (different from lin-
ear correlation) (26), generalized two-way mutual information
I (X ; Y , Z ), and three-way interaction information I (X ; Y ; Z )
(19, 20):

C(X ; Y ; Z ) = H (X ) + H (Y ) + H (Z ) − H (X , Y , Z ), [4]

I (X ; Y , Z ) = H (X ) + H (Y , Z ) − H (X , Y , Z ) [5]

I (X ; Y ; Z ) = H (X , Y ) + H (Y , Z ) + H (X , Z ) − H (X ) − H (Y )
−H (Z ) − H (X , Y , Z )

[6]

These are all extended mutual information of order 3, differ-
ent in lower order terms:

I (X ; Y , Z ) = C(X ; Y ; Z ) − I (Y ; Z ) [7]
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I (X ; Y ; Z ) = I (X ; Y , Z ) − I (X ; Y ) − I (X ; Z ) [8]

Table 23.1 shows common examples where the relationships
are high order and can only be fully captured by high-order
(three-way) mutual information.

Conditional entropy and mutual information can also be
defined based on conditional probability. A rearranged version of
conditional mutual information can be derived by starting with
the definition of conditional probability given Z:

I (X ; Y |Z ) = 1
n

n∑

k=1

log2
P(xk, yk|zk)

P(xk|zk)P(yk|zk)
[9]

Next, apply Bayes’ rule and rearrange to yield

I (X ; Y |Z ) = 1
n

n∑

k=1

log2

[
P(xk, yk, zk)

P(xk)P(yk, zk)
P(yk, zk)

P(yk)P(zk)

]
[10]

Re-write into mutual information

I (X ; Y |Z ) = I (X ; Y , Z ) − I (X ; Z ) [11]

Apparently, this conditional mutual information is of order
3 and is closely related to all other types of three-way mutual
information. So far, we have been focusing on three-way mutual
information and entropy. Similarly, the concept of entropy and
mutual information can be directly extended to arbitrary higher
order to capture even complicated relationships among multiple
variables or multiple sets of variables.

2.2. Comparison
Between Mutual
Information and
Log-Based Local
Conditional
Probability

By substituting the entropy definition formulae [1] and [2] into
equation [3], we get the expanded formula for mutual informa-
tion based on probability:

I (X ; Y ) =
mx∑

i=1

my∑

j=1

P(xi, yj ) log2
P(xi, yj )

P(xi)P(yj )
= 1

n

n∑

k=1

log2
P(xk, yk)

P(xk)P(yk)

[12]

where X = xk (j = 1, 2, n), Y = yk (j = 1, 2, n), correspond to n
data points of variable X or Y.

The counterpart to mutual information in Bayesian network
(BN) terms is a log-based local conditional probability, or log
likelihood (LL), which can be expanded as

LL(X |Y ) = log
n∏

k=1

P(xk|yk) =
n∑

k=1

log
P(xk, yk)

P(yk)
[13]
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It can be seen that mutual information is similar to log like-
lihood, except with a weighted-averaging term 1/n and normal-
izing term P(xk), which minimize the effects of sample size and
specific distribution of individual variables.

Given a particular data set and for fixed target node X, these
two scores are equivalent:

I (X ; Y ) ∝ 1
n

LL(X |Y ) − 1
n

n∑

k=1

log P(xk) [14]

The same equivalence holds for models with two parents or
multiple parents. In other words, I( ; ) and LL( | ) scores are
interchangeable when comparing the regulatory models for the
same node.

2.3. MI3 Algorithm

2.3.1. Scoring Metric The MI3 algorithm (22) uses three-way mutual information
for local causal model inference. Our hypothesis is that gene
expression regulation commonly involves more than two genes
(i.e., more than one regulator genes) with higher order inter-
action, which can be faithfully captured by continuous higher
order mutual information. The algorithm is limited to three-way
mutual information (two regulators and one target), but the same
method can be easily extended to higher order mutual informa-
tion to model more complicated regulation mechanisms. Note
that we call all types of mutual information involving three vari-
ables three-way mutual information (Section 2.1), while three-
way interaction information refers to I(T;R1;R2) only.

The MI3 scoring function has two parts, including correlative
and coordinative information components.

Correlative component: I (T ; R1, R2)
Coordinative component: I (T ; R1, R2) − I (T ; R1) − I (T ; R2)
MI3 score: 2∗I (T ; R1, R2) − I (T ; R1) − I (T ; R2) =

I (T ; R1
∣∣R2) + I (T ; R2

∣∣R1)

Here T is the target gene, and R1 and R2 are the regula-
tors. Mutual information definition and high-order extensions are
described in the previous section.

The correlative component measures the correlation (both
linear and nonlinear) between the target and the parent set. Pairs
of regulators accurately describing the expression of the target
gene will score well by the correlative component.

The coordinative component measures the coordination
effect between the regulators with respect to the target. In
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other words, it describes how well pairs of regulators versus
individual regulators predict the target (see the examples in
Table 23.1). Confounding models commonly have a negative
coordinative score because parents overlap in their correlation
with the target. The coordinative component can be rearranged
to I (T ; R1

∣∣R2) − I (T ; R1) , suggesting that this component
measures how much better R1 predicts T given R2 versus not
given R2. Note this component is actually the third-order inter-
action information between T, R1, and R2, i.e., I (T ; R1; R2)
(20), and is three-way symmetric.

The MI3 score is the sum of the correlative and the coordi-
native component. The symmetric coordinative component cap-
tures higher order interactions and differentiates causal relation-
ships from confounding ones without telling the causal direction.
The asymmetric correlative component determines the direc-
tion of the causal relationship. By merging these two compo-
nents, the MI3 score considers connections between the regula-
tors as well as dependency between the target and regulators. The
MI3 score can be rearranged and simplified to I (T ; R1

∣∣R2) +
I (T ; R2 |R1). This rearrangement can be interpreted as the con-
ditional mutual information between the target gene and each
regulator given the other regulator, which better shows the three-
way nature of this score.

2.3.2. Network Inference
Procedure

Instead of learning the global GRN all at once, we infer gene
regulatory networks in two steps: learning and assembly (detailed
rationale in Section 7.1). First, we learn the local regulatory net-
work for each variable through an exhaustive search. Note that
the local regulatory models for each target gene can have different
number of parents despite that we started from two-parent mod-
els. Second, we can assemble local networks up into a unified net-
work. Similar to Bayesian networks, the gene regulatory networks
learned by using MI3 are directed and acyclic. In the assembly
step, we may need to reconcile two-way edges and directed cycles
in the network to create the required DAG structure. We solve
conflicting local structures based on their scores (more details in
Section 4.4).

Note that the key difference between MI3 and other methods
is the scoring metric rather than the network construction proce-
dure. The network construction procedure can be the same for all
methods.

2.4. Nonparametric
Probability Density
Estimation for
Continuous Variable

To avoid discretizing our data to calculate mutual information, we
have adopted a continuous method for mutual information calcu-
lation based on a classical nonparametric Gaussian kernel method
in probability density estimation (27, 28). To estimate the prob-
ability density at a specific location, we used all our data points.
First we calculate the probability density at an interesting loca-
tion based on a Gaussian distribution centered at each data point
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(kernel), and then take the average of all these densities using the
following expression:

fH(x) = 1
n

n∑

i=1

KH(x − Xi) [15]

Here x is the position where probability density is to be
estimated, and Xi (i = 1, 2, . . . , n) is the ith data point, both
x and Xi are d-dimension vectors. K() is the kernel function,
a symmetric probability density function, H is the bandwidth
matrix which is symmetric and positive-definite, and KH(x) =
|H|−1/2 K (H−1/2x). The choice of kernel distribution makes lit-
tle difference in probability estimation (27). We take K (x) =
(2π)−d/2 exp(−xTx/2), the multivariate Gaussian. On the other
hand, the choice of bandwidth H is crucial, and we use opti-
mal bandwidth described by Scott (28). Data are normally
transformed into a uniform distribution (17) before the kernel
density estimation to eliminate the potential effect of specific
distributions.

Following our description above, to calculate entropy and
mutual information for continuous variables, we calculated a
probability density estimate at the positions of sample data points,
then took the sample mean of log probability density (17) to
approximate the full integration. The probability density estima-
tion was the most computationally intensive step for this work.

Nonparametric probability density estimation for continuous
variables effectively eliminates the inaccuracies introduced by dis-
cretizing data. However, this method is computationally demand-
ing and requires a large sample size (n) (27–29). Due to these
limitations, we limited our MI calculation to four or less variables.
Notice that the sufficient sample only depends on the number of
relevant dimensions of the local models (three nodes for two-
parent models), and has nothing to do with the size of the total
number of variables.

3. Software

MI3 is implemented in the open-source statistical comput-
ing language R as mi3 package. The package is avail-
able under the GNU GPL from online (http://sysbio.engin.
umich.edu/~luow/downloads.php). Figure 23.1 shows the
workflow for GRN learning using mi3 package. A detailed proce-
dure for mi3 package usage is described next in Section 4.

The same package also includes BN implementation, which is
the same to MI3 procedure except that it uses a different scoring
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Fig. 23.1. The workflow for GRN learning using mi3 package. Relevant functions are
given in parenthesis. The same workflow applied to both MI3 and BN methods, except
that scoring metrics are different. Note that local model refinement and network assem-
bly and visualization are currently only implemented for sub-genome-scale small data
sets.

metric. As described above in formula [14], I( ; ) and LL( | )
scores are interchangeable when comparing the regulatory mod-
els for the same node. Therefore, we can learn BN models using
mutual information score like I (T ; R1, R2), i.e., the correlative
component of MI3 score, instead of LL(T | R1, R2). This is the
BN variant implemented in mi3 package. We will not describe BN
learning procedure separately from MI3 in the following sections,
as they are the same in all aspects except the scores being used in
local model selection and improvement.

4. Procedure

4.1. Setup Download mi3 package from http://sysbio.engin.uimich.edu/
~luow/downloads. Three versions of this package are available:
source package, binary for Mac OS X, and binary for Win-
dows. Note that R needs to be pre-installed to set up and use
mi3 package. Check http://www.r-project.org/ for R installa-
tion. Install mi3 package following the instructions in the tutorial.
To use the visualization functionality of mi3, package graph is also
needed.

4.2. Data Preparation

4.2.1. Generation of
Synthetic Testing Data

We created a synthetic network structure with algebraic relation-
ships between variables (Fig. 23.2) to validate MI3 method (22).
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Fig. 23.2. Synthetic gene regulatory network. This synthetic model structure is designed
to mimic a miniature gene regulatory network, with several major features. First the net-
work contains nine variables in total, three of which are independent, and six dependent.
Second, the variables are assembled into a hierarchy of regulatory relationships, with
independent variable mimicking regulators and cofactors and dependent variables mim-
icking target genes. Third, the complexity of the network is controlled in that dependent
variables have one to three parents, mostly two or three, and each regulator/cofactor
controls a set of targets. Targets may share regulators and thus may have different levels
of coregulation/coexpression, which can lead to confounding models. Fourth, a diverse
set of continuous nonlinear and logical relationships among variables were encoded by
the algebraic formulae in the table to describe a realistic, yet complicated regulatory
network. Figure is modified, with permission, from (22).

MI3 and BN learning procedures can also be best demonstrated
with this synthetic example of a completely known gene regu-
latory network. This model structure is designed (22) to mimic
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a miniature gene regulatory system, with regard to the network
size, overall and local structure, and dependency relationships. To
demonstrate the learning procedure, we randomly generate data
sets of different sample sizes (data points) from this network first.
Then we apply MI3 or BN to recover the network structure.

The user may customize their own synthetic examples by
changing either the network structure or the algebraic relation-
ships between variables or both (Fig. 23.2).

4.2.2. Gene Expression
Data Processing

One key issue with learning regulatory model from gene expres-
sion microarray data is that there are usually multiple probe
sets (as in Affymetrix GeneChip Data) for a single gene. This
multiplicity interferes with gene network inference, where the
nodes are individual genes instead of some part or transcript
isoform of a gene. Dependency between different probe sets
of a gene would normally be much higher than dependency
between genes. A straightforward yet rough solution is to gen-
erate unique expression data entry for each gene by combining
all probe sets for the same gene. A more rigorous strategy is to
remap the probes to genes based on the latest genome annota-
tion. This results in not only one data entry per gene naturally
but also more accurate expression data as the Affymetrix probe
sets were originally designed based on the outdated gene defi-
nition. However, the remapping of probes to genes is complex.
Fortunately, this remapping is done routinely (30) and the results
released online (http://brainarray.mhri.med.umich.edu) as cus-
tomized CDF files ready to use. Please check the web site and our
original MI3 paper (22) for details in processing raw expression
data using these customized CDF files.

4.2.3. Data
Transformation

The data should undergo uniform transformation in order to
eliminate the effects of gene-specific distributions. For exam-
ple, the distributions for individual nodes in the synthetic data
are strongly divergent (Fig. 23.2). Note that microarray data
are frequently log2 transformed after pre-processing. Based on
the author’s experience, log2 scaled data plus row-wise (gene-
wise) N(0, 1) normalization are satisfactory for most depen-
dency/correlation analyses. This is default data transforma-
tion implemented in mi3 package. The uniform transformation
became the new default in the new and future release for more
statistical rigor and accuracy.

4.2.4. Data Filtering For downstream analysis, all genes are included without a dis-
criminative filtering process based on the magnitude of changes
or based on the marginal dependency between candidate regula-
tory genes and the target gene. In other words, all other genes are
included in the search for the best regulatory models of a target
gene (details in Section 7.2). This inclusion is important as the
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filtering process could be arbitrary and misleading without con-
sidering the dependency, particularly the high-order dependency
among genes.

4.3. Local Two-Parent
Regulatory Model
Learning

4.3.1. Rationale MI3 assume two regulators for each target gene by default with
the following reasons:

First, for a target gene which is governed by its regulator
gene, there is often some other gene (a second regulator) which
further affects the expression of the target, no matter what actual
role it plays (such as being another transcription factor, a cofactor,
a transporter for the first regulator) and no matter strong or weak
this effect is.

Second, even if the first regulator plays a dominant role, when
assuming only one regulator, it is impossible to tell the direction
of regulation (i.e., which gene is the target and which is the regu-
lator) from nonsequential observational data. By assuming two or
more regulators per target, identifying the direction of regulation
is no longer a problem as the models score differently when the
regulators/targets switch position.

Note that the two-regulator models can be further refined
when the number of regulators is different than two. This refine-
ment process is available in mi3 package. Note that we limit
the number of regulators to be 3 or less, because (1) a gene
may be regulated by up to tens of other genes, but only limited
number of them show significant regulatory effect in a specific
experiment. Note that we are not trying to learn the inclusive
and generally applicable regulatory models independent of any
experimental condition; (2) the sample size and computing time
become impractically large for learning models with more regu-
lators. In our experience two-regulator models are good enough
for most regular microarray studies.

4.3.2. Exhaustive Search
for R1+R2 (Small Data
Set)

As described above, exhaustive search is implemented and recom-
mended by MI3 method (more details in Section 7.2). For small-
to medium-sized data sets with up to 1,000 genes, it is possible
to exhaustively search all two-parent models by computing of the
full two-way and three-way mutual information arrays for all gene
combinations. The actual computing time depends on the size of
data matrix, i.e., number of genes/rows (v) and samples/columns
(n), as O(v3n2). With this formula, you can estimate the compute
time of your data on your computer based on the time for small
synthetic data set.

MI3 learns the best two-parent regulatory models for all
interesting genes in three steps. First, compute log-likelihood
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(negative entropy) for all single, pairs, and triplets of genes based
on Gaussian kernel density estimation (details in Section 2.4).
Second, compute the continuous two-way and three-way mutual
information values by taking the mean of log probability density:

I (X ; Y ) = [ll(X , Y ) − ll(X ) − ll(Y )]/n
I (Z ; X , Y ) = [ll(X , Y , Z ) − ll(Z ) − ll(X , Y )]/n

where n is the number of data points, I (Z ; X , Y ) is the correl-
ative component of MI3 score. The coordinative component,
I (Z ; X , Y ) = I (Z ; X , Y ) − I (Z , X ) − I (Z ; Y ), can be derived
directly based on two-way and three-way mutual information
arrays. Third, the best two-parent regulatory model for each gene
or node selected by using MI3 score (Section 2.3).

Correspondingly, mi3 package has three major func-
tions accomplishing by three computation steps. Function ll
computes log-likelihood, function compllCube computes continu-
ous two-way and three-way mutual information by calling ll, and
function best2Pa selects the best two parents by calling compll-
Cube in turn.

The procedure described above is for learning the best two-
parent model-based continuous three-way mutual information –
the default method implemented in the mi3 package. In addition,
the mi3 package contains options for network learning using
related scores (MI2, MI3, and BN) (22) based on both continu-
ous and discrete probability densities.

4.3.3. Exhaustive Search
for R2 Given R1
(Transcriptome-Scale
Data Set)

For transcriptome-wide expression data, an exhaustive search for
the best models for all genes is not tractable for MI3. While
fast heuristics are possible in such case, exhaustive search is still
required for optimal results. Here we introduce an application
where genome-wide exhaustive search for regulatory models is
feasible for all interesting target genes. Consider one regulator
(R1) is known for a target gene (T), what is the second regula-
tor gene (R2) that affects T’s expression? Instead of searching all
two-way or higher order combinations, we just need to search for
a single R2 gene exhaustively. This is computationally tractable
using MI3.

MI3 provides a routine (function MI3r2) to search for best
R2’s for a list of known target genes (T’s) of one common regu-
lator (R1). First, compute log-likelihood hence two-way mutual
information between all variables and r1. Then, pre-filter out
T’s from the targList with I (T ; R1) ≥ mi0 (some threshold),
to ensure that R1 regulates T under the specific experimental
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condition. Finally, the two MI3 component scores, i.e., correl-
ative and coordinative components are calculated based on Gaus-
sian kernel density estimation. MI3 scores and top R2’s can be
directly derived based on the results.

The function MI3r2 (with an auxiliary function as in
Section 6) is the counterpart for function best2Pa in this search
for R2 given R1 scenario. In contrast to best2Pa, this func-
tion offers a way to incorporate prior knowledge and reduce the
searching space by a factor of v (total number of variables/genes),
hence make it tractable to learn the best two-parent regulatory
models (given R1) from genome-wide microarray data.

4.4. Local Model
Refinement

Two-parent regulatory models are frequently sufficient for
learning a GRN from expression data as described above
(Section 4.3.2). However, a GRN may be further improved by
local model refinement. For example, the regulatory models for
some genes may conflict with models for adjacent genes. In other
words, edges in different models have opposite directions or form
directed cycles. Such circular dependency is invalid in directed
graphical modeling, hence need to be solved. Occasionally,
models with different number of parents, i.e., one- or three-
parents models, might be more consistent with the truth. We do
not consider models with four or more regulators as described
in Section 4.3.2. MI3 learns two-parent regulatory models as
starting point and provides two utilities for further local model
refinement: (1) reconciliation of conflicting local structures and
(2) adjustment of the parent number. First, reconciliation of con-
flicting local structures is to evaluate and solve which model is
the right one or the highest scoring one when there are multi-
ple models with conflicting edge directions. Second, we adjust
the parent number by first checking whether reducing or adding
one parent significantly worsens or improves the model in terms
of the dependency between the target and the parent set or I(T;
R’s). The function twoPaModels wraps the function compllCube
and the function best2Pa, and reconciles the conflicting models.
The functions onePaModels and threePaModels further revise the
number of parents of the models when needed.

4.5. Network
Assembly and
Visualization

When all the local regulatory models are ready, the GRN learn-
ing is essentially done. The last step is to assemble the models
into a global network and present an integrated network view
of the GRN. The function netPlot uses the graph representation
(graph package) and visualization (Rgraphviz package) facilities in
R/Bioconductor.
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Fig. 23.3. Gene regulatory networks learned by using MI3 method: (a) from the synthetic data set described by Fig. 23.2;
(b) from a published microarray data set, GSE2350, in Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). The
synthetic network in (b) was inferred and visualized using mi3 package following the whole workflow described in Fig.
23.1, as an example for MI3 application to small data set. The gene regulatory network in (b) was inferred using MI3r2
function of mi3 package and visualized using modified netPlot function as an example for MI3 application to genome-wide
expression data set. Figure is modified, with permission, from (22).

5. A Sample
Session

For the convenience of the users, script for a sample session
is available online at http://sysbio.engin.umich.edu/~luow/
downloads.php.

6. Conclusion

We have introduced a high-order mutual information-based sta-
tistical learning method, MI3, and demonstrated how to use
MI3 to reconstruct networks from gene expression data. We also
covered the theory and implementation of Bayesian network, a
closely related classical method. Overall, we feel that a widespread
adoption of statistical network reconstruction in bioinformatics
would be of significant benefit for efficient knowledge discovery
and representation.
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7. Notes

7.1. Learning Local
Regulatory Networks
Versus the Global
Network

When learning a GRN, our strategy is to learn local regulatory
networks for individual target genes first, and then assemble the
local networks into a single global network. Another strategy in
graphical modeling is to learn the global network in one step.
Compared to global network learning, local network learning is
quicker and more tractable as the searching space is much big-
ger. The difference between these two strategies is not significant
when the GRN is small, but local network learning became the
only feasible strategy for learning genome-scale regulatory mod-
els from genome-scale expression data using exhaustive search.

7.2. Exhaustive
Search for Optimal
Local Models

In MI3, model learning was focused locally, i.e., we scored and
compared all possible local regulatory models for specific target
T. This target-centered model learning applied to both synthetic
data and experimental data, even though biologically we are inter-
ested in constructing models centered at particular R1 in the lat-
ter case. It would be less appropriate to compare models across
different T’s because they are not mutually exclusive. Similarly, in
Bayesian networks, log P(T

∣∣R1, R2) is only comparable for fixed
T, where all other terms including P(R1)P(R2) in the full prod-
uct form of joint probability (10, 11) cancelled out. Therefore,
we only searched for best R1−R2 pairs given T, but not the best
R2−T pairs given R1 when learning probabilistic models based
on MI3 score or log conditional probability or any other estab-
lished score. This local approach makes it possible for MI3 to
conduct an exhaustive search, which leads to globally optimized
models.
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Chapter 24

Computational Methods for Analyzing Dynamic
Regulatory Networks

Anthony Gitter, Yong Lu, and Ziv Bar-Joseph

Abstract

Regulatory and other networks in the cell change in a highly dynamic way over time and in response to
internal and external stimuli. While several different types of high-throughput experimental procedures
are available to study systems in the cell, most only measure static properties of such networks. Infor-
mation derived from sequence data is inherently static, and most interaction data sets are measured in a
static way as well. In this chapter we discuss one of the few abundant sources for temporal information,
time series expression data. We provide an overview of the methods suggested for clustering this type of
data to identify functionally related genes. We also discuss methods for inferring causality and interactions
using lagged correlations and regression analysis. Finally, we present methods for combining time series
expression data with static data to reconstruct dynamic regulatory networks. We point to software tools
implementing the methods discussed in this chapter. As more temporal measurements become available,
the importance of analyzing such data and of combining it with other types of data will greatly increase.

Key words: Gene expression, causality, clustering, data integration, time series.

1. Introduction

Biological systems are inherently dynamic in nature as they change
in response to external and internal stimuli and over time (1–3).
While several different types of high-throughput genomic data
sets are being collected, most are static or measured in a static
way. For example, DNA sequences are inherently static and do not
change over years. Information derived from such data includ-
ing DNA and miRNA binding motifs (4) is also static. Other
types of data, including interaction data are often measured in
a static way. For example, large-scale protein–DNA binding (5),
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protein–protein interaction (6, 7), and miRNA–mRNA (8) inter-
actions are all performed as a snapshot experiment and do not
provide information about changes over time.

To understand the dynamics of regulatory networks,
researchers must be able to obtain and analyze temporal data sets
regarding the activity of such systems. So far the most abundant
data source for this task has been time series gene expression data
(see Fig. 24.1). This chapter will focus on how we can extract
information about the regulation of biological systems from this
type of data and how it can be integrated with other (mostly
static) data sets to reconstruct models for the activity of these
networks in the cell. Other types of dynamic data, most notably
imaging data, are also becoming available for some of these sys-
tems. However, since they are so far limited to a small number
of biological systems and relatively little computational work has
been performed to use these data sets, we would not discuss them
in this chapter.
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Fig. 24.1. Growth in the number of expression data sets deposited in GEO over the last decade. The solid curve rep-
resents the data sets from time series experiments. Over 2,000 time series data sets were deposited in GEO by the
end of 2008, representing almost 20% of all gene expression experiments. Methods that can adequately analyze these
data sets and that can combine them with other high-throughput data sets are required so that we can fully utilize the
information obtained in these experiments.

Figure 24.2 presents four analysis levels that are often
performed when using high-throughput data sets to study bio-
logical systems. While these should be considered for all high-
throughput experiments, different types of data raise different
sets of questions that should be addressed at each level. For
example, while gene expression experiments can be used to study
either static (snapshot) or dynamic processes, there are a num-
ber of unique issues when using time series expression data.
When designing time series experiments, one needs to decide how
many time points to use and what the sampling rates should be.
When analyzing such data one should decide how to represent it
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experimental design

data Analysis

pattern recognition

models and systems

Fig. 24.2. Analysis levels for high-throughput experiments. Studies using high-
throughput data sets often address issues related to these four analysis levels. Here
we discuss issues that relate to the analysis of time series data sets and dynamic regu-
latory networks focusing on the top two levels (pattern recognition and modeling).

(a collection of points, some interpolated curve or a specific func-
tion). Similarly, while many clustering algorithms can be used for
both static and time series data, these often do not make adequate
use of the temporal information. Algorithms that are specifically
designed for time series data may lead to better results for such
data. In a previous review, we focused primarily on the lower two
analysis levels: experimental design and data analysis (9). Here
we focus on the upper two levels, clustering and systems biol-
ogy. We discuss several new approaches for these tasks that have
been developed since 2004. We also highlight the importance of
data integration, specifically of time series and static data, which
can lead to dynamic models while still relying on abundant static
data.

The Methods section of this chapter is organized into three
parts. Section 3.1 discusses clustering methods for time series
expression data. These methods are often used to obtain a first,
global, view of the expression data. They are also used to infer
groupings and large-scale organization and can provide functional
information about unknown genes that are grouped with known
genes. Section 3.2 discusses methods that try to infer interactions
and causality from temporal data sets. These methods rely on the
observation that in many cases genes that are active at early time
points will activate genes at later time points. Such an analysis can
provide information about regulatory interactions between genes.
While the first two sections focus on inference that can be drawn
from expression data alone, Section 3.3 describes methods that
try to integrate additional data sets for this task. This helps to
overcome the dimensionality problem that often exists in high-
throughput experiments (relatively few samples and a large num-
ber of genes) by using additional data sources to constrain the set
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of parameters and their values. For each of these sections, we pro-
vide a list of software tools that implement some of the methods
we discuss so that researchers may try these ideas on their own
data. We conclude this chapter by discussing open problems and
directions for future work.

2. Software

In this chapter we discuss several methods for analyzing dynamic
regulatory networks. Some of these methods have been imple-
mented and can be downloaded and used by researchers. Below
we provide links for these software packages. The links are
arranged according to the sections that discuss the methods they
implement.

2.1. Clustering The Eisen lab provides implementation for several general pur-
pose clustering algorithms, including hierarchical clustering, self-
organizing maps, and K-means. The software (Cluster) can be
downloaded from http://rana.lbl.gov/EisenSoftware.htm. The
STEM software for clustering short time series expression data is
available from http://www.cs.cmu.edu/~jernst/stem/.

2.2. Regression
and Dynamic
Bayesian Networks
(DBNs)

Kevin Murphy wrote a popular Bayesian Networks toolbox for
MATLAB, which also contains DBN procedures. It can be down-
loaded from http://people.cs.ubc.ca/~murphyk/Software/
BNT/bnt.html. A MATLAB implementation for aligning time
series data sets studying the same system under different exper-
imental conditions is available from http://www.sb.cs.cmu.
edu/pages/software.html. An implementation of the method
for combining experiments from different conditions
can be found here: http://www.cs.cmu.edu/~yanxins/
regulation_inference/Matlab.html.

2.3. Data-Integrated
Methods

An R implementation of Inferelator, which combines time series
and motif data, is available at http://err.bio.nyu.edu/inferelator.
Perl scripts for the various components of the Statistical
Analysis of Network Dynamics (SANDY) algorithm can be
found under the “data download” section here: http://sandy.
topnet.gersteinlab.org. The Network Component Analysis tool-
box for MATLAB can be downloaded from http://www.seas.
ucla.edu/~liaoj/download.htm. A MATLAB implementation
of the post-transcriptional modification model, which
combines sequence and expression data, can be down-
loaded at http://www.sb.cs.cmu.edu/PTMM/PTMM.html.
The Dynamic Regulatory Events Miner (DREM)
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executable and Java source code can be obtained here:
http://www.sb.cs.cmu.edu/drem.

3. Methods

3.1. Clustering Time
Series Expression
Data

In a gene expression time series experiment, one can observe the
activity of thousands of genes over periods of time. To obtain
a global view and facilitate further analysis, it is often useful to
divide genes into smaller groups based on their temporal expres-
sion patterns. This can be done by cluster analysis, which assigns
genes to subsets (clusters) such that genes in the same cluster
exhibit similar expression patterns, while genes in distinct clusters
do not. Cluster analysis has been used to discover co-regulated
genes and genes sharing related functions (10).

There are a number of challenges when applying cluster anal-
ysis to gene expression time series. First, many general clustering
methods do not take into account the order of time points. In
contrast, methods specifically designed for time series may be bet-
ter suited to the task. Second, most of the expression time series
have relatively few (3–8) time points (11). As a result, methods
that work well with long time series may tend to overfit when
applied to such data sets. Third, because the number of genes
observed is large, patterns may arise just by chance. One needs a
way to distinguish between real patterns versus patterns arising by
chance.

Several methods have been used to cluster time series data.
However, general clustering algorithms do not take time into
account. While we mention some of these here because of their
popularity, our goal in this section is to focus on methods devel-
oped for clustering time series.

3.1.1. General
Clustering Methods

The most popular methods for clustering expression data, which
have also been used to cluster time series data, include hierarchi-
cal clustering, K-means, and projection-based methods. Hierar-
chical clustering groups genes either using a bottom-up (10) or
a top-down (12) approach. In both cases, the resulting clusters
are represented as a tree with leafs corresponding to genes and
subtrees corresponding to clusters. K-means clustering (12) is an
iterative algorithm that starts from k randomly selected clusters.
In each iteration, genes are assigned to the cluster with the nearest
mean, and the cluster-means are updated by calculating the aver-
age expression profile within each cluster. Projection-based meth-
ods, including principal component analysis (13, 14) and inde-
pendent component analysis (15, 16), work by first mapping the
gene expression to a new space and then clustering genes there.
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Unlike the general clustering methods described above, sev-
eral recent algorithms were developed specifically for clustering
time series expression data. These methods utilize the dynamic
information to improve the clustering results and often are shown
to outperform the general clustering methods.

3.1.2. Clustering Using
Continuous
Representation

Time series experiments only generate snapshots at certain time
points of the gene expression levels, which may be more naturally
modeled by a continuous curve. One way is to represent the gene
expression level by splines, piecewise polynomials with bounded
constraints. Bar-Joseph et al. (17) proposed to use B-splines for
this purpose, and the resulting model has fewer basis coefficients
than the number of time points, which helps to avoid overfitting.
The clustering method assumes a mixture model where each mix-
ture component corresponds to a cluster, and the expression of
each gene is generated through a noisy process from the model
expression curve. Bar-Joseph et al. (17) describe a method that
simultaneously estimates the parameters for the continuous rep-
resentation and the assignment of genes to clusters.

Closely related methods have been proposed to represent
expression time series by piece-wise linear (18), quadratic (19),
or higher-order interpolation (20). In Magni et al. (18) and
Liu et al. (19), the learned models are transformed into sym-
bolic representations, which are in turn used to cluster genes,
while Wang et al. (20) cluster genes directly based on the learned
polynomials.

3.1.3. Clustering Using
Dynamic Features

In these methods, features reflecting temporal patterns are
extracted from expression time series and used for clustering. Kim
and Kim (21) use first- and second-order differences between
adjacent time points as temporal features. Genes are clustered
based on the pattern determined by the sequence of features. One
limitation of the method is that it requires several replicate exper-
iments and most time series expression data sets are measured
with very few or no replicates. Déjean et al. (22) represent genes
by smoothing splines, and use the derivatives at some discretiza-
tion points as features. Genes are clustered by applying hierarchi-
cal clustering to the extracted derivatives. Li et al. (23) convert
expression time series to a sequence of slopes, and use an unsu-
pervised conditional random field model to cluster the genes.

3.1.4. Clustering Using
Hidden Markov Models

Schliep et al. (24) developed a hidden Markov model (HMM)
method to model the dependency between observations of adja-
cent time points. An HMM is specified by a set of hidden states,
the probability of starting at a given state, the probability of tran-
sition from one state to the other, and the probability of gen-
erating the gene expression level at each state. The clustering is
modeled by a mixture of HMMs, where each HMM corresponds
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to a cluster. Gene assignment and model parameters are estimated
by maximizing the likelihood of the observed expression time
series using an Expectation Maximization (EM) style algorithm
(see Chapters 6 and 7). The number of clusters is determined
by a heuristic procedure that removes clusters with too few genes
and splits clusters with too many genes.

In (24), a gene is assigned to the cluster corresponding to
the most probable HMM. Schliep et al. (25) suggest a method
to improve the assignment by grouping genes with ambiguous
membership into a separate cluster, and show that the resulting
groups are more robust to noise in the data. Schliep et al. (25) also
propose an approach to incorporate prior biological knowledge to
improve the clustering.

We note that while HMM-based methods works well for long
time series, they require that the number of time points to be
much larger than the number of states, which may be problematic
for short time series.

3.1.5. Clustering
Methods Based on
Stochastic Processes

In the next section we discuss regression models for determining
the effects genes have on other genes. These ideas can also be
used for clustering by relying on an autoregressive model (26).
An autoregressive model of order p assumes the expression level
at a given time point is a linear function of the expression lev-
els of the same gene in the previous p time points. The clustering
algorithm uses an agglomerative procedure to search for the most
probable set of clusters. It starts by assuming every expression
time series is generated by a different process. In the next step, it
computes the model likelihood for all possible pair-wise merges.
The method then identifies the merge that results in the high-
est model likelihood, and, if it is higher than the current model
likelihood, merges the two clusters. The procedure stops when
the model likelihood cannot be improved by merging anymore.
A closely related method by Zhou and Wakefield (27) models
gene dynamics by a random walk, and uses birth-death MCMC
to determine the number of clusters.

3.1.6. Clustering Using
Model Profiles

Short Time-series Expression Miner (STEM) is designed specif-
ically for short time series (28) (Fig. 24.3). The method starts
by selecting a set of potential model profiles that can represent
any expression profile. The number of potential profiles is con-
trolled by a user parameter that determines the amount of change
a gene can exhibit between two adjacent time points. A subset of
the m profiles is selected by a procedure that maximizes the mini-
mum distance between any two profiles. The rationale is to select
a distinctive set of profiles that covers the entire space of possi-
ble expression profiles. Given a set of model profiles, each gene
is assigned to the closest model profile. The significance of the
model profiles is computed by hypothesis testing where the null
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hypothesis is that any profile observed is resulted from random
fluctuation of the model profile.

Anand et al. (29) suggest a number of ways to improve
this method by assigning genes to model profiles based on a
fuzzy membership function, and selecting model profiles using an
evolutionary algorithm that finds trade-off between minimizing
quantization errors and minimizing the number of profiles. They
show that in certain situations the proposed method improves the
clustering quality.

3.2. Regression
Analysis for Causal
Inference in Time
Series Data

There are two primary sources for inferring regulatory relation-
ships from gene expression data. The first are perturbation experi-
ments (either knockout or knockdown) that inactivate a gene or a
pair of genes and study the downstream affects (30, 31). The sec-
ond are time series experiments in which researchers use lagged
correlations to search for regulatory relationships (32).

Fig. 24.3. Short time-series expression miner (STEM) example. The data are from experiments studying a serum
response factor, SRF-VP16, of wild-type embryonic stem cells. Samples were taken at five time points: 0, 10, 30, 60,
and 180 min (76). (A) Overview of clustering results. The number in the top left-hand corner of a profile box is the profile
ID number. The shaded profiles (left part of the top row) had a statistically significant number of genes assigned, and
those non-white profiles of the same color are similar and assigned to the same cluster of profiles. (B) Zoom in on profile
34. The figure displays all genes assigned to that profile. It also lists the expected and actual number of genes assigned
to this profile and the p-value for having so many genes assigned to this profile.
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Fig. 24.3. (continued)

Unlike perturbation experiments, which usually start with a
single perturbed gene, time series data allow researchers to study
several different regulators at once. On the other hand, the appli-
cation of methods for inferring lagged correlations to a data set
containing measurements of thousands of genes over a relatively
small number of time points may lead to a large number of false
positives. In such a data set, many of the inferred regulatory
relationships may result from noise or from unrelated sources
(co-occurrence as opposed to activation). To address this prob-
lem, most algorithms developed for this task are focused on trying
to limit overfitting by tightly controlling the algorithms used to
learn the interaction parameters. Another possible solution to this
problem is to combine different data sets (measuring the same set
of genes under different experimental conditions) and search for
regulatory relationships that are present in a subset of these data
sets.

We divide the set of methods developed for lagged regulatory
analysis into those that can only be applied to a single data set and
those that can be applied to multiple data sets at once. Most of
the work applied to a single data set relied on regression analysis
to identify causal genes. Most of the work applied to multiple
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data sets used correlation coefficients (implicitly assuming a fixed
delay of 0 in all experiments) though more recently researchers
have used regression analysis for multiple data sets as well.

3.2.1. Time-Lagged
Inference from a Single
Data Set

Qian et al. (32) were among the first to use time series data for
inferring interactions among genes. Their method relied on align-
ing the measured values for a pair of genes. To identify causal rela-
tionships they have used local alignment algorithms to find cases
where a later expression of one gene matches an earlier expression
of another gene and link these two genes. They have also looked
at inverted relationships that could identify repression effects.
Schmitt et al. (33) applied a similar analysis to a much larger data
set from the photosynthetic cyanobacterium Synechocystis sp. The
analysis identified networks of interactions and allowed inference
of putative effects of light on this organism. The final network
comprised 50 different groups containing 259 genes. Most of
these gene groups possess known light-stimulated gene clusters
while others represent novel findings in that work. Balasubra-
maniyan et al. (34) developed a tool called CLARITY (Clustering
with Local shApe-based similaRITY). This tool uses the Spearman
rank correlation as a shape-based similarity measure to compute
the correlation between genes in a single time series expression
data set. The method can also identify time-shifted (lagged) cor-
relations, which can be used to infer causal relationships.

3.2.2. Dynamic Bayesian
Networks (DBNs)

Another direction for determining causal relationships from time
series data is the use of various graph theory-based methods also
known as graphical models. These models include Bayesian net-
works (35) that have been successfully applied to study static
expression data. An extension of Bayesian networks, Dynamic
Bayesian Networks (DBNs) can be used to determine regulatory
relationships from time series data, often improving on the static
version for this type of data (36). For example, Ong et al. (37)
applied DBNs to study Escherichia coli time series data. While
Ong et al. used discretized expression values (up or down reg-
ulation) in their DBNs, most follow-up studies worked with con-
tinuous values and regression analysis. To illustrate the general
concept of using DBNs for time series expression data, consider
the graph in Fig. 24.4. This figure presents five genes in two con-
secutive time points. Genes A and C on the left are connected to
gene B indicating that their expression levels in a previous time
point affect the expression of B in the next time point. This could
represent transcription factors (TFs) regulating some of their tar-
gets (note that A also regulates C so the figure represents a tem-
poral feed-forward loop). We denote the node representing A on
the left as a parent of B and C. The exact nature of this effect is
indicated by the Conditional Probability for B, which is specified
in the figure. This function assumes that B is expressed as a linear
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Fig. 24.4. Dynamic Bayesian network (DBN) example. Five genes are represented using
a DBN. Edges represent conditional dependence between levels of genes in two con-
secutive time points. The probability distribution for gene B is specified. Since both A
and C connect to B, this probability is a function of the level of these two genes at the
previous time point plus some noise term. Note that in the DBN in the picture we only
allow connections between time points. In general, DBNs connections are also allowed
within a time point, but most applications using DBNs for time series expression data
only use the between time points connections.

function of A and C plus some noise. More generally, we usually
use functions of the form:

xt
i =

∑

j∈p(i)

wi,j f (xt−1
i ) + ε

where at time t the xt
i expression of gene i is dependent on the

expression of its parents (p(i)) at the previous time point (t−1).
wi,j represents the strength of the influence of parent j on gene i. ε
accounts for experimental and other types of noise and is assumed
to be independent of the measurements and distributed as a
Gaussian with 0 mean (ε ∼ N (0, σ 2)). The dependency between
parents and genes can either be linear (in which case f is the iden-
tity function, as in Fig. 24.4) or nonlinear (in which case f can
take an arbitrary form). More generally, given a vector of expres-
sion levels at time t − 1(X t−1), we can predict the levels at time t
using the following equation:

X t = Wf (X t−1) + e

where W is a sparse matrix and e is a vector of normally distributed
random noise variables.

The major challenge associated with learning such networks
from data is the condition that we need to estimate a large
number of parameters from a relatively small number of data
points. Time series experiments are very short (often no longer
than 8 time points, (11)), which means that we face the curse
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of dimensionality problem when trying to infer DBNs from a
single time series data set. To address this problem, researchers
have used a number of regularization methods. These include L1
penalty terms on the values of the weight parameters (effectively
minimizing the number of parents for each node) (38), informa-
tion theoretic penalty terms on the number of parameters (39,
40), limiting possible parents to a coherent subset of the genes
(41), and constraints on the time distance between the activation
of the regulator and the activation of its target (42).

Recently, Ahmed and Xing (43) developed a method termed
TESLA for learning time-varying networks. This method com-
bines ideas from both static and dynamic network analyses.
A regression network is constructed for each time point. How-
ever, the networks for consecutive time points are linked so that
the presence of edges in one time point depends on their pres-
ence in the previous time point allowing TESLA to uncover the
evolvability of the networks over time.

3.2.3. Interaction
Inference from Multiple
Temporal Data Sets

Combining multiple time series data sets when learning DBNs or
other time lag models may help in overcoming the skewed dimen-
sionality problem. However, combining multiple data sets for this
task is a non-trivial problem. First, sampling rates differ between
different data sets, making it hard to determine a common tempo-
ral unit for DBNs. Second, for a specific interaction pair (a TF and
its target gene) the actual time lag may differ between different
experiments since the time scale of the series data may change. For
example, using different arrest methods leads to very different cell
cycle durations (44). These different cell cycle durations translate
to differences on the molecular level, which affect the time it takes
a TF to activate the genes it regulates. Finally, even for a pair of
genes displaying time lagged regulation, this relationship might
exist in only a subset of the data sets since different pathways may
be activated under different conditions.

A possible way to combine multiple data sets is to ignore the
time lag and rely instead on correlation between the profiles of
genes in the data set. This effectively assumes a time lag of 0 for all
pairs. For example, Lee et al. (45) used the correlation method to
combine a large number of human expression data sets to search
for correlated pairs. Another way to address this issue, which is
appropriate for combining experiments that study the same sys-
tem under different conditions (for example, different cell cycle
arrest methods) is to align the data sets assuming that genes
behave in the same way in all experiments though with differ-
ent time units. The alignment process determines the appropriate
transformation from one time series to another. Once the align-
ment is determined, we can transform the different data sets into
a common temporal representation and they can then be used to
infer DBNs and other lagged models as discussed above. Various
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alignment techniques have been suggested including methods
based on dynamic programming (46), methods based on contin-
uous representations and alignment of curves (47), a combination
of dynamic programming and continuous representation (48),
and HMM-based methods (49). There have been a few attempts
at using aligned data sets for reconstructing DBNs, most notably
for cell cycle studies in yeast and human (50). Note however, that
all of these alignment methods assume that the data sets measure
the same system. However, when combining more diverse exper-
iments (for example, cell cycle and stress experiments), such an
assumption cannot be expected to hold anymore. Thus, unlike
static BNs that have been used to combine a large number of data
sets from a wide range of experimental conditions, DBNs have so
far been limited to modeling individual data sets or similar data
sets for the same biological system.

Shi et al. (51) presented method that may overcome this
problem and allow researchers to combine experiments from dif-
ferent conditions in a single DBN. These authors presented an
algorithm that uses a set of known interacting pairs to compute
a temporal transformation between every two data sets, regard-
less of the condition they study. The underlying idea is that some
interactions would be present in both data sets and these can be
used to learn the temporal transformation between the two data
sets. Using an EM algorithm, they align all time series data sets
to a common reference data set (usually the longest) and use the
aligned experiments to search for additional regulatory interac-
tions, not used in the learning phase, that are present in multiple
data sets. From 16 yeast time series data sets from cell cycle, var-
ious stress conditions, and DNA damage response experiments,
the method was able to greatly improve upon the accuracy of
models constructed from a single data set.

3.3. Integrating
Additional Data for
Improved Network
Inference

As discussed in the previous section, network inference techniques
that rely solely on time series gene expression data often suffer
because there are many more parameters to fit than time points.
To remedy this problem, inference algorithms can incorporate
other data sources to impose additional constraints and reduce
the number of feasible models.

Adding new types of data to existing models gives rise to
its own set of challenges. Such information can be used in a
pre- and/or post-processing step to eliminate inconsistent net-
works or can be tightly coupled with the network inference algo-
rithm, which may require a fundamentally different computa-
tional framework. Furthermore, not all types of data are prevalent
in certain species. For instance, whereas sequence data are readily
available for many species of interest, genome-wide protein–DNA
binding studies have only been performed for a few species (see
Chapters 11, 12, and 20 (52)). In addition, as noted earlier,
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sequence data are inherently static and protein–DNA binding,
protein–protein interactions (PPI), and miRNA–mRNA interac-
tions are generally measured at a single time point in a sin-
gle condition. Thus, it is not always straightforward to use this
information to provide additional insight into dynamic regulatory
processes.

The data-integrative methods we present here are broadly
grouped by the types of additional information they utilize:
sequence and motif data, protein–DNA binding interactions,
and/or other types of interactions.

3.3.1. Combining Time
Series Expression and
Sequence Data

In the context of inferring dynamic regulatory networks,
sequence data are most often used to predict protein–DNA bind-
ing by identifying TF binding site motifs in genes’ promoter
regions. Kundaje et al. (53) combined time series gene expres-
sion profiles and occurrence counts of known motifs to learn
transcriptional modules. Splines were used to model the dynamic
expression data, and the modules were learned by using Expec-
tation Maximization to optimize a generative probabilistic graph
model. Ramsey et al. (54) extended the time-lagged correlation
method discussed in the previous section to include a motif scan-
ning step. Differentially expressed genes were clustered, a time
lagged correlation procedure calculated significance for TF-gene
pairs, and the significance scores were combined to yield TF-
cluster scores. Position-weight matrices were used to scan the
promoter regions of the differentially expressed genes and motif
enrichments were computed for each cluster. Inferelator (55)
first formed biclusters based on gene expression data, regulatory
motifs in promoter regions, and a network of functional associa-
tions. Kinetic equations were then fit to determine the regulatory
impacts between predictor variables, TFs and external stimuli, and
the biclusters. This method also models pairwise combinatorial
interactions between predictors. An extension to Inferelator (56)
adopts a Bayesian approach to improve predictions under long
time scales.

3.3.2. Utilizing
Protein–DNA Binding
Interactions

While incorporating sequence data is appealing due to its preva-
lence in many species, motif-based binding predictions are not
as informative as experimental protein–DNA binding interaction
data. The availability of genome-wide ChIP–chip data in model
organisms such as Saccharomyces cerevisiae (5) has given rise to
techniques that make use of such information, sometimes in con-
junction with sequence data.

Luscombe et al. (57) presented Statistical Analysis of Net-
work Dynamics (SANDY), a tool for calculating network statistics
for dynamic systems. Differentially expressed genes were assigned
to a stage in the cell cycle, and an iterative trace-back algorithm
was applied to isolate the active TFs and sub-network at that
stage. Sub-networks were subsequently compared based on graph
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statistics such as topology, presence of network motifs, and TF
usage. A rule-based method by Chawade et al. (58) clustered
genes such that their promoter regions were enriched for a com-
mon set of motifs that are known to be bound by a TF. In addi-
tion, each gene in a cluster must be first significantly expressed
at the same time point or immediately after the TF regulating
that cluster is first expressed, and the expression profiles of the
clustered genes must be correlated. We previously discussed inte-
grating time lagged correlation models with motifs (54), and Wu
and Li (59) extended this class of models by incorporating TF
binding and deletion gene expression data as well. Lin et al. (60)
employed a first-order nonlinear differential equation to com-
bine cell cycle TF binding data and dynamic gene expression
data and extract dynamic interactions among the TFs. Network
Component Analysis (61) decomposes a data matrix containing
dynamic gene expression levels into a connectivity matrix and a
signal matrix and provides criteria for doing so uniquely. The sig-
nal matrix corresponds to the activity levels of TFs over time, and
the connectivity matrix quantifies how strongly TFs regulate their
target genes. Protein–DNA binding data are used to constrain the
connectivity matrix so that TFs cannot regulate genes they do not
bind, and extensions to Network Component Analysis (62, 63)
use gene knockout data to further constrain the signal matrix.

Several regression-based methods also include protein–DNA
binding data to guide the estimation of model parameters. Cokus
et al. (64) applied linear regression to time series gene expression
data and binding interaction data to estimate dynamic TF activ-
ity levels at each time point. The authors then used least squares
to estimate a transition matrix that specifies how TFs affect each
other’s activity levels over time. Multivariate Random Forests,
developed by Xiao and Segal (65), consist of a random forest of
multivariate regression trees that use protein–DNA binding and
motif data as input and temporal gene expression levels as out-
comes. The resulting proximity matrix specifies pairwise gene sim-
ilarity based on both time series expression and binding informa-
tion. The authors used the proximity matrix as input to a guided
clustering method to identify regulatory cliques.

Probabilistic graphical models have also benefitted from the
integration of TF binding information. Dynamic Bayesian Net-
works, discussed in the previous section, were adapted to include
TF binding data as a prior by Bernard and Hartemink (66). The
strength of the prior for the presence of an edge is greater for
binding interactions with lower p-values, and the prior is fac-
torable in order to enable efficient computation. Sanguinetti et al.
(67) incorporated ChIP–chip data in their Kalman filter model to
represent network connectivity. They applied a variational Expec-
tation Maximization inference algorithm to learn TFs’ dynamic
protein concentration levels and regulatory influences on their
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target genes. The post-transcriptional modification model pre-
sented by Shi et al. (68) learns temporal TF activity levels via a
switching model that determines whether a TF is regulated tran-
scriptionally or post-transcriptionally. TFs’ activity levels can then
be respectively inferred from either their own gene expression lev-
els or the expression levels of their regulatory targets. Protein–
DNA binding data are incorporated as prior in the log-likelihood
score function to penalize TF-gene regulatory interactions in the
model that disagree with the ChIP–chip data. Below we present
one type of graphical model applied to this problem, an extension
of HMMs, in greater detail.

3.3.3. Dynamic
Regulatory Events Miner

Dynamic Regulatory Events Miner (DREM) (69) takes a unique
approach by focusing its modeling of temporal regulatory inter-
actions on bifurcation points. Bifurcation events occur when a
set of genes share a similar expression trajectory up to a certain
time point and then diverge (Fig. 24.5). To identify these splits,
groups of genes are assigned to the hidden states of an input–
output hidden Markov model (IOHMM). IOHMM is an exten-
sion of hidden Markov models that allows static input, in this
case TF-gene interaction data, to influence the state transition
probabilities. At each state that has more than one child state, an
L1-penalized logistic regression classifier maps the subsets of TFs
that are potentially active at that state to transition probabilities
for the genes assigned to that state. After DREM assigns each
gene’s expression profile to one of the paths along hidden states
in the model, it uses protein–DNA binding or motif data to deter-
mine which TFs are responsible for the bifurcations by calculating
enrichment scores based on the hypergeometric distribution.

Because DREM infers the times at which TFs regulate their
targets, it can differentiate master regulators that control the
immediate response to a stimulus from secondary regulators that
are active later. Determining the time at which a TF is most active
also enables DREM to identify the best time to conduct binding
experiments for particular TFs to experimentally verify their role
in the stimulus response. DREM was so far applied to yeast and
E. coli (70) and in both cases led to specific temporal predictions,
which were experimentally verified.

�
Fig. 24.5. (continued) that pass through the corresponding hidden state (represented
by a light shaded node) are shown. These genes share a common response through the
first two time steps, exhibiting relatively little response to the stimulus. However, after
the second time point this set of genes diverges into two distinct groups, one of which is
significantly repressed. DREM identifies Fhl1, Rap1, Gat3, Yap5, Pd1, Leu3 and Smp1 as
the TFs responsible for down regulated genes and Adr1 as controlling the up regulated
genes for this bifurcation point. Several predictions made by DREM were experimentally
validated as discussed in the main text.
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Fig. 24.5. Dynamic regulatory events miner (DREM) example. Here DREM has been applied to stationary phase expres-
sion data from a Saccharomyces cerevisiae strain in which the gene encoding for the TF Ypl230w had been deleted
(77). Because protein–DNA binding data specific to this condition are not available, general binding interactions (5) were
used. Thick lines show the paths between states in the input–output hidden Markov model and thin lines indicate the
expression levels of individual genes. A bifurcation event at the second time point has been selected so that only genes
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3.3.4. Integrating
Additional Interactions
Beyond Protein–DNA
Binding

As techniques for integrating static sequence and protein–DNA
binding data with time series gene expression data continue to
become more commonplace, it becomes increasingly interest-
ing to explore how other types of interactions that influence
regulatory networks can be incorporated into dynamic models.
Protein–protein interaction data are widely available for the most
commonly studied species, but it is not obvious how such pro-
tein interactions dynamically control gene regulation. One pre-
liminary approach by Vu and Vohradsky (71) applied a neural
network-based ordinary differential equation model that com-
bined PPI data with time series gene expression, sequence, and
ChIP–chip binding data. PPI were used to model the regulation
of a gene by a protein complex in the case where not all members
of the complex directly bind the promoter region. However, this
method only allowed for complexes of two proteins, and general
integration of PPI data remains an open problem.

Post-translational modifications (PTMs) of histones and TFs
are another promising source of interaction data. TSAP (72)
focused on integrating dynamic histone PTMs to infer regulatory
states and model the trajectories of genes between those regula-
tory states over time, where a regulatory state was defined by a
joint gene expression and histone PTM pattern. It extended the
Affinity Propagation (73) algorithm to cluster genes at each inter-
val in a time series gene expression experiment such that each
cluster is dependent on clusters at other time points. Histone
PTMs near genes’ start sites were incorporated as additional fea-
tures in the clustering similarity measure between genes. Using
TSAP on mouse data provided new insights into the regulation
of Hox genes, which play an important role in motor neuron
development.

4. Discussion

High-throughput data about the activity in the cell are rapidly
accumulating. However, most of these data are static. To infer
the dynamic activation of regulatory programs within the cell,
researchers need temporal data. The most abundant source for
such data is time series expression experiments, which now
account for more than 20% of all expression studies.

When analyzing time series data, researchers need to use tools
specifically designed for such data sets. These tools take advan-
tage of the temporal ordering in the data sets and use these to
infer groupings and causal relationships. A number of cluster-
ing methods have been specifically designed for these data sets
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and many provide an easy to use interface. Other methods use
regression-based analysis to infer causality and interaction from
time series data. Both types of methods have been applied to time
series data sets from a large number of species.

While methods that analyze expression data provide useful
information, they are limited by the large dimensionality of the
data and the relatively few time points that are sampled in each
study. To overcome this, researchers have been developing meth-
ods for integrating time series data with other data sources. This
helps limit the parameter space and allows for temporal predic-
tions regarding data that were measured in static way. These
methods often lead to detailed hypotheses regarding the time
of specific interactions, some of which have been experimentally
tested and shown to be accurate.

4.1. Evaluation Of the methods discussed in this chapter, clustering approaches
are so far the most widely used. Almost every high-throughput
study uses clustering to visualize and organize the results. While
general clustering algorithms are still the most popular methods
for analyzing time series data, the temporal clustering methods
have been gaining ground recently and have been increasingly
used when analyzing data from species ranging from bacteria to
yeast to mammals.

The use of methods for causality inference in time series data,
discussed in Section 3.2, has so far been primarily limited to
computational reanalysis of expression and other types of biolog-
ical data and has not been widely used by experimentalists. This
may be because of the more complex nature of these methods or
because, as discussed above, of the skewed dimensionality prob-
lem that leads to many false positives. However, even though it
has not been very popular on its own, this types of analysis may
prove to be very useful as part of the larger analysis framework,
specifically when combined with other types of biological data.

Data integration methods for inferring dynamic networks are
increasingly used by experimentalists. Many recent high profile
papers (74, 75) use various forms of data integration to improve
the inference of dynamic regulatory networks. Unlike clustering,
this area is still in its infancy and so it remains to be seen which
computational methods would prove the most beneficial. How-
ever, this direction has already led to important findings and is
likely to remain an important research direction as we discuss
below.

4.2. Future Work While we believe that more temporal data will become available
(including temporal data regarding binding of TFs to genes and
protein interaction), some data sets are inherently static (most
notably DNA). Thus, a major challenge remains to develop meth-
ods for combining these temporal data sets with static data sets for
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reconstructing dynamic modules for regulatory networks. Many
methods can already successfully integrate time series expression
data with protein–DNA interactions, but the important goal of
connecting regulatory, signaling, and metabolic networks would
require the use of other types of interactions including protein
interactions and protein modification information. Methods for
integrating all of these data sources would provide a much needed
view for the dynamic activation of signaling and regulatory net-
works, which lie at the heart of any response system.
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