


MARCEL DEKKER

COMPACT HANDBOOK OF

Computational
Biology

Edited by

Andrzej K.Konopka
M.James C.Crabbe

NEW YORK

Copyright © 2004 by Marcel Dekker



Although great care has been taken to provide accurate and current information, neither
the author(s) nor the publisher, nor anyone else associated with this publication, shall
be liable for any loss, damage, or liability directly or indirectly caused or alleged to be
caused by this book. The material contained herein is not intended to provide specific
advice or recommendations for any specific situation.

Trademark notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent to
infringe.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress.

ISBN: 0-8247-0982-9

Headquarters
Marcel Dekker, 270 Madison Avenue, New York, NY 10016, U.S.A.
tel: 212–696–9000; fax: 212–685–4540

Distribution and Customer Service
Marcel Dekker, Cimarron Road, Monticello, New York 12701, U.S.A.
tel: 800–228–1160; fax: 845–796–1772

World Wide Web

The publisher offers discounts on this book when ordered in bulk quantities. For more
information, write to Special Sales/Professional Marketing at the headquarters address
above.

Copyright © 2004 by Marcel Dekker. All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, microfilming, and
recording, or by any information storage and retrieval system, without permission in
writing from the publisher.

Current printing (last digit):

10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

Copyright © 2004 by Marcel Dekker

http://www.dekker.com

http://www.dekker.com


iii

Foreword

Computational biology is a relatively new but already mature field of academic
research. In this handbook we focused on the following three goals:

1. Outlining pivotal general methodologies that will guide research for
the years to come.

2. Providing a survey of specific algorithms, which have been successfully
applied in molecular biology, genomics, structural biology and
bioinformatics.

3. Describing and explaining away multiple misconceptions that could
jeopardize science and software development of the future.

The handbook is written for mature readers with a great deal of rigorous
experience with either doing scientific research or writing scientific software.
However no specific background in computer science, statistics, or biology is
required to understand most of the chapters. In order to accommodate the
readers who wish to become professional computational biologists in the
future we also provide appendices that contain educationally sound glossaries
of terms and descriptions of major sequence analysis algorithms. This can
also be of help to executives in charge of industrial bioinformatics as well as
to academic teachers who plan their courses in bioinformatics, computational
biology, or one of the “*omics” (genomics, proteomics, and their variants).
As a matter of fact we believe that this volume should be suitable as a senior
undergraduate or graduate-level textbook of computational biology within
departments that pertain to any of the life sciences. Selected chapters could
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Forewordiv

also be used as teaching materials for students of computer science and
bioengineering.

This handbook is a true celebration of computational biology. It has been
in preparation for a very long time with multiple updates and exchanges of
chapters. However the quality and potential usefulness of the contributions
make us believe that preparing the ultimate final version was the time very
well spent.

Our thanks go to all the authors for their masterful contributions and
devotion to the mission of science. We would also like to extend our most
sincere thanks to our publishing editor Anita Lekhwani and the outstanding
production editor Barbara Methieu. Their almost infinite patience and
encouragement during inordinately long periods of collecting updates and
final versions of the chapters greatly contributed to timely completion of this
project.

Andrzej K.Konopka and M.James C.Crabbe
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Introduction: Computational Biology
in 14 Brief Paragraphs

Andrzej K.Konopka

BioLingua Research Inc., Gaithersburg, Maryland, U.S.A.

M.James C.Crabbe

University of Reading, Whiteknights, Reading, England

1. Computational biology has been a marvelous experience for at least three
generations of the brightest scientists of the second half of the twentieth
century and continues to be so in the twenty-first century. Simply speaking,
computational biology is the science of biology done with the use of
computers. Because computers require some specialized knowledge of the
cultural and technical infrastructure in which they can be used, computational
biology is significantly motivated (or even inspired) by computer science and
its engineering variant known as information technology. On the other hand,
the kind of data and data structures that can be processed by computers
provide practical constraints on the selection of computational biology
research topics. For instance, it is easier to analyze sequences of biopolymers
with string processing techniques and statistics than to infer unknown
biological functions from the unknown three-dimensional structures of the
same biopolymers by using image processing tools. Similarly, it is advisable to
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study systems of chemical reactions (including metabolic pathways) in terms
of rates and fluxes rather than in terms of colors and smells of substrates and
products.

2. Computational biology is genuinely interdisciplinary. It draws on facts
and methods from fields of science as diverse as logic, algebra, chemical
kinetics, thermodynamics, statistical mechanics, statistics, linguistics,
cryptology, molecular biology, evolutionary biology, genetics, embryology,
structural biology, chemistry, and even telecommunications engineering.
However, most of its methods are a result of a new scientific culture in which
computers serve as an extension of human memory and the ability to
manipulate symbols. The methodological distinctiveness of computational
biology from other modes of computer-assisted biology (such as bioinformatics

3. All fields of science (particularly biology) employ a clear distinction
between their material and symbolic aspects. The material aspects of life
sciences are related to energy- and rates-dependent (i.e., physical) properties
of substances of which biological objects of interest are made. That includes
media via which substances and objects can interact with each other in an
energy-and rates (forces)-dependent manner. The symbolic aspects are related,
on the one hand, to mechanisms by which biological objects (such as DNA)
are involved in the functioning of larger systems (such as cells) and, on the
other hand, to the nature of information (meaning) of these biological objects
for the mechanisms of which they appear to be a part.

4. Most scientists accept the duality between material and symbolic
properties of biological systems. We do not really know why it is convenient
to distinguish energy-and rates-based descriptions of matter (i.e., material
aspects) from energy-and rate-independent models of organization of matter
(i.e., its symbolic properties). The fact is, though, that both modes of describing
Nature are highly effective in terms of understanding observable objects (or
systems), processes, and phenomena.

5. Computational biology naturally draws on symbolic aspects of systems
representation because, as mentioned earlier, data structures need to be
accessible for computers. Another reason for exposure of symbolic aspects of
descriptions of biological systems is the fact that living things are a result of
(often long) evolutionary history that remains in the memory of their present
form. Yet another reason is the fact that both genetics (studies of inheritance
between generations of individuals) and developmental biology (studies of
implementation of a “master plan” to build an individual organism) have
explored symbolic aspects of living matter for centuries.*

* The symbolic essence of living things has been generally postulated since ancient times (Aristotle,
3rd century BC) as a set of characteristics that needs to be supplied in order to distinguish a
functional system from a (dysfunctional) collection of its components.

Copyright © 2004 by Marcel Dekker
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Computational Biology 3

FIGURE 1 Simplified classification of computer-assisted methods of life sciences.
Bioinformatics and theoretical biology appear to be methodologically different from
computational biology as well as different from each other.
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6. Almost all fields of biology can benefit from the use of computers,
because various forms of computer-assisted data integration (such as
classification, recoding, and compression) are in demand. However,
biomolecular sequence and structure research are the only parts of biology
thus far that are completely driven by computer-friendly data structures. In a
way, computers and biomolecular sequences of molecular biology are made
for each other.

7. From a historical perspective this mutual compatibility is not accidental.
Molecular biology was created in the 1940s by individuals inspired by
metaphorical concepts of code, language, and information. Somewhat in
parallel to these efforts, but in approximately the same time frame, the
foundations of today’s information technology originated. The fact that
nucleic acids and proteins can be represented as sequences of symbols has
been perceived as an invitation to model cells as communication systems (or
as computing machines) capable of symbol manipulation. Discovery of the
universal genetic code and its interpretation as a kernel of the general
mechanism for protein biosynthesis have led to acceptance of a combination
of language and machine metaphors as legitimate concept-generating (and
model-generating) tools of molecular biology.

8. Building an entire field of research on the basis of vague metaphors is
risky and arguably could lead to mistakes in the interpretation of factual
data. However, in the case of molecular biology the linear sequences of letters
really correspond to linear arrangements of monomers in linear copolymers
such as nucleic acids or polypeptides. Therefore there is only a minimal risk (if
any) of a misleading interpretation of morphology of sequence patterns
obtained with the help of methods of text analysis. That is why sequence
analysis is perhaps the only area of the life sciences where an analogy between
biopolymer sequences and texts (human-generated strings of symbols) is not
controversial.

9. By analogy to the genetic code (which pertains to the mechanism of
translation) and to Watson-Crick base-pairing principles (which pertain to
the mechanism of replication), we may think of other biological codes that
would pertain to mechanisms of processes other than translation or
replication. We can also interpret the sequences of DNA as encrypted texts
that need to be processed by cryptanalytic tools if we are to recover their
semantic content. There are methodological problems when this approach is
taken too literally, because the biological mechanisms (to which the alleged
codes should pertain) are, in fact, models of real phenomena and not the
phenomena themselves. That is why a huge part of research in computational
biology (particularly in sequence analysis) is devoted to the evaluation of the
adequacy of models and validation of principles of modeling.

10. Attempts to validate models led to the concept of sequence or structure
motifs replacing the idea of functional code words. For a (sequence) pattern

Copyright © 2004 by Marcel Dekker
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to be a motif (classification code word) requires only a good correlation
between its presence in sequences and postulated cellular mechanisms (models
of cell functioning). In contrast, a pattern is a functional code word regarding
an experimentally validated cellular mechanism only when it (the pattern) has
the same effect on the mechanism each time it is present (i.e., if there is
deterministic dependence between pattern and mechanism, not just a
correlation of observations).

11. Laboratory-experimental verification of postulated cellular mechanisms
is usually out of immediate reach. That contributes to extreme vagueness of
the concept of biological function at the molecular level. Because of this
imprecision in defining function, the idea of functional codes does not have
realistic reference in factual reality most of the time.

12. Searching for motifs in large collections of functionally equivalent
sequences (FESs) is a way of avoiding a mechanistic definition of function.
Instead of waiting for laboratory biologists to elucidate and confirm a given
mechanism we just assume the functional equivalence as a null hypothesis to
be tested. Within this paradigm the function is simply a name of the collection
of sequences or a name-equivalent descriptor such as a pointer that singles
out a given FES from other FESs. To decide if a sequence pattern is a motif
with respect to a given FES, we need to apply a measure of significance. That
is, the pattern must be significant in a measurable, quantitative way.

13. Beyond sequence research, computational biology is concerned with
modeling structure in a way that could be predictable from sequences of
biopolymers. The task is truly challenging because sequences alone do not
seem to contain enough information to prompt the existing general models of
folding to predict structure with any degree of reliability. That is why most
successes of structural computational biology have been in the areas of
structure classification (such as databases of protein folds). Predictions of
specific cases of biopolymer folding (such as 5sRNA) have thus far been
based on methods that explore a very large case-oriented knowledge base.
However, progress in devising universal methods can be noted in the area of
redefining alphabets of meaningful structural units for newer generations of
models of folding. In this respect, structural computational biology comes
close to sequence analysis because both fields rely on a general paradigm of
pragmatic inference. However, in other respects the two fields differ. For
instance, the general, long-term motivation of structural computational
biology is the desire to understand origins of living matter in terms of
prebiotic evolution of ensembles of chemical entities. In contrast,
biomolecular sequence analysis is generally motivated by questions
concerning existing biological functions and their evolution via modification
of sequences.

14. The field of molecular evolution is reportedly the most mature area of
computational biology. It originated soon after the first protein sequences
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were known in the 1950s and has continued its prominent presence up to this
day. Data on several fully sequenced genomes (including a draft of the human
genome) will almost certainly lead to new discoveries concerning evolutionary
relationships between DNA fragments that do not obviously code for proteins
(such as various “regulatory” regions) as well as further elucidation of the
evolutionary history of today’s phenotypes. As far as devising methods for
sequence comparison is concerned, the field of molecular evolution is close to
sequence analysis because both disciplines employ protocols of pragmatic
inference. However, the methods employed to draw historic interpretation
from sequence-related facts still remain specific to evolutionary biology and
much less relevant to sequence research.

Copyright © 2004 by Marcel Dekker
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2

Introduction to Pragmatic Analysis of Nucleic
Acid Sequences*

Andrzej K.Konopka

BioLingua Research Inc., Gaithersburg, Maryland, U.S.A.

1. INTRODUCTION

The chapter is designed as a general introduction to sequence analysis for
scientists and software developers who desire to write their own computer
programs to study nucleic acid sequences. It is also intended for practically
minded readers who would like to understand fundamental principles of
algorithms used in sequence research and the reasons specific methods were
preferred over the alternatives. The unifying paradigm in this respect is the
idea of pragmatic inference: an organized ensemble of protocols [9–12] that
on the one hand allows one to construct materially adequate generalizations
based upon instances of observable facts (validated induction) and on the
other hand generates predictions of novel potentially observable facts that
cannot be attained by induction alone (unverified discoveries).* More specific

* Most of this chapter is based on the author’s past reference work [1–11] as well as on instructional
sessions given to software users and customers of the author’s organization (BioLingua Research
Inc.) during recent several years. Large parts of the material covered here were also taught to
graduate and senior undergraduate students of biology, medicine, and computer science in the
period between 1999 and 2004.
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methods (primarily frequency count analysis) for making biological
predictions are outlined in considerable detail. However, the coverage of
sequence alignment and database searches (including pattern-matching
algorithms) is reduced to the minimum because these topics are fully addressed

Heringa (4), Taylor (6), and Lisacek (8)].
Readers interested only in running existing computer programs may elect

to go straight to the appendix devoted to an annotated glossary of software
(Konopka and Heringa; this volume) that is placed at the end of this volume.
Appendices to some of the chapters in this volume also contain remarks about
the software that pertains to their content. However, despite the availability
of software-oriented appendices I strongly advise reading the full text of
chapters in this handbook before trying to either use sequence analysis
programs or write such codes on one’s own. For one thing, the regular text
explains the limitations and constraints under which the utility software
operates. Knowledge of these constraints is in turn essential for interpretation
of output of any sequence analysis program. The second reason is the need to
understand the nature of questions about data structure that software
developers have asked before they wrote programs. Without such
understanding one cannot decide which software tool can be used for a given
purpose. The third reason is the fact that sequence analysis software is often
available with only very rudimentary, if any, instruction on its use. Some
understanding of the principles residing behind algorithms is necessary for
anyone who would like to either use or write such software.

Like linguistics and cryptology, sequence analysis is about rewriting strings
of symbols from one alphabet to another. It is hoped that such rewriting can
reveal scripting systems that will be well correlated with plausible models of
biologically relevant processes. In this general sense, nucleic acid and protein
sequence analysis is devoted to sequence segmenting and annotation. In a less
general (but also more imprecise) sense, we can think of sequence analysis as
redefining regions in sequences (substrings, subsequences) in a way that is
compatible with possible laboratory observations of the biological roles of
these subsequences. From this perspective, sequence analysis has a predictive
power as well as the quality of generating falsifiable predictions. By today’s
standards, both attributes make biomolecular sequence analysis a genuine
field of science.

There is no doubt that an enormous potential of frequency count-based
methods of alphabet (and mechanism) acquisition has not even begun to be
seriously explored, but early preliminary research results are truly encouraging

* This paradigm has been practiced for at least 300 years of modern science but clearly described,
without much of the earlier hand waving, only during the last decade in the context of computer-
assisted sequence analysis [9,10,12].

Copyright © 2004 by Marcel Dekker
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point). The majority of these methods require the design of pattern acquisition
protocol and then, via implementation of such protocol, discovery of the
representation of sequence data that appears most appropriate for answering
a biological question at hand. Sequence alignment and database searches are
very important too. However, they can be performed only after the problem-
oriented alphabet in which searches will be made and an appropriate scoring
system have been determined.

This chapter covers the methodological foundations of sequence analysis
that, to my knowledge, would be difficult to find anywhere else. In contrast to
other sources known to me, it does not focus on the details of using computer
technology (such as manuals of use of bioinformatics tools). Instead it exposes
leading metaphors and styles of thinking that are needed in today’s practice of
biomolecular sequence data handling and interpretation. The approach is
strictly practical, and therefore there is no emphasis on details of combinatorics
of strings that are mathematically interesting but methodologically ancillary.
In other words, we assume that for all (our) practical purposes all necessary
mathematics can be invented “on the spot,” perhaps with intelligent inclusion
of already existing mathematical methods. More theoretically inclined readers
are welcome to consult references 11 and 15–19, which cover combinatorics
and statistics in more detail.

2. LEADING METAPHORS AND CONCEPTS BEHIND
SEQUENCE ANALYSIS

Science of the last 60 years has been inspired by metaphors of language and
machines which in turn have led to metaphorical concepts of information,
code, and symbol manipulation. The initial opposition of physicists to the
alleged misrepresentation of their field by various “philosophers”* has
effectively been abandoned and replaced by a desire to model complex

* “Philosopher” was used as a pejorative term by some twentieth century physicists to denote
nonphysicists as well as renegade physicists rejected by political structures of their field. The idea
of contrasting “philosophers” with scientists very likely begun in the 1930s when the pro-Nazi
German scholars advocated practicality of what they called “Aryan physics” as opposed to the
non-Aryan “philosophizing” or “theorizing” about physics. The attitude of using the term
“philosopher” as an implicit death sentence for the enemies of tyrants of the time was reportedly
present during the Holy Inquisition in Europe as well as during the Cultural Revolution in China.
Despite the fact that isolationistic, discriminatory attitudes of this kind have long been discredited,
instances of using the term “philosopher” for the purpose of pejorative labeling politically
inconvenient colleagues continue to recur. Occasional substitution of the word “philosopher” for
“theoretician”—frequently utilized by a fraction of biomedical savants within the academic/
industrial complex of our time—does not make today’s labeling techniques less reprehensible or
less damaging for our culture than the past prototypes were for the intellectual ambience of their

Copyright © 2004 by Marcel Dekker
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material systems such as living organisms. In order to follow this wish one
needed to take into account not only the material aspects but also the
symbolic aspects of complex systems. In this superficial sense the paradigms
of life sciences and physics came close to each other in terms of attempting to
model organisms.

Formal logic, electronic computers, theories of codes and communication,
and formal linguistics had all been actively pursued [24–29] by the time of the

9,11,33, and 34 for sequence analysis-centered materials). In addition, the
Second World War (assumed to have ended in 1945 for non-central and non-
eastern Europe [35]) led to the involvement of many educated individuals in
the cryptological services of their countries [36-40]. The spectacular successes
of WWII (and WW1, for that matter) cryptanalysts with the use of algebraic
[41,42], statistical [43,44], and mechanistic models [45] for breaking
cryptographic systems [36] inspired a “critical mass” of scientifically
influential minds of the twentieth century with the idea of equivalence between
mechanical devices and strings of symbols (texts).

All the foregoing factors appear to have had a powerful effect on today’s
science. On the one hand, they led to the creation of symbol-manipulating
devices both abstract (such as automata in the 1940s and 1950s [46,47] and
formal grammars in the 1950s [48,49]) and real (such as electronic computers
in the second half of the 1940s). On the other hand, they also led to the
creation of molecular biology as a methodological blend of mechanistic
modeling of chemical phenomena and semantics (essence of meaning).*

Biopolymers such as nucleic acids and proteins are chemical entities
(represented by molecules), but they can also be seen as carriers of information.
This is a reflection of the methodological duality between the material and
symbolic aspects of observable phenomena [50,56–58]. Different fields of
science explore this duality between material and symbolic properties in
different ways and to different extents.

In molecular biology the material aspects of nucleic acids and proteins are
reflected in their measurable physicochemical properties that have been
traditionally studied by biochemists, structural biologists, biophysicists, and
biological chemists. On the other hand there seem to be two (not just one!)
symbolic aspects of nucleic acids and proteins:

1. The structural aspects (such as sequences and structures)
2. The mechanistic aspects (such as mechanisms of processes that may

employ sequences and structures)

* The early extramechanistic rationale for biology given by (physicist) Schroedinger in 1944 [50–
52] has been effectively modified to a kind of symbolic/informational approach to mechanistic

account).
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Most sound explanations in molecular biology indeed consist of plausible
matching of sequences or structures with mechanisms. The process of
such matching is complex. It may or may not explore the material aspects
of chemicals that participate in the processes to be explained. However,
with no known exceptions, it follows a scheme of encoding a structure
with a mechanism or vice versa. In other words, a biologically relevant
process is seen as a conversion of its one symbolic representation into
another. In this way it is similar or identical to a general scheme of
telecommunication or a cryptographic device that converts one symbolic
representation of some real objects into another. From this perspective,
molecular biology of DNA and proteins is indeed very similar to
telecommunications engineering and cryptology (which in turn are similar
to each other in this very respect).

From this perspective the field of molecular biology is literally founded on
two assumptions that evoke both of the foregoing symbolic aspects of nucleic
acids and proteins: sequence hypothesis and the central dogma of molecular
biology.*

2.1. Sequence Hypothesis and the Central Dogma
as Inspirations for Sequence Analysis

“Sequence hypothesis” implies that the biological specificity of DNA is
encoded solely in its nucleotide sequence† but explicitly refers only to the
DNA regions that undergo transcription (protein coding genes). It also refers
(less directly) to genes for functional RNA such as species of transfer RNA
(tRNA) or ribosomal RNA (rRNA). In the light of the sequence hypothesis,
the fact that the functional essence of chromosomal DNA is to store encoded
messages is implicitly obvious. The fact that the actual chemical structure
and properties are less essential for the same functional essence appears clear
as well.

The central dogma of molecular biology further stabilizes the importance
of the symbolic aspects of nucleic acids and proteins for understanding their

* The potentially pejorative term “dogma” in the phrase “central dogma” is probably a result of
a frivolous joke motivated by a half-serious value judgment about biology served by the same
renegade physicists of the early 1950s who originated molecular biology. The entire field of the
life sciences was probably considered (by them) analogous to scholastic science of the Dark Ages
when dogmas were taken more seriously than scientific methods. It is not impossible that the
original central dogma was considered to be just a temporary working hypothesis that would be
modified and renamed later on. Should that be the case, a joke or jargon in the name of hypothesis
would be easy to explain.
† “Specificity of a piece of nucleic acid is expressed solely by the sequence of its bases, and this
sequence is a (simple) code for the amino acid sequence of a particular protein” [59].

Copyright © 2004 by Marcel Dekker
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general functional roles in the living cell. It implicitly states that the cellular
protein biosynthesis can be viewed as an asymmetrical communications
system consisting of a message storage box (memory), the “package”
containing the encoded message (mRNA), and the receiver-decoder
(polypeptide produced on the ribosome).* The dogma then states that the
process is irreversible because the polypeptide cannot be reverse-translated
into the mRNA that encoded it and therefore cannot be used to produce the
same piece of DNA that encoded its own biosynthesis†.

A focus on symbolic aspects of cellular processes led to profound
generalizations of observations (such as the universal genetic code) as well
as to opening new ways of thinking about the relationship between
genotype and phenotype. It also made it possible to manipulate genetic
systems in a way that leads to experimentally testable phenotypic
variations. Thus predictions about the functions of genes and their control
could be made at least in principle and in some cases in fact. On the other
hand, the rise of computerbased technology along with developments in
computer-oriented formal linguistics made it possible to effectively employ
computers to study and analyze strings of symbols. Because nucleotide and
protein sequences are, in fact, strings of symbols, the employment of
computers for their analysis was not surprising to any one in either biology
or computer science. In fact, computers are ideal tools for molecular
biology in all these respects that explore symbolic aspects of living things at
the context-free level.

An important contribution of the sequence hypothesis and central dogma
to the field of computer-assisted sequence research is the exposition of
mechanisms of cellular processes as symbol-manipulating devices (automata)
in which nucleic acid and protein sequences serve as carriers of symbols rather
than as chemical compounds. Because of this conceptual connection between
sequences of symbols (polynucleotides and polypeptides) and mechanisms of
cellular processes (such as the biosynthesis of proteins), biomolecular sequence
analysis is literally inspired by language and machine metaphors. Sequences
are produced by automata that resemble devices to print symbols in a

* The obvious analogy to Shannon’s (1948) three-element model of a communication system [60]
is probably not a coincidence. In Shannon’s theory the general scheme for (tele)communications is
sender→channel→receiver, whereas the scheme for protein biosynthesis is DNA (coding
region)→mRNA→polypeptide.
† The original formulation of the central dogma excessively evokes the concept of “information”
being “passed,” which again underscores the symbolic as opposed to the material (structural)
aspects of representing biomolecules. “Once information has passed into protein, it cannot get
out again. In more detail, the transfer of information from nucleic acid to nucleic acid, or from
nucleic acid to protein may be possible, but transfer from protein to protein, or from protein to
nucleic acid is impossible” [59].

Copyright © 2004 by Marcel Dekker
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sequential manner (such as old telegraph receivers, which punched paper
tapes). Therefore there seems to be no reason why they (the sequences) should
not be analyzed by methods similar to those used in the analysis of printed
text and in cryptology.*

2.2. A Paradigm of Biomolecular Cryptology: Its Strengths
and Limitations

The morphology of strings of symbols (texts) can be analyzed and assessed
without regard to the meaning they convey. Strings of symbols can also be
analyzed in a way that is independent of the reasons they were generated.
Traditionally this exact approach was taken in cryptanalysis in an effort to
uncover the plain text from a cryptogram by way of discovering the rules of
the specific cryptosystem [36,43,44].

The idea of cryptosystem is important. In principle, a cryptosystem is a set
of rules for encrypting messages before they are sent and decrypting them at
their destination. One of the goals of cryptanalysis is to reconstruct the
cryptosystem based on properties of cryptograms alone (as when messages
are intercepted by a party not intended to receive them).

The idea of using methods of cryptanalysis in biology is at least as old as
molecular biology [13,33,34,54,64–69]. An interesting difference between
the art of cryptanalysis and biomolecular sequence analysis is that crypt-
analysis ends once the meaning of a cryptogram is understood. Usually, once
that happens we can decrypt all cryptograms generated by the same
cryptosystem. In the case of nucleic acid sequences we have no idea about
their “true meaning.” Nor is it obvious that the “DNA as a text” metaphor
entails any meaning in the linguistic sense. Therefore there is no natural end
to sequence analysis unless we are lucky enough to break an entire “crypto-
system,” i.e., recover a meaningful mechanism that leads to observed
sequence patterns as its “signatures.” However, even in this ideal case the
mechanisms are only the (simple) models of real phenomena. Therefore there
is no guarantee that recovering the mechanism of a sequence-dependent
phenomenon will lead to knowledge of all the sequence patterns that could
participate in processes explained by the same mechanistic model. Further
recoding and the reassigment of patterns to mechanisms appears to be the

* There are plenty of reasons, however, why the power of these “text” analyses should not be
overestimated [58,61–63], but this is an entirely different issue. In this chapter our main focus
is the exposition of the aspects of text metaphor that lead to positive enrichment of our
knowledge of biological facts or (usually mechanistic) plausible interpretations of ensembles of
facts.
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best way to gain more knowledge about the particular biological
phenomenon at hand.*

2.2.1. Alphabets

Symbols (letters) used for writing down the primary structure (sequence) of
nucleic acids or proteins constitute an initial elementary alphabet. For
sequences of nucleic acids the initial elementary alphabet is the four-letter set
E1={A, C, G, T (or U)}, where the letters in brackets stand for the nucleotides
adenine, cytosine, guanine, and thymine (or uracil), respectively. (In the case
of proteins, the initial elementary alphabet is most often the 20-letter set of
symbols of amino acid residues.) Grouping nucleotide symbols together leads
to other (two-letter) elementary alphabets frequently used in nucleic acid
sequence analysis:

E2={K, M}, where K is either guanine or thymine (uracil in RNA) and M
is either adenine or cytosine

E3={R, Y}, where R is a purine (adenine or guanine) and Y is pyrimidine
(either cytosine or thymine)

E4={S, W}, where S is either cytosine or guanine and W is either adenine
or thymine (or uracil in RNA)

Once a sequence of nucleic acid or protein is given, we can impose any kind of
annotations on it. In particular, we can label short oligonucleotides (or short
oligopeptides in proteins) such that the symbols used for labeling will serve as
letters of the new alphabet.

Among nonelementary alphabets are k-extensions of finite alphabets (where
k is a fixed integer). The k-extension Ek of an elementary alphabet E that
contains m letters is a k-gram alphabet over E defined as a set of all mk k-
grams (strings of length k; k-tuples) of symbols from E. The union of any
number of extensions (between 1 and k extensions) of an alphabet E is a
source of 1-grams through k-grams that is often used to find candidate
sequence motifs. Any such set of strings of symbols is a subset of a generalized

* There seem to be only two notable exceptions to this sinister reality: (1) translation of the
protein-coding part of mature mRNA into polypeptide according to the genetic code and (2)
semiconservative replication of nucleic acids via complementary base pairing according to Watson-
Crick-Chargaff rules (with or without additional RNA-world-specific extensions). That way the
cryptogram and cryptosystem metaphors came full circle from their conceptual origins, through
the hope that other “functional codes” exist, back to the genetic code and Watson-Crick base
pairing (the original inspiration for the cryptosystem/code metaphor).
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k-gram alphabet, which is the union of subsequent extensions of alphabet E
(from 1 to a fixed k):

Examples

A 2-gram alphabet over E1 is a set of 16 dinucleotides ={A, C, G,
T}2={AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC,
TG, TT}.

Similarly, a 2-extension of E2 is a set of only four dinucleotides, =
{RR, RY, YR, YY}.

A 3-extension ={RRR, RRY, RYR, RYY, YRR, YRY, YYR, YYY},
whereas ={KKK, KKM, KMK, KMM, MKK, MKM, MMK,
MMM}.

A generalized 3-gram alphabet over E2={R, Y} is ={R, Y, RR,
RY, YR, YY, RRR, RRY, RYR, RYY, YRR, YRY, YYR, YYY}
=

Other imaginable nonelementary alphabets include finite sets of symbols that
represent secondary and tertiary structures of biopolymers, physicochemical
properties of identifiable regions of nucleic acid structure, and even symbols
that label (name) possible biological functions of such regions. Generally
speaking, any set of annotations of regions in a sequence can be considered an
alphabet. So can a set-theoretic union of various annotation alphabets with
sequence-based alphabets, including the initial elementary alphabet.

2.2.2. Metaphor of Functional Codes is Too Esoteric
to be Practical

By analogy to the art of cracking ciphers and cryptographic codes, it would be
nice to think of sequence analysis as a search for alleged functional codes that
would relate sequences (or structures) to biological functions somehow
encoded in these sequences. It is unfortunate indeed that finding the actual
functional code would mean removing the word “somehow” from the
preceding sentence. In other words, a functional code word must signify a
specific assignment of a well-defined function to a pattern of symbols in a
sequence. The functional code would then be a complete set of all such code
words. This means that each individual code word as well as the entire code
would have to reflect real deterministic dependencies (not just a correlation of
observations) within a mechanism in which a complete list of states and
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possible transitions between the states are known for a fact (i.e., experimentally
verifiable fact).

The concept of a functional code becomes esoteric because it is difficult to
define a biological function at the molecular—often “subfunctional”—level.
It can be sensibly discussed only in specific cases of known mechanisms that
can be represented (modeled) in a form of finite-state automata that take into
account well-defined states and transitions between them. From this
perspective we can sensibly say that “the function of the heart is to pump
blood” or “the function of a bottle is to store liquids” because we assume
knowledge of a larger system in which an organ or a tool is supposed to play
a specific role (i.e., function). However, in the case of complex or ill-
characterized systems, which cannot be adequately described by well-defined
states and observables, the idea of specific functions becomes vague. Thus the
concept of functional code has no clear meaning* and becomes impractical as
far as sequence research is concerned.

2.2.3. Classification Codes and Functionally
Equivalent Sequences

Is it possible to grasp the concept of function without defining it in terms of
mechanisms? The answer is yes. Function can be defined implicitly either via
an operational definition or by convention.

The operational definition evokes the concept of functionally equivalent
sequences (FESs) [3,8,11,63,75–77]. One can, for instance, create a large set
of sequences known to play similar or identical biological roles while the
details of molecular mechanisms associated with this role are not required. A
compiled collection of FESs (introns, exons, 5'-UTR, 3'-UTRs, transcription
terminators, and so on) can be studied for the occurrence of conserved
sequence patterns. Ideally such patterns should occur in every sequence from
the collection (in which case, and only then, we could sensibly assume that the
pattern could be a functional code word), but in reality they will occur in a
significantly large number of (but not all) sequences. If a sequence pattern is
annotated as significant, we will call it a classification code word or a motif.
The convenience of this approach comes from the fact that the function is
simply the name (or name-equivalent descriptor such as a pointer) of our
collection of functionally equivalent sequences.

* The same is true of the general concept of “a function” (i.e., of some function in general). It does
imply that some unknown parts of the ill-defined system play a role in moving it from one unknown
state to another in an alleged pursuit of an unknown mechanism. Clearly there is no explanatory
benefit from using such a general notion of function. Therefore, in this case also, the concept of

detailed discussions of biological function.
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From this perspective, biomolecular sequence analysis is a search for
classification code words. It relies entirely on the art of approximately
evaluating (measuring) the functional significance of sequence and structural
data without having been given a clear definition of function. Classification
codes are clearly a reflection of our (the analysts’) knowledge of the correlation
between sequence patterns and a possible (even if unspecified) biological
function shared by all sequences in a given FES. Individual motifs
(classification code words) as well as attempts to generate entire alphabets of
motifs are addressed by the methodology of pragmatic inference discussed
later in this chapter.

3. VARIANTS AND CULTURES OF SEQUENCE ANALYSIS

3.1. Computational Biology vs. Bioinformatics

It may be of importance here to note that the culture of computational biology
differs from the culture of bioinformatics. Sequence analysis plays important
roles in both fields, but its methods and goals are understood differently by
computational biologists and by bioinformaticians. Computational biology
originally attracted a considerable number of practically minded theoretical
biologists in the 1970s and early 1980s who were both curious about the
phenomenon of life and mathematically literate. They wanted to study nucleic
acid and protein sequences in order to better understand life itself. In contrast,
bioinformatics has attracted a large number of skilled computer enthusiasts
with knowledge of computer programs that could serve as tools for laboratory
biologists (who in turn were assumed, probably wrongly, to be uneducated in
mathematics and not particularly computer-literate). Typical bioinformatics
professionals would give their undivided attention to producing and
promoting computer tools (mostly software) that laboratory biologists would
like better than the products advocated by competitors. Today’s split between
computational biology and bioinformatics appears to be a reflection of a
profound cultural clash between curiosity-driven attitude of computational
scientists and adversarial competitiveness of molecular biology software
providers.

As far as computational biology is concerned we need to realize that a huge
number of indispensable, must-know, methods of sequence analysis are not
even mentioned in the vast majority of today’s textbooks, monographs, and
review papers in bioinformatics. In the rare cases when the methods of
sequence analysis are mentioned at all, the coverage is generally misleading
and pedagogically useless while its questionable factual and methodological
correctness remains unchallenged.
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Perhaps the most controversial attitude is exhibited by some
bioinformaticians who deny the methodological value of all direct methods of
alphabet acquisition (usually based on oligonucleotide or oligopeptide
frequency counts) and at the same time overrate all methods of database
searches with regular expressions over a known alphabet. (Some of these
methods also advocate poorly verifiable—but impressive for science
administrators who allocate funds—artificial intelligence techniques.) It
appears that such controversial stands are a result of confusion caused by the
marketing activities of bioinformatics software developers who have stakes in
preventing new methods from being created because considerable financial
investments have already been made in current (often unverified)
methodologies.*

Genome sequencing projects initially held great promise for
computational biologists [61,62,78,79]. Unfortunately, they quickly
became corrupted and dysfunctional as far as the science of computational
biology was concerned. Because of administrative pressures to rapidly
annotate new genomes emerging from several genome projects, the
research on precise, “sequence-only”-based methods for segmenting
nucleic acid sequences were driven to stagnation by the early 1990s. They
were replaced by costly, difficult to understand (at least for laboratory
biologists), and methodologically confusing artificial learning tools such as
artificial neural networks (ANNs) or hidden Markov models† (HMMs)
that explore laboratory knowledge from outside sequences together with

* The financial stakes of bioinformaticians in preventing progress in computational biology
research are very high because of a very small market for bioinformatics software and because of
enormous influx of free software available over the Internet as well as provided by government-
subsidized commercial-like entities such as NCBI, NSF supercomputer centers, or EBI.
† perhaps the most devastating blow for sequence research was the creation of large, government-
subsidized centers of excellence for bioinformatics in the late 1980s and the 1990s. Not only did
the majority of these centers eliminate the inventiveness of sequence researchers of 1980s, but
they also misguided masses of computer-illiterate molecular biologists toward believing in the
false premises of misrepresented computer usage paradigms. Brutal and often irresponsible hiring
practices of the centers combined with their excellent funding situation led to profound
deterioration of inventiveness and creativity in the computational biology community at large.
Many of the best and the brightest of early periods of computational biology were forced to do
things that massive numbers of others can do as well. Many others became disillusioned by the
apparent lack of interest in their research and abandoned science altogether. Yet, despite these
events, individuals associated with the bioinformatics establishment launched a decade-long
popular press campaign advertising bioinformatics as a brand new science that goes together with
genomics quite in the same way as Lenin’s name went together with that of Stalin in (former)
Soviet propaganda shows. It would be good if future historians of science could explain why
political manipulators of bioinformatics centers of excellence were able to silence and cripple (or
in some cases annihilate) a worldwide community of curious, skilled, and inventive sequence
analysis researchers.
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known facts about sequences. Clearly, genome projects have favored (and
financed) bioinformatics while at the same time neglecting computational
biology. As a result, the confused scientific community of the 1990s
withdrew into rating tools of bioinformatics for possible usefulness to
laboratory workers instead of focusing on new and much-needed basic
methods of sequence analysis. Fortunately (albeit almost by accident), the
interest in sequence analysis proper has survived among individual
scientists, and now is a perfect time to resume the tasks so unwisely
abandoned in the 1990s.

3.2. Nucleic Acid vs. Protein Sequence Analysis

Other noticeable methodological premises that need to be mentioned are
differences between nucleic acid and protein sequence analyses. On the surface,
differences appear to be negligible and reducible to the size of the initial
alphabet in which sequences are represented (four nucleotide symbols in
nucleic acids and 20 amino acid residue symbols for proteins). However, as
far as the practice of sequence analysis is concerned the differences are much
more profound than that.

The first difference arises from the fact that Watson-Crick-Chargaff base-
pairing rules and the knowledge of a general mechanism for protein
biosynthesis conceptually bind sequences of nucleic acids to their structural
specificity. DNA sequences can undergo semiconservative replication to
produce double-stranded entities identical to themselves. They can also
undergo transcription into RNA sequences complementary to one of the
strands of double-stranded DNA. Similarly, RNA three-dimensional structures
appear to be completely determined by their sequences via the use of rules of
complementarity (at least in the case of small RNAs such as 5sRNA, the
evidence that this is indeed the case is voluminous). In the case of proteins, the
relation between sequences and structures is not so obvious, and very much
depends on the definition of “function.” Even protein folding (once believed
to be entirely sequence-dependent) requires the involvement of chaperones,
and generally the details of the sequence-structure relationship are difficult to
demonstrate directly.

The second difference comes from the fact that the sequence hypothesis,
the central dogma, and the universal genetic code provide the conceptual
ambience for defining the function of genome fragments in mechanistic
terms. However, for protein sequence fragments, mechanistic descriptions
of function are much more difficult (if not impossible) to formulate. For
instance, we can say that the function of a protein-coding region in DNA is
simply to carry a “message” about a protein sequence to succeeding
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generations (via DNA replication) or to mRNA (via transcription). The
concept of “function” in this case is naturally pertinent to our well-verified
mechanistic models of cellular processes such as protein biosynthesis or
DNA replication. There is no such clarity in the case of proteins. Although
it is well known that replacement of even one amino acid by another in a
sequence of protein can mean a difference between health and disease
[80,81], there is no clear definition of “function” for a given sequence
fragment at the molecular level. That is to say, it is easier to see the effect of
mutations in proteins at the phenotype level of an entire organism than
to relate mutation to a change in the “local” chemistry of the mutated
protein.

The foregoing differences between fundamental assumptions imposed on
nucleic acids and protein sequences shape the kind of questions that can be
asked before sequence analysis begins. A nucleic acid sequence analyzer can
sensibly ask, “What is the function-associated alphabet in which this particular
sequence should be represented?,” whereas the protein analyst would tend to
ask, “What subsequences or groups thereof are most conserved in a given
collection of sequences?” The nucleic acid analyst would perhaps want to
know in what molecular level function a given sequence pattern could possibly
participate, whereas the protein analyst would rather want to know how
unlikely finding a given sequence pattern at random is according to a given
model of chance. We can easily see that these are genuinely different questions.
Not only do they address different problems and pertain to different kinds of
knowledge but they also require different skills from researchers who do
sequence analysis. That is to say, sequence analysis research should, in
principle, be able to address all these questions, but the adequacy of answers
and interpretations will generally be different for nucleic acids than for
proteins.

3.3. Sequence Annotation “By Signal” vs. Annotation
“By Content”

leads sequence analysis toward a search for patterns that appear to be a
“signature” of a biological function. This procedure has been genuinely
successful only in finding stop codons of the genetic code in nucleic acid
sequences. Any stretch of sequence between two stop codons that does not
contain such a codon is a potential protein-coding region (unidentified
reading frame, so to speak). One can narrow the search by identifying
sequences between putative start codons (which unfortunately often code
also for the amino acid methionine) and stop codons. This could, in principle,
be a method for identifying potential (intronless) protein coding regions.
Unfortunately, but not entirely unexpectedly, the search for other potential
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“signals” often leads to great terminological and methodological complexity
of annotation tools but does not help much with understanding a
relationship between sequence patterns and biologically sound cellular
mechanisms.

Annotation “by content” is methodologically very different than the
foregoing search “by signal” [9,82–84]. Instead of looking for specific
sequence fragments (say, probable “words”), we search for regions of sequence
in which a sequence-associated parameter (usually numerical) assumes values
from a range specified by the analyst before the analysis (or otherwise
determined during the analysis). The analyzed sequence can be segmented
according to the value of the parameter. The hope is that sequence segments
defined by the parameter’s value will be collinear with biologically important
regions that are defined by their biological function. For instance, biologically
speaking, introns are the regions in protein encoding sequences that are
removed from pre-mRNA after transcription. On the other hand, statistically
speaking, repeats of mono- and dinucleotides in introns happen much more
often than in neighboring exons. Therefore, segmenting nucleotide sequences
by using local compositional complexity (or other measures of repetitiveness)
as a numerical parameter can (and often does) lead to finding introns in protein
encoding genes.

Of course, computers can memorize properly scripted biological facts and
their associations with sequences without us, the analysts, understanding the
reasons for these correlations. This is a main reason why search “by signal”
has been used in genome informatics to search for protein coding regions and
possible regulatory domains in newly sequenced DNA. On the other hand,
computers and analysts together can invent and test a large number of
different content-associated parameters in a short time. Properly scripted
parameter-based segmenting techniques can then be used to search for
functionally important regions in newly sequenced chromosomes or even
entire genomes.

As far as science is concerned, search by content appears more attractive
because it leads to finding putative functionally important regions without
knowing them in advance. In contrast, search “by signal” is based on knowing
a “function” of the pattern in advance and therefore appears to be more boring
than search by content. Naturally, the level of excitement of an analyst with
either methodology is to a great extent a function of his or her interests and as
such does not need to affect the process of analysis itself.

3.4. Set of Many Sequences vs. Single-Sequence Analysis

Yet another methodological intricacy arises when we want to select
appropriate methods for sequence analysis: The analysis of a single sequence
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requires a different methodology than analysis of a finite set of many
sequences.

In the case of multiple sequences the results of analysis are sensitive to the
lengths of individual sequences. It is also practical to prealign multiple
sequences according to a position (such as leftmost nucleotide) or a
characteristic pattern that occurs in every sequence of the ensemble.

4. MODELS OF PRINTED TEXT AND OTHER LESSONS
FROM LINGUISTICS

Sequence analysis draws on the metaphor of printed text because it deals
with strings of symbols that could be seen as texts generated by a printer.
The printed text metaphor in turn represents a variant of both the language
and the machine metaphor (machine-generated language encoded in an
alphabetic script, to be precise). It is therefore not at all surprising that
models of printed texts have proven profitable for devising methods of
analyzing nucleic acid and protein sequences. The most well-known of these
models draw on an assumption of a strict relationship between a text-
generating device and the text itself. More specifically it is assumed that
strings of symbols can be printed, read, and composed by clockwork-like
devices that are called by different names in different fields. In historical
perspective, in the last half a century, linguists, physicists, and computer
scientists most often referred to such devices as “automata,” wheras in
telecommunications engineering the term “source” (of sequences of symbols;
messages) was preferred. Cryptologists appear to be more straightforward
in their terminology, most commonly referring to the concept of
“cryptographic device.”

4.1. Syntax-Generating (Generative) Models of Language

Generative models of language are based on the assumption that a given
language L is nothing more than a set of sentences that in turn are finite
strings of words chosen from a finite vocabulary. (Sometimes words are called
letters, and vocabulary is called an alphabet.) A grammar is then a finite set of
rules for specifying the sentences of L and only those sentences.

The most common formalisms (i.e., metalanguages) to describe grammars
are generative grammars (sometimes referred to as rewriting systems) that
consist of four kinds of mathematical objects:

1. Finite set of variables (non-terminals) VN
2. Finite set of terminals (actual “words” of modeled language) T
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3. Finite set of rules of production P
4. Start symbol S

In set-theoretic notation we can represent a rewriting system G as a quadruple
of sets:

Rules of production are always in the form x→y (read “x can be rewritten
as y”), where x and y are strings of symbols drawn from the union of VN and
T, i.e.,

 

Alternative formalisms to describe formal languages are automata,
abstract models of hypothetical mechanical devices that accept strings that
belong to L.

It turns out that the two groups of formalisms are equivalent to each other
in the sense that a language generated by a given class of rewriting systems is
acceptable by a given class of automata [46,85–87]. One can distinguish four
major classes of rewriting systems that differ from one another in the details
of allowed rules of production (and by automata to which they correspond).

As far as sequence analysis is concerned, only regular grammars are being
systematically employed thus far to design various (formal) languages of
regular expressions for pattern matching.* Some aspects of context-free
grammars may also be employed for studying expressions that involve
self-complementary (in terms of Watson-Crick-Chargaff rules of base
pairing) oligonucleotides. This by itself is helpful in writing computer
programs and queries within bioinformatics tools but does not have any
bearing on understanding biological properties of the studied systems and
phenomena.

Biologists have understood the complementarity of messages and
mechanisms since the beginning of molecular biology.† However, the lack of

* One reason for the focus on languages to describe patterns is computer scientists’ desire to use
standards similar to those of the UNIX operating system, where regular expressions are
implemented as a tool of alphabetic string matching. Anyone who searches online dictionaries or
databases for the occurrence of strings containing “wild” characters, such as like Bio* or c**j
*lina or *omics, is in fact using a regular expression within a given search engine.
† For one thing, the graphs (“cartoons”) illustrating pathways of cellular mechanisms are terrific
working examples of formal equivalence between regular grammars and finite-state automata.
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specific knowledge of experimentally verified function-or structure-associated
vocabularies makes the concept of grammar too general to be useful for
understanding biological reality. The problem here is almost identical to the
case of the metaphor of functional code (see Sec. 2.1.1): The grammar is a
nice metaphor that can be used for picturing sequence research to beginners
but does not have explanatory power for detailed understanding in biology.
In fact, in order to understand biological phenomena, we do not need
instructions about syntax and automata. Instead, the practice of sequence
analysis is an active search for a listing (vocabulary; alphabet) of sequence

TABLE 1 Types of Grammars and Their Properties

a Language of type n(n=0, 1, 2, or 3) is defined as a set of strings consisting of terminal symbols
generated by rewriting system of type n. It can be proved that for n>1 every type n language is
also a type n-1 language but not vice versa. For example, every regular language is context-
free, but there exist context-free languages that are not regular. This property of generative
models is sometimes called a Chomsky hierarchy to underline Chomsky’s invention of formal
grammars [48,49].
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motifs (i.e., analogs of words and letters) that pertain to our specific problem
that involves nucleic acid or protein sequences.

4.2. Statistical Models of Printed Texts

The distribution of relative frequencies of letters appears to be the same in
any sufficiently long text formulated in a given language and recorded in an
alphabetic script. Although the reasons for language-specific letter frequency
conservation are complex [60,89], it reportedly makes sense [43,90] to use
this observation as a rationale for statistical modeling of the morphology of
printed texts.

printed texts in English and in Polish. It can be seen that the space bar (word
divider) is the most frequent character in both texts. It can also be seen that
the mean distance separating two nearest occurrences of the same letter is a
decreasing function of letter frequency. Much less obvious findings are that
the average word length in English is shorter than in Polish (distance between
nearest space bars), and that the letters Z, J, and K, which occur relatively
rarely in English are quite frequent in Polish. Similar statistics (data not shown)
indicate that A is the first letter of English words three times as often as it is
the last letter, but in Polish A occurs three times as often at the ends of words
than at the beginnings of words (similar but opposite relations hold for O). If
we had chosen other sufficiently long sample texts in these two languages,
most of the foregoing observations would remain unchanged. This in turn
means that statistics alone could indicate whether or not two strings of symbols
are written in the same language.

An example of a simple but involved frequency count analysis for nucleotide

a preliminary character and cannot be used as “hard” criteria for segmenting
sequences. However, despite their approximate character they are extremely
valuable for shaping intuition about new ways in which sequence data should
be represented in order to detect significant patterns that can be used as criteria
for reliable string segmentation.

distance analysis between selected simple patterns (motifs) in nucleotide
sequences. Here the actual pattern consists of two motifs separated by a gap
(punctuation) of variable length. (In Fig. 3 we show only a recurrence of the
same motif at variable distances, but the same analysis can be done for a more
general case of two different motifs.)

A host of significant defining patterns (descriptors) can be inferred from
studying Figures 3A–3D. For instance, the fact that dinucleotides in introns
occur at preferred distances of 0, 2, 4,…, and generally 2n (n=1,2,3,…)
whereas the preferred shortest distance is 0 indicates that tandem repeats of
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Another example of useful frequency count is shown in Figure 3. It concerns
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FIGURE 1 (a) Letter frequencies per 1000 characters in average printed texts in
English and in Polish with the alphabets adjusted to 26 letters and a word divider
(space bar). The sample texts chosen for this example were probably too short from
the point of view of rigorous sampling, but the most conspicuous similarities and
differences between the two frequency distributions conform to data known from all
other studies. (b) Average distances between instances of the same character in
English and Polish. The most important is the distance between word dividers because
it indicates the average length of a word. In English, this appears to be five letters,
whereas in Polish it is 6.4 (i.e., between 6 and 7, but most likely 6). As expected, rare
letters are separated by large gaps, whereas instances of frequent letters are
separated by short gaps.
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FIGURE 2 Example of using frequency counts to discriminate between introns (lighter
bars) and exons (darker bars) from large nonredundant collections (FESs) of
vertebrate intron and exon sequences. Figures show z-scores of the distribution of
variance of (a) mononucleotide prefix and (b) mononucleotide suffix frequencies of
each of 16 dinucleotides. As indicated by the arrows, some variances of prefix and
suffix frequency distributions are markedly different in introns and exons. Sequence
data were taken from the VIEW database in the NCBI repository [8,9].
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FIGURE 3 Examples of pattern acquisition via analysis of short oligonucleotide
distance charts. All four distance charts were made for large collections of sufficiently
long intron and exon sequences from several eukaryotic genomes (primarily human,
mouse, and fruit fly.) (A) Charts of distances between instances of the same
nonhomopolymeric dinucleotide AC (charts are almost identical for 11 remaining
nonhomopolymeric dinucleotides). (B) Charts of nearest (shortest) distances between
instances of nonhomopolymeric dinucleotide AC. (C) Charts of distances between
instances of mirror symmetric trinucleotide ACA [it begins with dinucleotide AC whose
charts are presented in the figures (3A) and (3B).] (D) Charts of nearest distance
between instances of the same mirror-symmetric trinucleotide ACA.
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nonhomopolymeric dinucleotides is a predominant, defining, pattern in
introns. The fact that mirror-symmetrical, nonhomopolymeric trinucleotides
display 3-base quasi-periodicity in exons but not in introns is a clear
confirmation of the triplet nature of the genetic code (avoidance of stop
codons in protein-encoding reading frame). Even if the genetic code were not
known, we could easily conclude that trinucleotides and their 3-base quasi-
periodicity constitute defining, function-associated, patterns in exons but not
in introns.

From the perspective of biomolecular sequence analysis, the appealing
aspect of letter frequency count is its potential independence of either
knowledge of language or actual meanings encoded in the analyzed strings.
We do not need to know what words, sentences, and paragraphs mean in
order to determine statistical regularities in them and then classify (segment)
them according to criteria derived from such regularities. Ideally, our
segmenting will reflect some functional property of the entire text (such as
being formulated in the same language or being written by the same author)
without knowledge of the essence of this underlying function.

An important factor in making quantitative models of texts is the
assumption about a general principle of operation of the text-generating
devices (sources). From the statistical point of view this assumption is
equivalent to defining a model of chance. In the most general terms we can
distinguish three models of chance that have been used in biomolecular
sequence analysis:

1. Bernoulli text source
2. Markov text source (sometimes called a hidden Markov model)
3. General stochastic (non-Markov) source

Because of their simplicity and elegance, the concepts and terminology
originated by Claude Shannon in the 1940s and 1950s [60,89,90] appear to
be most appropriate for describing statistical methods of sequence analysis.
However, in addition to Shannon H-function, other measures of deviation
from equiprobability or from statistical independence can be, and often are,
used in sequence analysis protocols.

4.2.1. Discrete Uniform Distribution of Letter Frequencies
and Bernoulli Text

A set of events A1, A2,…, An such that one and only one of them must occur at
each trial is called a complete system of events. If the events A1, A2,…, An of a
complete system of events are given along with their probabilities p1, p2,…, pn

(pi>0, p1+p2+…+pn=1), we say that we have a finite scheme [91]:
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(1)

The probability distribution of letters from an alphabet of size n in a given
text is an example of a finite scheme. For most purposes we only need the data
on probabilities without regard to the events to which they are assigned.
Therefore we will refer to the list of numbers (probabilities) in the second row
of finite scheme (1) as a probability vector and denote it by [Pn] (i.e., [Pn]=[p1,
p2,…, pn]). It should be noted that because of the normalization condition
(sum of probabilities in the finite scheme equals 1), the mean value of every
list [Pn] equals 1/n, i.e.,

(1a)

The variance corresponding to this list is by definition

(1b)

The alternative expression for the variance of list [Pn] that can be derived
from (1b) is

(1c)

The hypothetical long string of symbols (text) over a finite alphabet of a
fixed size n is referred to as a Bernoulli text if the letters occur in it
independently of each other and with equal probabilities, (i.e., pi=1/n). A
Bernoulli text over an alphabet of size n has several properties of interest for
sequence analysis and can be used as a model of chance (reference
sequence). For one thing it constitutes a perfect example of a situation that
should be modeled by a discrete uniform distribution (DUD) given by the
finite scheme

(2)

Copyright © 2004 by Marcel Dekker



Pragmatic Analysis of Nucleic Acid Sequences 31

Here the symbols A1, A2,…, An stand for letters of an alphabet of size n, but
they can represent any kind of statistically independent events belonging to a
complete set of finite size (cardinality) n. The list of probabilities in the second
row can be abbreviated by the symbol [1/n].

It is easy to note that the mean probability of the list [1/n] must equal 1/n:

(2a)

By definition, the variance of this list equals 0 because every number in the list
is equal to the mean:

(2b)

Because the mean value of the list [1/n] equals 1/n, the variance of [Pn] given
by either (1b) or (1c) is a measure of how much a given list [Pn] differs from
the DUD.

Another such measure can be Shannon entropy [60]:

(3)

Because we took the size of the alphabet n as the basis of the log function,
Shannon entropy (3) reaches its maximum (equal to one n-ary unit per symbol)
for the DUD and its minimum (equal to 0) for all n lists [Pn] in which one of
the n probabilities equals 1 and all others equal 0. The convention 0 * log 0=0
needs to be adopted.

Yet another measure of deviation of a given list of probabilities [Pn] from
the DUD is the so-called index of coincidence I:

(4)

where κp [43] is a sum of squares of probabilities in the list [Pn]:

(4a)

The value of κr equals simply 1/n:

(4b)
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It can be easily seen that

I([Pn])=nκp([Pn]) (5)

The relation between the variance of [Pn] and the index of coincidence is also
clear:

I([Pn])=1+n2Var([Pn]) (6)

It is clear from the foregoing discussion that all indices that indicate the
deviation of a finite list of probabilities from the discrete uniform distribution
case should be equivalent to each other and derivable from each other
[11,44,63,92,93].

5. PRAGMATIC INFERENCE

The idea of context dependence of motifs and patterns is at the core of
pragmatic inference, the art of determining sequence motifs from their

the general scheme for a protocol of pragmatic inference as used by most
practitioners of sequence analysis.

From a practical point of view, pragmatic inference is an organized ensemble
(a system) of three protocols:

1. Sequence alignment and string matching (database searches)
2. Pattern acquisition (primarily statistical analysis of sequences)*
3. Redesigning and remaking database entries and annotations thereof

Each protocol addresses different questions. Sequence alignment can be done
only when the alphabet in which the sequences are written is known. It can be
the initial alphabet to represent sequences (A, C, G, T/U for nucleotide
sequences and 20 symbols for amino acid residues in the case of proteins). It
can also be a more sophisticated alphabet of regular expressions (i.e., flexibly
defined patterns to match against sequences).

The goal of pattern acquisition methods (mostly statistical) is to find
patterns that are meaningful indicators of function. Ideally we would want to
find all such meaningful patterns (motifs) because then we would have the
complete alphabet of motifs. Sequences could be rewritten in this alphabet

* Sometimes (particularly in older literature) the concept of pragmatic inference is used as an
equivalent of pattern acquisition only.

Copyright © 2004 by Marcel Dekker

instances and the knowledge context to which they pertain. Figure 4 shows



Pragmatic Analysis of Nucleic Acid Sequences 33

FIGURE 4 General scheme of pragmatic inference as perceived by most practitioners
of sequence analysis can be divided into three methodologically distinct classes of
protocols: (1) pattern matching (sequence alignment and database searches), (2)
enrichment of databases, and (3) pattern acquisition. Pattern acquisition in the case
of nucleotide sequences is generally based on frequency counts, visual inspection of
sequences, and invention of new data representations.
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and then undergo higher levels of analysis via both alignment and (again)
pattern acquisition. Figure 5 illustrates a scheme of pattern acquisition along
with a common classification of sequence patterns. It should be noted that
motifs detected by pattern acquisition are generally different from those
detected by sequence alignment. In addition, they often pertain to a different
definition of function.

Finally, the goal of redesigning databases is to add to knowledge obtained
from sequence alignment and pattern acquisition such that the future rounds
of data analysis will be able to use up-to-date information.

The following example illustrates how pragmatic inference (particularly
pattern acquisition) is used in the detection of sequence motifs.

FIGURE 5 Pattern acquisition and classification of sequence patterns.
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Example. Let us consider the following fragments (two single strands) in
DNA sequences:

3'-ATATATATATATATATAT···5'
3'-GCATGCGCACGCGCACGC···5' (I)

Alignment result (II), albeit potentially useful, misses the principle of
constructing these very nonrandom sequences:

···AT···A···A···
···AT···A···A··· (II)

Pragmatic inference via pattern acquisition requires some experimentation
with alphabets. We can, for instance, rewrite our sequences as an alternation
of purines (R) and pyrimidines (Y), which leads to the observation that our
sequences are tandem repeats of the motif RY (dinucleotide in the R/Y
alphabet):

RYRYRYRYRYRYRYRYRY···
RYRYRYRYRYRYRYRYRY··· (III)

We can also rewrite our sequences as tandem repeats of a hexanucleotide:

(ATATAT) (ATATAT) (ATATAT)···
(GCATGC) (GCATGC) (GCATGC)··· (IV)

This in a hexanucleotide alphabet could be rewritten as

(Hex-a)3 ···
(Hex-b)3 ···

(IVa)

where Hex-a and Hex-b are hexanucleotides ATATAT and GCATGC,
respectively.

Another way of rewriting sequences (I) can be assisted by the
observation that ATA and TAT are complementary to each other in terms of
Watson-Crick base-pairing rules. ATA and TAT are also related by the
relation of reverse complementarity, i.e., they would be strictly
complementary to each other if they faced each other in two antiparallel
strands of DNA molecule. The same relation of reverse complementarity is
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seen in the case of trinucleotides GCA and TGC, which are components of
Hex-b in (IVa). This leads us to the observation that both sequences (I)
consist of tandem repeats of hexanucleotides that are composed of a
trinucleotide followed by its reverse complement. We can therefore rewrite
our sequences in the form

ββ′ββ′ββ′ ···
∂∂′∂∂′∂∂′ ··· (V)

Taking into account the fact that hexanucleotide blocks are tandemly
repeated (three times), we can rewrite (V) in the compressed form that conveys
this information:

(ββ′)3 ···
(∂∂′)3 ···

(Va)

where β and ∂ signify trinucleotides ATA and GCA, respectively, while β′ and
∂′ indicate their reverse complements TAT and TGC.

It should be noted that each of the patterns described by expressions (III)–
(Va) can be considered a motif because it is abundant in original sequences in
a logically and statistically significant way. On the other hand, expressions
such as (III)–(Va) are regular expressions and therefore could be used for
pattern matching in properly rewritten data collections. The results of such
matching (alignment or database search) could then be used to supplement
the knowledge base to assist in the next round (if needed) of pattern
acquisition.

6. PRAGMATIC SEQUENCE ANALYSIS

6.1. Overlapping and Nonoverlapping Counts of k-Gram
Frequencies

A k-gram alphabet over an alphabet A of size n (i.e., a k-extension of A)
contains nk elements. In a Bernoulli text of length L, the expected frequency of
each k-gram is therefore given by the formula

F0=L/nk (5)
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For the nonoverlapping count, variance is a function of n, k, and L given by
the equation [17,94,95]

(6)

For an overlapping count, variance is no longer a simple function of numbers
n, k, and L but also depends on the specific sequence of the k-gram. Therefore
it needs to be calculated for each individual k-gram separately from other k-
grams. The reason for this complication is the variance’s dependence on the
self-overlap capacity of individual k-grams.

The self-overlap capacity of a given k-gram S can be determined from an
autocorrelation polynomial:

(7)

Coefficients ai equal 1 if the first and last (k-i)-grams in S are identical and
equal 0 otherwise. For example, the polynomial for trinucleotide CCC is
KCCC=1+x+x2. For trinucleotides ACA we have KACA=1+x2, but for GAT there
is no self-overlap, and therefore KGAT=1.

Finding coefficients of the polynomial Ks is more difficult in the case of
tetranucleotides and longer k-grams. It generally requires more advanced
combinatorics than we wish to describe in this chapter. Interested readers
should consult, for instance, Ref. 17 and also get acquaint themselves with
the original statement of the problem [94].

Let us consider an overlapping count of k-grams in a Bernoulli text of
length L over an elementary alphabet that contains n letters. The variance of
frequency distribution for a given k-gram S in such case is a function of Ks(1/
n) given by the formula

(8)

Failure to consider self-overlap capacity in overlapping counts can lead to
huge errors (hundreds of percent) in both probability and variance calculation.
(This is particularly evident in cases of small elementary alphabets and large
values of k.) On the other hand, methods to calculate variance are often
computationally expensive and difficult to implement [18,19]. That is why in
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the case of biomolecular sequence analysis it is practical to use frequency
counts of nonoverlapping k-grams if at all possible.

6.2. Some Statistical Practices of Particular Importance
in Sequence Analysis

In order to determine which sequence patterns can be considered classification
code words we need to perform an oligonucleotide frequency count based on
the following general assumptions [8,11,43,60,90,96–98] :

A1. The relative frequency of a given “true” code word should be
approximately the same in a vast majority of sequences from a given
sufficiently large set of sufficiently long functionally equivalent
sequences (such as, transcription terminators, introns, or RNA
polymerase promoter regions).

A2. The probabilities of at least some individual classification code words
should differ markedly from one another in all—or at least a vast
majority of—entries from a given collection of functionally equivalent
sequences (functional class).

A3. The entire probability distribution of “true” code words should be
approximately the same in a vast majority of sequences from a given
functional class.

A4. Selected “true” code words should occupy distinct relative positions
in a vast majority of sequences from a given functional class.

It is important at this point to determine what a “sufficiently long” sequence
is. Given an alphabet A of size n, a sequence is sufficiently long if every symbol
of the alphabet occurs in it at least once. In other words, the number of letters
absent from the sequence should be zero. The minimal lengths of sequences
that can be considered sufficiently long for letter frequency count to make
statistical sense over different sizes of alphabets are shown in the graph in
Figure 6 and listed in the table at the bottom of the figure.

The lengths of the sequences shown in Figure 6 can be evaluated from
several statistics. For the purpose of this chapter I have used the so-called
statistics of blanks [43] for Bernoulli texts. According to this statistics, the
expected number of “blanks” (absent symbols) in a text of length L over an
alphabet of size n can be approximated by the binomial distribution and is
given by the formula

(9)
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FIGURE 6 Minimum lengths of sequences (L0) that are required for statistical analyses
of k-grams (k=1, 2,…, 6) over four elementary alphabets of sizes 2, 4, 6, and 20
letters, respectively. The alphabets of sizes 2 and 4 correspond to typical
representations of nucleotide sequences, whereas the alphabet of size 20 can
represent sequences of proteins. It can be seen that to talk sensibly of the frequency
count of mononucleotides in a two-letter alphabet—such as {R,Y},{K,M}, or {S,W}
representations of nucleic acids—we can do well with sequences as short as five
nucleotides in length. However, for dinucleotides we need stretches of sequence of at
least 13 nucleotides, for trinucleotides our minimum length L0 is 33, and for
tetranucleotides in a binary alphabet the minimum length is 79 nucleotides. When we
consider the standard four-letter initial elementary alphabet {A, C, G, T/U} of nucleic
acid sequences, we need a sequence at least 410 nucleotides in length to be able to
sensibly study trinucleotide frequency counts and nothing shorter than 2010
nucleotides to study tetranucleotide frequency distributions. Taking into account the
fact that many protein-coding genes (particularly in bacteria and viruses) are as short
as 100–200 nucleotides, we should not be surprised that our conclusions from
frequency counts of even trinucleotides cannot be very reliable for sequence
segmenting purposes. (Still they can give us an intuitive idea about a more effective
data representation in terms of finding function-associated patterns.)
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where pi stands for the probability of the ith letter. In Bernoulli texts,
probabilities pi are all equal to 1/n, and therefore the number of letters absent
by chance alone is

(10)

calculate the minimum value of L0 that will be large enough not to affect the
number of missing letters. Only the sequences whose lengths are greater than
or equal to L0 are sufficiently long to be suitable for statistical analysis based
on k-gram frequency count.

7. CONCLUDING REMARKS

Computer-assisted sequence analysis attracts the best and the brightest of
modern science because it is fun to study sequences and because it is
challenging to find methods to analyze strings of symbols with the prospect of
almost instant laboratory experimental verification of results and
interpretations. Progress in developing new methods of search by content will
probably continue through the remainder of this century (which is almost an
entire century) because of the enormous amount of genome sequence data
accumulated thus far and because of remarkable emerging techniques for the
study of cell biochemistry. I sincerely hope that this chapter along with the
others in this handbook will help current and future readers to develop
intellectual discipline, intuition, and sensibilities that will guide them through
their computational biology research adventure. I hope it will be at least as
fulfilling and joyous an experience for them as it has been and continues to be
for my coworkers and myself.
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1. MOTIFS IN SEQUENCES

Conserved patterns of any kind are of great interest in biology, because they
are likely to represent objects upon which strong constraints are potentially
acting and may therefore perform a biological function. Among the objects
that may model biological entities, we shall consider only strings in this
chapter. As is by now well known, biological sequences, whether DNA, RNA
or proteins, may be represented as strings over an alphabet of four letters
(DNA/RNA) or 20 letters (proteins). Some of the basic problems encountered
in classical text analysis have their counterpart when the texts are biological
sequences; among them is pattern matching. However, this problem comes
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with a twist once we are in the realm of biology; exact patterns hardly make
sense in this case. By exact, we mean identical, and there are, in fact, at least
two types of “nonidentical” patterns one must consider in biology. One
comes from looking at what “hides” behind each letter of the DNA/RNA or
protein alphabet, and the other corresponds to the more familiar notion of
“errors.” The errors concern mutational events that may affect a molecule
during DNA replication. Those of interest to us are point mutations, that is,
mutations operating each time on single letters of a biological sequence:
substitution, insertion, or deletion. Considering substitutions only is
sometimes enough for dealing with some problems.

There are basically two questions that may be addressed when trying to
search for known or predicted patterns in any text. Both are discussed in
general computational biology books such as Durbin et al.’s [1], Gusfield’s
[2], Meidanis and Setubal’s [3], or Waterman’s [4]. One, rather ancillary,
question has to do with position: Where are these patterns localized
(pattern localization prediction)? The second question, more conceptual,
concerns identifying and modeling the patterns ab initio: What would be a
consensual motif for them (pattern consensus prediction)? In biology, it is
often the second question that is the most interesting, although the first is
far from being either trivial or solved. Indeed, in general what is
interesting to discover is which patterns, unknown at the beginning,
match the string(s) more often than “expected” and therefore have a
“chance” of representing an interesting biological entity. This entity may
correspond to a binding site, i.e., to a (in general small) part of a molecule
that will interact with another, or it may represent an element that is
repeated in a dispersed or periodic fashion (for instance, tandemly). The
role played by a repetition of whatever type is often unknown. Some
repeats, in particular small tandem ones, have been implicated in a
number of genetic diseases and are also interesting for the purposes of
studying polymorphism; other types of repeats, such as short inverted
ones, seem to be hot spots for recombination.

We will address both kinds of problems (pattern localization prediction
and pattern consensus prediction) after we have discussed some notions of
“nonidentity,” that is, of similarity, that we shall be considering. These are
presented in Sec. 2. We start with the identity, both because it may sometimes
be of interest and because this allows us to introduce some notations that are
used throughout the chapter. Such notations are based on those adopted by
Karp et al. [5] in a pioneering paper on finding dispersed exact repeats in a
string. From there, it is easy to derive a definition of similarity based not on
the identity but on any relation between the letters of the alphabet for the
strings. In particular, this relation can be, and in general is, nontransitive
(contrary to equality). This was introduced by Soldano et al. [6]. Finally,
definitions of similarity taking errors (substitutions, insertions, and deletions)
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into account are discussed, and the idea of models is presented. This idea was
initially formally defined by Sagot et al. [7].

We review the pattern localization prediction question in Section 3.
Because many methods used to locate patterns are inspired from algorithms
developed for matching fixed patterns with equality, we state the main results
concerning this problem. Complexity bounds have been intensively studied
and are known with good accuracy. This is the background for broader
methods aimed at locating approximate patterns. The most widely used
approximation is based on the three alignment operations recalled in Section
2. The general method designed to match an approximate pattern is an
extension of the dynamic programming method used for aligning strings.
Improving this method has also been intensively investigated because of the
multitude of applications it generates. The fastest known algorithms are for a
specialization of the problem with weak but extra conditions on the scores of
edit operations.

For fixed texts, pattern matching is more efficiently solved by using some
kind of index. Indexes are classical data structures aimed at providing fast
access to textual databases. As such, they can be considered as abstract data
types or objects. They consist of both data structures to store useful information
and operations on the data (see Salton [8], or Baeza-Yates and Ribero-Neto
[9]). The structures often memorize a set of keys, as in the case of an index at
the end of a technical book. Selecting keys is a difficult question that sometimes
requires human action. In this chapter, we consider full indexes, which contain
all possible factors (segments) of the original text, and we refer to these
structures as factor or suffix structures. These structures help find repetitions
in strings, search for other regularities, solve approximate matchings, or even
match two-dimensional patterns, to mention a few applications. Additional
or deeper analysis of pattern matching problems may be found in books by
Apostolico and Galil [10], Crochemore and Rytter [11], Gusfield [2], and
Stephen [12].

Section 4 deals with the problem of finding repeats, exact or approximate,
dispersed or appearing in a regular fashion along a string. Perhaps the most
interesting work in this area is that of Karp et al. [5] for identifying exact,
dispersed repeats. This is discussed in some detail. Combinatorial algorithms
also exist for finding tandem repeats. The most interesting are those of Landau
and Schmidt [13] and Kannan and Myers [14], which allow for any error
scoring system, and that of Kurtz et al. [15], which uses a suffix tree for locating
such repeats and comes with a very convenient visualization tool. In biology,
so-called satellites constitute another important type of repetition. Satellites
are tandem arrays of approximate repeats varying in the number of occurrences
between two and a few million and in length between two and a few hundred,
sometimes thousands, of letters. To date, only one combinatorial formulation
of the problem has been given [16], which we describe at some length.
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Finally, motif extraction is considered in Section 5. A lot of the initial work
done in this area used a definition of similarity that is based on the relative
entropy of the occurrences of a motif in the considered set of strings. This
often produces good results for relatively small data sets, and the method has
therefore continuously improved. Such a definition, however, leads to exact
algorithms that are exponential in the number of strings, so heuristics have to
be employed. These do not guarantee optimality, that is, they do not guarantee
that the set of occurrences given as a final solution is the one with maximal
relative entropy. We do not treat such methods in this chapter. The reader is
referred to Ref. 17 for a survey of these and other methods from the point of
view of biology.

A definition of similarity based on the ideas of models (which are objects
that are external to the strings) and a maximum error rate between such models
and their occurrences in strings can lead to combinatorial algorithms. Some
algorithms in this category are efficient enough to be used for more complex
models. An algorithm for extracting simple models as well as more complex
ones, called structured models, elaborated by Marsan and Sagot [18] is treated
in some detail.

2. NOTIONS OF SIMILARITY

2.1. Preliminary Definitions

If s is a string of length |s|=n over an alphabet Σ, that is,  then its individual
elements are noted si for 1≤i≤n, so that we have s=s1s2···sn. A nonempty word

 is a factor of s if u=sisi+1···sj for a given pair (i, j) such that 1≤i≤j≤n. The
empty word, denoted by λ, is also a factor of s.

2.2. Identity

Although identity is seldom an appropriate notion of similarity to consider
when working with biological objects, it may sometimes be of interest.
This is a straightforward notion we nevertheless define properly, because
it allows us to introduce some notations that are used throughout the
chapter.

The identity concerns words in a string, and we therefore adopt Karp et
al.’s [5] identification of such words by their start position in the string. To
facilitate exposition, this and all other notions of similarity are given for words
inside a single string. It is straightforward to adapt them to the case of more
than one string (for instance, by considering the string resulting from the
concatenation of the initial strings with a distinct forbidden symbol separating
any two adjacent strings). Let us use E to denote the identity relation on the
alphabet Σ (the E stands for “equivalence”).
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Relation E between elements of Σ may then be extended to a relation Ek

between factors of length k in a string s in the following way:
Definition 1. Given a string  and i, j two positions in s such that i, j≤n-

k+1, then

 for all l such that 0≤l≤k-1

In other words, i E k j if and only if si si+1···si+k-1=sjsj+1··· sj+k-1. For each k≥1,
Ek establishes an equivalence relation that corresponds to 1a relation between
occurrences of words of length k in s. This provides a first definition of similarity
between such occurrences. Indeed, each equivalence class of Ek having
cardinality greater than 1 is the witness of a repetition in s.

2.3. Nontransitive Relation

When dealing with biological strings, one has to consider that the “letters”
represented by such strings are complex biological objects with physicochemical
properties, as, for instance, electric charge, polarity, size, different levels of
acidity, etc. Some, but seldom all, of these properties may be shared by two or
more objects. This applies more to proteins than to DNA/RNA but is true to
some extent for both.

A more realistic relation to establish between the letters of the protein or
DNA/RNA alphabet (respectively called amino acids and nucleotides) would
therefore be reflexive, symmetric, but nontransitive [6]. An example of such a
relation, noted R, is given below.

Example 1. Let Σ={A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} be the
alphabet of amino acids and R be the relation of similarity between these
amino acids given by the graph in Figure 1. The maximal cliques of R are the

FIGURE 1 Example of a relation of similarity between the letters of the protein alphabet
(called amino acids).
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sets {A,S,G}, {A,T}, {I,L,V}, {L,M}, {F,Y}, {D,E}, {K,R}, {C}, {P}, {N}, {Q}, {H},
{W}.

It may be represented by a graph whose nodes are the elements of Σ and
where an edge links two nodes if the elements of Σ labeling the nodes correspond
to biological objects sharing enough physicochemical properties to be
considered similar.

As previously, the relation R between elements of S may easily be extended
to a relation Rk between factors of length k in a string s.

Definition 2. Given a string  and i, j two positions in s such that i, j≤n-

k+1, then

 for all/such that 0≤l≤(k-1)

For each k≥1, Rk establishes a relation that is no longer an equivalences
between positions (factors of length k) in a string s. The concept that is
important here is that of a (maximal) clique.

Definition 3. Given an alphabet Σ and a nontransitive relation on Σ, a set C
of elements of Σ is a (maximal) clique of relation R if for all  α R β
and for all  is not a clique.

Definition 4. Given a string  a set Ck of positions in s is a clique of
relation Rk. if for all  and for all  is not a
clique.

Cliques of Rk give us, then, a second way of establishing a definition of
similarity between factors of length k in a string.

2.4. Allowing for Errors

2.4.1. Introducing the Idea of a Model

Let us initially assume that the only authorized errors are substitutions. In
view of the definitions established in previous sections, one would be tempted
to define a relation of similarity H between two factors of length k in a string
s, that is, between two positions i and j in s, the following way.

Definition 5. Given a string  and i, j two positions in s such that i, j≤n-

k+1, then

 

where distH(u, v) is the Hamming distance (hence the H) between u and v
(that is, the minimum number of substitutions one has to operate on u in
order to obtain v) and e is a nonnegative integer that is fixed.
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Parameter e corresponds to the maximum number of substitutions that are
tolerated. In the same way as in Section 2.3, cliques of Hk provide us with
another possible definition of similarity between factors of length k in a string.

Even before trying to consider how to adapt the above definition to the
case of a Levenshtein (or any other type of) distance where insertions and
deletions are permitted as well as substitutions (this is not completely trivial;
indeed, given two words u and v respectively starting at positions i and j in s
and such that i Lk j, what is the meaning of k?), one may intuitively note that
calculating Hk (and, a fortiori, Lk) is no longer as easy as computing Ek or Rk.

The reason is that, although the definitions given in Sections 2.2 and 2.3
involve pairs of positions in a string s, it is possible to rewrite them in such a
way that, given a position i in s and a length k, it is immediate to determine to
which class or clique(s) i belongs in the sense that the class or clique(s) can be
uniquely identified just by “reading” si···si+1k-1. Let us consider first the simpler
case of an identity. Straightforwardly, position i belongs to the class whose
label is si···si+k-1. In the case of a nontransitive relation R between letters of S,
let us name C the set of (maximal) cliques of R and define cliqueR (α) as the
cliques of R to which a letter a belongs. Then, position i belongs to all the sets
of Rk whose labels may be spelled from the (regular) expression
cliqueR(si)···cliqueR(si+k-1) and that are maximal under Rk. Note the small
difference here from the identity relation: Maximality of a validly labeled set
has to be checked [6].

No such easy rewriting and verification are possible in the case of the
definition of Hk (or Lk had we already written it) if we wish to build the
notion of similarity between factors in a string upon that of the cliques of Hk.
Indeed, to obtain such cliques we need to compare (a possibly great number
of) pairs of positions between themselves. This is expensive.

One may, however, rewrite the definition of Hk in a way that refers to
labels as we did above for Ek and Rk, although such labels are no longer as
immediately identifiable. A possible definition (still for the case where only
substitutions are considered) is the following.

Definition 6. Given a string  and i, j two different positions in s such

that i, j≤n-k+1, then

 such that distH(m, si…si+k-1)≤e

and distH(m, sj…sj+k-1)≤e

where distH(u, v) and e are as before.

Generalizing this gives the following definition.
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Definition 7. A set Sk of positions in s represents a set of factors in s of
length k that are all similar between themselves if and only if there exists (at
least) a string  such that, for all elements i in Sk, distH(m, si···si+k-1) ≤e
and, for all .

Observe that extension of both definitions to a Levenshtein distance now
becomes straightforward. We reproduce below, after modification, just the
last definition.

Definition 8. A set Sk of positions in s represents a set of factors of length k
that are similar if and only if there exists (at least) a string  such that for
all elements i in Sk, distL(m, si···)≤e, and for all  distL(m, sj···)>e.

Because the length of an occurrence of a model m may now be different
from that of m itself (it varies between |m|-e and |m|+e), we denote the
occurrence by (si···) leaving indefinite its right endpoint.

Observe also that it remains possible, given a position i in s and a length k,
to obtain the label of the group(s) of the relation Hk (or Lk) to which i belongs.
Such labels are represented by all strings  such that distH (or distL)(m,

si···)≤e, that is, such that their distance from the word starting at position i in
s is no more than e.

We call models such group labels. Positions in s indicating the start of a
factor of length k are e-occurrences (or simply occurrences where there is no
ambiguity) of a model m if dist(m, si···)≤e, where “dist” is either the is either
the Hamming or Levenshtein distance. Observe that a model m may have no
exact occurrence in s.

Finally, we have considered so far what is called a “unitary cost distance”
(unitary because the cost of each operation—substitution, insertion, or
deletion—is one unit). We could have used instead a “weighted cost distance,”
that is, we could have used any cost for each operation, in the range of integers
or real numbers.

2.4.2. Expanding on the Idea of Models—Two more Possible Definitions of
Similarity

Nontransitive Relation and Errors. Models allow us to considerably enrich
the notion of conservation. For instance, they enable us to simultaneously
consider a nonrelative transition between the letters of the alphabet (amino
acids or nucleotides) and the possibility of errors. In order to do that, it
suffices to permit the model to be written over an extended alphabet
composed of a subset of the set of all subsets of  where Σ is the
alphabet of amino acids or nucleotides. Such an alphabet can be, for instance,
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one defined by the maximal cliques of the relation R given in Figure 1.
Definition 8 then becomes

Definition 9. A set Sk of positions in s represents a set of factors of length k
that are all similar between themselves if and only if there exists (at least) one
element  with  such that, for all elements i in Sk, setdist(M,
si···)≥e and, for all  setdist (M, sj···)>e, where setdist(M, v) for

 is the minimum Hamming or Levenshtein distance between v and all

The alphabet Σ itself may belong to P, the alphabet of models. It is then
called a wild card. It is obvious that this may lead to trivial models. Alphabet
P may then come with weights attached to each of its elements indicating how
many times (possibly infinite) it may appear in an interesting model. Observe
that another way of describing the alphabet P of models is as the set of edges
of a (possibly weighted) hypergraph whose nodes are the elements of Σ.

When e is zero, we obtain a definition of similarity between factors in the
string that closely resembles that given in Section 2.3. Note, however, that,
given two models M1 and M2, we may well have that the set of occurrences of
M1 is included in that of M2. The cliques of Definition 4 correspond to the sets
of occurrences that are maximal.

A Word Instead of Symbol-Based Similarity. Errors between a group of
similar words and the model of which they are occurrences can either be
counted as unitary events (possibly with different weights), as was done in the
previous sections, or they can be given a score. The main idea behind scoring
a resemblance between two objects is that it allows us to average the differences
that may exist between them. It may thus provide a more flexible function for
measuring the similarity between words. A simple example illustrates this point.

Example 2. Let Σ={A,B,C} and

score(A,B)=score(B,A)=-1
score(A,C)=score(C,A)=-1
score(B,C)=score(C,B)=-1

If we say that two words are similar either if the number of substitutions
between them is ≤1 or their score is ≥1, then by the first criterion the words
AABAB and AACCB are not similar, whereas by the second criterion they are,
the second substitution being allowed because the two words on average share
enough resemblance.

In the example and in the definition of similarity introduced in this section,
gaps are not allowed, only substitutions. This is done essentially for the sake
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of clarity. Gaps may, however, be authorized; the reader is referred to Ref. 19
for details.

Let a numerical matrix of size |Σ|×|Σ| be given such that

 (a, b) = score between a and b for all a, b ε Σ  

If this score measures a similarity between a and b, we talk of a similarity
matrix (two well-known examples of which in biology are PAM250 [20] and
BLOSUM62 [21]), whereas if the score measures a dissimilarity between a
and b we talk of a dissimilarity matrix. A special case of this latter matrix is
when the dissimilarity measure is a metric, that is, when the scores obey, among
other conditions, the triangular inequality. In that situation, we talk of a
distance matrix (an example of which is the matrix proposed by Risler et al.
[22]).

In what follows, we consider that is a similarity matrix.

Definition 10. Given  a model of
length k, and  a matrix, we define

 

Definition 11. A set Sk of positions in s represents a set of factors of length k
that are similar if and only if given w a positive integer such that w=k and t a
threshold value

1. There exists (at least) one element  such that, for all elements i
in Sk and for all 

2. For all  there exists at least one 
such that score 

An example is given below.

Example 3. Let Σ={A,B,C}, w=3, and t=6. Let  be the following matrix:
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Given the three strings

s1=ABCBBABBBACABACBBBAB
s2=CABACAACBACCABCACCACCC
s3=BBBACACCABABACABACABA

then the longest model that is present in all strings is CACACACC (at positions
9,1, and 12, respectively in strings s1, s2, s3).

3. MOTIF LOCALIZATION

We review in this section the main results and combinatorial methods used to
locate patterns in strings. The problem is of major importance for several
reasons. From a theoretical point of view, it is a paradigm for the design of
efficient algorithms. From a practical point of view, the algorithms developed
in this chapter often serve as basic components in string facility software. In
particular, some techniques are used for the extraction of unknown motifs.

We consider two instances of the question, depending on whether the motif
is fixed or the string is fixed. In the first case, preprocessing the pattern
accelerates the search for it in any string. Searching a fixed string is made
faster if a kind of index on it is preprocessed. At the end of the section, we
sketch how to search structural motifs for the identification of tRNA motifs
in biological sequences.

3.1. Searching for a Fixed Motif

String searching or string matching is the problem of locating all the occurrences
of a string x of length p, called the pattern, in another string s of length n,
called the sequence or the text. The algorithmic complexity of the problem is
analyzed by means of standard measures: running time and amount of memory
space required by the computations. This section deals with solutions in which
the pattern is assumed to be fixed. There are mainly three kinds of methods to
solve the problem: sequential methods (simulating a finite automaton),
practically fast methods, and time-space optimal methods. Methods that search
for occurrences of approximate patterns are discussed in Section 3.2.
Alternative solutions based on a preprocessing of the text are described in
Section 3.3.

Efficient algorithms for the problem have a running time that is linear in
the size of the input [i.e., O(n+p)]. Most algorithms require an additional
amount of memory space that is linear in the size of the pattern [i.e.,O(p)].
Information stored in this space is computed during the preprocessing phase
and later used during the search phase. The time spent during the search
phase is particularly important. The number of comparisons made and the
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number of inspections executed have therefore been evaluated with great
care. For most algorithms, the maximum number of comparisons (or number
of inspections) made during the execution of the search is less than 2n. The
minimum number of comparisons necessary is [n/p], and some algorithms
reach that bound in ideal situations.

The complexity of the string searching problem is given by the following
theorem due to Galil and Seiferas [23]. The proof is based on space-

example). Linear time, however, is met by many other algorithms. Note that
in the O(·) notation, coefficients are independent of the alphabet size.

Theorem 1. The string searching problem, locating all occurrences of a
pattern x in a text s, can be solved in linear time, O(|s|+|x|), with a constant
amount of additional memory space.

The average running time of the search phase is sometimes considered
more significant than the worst-case time complexity. Despite the fact that it
is usually difficult to model the probability distribution of specific texts,
results for a few algorithms (with a hypothesis on what “average” means) are
known. Equiprobability of symbols and independence between their
occurrences in texts represent a common hypothesis used in this context and
gives the next result (Yao [24]). Althoug h the hypothesis is too strong, the
result reflects the actual running time of algorithms based on the method
described below. In addition, it is rather simple to design a string searching
algorithm working in this time span.

Theorem 2. Searching a text of length n for a preprocessed pattern of
length p can be done in optimal expected time O([(log p)/p]n).

String searching algorithms can be divided into three classes. In the first
class, the text is searched sequentially, one symbol at a time, from beginning
to end. Thus all symbols of the text (except perhaps p-1 of them at the end)
are inspected. Algorithms simulate a recognition process using a finite
automaton. The second class contains algorithms that are practically fast.
The time complexity of the search phase can even be sublinear, under the
assumption that both the text and the pattern reside in main memory.
Algorithms from the first two classes usually require O(p) extra memory
space to work. Algorithms from the third class show that the additional space
can be reduced to a few integers stored in a constant amount of memory
space. Their interest is mainly theoretical so far.

The above classification can be somehow refined by considering the way
the search phases of algorithms are designed. It is convenient to consider
that the text is examined through a window. The window is assimilated to
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the segment of the text it contains, and it usually has the length of the
pattern. It runs along the text from beginning to end. This scheme is called
the sliding window strategy and is described below. It uses a scan-and-shift
mechanism.

1. put window at the beginning of text;
2. while window on text do
3.     scan: if window=pattern then report it;
4.     shift: shift window to the right and
5.     memorize some information for use during next scans and shifts;

During the search, the window on the text is periodically shifted to the
right according to rules that are specific to each algorithm. When the
window is placed at a certain position on the text, the algorithm checks
whether the pattern occurs there, i.e., if the pattern equals the content of
the window. This is the scan operation during which the algorithm
acquires from the text information that is often used to determine the next
shift of the window. Part of the information can also be kept in memory
after the shift operation. This information is then used for two purposes:
first, saving time during the next scan operations, and, second, increasing
the length of further shifts. Thus, the algorithms operate a series of
alternate scans and shifts.

A naive implementation of the scan-and-shift scheme (no memorization,
and uniform shift of length 1) leads to a searching algorithm running in
maximum time O(p×n); the expected number of comparisons is 4n/3 on a
four-letter alphabet. This performance is quite poor compared to preceding
results.

3.1.1. Practically Fast Searches

We describe a string searching strategy that is considered the fastest in
practice. Derived algorithms apply when both the text and the pattern reside
in main memory. We thus do not take into account the time to read them.
Under this assumption, some algorithms have a sublinear behavior. The
common feature of these algorithms is that they scan the window in the
reverse direction (from right to left).

The classical string searching algorithm that scans the window in reverse
direction is the BM algorithm (Boyer and Moore [25]). At a given position in
the text, the algorithm first identifies the longest common suffix u of the
window and the pattern. A match is reported if it equals the pattern. After
that, the algorithm shifts the window to the right. Shifts are done in such a
way that the occurrence of u in the text remains aligned with an equal
segment of the pattern; such shifts are often called match shifts. The length of
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the shift is determined by what is called the displacement of u inside x and is
denoted by d(u). A sketch of the BM algorithm is displayed below.

1. while window on text do
2.     u:=longest common suffix of window and pattern;
3.     if u=pattern then report a match;
4.     shift window d(u) places to the right;

The function d depends only on the pattern x, so it can be precomputed before
the search starts. In the BM algorithm, an additional heuristics on mismatch
symbols of the text is also usually used. This yields another displacement
function used in conjunction with d. It is a general method that may improve
almost all algorithms in certain real situations.

The BM algorithm is memoryless in the sense that after a shift it starts
scanning the window from scratch. No information about previous matches
is kept in memory. When the algorithm is applied to find all occurrences of
Ap inside An, the search time becomes proportional to p×n. The reason for
the quadratic behavior is that no memory is used at all. It is, however, very
surprising that the BM algorithm turns out to be linear when the search is
limited to the first occurrence of the pattern. By the way, the original algorithm
was designed for that purpose. Only very periodic patterns may increase the
search time to a quadratic quantity, as shown by the next theorem [26]. The
bound it gives is the best possible. Only a modified version of the BM
algorithm can therefore make less than 2n symbol comparisons at search
time.

Theorem3. Assume that pattern x satisfies period(x)>|x|/2. Then the BM
searching algorithm performs at most 3|s|-|s|/|x| symbol comparisons.

Theorem 3 also suggests that only a little information about configurations
encountered during the process has to be kept in memory in order to get a
linear time search for any kind of pattern. This is achieved, for instance, if
prefix memorization is performed each time an occurrence of the pattern is
found. However, this is also achieved with a better bound by an algorithm
called TURBO_BM. This modification of the BM algorithm forgets all the
history of the search except for the most recent comparison. Analysis becomes
simpler, and the maximum number of comparisons at search phase becomes
less than 2n.

Searching simultaneously for several (a finite number of) patterns can be
done more efficiently than searching for them one at a time. The natural
procedure takes an automaton as pattern. It is an extension of the single-
pattern searching algorithms based on the simulation of an automaton. The
standard solution is from Aho and Corasick [27].
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3.2. Approximate Matchings

The search for approximate matchings of a fixed pattern produces the
position in the text s of an approximation of the pattern x. A search for texts
for approximate matchings is usually done with methods derived from the
exact string searching problem described above. Either they include an exact
string matching as an internal procedure or they transcribe a corresponding
algorithm. The two classical ways to model approximate patterns consist in
assuming that a special symbol can match any other symbol or that
operations to transform one pattern into another are possible.

In the first instance we have, in addition to the symbols of the input
alphabet Σ, a wild card (also called a don’t care symbol) φ with the property
that φ matches any other character in Σ. This gives rise to variants of the string
searching problem where, in principle, φ appears (I) only in the pattern, (2)
only in the text, or (3) in both the pattern and the text. Variant (1) is solved by
an adaptation of the multiple string matching and of the pattern matching
automaton of Aho and Corasick [27]. For other variants, a landmark
solution is that of Fischer and Paterson [28]. They transpose the string
searching problem into an integer multiplication problem, thereby obtaining
a number of interesting algorithms. This observation brings string searching
into the family of Boolean, polynomial, and integer multiplication problems
and leads to an O(n log p log log p) time solution in the presence of wild cards
(provided that the size of Σ is fixed).

The central notion for comparing strings is based on three basic edit
operations on strings introduced in Section 2. It may be assumed that each
edit operation has an associated nonnegative real number representing the
cost of that operation, so that the cost of deleting from w an occurrence of
symbol a is denoted by D(a), the cost of inserting some symbol a between any
two consecutive positions of w is denoted by I(a), and the cost of substituting
some occurrence of a in w with an occurrence of b is denoted by S(a,b).

The string editing problem for input strings x and s consists in finding a
sequence of edit operations, or edit script, Γ of minimum cost that
transforms x into s. The cost of Γ is the edit distance between x and s (it is a
mathematical distance under some extra hypotheses on operation costs).
Edit distances where individual operations are assigned unit costs occupy a
special place.

It is not difficult to see that the general problem of edit distance
computation can be solved by an algorithm running in O(p×n) time and
space through dynamic programming. Owing to the widespread application
of the problem, however, such a solution and a few basic variants were
discovered and published in an extensive literature. The reader can refer to

question.

Copyright © 2004 by Marcel Dekker

Apostolico and Giancarlo [29], or to Ref. 10 for a deeper exposition of the



Crochemore and Sagot62

The computation of edit distances by dynamic programming is readily set
up. For this, let C(i, j)(0≤i≤|s| and 0≤j≤|x|) be the minimum cost of transforming
the prefix of s of length i into the prefix of x of length j. Then C(0, 0)=0, C(i,
0)-C(i-1, 0)+D(si)(i-1, 2,···,|s|), C(0, j)=C(0, j-1) +I(xj)(j=1, 2,···,|x|), and C(i, j)
equals

min{C(i-1, j-1)+S(si, xj), C(i-1, j)+D(si), C(i, j-1)+I(xj)}  

for all i, j(1≤i≤|s|, 1≤j≤|x|). Observe that, of all entries of the C matrix, only the
three entries C(i-1, j-1), C(i-1, j), and C(i, j-1) are involved in the computation
of the final value of C(i, j). Hence C(i, j) can be evaluated row by row or
column by column in  time An optimal edit script can
be retrieved at the end by backtracking through the local decisions made by
the algorithm.

A few important problems are special cases of string editing, including the
computation of a longest common subsequence, local alignment, i.e., the
detection of local similarities in strings, and some important variants of string
searching with errors, or searching for occurrences of approximate patterns
in texts.

3.2.1. String Searching with Differences

Consider the problem of computing, for every position of the textstring s, the
best edit distance achievable between x and a substring w of s ending at that
position. Under the unit cost criterion, a solution is readily derived from the
recurrence for string editing given above. The first obvious change consists in
setting all costs to 1 except that S(xi, sj)=0 for xi=sj. We thus have now, for all
i, j(1≤i≤|x|, 1≤j≤|s|),

R(i,j)=min{R(i-1, j-1)+1, R(i-1, j)+1, R(i,j-1)+1} 

A second change affects the initial conditions, so that we have now R(0,0)=0,
R(i, 0)=i(i=1, 2,···, p), R(0, j)=0(j=1, 2,···,n). This has the effect of setting to
zero the cost of prefixing x by any prefix of s. In other words, any prefix of
the text can be skipped at no cost in an optimum edit script.

The computation of R is then performed in much the same way as indicated
for matrix C above, thus taking  time. We are
interested now in the entire last row of matrix R.

In practice, it is often more interesting to locate only those segments of s
that present a high similarity with x under the adopted measure. Formally,
given a pattern x, a text s, and an integer e, this restricted version of the
problem consists in locating all terminal positions of substrings w of s such
that the edit distance between w and x is at most e. The recurrence given
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above will clearly produce this information. However, there are more efficient
methods to deal with this restricted case. In fact, a time complexity O(e×n)
and even sublinear expected time are achievable. We refer to, e.g., Refs. 10
and 11 for detailed discussions. In the following, we review some of the basic
principles behind an O(e×n) algorithm for string searching with e differences
due to Landau and Vishkin [30]. Note that when e is a constant the
corresponding time complexity then becomes linear.

It is essential here that edit operations have unitary costs. Matrix R has an
interesting property that is intensively used to get the O(e×n) running time. Its
values are in increasing order along diagonals, and consecutive values on the
same line or the same column differ by at most one unit (see Fig. 2).

Because of the monotonicity property on diagonals and unitary costs, the
interesting positions on diagonals are those corresponding to a strict
incrementation. Computing these values only produces a fast computation in
time O(e×n). This is possible if queries on longest common prefixes, as suggested
in Figure 2, are answered in constant time. This, in turn, is possible because
strings can be preprocessed in order to get this time bound.

To do so, we consider the suffix tree (see Sec. 3.3),  
where  String  is also

 because . Let ƒ and g be
the nodes of  associated with strings  and 

 Their common prefix of maximal length is then the label of the
path in the suffix tree starting at the root and ending at the lowest common
ancestor of f and g. Longest common prefix queries are thus transformed into

FIGURE 2 Simulation of fast searching for approximate matchings. Searching y
=CAGATAAGAGAA for x=GATAA with at most one difference. Pattern x occurs at
right position 6 on y without errors (R[4, 6]=0) and at right positions 5, 7, and 11 with
one error (R[4, 5]=R[4, 7]=R[4, 11]=1). After initialization, values are computed
diagonalwise, value 0 during the first step and value 1 during the second step. Value
R[4, 6]=0 comes from the fact that GATAA is the longest common prefix of x and
y[2..11]. And, as a second example, R[4, 11]=1 because AA is the longest common
prefix of x[3..4] and y[10..11]. When queries related to longest common prefixes are
answered in constant time, the running time is proportional to bold values in the
table.

Copyright © 2004 by Marcel Dekker



Crochemore and Sagot64

lowest common ancestor queries that are answered in constant time by an
algorithm due to Harel and Tarjan [31], simplified later by Schieber and Vishkin
[32]. The consequence of the above discussion is the next theorem.

Theorem 4. On a fixed alphabet, after preprocessing x and s, searching s
for occurrences of x with at most e differences can be solved in time O(e×|s|).

In applications to massive data, even an O(e×n) time may be prohibitive.
By using filtration methods, it is possible to set up sublinear expected time
queries. One possibility is to first look for regions with exact replicas of some
pattern segment and then scrutinize those regions. Another possibility is to
look for segments of the text that are within a small distance of some fixed
segments of the pattern. Some of the current top-performing software for
molecular database searches is engineered around these ideas [33–36]. A survey
can be found in Ref. 37.

3.3. Indexing

Full indexes are designed to solve the pattern matching problem, searching s
for occurrences of x, when the text s is fixed. Having a static text allows us to
build a data structure to which the queries are applied. Efficient solutions
require a preprocessing time O(|s|) and need O(|x|) searching time for each
query.

Full indexes store the set of factors of the text s. Because factors are
beginnings of suffixes of s, this is equivalent to storing all suffixes of the
text. Basic operations on the index are find whether pattern x occurs in s,
give the number of occurrences of x in s, and list all positions of these
occurrences. But many other operations admit fast solutions through the
use of indexes.

Indexes are commonly implemented by suffix trees suffix automata
[also called suffix DAWGs (directed acyclic word graphs)], or suffix
arrays. The latter structure realizes a binary search in the ordered list of
suffixes of the text. The former structures are described in the remainder
of this section.

Suffixes of s can be stored in a digital tree called the suffix trie of s. It is an
automaton whose underlying graph is a tree. Branches are labeled by all the
suffixes of s. More precisely, the automaton accepts Suff(s), the set of suffixes
of s. A terminal state outputs the position of its corresponding suffix. Figure 3
displays the suffix trie of s=ababbb.

3.3.1. Compaction

The size of a suffix trie can be quadratic in the length of s, even if pending
paths are pruned (it is the case with the word akbkakbk, k�N). To cope with this
problem, another structure is considered. It is the compacted version of the
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trie, called the suffix tree and denoted ST(s). It keeps from the trie states that
are either terminal states or forks (nodes with outdegree greater than 1).
Removing other nodes leads to label arcs with words that are non-empty
segments of s (see Fig. 4).

It is fairly straightforward to see that the number of nodes of ST(s) is no
more than 2n(if n>0), because nonterminal internal nodes have at least two
children, and there are at most n external nodes. However, if the labels of arcs
are stored explicitly, again the implementation can have quadratic size. The
technical solution is to represent labels by pairs of integers in the form (position,
length) and to keep in main memory both the tree ST(s) and the textstring s

FIGURE 3 Suffix trie of ababbb.

FIGURE 4 Suffix tree of ababbb.
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(see Fig. 5). The whole process yields a compacted version of the trie of suffixes
that has linear size.

3.3.2. Minimization

Another way of reducing the size of the suffix trie is to minimize it like an
automaton. We then get what is called the suffix automaton SA(s), which is
the minimal automaton accepting Suff(s)(Figure 6). It is also called a (suffix)
DAWG. The automaton can even be further slightly reduced by minimization
if all states are made terminal, thus producing the factor automaton of the
text.

Certainly the most surprising property of suffix automata, discovered by
Blumer et al. [38], is the linear size of the automaton. More accurately, it
satisfies the inequalities

|s|+1≤#states≤2|s|-1
|s|≤#arcs≤3|S|-4  

3.3.3. Efficient Constructions

The construction of suffix structures can be carried on in linear time. Indeed,
running times depend on the implementation of the structures, mainly on that
of the transition function. If arcs are implemented by sets of successors,
transitions are done by symbol comparisons, which leads to an O(|s| log card
Σ) construction time within O(|s|) memory space. This is the solution to choose
for unbounded alphabets. If arcs are realized by a transition table that assumes
that the alphabet is fixed, transitions are done by table lookups, and the

FIGURE 5 Compaction of the suffix trie of Figure 3: Implementation of the suffix tree
of ababbb of Figure 4 in which labels of arcs are represented by pairs of integers.
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construction time becomes O(|s|) using, however, O(|s| card Σ) memory space.
These two techniques are referred to as the comparison model and the
branching model, respectively.

Classical algorithms that build suffix trees are those of Weiner [39],
McCreight [40], and Ukkonen [34]. The latter algorithm is the only one to
process the text in a strictly on-line manner. DAWG construction was first
designed by Blumer et al. and later extended to suffix and factor automata
(see Refs. 41 and 42).

To complete this section, we compare the complexities of the above
structures to the suffix array designed by Manber and Myers [43]. A
preliminary version of the same idea appears in the PAT system of Gonnet et
al. [44]. A suffix array is an alternative implementation of the set of suffixes
of a text. It consists of both a table storing the permutation of suffixes in
lexicographic order and a table storing the maximal lengths of common prefixes
between pairs of suffixes (LCP table). Access to the set of suffixes is managed
via a binary search with the help of the LCP table. Storage space is obviously
O(|s|); access time is only O(p+log |s|) to locate a pattern of length p [it would
be O(p×log |s|) without the LCP table]. Efficient preprocessing is the most
difficult part of the entire implementation; it takes O(|s| log |s|) time, although
the total size of suffixes is O(|s|2).

3.3.4. Efficient Storage

Among the many implementations of suffix structures, we can mention the
notion of sparse suffix trees due to Kärkkäinen and Ukkonen [45], which
considers a reduced set of suffixes; the suffix cactus due to Kärkkäinen [46],
who degenerates the suffix tree structure without overly increasing the access
time; and the version dedicated to external memory (SB-trees) by Ferragina
and Grossi [47]; but several other variations exist (see Refs. 48 and 49, for
example).

An excellent solution to save on the size of suffix structures is to
simultaneously compact and minimize the suffix trie. Compaction and
minimization are commutative operations, and when both are applied they
yield the compact suffix automaton, denoted by CSA(s). Figures 7 and 8 display

FIGURE 6 Suffix automaton of ababbb: minimal deterministic automaton accepting
Suff(s).
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an example of a compact suffix automaton. The direct construction of the
compact suffix automaton CSA(s) is possible without first building either the
suffix automaton SA(s) or the suffix tree (see Ref. 50). It can be realized within
the same time and space as that of other structures.

Table 1 gives an idea of the minimum and maximum sizes of suffix structures
(in the comparison model). The average analysis of suffix automata, including
their compact version, was started by Blumer et al. [51] and later completed
by Raffinot [52].

The size of an implementation of the above structures is often evaluated by
the average number of bytes necessary to store one letter of the original text.
It is commonly admitted that these ratios are 4 for suffix arrays, 9–11 for
suffix trees, and slightly more for suffix automata, provided the text is not too
large (of the order of a few megabytes).

Kurtz [53] provides several implementations of suffix trees having this
performance. Holub (personal communication, 1999) designed an
implementation of compact suffix automata having a ratio of 5, a result that
is extremely good compared to the space for a suffix array. Recently, Balik

FIGURE 7 Compact suffix automaton of ababbb with explicit labels on arcs.

FIGURE 8 Compact suffix automaton of ababbb. It is the compacted version of SA(s)
and the minimized version of ST(s). Labels of arcs are represented by pairs of integers
as in the suffix tree (see Fig. 5).
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[54] gave an implementation of another type of suffix DAWG whose ratio is
only 4 and sometimes even less.

3.3.5. Indexing for Approximate Matchings

Though approximate pattern matching is much more important than exact
string matching for treating real sequences, it is quite surprising that no specific
data structure exists for this purpose. Therefore, indexing strategies for
approximate pattern matching use the data structures presented above and
adapt the search procedure. This one is then based on the next result.

Lemma 1. If x and s match with at most e differences, then x and s must
have at least one identical substring of length r=⎣max{|x|, |s|}/(e+1)⎦

An original solution was proposed by Manber and Baeza-Yates [55],
who considered the case where the pattern embeds a string of at most e
wild cards, i.e., has the form  where  and |u|≤p for
some given e and m. Their algorithm is off-line (on the text) in the sense
that the text s is preprocessed to build the suffix array associated with it.
This operation costs O(n log |Σ|) time in the worst case. Once this is done,
the problem reduces to one of efficient implementation of two-dimensional
orthogonal range queries.

Some other solutions preprocess the text to extract its q-grams or q-
samples. These, and possibly their neighbors up to some distance, are
memorized in a straightforward data structure. This is the strategy used, for
example, by the two famous programs FASTA and BLAST, which makes
them run fairly fast.

There is a survey on this aspect of indexing techniques by Navarro [56].

3.4. Structural Motifs

Real motifs in biological sequences are often not just simple strings. They are
sometimes composed of several strings that appear in organized fashion along

TABLE 1 Compared Sizes of Suffix Structures
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the sequence at bounded distances from one another. Possible variations of
bases can be synthesized by regular expressions. Efficient methods exist that
make it possible to locate motifs described in this manner.

Motifs can also be repetitions of a single seed (tandem repeats) or (biological)
palindromes, again with possible variations on individual bases. Palindromes,
for instance, represent the basic elements of the secondary structures of RNA
sequences. In contrast to the previous type of motifs, a regular expression
cannot deal with repetitions and palindromes (at least if there is no assumption
on their length).

A typical problem one may wish to address concerns the localization of
tRNAs in DNA sequences. It is an instance of a wider problem that is related
to the identification of functional regions in genomic sequences. The problem
is to find all positions of potential tRNAs in a sequence, given a model obtained
from an alignment of experimentally identified tRNAs.

There are basically two approaches to the solution: One consists of a general-
purpose method that integrates searching and folding; the other consists of a
self-contained method specifically designed for tRNAs. The latter produces
more accurate results and faster programs. This is needed to explore complete
genomes. We briefly describe the strategy implemented by the program
FAStRNA of El-Mabrouk and Lisacek (see Ref. 57 for more information on
other solutions), an algorithmic improvement on the tRNAscan algorithm by
Fichant and Burks [58].

FAStRNA depends on two main characteristics of tRNAs (at least of the
tRNAs in the training set used by the authors of the software): the relative
invariance of some nucleotides in two highly conserved regions forming the
TΨC and D signals, and the cloverleaf structure composed of four stems and

In a preliminary step, the program analyzes the training set to build
consensus matrices on nucleotides. This provides the invariant bases of the
TΨC and D regions used to localize the two signals. After discovering a signal,
the program tries to fold the stem around it. Other foldings are performed to
complete the test for the current position in the DNA sequence. Various
parameters help tune the program to increase its accuracy, and an appropriate
hierarchy of searching operations makes it possible to decrease the running
time of the program.

The built-in strategy produces a very low rate of false positives and false
negatives. Essentially, it fails for tRNAs containing a very long intron. Searching
for signals is implemented by a fast approximate matching procedure of the
type described above, and folding corresponds to doing an alignment as
presented earlier. The program runs 500 times faster than previous tRNA
searching programs.
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4. REPEATED MOTIFS IDENTIFICATION

4.1. Exact Repetitions

4.1.1. General Algorithms

One of the first methods that made it possible to discover exact repetitions in
strings was designed by Karp et al. [5]. Their algorithm (henceforward called
KMR) runs in O (n log n) time on a string of length n but cannot find all
repetitions. However, various solutions based on closely related ideas were
proposed by Crochemore [59], Apostolico and Preparata [60], and Main and

FIGURE 9 Cloverleaf secondary structure of a tRNA.
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Lorentz [61]. They all take O (n log n) time, and any algorithm that lists all
occurrences of squares, or even maximal repetitions in a string, takes at least
Ω(n log n) time because, for example, Fibonacci words contain that many
occurrences of repetitions (see Ref. 59).

A more specific question arises when one considers the problem of detecting
and locating the squares (words of the form uu, for a non-empty string u) that
possibly occur within a given string of length n. The lower bound for testing
squarefreeness of a string is also Ω(n log n) on general alphabets (see Ref. 61).
However, on a fixed alphabet Σ the problem of testing an occurrence of a
square can be done in O(n log |Σ|), which implies linear-time algorithms if the
size of the alphabet is fixed (see Ref. 11). Kolpakov and Kucherov [62] proposed
a linear-time algorithm to compute all the distinct segments of a string that
are repetitive. A solution based on the use of a suffix tree is due to Stoye and
Gusfield [63].

In the next section, we describe in some detail the KMR algorithm. Although
this is not the most efficient method for finding all exact repeats, it is a very
elegant algorithm, and, more important, it allows for an easy generalization
to more flexible types of repeats.

4.1.2. A Powerful Algorithm for Identifying Dispersed Exact Repeats—
KMR

The Original Algorithm. Given a string s, KMR solves the following problems.

Problem 1. Identify the positions of all factors of a fixed length k that
appear repeated in s.

Problem 2. Find the length kmax of the longest repeated factor in s, and
solve Problem 1 for k=kmax.

KMR rests on the definition of an equivalence relation given in Sec. 2.2.
Problem 1 and the second part of Problem 2 can then be formulated as the
problem of finding the partition associated with Ek. Problem 2 further requires
finding the maximum value of k such that Ek is not an identity. The algorithm
is based on an iterative construction of partitions El for l=k. The mechanism
for performing such constructions rests on the following lemma.

Lemma 2. Given a, b≥1 two integers with b≤a, and i, j two different positions
in s such that i, j<n-(a+b)+1, then
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The main idea behind the KMR algorithm is to use the lemma with a= b for as
long as possible. The lemma is consequently called the doubling lemma. This
means finding repeats of length 2a by using previously acquired information
on the repeats of length a that may become the prefixes and suffixes of those
of length 2a. If we are dealing with Problem 1, and if k is not a power of 2, we
then use the lemma with b<a in a last step in order to obtain Ek. If we are
treating Problem 2, we may need more than one step to find the value of kmax

such that Ekmax is not the identity but Ekmax+1 is. The search for kmax from the
smallest power of 2 that is bigger than kmax, let us say it is 2p, can be done by
applying the lemma with b<a in a binary search fashion between 2p-1 and 2p.

Building the partitions Ea basically corresponds to performing a set
intersection operation. The intersections can be implemented using, for
instance, stacks. More precisely, we need an array Va of size n that stores, for
each position i in s, the label of the class of Ea to which the a-long factor
starting at i belongs. Lemma 2 is applied by means of two arrays of stacks P
and Q. Stacks in P are filled by traversing Va. Such stacks are, in fact, a dual of
Va. Each one corresponds to a class c of Ea and contains the positions i in s
belonging to c. Array P therefore serves to sort the prefixes of length a of the
repeats of length 2a one is trying to identify. The content of each stack of P in
turn is then poured into the appropriate stack of Q. A division separates,
within the same stack of Q, elements coming from different stacks of P. Like
P, array Q has as many stacks as there are classes in Ea. It serves to sort the
suffixes of length a of the repeats of length 2a. One then just needs to pour Q
in an orderly fashion into V2a the obtain the classes of E2a, checking the quorum
as one goes.

As mentioned, KMR time complexity is O(n log k). When solving Problem
2, this leads to an O(n log n) complexity because of possible degenerate cases
(such as that of a string s composed of a single letter). KMR space complexity
is O(n).

Nontransitive Relations Without Errors. KMR may be adapted to deal
with a nontransitive relation R [6]. The problems solved are the same as for
KMR.

Lemma 1 applies analogously, except that one needs to substitute R for
relation E.

Lemma 3. Given a, b, ≥1 two integers with b≤a, and i, j two different
positions in s such that i, j≤n-(a+b)+1, then

 

Computing relations Rl for l≤k requires the same structures as for KMR except
that, as we saw, a set of positions pairwise related by Rl is no longer an
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equivalence class but a clique. The algorithm was in consequence called KMRC
(the “C” standing for clique) [6]. In particular, a position may belong to two
or more distinct cliques of Rl. Array Vl must now therefore be an array of
stacks, like P and Q. It indicates, for each cell i corresponding to a position in
s, the cliques of relation Rl to which i belongs.

The construction itself follows the same schema as indicated for KMR.
Some of the sets of similar factors obtained at the end of each step may not be
maximal. A further operation is therefore needed to eliminate sets included in
another one so as to get maximal cliques at the end.

To calculate the complexity of the KMRC algorithm, we need to define a
quantity g that measures the “degree of nontransitiveness” of relation R.

Definition 12. Given R, a nontransitive relation on Σ, we call g the greatest
number of cliques of R to which a symbol may belong, that is,

 number of cliques to which a belongs}
We call  the average value of ga for  that is,

 

where nc is the number of cliques of R.
If one does not count the set inclusion operations to eliminate non-maximal

cliques, KMRC has time complexity O(ngk log k), because each position i in s
may belong to at most gk (or, on the average, gk) cliques of Rk. Inclusion tests
based on comparing the positions contained in each set take O(n2g2k) time at
the end of step k. At least one other approach for testing set inclusion is possible
and may result in a better theoretical (but not necessarily better in practice—
this is discussed in Ref. 6) time complexity. Space complexity is O(ngk).

4.2. Inexact Repetitions—The Particular Case of Tandem Arrays
(Satellites)

4.2.1. Model for Tandem Arrays (Satellites)

Tandem arrays (called tandem repeats when there are only two units) are a
sequence of repeats that appear adjacent in a string. As concerns biology, such
tandemly repeated units are divided into three categories depending on the
length of the repeated element, the span of the repeat region, and its location
within the chromosome [64]. Repeats occurring in or near the centromeres
and telomeres are called simply satellites. Their span is large, up to a million
bases, and the length of the repeated element varies greatly, anywhere from
five to a few hundred base pairs. In the remaining, euchromatic, region of the
chromosome, the kinds of tandem repeats found are classified as either micro-
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or minisatellites, according to the length of the repeated element. Microsatellites
are composed of short units, of two to five base pairs, in copy numbers in
general around 100. Minisatellites, on the other hand, involve slightly longer
repeats, typically around 15 base pairs, in clusters of variable sizes, comprising
between 30 and 2000 elements.

Figure 10 shows an example of a tandem repeat starting at position 391131
on chromosome IX from yeast (in the sequence as recovered from the ftp site
ftp://ftp.mips.embnet.org/yeast/). This repeat is composed of 41 full units, 16
of which contain a deletion of nine bases against the other elements. Apart
from this, the repeat is well conserved overall (on average, one mutated base
per element), except for the first six units and the last one. The repeat is located
inside a coding region (in the other strand) corresponding to a glucoamylase
s1/s2 precursor protein (SwissProt id: AMYH_YEAST).

Satellites of whatever type demand a more complex definition of models
than that given in Section 2.4, requiring additional constraints.

We have, in fact, two definitions related to a satellite model, the prefix
model and the consensus model. The latter concerns satellite models strictly
speaking, whereas prefix models are, in fact, models for approximately periodic
repetitions that are not necessarily tandem.

Formally, a prefix model of a satellite is a string  that
approximately matches a train of wagons. A wagon of m is a factor u in s such
that dist(m, u)≤e. A train of a satellite model m is a collection of wagons u1,
u2,…, up ordered by their starting positions in s and satisfying the following
properties.

Property 1. p≥min_repeat, where min_repeat is a fixed parameter that
indicates the minimum number of elements a repeating region must contain.

Property 2. left ui+1-leftui  JUMP where leftu is the position of the left end of
wagon u in s and

 

with the three parameters min_range, max_range, and max_jump fixed.

A prefix model m is said to be valid if there is at least one train of m in the
string s. Similarly, a train, when viewed simply as a sequence of substrings of
s, is valid if it is the train for some model m. A prefix model represents the
invariant that must be true as we progressively search for our final goal, which
is to arrive at a consensus model. This is a prefix model that further satisfies
the following property.
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FIGURE 10 An example of a tandem repeat in chromosome IX of yeast
Saccharomyces cerevisiae, starting at position 391131.
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Property 3.  where rightu is the position of the right
end of wagon u, and

 

Parameter max_jump allows us to deal with very badly conserved elements
inside a satellite (by actually not counting them) although we require that the
satellite be relatively well conserved globally. Fixing max_jump at a value
strictly greater than 1 means that we allow some wagons (the badly conserved
ones) to be “jumped over.” This may be seen as “meta-errors,” that is, as
errors involving not a single letter inside a wagon but a wagon inside a train.
Note that  This guarantees that when jumps are not authorized, the
repeats found are effectively tandem.

Because mutations affecting a unit concern indels (that is, insertions and
deletions) as well as substitutions, it is sometimes interesting to work with a
variant of the above properties where JUMP and GAP are defined as

 

 

and g≥e is a fixed value. The idea is to allow the length of the badly conserved
elements to vary in a larger interval than is permitted for the detection of
“good” wagons.

The satellite problem we propose to solve is the following.

Problem 3. Given a string s and parameters min_repeat, min_range,
max_range, max_jump, and e (possibly also g), find all consensus models m
that are valid for s and for each such m.

In fact, the original papers [16,65] report a set of disjoint “fittes” trains
realizing each model, given a measure of “fitness.”

The algorithm presented in Sec. 4.2.3 is the only combinatorial, nonheuristic
developed so far for identifying tandem arrays. Other exact approaches either
treat the case of tandem repeats only [13,14], do not allow for errors
[50,59,66,67], or require the generation of all possible (not just valid) models
of a given length [68-70].

4.2.2. Building Prefix Satellite Models

As with all previous cases considered in this chapter, satellite models are
constructed by increasing lengths. To determine if a model is valid, we must
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have some representation of the train or wagons that make it so. There are
two possibilities:

1. We can keep track of each valid train and its associated wagons.
2. We can keep track of individual wagons and, on the fly, determine if

they can be combined into valid trains.

The first possibility is appealing because model extension is straight-forward.
We would just have to verify, for each wagon of each train, whether it can be
extended according to the extended model and then count how many wagons
remain to check to determine whether the train it belonged to is still a valid
train. However, there are generally many overlapping trains involving many
of the same wagons for a given model. Common wagons may be present more
than once in the list of occurrences of m if this is kept as a list of trains. This
approach entails redundancies that lead to an inefficient algorithm. We
therefore adopt the second approach, of keeping track of wagons and
determining if they can be assembled into trains as needed.

The rules of prefix-model extension are given in Lemma 4. A wagon is
identified by a triple (i,j,d) indicating that it is the substring SiSi+1···Sj of s and
that it is d≤e differences away from its model. Position i indicates the left end
of the wagon and j its right end. Unlike the other algorithms presented in this
chapter, models and their occurrences (the wagons) will be extended to the
left. This is just to facilitate verifying Property 2. Strictly speaking, we should
then speak of suffix models instead of prefix models. Right ends of occurrences
are calculated but are used only for checking Property 3.

Lemma 4. The triple (i, j, d) encodes a wagon of m′=αm with α � Σ and
m � Σk if and only if at least one of the following conditions is true:

(match) (i+1, j, d) is a wagon of m and si=α,
(substitution) (i+1, j, d-1) is a wagon of m and si≠α,
(deletion) (i, j, d-1) is a wagon of m,
(insertion) (i+1, j, d-1) is a wagon of αm, and, furthermore, d≤e.

For each prefix model m, we keep a list of wagons of m that are in at least one
train validating m. We describe such wagons as being valid with respect to m.
When we extend a model (to the left) to m′=am, we perform two tasks:

First, determine which valid wagons of m can be extended as above to
become wagons of m′.

Second, of these newly determined wagons of m′, keep only those that are
valid with respect to m′. This requires effectively assembling wagons
into trains, something that is not needed in an approach that would
keep track of trains directly.
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Note that we need not actually enumerate the trains in the second step, we
must simply determine if a wagon is part of a train. This will allow us to
perform an extension step in time linear with respect to the string length.

As a final insight, consider the directed graph G=(V,E), where V is the set
of all valid wagons and there is an edge from wagon u to v if 

JUMP. Then a wagon u is valid if it is part of a path of length min_repeat or
more in G. Determining this property is quite simple, because the graph is
clearly acyclic. In the computation that follows, we effectively compute both
the length of the longest path to u in Lcntu and the length of the longest path
from u in Rcntu. If Lcntu+Rcntu>min_repeat, then u is valid.

4.2.3. Consensus Satellite Models

We encode the collection of all wagons of m in a set  and an
(n+1)×(2e+1)-element array Dm as follows:

1.  if and only if i is the left end of at least one wagon valid with
respect to m.

2. For each  the value Dm[i, δ] for δ [-e,e] is the edit distance of m
from wagon SiSi+1···Si+|m|-1+δ·

Intuitively, Lm gives the left ends of all valid wagons, which is all we need to
verify Properties 1 and 2. Dm gives us the distances we need for extending
models, together with the right ends needed for verifying Property 3. Formally,
(i,i+|m|-1+δ, d) is a valid wagon of m if and only if  and d=Dm[i, δ]≤e.

The complete algorithm is given below. When Extend (αm) is called, it is
assumed that Lm is known along with the relevant Dm values. The routine
computes these items for the extension am and recursively for the extensions
thereof. Lines 1–6 compute the set of left ends of wagons for am derivable
from wagons of m that are valid. While Lemma 4 gives us a way to do this
computation, recall that we are using dynamic programming to compute all
extensions simultaneously. This corresponds to adding the last row to the
dynamic programming matrix of s versus αm. At start, Lm gives all the positions
in row |m| that have value e or less (and are valid) and Dm gives their values.
From these we compute the positions in row |m|+1 in the obviously sparse
fashion to arrive at the values Lαm and Dαm.

procedure Extend (αm)

1. Lαm ← 
2. for  (in decreasing order) do
3.     for  do

4.           
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5.      if minδ{Dαm[i,δ]}≤e then
6.           
7. for  (in decreasing order) do
8.     
9. for  (in increasing order) do
10.     
11. for  do
12.     if Lcnt[i]+Rcnt[i]=min_repeat then Lαm←Lαm-{i}
13. if Lαm≠0 then
14.     if  then
15.          Record(am)
16.     if |αm| <max_range then
17.          for  do
18.               Extend (βαm)

After wagons have been extended whenever possible, we have to eliminate
those that are no longer valid. This is performed by lines 7–12. We compute,
for each position  the maximum number of wagons in a train starting
with a wagon whose left end is at i in Rcnt[i] (including itself), and the
maximum number of wagons in a train ending with a wagon whose left end is
at i in Lcnt[i]. The necessary recurrences are given in lines 8 and 10 of the
algorithm, where we recall that 

 denotes adding i to each element of
JUMP. Observe that Rcnt[i]+Lcnt[i]-1 is the length of the longest train
containing a wagon whose left end is at position i.

Clearly lines 7–10 take O(|Lαm||JUMP|) time. However, when Lαm is a very
large fraction of n, one can maintain an Rcnt(Lcnt)-prioritized queue of the
positions in  to obtain an O(n max_jump log|JUMP|) bound.

Finally, in the remaining steps, lines 13–18, the algorithm calls Record to
record potential models and then recursively tries to extend the model if
possible. Routine Record confirms that the model is a consensus model by
verifying Property 3 and recording the intervals spanned by trains that are
valid for the consensus model, if any.

The total time taken by the algorithm is 
 as e<

max_range. The term N(e, max_range) corresponds to the number of words
in the e-neighborhood of a word w of length max_range, that is, words that
are at a Levenshtein distance of at most e from w. This number is bounded
over by ke.

The space requirement is that of keeping all the information concerning at
most max_range models at a time (a model m and all its prefixes). It is therefore
O(n max_range e), because only O(n e) storage is required to record the left-
end positions and edit-distance at each possible right end.
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5. MOTIF EXTRACTION

5.1. Spelling Simple Models

We now present increasingly sophisticated models and algorithms for extracting
models that occur in a set of strings (possibly not all). Such models correspond
in general to binding sites—that is, to sites in a biological molecule that will
come into contact with a site in another molecule, thus permitting some
biological process to start (for instance, transcription or translation). We start
by considering simple models.

The problem we wish to solve is the following.

Problem 4. Given a set of N strings S=s1,···,sN, an integer e≥0, and a quorum
q≤N, find all models m such that m is valid, that is, occurs with at most e
errors in at least q strings of set S.

The spelling of models is done using a suffix tree. The idea comes from the
observation that long strings, especially when they are defined over a small
alphabet, may contain many exact repetitions. We do not want to compare
such repeated parts more than once with the potentially valid models. One
way of doing that is to use a representation of the strings that allows us to put
together some of the repetitions, that is, to use an index of the strings such as
a suffix tree.

Trees for representing all the suffixes of a set of strings {si, 1≤i≤N for some
N≥2} are called generalized suffix trees and are constructed in a way very
similar to the construction of the suffix tree for a single string [71,72]. We
denote such generalized trees by   They share all the properties of a suffix
tree given in Section 3.3 with string s substituted by strings s1,···,sN.

In particular, a generalized suffix tree  satisfies the fact that every suffix
of every string si in the set leads to a distinct leaf. When p strings, p≥2, have
the same suffix, the generalized tree has p leaves corresponding to this suffix,
each associated with a different string. To achieve this property during
construction, we just need to concatenate to each string si of the set a symbol
that is not in Σ and is specific to that string.

To be able to spell valid models (i.e., models satisfying the quorum
constraint), we need to add some information to the nodes of the suffix tree.
In the case where we are looking for repeats in a single string s, we just need to
know, for each node x of T how many leaves are contained in the subtree
rooted at x. Let us use the term leavesx to denote this number for each node x.
Such information can be added to the tree by a simple traversal of it.

If we are dealing with N≥2 strings, and therefore a generalized suffix tree
, it is no longer enough to know the value of leavesx for each node x in 

in order to be able to verify whether a model remains valid. Indeed, this time,
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for each node x, we need to know not only the number of leaves in the subtree
of  having x as root but also that number for each different string to which
the leaves refer.

In order to do that, we must associate to each node x in  an array,
denoted colorsx, of dimension N that is defined as

 

for 1≤i≤N.
The array colorsx for all x can also be obtained by a simple traversal of the

tree in which each visit to a node takes O(N) time. The additional space required
is O(N) per node.

One must observe that occurrences are now grouped into classes, and “real”
ones, that is, occurrences considered as individual words in the strings, are
never manipulated directly. Present case occurrences of a model are thus, in
fact, nodes of the generalized suffix tree (we denote them by the term “node-
occurrences”) and are extended in the tree instead of in the string. Once the
process of model spelling has ended, the start positions of the “real” occurrences
of the valid models can be recovered by traversing the subtrees of the nodes
reached so far and reading the labels of their leaves.

The algorithm is a development of the recurrence formula given in Lemma
5, below, where x denotes a node of the tree, father (x) its father, and d the
number of errors between the label of the path going from the root to x as
against a model m.

Lemma 5. (x,d) is a node-occurrence of m′=mα with  if and
only if one of the following two conditions is satisfied:

(match) (father(x),d) is a node-occurrence of m, and the label of
the arc from father(x) to x is α.

(substitution) (father(x),d-1) is a node-occurrence of m, and the label of
the arc from father(x) to x is β≠α.

(deletion) (x,d-1) is a node-occurrence of m.
(insertion) (father(x),d-1) is a node-occurrence of mα.

Furthermore, d<e.
The algorithm time complexity is 

5.2. Structured Models

5.2.1. Introducing Structured Models

Although the objects defined in the previous section can be reasonable,
algorithmically tractable models for single binding sites, they do not take into
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account the fact that such sites are often not alone (in the case of eukaryotes,
they may even come in clusters) and, in particular, that the relative positions
of such sites, when more than one participates in a biological process, are in
general not random. This is particularly true for some DNA binding sites such
as those involved in the transcription of DNA into RNA (e.g., the so-called
promoter sequences).

There is therefore a need to define biological models as objects that take
such characteristics into account. This has the motivation just mentioned and
also presents interesting algorithmic aspects; exploiting such characteristics
could lead to algorithms that are both more sensitive and more efficient. Models
that incorporate such characteristics are called structured models. They are
related to the structured motifs of Section 3.

Formally, a structured model is a pair (m,d) where

m is a p-tuple of simple models (m1,···,mp) representing the p parts of a
structured model (we shall call these parts boxes)

d is a (p-1)-tuple  of triplets
representing the p-1 intervals of distance between two successive boxes
in the structured model

with p a positive integer,  are non-
negative integers.

Given a set of N strings s1,···,sN and an integer q, 1≤q≤N, a model (m,d) is
said to be valid if, for all i, 1 ≤i≤ (p-1) and for all occurrences ui of mi there
exist occurrences u1,···,ui-1, ui+1,···, up of m1,···,mi-1,mi+1,···,mp such that

u1,···, ui-1, ui+1,···,up belong to the same string of the set.
There exists di, with  such that the distance

between the end position of ui and the start position of ui+1 in the
string is equal to di±δi.

di is the same for p-tuples of occurrences present in at least q distinct
strings.

The term di represents a distance and ±δi an allowed interval around that
distance. When  is omitted, and d in a
structured model (m,d) is denoted by a pair  An example of a

Observe that simple models are indeed only a special case of structured
models.

5.2.2. Statement of the Structured Model Problem

Concerning structured models, solutions to variants of increasing generality
of the same basic problem are proposed. Suffix trees are used in all cases.
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These variants may be stated as follows, given a set of N strings s1, ·,sN, a
nonnegative integer e, and a positive integer q.

Problem 5. Find all models of the form  that are valid.

Problem 6. Find all models of the form 
 that are valid, where p≥2.

Problem 7. Find all models of the form  that are
valid.

Problem 8. Find all models of the from 
 that are valid, where p≤2.

Problems 5 and 6 represent situations where the exact intervals of distances
separating the parts of a structured site are unknown, the only known fact
being that these intervals cover a restricted range of values. How restricted is
indicated by the di parameters. We present below algorithms for the first two
problems only. Further details on the other two may be found in Ref. 18.

To simplify matters, we shall consider that for  where k is
a positive integer, i.e., that each single model mi of a structured model (m,d) is
of fixed, unique length k. In a likewise manner, we shall assume that each part
mi has the same error rate e and, when dealing with models composed of
more than two boxes, that the  and possibly di for 1≤i≤p-1 have

FIGURE 11 Example of a model with two boxes (p=2).
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identical values. We denote these values by dmin, dmax, and δ. Problem 6 is then
formulated as finding all models ((m1,···,mp),(dmin,dmax)) that are valid, and
Problem 8 as finding all valid models ((m1,···,mp ),(dmin, dmax,d)).

Besides fixing a maximum error rate for each part in a structured model,
one can also establish a maximum error rate for the whole model. Such a
global error rate allows us to consider in a limited way possible correlations
between boxes in a model.

Another possible global, or local, constraint one may wish to consider
for some applications concerns the composition of boxes. One may, for
instance, determine that the frequency of one or more nucleotide in a
box (or among all boxes) is below or above a certain threshold. For
structured models composed of more than p boxes, one may also
establish that a box i is palindromic in relation to a box j for 1 ≤i≤j≤p. In
algorithmical terms, the two types of constraints just mentioned are not
equivalent. The first type, box composition whether local or global, can
in general be verified only a posteriori, whereas the second type
(palindromic boxes) will result in a, sometimes substantial, pruning of
the virtual trie of models.

Introducing such additional constraints may in some cases require changes
to the basic algorithms described below. The interested reader can find details
concerning such changes in the original papers [18,73].

We present, in the next section, first a naive approach and then two
algorithms that are efficient enough to tackle structured model extraction
(Problem 5) from big data sets. The second algorithm has a better time
complexity than the first but needs more space. The first is easier to
understand and implement. Both are described in more detail than previous
algorithms because structured models in some ways incorporate almost all
other kinds of motifs we are considering. The most notable exception
concerns satellites, which are discussed in Section 4.2. We then show how to
extend these to treat Problem 16. Details on the algorithms for solving
Problems 7 and 8 can be found in Ref. 18.

Other combinatorial approaches have been developed for treating
somewhat similar kinds of structured motifs. They either enumerate all
possible (not just valid) motifs [74], do not allow for errors [75,76], or are
heuristics [77,78].

5.2.3. Algorithms for the Special Case of a Known Interval of
Distance

Naive Approach. A naive way of solving Problem 5 consists in extracting and
storing all valid single models of length k (given q and e) and then, once this is
finished, verifying which pairs of such models could represent valid structured
models (given an interval of distance [dmin, dmax]).
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The lemma used for building valid single models is similar to Lemma 5
except that in practice, for most biological problems we wish to address [17,79],
in general only substitutions are allowed. The lemma therefore becomes as
stated below.

Lemma 6. (x,d) is a node-occurrence of m′=ma with  and  if and
only if one of the following two conditions is satisfied:

(match) (father (x),d) is a node-occurrence of m, and the label of
the arc from father (x) to x is α.

(substitution) (father(x),d-1) is a node-occurrence of m, and the label of
the arc from ƒather (x) to x is β≠α.

Furthermore, d≤e.
One way of doing the verification profits from the simple observation that

two single models m1 and m2 may form a structured model if and only if at
least one occurrence of m1 is at the right distance of at least one occurrence of
m2. Building an array of size nN where cell i contains the list of models having
an occurrence starting at that position in s=s1···sN allows us to compare models
in cell i to models in cells i+dmin,···,i+dmax only. If the sets of occurrences of
models are ordered, this comparison can be done in an efficient way (in time
proportional to the size of the sets of node-occurrences, which is upper-bounded
by nN).

First Algorithm: Jumping in the Suffix Tree. A first non-naive approach to
solving Problem 5 starts by extracting single models of length k. Because we
are traversing the trie of models in depth-first fashion (also in lexicographic
order), models are recursively extracted one by one. At each step, a single
model m (and its prefixes) is considered. Once a valid model m1 of length k is
obtained together with its set of  node-occurrences V1 (which are nodes
located at level k in ), the extraction of all single models m2 with which m1

could form a structured model ((m1, m2),(dmin,dmax)) starts. This is done with
m2 representing the empty word and having as node-occurrences the set V2

given by

 

where level(v) indicates the level of node v in  From a node-occurrence v in
V1, a jump is therefore made in  to all potential start node-occurrences w of
m2. These nodes are the dmin to dmax generation, descendants of v in  Exactly
the same recurrence formula as that given in Lemma 6 can be applied to the
nodes w in V2 to extract all single models m2 that, together with m1, could
form a structured model verifying the conditions of the problem for all valid

1
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The procedure ExtractModels is called with arguments m equal to the empty
word having as sole node-occurrence the root of  and i equal to 1.

procedure ExtractModels (Model m, Block i)

1. for each node-occurrence v of m do
2.     if i=2 then
3.          put in PotentialStarts the children w of v at levels k+dmin to k+

dmax

4.     else
5.          put v (i.e., the root) in PotentialStarts
6. for each model mi (and its occurrences) obtained by doing a recursive

depth-first traversal from the root of the virtual model tree M while
simultaneously traversing  from the node-occurrences in
PotentialStarts (Lemma 6 and quorum constraint) do

7.     if i=1 then
8.          ExtractModels (m=m1, i+1)
9.     else
10.          report the complete model m=((m1, m2),(dmin,dmax)) as valid

Because the minimum and maximum lengths of a structured model (m,d) that
may be considered are, respectively, 2k+dmin and 2k+dmax, we need only build
the tree of suffixes of length 2k+dmin or more and for each such suffix consider
at most the first 2k+dmax symbols.

FIGURE 12 Extracting structured models (in the context of Problem 5) with a suffix
tree—an illustration of the first algorithm.
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The observation made in the previous paragraph applies also to the second
algorithm (Section 5.2). Note that in both cases this implies ni ≤ni+1 ≤Nn for
all i≥1, where ni is the number of nodes at depth i in 

Second Algorithm: Modifying the Suffix Tree. The second algorithm
initially proceeds like the first. It starts by building single models of length k,
one at a time. For each node-occurrence v of a first part m1 considered in turn,
a jump is made in  down to the descendants of v situated at lower levels.
This time, however, the algorithm just passes through the nodes at these lower
levels, grabs some information contained in the nodes, and jumps back up to
level k (in a way that is explained below). The information grabbed in passing
is used to temporarily and partially modify  and start, from the root of the
extraction of the second part m2 of a potentially valid structured model ((m1,

m2), (dmin, dmax)). When the operation of extracting all possible companions m2

for m1 has ended, that part of  that was modified is restored to its previous
state. The construction of another single model m1 of a structured model ((m1,
m2), (dmin, dmax)) then follows, and the whole process unwinds in a recursive
way until all structured models that satisfy the initial conditions are
extracted.

More precisely, the operation performed between the spelling of models m1

and m2 locally alters  up to level k to a tree ′ that contains only the k-
long prefixes of suffixes of {s1,···,sN} starting at a position between dmin and
dmax from the end position in si of an occurrence of m1. Tree ′ is, in a sense,
the union of all the subtrees t of depth at most k rooted at nodes that
represent start occurrences of a potential companion m2 for m1.

For each model m1 obtained, before spelling all possible companions m2

for m1, the contents of colorsz for all nodes z at level k in  are stored in an
array L of dimension nk (this is for later restoration of ). Tree  is then
obtained from  by considering all nodes w in  that may be reached
during a descent of, this time, k+dmin to k+dmax arcs down from the node-
occurrences (v,ev) of m1. These correspond to all end node-occurrences (instead
of start as in the first algorithm) of potentially valid models having m1 as first
part. The Boolean arrays colorsw or all w indicate the input strings to which
these occurrences belong. This is the information we grab in passing and take
along the only path of suffix links in  that leads back to a node z at level k
in . If it is the first time z is reached, colorsz is assigned colorsw, otherwise
colorsw is added (Boolean “or” operation) to colorsz. When all nodes v and w
have been treated, the information contained in the nodes z that were reached
during this operation are propagated up the tree from level k to the root
(using normal tree arcs) in the following way: If  have the same parent
z, then  Any arc from the root that is not visited at
least once in such a traversal up the tree is not part of ′ nor are the subtrees
rooted at its end node.
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The extraction of all second parts m2 of a structured model (m,d) follows,
as for single models in the initial algorithm (Lemma 6 in Section 5.2).

Restoring the tree  as it was before the operations described above
requires restoring the value of colors preserved in L for all nodes z at level k
and propagating the information (state of Boolean arrays) from z up to the
root.

Because nodes w at level between 2k+dmin to 2k+dmax will be solicited for
the same operation over and over again, which consists in following the unique
suffix-link path from w to a node z at level k in  is pretreated so that
one single link has to be followed from z. Going from w to z therefore takes
constant time.

An illustration is given in Figure 13. A pseudocode of the algorithm is as
follows. The procedure ExtractModels is called, as for the first algorithm,

FIGURE 13 Extracting structured models (in the context of Problem 5) with a suffix
tree—an illustration of the second algorithm. Part (a) corresponds to the extraction of
the first single models m1 of structure models (m,d). Part (b) corresponds the jump of
k+dmin to k+dmax down normal tree arcs to grab some information (to lighten the figure,
we made here dmin=dmax=dm). Part (c) shows the jump back up to level k following
suffix links with the information grabbed in passing. (d) represents the propagation of
the information received at level k up to the root. Finally, (e) illustrates the search for
second single models m2 of structure models (m, d) in tree .
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with both arguments m equal to the empty word having as sole node-occurrence
the root of  and i equal to 1.

procedure Extract Models (Model m, Block i)

1. for each node-occurrence v of m do
2.     if i=2 then
3.          put in PotentialEnds the children w at levels 2k+dmin to 2k+ dmax

4.          for each node-occurrence w in PotentialEnds do
5.               follow fast suffix-link to node z at level k
6.               put z in L
7.               if first time z is reached then
8.                    initialize colorsz with zero
9.                    put z in NextEnds
10.               add colorsw to colorsz

11.          do a depth-first traversal of  to update the Boolean arrays
from the root to all z in NextEnds (let  be the k-deep tree obtained
by such an peration)

12.          if i=1 then
13.               
14.          else
15.               
16. for that each model mi (and its occurrences) obtained by doing a

recursive depth first traversal from the root of the virtual model tree
 while simultaneously traversing Tree from the root (Lemma 6 and

quorum constraint) do
17.     if i=1 then
18.          ExtractModels(m=m1, i+1)
19.     else
20.          report the complete model m=((m1, m2), (dmin,dmax)) as a valid one
21.          restore tree  to its original state using L

Proposition 1. The following two statements hold:

1. contains only the k-long prefixes of suffixes of {s1,···,SN} that start
at a position between dmin and dmax of the end position in {S1,···,SN} of
an occurrence of m1.

2. The above algorithm solves Problem 5.

The proof is straightforward and can be found in the original papers [18,73].
Complexity. The naive approach to solving Problem 5 requires 

time to find single models that could correspond to either part of a structured
model [and  space to store all potential parts]. If we denote by ∆ the
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value dmax-dmin+1, finding which pair of single models can be put together to
produce a structured model could then be done in time proportional to

 

where (1) is the maximum number of single models to which a position may
belong, (2) is the maximum number of models to which a position at a distance
between k+dmin and k+dmax from the first may belong, (3) is the maximum number
of comparisons that must be done to check whether two single models may
form a structured one, and (4) is the number of starting positions to consider.

The total time complexity of the second algorithm is 
 Space complexity is slightly higher than for the first

algorithm: O(N2n+Nnk), where nk≤Nn. The second term is for array L.
In either case, the complexity obtained is better in terms of both time and

space than the one given by a naive solution to Problem 5.

5.2.4. Extending the Algorithms to Extract Structured Models Having p>2
Parts

First Algorithm: Jumping in the Suffix Tree. Extending the first algorithm to
extract structured models composed of p>2 parts, that is, solving Problem 6, is
immediate. After extracting the first i parts of a structured model ((m1,···, mp),
(dmin, dmax)) for 1≤i<p-1, one jumps down in the tree  (following normal tree
arcs) to get to the dmin to dmax descendants of every node-occurrence of ((m1,···mi),
(dmin, dmax)), then continues the extraction from there using Lemma 6.

A pseudocode is given below.

procedure ExtractModels ((Model m, Block i)

1. for each node-occurrence v of m do
2.     if i=2 then
3.          put in PotentialStarts the children w of v at levels (i-1)k+ (i-1)dmin(i-

1)k+(i-1)dmax

4.     else
5.          put v (the root) in PotentialStarts
6. for each model mi (and its occurrences) obtained by doing a recursive

depth-first traversal from the root of the virtual model tree  while
simultaneously traversing  from the node-occurrences in
PotentialStarts (Lemma 6 and quorum constraint) do

7.          if i=1 then
8.               ExtractModels (m=m1,···mi, i+1)
9.          else
10.               report the complete model m=((m1, m2), (dmin, dmax)) as valid one
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Second Algorithm: Modifying the Suffix Tree. Extending the second algorithm
to solve Problem 6 is slightly more complex and thus calls for a few remarks.
The operations done to modify the tree between building mi and mi+1, i≥1, are
almost the same as those described in Section 5.2 except for two facts. One is
that up to p-1 arrays L are now needed to restore the tree after each
modification it undergoes. The second difference, more important, is that we
need to keep, for each node vk at level k reached from an ascent up  suffix
links, a list, denoted  of pointers to those nodes, at lower levels, that
affected the content of vk. The reason for this is that tree  is modified up to
level k only (resulting in tree ), because these are the only levels concerned
by the search for occurrences of each box of a structured model. Lower levels
of  remain unchanged, in particular the Boolean arrays at each node below
level k. To obtain the correct information concerning the potential end node-
occurrences of boxes i for i>2 (i.e., the strings to which such occurrences
belong), we therefore cannot move down  from the ends of node-occurrences
in  of box (i-1). If we did, we would not miss any occurrence but we could
get more occurrences, e.g., the ones that did not have an occurrence of a
previous box in the model. We might thus overcount some strings and consider
as valid a model that, in fact, no longer satisfied the quorum. We have to go
down  from the ends of node-occurrences in that is, from the original ends
of node-occurrences in  of the boxes built so far. These are reached from
the list of pointers  for the nodes vk that are identified as occurrences of
the box just treated. For models composed of p boxes, we need at most p-1
lists  for each node vk at level k.

A pseudocode for the algorithm is as follows.

procedure ExtractModels(Model m, Block i)

1. for each node-occurrence v of m do
2.     if i>2 then
3.          put in PotentialEnds the children w at levels ik+(i-1)dmin to ik+ (i-

1)dmax

4.          for each node-occurrence w in PotentialEnds do
5.               follow fast suffix-link to node z at level k
6.                    put z in L(i)
7.                    if first time z is reached then
8.                         initialize colorsz with zero
9.                         put z in NextEnds
10.                    add colorsw to colorsz

11.          do a depth-first traversal of  to update the Boolean arrays
from the root to all z in NextEnds (let  be the k-deep tree obtained
by such an operation)

12.          if i=1 then
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13.          
14.     else
15.          
16. for each model mi (and its occurrences) obtained by doing a recursive

depth-first traversal from the root of the virtual model tree  while
simultaneously traversing Tree from the root (Lemma 6 and quorum
constraint) do

17.     if i<p then
18.          ExtractModels(m=m1···mi, i+1)
19.     else
20.          report the complete model m=((m1,···,mp), (dmin, dmax)) as a valid

one
21.     if i>1 then
22.          restore tree  to its original state using L(i)

Complexity. The first algorithm requires  time,
where  The space complexity remains the same as for solving
Problem 3, that is, O(N2n).

The total time complexity of the second algorithm 
 is The space complexity is O(N2n+N(p-1)nk).
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1. AMINO ACID SEQUENCE COMPARISON

1.1. Pairwise Comparison

As soon as two protein sequences need to be compared, a task known as
alignment arises. Alignment involves matching the amino acids of the two
sequences in such a way that their similarity can be determined best. For
example, if the two sequences are CDFG and CDEFS, it is clear that the
alignment

CD-FG
C D E F S S

provides the best assessment of their similarity. However, in comparing two
considerably different protein sequences of, for instance, 300 amino acids
each, the real problem begins. Ideally, the alignment of two sequences should
be in agreement with their evolution, i.e., the patterns of descent as well as the
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molecular structural and functional development. Unfortunately, the
evolutionary traces are often very difficult to detect. For example, in divergent
evolution of two protein sequences from a common ancestor, amino acid
mutations, insertions, and deletions of residues, gene doubling, transposed
gene segments, repeats, domain structures, and the like can blur the ancestral
tie beyond recognition.

1.1.1. Dot Matrix Analysis

One way to represent all possible alignments of two sequences is to compare
them in a two-dimensional matrix, where one sequence is written out
vertically with its amino acids forming the matrix rows while the other
sequence forms the columns. Each intersection of a matrix row with a matrix
column represents the comparison of associated amino acids in the two
sequences such that all possible local alignments can be found along diagonals
parallel to the major matrix diagonal. The simplest way to express the
similarity of matched amino acid pairs is to place a dot in a matrix cell
whenever the two are identical. Such matrices are therefore often referred to
as dot matrices and were used early on to visualize the relationship of two
sequences [1,2]. Their use remains because the human eye is a very strong
device to perform pattern recognition in spaces of up to three dimensions.
For example, overall similarity is discernible by piecing together local
subdiagonals through insertions and deletions.

More biological insight is normally obtained by using more varying amino
acid similarity values than the identity values mentioned above (see Sec. 1.3).
Most protein sequence comparison methods use amino acid exchange values
for each possible exchange, normally incorporated in a symmetrical 20×20
matrix in which each value approximates the evolutionary likelihood of a
mutation from one amino acid into another; the matrix diagonal contains the
odds for self-conservation (see Sec. 1.3).

To increase the signal-to-noise ratio for dot plots, McLachlan [3–5] was
the first to develop filtering techniques. He devised “double matching
probabilities” to estimate the significance of regions showing high similarity.
Such regions were identified by using windows of fixed length that are
effectively slid over the two sequences to compare all possible stretches of, for
example, five matched residue pairs. To establish a level of background noise,
McLachlan took a large number of randomly shuffled sequences and calculated
the mean value and standard deviation over all randomized windows of a
given length and compared these numbers with those from the two query
sequences (using the Z-score, i.e., the number of standard deviations above
the random mean). Often, the output values are filtered on the basis of a
cutoff value for placing dots in the comparison matrix. Argos [6] used
nonredundant real protein sequences instead of randomized ones to take into
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account natural protein sequence biases arising from structure, such as
amphipathic helices or strands found in nearly all proteins. McLachlan’s initial
program CMPSEQ [3] was elaborated by Staden [7], who devised the widely
used dot matrix program DIAGON. He added output filtering and also allowed
different amino acid similarity scoring systems. Following McLachlan, Pustell
and Kafatos [8,9] devised further filtering methods to improve the signal-to-
noise ratio and used letters instead of dots in the output matrices to allow
scaling of the window scores.

Important biological issues include the choice of amino acid similarity scores
to use as well as the adopted length of the windows in the dot matrix analysis.
Argos [6] altered the classical alignment-based amino acid similarity scores by
including physicochemical amino acid parameters in the calculation of the
similarity values. He used these together with windows of different lengths
that were tested simultaneously in order to be less dependent on the actual
choice of an individual window length. Other researchers have suggested the
use of biologically meaningful lengths of windows, such as the length of an
average protein secondary or supersecondary structure [10] or the peptide
length resulting from an average exon size [11].

1.1.2. Dynamic Programming Methods

Although dot matrix methods can show multiple regional similarities between
amino acid sequences, there has been only a single evolutionary pathway
from one sequence to another. In the absence, however, of observed
evolutionary traces, the matching of two sequences is regarded as mimicking
evolution best when the minimum number of mutations are used to arrive at
one sequence from the other. An approximation of this is finding the highest
similarity value determined from summing substitution scores along matched
residue pairs minus any insertion/deletion penalties (see below). Such an
alignment is generally called the optimal alignment. Unfortunately, testing
all possible alignments including the insertion of a gap at each position of
each sequence, is infeasible. For example, there are about 1088 possible
alignments of two sequences of 300 amino acids [12], a number clearly
beyond all computing capabilities. However, when introductions of gaps
are also assigned scoring values such that they can be treated in the same
manner as the mutation of one residue into another, the number of
calculations is greatly reduced and becomes readily computable. The
technique to calculate the highest scoring or optimal alignment is generally
known as the dynamic programming (DP) technique. Although the physicist
Richard Bellman first conceived DP and published a number of papers on
the topic between 1955 and 1975, Needleman and Wunsch [13] introduced
the technique to the biological community, and their paper remains among
the most cited in the area.
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A DP algorithm operates in two steps. First a search matrix is set up in
the same way as a dot matrix (see Sec. 1.1.1), with one sequence displayed
horizontally and the other vertically (Fig. 1). The matrix is traversed from
the upper left to the lower right. Each cell [i,j] in the matrix receives as a
score the value composed of the maximum value of the scores in row i-1
and column j-1 (with subtraction of the proper gap penalty values) added

FIGURE 1 Two alignments of sequences DWVTALK and TDWVLK by dynamic
programming. The Dayhoff PAM 250 [14] exchange weights (see Fig. 5) were added
to a constant of 8 to make all values nonnegative. (a) Needleman-Wunsch search
matrix after initialization with the appropriate PAM250 values. (b) The states of two
exchange matrices after execution of the forward pass. The left matrix is traversed
without gap penalties, whereas for the right-hand matrix penalty values of 10 and 2
are used for gap opening and extension, respectively. Optimal alignment paths
through both search matrices are indicated. (c) The alignments resulting from tracing
back from the highest scoring cell for each of the search matrices. It can be seen
that the two different gap penalty regimes lead to different alignments and alignment
scores.
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to the exchange value of the associated matched residue pair of cell [i,j].
Cell[i,j] therefore contains the maximum score of all possible alignments
of the two subsequences up to cell[i,j]. Writing the above in a more explicit
form:

(1)

where S[i,j] is the alignment score for the first subsequence from 1 to i and the
second subsequence from 1 to j, Max denotes the maximum value of the three
arguments between brackets, s[i,j] is the substitution value for the amino acid
exchange associated with cell[i,j], P(x-1) is the nonnegative penalty value for
a gap of length x-1, and max1<x<i represents the maximum value of all
argument values over the range 1 to i.

Needleman and Wunsch [13] used a fixed penalty value for the inclusion of
a gap of any length, whereas Sellers [15] added a penalty value for each inserted
gap position. Most present alignment routines take an intermediate approach
by using the formula P(x)=Po+Pex, where Po is the penalty used upon the
opening of a gap of length x and Pe is the value for each extension of the gap.
Many researchers use Po 10–30 times larger than Pe. The choice of proper gap
penalties is also closely connected to the residue exchange values used in the
analysis. When the search matrix is traversed, the highest scoring matrix cell
is selected from the bottom row or the rightmost column, and its score is
guaranteed to be the optimal alignment score. The second step of a dynamic
programming algorithm is usually called the traceback step; the actual optimal
alignment is reconstructed from the matrix cell containing the highest alignment
score. The path then follows successively lower scores but each time selects
the highest available score in the preceding row and column up to the current
matrix cell (Fig. 1).

Because classical Needleman—Wunsch-type dynamic programming
algorithms use a two-dimensional search matrix, so that the algorithmic speed
and storage requirements are both of the order N*M, when two sequences
consisting of N and M amino acids in length are matched. The large computer
memory requirements of Needleman—Wunsch-type algorithms are due to the
traceback step, where the matches of the optimal alignment are reconstructed.
Furthermore, the amount of computation required makes the dynamic
programming technique infeasible for a query sequence search against a large
sequence database on personal computers.
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Gotoh [16,17] devised a dynamic programming algorithm that dramatically
decreased the storage requirements from order N2 to order N (assuming that
two sequences each N amino acids in length are matched) while keeping speed
on the order of N2. Myers and Miller [18] constructed an even more memory-
efficient linear space algorithm, based on the Gotoh approach and on a
traceback strategy proposed by Hirschberg [19]; that is only slightly slower.

To speed up DP algorithms, calculation of regions in the search matrix
unlikely to be selected in the final alignments can be avoided, saving valuable
computer time. Sankoff and Kruskal [20] computed only a band of a certain
width along the main diagonal of the search matrix; however, this is useful
only when the sequences are fairly similar with no extensive gaps. Ukkonen
[21] and Ficket [22] iteratively increased the bandwidth until the optimal
alignment was found. Another possibility involves finding regions of high
similarity and then applying dynamic programming over only the remaining
part of the search matrix.

A problem with global dynamic programming methods that match complete
sequences can arise when highly dissimilar sequences are compared. In such
cases global alignment techniques might fail to recognize highly similar internal
regions because such regions may be overshadowed by dissimilar regions and
strong gap penalties required to achieve their proper matching. Moreover, many
biological sequences are modular and show shuffled domains [23], which can
render a global alignment of two complete sequences meaningless. The occurrence
of varying numbers of internal sequence repeats [24] can also severely limit the
applicability of global methods. In general, when there is a large difference in
the lengths of two sequences to be compared, global alignment routines become
tricky. To address these problems, Smith and Waterman [25] developed a so-
called local alignment technique in which the most similar regions in two
sequences are selected and aligned first. To get from global to local dynamic
programming, an important prerequisite is that the amino acid exchange values
that are used must include negative values. Any score in the search matrix lower
than zero is to be set to zero. Formula (1) is then changed to

(2)

where Max is now the maximum of four terms. A consequence of this scenario
is that the final highest alignment score value does not have to be in the last
row or column as in global alignment routines but can be anywhere in the
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search matrix. The local alignment algorithm relies on dissimilar subsequences
producing negative scores that are subsequently discarded by placing zero
values in the associated submatrix cells. An arbitrary issue in using the algorithm
is deciding the zero cutoff relative to the 20×20 residue exchange weights
matrix.

Waterman and Eggert [26] generalized the local alignment routine by
devising an alignment routine that allows the calculation of a user-defined
number of top-scoring local alignments instead of only the optimal local
alignment. The obtained local alignments do not intersect; i.e., they have no
matched amino acid pair in common. If during the procedure an alignment is
encountered that intersects with any of the top-scoring alignments listed thus
far, then the highest scoring of the conflicting pair is retained in the top list.
Huang et al. [27] developed an implementation (SIM) of the technique in
which they reduced the memory requirements from order N2 to order N,
thereby allowing very long sequences to be searched at the expense of only a
small increase in computation time. Another popular version of the same
technique is LALIGN [28], which is part of the popular FASTA package [29]
(see Sec. 1.5).

It is not always clear whether the top-scoring (local or global) alignment of
two sequences is biologically the most meaningful. There may be biologically
plausible alignments that score close to the top value. For example, a multiple
alignment of reasonably diverged sequences normally shows the sequences
matched in such a way that most if not all alignments between any two
sequences in the multiple alignment are suboptimal compared to their optimal
pairwise alignment (for multiple sequence alignment, see Sec. 1.2). Vingron
and Argos [30] and Zuker [31] approached this issue by constructing an
algorithm that determines all optimal and suboptimal alignments and depicts
them in a dot plot. Reliably aligned regions can be defined as those for which
alternative local alignments do not exist. Mott [32] derived estimates for the
statistical significance of alignment scores using maximum likelihood methods,
thus avoiding computationally intensive comparisons with randomized
sequences.

Bucher and Hofmann [33] put local alignments in a new perspective.
They interpreted each cell[i, j] in the DP search matrix as the total probability
that a local alignment would go through it, which is equivalent to summing
the scores of all local alignments intersecting cell[i, j]. Using this approach,
Bucher and Hofmann [33] found an increase in pairwise sequence search
capabilities.

1.2. Multiple Alignment

Multiple sequence comparison involves the search for similarity in more
than two sequences. The alignment of a set of sequences can provide
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important information about structure-function relationships within the
proteins, such as the evolutionary conservation of functional amino acids at
certain sequence positions or conserved hydrophobicity patterns in particular
regions. Further, there are many techniques for sequence analysis that rely
on a multiple alignment, such as phylogenetic analysis, secondary structure
prediction, and sequence-structure comparison (see below). These
observations and derived techniques, however, depend crucially on the quality
of the multiple alignment.

alignment programs have been developed: global and local methods. Global
alignment programs attempt to align the sequences over their whole length,
whereas local programs search only for the most conserved regions and leave
the other parts of the sequences unaligned. The most effective alignment
algorithm depends on the nature of the sequences to be aligned. Global
algorithms produce the most accurate and reliable alignments when all the
sequences in the data set are of similar length. However, when the sequences
differ greatly in length, local alignment programs are often more successful at
identifying the conserved regions.

The two most explored computational techniques for multiple sequence
alignment are the DP technique [13,25] and, more recently, hidden Markov
modelling (HMM) [34,35]. Whereas the DP technique is deterministic (see
above), HMM is a stochastic approach, which has proven powerful if applied
to sequence database searches. Krogh et al. [35] described an HMM
procedure for multiple alignment in which the alignment process is modeled
in a finite automata fashion with three basic alignment steps considered as
states: match, insert, and delete. Probabilities are attached to the state
transitions by an expectation maximization algorithm trained during the
alignment such that position-dependent amino acid substitution, insertion,
and deletion probabilities are generated. Although HMM methods
incorporate more detail than the classical DP methods, such as the mentioned
position-specific scoring schemes, HMM approaches to multiple sequence
alignment generally perform poorly compared with other methods [36,37].
This is mainly due to the inherently complex parameterization of the
technique. As a consequence, state-of-the-art methods for multiple alignment
are all based on the DP technique.

1.2.1. Global Multiple Alignment Methods

The problem of finding an optimal or highest scoring global alignment of
two sequences was solved three decades ago with the DP technique [13],
which guarantees the finding of the highest scoring or optimal alignment
based on an amino acid substitution scoring scheme and insertion/deletion
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penalties (see Sec. 1.3). Unfortunately, the calculation of the optimal
alignment generally becomes computationally infeasible for four or more
sequences. Murata et al. [38] extended the Needleman—Wunsch procedure
for the optimal alignment of three sequences, using a three-dimensional search
matrix, but the application is limited to sequences of about 200 amino acids
and uses a gap penalty independent of the gap length. Gotoh [16] devised a
similar algorithm but devised a linear gap weighting function. In general, an
algorithm for optimal alignment needs a number of computational steps
and an amount of memory of at least the order of the product of the sequence
lengths. Rigorous methods for the simultaneous alignment of four or more
sequences thus cannot evaluate all possible matches but attempt to find the
optimal alignment by considering only a small fraction of all possible
comparisons. Over the years, various heuristic approaches have been
developed, leading to a large number of multiple alignment programs that
adopt different strategies.

Carillo and Lipman [39] showed that the optimal alignment path of N
sequences is limited to a small region in the N-dimensional search matrix of
which the upper bounds can be inferred from pairwise comparisons of the
sequences. The algorithm MSA of Lipman et al. [40] is based on the Carillo
and Lipman approach and generalizes the pairwise diagonal strip method of
Ficket [22] to N dimensions, where N is the number of sequences to be aligned.
Up to 10 sequences of 200-300 residues in length can be aligned with the
Lipman et al. method. Furthermore, the algorithm addresses an additional
problem in the comparison of multiple sequences, which is the weighting of
the aligned sequences because similar sequences should not dominate the
multiple sequence alignment. Lipman et al. [40] used the weighting scheme
suggested by Altschul et al. [41] based on phylogenetic trees. More recently,
the MSA method was extended to larger data sets using a divide-and-conquer
strategy [42] implemented in the method DCA [43]. However, the approach
remains extremely CPU-and memory-intensive and is thus applicable to only
small data sets.

Other approaches attempt to limit the number of comparisons by
considering only subsequences in the original sequence set that can be used
as anchor points across the sequences. Johnson and Doolittle [44] used sliding
windows to pinpoint residue positions in each of the sequences that should
be aligned. Their method is feasible for the alignment of up to about 10
protein sequences. Sobel and Martinez [45] based their routine MALIGN
upon the occurrence of identical words in each of the sequences, which makes
the method less suitable for proteins than for nucleic acid sequences. However,
their method early on provided the generation of suboptimal alignments as
well as tests for the statistical significance of the final alignment. Waterman
[46] extended the word search to nonidentical but similar words that should
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occur in at least a preset fraction of the initial sequences. A list of such best
words is compiled using statistical criteria that depend partly on the word
length. The alignment is then obtained by matching the associated regions
in the sequences with the best words. Waterman and Jones [47] devised an
algorithm for this strategy and extended it by allowing the occurrence of
gaps in the words. Vingron and Argos [48] used a graph-theoretical method
based on the rapid pairwise sequence comparison algorithm by Wilbur and
Lipman [49] to find identical dipeptides that string consecutively across the
sequences and serve as anchor points for extending the alignment. Regions
in between two successive anchor points are ordered from long to short and
are successively aligned using the standard Needleman—Wunsch algorithm
coupled with the profile technique where amino acid frequencies in the
already aligned block of intervening sequences are taken into account as
subsequences are added. A problem with all of these anchoring techniques
is that they do not display sustained accuracy and might be very good or
bad depending on the actual sequence set.

In general, the most popular and successful approach has been the
progressive alignment method [50,51], with which a multiple alignment is
built up gradually by aligning the closest sequences first and successively
adding in the more distant ones. Most widely used methods thus work in an
agglomerative way by aligning sequences, following a heuristically determined
order, until all sequences are joined in a final multiple alignment. The
sequences are either aligned according to a previously determined order that,
for instance, can be derived from a known phylogenetic tree or are reassessed
at each step during the progressive alignment. Most present day methods
use a dendrogram constructed from the pairwise sequence similarities as a
guide tree and then invoke a DP algorithm to compare the sequence pairs, a
block of aligned sequences with a single sequence, or two blocks of aligned
sequences. The initial step thus involves performing all pairwise comparisons
between the sequences, which has a time complexity of N2L2, where N is the
number of sequences and L the average sequence length. This complexity is
often the bottleneck for computing large alignments. However, using a guide
tree is a good heuristic, because the sequences are progressively aligned from
similar to divergent, which results in less error because alignment of similar
sequences is more accurate than that of distant sequences and error
propagation is minimized. A consequence of this scenario is that whenever a
gap is introduced in any sequence during an alignment step, the gap will

resulting multiple alignment of repeating motifs within transcription factor
IIIA (TFIIIA).

Hogeweg and Hesper [50] were the first to devise an integrated
agglomerative algorithm. In their method, a dendrogram is constructed based

Copyright © 2004 by Marcel Dekker

remain in further steps. Figure 2 shows an example of a guide tree and the



Protein Sequence Analysis 109

on all pairwise similarities of sequences matched by dynamic programming.
The method is flexible in the clustering procedure used, and, for example,
Unweighted Pair-Group Mean Average (UPGMA) [53], the present-day
ancestor method [54], or the neighbor-joining method [55] can be alternatively
chosen. The sequences are aligned progressively following the branch order
of the dendrogram. During the alignment, internode or ancestral sequences

FIGURE 2 Guide tree and alignment by the program ClustalX [52] of the signal
transduction protein cheY (PDB code 3chy) and 13 flavodoxin sequences, all showing
the basic flavodoxin topology. (a) Guide tree based on pairwise sequence identity
values. (b) Multiple alignment of the 14 sequences. Polar amino acids are dark,
hydrophobic residues are light gray.
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are constructed to represent already aligned groups of sequences. Hogeweg
and Hesper [50] argued that a multiple alignment and the associated
phylogenetic tree cannot be separated. They showed this using an iterative

on pairwise alignments carrying no information yet of related groups of
sequences, a multiple alignment is generated and the associated pairwise
similarities are inferred. Then, a new tree is iteratively constructed from which
a succeeding alignment is created, based on the increased information.

The method MULTALIGN of Barton and Sternberg [56] establishes a simple
chain order in which the individual sequences are aligned one by one. Initially,
all pairwise alignment scores are determined and the two most similar sequences
are matched first. During further iterations, the sequence showing the highest
alignment score when matched with the prealigned sequence block is added
to that block. To determine the alignment score, each sequence position i of

FIGURE 2 Continued.
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the kth sequence matched with position j of a prealigned block of k-1 sequences
receives a score per matched position averaged over the corresponding residue
substitution values:

(3)

where D(Ak,i, Ap,j) is the amino acid exchange weight. The PAM250 substitution
matrix [14] (see Sec. 3.3) is used with a constant of 8 added to remove all
negative matrix elements. Matched gaps are evaluated by the lowest exchange
weight of zero. The resulting multiple alignment can be progressively refined
by realigning each sequence with the previous alignment from which that
sequence is deleted; i.e., sequence A1 is matched with aligned sequences
A2,…,AN, sequence A2 is then realigned with the alignment of A1, A3,…,AN,
and so forth. This process is repeated until all N sequences are realigned.
Barton and Sternberg [56] recommend two such complete refinement cycles.
The quality of a multiple alignment is assessed by comparisons with alignment
scores over randomized sequences if the sequence groups are not too large;
otherwise, normalized alignment scores (NASs) are used. An NAS is the
alignment score divided by either the length of the shorter matched sequence
or the number of residues not aligned with gaps.

Feng and Doolittle [51] devised a method for the construction of a
phylogenetic tree through progressive alignment of the sequences. The
algorithm works using only strictly pairwise sequence comparisons; no
consensus sequences or averaging of similarities to compare blocks of
sequences are used. Gaps in already aligned sequences are fixed by inserting
special gap characters at gap positions, according to the credo “once a
gap, always a gap” [51]. First, a rough branching order is determined using
the phylogenetic tree-building method of Fitch and Margoliash [57]. This
tree order is basically followed, but the alignment order of nearest neighbors
in each obtained subgroup of sequences is reversed and the highest scoring
alignment is selected for further comparison. For example, if the initial
branch order is ABCD, then A and B are aligned first. The alignment orders
ABC and BAC (alignment taking place successively from left to right) are
then checked, and the best alignment, for example, BAC, is taken. Then
BACD and BADC are examined. Only nearest neighbors are swapped, to
keep computation manageable; other possible permutations are not
considered.

The method MULTALIN of Corpet [58] follows the Hogeweg and Hesper
approach in that it also uses hierarchical clustering and iteration. It is different
in that it uses for the alignment of two sets of sequences the average similarity
score between a pair of alignment columns i and j, one from each set, which is
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the average over the amino acid exchange values associated with all pairwise
intercolumn residue comparisons:

(4)

where Ai,m is the amino acid type in sequence m of alignment column i, Aj,n is
the amino acid type in sequence n of alignment column j, D is the amino acid
exchange weight, and M and N denote the number of sequences in the two
aligned sequence blocks. This way of scoring alignment positions is effectively
profile comparison [59] (see Sec. 1.5).

Higgins and Sharp [60] constructed a fast and widely used method,
Clustal, which was especially designed for use on small workstations. Speed
was obtained during the pairwise alignments of the sequences through the

similarities, a tree is constructed using the UPGMA clustering criterion.
Then the sequences are aligned following the branching order of the tree.
For the comparison of groups of sequences, Higgins and Sharp [60] used
consensus sequences to represent aligned subgroups of sequences and also
employed the Wilbur—Lipman technique to match these. Clustal does not
provide the possibility to iterate the procedure as do the Hogeweg and
Hesper [50] and Corpet [58] approaches. The Clustal package has been
subjected to a number of revision cycles. Higgins et al. [62] implemented
an updated version ClustalV in which the memory-efficient dynamic
programming routine of Myers and Miller [18] is used, enabling the
alignment of large sets of sequences using little memory. Further, two
alignment positions, each from a different alignment, are compared in
ClustalV using the average alignment similarity score of Corpet [58]. The
largely extended version ClustalW [63] uses the alternative Neighbor-
Joining (NJ) algorithm [55], which is widely used in phylogenetic analysis,
to construct a guide tree. Sequence blocks are represented by a profile in
which the individual sequences are additionally weighted according to the
branch lengths in the NJ tree. An integrated user interface has been
implemented in ClustalX [52], which is downloadable from http://www-
igbmc.u-strasbg.fr/pub/ClustalX/ and comes with accessory programs for
tree depiction. The Clustal versions W and X have generally become the
most popular methods for multiple sequence alignment.

The PILEUP routine from the GCG package (Genetics Computer Group
[64]) closely follows the earlier V version of Clustal. It generates an UPGMA-
based tree and, for the alignment of two sets of matched sequences, uses the
average alignment similarity score of Corpet [58].
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The method MULTAL of Taylor [65] is very fast and constructs a tree
during the progressive alignment as in the method of Feng and Doolittle
[51]. It uses a fast sequential branching method to align the closest pairs of
sequences first and subsequently align the next closest sequences to those
already aligned. The order in which the sequences are aligned is based largely
on the global amino acid composition of the sequences, which saves the
overhead of performing all-against-all pairwise alignments. Scoring blocks
of aligned sequences is done by dynamic programming akin to Corpet [58],
but the similarity of two alignment columns is additionally normalized by
the minimum number of sequences in either of two compared alignment
blocks,

(5)

where the variables are as under Eq. (4).
The method PRALINE [66] does not use a precalculated search tree but

most recently aligned sequence block. It thus reevaluates at each alignment
step which sequences or blocks of sequences should be aligned and hence
determines the alignment order during progressive alignment. The technique
offers a number of strategies to optimize the quality of multiple alignment,

is aimed at incorporating into each sequence trusted information from other
sequences, through either global or local alignments. For each sequence, a
preprocessed alignment is created by stacking other sequences (master-slave
alignment) that score beyond a user-specified threshold when aligned pairwise
with the sequence considered. A low threshold would result in a preprocessed
alignment for each sequence comprising all other sequences, whereas higher
thresholds would allow fewer and fewer sequences into the alignment. For
each of the thus-formed preprocessed alignments, a profile is constructed
(see Sec. 1.5). PRALINE then performs progressive multiple alignment using
the preprocessed profiles to represent each of the original sequences. Because
the preprocessed profiles for each of the sequences incorporate knowledge
about other sequences (in particular, similar sequences) and comprise
positionspecific gap penalties, they enable increased matching of distant
sequences and likely placement of gaps outside ungapped core regions during
progressive alignment. The multiple alignment of the preprocessed profiles
can also be used to derive consistency scores for each amino acid in the
alignment, which for each sequence reflect the consistency among the pairwise
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alignments used that include the sequence. The second strategy of exploiting
secondary structure prediction to optimize alignments will be described in
Sec. 1.2.3.

Incorporating a priori knowledge into a multiple sequence alignment can
greatly enhance its reliability and reduce computation time. For example, when
two or more three-dimensional structures are known in a set of sequences to
be matched, conserved structural regions can be identified and used to guide
the alignment. The method of Taylor [67] allows the specification of one or
more templates as consensus subsequences that, for example, can be associated
with secondary structural elements. Based on these templates the sequences
are included in a multiple alignment one by one. The templates are progressively
updated to include the new residue variabilities.

1.2.2. Local Multiple Alignment Methods

Local multiple alignment methods focus on the comparison of conserved
motifs in a set of protein sequences. Motif-based methods generally align
shorter and ungapped sequence fragments and succeed when these fragments
are recognizable as motifs in all or most of the sequences. Most motif-based
methods, therefore, are not particularly suitable for the alignment of distant
sequence groups. Generally, because these methods are not designed to yield
full alignments, they should be attempted on sets of sequences of varying
lengths if there is suspicion of shared motifs or domain structures.

The method MATCH-BOX [68] aims to find ungapped sequence regions
with a high degree of similarity across a set of input sequences. This is done by
comparing the frequency distribution of all pairwise-aligned sequence
fragments (which are gathered from global alignments) with that derived from
shuffled sequences. Using a set of the most similar nine-residue fragments,
local alignments are created for each fragment if similarity beyond a threshold
is found with segments across all other sequences. Boxes of ungapped regions
are then delineated from these local alignments and assembled in a final
alignment with unaligned amino acids and gaps between the boxes. The method
also generates a reliability index for the aligned positions within the boxes,
which relies on statistics derived from analyzing a relatively small number of
known family alignments.

The Boguski et al. [69] semimanual program suite incorporates the space-
efficient local alignment routine SIM of Huang et al. [27] (see Sec. 1.4.3)
as well as the MSA method for multiple sequence alignment [40] (see Sec.
1.2). For each pair of sequences, the highest scoring local alignments
containing gaps are determined and ungapped regions occurring in each
of the sequences are extracted from them. Whenever meaningful,
neighboring blocks of such motifs with the intervening sequence fragments
are aligned using the MSA method, thus allowing gaps. The method of
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Boguski et al. [69] also provides a user interface through which parts of
the alignment can be manually edited.

Schuler et al. [70] introduced the Multiple Alignment Construction and
Analysis Workbench (MACAW), which allows the user to lock or shift regions
in an alignment while nonlocked subsequences are aligned automatically. The
method is semiautomatic and produces blocks of alignments shared by all or
a subset of the sequences. It is possible to iteratively define conserved regions
such that the fraction of poorly defined segments that must be aligned
automatically becomes smaller at each iteration cycle. The GIBBS method of
Lawrence et al. [71] (see Sec. 1.4.2) has been incorporated in the MACAW
procedure to detect the local fragments.

The method DIALIGN of Morgenstern and coworkers [72,73] constructs
a multiple alignment by assembling a collection of high-scoring ungapped
segments in a sequence-independent progressive manner. It is based on segment-
segment comparisons rather than the residue-residue comparisons used in other
programs. The segments are incorporated into a multiple alignment by using
an iterative mathematical procedure that aims to find the optimal order for
building in the segments. Only sequence fragments for which matched segments
are found are aligned; regions between blocks of similar segments are left
unaligned.

The program ITERALIGN (Brocchieri and Karlin [74]) aims to optimize
the consistency between local pairwise alignments and their embedment in a
multiple alignment across all input sequences. The authors went so far as to
edit individual sequences by replacing amino acids by those that are
preponderant at a corresponding position in a multiple alignment to achieve
better recognition of crucial alignment regions.

These local programs perform well when there is a clear block of ungapped
alignment shared by all of the sequences or when there are blocks of alignment
separated by long insertions or deletions. They perform poorly, however, on

1.2.3. Iterative Multiple Alignment Optimization
and Alternative Techniques

Several new alignment algorithms have recently been developed, where a
common point of interest has been the application of iterative strategies to
refine and improve the initial multiple alignment. Iterative strategies, first
proposed by Hogeweg and Hesper [50], provide an interesting alternative to
simultaneous alignment (see above), because they are applicable to relatively
large data sets. Although they do not provide any guarantees about finding an
optimal solution, they are reasonably robust and certainly much less sensitive
to the number of sequences than, for example, the aforementioned deterministic
method MSA [40].
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The PRRP program (Gotoh [75]) optimizes a progressive global
alignment by iteratively dividing the sequences into two groups that are
subsequently realigned using a global group-to-group alignment algorithm.
Pairwise sequence weights are derived from a tree constructed with the
UPGMA cluster criterion and used to calculate the alignment scores when
sequence blocks are matched. Gotoh reported better accuracy [75] than
that of ClustalW [63].

The PRALINE method [66] can perform iteration based on the consistency

the preprocessed profiles can contain information about all the sequences,
so each sequence in the final alignment can be assessed in terms of the degree
of consistency reached across the profiles, which is translated into a
consistency score for each amino acid in the multiple alignment. Iteration is
then guided by the thus obtained scores, which are used as weights in the
construction of alignments (using the dynamic programming protocol) during
the next multiple alignment step [76]. From the resulting set of iterative
alignments, the one with the highest cumulative score over all pair-wise
matched amino acids in the alignment (sum-of-pairs score) can be selected
as a safeguard to prevent alignments from wandering away to less optimal
areas in the alignment space [76].

The PRALINE method can also use secondary structure prediction (see
Sec. 2) to optimize the alignments in an iterative fashion. Most reliable
secondary structure prediction methods use sequence information in

crucially on the quality of the multiple alignment used (see Sec. 2.5). In the
PRALINE approach, the multiple alignment is guided by predicted
secondary structure, so that an iterative scheme arises that optimizes both
the quality of the multiple alignment and that of the secondary structure
prediction. An initial multiple alignment is constructed without information

sequence the secondary structure is predicted by the PREDATOR [77,78],
or PHD method [79] (see Sec. 2.4), although in principle this could be
done by any available method, and a new alignment is iteratively
constructed, now using the predicted secondary structure. The initial
alignment is constructed using a default residue exchange matrix (the
BLOSUM62 matrix) and gap penalty values. After secondary structure
prediction, PRALINE uses the thus obtained secondary structure
information as illustrated in Figure 4. During progressive alignment, pairs
of sequences (and/or profiles representing already aligned sequence blocks)
are matched using three secondary structurespecific residue exchange
matrices [80], each with associated gap penalties. As shown in Figure 4,
the residue exchange weights for matched sequence positions with identical
secondary structure states are taken from the corresponding residue
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of preprocessed profiles (see Sec. 1.2.1) to optimize the alignment. Each of

multiple alignments (see Sec. 2.4), and their prediction accuracy relies
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exchange matrix, whereas matched sequence positions with nonidentical
secondary structure states are assigned the corresponding value from the
default exchange matrix. The secondary structure information is thus used
in a conservative manner based upon the assumption that consistent
secondary structure predictions are indicative of their reliability (Fig. 3).
In this iterative scenario, multiple alignment guides secondary structure
prediction, which in turn guides alignment.

The multiple alignment method T-Coffee [81] combines information from
global and local pairwise alignments. For each sequence pair, a single global
alignment and 10 top-scoring nonintersecting local alignments are generated
by the programs ClustalW [63] and LALIGN [28], respectively. The global
and local alignment scores are then combined to yield a synthetic weight W

FIGURE 3 Iterative multiple alignment and secondary structure prediction. Information
from secondary structure prediction programs predicting for single sequences as
well as multiple sequences can be used.
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for each aligned pair of amino acids, which is achieved by taking the sum of
the associated basic scores (sequence identities):

 

where A(x) is residue x in sequence A, and summation is over the scores S
of the global and local alignments containing the residue pair (A(x), B(y)),
while for S each time the sequence identity percentage of the associated
alignment is taken. This scenario results in a library of weights for each
nonredundant residue pair. The information in the library is then further
enhanced by a procedure called matrix extension [81]. Each library weight
W(A(x), B(y)) is recalculated to reflect the degree to which residues A(x)
and B(y) align consistently, as judged by all other library weights involving
either A(x) or B(y). This is done by using a triplet approach aimed at
calculating the contribution of third sequences I onto the direct alignment
of sequences A and B, based on the notion that a triplet alignment A-I-B
effectively provides an alternative alignment of A and B. Each extended
score W’ is then calculated as

 

FIGURE 4 Using secondary structure information during dynamic programming.
Regions in the dynamic programming search matrix are identified that correspond to
the various secondary structure-specific exchange matrices. (From Ref. 66.)
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where x, y, and z are sequence positions in sequences A and B and the
intermediate sequence I, respectively, and summation is done over all third
sequences I other than A or B. The minimum of W(A(x), I(z)) and W(I(z),
B(y)) is taken to use information from third sequences conservatively. The
more intermediate sequences support the alignment of the pair, the higher its
extended weight becomes. The extended library weights W’ for the individual
matched amino acid pairs are then used to fill the DP search matrix and align
the associated input sequences. Library extension is performed at each step
during the progressive alignment, which is carried out basically following the
ClustalW protocol [63]. The dramatic increase in sensitivity of the T-Coffee
method is mainly a result of its matrix extension scenario, which combines
local and global alignment, where an incorrect direct alignment of sequences
A and B can effectively be overridden by consistent alignments of other
sequences acting as intermediates in the above triplet alignments.

In addition to the DP technique, other computational strategies have been
explored. The program SAGA [82] uses a genetic algorithm (GA) to select
from an evolving alignment population the alignment that optimizes, as an
objective function (OF), the weighted sum of pairs used in the MSA program.
More recently, a measure of consistency between the considered multiple
alignment and a corresponding library of Clustal pairwise alignments was
taken. This OF was developed for the COFFEE algorithm [36]. As mentioned
above, hidden Markov models (HMMs) have also been tried out as statistical
models of the primary structure consensus for a sequence family [34,35]. The
program HMMT [83] uses a simulated-annealing method to maximize the
probability that an HMM represents the sequences to be aligned.

1.2.4 Evaluation of Multiple Alignment Methods

Some recent evaluations of available multiple alignment techniques were
carried out [37] using the database of benchmark alignments BAliBASE [84].
These studies showed the method PRRP [75] to be marginally the most
accurate, closely followed by ClustalW, which is a much faster program.
Notredame et al. [81] showed, also using the BAliBASE set of reference
alignments [84] as the standard of truth, that the T-Coffee algorithm generates
significantly improved alignments compared to ClustalW [63], PRRP [75],
and DIALIGN2 [73]. The overall relative improvements measured using the
column score (see below) were 8.6%, 8.6%, and 17.2%, respectively. Other
methods included in the assessment tests, such as the local alignment method
DIALIGN [72], the HMM-based method HMMT [83], and the Gibbs
sampling method GIBBS [71], generally fell behind. It must be stressed,
however, that DIALIGN was relatively successful in aligning sequences with
very large insertions or deletions. The high degree of accuracy of the T-
Coffee method was confirmed in benchmark tests by [76], who, in addition,
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found that the various PRALINE alignment strategies lead to reliable
alignments of very divergent sequences. Virtually the same accuracy as that
achieved with ClustalW was attained by the PRALINE method with default
parameters, not using strategies such as profile preprocessing or predicted
secondary-structure-induced alignment [76].

1.3. Scoring Amino Acid Substitutions

Dynamic programming techniques of the Needleman-Wunsch type rely on an
amino acid exchange weight matrix and gap penalty values. The optimal or
highest scoring alignment of two sequences is evaluated by the pairwise amino
acid substitution scores summed over all matched positions less the penalties
arising from each gap in the alignment. For alignment of similar sequences
(>35% in sequence identity), the scoring system used is not critical [85]. In
more divergent comparisons with residue identity fractions in the so-called
twilight zone (15–25%) [86], different scoring regimes can lead to dramatically
deviating alignments.

Many different substitution matrices have been devised over more than
three decades, each trying to optimize the signal-to-noise ratio in the detection
of homologies among sequences. A combination of physicochemical
characteristics of amino acids can be used to derive a substitution matrix that
basically contains pairwise amino acid similarity values. Other data from which
residue exchange matrices have been computed include sequence alignments,
structure-based alignments, and common sequence motifs. The remainder of
this section will deal with these approaches.

Fitch [1] constructed the first nonidentity residue exchange weights
matrix. He used the minimum number of nucleotide base changes for each
amino acid substitution. Values of 0,1,2, and 3, required to substitute one
residue with another, were converted to similarity values 4,2,1, and 0,
respectively.

Because the aim of a sensitive scoring system is proper alignment, a number
of widely used scoring matrices have been inferred from multiple sequence
alignments. Dayhoff et al. [14,87] derived the classical PAM250 matrix from
an evolutionary model for residue substitutions (Fig. 5). Sequences from 72
protein families were compared for which similarities were high enough (a
fraction of 85% or more identical residues) to yield accurate multiple
alignments by eye. The amino acid substitutions observed in these matches
were then tabulated and converted to mutational probabilities according to
1% accepted point mutations (one amino acid changed out of 100). This so-
called PAM1 matrix is converted into a PAM250 matrix by 250 self-
multiplications, but this number can be varied to yield matrices associated
with greater or smaller genetic distances. The most widely used substitution
table is the PAM250 log-odds matrix where each PAM250 matrix element
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C is converted by 10×log(C). Jones et al. [88] repeated the work of Dayhoff
et al. [87] and constructed a PAM250 matrix over a database about 18
times as large (23,000 sequences compared to about 1300 in Dayhoff et al.
[87]). Gonnet et al. [89] performed an exhaustive matching of a database of
1.7×106 residues in which sequences were pregrouped using a special tree
formalism. They also derived a PAM250-based substitution matrix and
suggested a gap penalty regime exponentially related to the gap length.
Henikoff and Henikoff [90] used the PROSITE sequence motif database
[91] to construct about 2000 multiple subsequence alignments associated
with the conserved PROSITE motifs. From this database, Henikoff and
Henikoff constructed the BLOSUM series of exchange matrices. For example,
the alignment blocks showing pairwise sequence identities of ≤62% were
used to construct the scoring matrix BLOSUM62. Very similar sequence
groups were downweighted by taking the average value of their contributions
to the matrix.

FIGURE 5 Dayhoff PAM250 log odds residue exchange matrix. Single-letter codes
have been used for the 20 amino acids. The most negative matrix value of -8 is for the
tryptophan-cysteine (WC) exchange, and the highest value is for tryptophan
conservation (WW). Note that the tryptophan-arginine (WR) exchange value is
unreasonably high, probably due to paucity of data used for deriving the log odd
values. (From Ref. 14.)
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Structure-based alignments of protein sequences have also been used for
the derivation of scoring matrices. Risler et al. [92] used 2860 residue
substitutions derived from rigid-body superpositions of 32 tertiary structures
from 11 families. Only those substitutions were recorded that came from
wellsuperposed parts within each equivalenced structural pair. The exchange
weights were calculated from the observed substitutions using statistical χ2

values and therefore suffer from the scarcity of data. Johnson and Overington
[93] repeated the approach, but now equivalenced 235 tertiary structures from
65 families using the superposition method of Sali and Blundell [94]. They
collected about 200,000 residue exchanges, two orders of magnitude more
than Risler et al. [92]. Their odds matrix was calculated using substitution
preferences where the log-odds (Oi,j) for each substitution of residue type i
into j was calculated as

(6)

where Si,j is the observed frequency of the substitution from residue i into j
and summation is over the 20 residue types. Johnson and Overington [93]
also compared their exchange matrix with 12 others. Various gap penalty
values were tested for each matrix, and the Needleman—Wunsch comparison
technique was used with a large set of structurally aligned protein sequences
as a benchmark database. Another evaluation is that of Henikoff and Henikoff
[95], which circumvented gap penalty assignments by using the BLAST

set of exchange matrices. They optimized the gap penalties individually for
each substitution matrix using the 3D-ALI database [98] as the standard of
truth. Vogt et al. found that the Gonnet et al. [89] matrix leads to the most
accurate alignments. These comparative studies taken together show the best
overall performance for the scoring systems of Henikoff and Henikoff [90]
(BLOSUM62) and Gonnet et al. [89].

Probably the currently most widely used matrix is BLOSUM62, which has
relatively high diagonal values compared to the PAM250 matrix and so is a
more conservative matrix. This has an appreciable effect on the pairwise identity
values, the most popular way of identifying sequence relationships, because
the BLOSUM62-based identity scores are dramatically higher than those of
the PAM250 matrix, particularly between divergent sequences (Fig. 6).
However, “softer” matrices than the BLOSUM62 matrix, such as the higher
PAM series for the Dayhoff or Gonnet matrices or the BLOSUM50 matrix,
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are particularly useful in global alignment, because they are more suitable for
aligning divergent sequences. They can also be useful in local alignment
searches, aiding the recognition of distant familial relationships.

It is evident that constructing a single amino acid exchange matrix to
represent all localized exchange patterns in protein structures is a gross
oversimplification and might lead to error in specific protein families. Attempts
to group local characteristics of protein structure and to construct specific
exchange matrices for each of those groups have included secondary structure
[80,99] and solvent accessibility [100]. The latter was carried out by identifying
amino acid substitution classes (a more binary approach using sets of amino
acid types) that were maximally indicative of local protein structure. Recent
attempts have included adapting the amino acid exchange matrix to a local
family in order to optimize the representation of the family and thus enhance
searching for distant members [101].

1.4. Sequence Patterns

A collection of related sequences contains more information than a single
sequence. Taking advantage of this multiple sequence information for feature
extraction and databank searching is quite natural and has been explored by

FIGURE 6 Pairwise sequence identity percentages of 13 flavodoxin sequences and
the signaling protein cheY (PDB code 3chy) using the PAM250 matrix (upper right
triangle) with gap (open, extend) penalties of 10 and 1 as well as the BLOSUM62
matrix (lower left triangle) with penalties of 12 (gap opening) and 1 (gap extension).
Proteins identified by four-letter codes are designated using their PDB identifiers,
whereas for the others the Swiss-Prot identifiers are given.
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many researchers. Two closely related problems have to be addressed: (1)
how to represent the collective information contained in many sequences and
(2) how to quantify the similarity between the multiple representation and
each individual sequence in the databank to be searched. In this section the
recognition of segments conserved among a group of protein sequences will
be considered. Section 1.5 will concentrate on how to optimally use the
available sequence information for protein families.

With the growth in the amount of structural information available, it has
become clear that certain regions of a protein molecular structure are less
liable to change than others. Knowledge of this kind can be used to elucidate
certain characteristics of a protein’s architecture such as buried versus exposed
location of a segment or the presence of specific secondary structural elements
[102,103]. The most salient aspect, however, involves the proteins functionality.
The most conserved protein region very often serves as a ligand binding site, a
target for posttranslational modification, the enzyme catalytic pocket, and
the like. Detecting such sites in newly determined protein sequences could
save immense experimental effort and help characterize functional properties.
Moreover, using only the conserved regions of a protein rather than its whole
sequence for databank searching can reduce background noise and help
considerably to establish distant relationships.

1.4.1. Classifying Sequence Motifs

In principle, the purpose of any method of sequence comparison, such as the
alignment of two sequences, is to find primary structure conservation and
establish reliable regions of local homology. Sequence motifs are usually
considered in the context of multiple sequence comparison, when certain
contiguous sequence spans are shared by a substantial number of proteins.
Staden [104] gave the following classification for protein sequence motifs:

Exact match to a short defined sequence
Percentage match to a defined short sequence
Match to a defined sequence, using a residue exchange matrix and a

cutoff score
Match to a weight matrix with cutoff score
Direct repeat of fixed length
A list of allowed amino acids for each position in the motif

Although sequence patterns are often referred to as a combination of several
elementary motifs [104] separated by intervening sequence stretches, here
patterns and motifs will be used interchangeably.

Protein sequence patterns are often derived from a multiple sequence
alignment, so that the quality of the alignment determines the correctness of
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the patterns. Defining a consensus sequence from a multiple alignment can be
approached as in social choice theory, using majority and plurality rules of
voting [105]. A consensus sequence can generally be written as a set of
heterogeneous rules of some kind for each alignment position. Taylor [106]
used Venn diagrams to make subdivisions of the amino acid residue types,
which were placed into a number of partially intersecting classes, such as
CHARGED, SMALL, HYDROPHOBIC, POSITIVE, etc. Any position within
a sequence pattern can thus be described by a logical rule of the type
“TINY.or.POLAR_non-AROMATIC.or.PROLINE.” The stringency of the
restraint imposed on a particular position should depend on how crucial a
given feature is for the protein family under scrutiny. Allowed elements can
range from an absolutely required residue type to a gap.

1.4.2. Sequence Pattern Detection Methods

In the Taylor [67] approach, an initial alignment of sequences is generated on
the basis of structural information available (e.g., superposition of Cα atoms)
to ensure reliability. After creating the template from the initial alignment, it
can then be extended to include additional related proteins. This process is
repeated iteratively until no other protein sequence can be added without
giving up on essential features. In an attempt to make the pattern less dependent
on the quality of the alignment, Patthy [107] adopted the following iterative
approach. The sequences are first pairwise aligned and the most similar of
them grouped. For each group, the alignments are inspected to identify residues
conserved in most of the sequences, and an initial pattern is formulated. Then
every sequence within the group is optimally aligned with the pattern, resulting
in the generation of a multiple alignment. As a next step, the consensus
sequences derived for the different groups are amalgamated, each individual
sequence realigned with the pattern, an extended multiple alignment generated,
and so on. While producing the consensus sequences, the algorithm relies on
user-specified thresholds, for example, the fraction of residues deemed similar
or identical according to the Dayhoff PAM250 residue exchange matrix (see

approach, Smith and Smith [108] also used pairwise comparisons as a starting
point for determining sequence patterns.

Vihinen [109] derived conserved motifs by superimposing dot matrices from
pairwise comparisons that involve a given reference sequence. This approach
was generalized by Vingron and Argos [110], who included all pairwise dot
matrices for a given set of sequences. They elucidated consistent and related
regions in all matrices through matrix multiplication. Other, often indirect,
measures of conservation have also been attempted as criteria for motif
delineation, such as the existence of homogeneous regions in a protein’s physical
property profiles (see, e.g., Chappey and Hazout [111]).
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Frequently a sequence motif is proven experimentally to be responsible
for a certain function. A collection of functionally related sequences should
then yield a discriminating pattern that occurs in all the functional sequences
and does not occur in other unrelated sequences. Such patterns often consist
of several sequentially separated elementary motifs, which, for example, join
in the three-dimensional structure to form a functional pocket. Such
discriminating motifs were studied extensively early on for particular cases
such as helix-turn-helix motifs [112] or G-protein-coupled receptor
fingerprints [113].

A consistent semimanual methodology for finding characteristic protein
patterns was developed by Bairoch [114]. The aim of his approach was to
make the derived patterns as short as possible but still sensitive enough to
recognize the maximum number of related sequences and also sufficiently
specific to reject, in a perfect case, all unrelated sequences. A large collection
of motifs gathered in this way is available in the PROSITE databank [91].
Associated with each motif is an estimate of its discriminative power. For
many PROSITE entries, published functional motifs serve as a first
approximation of the pattern. In other cases, a careful analysis of a multiple
alignment for the protein family under study is performed. Then the initial

search hits are analyzed. The motif is then extended or shrunk in sequence
length to achieve the minimal amount of false positives and maximal amount
of true positives. For example, the putative AMP-binding pattern ([LIVMFY]-
x(2)-[STG]-[STAG]-G-[ST]-[STEI]-[SG]-x-[PASLIVM]-[KR]) given in
PROSITE is found in 150 motifs over 112 sequences from the current Swiss-
Prot databank (Release 38); 137 hits in 99 sequences are true positives, and
13 hits in 13 sequences are known false positives. This gives a precision of
137/(137+13)=91.3%. Four motifs in four proteins known to be AMP-binding
could not be identified using the motif, so that the so-called recall fraction=137/
(137+4)=99.3%. The PROSITE databank and related software are an
invaluable and generally available tool for detecting the function of newly
sequenced and uncharacterized proteins. In addition to specifying regular
expressions (such as that for the putative AMP-binding pattern above) for
many protein sequence motifs, the PROSITE database also represents entries
using the extended profile formalism of Bucher et al. [115], an example of
which is included in Figure 7.

A description of sequence motifs in a regular expression such as in the
PROSITE database involves enumeration of all residue types allowed at
particular alignment positions or by less stringent rules previously described.
This necessarily leads to some loss of information, because particular sequences
might not be considered. Also, the formalism is not readily applicable to all
protein families. Increased information about a conserved sequence span can
be stored in the form of an ungapped sequence block. Henikoff and Henikoff
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[116] derived a comprehensive collection of such blocks (known as the
BLOCKS databank) from groups of related proteins as specified in the
PROSITE databank [91] using the sensitive technique of Smith et al. [117]. In
the latter method, the search for conserved motifs begins with listing all
common three-residue combinations with the maximal length of allowed
spacers between these three residues set at 24 amino acids. The most frequent
occurrences among the group of specific combinations are found and joined
into blocks, and a mean score for each column of the block is calculated using
the PAM250 residue exchange matrix. Then the best matching subsequences
from the rest of the proteins in the group are found. Searching protein sequences
against the library of conserved sequence blocks or an individual block against
the whole sequence library [118] provides a sensitive way of establishing distant
evolutionary relationships between proteins. Recently, the BLOCKS database
was extended [119] by using, in addition to PROSITE, nonredundant
information from four more databases: PRINTS [120], Pfam-A [121], ProDom
[122], and Domo [123].

As faster and more reliable sequence comparison tools became available

automatically as many patterns as possible from the full protein sequence
databank (e.g., Refs. 124–126). For example, Sheridan and Venkataraghavan
used the BLAST3 [127] searching tool to generate all pairwise local
alignments resulting from the full sequence databank self-comparison and
then clustered these into multiple alignments that they subsequently applied
to find additional representatives of the corresponding protein family in the
databank. More recent programs that attempt to detect domains from
multiple alignment information are DOMAINER [126], MKDOM [128],
and DIVCLUS [129].

Pattern matching methods based upon machine learning procedures have
also been attempted. The formalism of neural networks (see Sec. 2.4.1)
has been particularly explored, because they have the ability to learn an
internal nonlinear representation from presented examples. They also are
well suited for recognition of ill-defined, fuzzy objects (for reviews see

The method of Frishman and Argos [132] exploits neural networks to
delineate conserved sequence blocks and can then use these blocks to
flexibly search sequence databanks. First, a neural network is used to
elucidate unknown patterns from a multiple alignment of N sequences.
One segment of width W in each position of the alignment is tested and
the net is trained on the alignment of the segment including N-1 sequences,
after which the excluded sequence segment is submitted for recognition
and the network output is recorded. This is repeated with each of the N
segments removed.
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FIGURE 7 An example entry of the PROSITE databank presenting the Kringle domain
profile. Identifiers in the first column are line codes for easy computer access. After
general information such as the entry name (ID), accession number (AC), update
information (DT) and the full name of the pattern (DE), the profile description (MA)
follows with the following identifiers: /GENERAL SPEC: provides the basic alphabet
(one letter amino acid codes) and the length of the profile; /DISJOINT: indicates here
that any two sequence segments cannot overlap with the profile from position 6 (N1)
to 74 (N2); /NORMALIZATION: identifies the parameters for the normalized score
Y=R1+R2*X, where X is the raw score; /CUT_OFF: designates the cutoff level for
score significance—two levels are given here (0 and - 1) with corresponding raw and
normalized scores; /DEFAULT: specifies default scores for deletions (D), insertions
(I), internal initiation (B1), internal termination (E1), transition from match to insertion
(MI), transition from match to deletion (MD), transition from insertion to match (IM),
and transition from deletion to match (DM); /I: specifies local values for insertions/
deletions into the profile—three such sites are included in the figure; /M: gives the
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Lawrence et al. [71] described a method called GIBBS aimed at detecting
conserved regions with a residual degree of similarity from unaligned sequences.
The technique is based on iterative sampling of individual sequence segments
of given length W from a set of N sequences. In the first step the segments are
taken from random positions of N-1 sequences, one randomly selected sequence
being excluded. A tentative “conserved” region of length L is constructed
from these segments, and observed and statistically expected residue frequencies
are calculated for each of the L positions. Then all possible segments from the
excluded sequence are tested, one by one, for their consistency with the amino
acid probabilities of the generated subalignment. If at least a small fraction of
the randomly selected segments are actually related, thus providing a weak
information signal, the probability of successful extension of the nascent pattern
by related segments from other sequences in the set will be slightly higher
than could be expected for a completely random situation. The procedure is
repeated iteratively, and the pattern probabilities are recalculated at each step,
with the discriminative power of the pattern possibly increasing with the
inclusion of each new related member.

The program MEME [133,134] is a tool for unsupervised motif searching
within DNA and protein sequences that which operates using an expectation
maximization (EM) algorithm. It finds occurrences of motifs by comparing
the residue composition at each position of a putative motif against the
general composition of background sequence regions that do not display
the motif. Regions showing the most discriminating compositions are then
selected as motifs. A limitation of the MEME motifs is that they are

position-specific scores for the amino acids in the order specified under /
GENERAL_SPEC. The NR lines show the numerical results of the Swiss-Prot databank
searches (here for release 38 with 80,000 sequences) indicatlng that there are 136
occurrences of the pattern, all of which are true positives. Because a sequence can
contain multiple copies of a pattern, the numbers of individual sequences containing
the pattern are given in parentheses. Line CC represents the taxonomic range of the
pattern, where the letter E stands for eukaryotes and the question marks indicate
that it is not known whether this pattern is present in archebacteria, bacteriophages,
prokaryotes, and eukaryotic viruses, respectively. Also, the maximum number of the
pattern’s repeats in a single sequence is specified. Then follows information on all the
sequences associated with the pattern (DR lines). For each sequence, its accession
number, Swiss-Prot databank identifier, and the type of the hit (T for true, or F for
false) are specified.
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ungapped, but the program can find multiple occurrences in individual
sequences, which, however, do not need to be encountered within each
input sequence. Another useful feature of the MEME method is that it is
geared to finding DNA palindrome sequences, which are often implicated
as DNA binding sites for proteins. To increase the chance of finding
palindrome sets, the nucleotide probabilities of corresponding motif
columns (columns 1 and W, 2 and W-1, and so forth, with W the width of
the motif) are constrained to be the same.

The evolution of pattern derivation methods and resulting motifs in turn
has triggered the development of tools of varying degrees of complexity to
search individual sequences and whole sequence databanks with userspecified
motifs [135–141]. Techniques to evaluate the discriminative power of a given
pattern are also available [142]. In particular, many programs are available
for searching sequences against the PROSITE databank; a full list of publicly
available and commercial programs for this purpose is supplied with PROSITE
[91, 114].

The method of Frishman and Argos [132] mentioned earlier exploits neural
networks to delineate conserved sequence blocks and can then use these
blocks to flexibly search sequence databanks. This is done by combining the
trained neural nets to detect additional representatives of the “trained” family.
The average net recognition is used as a measure to select the most conserved
alignment regions. In the database search step of the algorithm, the M most
conserved protein blocks are used to extensively train M corresponding neural
networks, which are then used to scan the protein sequence databank.
Variable constraints can be imposed on the distances between the blocks,
although the M blocks must be in the same sequential order as in the multiple
alignment.

A further extension of the motif-searching techniques is provided by methods
that compare sequence templates with target sequences while allowing gaps
for insertions and deletions (see, e.g., Rhode and Bork, [143]). These methods
are similar to the profile-like methods described in Sec. 1.6. Alternatively, it is
possible to search a databank with multiple ungapped motifs independently
and then merge the hit lists for the motifs to find consistent occurrences of
certain databank sequences [113].

1.4.3. Internal Sequence Repeat Detection

An important characteristic of genomes, particularly those of eukaryotes, is
the high frequency of internal sequence repeats. For example, the human
genome is estimated to consist of more than 50% reiterated sequences [24].
Genomic repeats have been implicated in a number of cellular processes. For
example, there are known cases where repeat sequences are used by bacteria
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to increase their colonization and infection of human individuals [144].
Moreover, palindromic (i.e., reverse complemented) repeats often form DNA
hairpin structures, which are associated with replication or structural
mechanisms [145]. To analyze repeats at the genomic level, a fast method
named REPUTER was developed that is able to detect palindromic and
nearperfect repeats [146]. This method owes its speed to the implementation
of suffix trees to organize the occurrence of repeat types.

Given the widespread duplication and rearrangement of genomic DNA
and subsequent gene fusion events, also at the protein level, internal
sequence repeats are abundant and are found in numerous proteins. Gene
duplication may enhance the expression of an associated protein or result
in a pseudogene where less stringent selection of mutations can quickly
lead to divergence that results in an improved protein. An advantage of
duplication followed by gene fusion at the protein level is that the protein
resulting from the new single-gene complex shows a more complex and
often symmetrical architecture, conferring the advantages of multiple,
regulated, and spatially localized functionality. Repeat proteins often fulfill
important cellular roles, such as zinc-finger proteins that bind DNA, the
ß-propeller domain of integrin a-subunits implicated in cell—cell and cell—
extracellular matrix interactions, or titin in muscle contraction, which
consists of many repeated Ig and Fn3 domains. The similarities found within
sets of internal repeats can be 100% in the case of identical repeats, down
to the level where any discernible sequence similarity has been lost as a
result of mutation and insertion/deletion events. A classical example of
this is chymotrypsin, where fusion of two duplicated genes, each coding
for a separate ß-barrel domain, has resulted in a two-domain enzyme. The
active site consists of amino acids of both domains and shows greatly
enhanced activity compared to a suspected ancestral active center within
an individual ancestral barrel [147]. The amino acid sequences of the two
barrels have diverged so much that the duplication event had to be inferred
from the structural similarity [148].

The problem of recognizing internal sequence repeats in proteins has been
tackled by many researchers. One of the pioneers in the automatic detection
of repeats was McLachlan, who devised the first methods over three decades
ago [3]. The first methods relied on Fourier analysis [149,150], and this
technique remained popular [151]. Although Fourier transforms are designed
to detect periodic behavior, their application to protein sequence signals is
compromised by the fact that many repeats are distant through mutations
and insertions/deletions and different irregular sequence stretches can intervene.
Moreover, proteins can contain multiple repeat types, all with different basic
periodicities, which decreases the periodic signal for any one type. Finally,
Fourier techniques require a relatively large number of repetitions, whereas
many proteins contain only a few repeats.
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Another approach to delineate repeats in protein sequences was made by
exploring dynamic programming (DP). The first attempts were made by
McLachlan [5], who used the DP technique over fixed window lengths on
myosin rod repeats. Boswell and McLachlan [152] elaborated the method by
incorporating dampening factors and allowing the occurrence of gaps. Argos
[6] (see Sec. 1.1) also adopted the window technique but exploited
physicochemical properties of amino acids in addition to the PAM250 residue
exchange matrix [14] and used the technique to detect repeats in, for example,
frog transcription factor IIIA (TFIIIA), human hemopexin, and chick
tropoelastin. Huang et al. [27] used local alignments [25] to find the repeats
in rabbit globin genes. Their method SIM is a memory-optimized
implementation of the approach introduced by Waterman and Eggert [26],
which calculates a list of top-scoring nonintersecting local alignments, meaning
that no two alignments have a given matched amino acid pair in common.

Heringa and Argos [153] adapted the basic Waterman—Eggert algorithm
to repeat situations within a single protein by demanding, in addition to top-
scoring alignments being nonintersecting, that locally aligned fragments not
overlap. They introduced a graph-based iterative clustering mechanism that
takes the list of top-scoring nonoverlapping local alignments thus produced
for a single query sequence, declares the N-terminal matched amino acid pair
in each top alignment as the start site of a repeats pair, and then attempts to
delineate associated start sites within the top alignments that match the repeat
type based on alignment consistency with already clustered members of the
repeat type. If such new repeats are found, the cluster procedure is iterated.
The cluster consistency criterion assesses the number of established repeats
that align with a putative repeat and accepts a new repeat only if three or
more such top-scoring alignments can be found and if at least one of these
associated alignments has already contributed one or more repeat members
to the current repeat type and therefore can be trusted to be “in phase” with
that repeat type. After the clustering phase, the repeats can be multiply aligned
and turned into a profile (see Sec. 1.5), which can then be slid over the query
sequence to verify the repeats already found and possibly detect new
incarnations missed by the preceding algorithmic steps [153]. If new repeats
are found, the profile can be updated and the procedure iterated. The REPRO
algorithm is able to detect multiple repeat types independently and is a very
sensitive but slow technique. A webserver for the REPRO algorithm is available

A quick algorithm for calculating the length and copy number of internal
repeat sets was devised by Pellegrini et al. [155]. The method uses the
Waterman-Eggert algorithm and converts the scores of the selected top
alignments to probabilities. An N×N path matrix, where N is the length of the
protein sequence, is then filled with 1s for matrix cells corresponding to local
nonintersecting alignments that score above a preset threshold value for the
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probabilities, and 0s elsewhere. Two very simple summing protocols are then
applied to this matrix to obtain an approximate notion of the repeat length
and copy number, albeit the repeat boundaries are not determined. Marcotte
et al. [156] used the algorithm to derive a general census of repeats in proteins
using the Swiss-Prot protein sequence database.

The method Radar [157] basically follows the algorithmic steps of the
REPRO method [153], It calculates nonintersecting local alignments and then
uses these in an iterative procedure to determine the shortest nonreducible
repeat unit and the associated boundaries. A profile is constructed from a
multiple alignment of a found repeat set and is slid over the query sequence to
capture more repeats. The whole procedure is then iterated in an attempt to
find multiple repeat types. The Radar step to find the shortest possible repeat
unit includes (1) an iterative wraparound DP algorithm that mimics sliding a
repeat profile over the query sequence to find more incarnations followed by
updating and sliding the profile in the next iteration and (2) a recursive
procedure to detect the smallest repeat unit within a potentially reducible set
of repeats delineated by the wraparound DP scenario. The Radar method is
sensitive and sufficiently fast for genomic application.

1.5. Profile Analysis and Homology Searching

1.5.1. Modes for Calculating Profiles

A natural extension of the motif-searching techniques is provided by methods
that use information over an entire sequence alignment of a certain protein
family to find additional related family members. The earliest conceptually
clear technique of this kind of sequence searching was called profile analysis
[59]; it combines a full representation of a sequence alignment with a sensitive
searching algorithm. The procedure takes as input a multiple alignment of N
sequences. First, a profile is constructed from the alignment; i.e., an alignment-
specific scoring table that comprises the likelihood of each residue type to
occur in each position of the multiple alignment. A typical profile has L(20+2)
elements, where L is the total length of the alignment, 20 is the number of
amino acid types, and the last two columns contain gap penalties (see below).
As a measure of similarity between different types of residues, one of the
residue exchange matrices described in Sec. 1.3 is used. Then each element of
the profile is calculated for each alignment position r and residue type c as

(7)

where M=20 is the number of amino acid types. Comp is the comparison
value or substitution weight between the residue type c and each possible type
of residues d. Wd,r is the weight, which depends on the number of times each
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residue type occurs in position r of the alignment. The two commonly used
weighting schemes are linear,

(8)

and logarithmic,

(9)

where wi is a weight assigned to each sequence in the alignment, usually 1.0.
Linear weighting simply reflects the fraction of each residue type at position

r, whereas logarithmic weighting upweights the most frequent residue types.
For any weighting scheme, Wd,r=0 or 1 if a certain type of residue d does not
occur or occurs exclusively in position r, respectively. An example of a profile

al. [59] used a single extra column in the profile to describe the local weight
for both the gap opening and the gap extension penalty. For alignment positions
not containing gaps, Popen=Pextend=100, whereas for positions with insertions/

Gmax/(1.0+GincLgap) (10)

where Gmax is the maximum possible multiplier for an alignment position
containing gaps, Ginc scales the decrease of this quantity as the observed gap
length grows, and Lgap is the length of the gap crossing a given alignment
position. The advantage of such positional gap penalties is that multiple
alignment regions with gaps (loop regions) will be assigned lower gap penalties,
and hence will be more likely than core regions to attract gaps in a target
sequence during profile searching, consistent with structural considerations.
However, the implementation by Gribskov et al. [59] does not take the
frequency of gaps at each alignment position into account for the estimation
of gap opening and/or extension penalties. This does not correspond with the
expectation that a position rich in gaps would correspond to a loop site such
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FIGURE 8 Example of a profile for the first 20 positions of a multiple alignment of 10 globin sequences. The first column contains
the multiple alignment position, the second and third columns, respectively, the aligned amino acids and the consensus amino acid
for each alignment position. Then follow 20 columns with the propensities for each amino acid obtained by using linear weighting
[Eq. (8)] and amino acid exchange values from the PAM250 matrix rescaled by multiplying each value by 2 [Eq. (7)]. For example,
the propensity for glycine (G) at alignment position 1 is 1*Comp(G, G)+ 1*Comp (G, M)+3*Comp(G, V)=1*10+1*-6+3*-2=-2. A
single position-dependent gap score is given, which is calculated using Eq. (10) with parameters Gmax=33.3 and Ginc=0.1. For
example, alignment positions 1–5 are spanned by a single gap, so that for these positions Popen=Pextend=33.3/(1.0+0.1×5)=22. (From
Ref. 59.)
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that gaps in a sequence matched with the profile should be accommodated
more easily at this position. Many alternative profile implementations therefore
reserve the two last columns of the profile for positional gap opening (Popen)
and gap extension (Pextend) penalties, which can be individually determined
using protocols that take the above considerations into account. Another issue
with the Gribskov et al. implementation is that an alignment column with, for
example, a single glycine and gaps for all other sequences would show the
same score for glycine as a column consisting of identically conserved glycine
residues.

1.5.2. Profile Search Methods

In the Gribskov et al. [59] approach, a profile is aligned with each sequence in
the databank by means of the Smith and Waterman [51] dynamic programming
procedure (described in Sec. 1.1.2), which finds the best local alignment path
in a search matrix where appropriate profile values are placed into a
comparison matrix cell corresponding to each residue in the database sequence
and each alignment (or profile) position. Each match between a databank
residue and a profile position receives the profile propensity for the databank
residue type as a score. For each database sequence, the alignment score
corresponding to the best local alignment quantifies the degree of similarity of
this sequence with the probe profile. The scores are then corrected for sequence
length, represented in the form of Z-scores, and ranked to create the final list
of databank search hits. Top-scoring sequences with scores above some
threshold level are then likely to be related to the multiply aligned sequences
used to build the profile. In addition to aligning a single sequence to a profile,
it is also possible to align two profiles. In this case two matched profile positions
receive a score by summing over the 20 residue types the products of the
corresponding propensities from the two profiles.

Another sequence searching technique based on flexible protein sequence
patterns was introduced by Barton and Sternberg [158]. Significant residue
positions are selected on the basis of sequence conservation, functional
importance, or the presence of secondary structure. These residues, constituting
the pattern, can be separated by gaps that serve to exclude variable regions
from the analysis. For each gap, minimal and maximal possible lengths are
derived from the initial sequence set. A lookup table similar to a profile is then
calculated, which results in scores to compare each element of the pattern
with each residue type. This feature distinguishes the method from regular
expression pattern matching algorithms based on positional match sets, which
essentially use a binary exchange matrix. The flexible pattern is subsequently
compared to every databank sequence using a modified Needleman—Wunsch
technique [13] for alignment (see Sec. 1.1.2). Because only partial information
contained in the protein family is used, which represents the most essential
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structural features, the method has high discriminating power. It is especially
recommended for sequence alignments in which crucial elements are separated
by long noisy stretches.

A technique with somewhat inverted logic compared to that of the profile-
related methods was described by Altschul and Lipman [127]. Rather than
searching individual databank sequences with the highest degree of similarity
to a target set of sequences, their algorithm uses a single query sequence and
attempts to find consistent sets of similar sequences in the databank. Similarity
to the query sequence is determined by means of alignment of ungapped
sequence segments with high individual scores.

1.5.3. Sequence Weighting

Altschul et al. [41] and Vingron and Argos [48] proposed sequence weighting
as a means to deal with the fact that the complete set of natural sequences
belonging to a certain protein family or superfamily is normally unequally
represented in a given set of input sequences. This will lead to an amplification
of the overrepresented sequences in profile searching, which, if such newly
found sequences are added to the profile for further searching, will cause a
more unbalanced representation. To address this problem, in sequence
weighting a weight is assigned for each sequence before any average value is
calculated. This means that if the alignment contains sequences that are
redundant according to a preconceived criterion, then information derived
from those sequences will be downweighted in the profile. The Altschul et al.
weighting scheme is integrated in the multiple alignment method MSA of
Lipman et al. [40] and derives the sequence weights from a rooted tree. The
idea of this scheme is to weight the influence of each external node on the root
distribution of the tree. The Vingron—Argos method simply weights each
sequence on the basis of its average distance from all the other sequences and
therefore does not need any tree-based information. Interestingly, the Altschul
et al. method upweights sequences close to the root of the phylogenetic tree,
because those would contribute more information to the central point of
interest, whereas the Vingron—Argos method (as well as the other published
techniques) upweight distant sequences. Sibbald and Argos [159] also
upweighted outlier sequences by employing Voronoi cell volumes to assign
individual weights to a set of sequences. Their technique does not rely on a
phylogenetic tree but is dependent on sampling the sequence space in order to
obtain the weights.

Thompson et al. [63] derived the sequence weights of sequences in a profile
directly from the branch lengths of a phylogenetic tree constructed with the
neighbor-joining technique of Saitou and Nei [55]. They used these weights
during progressive alignment in the construction of profiles representing
prealigned sequence groups. Independently, Lüthy et al. [160] mod-ified the

Copyright © 2004 by Marcel Dekker



Heringa138

profile search technique by employing Voronoi-based weighting [159]. Both
techniques make use of the BLOSUM62 matrix, constructed from ungapped
alignment blocks [90]. In line with using the BLOSUM62 matrix (derived
from blocks of ungapped alignments), Thompson et al. exclude from analysis
all alignment positions with a percentage of gaps higher than a certain specified
threshold. Such regions would be expected to consitute loop regions in the
associated protein structures showing less consistent amino acid conservation
patterns.

Although in principle it is a good idea to upweight more distant sequences
because they should carry more information for each alignment position,
this is warranted only if the alignment is evaluated for correctness. When
sequence weighting is used in progressive multiple alignment, the increased
chance of mistakes in aligning distant sequences often leads to the
amplification of misinformation. To quantify this effect, Vogt et al. [97]
compared local and global alignments of pairwise sequences with a databank
of structure-based alignments [98] and included a large set of substitution
matrices with optimized gap penalties. The highest-scoring combination of
global alignment with the Gonnet residue exchange matrix [89], with added
constant to make all values nonnegative, on average showed 15% incorrect
residue matching when sequences with 30% residue identity were aligned;
this error rate quickly increased to 45% incorrect matches at 20% residue
identity of the aligned sequences and to 73% error at 15% sequence identity.
These statistics clearly show the risk of upweighting the importance of more
distant sequence alignments, particularly given that incorrect alignments
resulting from the multiple minima problem typically yield a low score, so
that the sequences involved would appear to be more distant than they
actually are.

In addition to global sequence weighting, weighting of individual alignment
positions was also proposed. The deletion of gapped alignment positions in
the aforementioned techniques of Barton and Sternberg [158] and Thompson
et al. [63] (see preceding section) is a first approach to positional sequence
weighting. Sunyaev et al. [161,162] developed a weighting scenario reminiscent
to phylogenetic parsimony methods. They weighted the amino acid likelihoods
at each alignment position according to the probability that identical amino
acids occur in more than one sequence at the alignment position. The idea is
that if more alignment positions show identical conservation for a given subset
of sequences (not necessarily the same conserved amino acid type over the
alignment positions involved), the occurrence of the amino acids at those
positions becomes more expected, which is corrected for by appropriately
lowering the weight for the considered position. This approach leads to
position-specific sequence weights that are calculated in the absence of
phylogenetic trees and can be implemented in the position-specific probabilities
for each type of amino acid.
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Other avenues to deal with the underrepresentation of amino acids at
alignment positions include pseudo-count approaches [163–166], all
effectively extrapolating the numbers of amino acids at each alignment
position based on amino acid exchange probabilities. Henikoff and Henikoff
[167] proposed an embedment strategy to add extra information from a
multiple alignment to local regions within a representative sequence. They
represented reliably aligned regions by a position-specific scoring matrix
(PSSM), while single sequence information was retained for uncertain
alignment regions. The approach is adopted in the popular PSI-BLAST search
engine [168]. Following Henikoff and Henikoff [167], Brocchieri and Karlin
[74] went so far as to edit individual sequences by replacing amino acids by
those that are preponderant at a corresponding position in a multiple
alignment. Although aimed at achieving better recognition of crucial
alignment regions during alignment, the latter approach can lead to error
progression in the case of misalignment.

1.5.4. HMM-Based Profile Searching

Baldi et al. [34] and Krogh et al. [35] used hidden Markov models (HMMs) to
represent an aligned block of sequences, thus extending the definition of profiles
with position specific amino acid exchange values. HMMs address the problems
described above for the classical profile approach of Gribskov et al. [59]. A
typical profile HMM consists of a chain of match, insert, and delete nodes,
with all transitions between nodes and all character costs in the insert and
match nodes trained to specific probabilities. A query sequence can then be
aligned to the model, usually by using a standard dynamic programming
algorithm so that the sum of the probabilities is maximized. For a
comprehensive account on HMM methods in sequence analysis, see Durbin
et al. [169]. The difference between the methods of Baldi et al. [34] and Krogh
et al. [35] lies in the estimation of the probability parameters, which in the
Baldi et al. method is done using gradient descent, whereas Krogh et al. used
expectation maximization (EM) techniques. Extensive libraries of HMMs for
protein domains are deposited in the PFAM database [121] and PROSITE
profiles database.

Profile searching using HMMs is currently one of the most sensitive search
techniques. In contrast to HMMs applied to multiple sequence alignment,
estimating the parameters for an HMM of an established multiple alignment
is normally successful. The chance to end up in a local trap in parameter
space is limited compared to that in HMM-based multiple sequence
alignment.

Bucher et al. [33] unified the profile, motif, and HMM approaches through
extension of the profile definition with regular expression-like patterns, weight
matrices, and HMMs. They proved that their generalized profiles are equivalent
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to certain types of HMMs. The generalized profiles have been used to extend
the PROSITE protein motif database [33], which in its basic form is a library
of regular expressions. The profile syntax enables the emulation of most
common motif search techniques, such as direct searching for PROSITE
patterns, searching for patterns without gaps [138], searching using the profile
definition of Gribskov et al. [59], flexible pattern searches [158], searching
using the Viterbi algorithm for HMMs [35], and domain and fragment searches
using the HMMER method [170]. Owing to advances in computational
performance, procedures for sequence database homology searching have been
developed, such as the HMM tools SAM-T98 [171] and HMMER2 [172]

1.6. Sequence Databank Searching

Sec. 1.1.2) were computationally too expensive for the comparison of a large
number of protein sequences, such as those contained in the PIR or Swiss-Prot
databases. The total number of annotated sequences deposited in these
databases is presently greater than 80,000. However, for any biologist who
has a new protein sequence of unknown functionality, the comparison with
all known and annotated sequences is paramount. Therefore, fast routines
have been devised that enable database searches on even small computers
with only a small loss of sensitivity compared to searches using full dynamic
programming. With the recent advent of parallel multiprocessor computers at
central sites, researchers can routinely perform multiple sequence searches
over complete sequence databases.

1.6.1. FASTA

Until recently, the most widely used quick routine was FASTA [29]. The
FASTA program compares a given query sequence with a library of sequences
and calculates for each pair the highest scoring local alignment. The speed
of the algorithm is obtained by delaying application of the dynamic
programming technique to the moment where the most similar segments are
already identified by faster and less sensitive techniques. To accomplish this,
the FASTA routine operates in four steps. The first step searches for identical
words of a user-specified length occurring in the query sequence and the
target sequence(s). The technique is based on that of Wilbur and Lipman
[49,61] and involves searching for identical words (k-tuples) of a certain
size within a specified bandwidth along search matrix diagonals. For not-
too-distant sequences (>35% residue identity), little sensitivity is lost while
speed is greatly increased. The search is performed by hashing techniques,
where a lookup table is constructed for all words in the query sequence,
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which is then used to compare all words encountered in the target sequence(s).
Generally, for proteins a word length of two residues is sufficient (ktup=2).
Searching with higher ktup values increases the speed but also the risk that
similar regions will be missed. For each target sequence the 10 regions with
the highest density of ungapped common words are determined. In the second
step, these 10 regions are rescored using the Dayhoff PAM250 residue
exchange matrix [14], and the best scoring region of the 10 is reported under
init1 in the FASTA output. In the third step, regions scoring higher than a
threshold value and sufficiently near each other in the sequence are joined,
now allowing gaps. The highest score of these new fragments can be found
under initn in the FASTA output. The fourth and final step performs a full
dynamic programming alignment [172] over the final region, which is
widened by 32 residues at either side, and the score is written under opt in
the FASTA output.

1.6.2. BLAST

Another speed-optimized and widely used algorithm that maintains significant
sensitivity is the program BLAST (Basic Local Alignment Search Tool) [96],
which is based on an exhaustive statistical analysis of ungapped alignments
[173]. Basically, BLAST generates a list of all tripeptides from a query sequence
and for each of those derives a table of tripeptides that are deemed similar; the
number of similar tripeptides is only a fraction of the total number possible.
The BLAST program quickly scans a database of protein sequences for regions
showing high similarity by using the tables of similar peptides. The BLAST
algorithm also provides a rigorous statistical framework, based on the extreme
value theorem, to estimate the statistical significance of tentative homologs.
The E value given for each sequence found indicates the expected number of
sequences with an alignment score equal to or greater than that of the sequence
considered. The original BLAST program could detect only local alignments
without gaps and therefore might miss some significant similarities. A more
recent version of the BLAST algorithm is able to insert gaps in the alignments,
which leads to greater sensitivity [168]. The original statistical framework for
ungapped alignments is used to assess the significance of the gapped alignments,
although no mathematical proof for this is available yet [174]. However,
computer simulations have indicated that the theory probably applies to gapped
alignments as well. The most recent development for the BLAST engine is
position-specific iterated BLAST (PSI-BLAST) [168], which exploits the increase
in sensitivity offered by multiple alignments and derived profiles in an iterative
fashion. The program initially operates on a single query sequence by
performing a gapped BLAST search. Then it takes the significant local
alignments found, constructs a multiple alignment, and abstracts a position-
specific scoring matrix (PSSM) from this alignment. This is a type of profile
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(see Sec. 1.5) that is used to rescan the database in a second round aimed at
finding more sequences. The scenario is iterated until the user decides to stop
or the search has converged, i.e., no more significantly scoring sequences can
be found in subsequent iterations. An example of a PSI-BLAST run is provided
in Figure 9. The web server for PSI-BLAST, located at http://
www.ncbi.nlm.nih.gov/BLAST, enables the user to specify at each iteration
round which sequences should be included in the profile; by default, all
sequences are included that score beyond a user-set E value (Figs. 9b and 9d).
However, the user needs to activate every subsequent iteration. An alternative

FIGURE 9 An example of a PSI-BLAST database query and output when the PSI-
BLAST web server is used. As a query sequence, the primary structure of the
flavodoxin with Swiss-Prot code FLAV_ENTAG was taken. (a) Stacking of the 69
significantly scoring local alignments onto the query sequence. It can be seen that
some of the local alignments correspond only with a short query sequence stretch.
(b) Listing of the top-scoring sequences with associated random probabllities (E
scores). (c) Local alignment of the bottom five sequences in (b). (d) Lowest
significantly scoring sequences after three complete PSI_BLAST iterations
(convergence of the search has not yet occurred). Newly found sequences after
each iteration are marked.

Copyright © 2004 by Marcel Dekker

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov


Protein Sequence Analysis 143

to the PSI-BLAST web server is a stand-alone version of the program,
downloadable from the aforementioned WWW address, that allows the user
to specify beforehand the desired number of iterations. Although a consistent
and very powerful tool, a limitation of the PSI-BLAST engine is that the statistics
do not take compositional biases into account. Biased amino acid compositions
might well confuse the algorithm and lead to a buildup of error in subsequent
iterations. This is significant for cross-genome comparison, because it is
becoming increasingly clear from genome sequencing efforts that large overall
compositional differences exist between different genomes. Another matter of
debate is the way in which the PSSM is generated, because this is essentially a
simple stacking of the found local regions onto the query sequence used as a
template (N-to-1 alignment), without keeping track of cross-similarities
between the added regions. Because there are also no safeguards to control
the number of sequences added to the PSSM at each iterative step, where all
sequences having an expectation value (or E-value) lower than a preset

FIGURE 9 Continued
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threshold are selected, it is clear that erroneous alignments are likely to drive
the engine to include false positives. However, Jones [175] found that PSSMs
made by PSI-BLAST are well suited to serve as a basis for accurate secondary

1.6.3. Fast Smith—Waterman Local Alignment Searches

Collins and Coulson [176] devised a computer protocol to perform database
searches based on an implementation of the full Smith and Waterman [25]

FIGURE 9 Continued
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protocol [176] on massively parallel computers with SIMD (single
instruction multiple data) type processors, named the BLITZ server.
Following Collins and Coulsen [176], a number of implementations that
enabled fast Smith—Waterman-based local searches have arisen. One of
the central computer sites where such programs are running is the European
Bioinformatics Institute (EBI) outstation of the European Molecular Biology

FIGURE 9 Continued
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Laboratory, where they are integrated in a web server. Available are

bic_s) and a fast heuristic implementation of the true Smith—Waterman
algorithm (Scanps) of Barton [177], both allowing users to perform database
queries via the worldwide web. The output of a query is a list of top-
scoring local alignments (one per protein) where statistical significance
measures are also given based on the mean value and standard deviation
of the distribution of scores over the entire database [176]. The speed of
the techniques allows several PAM exchange weight matrices (based on
different evolutionary distances; see Sec. 1.3) to be used in searching the
databanks with the same query sequence. A widely used implementation
of the full Smith—Waterman algorithm is the SSEARCH method [29], which
comes with the same rigid statistical procedures as those employed in the
PSI-BLAST engine.

1.6.4. HMM-Based Database Search Engines

Owing to advances in computational performance, procedures for sequence
database homology searching have been developed that are based on more
computationally intensive formalisms such as the HMM tools SAM-T98 [171]

authors as being superior to FASTA [29], PSI-BLAST [168], and BLAST [96],
other assessments are less conclusive (e.g., Shi et al. [178]). The SAM-T98
method incorporates reversed-model score adjustment to correct for length,
composition bias, and other effects related to secondary structure,
amphipathicity, and the like.

2. PREDICTING SECONDARY STRUCTURAL FEATURES
FROM PROTEIN SEQUENCES

Protein structure is hierarchical in its internal organization. At higher levels
within this hierarchy, especially for structural domains or higher order
structures, the connectivity of the polypeptide backbone between substructures
is flexibly maintained. This means, for example, that a protein can form a
stable structure irrespective of the sequential arrangement of its constituent
domains [23].

For protein secondary structure, however, the elements are crucially context-
dependent; i.e., they rely critically on other secondary structure elements in
their environment. In general, about 50% of the amino acids within known
protein structures fold into α-helices or ß-strands, so that roughly half of the
protein structures are regularly shaped. The reason for the regularity observed
for helices and strands is the inherent polarity of the protein backbone, which
contributes a polar nitrogen and oxygen atom for each amino acid. To satisfy
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energy constraints, main-chain regions buried in the internal protein core need
to form hydrogen bonds between those polar atoms. The α-helix and ß-strand
conformations are optimal, because each main-chain nitrogen atom within
these conformations can in principle associate with an oxygen partner (and
vice versa). In order to satisfy the hydrogen-bonding constraints, ß-strands
need to interact with other ß-strands, which they can do in a parallel or
antiparallel fashion, to form a ß-pleated sheet. ß-Strands thus rely on crucial
long-range interactions between residues remote in sequence. They are therefore
more contextdependent than α-helices, which are more able to fold “on their
own.” The fact that prediction methods typically have the greatest difficulty
in delineating ß-strands correctly is believed to be due to this context
dependency.

2.1. Properties of Secondary Structure

In addition to differing context dependencies, there are also general
compositional differences between helix, strand, and coil conformations, and
this is the signal used in many of the prediction methods for single sequences.
Methods that rely on multiple alignments can also exploit the fact that the
amino acid exchange patterns are different for the three secondary structure
states [99]. A number of more specific observations for secondary structures,
as are found in the large collection of protein structures deposited in the Protein
Data Bank (PDB) [179], can be used to recognize secondary structures. For
each of the secondary structures α-helix, ß-strand, and coil (loop) these can
be summarized as follows.

The number of residues per turn is 3.6 in the ideal case, and helices are
often positioned to shield a buried protein core, so they often have one phase
contacting hydrophobic amino acids while the other phase interacts with
the solvent. Such helices are therefore amphipathic [180] and have a
hydrophobic phase and a hydrophilic phase. They thus show a periodicity
of three to four residues in hydrophobicity along the associated sequence

Proline residues are not expected to occur in middle segments, because
they disrupt the α-helical turn. However, they are seen in the first two positions
of α-helices.

ß-Strands fold into so-called ß-pleated sheets, which have two solvent-
exposed strands at either edge. The hydrophobic nature of such edge strands
is different from that of buried strands within a ß-sheet. The side-chains along
a ß-strand protrude in an alternating direction, and strands at the edge of ß-
sheets typically show an alternating pattern of hydrophobic-hydrophilic
residues whereas buried strands tend to contain merely hydrophobic residues
(Fig. 10). Because the ß-strand is the most extended conformation (i.e.,
consecutive Cα atoms are farthest apart), it takes relatively few residues to
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cross the protein core with a strand. Therefore, the number of residues in a ß-
strand is usually limited and can be as little as two or three amino acids,
whereas helices shielding such strands from solvent comprise more residues.
ß-Strands can be disrupted by single residues that induce a kink in the extended
conformation of the main chain. Such so-called ß-bulges often comprise
relatively hydrophobic residues.

Multiple alignments of protein sequences often display gapped and/or highly
variable regions, which would be expected to correspond to loop regions rather
than the two other basic secondary structures. Loop regions contain a high
proportion of small polar residues such as alanine, glycine, serine, and
threonine. Glycine residues are often seen in loop regions because of their
inherent flexibility. Proline residues are often seen in loops as well. They are
generally not observed in helices (but see above) and strands because they
kink the main chain, although they can occur in the N-terminal two positions
of α-helices as mentioned above.

2.2. Assessing Prediction Accuracy

The most widely used way to assess the quality of an alignment is by calculating
the overall per residue three-state accuracy, called the Q3:

(11)

where N is the total number of residues predicted and Ps is the number of
correctly predicted residues in state S(S=H, E, or C). Some researchers use the

FIGURE 10 Hydrophobicity patterns in α-helices and ß-strands. Different patterns
are observed for edge and buried strands and helices.
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so-called Matthews correlation coefficient, because it more stringently estimates
the prediction for each structural state:

(12)

where TPS and TNS are, respectively, the numbers of positive and negative
cases correctly predicted for the structural state S, and FPS are and FNS are
the numbers of false positives and negatives, respectively. Matthews
correlations can be used to measure over- or underprediction for any of the
structural states. Because Q3 is the most intuitive measure and leads to a
single percentage, it is most frequently used in the literature to report
prediction accuracy.

An important issue in assessing performance is the notion of sustained
accuracy. Knowledge about the average accuracy of a given method over a
set of predicted proteins is not meaningful if the variance of those
predictions is not known. It is important also to know what worst-case
predictions can be expected from a method even if the average accuracy is
quite high. A standard scenario to assess sustained accuracy of prediction
is the jackknife test carried out over a large set of test proteins. It involves
the following four steps: (1) taking one protein out of the complete set of
N proteins, (2) training the method on the remaining N-1 proteins (the
training set), (3) predicting the secondary structure for the protein taken
out, and (4) repeating steps 1–3 for all N proteins and calculating the
average accuracy and variance. This scenario provides insight into the
influence of different training sets on the sustained accuracy of single-
protein prediction. It also ensures that no information about a query
sequence or multiple alignment is used in training the method. It is possible,
in principle, to test the method by averaging the predictions over all
combinations of x proteins (1<x<N), each time using the method trained
on the remaining N-x proteins being predicted. However, as the number of
combinations grows rapidly with x, the training phase of most methods is
too slow for extensive testing using this mode. It can, however, also be
used to save computation time if the database is split evenly into test groups
of sequences containing multiple sequences (e.g., sevenfold cross-validation
in Ref. 79), because each sequence within a test group is associated with a
single training set, thus saving training overhead. Nonetheless, unnoticed
but systematic tuning of the method to the database might still occur, so
that the most rigorous test of any method is the prediction of test cases
that have no homologs in the database and were not seen during the
development of the method.

Copyright © 2004 by Marcel Dekker



Heringa150

Notwithstanding the importance of the measures for accuracy listed
above, in practice the success of a secondary structure prediction depends
on how the information is being used. An example is fold recognition,
where accurate delineation of the edges of secondary structural elements is
not essential, but missing a structure that is crucial for the basic topology
is costly. However, both the Q3 and Matthews correlation coefficients
evaluate equally, for example, missing two residues at either side of a seven-
amino-acid strand or missing a complete topologically essential strand of
four residues.

The accuracy of prediction methods is normally assessed by using known
tertiary structures from the Protein Data Bank (PDB) [179] as a benchmark,
with secondary structural elements assigned using the DSSP method of Kabsch
and Sander [181]. A number of evaluation studies have been carried out
including DSSP and other secondary structure assignment methods. These
showed that assignment methods can yield significantly different assignments,
such that the agreement of the methods can be as low as 65% [182–184].
Further, in structurally aligned sets of homologous proteins with known tertiary
structure, the corresponding secondary structural elements can vary in length
and/or show shifts of one to a few residues. A realistic maximum prediction
accuracy per residue has therefore been estimated to be in the range of 80–
100% [185]. Many researchers have suggested that prediction evaluation
should be based on the overlap of predicted and observed segments rather
than just counting the individual positions [186–191].

The most widely used benchmark assignments for secondary structures are
those produced by the DSSP method [181]. The assignments are classified
into eight different states: H, α-helix; G, 3/10 helix; I, π-helix; E, ß-strand, B,
ß-bulge; T, hydrogen-bonded turn; S, bend; ‘ ‘, coil. For the evaluation of
three-state predictions, the eight states must be grouped to yield the three
states helix, strand, and coil. Differences among prediction evaluations in the
literature concern the DSSP states grouped as helix (e.g., H, G, and I, or only
H taken as helix) or strand (E and B, or only E taken as strand). Different
grouping schemes can lead to differences as high as 3% in the apparent accuracy
attained by a considered method [192].

A more recent secondary structure assignment program that combines many
of the features of earlier methods, such as considering hydrogen bonding
patterns and stereochemical characteristics, is the knowledge-based method
STRIDE [193]. This method generally yields assignments in close agreement
with those made by crystallographic experts.

The program XTLSSTR [194] employs pseudovisual characteristics for
assigning secondary structure elements to mimic what an expert would do by
eye. The algorithm combines two angles and three distances, which should
fall within specified ranges for each defined secondary structure symbol. Some
further priority rules lead to the finally assigned secondary structure for each
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sequence position in the case of more than one possible assignment as a result
of partially overlapping ranges for the five parameters. An example of a priority
rule for assigning a ß-strand is that it has a lower priority than an α-helix, 310-
helix, or hydrogen-bonded turn.

Taylor [195] developed a method to optimally dissect a protein structure
into secondary structure elements, following ellipsoid approximation. In this
approach, each stretch of amino acids is modeled as an ellipsoid and a score is
calculated using the ellipsoid length and the ratio of the length of longest axis

then applied to the score matrix of all possible segments to obtain the optimal
segmentation for the structure.

2.3. The Early Prediction Methods

Attempts to predict protein secondary structure emerged more than four
decades ago (e.g., Szent-Györgyi and Cohen [196] and Periti et al. [197]). The
first computer algorithms for secondary structure prediction followed about
15 years later [198–200]. The algorithms of Nagano [198] and Chou and
Fasman [200] were based on statistical information, while Lim’s method [199]
was stereochemically oriented and relied on conserved hydrophobic patterns
in secondary structures such as amphipathicity in helices [180]. Secondary
structure prediction has generally been formulated for three states: helix, strand,
and coil. Although the early and popular GOR method [201,202] used four-
state prediction (with turn as an extra class), recent versions of the program
predict secondary structure using three states [203]. The early methods of
Lim [199] and Chou and Fasman [200] as well as the GOR method [201,202]
will be described in more detail.

Lim [199] developed a set of complicated stereochemical prediction rules
for α-helices and ß-sheets based on their packing as observed in globular
proteins. Apart from being the most successful early method (see below), Lim’s
stereochemical rules have contributed to the understanding of protein folding.
For instance, Lim’s hydrophobicity rules are important for α-helix formation.
They state that terminal hydrophobic pairs are at sequence positions i and
i+1, hydrophobic pairs in middle helical segments are positioned at (i, i+4),
and middle hydrophobic triplets are at (i, i+1, i+4) or (i, i+3, i+4). Nonetheless,
the Lim method never gained widespread popularity because a computer
implementation was not available until recently, with more accurate techniques
now available.

The most popular pioneering method is that of Chou and Fasman [200].
In this method, predictions are based on differences in residue composition
for three states of secondary structure: α-helix, ß-strand, and turn (i.e.,
neither α-helix nor ß-strand). Using a number of crystallographically
determined protein tertiary structures, Chou and Fasman calculated the
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frequency of each amino acid type in four states. The position of turn
residues was included as a fourth state in the frequency calculations because
there are significant differences in residue type occurrences at different
positions within turn sites. The frequencies were normalized to yield amino
acid preferences for each of the structural states. For helix and strand,
effects of neighboring residues in the protein sequence were taken into
account by averaging the preferences over three residues for α-helix
predictions and over two for ß-strands. Secondary structures were then
predicted for each position according to the highest preference values of
the structural states. Extensions were made as long as preferences remained
high enough and certain disruptive residues were not encountered (such as
proline, which breaks an α-helix).

The GOR method quickly became the standard and remained so for about
a decade after its first appearance [201]. Although the first versions GOR I
and II, as mentioned above, predicted four states by discriminating between
coil and turn secondary structures, GOR III [202] and the most recent version,
GOR IV [203], perform the common three-state prediction. Like the Chou-
Fasman method, the GOR method relies on the amino acid frequencies
observed. However, it uses a 17-residue window (i.e., eight residues N-terminal
and eight C-terminal of the central window position) for each of the three
structural states. The amino acid frequencies are exploited using an information
function based on conditional probabilities defined as

(13)

where S is one of the structural states H, E, or C, and R is one of the 20
residue types. The factor P(S|R) denotes the conditional probability of a
secondary structural state for a sequence position given that it is occupied by
residue type R. Rewriting the formula for frequencies gives

(14)

where ƒS,R is the frequency of residue type R in state S, ƒR is the general
frequency of residue type R, and ƒS/N is that of structural state S. Important
in this formula is that the information of a particular residue type in one of
the structural states is based not only on the normalized frequency but also on
the inverse fraction of all residues in that state. The information difference
between the various states defined as I(∆S; R)=I(S; R)-I(!S; R) with !S denoting
all other states (not S). Using Eq. (14), the formula then becomes

(15)
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An important issue is that it is not feasible to sample all possible 17-residue
fragments directly from the PDB, because there are 1720 possibilities.
Subsequent versions of the GOR method over the years have therefore explored
increasingly detailed approximations of this sampling problem, along with
the growth of data available in the PDB:

GOR I and GOR II just treated the 17 positions in the window
independently, so single-position information could be summed over
the 17-residue window.

GOR III refined the earlier scheme by including pair frequencies derived
from 16 pairs between each noncentral residue and the central residue
in the 17-residue window. Because the PDB at the time was not large
enough to provide sufficient data, dummy frequencies were calculated
[202].

The current version, GOR IV [203], uses pairwise information over all
possible paired positions in a window (there are 17×16/2 possibilities),
although relatively small weights are used compared with the GOR I
single-position information, which is also included.

The theoretical principles used in the GOR method are statistically sound and
no ad hoc rules or artificial variables are invoked, which makes it one of the
most elegant methods with a high accuracy given its single-sequences prediction.
As with many other methods (see below), however, a postprocessing step was
introduced for the GOR IV method to refine the predictions: Helices are
required to be at least four residues in length, and strands should consist of
two or more residues. If a shorter helix or strand fragment is initially predicted,
the method assesses the probabilities of extending the fragment to the minimum
associated length or deleting it (i.e., changing it to coil).

The Chou—Fasman, GOR III, and Lim methods were assessed early on and
showed accuracies of 50%, 53%, and 56%, respectively [204]. Version IV of
the GOR method, however, is reported to raise the single-sequence prediction
accuracy to 64.4% [203], as assessed through jackknife testing over a database
of 267 proteins with known structure. These accuracies should be compared
with random predictions, which would yield about 40% correctness given the
observed distribution of the three states in globular proteins (with roughly 30%
helix, 20% strand and 50% coil). Although significantly higher than random,
these single-sequence prediction accuracies are generally not sufficient to allow
the successful prediction of protein topology.

2.4. Modern Methods

The early Chou—Fasman and GOR prediction methods exploit general
compositional biases exhibited by the three types of secondary structures and
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predict the secondary structure of single sequences. Zvelebil et al. [205] were
the first to exploit multiple alignments in automatic prediction. They extended
the GOR method and reported that predictions were improved by 9% compared
to single sequence prediction. Levin et al. [206] quantified the effect and observed
an 8% increase in accuracy when multiple alignments of homologous sequences
(with sequence identities of =25%) were used. As a result, current state-of-the-
art methods all use input information from multiple sequence alignments. Early
on, sequence pattern matching techniques have also been attempted
[103,187,207–209], albeit not with a dramatically increased success rate. More
recently, however, researchers have used novel computational concepts to
optimize the implementation of the observed patterns in mapping the primary
onto the secondary structure, with the aim of enhancing prediction. These
concepts include neural network applications [79,175,210], nearest-neighbor
methods [77,78,211, 212], linear discriminant analysis [213], and inductive
logic programming (ILP) [214]. The www addresses of some popular secondary
structure prediction servers are given in Table 1

TABLE 1 Web Sites of Various Secondary Structure Prediction Methods and Related
Services

aMethod can also be run using the Jpred server.
bMirror websites for PHD can be found here as well.
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2.4.1. Neural Network Methods

Neural networks are organized as interconnected layers of input and output
units and can also contain intermediate (or “hidden”) unit layers (for a review,

other connected units and determines its output signal based on the weights
of the input signals. A neural network can be regarded as a black box that is
trained to optimize the grouping of a set of input patterns into a set of output
patterns by adjusting the weights of the internal connections. Therefore, neural
nets are learning systems based upon complex nonlinear statistics.

The PHD method (Profile network from Heidelberg) [79] combines the
added information from multiple sequence information with the optimization
potential of the neural network formalism. PHD makes use of three consecutive
complete neural networks. The first network produces the initial raw three-
state prediction for each alignment position. It takes as input the fractions of
the amino acids in a 13-residue window that is slid along the sequence. For
each window position, the secondary structure of the central residue in the
window is predicted. The output of the first network for each alignment
position comprises three probabilities for the three states (helix, strand, and
coil).

A second network refines the raw predictions of the first-level network.
The three-state probabilities are processed now using a 17-residue window.
The output of the second network comprises for each alignment position the
three adjusted state probabilities. This refinement step in the second network
for the raw predictions of the first network is aimed at correcting infeasible
predictions and would, for example, change (EEEHHEE) into (EEEEEEE).

The first two networks perform the basic prediction of the secondary
structure associated with a query multiple alignment. However, because neural
nets can be trained in various ways, PHD employs a number of separately
trained consecutive network pairs (networks 1 and 2) and feeds the outputs
(refined three-state probabilities) of all those nets into a third network for a
so-called jury decision.

The predictions made by the jury network undergo a final filtering step to
delete predicted helices of one or two residues and change those into coils.
The PHD method was trained [79] on a nonredundant set of 130 alignments
from the HSSP database [216], each alignment containing one template
sequence with a known structure and aligned homologous sequences. The
PHD method showed an overall prediction accuracy of 70.8% in a jackknife
test over 126 alignments (four of 130 alignments were transmembrane protein
families), which for computational reasons were divided in seven groups for
jackknife cross-validation. Although this is not the highest accuracy reported,
the PHD method shows sustained performance and is therefore likely to come
up with useful information in a wide variety of test cases. The PHD method is
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available via web servers at various sites. If given a single sequence for
prediction, the server performs a BLAST search to find a set of homologous
sequences and aligns those using the MAXHOM alignment program [216].
The resulting alignment is then fed into the actual PHD neural net algorithm.
It is recommended that one produce an alignment using alternative multiple
alignment methods as well.

An algorithm that follows the principles of PHD rather closely is the
Pred2ary method [210], which was assessed with an accuracy of 74.8% and
balanced prediction over the three structural states. The method employs a
second neural net to filter the raw predictions of the first net and a third net
for a jury decision, as does the PHD method [79]. A recent extended version,
which combines the outputs of a massive number of 120 networks
individually trained, is claimed to predict with an accuracy (Q3) of
75.9%±7.9%. This is achieved by converting all combinations of network
output weights for helix and strand, using a fine-grained two-dimensional
matrix, into a priori probabilities of their correct prediction of the true
structural state. These probabilities are then used for a final state prediction
corresponding to the highest of the a priori probabilities for each of the
three states.

A recent method that incorporates multiple sequence information and
neural nets is PSIPRED [175]. This method exploits position-specific scoring
matrices as generated by the PSI-BLAST algorithm [168] and feeds them to
a two-layered neural network. Jones evaluated the method as at least 76.5%
accurate. This top accuracy was confirmed by blind tests at the CASP3
meeting, where assessments of the state-of-the-art prediction methods were
made. Moreover, the method is fast and can be easily ported to any common
computer system.

2.4.2. k-Nearest-Neighbor Methods

As with neural network methods, the application of k-nearest-neighbor
methods requires an initial training phase in which a pool of so-called exemplars
is established. This pool consists of sequence fragments of a certain length
derived from a database of known structures, so that the central residue of
such fragments (exemplars) can be assigned the true secondary structural state
as a label. Then a window of the same length is slid over the query sequence,
and for each window the k most similar fragments are determined using a
certain similarity criterion, after which the distribution of the secondary
structure labels is used to derive propensities for the three states. In the methods
covered below, k is in the range 25–100.

In the method of Yi and Lander [211], a database of 110 proteins with
known tertiary structure was used to derive a large collection of 19-residue
fragments (exemplars), of which the environmental states were noted. For
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each 19-residue window slid over the query protein, 50 nearest-neighbor
exemplars were identified using the amino acid environmental scoring system
of Bowie et al. [217], which includes as parameters the secondary structure
state, accessible surface area, and polarity and scores the likelihood of a query
residue type being in a particular state (or range) over these three environmental
parameters. As a score, the average was taken of 19 residues of a query window
matched with the 19-position exemplar considered. For each exemplar, a cutoff
score was determined that should be met by a query fragment compared with
it to count the exemplar as a neighbor. The cutoff score can be viewed as a
reliability check for the predictive value of the exemplars. The 50 thus obtained
nearest neighbors for each query window showed a distribution of the
associated secondary structure labels, from which probability estimates for
the three structural states were derived. Yi and Lander explored various scoring
systems and found that the best protocol included 15 environmental classes
(three secondary structures combined with five different accessibility/ polarity
classes) in conjunction with an amino acid exchange score taken from the
Gonnet et al. [89] amino acid exchange matrix (see Sec. 1.3). This scenario
resulted in a prediction accuracy of 67.1%. Using a neural network for a jury
decision over six different scoring systems led to the final accuracy of 68%, as
assessed through jackknife testing.

The NNSSP (Nearest Neighbor Secondary Structure Prediction) [212]
method uses the nearest-neighbor approach of Yi and Lander [211] with the
following differences:

1. N- and C-terminal positions of helices and strands and ß-turns are
explicitly taken as additional secondary structure types.

2. When predicting, the database of exemplars (see above) is restricted
to sequences similar to the query sequence. This reduces
computation and leads to more closely biologically related nearest
neighbors.

3. Predictions are made for multiple alignments.
4. Alignment regions with insertions/deletions are explicitly taken into

account.

Salamov and Solovyev [212] explored various window lengths and finally
chose predictors combining window sizes of 11, 17, or 23; nearest-neighbor
numbers of 50 or 100; and balanced or nonbalanced training (i.e., 3×2×2=12
predictors). A simple majority rule over the 12 predictors increased the accuracy
by 0.9%. A few simple filters were effected to refine the predictions thus
obtained:

1. Helices consisting of one or two residues are deleted (changed to coil),
but (EHE) becomes (EEE).
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2. Strands of length 1 or 2 are deleted, but (HEEH) becomes (HHHH).
3. Helices of length 4 or less are deleted. The latter rule is applied after

a full cycle of rules (1) and (2).

The overall accuracy of the method is 72.2% [212], which results from a
jackknife test over the database of 126 proteins by Rost and Sander [79].

The PREDATOR method of Frishman and Argos [77,78] owes its accuracy
mostly to the incorporation of long-range interactions for ß-strand prediction
and attains 68% prediction accuracy for single sequences. Using a k-nearest-
neighbor approach (with k=25 and 13-residue windows), propensities for
the three general states (PH, PE, and PC) are determined for each residue.
Two more propensities for ß-strands are determined by assessing the
likelihood for all pairwise five-residue fragments (separated by more than
six amino acids) to form a parallel or antiparallel ß-bridge. The two
propensities, one for antiparallel and another for parallel bridges, are based
on summing residue hydrogen bonding propensities obtained from known
structures. For each residue, the parallel and antiparallel ß-strand propensities
(PPar and PAntipar) correspond to the maximum scoring window pair with the
considered residue at the N-terminal position in one of the windows. Pairwise
hydrogen bonding potentials are also determined for α-helical residues at a
sequence separation of four residues. The sum for each residue pair is
calculated over a seven-residue window, which gives an extra helix propensity
for the residue N-terminal in the window (PHelix). The last additional
propensity for residues in the ß-turn conformation (PTurn) is obtained by
summing single-residue propensities in classic ß-turn positions 1–4 [218]
using a four-residue window. For each of the seven independent propensities
thus obtained, threshold values (T) are calculated and used in the following
five rules applied consecutively to arrive at a three-state prediction for each
residue:

1. If (PPar>TPar or PAntipar>TAntipar) and PHelix<THelix, then predict ß-strand;
otherwise, if PHelix>THelix, then predict α-helix, otherwise predict
coil.

2. If PC>TC, then predict coil.
3. If PE>TE, then predict ß-strand.
4. If PH>TH, then predict α-helix.
5. If PTurn>TTurn, then predict coil.

Apart from the novel scheme to predict strands using long-range pairwise
strand potentials, the method can also use information from multiple
sequences. However, PREDATOR does not use a multiple alignment but
compares the sequences through pairwise local alignments [25]. For a single
base sequence within a set of sequences, a set of highest scoring local
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alignments is compiled through matching the base sequence with each of
the other sequences. A weight is then calculated for each matched local
fragment, based on the fragment’s alignment score and length. Using these
weights, a final propensity is calculated for each of the seven states by
calculating the weighted sum over all included local fragments (stacked as

sequence). The resulting seven propensities are then subjected to the above
five rules to yield the final predicted state. The accuracy of the PREDATOR
method is 74.8% [78], as assessed using jackknife testing over the RS protein
set. As for the Pred2ary method (see above) with identical accuracy, this Q3

is the second best reported in the literature [after PSIPRED with 76.5%
accuracy (see above)].

2.4.3. Discriminant Analysis

The DSC method [213] combines the compositional propensities from multiple
alignments with empirical rules important for secondary structure prediction

rules and concepts are used:

N-terminal and C-terminal sequence fragments are normally coil.
Periodicity in positions of hydrophobic residues.
Alignment positions comprising gaps are indicative for coil regions.
Periodicity in positions of conserved residues.
Autocorrelation.
Residue ratios in the alignment.
Feedback of predicted secondary structure information.
Simple filtering.

These concepts are applied in five steps:

1. The GOR method is used on each of the aligned sequences, and the
average GOR score for each of the three states is computed for each
alignment position.

2. For each position in the query multiple alignment, a so-called
attribute vector is compiled, consisting of 10 attributes: three
averaged GOR scores for H, E, and C (step 1); distance to alignment
edge; hydrophobic moment assuming helix; hydrophobic moment
assuming strand; number of insertions; number of deletions;
conservation moment assuming helix; and conservation moment
assuming strand.

3. The positional vectors are doubled in number of attributes by adding
the same 10 attributes in a smoothed fashion (running average).
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4. Seven more attributes are added to the 20 attributes of the preceding
step: weights for predicted α-helix and ß-strand based on the 20-
attribute vectors of step 3, and the fractions of the five most
discriminating residue types, His, Glu, Gln, Asp, and Arg. To convert
the attribute vectors to three-state propensities, a linear discrimination
function is used. This is effective a set of weights for the attributes in
the positional vector corresponding to each of the secondary structure
states. The weights used in the DSC method were obtained by using a
training set of known 3D structures. For each alignment position, the
secondary structure associated with the highest scoring discrimination
function is then taken.

5. A set of 11 simple filter rules are used for a final prediction, such as,
([E/C]CE[H/E/C][H/C])→C. These filter rules have been constructed
automatically using machine learning techniques.

The accuracy (Q3) of DSC, as assessed for each of the five steps based on the
Rost—Sander protein set, comprises 63.5%, 67.8%, 68.3%, 69.4%, and
70.1% (actual DSC method) [213], respectively. The DSC method shows the
best performance for moderately sized proteins in the range of 90-170 residues.
As an additional option, the method can also refine a prediction by the PHD
algorithm (see above) using the above concepts. The average Q3 of this PHD-
DSC combinatorial procedure is 72.4% [213], which is 0.6% higher than the
accuracy of PHD alone.

2.4.4. Inductive Logic Programming

Inductive logic programming (ILP) is designed for learning structural
relationships between objects. Muggleton et al. [214] used the ILP computer
program Golem to automatically derive qualitative rules for residues in the α-
helix conformation and central in a nine-residue window. The rules made use
of the physicochemical amino acid characterizations of Taylor [106] and were
established during iterative training steps over a small set of only 12 known α/
α protein structures. The predictive ability of the knowledge base thus
constructed by the Golem algorithm was assessed using four α/α protein
structures [214]; the knowledge base has limited use because it is able to predict
only helices in all-helical proteins.

2.4.5. Exploring Secondary Structure-Specific Amino Acid Exchanges

The SSPRED method [99] exploits an alternative aspect of the positional
information provided by multiple alignment: It uses the evolutionary
information within a multiple sequence alignment by considering the pairwise
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amino acid exchanges observed for each multiple alignment position. Using
the 3D-ALI database [98] of combined structure and sequence alignments of
distantly homologous proteins, three amino acid exchange matrices are
compiled for helix, strand, and coil, respectively. Each matrix contains
preference values for amino acid exchanges associated with its structural state
as observed in the 3D-ALI database. The matrices are then used to predict the
secondary structure of a query alignment by listing the observed residue
exchanges for each alignment position and summing the corresponding
preference values over each of the three exchange matrices. The observed
residue exchanges are counted only once at each alignment position, which
provides an implicit weighting of the sequence information, avoiding
predominance of related sequences in the input alignment. The secondary
structure associated with the matrix showing the highest sum is then assigned
to the alignment position. Following these raw predictions, three simple
cleaning rules are applied and completed in three successive cycles:

1. If a sequence site is predicted in one structural state and the two
flanking positions in another, the position is changed into that of the
consistent flanking sites, for example, (H[E/C]H) becomes (HHH),
where [E/C] indicates E or C.

2. If in five consecutive positions, two middle sites are of a type other
than the three flanking sites, the middle positions are changed to the
flanking types. For instance, (HH[E/C][E/C]H) or (H[E/C][E/ C]HH)
becomes (HHHHH).

3. Helices predicted less than or equal to 4 and strands less than or
equal to 2 in length are changed into coil predictions.

The accuracy of the method was assessed at 72% using a relatively small test
set of 38 protein families and jackknife testing. This is a high accuracy, given
that the method is fast and conceptually simple.

2.5. Consensus Prediction and Alignment Quality

The JPRED server at the EMBL-European Bioinformatics Institute (Hinxton,
U.K.) [192] conveniently runs state-of-the-art prediction methods such as PHD
[79], PREDATOR [77,78], DSC [213], and NNSSP [212] and also includes
ZPRED [205] and MULPRED (Barton, unpublished). The NNSSP method
has to be activated explicitly, because it is the slowest of the ensemble. The
server accepts a multiple alignment and predicts the secondary structure of
the sequence on top of the alignment; alignment positions showing a gap for
the top sequence are deleted. A single sequence can also be given to the server.
In the latter case, a BLAST search is performed to find homologous sequences,
which are subsequently multiply aligned using ClustalX and then processed
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with the user-provided single sequence on top in the alignment. If a sufficient
number of methods predict an identical secondary structure for a given
alignment position, that structure is taken as the consensus prediction for the
position. If insufficient agreement is reached, the PHD prediction is taken.
This consensus prediction is somewhat less accurate when the NNSSP method
is not invoked or is not completed in the computer time slot allocated to the
user. An example of predictions by the Jpred server for the signal transduction
protein cheY (PDB code 3chy) is given in Figure 11. The Jpred consensus
approach was evaluated at 72.9% correct prediction using a database of 396
domains, which was 1% more accurate than the best individual method (PHD)
among those included [192].

Secondary structure prediction methods depend crucially on the quality
of the input multiple alignment as well as the sequences represented in it.
Heringa demonstrated the importance of multiple alignment using the signal
transduction protein cheY (PDB code 3chy) and 13 distant flavodoxin

low sequence similarities with genuine flavodoxins. The popular multiple
alignment program ClustalX and the method PRALINE [66] were used to

the ClustalX and PRALINE alignments with corresponding secondary
structure predictions made by the Jpred server. The difference in accuracy of
the consensus predictions for these two alignments is dramatic and amounts
to more than 30% (Fig. 11). The Jpred server was also activated with only
the 3chy sequence as input, upon which it constructed a set of putative
homologs through a BLAST search and then aligned the resulting sequences
using the ClustalX method. For the 3chy sequence, 32 related sequences
were thus found and aligned. The accuracy of the consensus secondary
structure prediction by Jpred for this alignment was only 3% higher than

FIGURE 11 Secondary structure prediction for chemotaxis protein cheY (PDB code:
3chy). The top alignment block represents the multiple alignment of the 3chy sequence
with 13 distant flavodoxin sequences by the method PRALINE. The middle block
represents the same sequence set aligned by ClustalX, Under both alignments are
give the alignments by five secondary structure prediction methods. The bottom block
depocts consensus secondary structures deter- mined by Jpred using give prediction
methods, respectively for a set of 32 homologs to 3chy found by the BLAST method
and aligned by ClustalX (cons HOMOLOGS), and those for the PRALINE and ClustalX
alignments. Vertical bars under consensus predictions indicate correct predictions.
The bottom line identifies the standard of truth as obtained from the 3chy tertiary
structure by the DSSP program [181]. The secondary structure states assigned by
DSSP other than H and E were set to coil, designated by blanks.
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11). However, the second ß-strand of the 3chy structure was recognized in
the alignment of homologs but missed by the predictions based on both the
ClustalX and PRALINE alignments. It is important to note that the
flavodoxin sequences are evolutionarily extremely distant from the cheY
sequence, so this set of sequences is likely to be difficult for multiple alignment
methods and consequently also for secondary structure prediction techniques,
which are generally trained on homologous families of less extreme
divergence.

3. PREDICTION OF TRANSMEMBRANE SEGMENTS

Membrane proteins (MPs) contain one or more transmembrane (TM)
segments. Although, in principle, all possible mutual orientations of
individual structural elements are possible in globular proteins, the
organization of MP transmembrane segments is severely restricted by the
lipid bilayer of the cell membrane. They can therefore be regarded as a
distinct topological class. Compared to soluble proteins, few X-ray or NMR
data regarding the tertiary structure of TM proteins are yet available [219].
The most frequently observed secondary structure in transmembrane
segments is the α-helix, but in addition four families involving
transmembrane structures based on ß-strands that constitute a ß-barrel
have recently been identified. Whereas α-helical TM proteins generally
interact with the lipid bilayer of the cytoplasmic membrane of all cells,
TM proteins comprising antiparallel ß-strands have been localized in the
outer membrane of bacteria, mitochondria, and chloroplasts. The initial
idea that TM segments are either completely of an α-helical nature or consist
of ß-strands exclusively was challenged by electron microscopic data for
the nicotinic acetylcholine receptor [220]. These data, albeit with a low
resolution of 9 Å, were interpreted as a central five-helix bundle surrounded
by ß-strands. A more refined structure at 4.6 Å [221], but the controversial
mixed α/ß TM structure, was not discussed. Another example of a mixed
TM structure was provided by Doyle et al. [222], who described a tetrameric
potassium channel structure consisting of inner and outer layers, each
consisting of four helices. At the extracellular side of the pore, a short
four-stranded ß-barrel-like selectivity filter protrudes into the pore.

Fortunately, the location of the transmembrane segments in the primary
structure of the MP is relatively easy to predict owing to the rather strong
tendency of certain hydrophobic amino acids with special physicochemical
properties to occur in membrane-spanning regions. Predictions have generally
been focused on the determination of the membrane sequence segment
boundaries and their tentative orientation with respect to the membrane, mostly
assuming an α-helical structure.
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3.1. Prediction of ααααα-Helical TM Segments

The following considerations are important for transmembrane sequence
prediction. Amino acids in contact with the lipid phase are likely to be
hydrophobic. Therefore, any measure of amino acid hydrophobicity derived
from physical calculations and/or experimental data can serve as an
indicator of the propensity for a residue type to occur in a membrane-
spanning segment.

Transmembrane segments are believed to adopt the α-helical conformation
in most cases. An α-helix is the most suitable local arrangement because, in
the absence of water molecules inside the membrane, all main-chain polypeptide
donors and acceptors can mutually satisfy each other through formation of
hydrogen bonds. This energetic argument is supported by experimental
evidence that polypeptide chains tend to adopt the helical conformation when
immersed in a nonpolar medium [223]. Therefore, α-helical propensities of
amino acids derived from the analysis of globular proteins can be considered
in MP structure prediction.

Experimental data on the boundaries of the transmembrane segments are
not very precise, because they are acquired from site-directed mutagenesis,
enzymatic cleavage, immunological methods, etc. This contrasts with the
standard secondary structure prediction methods for soluble proteins, with
which statistical propensities of different amino acids to form one of the
major secondary structure elements are derived from much more accurate
protein tertiary structural data from X-ray crystallography and NMR
spectroscopy.

Although the globular interior of soluble proteins is less apolar than the
lipid bilayer, extensive use of these data has been made for MP structure
prediction. A particular example is the widespread use of the classical
hydrophobicity scale of Kyte and Doolittle [224]. Other techniques also became
available early on that were more specifically aimed at searching MP
transmembrane regions [225–228]. Generally, hydrophobic scales are used to
build a smoothed curve, often called a hydropathic profile, by averaging over
a sliding window of given length that is slid along the query sequence, to
predict transmembrane regions. Stretches of hydrophobic amino acids likely
to reside in the lipid bilayer then appear as peaks with lengths corresponding
to those expected for transmembrane segments, typically 16–25 residues. The
choice of window length should correspond to the expected length of a
transmembrane segment. Given that the average membrane thickness is about
30 Å, approximately 20 residues form a helix reaching from one lipid bilayer
surface to another. To determine the boundaries of a membrane-spanning
segment, a cutoff value for the hydrophobic peaks is also required. Kyte and
Doolitle [224] based their cutoff value on the hydropathic character of just a
few available membrane proteins. Later, a much larger learning set was used
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by Klein et al. [229], who applied discriminant analysis to aid prediction. Rao
and Argos [230] suggested a minimum value for the peak hydrophobicity and
two more cutoff values for either end of the peak to terminate the helix. It
must be emphasized that the relatively simple physical considerations forming
the basis of the above prediction methods do not exhaust the whole variety of
possible situations. Some commonly used hydrophobicity scales are given in
Table 2.

The relative orientation of the helices and the interaction of the corresponding
side chains in membrane proteins with more than one transmembrane helix are
important features to be included in structure prediction efforts. The structures
of membrane proteins determined to date and also theoretical evidence [231]
support the view that α-helices in membranes form compact clusters. TM residues
facing the lipid environment conform to the hydrophobic preferences described
above, but interface residues between different helices do not necessarily have
contact with the membrane and therefore can display different tendencies. For

TABLE 2 Hydrophobicity Scales
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example, charged residues can occur in TM helices in a coordinated fashion,
such that positively charged side groups on one helix will have their negatively
charged counterparts on another helix [219]. Charged residues can also
constitute a membrane channel. TM α-helices can thus show an amphipathic
behavior similar to helices in soluble proteins. In such cases, hydropathic
profiles can fail to detect the transmembrane segments. In cases where the
number of transmembrane segments is large (more than 20 in some channel
proteins), inner helices of the transmembrane helical bundle have been observed
to completely avoid contact with the lipid bilayer. As a result, any restrictions
on the amino acid content or even length of such helices do not apply in such
cases.

Eisenberg et al. [232] introduced a quantitative measure of helix
amphipathicity that was named the hydrophobic moment. It is defined as
the vector sum of the individual amino acid hydrophobicities radially
directed from the helical axis. In general, the hydrophobic moment provides
sufficient sensitivity to discriminate between amphipathic α-helices of
globular, surface, and membrane proteins. Many methods for amphipathic
analysis were developed based on Fourier analysis of the residue
hydrophobicities [232– 234] and the average hydrophobicity on the helix
face [235].

Several prediction methods have emerged that are based on multiple factors,
complex decision rules, and large learning sets. For example, von Heijne [236]
proposed a combinatorial technique that supplements a standard
hydrophobicity analysis with charge bias analysis. Other synthetic methods
include the joint use of several selected hydrophobicity scales [237], utilization
of optimization techniques with membrane segments as defined by X-ray
analysis serving as reference examples [238], and the application of neural
networks trained on secondary structural elements of globular proteins for
membrane protein structure analysis [239,240].

In the method TMAP [241], information from multiple alignments is used
to aid TM prediction. The propensities of amino acids to be positioned in
either the central or flanking regions of a transmembrane segment were
calculated using more then 7500 individual TM helices as annotated in the
Swiss-Prot sequence databank. These propensities were then used to build a
prediction algorithm wherein for each segment of a multiple sequence
alignment and for each sequence included therein, average values of the
central and flanking propensities are calculated over sliding windows. The
optimal window lengths were found to be 15 and four residues for central
and flanking propensities, respectively. If the peak value for a central
transmembrane region exceeds a certain threshold, this region is considered
a possible candidate to be membrane-spanning. The algorithm then attempts
to expand this region in either sequence direction until a flanking peak is
reached or the central propensity average falls below a certain value. Some
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further restraints are imposed on the possible length of a tentative TM
segment. The added sensitivity compared to other sliding window approaches
is a result of using multiple alignment information as well as the second
propensity for flanking regions.

Rost et al. [240] also used multiple sequence information and trained the
PHD method [79] on multiple alignments for 69 protein families with known
TM helices. They achieved a prediction accuracy of 95% as assessed through
the jackknife test.

The methods for MP structure analysis discussed here can be used to create
constraints for homology modeling and tertiary structure prediction. After
generating an initial approximation of the topology of a protein’s TM regions
and their relative orientation based on hydrophobicity analysis and available
experimental evidence, the structure can be optimized using energy
minimization and molecular dynamics techniques. Early examples of such
modeling efforts for molecules of pharmacological interest include G protein-
coupled receptors [242–244] and TM channels [245].

3.2. Predicting the Orientation of Transmembrane Helices

An issue closely related to transmembrane segment prediction is the prediction
of the intra- and extracellular membrane side. In bacterial membrane proteins,
intracellular loops between transmembrane helices were found to contain
arginine and lysine residues much more frequently than the extracellular
exposed loops [228,246]. Although less pronounced, this tendency has been
shown to also occur in eukaryotic membrane proteins [247]. For eukaryotic
proteins, it was further observed that the difference in the total charge within
stretches of about 15 residues flanking the transmembrane region on both
sides of the membrane coincides with the orientation of the protein [248] in
that the side most positively charged shows a tendency to reside in the cytosol.
This tendency, which was named the “positive inside rule,” aids prediction
schemes for MP topology. The nonrandom flanking charge distribution may
also play an important role in the physical insertion of the protein into the
membrane. However, the positive inside rule is applicable only to α-helical
TM regions.

3.3. Prediction of ß-Strand Transmembrane Regions

The prediction of TM segments constituted by ß-strands by the methods
described above is not likely to be successful, because they all assume the
α-helical conformation. Although relatively underrepresented, four different
families of ß-barrel-containing membrane proteins are known to date. The
earliest discovered family comprised archetypal trimeric proteins of Gram-
negative bacteria, called porins, that can nonspecifically mediate passive
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transport of small hydrophilic molecules (<6 kDa), whereas larger
molecules, such as malto-oligosaccharides, can be transported selectively.
Porins play their important cellular roles by forming voltage-dependent
and water-filled membrane channels constituted by a ß-barrel consisting
of 16 ß-strands [249], in which adjacent ß-strands are linked by hydrogen
bonds. Further families comprise transporter proteins from enteric bacteria
(e.g., FepA and FhuA), proteins involved in bacterial conjugation (OmpA
and OmpX in E. coli), and the lytic outer TM domain of staphylococcal α-
hemolysin. The ß-strands constituting the barrels seen in the known families
are even in number and vary from 8 to 22. Most of the outer surface of the
ß-barrel interacts with the membrane’s lipid environment, while the internal
part serves as an aqueous pore. Each individual ß-strand could thus be
expected to be amphipathic with a period of two residues. However,
although every second residue facing the lipid bilayer tends to be
hydrophobic, the side chains facing the interior of the barrel display no
definitive tendency and can therefore distinctly lower the amphipathic
signal. This compromised amphiphatic behavior is observed particularly
in families other than porins. Moreover, the number of amino acid residues
in a ß-strand needed to span the membrane is much smaller than that for
the helical conformation, typically only about 10, so they can be missed
easily by smoothed hydropathic profiles.

Jacoboni et al. [250] devised a method based on neural networks to predict
the location of TM ß-strands. The accuracy of their method was reported to
vary from 69% for single-sequence prediction to 78% for predictions using
alignments generated by PSI-BLAST [168], albeit these statistics were based
on jackknife tests over a critically small database.

4. PREDICTION OF PROTEIN ANTIGENIC SITES

Antigenic sites (ASs) are locations on the protein molecule that are responsible
for specific antibody binding. Their detection is an important step in
biochemical characterization of a protein. Theoretical prediction of the
sequence positions of ASs exploits mostly their preferred location on the surface
of the protein [251]. In contrast to transmembrane prediction methods based
on the most hydrophobic sequence spans, the AS prediction techniques are
based on the preferred location of antigenic sites on the surface of the protein.
The methods therefore search for the most hydrophilic sequence regions
associated potentially with solvent-exposed regions. An important early
approach to this problem was that by Hopp and Woods [252], who calculated
a smoothed curve (similar to the hydropathic profile considered in Sec. 3.1)
employing a sliding window approach that used hydrophilicity values given
by Levitt [253], that were slightly modified.
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As in the case of membrane segment prediction, the averaging window
length must be optimized. Empirical tests showed that it corresponded to the
expected size of continuous surface epitopes typically five to eight amino acids
long. Hopp and Woods [252] found that a window length of six residues
produced the best results; therefore that window length was consistently used.
Based on evidence from 12 proteins with known antigenic structure, Hopp
and Woods could not detect a one-to-one correspondence between the AS and
high peaks on the hydrophilicity curve: Not all high peaks appeared to coincide
with ASs and, conversely, not all ASs were reflected as high peaks in the Hopp-
Woods method (Fig. 12). Although the highest peak on the curve nearly always
lay within one of the antigenic sites or close to it in sequence, the method
generally was able to predict only one out of many potentially protein antigenic
determinants. Following Hopp and Woods [252], Parker et al. [255] built
surface profiles using an alternative set of hydrophilicity values derived from

FIGURE 12 Detecting antigenic sites. Plotted are running averages of amino acid
hydrophilicity values [252] for the sperm whale myoglobin sequence. Running averages
are given using window lengths of 5 (dotted line) and 8 (thin solid line), as well as for
optimal six-residue windows (thick solid line). The location of the five known antigenic
sites [254] is indicated with black bars. Note that the highest peak corresponds to one
of the antigenic regions. The correspondence of other high peaks and antigenic sites
is only partial.

Copyright © 2004 by Marcel Dekker



Protein Sequence Analysis 171

retention times in high-performance liquid chromatography, which resulted
in more accurate predictions.

The efficiency of antigen-antibody binding was found to correlate with the
mobility of protein sites constituting antigenic determinants [256,257]. Their
high flexibility could allow ASs to develop a better fit to the corresponding
location on the antibody molecule. This notion of induced fit is supported by
experimental evidence [258]. Karplus and Schultz [259] therefore derived
amino acid propensities aimed at localizing protein sites with high polypeptide
chain flexibility. They used empirically determined crystallographic temperature
factors that correspond to mean-square atomic displacement. Jameson and
Wolf [260] combined the various signals in a single so-called antigenic index
and included the acid flexibility propensities of Karplus and Schultz [259],
surface probabilities [251], and residue hydrophilicities [252]. They also devised
a weighting scheme for these three signals to optimize their prediction results.

Although the AS prediction methods can give reasonable results, particularly
when used jointly [260,261], additional biochemical evidence is required for
reliable conclusions. Further, these sliding window methods are not applicable
to discontinuous antigenic determinants when the residues that constitute the
antibody-binding pocket are not close in sequence but are close in proximity
in the tertiary structure of the protein.

5. PREDICTING COILED-COIL STRUCTURES

Another feature closely related to secondary structure prediction is the
prediction of coiled-coil structures. If a soluble protein is predicted to contain
a-helices, higher order information as well as increased confidence in predictions
could be gained from testing the possibility that a pair of helices adopt a
superhelical twist that results in a coiled-coil conformation. The usual left-
handed coiled-coil interaction involves a repeated motif of seven helical residues
(abcdefg), where the a and d positions are normally occupied by hydrophobic
residues constituting the hydrophobic core of the helix/helix interface, while
the other positions display a high likelihood of containing polar residues.
Another feature is that the heptad e and g positions are often charged and can
form salt bridges. The program COILS2 [262,263] exploits this information
and compares a query sequence with a database of known parallel two-stranded
coiled coils. A similarity score is derived and compared to two score
distributions, one for globular proteins (without coiled coils) and one for known
coiled-coil structures. The two scores are then converted to a probability for
the query sequence to adopt a coiled-coil conformation. Because the program
assumes the presence of heptad repeats, probabilities are derived using default
window lengths of 14, 21, and 28 amino acids. The program can also use
user-defined window lengths for the prediction of extreme coiled-coil lengths.
A recently updated scoring matrix, based on data from recent coiled-coil
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structures and containing amino acid type propensities for various positions
in the heptad repeat, shows better recognition of coiled-coil elements. The
COILS2 method accurately recognizes left-handed two-stranded coiled coils
but loses sensitivity for coiled-coil structures consisting of more than two
strands. Also, it is not able to recognize right-handed or buried coiled-coil
helices and therefore is not applicable to transmembrane coiled-coil structures
known to show coiled-coil conformations basically similar to those of soluble
proteins, albeit with dramatically different and more hydrophobic constituent
amino acids [219].
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1. INTRODUCTION

Crystallography has already revealed a great number of biopolymer structures
at full atomic resolution, and the productivity of structural biologists is currently
increasing at a breathtaking pace. The enormous amounts of data collected in
structural databanks contain a true wealth of information. They are readily
used in discussions of catalytic mechanisms of enzymes and ribozymes and
provide the basis for models of molecular recognition. Many other applications
of structural data in biochemistry and molecular biology, however, require
fewer details and thus call for notions of coarse-grained structure. Too many
data obscure common structural features in related biopolymers and impede
comparisons that are of fundamental importance, for example, in molecular
evolution. Discretized structure models are particularly interesting because
they not only meet the need for straightforward recognition of basic features
but also by their nature they can be enumerated and accessed by combinatorial
and other rigorous mathematical techniques.
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In this chapter we present models of discrete protein and RNA structures
and review a few prominent results derived from them. In Sec. 2 we introduce
three classes of discretized structures: (1) lattice models that retain only
information on spatially coarse-grained structures, (2) contact graphs that
reduce spatial information to local nearest-neighbor interactions, and (3)
hypergraph models, which are a multidimensional extension of class 2. Answers
to counting problems can often be given by combinatorics. Examples are
presented in Sec. 3: RNA secondary structure graphs and self-avoiding walks
as models for protein structures. Random graph theory is used in Sec. 4 to
model the mapping of sequences into structures. The random graph model is
then applied to RNA secondary structures in Sec. 5. The last section provides
a brief conclusion and an outlook to further developments.

2. DISCRETIZED STRUCTURE MODELS

The fine-grained description of a molecular structure is simply the list of three-
dimensional coordinates of each individual atom. This level of detail, however,
is not suitable for all purposes. Indeed, coarse-grained representations such as
ribbon diagrams are oftentimes used to interpret and compare protein folds.
Ribbon diagrams are obtained by retaining only the coordinates of the backbone
atoms, which are still represented by three-dimensional vectors. In this section
we shall be concerned with an alternative approach, discretized structure models.

We may distinguish two major classes: combinatorial models that encode
only local geometric information and models that explicitly retain information
about the global three-dimensional embedding of the structure. Contact graphs
and their hypergraph generalizations fall into the first class, whereas lattice
models (mostly of proteins) belong to the second class. We restrict ourselves
to the simplest cases, in which each monomer is represented by a single point
or letter.

2.1. Lattice Proteins

Lattice models [1–12] provide a coarse-grained view of protein structure. The
structure is represented by a self-avoiding walk (SAW), i.e., a path on a lattice
that does not visit the same site more than once [13]. SAWs play a major role
in polymer physics, where the main interest centers on equilibrium properties
such as the number of configurations or the end-to-end distance of a polymer
consisting of a fixed number n of monomers [14,15].

2.2. Contact Graphs

The three-dimensional structure of a linear biopolymer such as RNA, DNA,
or a protein can be approximated by its contact structure, i.e., by the list of all
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pairs of monomers that are spatial neighbors. Contact structures of
polypeptides were introduced by Dill and coworkers in the context of lattice
models of protein folding [16,17]. The secondary structures of single-stranded
RNA and RNA form a special class of contact structures.

We assume that the monomers, amino acids and nucleotides alike, are
numbered from 1 to n along the backbone. For simplicity we shall write [n]=
{1,…, n}. The adjacency matrix of the backbone B has the entries Bi,i+1= Bi+1,i=1,
i�[n-1]. In a more general context, polymers with cyclic or branched backbones

A contact structure is faithfully represented by the contact matrix C with the
entries Cij=1 if the monomers i and j are spatial neighbors without being adjacent
along the backbone, and Cij=0 otherwise. Hence Cij=0 if |i-j|≤1. Note that both
B and C are symmetrical matrices. We define the (contact) diagram ([n], Ω) to
consist of n vertices labeled 1 to n and a set Ω of arcs that connect nonconsecutive
vertices. The diagram is simply a graphical representation of the contact matrix.
As an example we show the conventional ribbon diagram of the protein ubiquitin
together with its discretized structure represented by a contact matrix and contact

between consecutive vertices are the linked diagrams introduced by Touchard
[18]. These are studied in some detail in Refs. 19–22.

The contact graph has the adjacency matrix A=B+C. The familiar drawings
of RNA secondary structures are a much used example of biomolecular contact
graphs. The classical definition of a secondary structure [23] requires that
each base pair with at most one other nucleotide. Thus nucleic acid secondary
structures are special types of 1-diagrams. The second defining condition is
that arcs do not cross. In terms of the contact matrix this means that if Cij=Ckl=1
and i<k<j, then i<l<j. Secondary structure (contact) graphs are outerplanar,
i.e., they can be drawn in such a way that the backbone forms a circle and all
base pairs are represented by chords that must not cross each other; see the
example of phenylalanyl-tRNA in Figure 2.

An increasing number of experimental findings, as well as results from
comparative sequence analysis, suggest that pseudoknots are important
structural elements in many RNA molecules [24]. Notably, functional RNAs
such as RNAseP RNA [25] and ribosomal RNA [26] contain pseudoknots.
Almost all known pseudoknotted structures, with the notable exception of
the E. coli αmRNA [27], belong to the class of bisecondary structures [28] that
generalizes the notion of secondary structures to include pseudoknots without
allowing overly involved knotted structures or nested pseudoknots. More
precisely, a bisecondary structure can be understood as a superposition of two
disjoint secondary structures. Their contact graphs are still planar, but now the
chords may be drawn on both the inside and outside of the circle that represents
the backbone.

Copyright © 2004 by Marcel Dekker

graph in Figure 1. A closely related class of diagrams that also allow arcs

could be considered, see, e.g., Ref. 12.
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FIGURE 1 The structure of the ubiquitin molecule, pdb entry 1ubq. (a) Conventional
ribbon diagram; (b) contact matrix; (c) contact graph.
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FIGURE 2 A few representations of RNA secondary structures. As an example we
show the structure of phenylalanyl-transfer RNA (tRNAphe). The conventional graph
representation (upper left) is equivalent to the cyclic representation (upper right),
the mountain representation (middle), and the parentheses representation (bottom).
The contact matrix of tRNAphe

specific advantage. The conventional graph representation has been used
successfully by biochemists in the interpretation of RNA reactivity, the cyclic
representation allows the detection of pseudoknots as intersecting chords, the
mountain representation is particularly useful for the detection of folding patterns in
long RNA stretches, and a distance between structures can be easily defined in the
parentheses representation as the Hamming distance between strings. We remark
that graph and cyclic representations are two-dimensional and thus allow us to
describe and detect pseudoknots, whereas mountain and parentheses
representations are one-dimensional and become ambiguous in the case of
pseudoknots.

Copyright © 2004 by Marcel Dekker
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2.3. Hypergraph Models

A hypergraph [29] consists of a vertex set V and a set of subsets of V called
hyperedges. A graph is hence a uniform hypergraph in which all (hyper) edges
have order 2. Allowing for larger sets of “mutually adjacent” monomers, we
obtain a hypergraph description of the molecular structure. A particularly
useful approach is based on Delaunay tesselations [30].

The Delaunay tesselation is defined as the dual of the more familar Voronoi
cells: Given a finite set of points  the Voronoi cell of x�A is

(1)

where d denotes the Euclidean distance in Rn. The nearest-neighbor set N(x)
of x�A is the set of points x’�A\{x} that are closest to x in Euclidean distance.
For each point u�Rn, define nb(A, u) as the set of points x’� A\{u}. A point
v�Rn is a Voronoi vertex (corner of the Voronoi cell) if |nb(A, v)| is maximal
over all nearest sets. The Delaunay cell of v is the convex hull conv(nb(S, v)).
The complex (or triangulation) of A is therefore a partition of the convex hull
conv (A) into the Delaunay cells of its Voronoi vertices. The Delaunay complex
is dual to the Voronoi diagram in the sense that there is a natural bijection
between the two complexes that reverses the face inclusions. Efficient
algorithms for computing Voronoi cells and Delaunay tesselations of point
sets are publicly available; as an example, we mention the qhull package [31].
Apart from degenerate cases, each Delaunay cell is a tetrahedron with four
points of A at its corners. This procedure therefore defines 4-edges (sets of
four “mutually adjacent” vertices) in a (protein) structure in a parameter-free
way. The (2-) edges of a contact graph and 3-edges can, of course, be derived
directly from the tesselation by considering subsets.

Delaunay tesselations of protein structures have been used as the basic
building block for designing knowledge-based potentials for protein threading
and inverse folding [30,32–34]. The secondary structure model of nucleic acids
could be extended to hypergraphs to include, e.g., base triplets, guanine
quartetts, or adenine platforms [35].

3. COMBINATORIAL CONSIDERATIONS

3.1. Secondary Structure Graphs

3.1.1. Enumeration

A secondary structure on n+1 digits can be obtained from a structure on n
digits either by adding a free end at the right-hand end or by inserting a base
pair 1≡(k+2). In the second case the substructure enclosed by this pair is an
arbitrary structure on k digits, and the remaining part of length n-k-1 is also
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an arbitrary valid secondary structure. Therefore, we obtain the following
recursion formula for the number Sn of secondary structures:

(2)

Equation (2) was first derived by Waterman [23]; m denotes the minimum
number of unpaired digits in a hairpin loop. Note that our definition of Sn

differs from Waterman’s for n<m; he used Sn=0.
The above recursion can be used to develop an algorithm for generating

random secondary structures with a uniform distribution

Prob{S}=1/Sn (3)

in the shape space of all secondary structures over a given chain length (see
Ref. 36). Related recursions can be obtained for restricted classes of structures
(see Table 1 and Ref. 37).

TABLE 1 Recursions for Restricted Structures
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The recursion for the number of structures with b base pairs, Hn(b), was also
considered in Ref. 38. More recently, Schmitt and Waterman [39] obtained the
closed expression

 

for the special case m=1. Recursions for some other types of structures, including
the number  of structures in which all stacks have predefined minimum

length l, can be found in Ref. 37.
Most of the published work on the asymptotic behavior of RNA-related

counting series [23,39-44] makes use of a proposition by Bender [45, Theorem
5], which was later found to be true only under more restrictive conditions
than the published ones. If follows from the counterexamples discussed in
Refs. 46 and 47 that Bender’s result cannot be applied directly to the RNA
problem. Starting from a simplified version of Darboux’s theorem [48] (see

the RNA counting series (see, e.g., Ref. 23) are nevertheless correct.
The series Sn was extensively studied in Ref. 23. The asymptotics of the

more general series  are determined [37, Theorem 4.8] as

(4)

where α is the smallest positive solution of

(5)

that satisfies

(6)

With l=1, the recursions tabulated in Table 1 give rise to the asymptotic
expressions

Jnb

(7a)

(7b)

(7c)
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(7d)

Here Ck denotes the Catalan numbers.
Numerical values of 1/α, which determines the growth of Sn and  with

sequence length n, are tabulated in Table 2. For comparison, we also list
numerical estimates for bisecondary structures [28].

3.1.2. Energy Functions

The standard energy model for RNA and DNA secondary structures relies on

50, these “loops” coincide with the unique minimal cycle basis. The most
direct approach to the loop decomposition of a secondary structure uses the
following partial order on the set of bonds (base pairs): A base pair k, l is
interior to the base pair i, j if i<k<l<j. It is immediately interior if there is no
base pair p, q such that i<p<k<l<q<j. For each base pair i, j, the corresponding
loop is defined as consisting of i, j itself, the base pairs immediately interior to
i, j, and all unpaired regions connecting these base pairs.

The energy of an RNA secondary structure is assumed to be the sum of the
energy contributions of all loops. The most recent compilation of RNA energy
parameters is that of Mathews et al. [51]. Current folding programs mostly
rely on the parameter set discussed in Ref. 52, which extends earlier studies
[53–55] by the systematic treatment of coaxial stacking. Parameters for DNA
folding can be found in Refs. 56 and 57.

3.1.3. The RNA Folding Problem

The additive form of the energy model set the stage for an efficient solution of the
minimum energy folding problem by means of a dynamic programming scheme
similar to sequence alignment. This similarity was first realized and exploited by

TABLE 2 Numerical Values of 1/αa

a
The values for the biophysically most relevant case, l=2 and m=3, are in boldface

type.

Copyright © 2004 by Marcel Dekker
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Waterman [23] (see also Ref. 42); the first dynamic programming solution was
proposed by Nussinor and Jacobson [58], originally for the “maximum matching”
problem of finding the structure with the maximum number of base pairs [59].
Zuker and coworkers [60,61] formulated the algorithm for the minimum energy
problem using the now standard energy model.

Since then several variations have been developed: Zuker [62] devised a
modified algorithm that generates a subset of suboptimal structures within a
prescribed increment of the minimum energy (see also Ref. 63). The algorithm
will find any structure ψ that is optimal in the sense that there is no other
structure ψ’ with lower energy containing all base pairs that are present in ψ.

McCaskill [64] noted that the partition function over all secondary
structures,

(8)

can be calculated by dynamic programming as well. In addition his algorithm
can calculate the frequency with which each base pair occurs in the Boltzmann
weighted ensemble of all possible structures, which can be conveniently
represented in a “dot plot” (see Fig. 4). A related approach can be used to
compute the complete density of states of an RNA sequence at predefined

FIGURE 3 RNA secondary structure elements. Any secondary structure can be
uniquely decomposed into these types of loops.
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energy resolution [65,66]. Another method for calculating the density of states,
based on enumeration of structures, was proposed earlier [67]. However, this
algorithm is restricted to subsets of structures containing no helices shorter
than three and uses a simplified energy model.

Most recently, a program was designed by the Vienna group that can generate
all secondary structures within some interval of the minimum energy based on
dynamic programming and multiple backtracking [68,69]. In practice,
suboptimal folding can handle millions of structures, corresponding, e.g., to

FIGURE 4 Contact matrix and base-pairing probabilities in the secondary structure
of phenylalanyl-tRNA. All nonzero entries are indicated as black squares. In the
lower (left) triangle we show the contact matrix. The matrix elements are 0 or 1
corresponding to empty or full squares, respectively. The upper (right) triangle
contains the partition function. Here the size of the square is representative of the
base-pairing probability.

Copyright © 2004 by Marcel Dekker
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an energy range of, say, 12kcal/mol at a chain length of 100 bases. Most of
these algorithms are part of the Vienna RNA Package [70], which is freely

The assumptions that an RNA molecule folds into its thermodynamic
ground state may well be wrong even for moderately long sequences [71].
Simulations of the folding process itself can be used to avoid this problem.
Consequently, several groups have designed kinetic folding algorithms for RNA
secondary structures, mostly in an attempt to get more accurate predictions
or to include pseudoknots (see, e.g., Refs. 72–76). Only a few papers have
attempted to reconstruct folding pathways [77–79]. A more recent approach
resolves the folding process to three elementary steps: base pair formation,
base pair cleavage, and base pair shift [80,81]. RNA folding is simulated as a
stochastic process starting from an initial state (commonly the open chain) to
the minimum free energy conformation or a long-lived metastable state that is
assumed to be an absorbing barrier. Sampling of sufficiently large numbers of
folding trajectories yields probabilities of formation for different
conformations.

In the case of functional RNAs, and provided a sufficient number of
related sequences are available, the structure can be inferred from
covariations. This phylogenetic approach is beyond the scope of this review,
but see, e.g., Ref. 82.

3.2. Self-Avoiding Walks

3.2.1. Enumeration

Counting the number cN of distinct self-avoiding walks of given length N=n-1
on a prescibed lattice is a long-standing problem. At present a complete solution
to this problem is unknown. It is easy to show, however, that for each lattice A
there is a constant

(9)

where z is the connectivity of the lattice. The exact values of µ, however, are
unknown even for the simplest lattices. Tight analytical bounds on µ have
been obtained for a variety of lattices (see Ref. 13). It is commonly believed
that the asymtotic behavior of cN depends only on the spatial dimension d of
the lattice:

(10)
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The exponent γ probably depends only on the dimension of the lattice. The
logarithmic correction for n=4 was predicted by a renormalization group
analysis (see, e.g., Ref. 83). Estimates for the parameters µ, γ, and B are compiled
in Table 3.

The effective number µ of conformational isomes per amino acid in a protein
structure has been estimated by various authors. For instance, Dill [96] reports
µ=3.8, whereas µ≈10 is obtained for the free chain by Flory [97].

3.2.2. Energy Functions

In contrast to the rather elaborate standard energy model for nucleic acids,
most lattice protein models use simple contact potentials of the form

(11)

which depends only on the amino acids xi, xj that form a contact (i, j). Most
studies distinguish between only two clases of amino acids,

(12)

H (hydrophobic) and P (polar), with E(H, H)=-1 and E(.,.)=0 otherwise; see
e.g., Ref. 98. Alternative potentials for two-letter alphabets are studied
systematically in Ref. 9.

TABLE 3 Combinatorial Parameters of SAWs in Two and Three Dimensionsa

a Lattices in the plane: Hexagonal (honey comb) HEX, square SQ, triangular TRI, and
Knight’s move KM, Lattices in three dimensions: Diamond (tetrahedral) TET, simple
cubic SC, body-centered cubic BCC, face-centered cubic FCC, and a three-dimensional
generalization of the Knight’s move lattice TDKM.
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These models allow the study of hydrophobic collapse. Furthermore, they
admit an intrinsic distinction between folding and nonfolding sequences (a
sequence folds into a native structure if the lowest energy structure is unique);
it is not clear how well this approach will generalize to more complex potential
functions and larger alphabets, which would lead to nondegenerate ground
states for most sequences [99].

As an example of a more sophisticated contact potential, we mention
Crippen’s [4] ansatz

(13)

where the matrix entries correspond to the four amino acid classes

(14)

The parameters of such potential functions are extracted from databases of
known protein structures as log likelihood estimates or by means of the inverse
Boltzmann law as described, e.g., in Refs. 100–103.

3.2.3. The Lattice Protein Folding Problem

The lattice folding problem consists of finding, for a prescribed amino
acid sequence, a self-avoiding walk on a given lattice that minimizes
energy. This combinatorial problem is NP-hard [104–106] even for simple
quadratic and cubic lattices and very simple energy functions, including
the HP model.

For short sequences and lattices with small effective connectivities µ, all
possible conformations can be evaluated. In the case of moderate sequences,
sometimes strongly constrained subsets of sequences, such as 27-mers that fill

CHCC [108] try to construct good approximations of the ground state using
“compactness” as an additional criterion. Simple chain growth algorithms
seem to yield fairly good results on average. A series of fast algorithms with

Copyright © 2004 by Marcel Dekker
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exact performance bounds have been devised by Istrail and coworkers [12,109].
These produce solutions within a constant factor c<1 of the maximal number
of contacts.

4. RANDOM GRAPH MODELS OF SEQUENCE-STRUCTURE
MAPS

4.1. The Random Graph Model

effective value of z for proteins appears to be somewhere in the range of z= 3–
12, imply that sequence-structure maps are many-to-one, i.e., f-1(s) is a large
set, at least for the more common structures.

This observation poses the question of how f-1(s) is embedded in the space
of biopolymer sequences, i.e., what can we say in general about the set of
sequences folding into s? In the absence of further information, we assume
that f-1(s) is uniformly distributed in sequence space. In other words, we assume
that the preimage of a structure s can be regarded as a suitable random subgraph
Γ of the underlying sequence space. Here we restrict our attention to “host
graphs” that are sequence spaces (Hamming graphs)  an with a fixed alphabet
of size a and fixed sequence length n.

Typically, random graph models assume a fixed vertex set V into which
edges are introduced [110]. The appropriate model for preimages in sequence-
structure maps, however, are the subgraphs Γx induced by randomly selected
vertex sets X in the underlying sequence space [111,112].

Definition 1. Let  be the set of all induced subgraphs of  and let 0≤λ≤1
be a constant. Then we set for 

(15)

where |Γ| is the size, i.e., the number of vertices, of the subgraph Γ. The random
subgraph model is the probability space  of subgraphs of  an
with the measure µλ. We shall write Γn, for a random graph drawn from Ωn, λ.

The parameter λ can be interpreted as a fraction of neutral neighbors; i.e., (n-
1)aλ is the expected vertex degree of the random induced subgraph Γ.

Let Q be a property of Γn. We say that Γ has property Q asymptotically
almost surely (a.a.s.) if

(16)
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4.2. Predictions

A subgraph Γ’ is dense in Γ if each vertex of Γ is a vertex of Γ’ or if it has at
least an adjacent vertex in Γ’. A (sub) graph Γ’ is connected if there is a path
(of edges in Γ’) connecting any two vertices of Γ’

The parameter

(17)

plays a crucial role in the random subgraph model.

Theorem 1. If λ then Γn is connected and dense in  If λ>λ*, then Γn is
neither connected nor dense in 

Proof. The proof of this theorem is quite lengthy and technical [112]. Hence we
give only a brief sketch here. In order to deal with denseness, one considers the
random variable Z(Γn), counting the vertices of  that are neither in Γn nor
have an adjacent vertex in Γn. Using the “sieve formula” [110, p. 17] it is
possible to derive the limit distribution of Z(Γn) through its factorial moments.
One then finds that lim   is either 0 or ∞ depending on whether λ
is larger or smaller than the threshold value λ*.

The proof of the connectedness part proceeds via an analysis of the sizes of the
connected components. In the first step one shows that for λ>λ* there are
aymptotically almost sure (a.a.s.) no very small components, whereas below the
threshold there are many of them. Furthermore, assymptotically almost all (a.a.all)
vertices of Γn have large degrees above the threshold. The next step is to show that
in this case a.a.all vertices of  have many adjacent vertices in Γn. Then one
shows that a.a.s. every pair of vertices in Γn with a finite distance k in  is connected
by a finite path in Γn. Finally, one shows that there are large enough subsets of
vertices with mutually finite distances that can be connected by such paths.

A related result in the special case of the Boolean hypercube with a different
random graph model based on independently drawing edges instead of vertices
with probability p can be found in Ref. 110.

A connected component Γ’ of graph Γ is a giant component if |Γ’|>c|Γ| for
some fixed constant c>0. It is shown in Ref. 112 that Γn a.a.s. has a giant
component for whenever λ>0 is a constant. For Boolean hypercubes Ajtai et
al. [113] proved in the edge-drawing model that there is a component with
size g2n, g>0, provided p=c/n and c>1.

The component structure of Γn is discussed in more detail in Ref. 111.

Theorem 2. There is a c>0 such that for λn=c(ln n)/n, the largest component
 for all ε>0, satisfies a.a.s.
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(18)

The size of the second largest component X2 is bounded by |X2|≤Cn/ln n, where
C>0 is a constant depending only on a and c.

Application of these ideas to biological speciation is discussed in Refs. 114
and 115.

4.3. Neutral Paths

Neutral walks were used to gain information about the structure of the
(connected components of) neutral networks in a series of computer
experiments on RNA folding landscapes [116–118]. In each step we attempt
to find a neutral neighbor such that the distance from the starting point
increases. Therefore neutral walks on  terminate at the latest after n steps.

The probability that a neutral walk with d steps cannot be elongated
any further equals (1-λ)α(d), where α(d)=(a-1)(n-d) denotes the number of
“forward steps” increasing the distance from the starting point. The
probability that a neutral walk of a Hamming graph terminates after exactly
d steps is therefore [119]

(19)

From Eq. (19) one can infer that there are long neutral paths with typical
length n if λn/ln n→∞, and the walks are typically short  for λ<(In
n)/n. In the intermediate regime, λ~C(ln n)/n with C>1, the typical neutral
path length is proportional to n.

5. RNA SECONDARY STRUCTURES AND THE RANDOM
GRAPH MODEL

Mappings of RNA sequence space onto shape space,  were studied by
the approaches summarized in Table 4. The random graph approach introduced
in Sec. 4.1 yields information on the generic properties of sequence-structure
mappings. Here we are more concerned with the specific features of RNA
mappings, in particular with the consequences of the base-pairing logic.

5.1. The Product Space Model

As a consequence of the base-pairing logic, not every sequence is compatible
with every structure. Although an arbitrary nucleotide may be located at each
unpaired position of a structure  base-pairing positions are constrained to
AU, UA, GC, CG, GU, or UA. In the following we shall write  for the set
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of all sequences that are compatible with  Clearly, only sequences that are
compatible with  can actually fold into this structure; thus, 

The distinction between paired and unpaired positions in a structure suggests
a factorization of RNA sequence space into a space of unpaired bases and a
space of base pairs,  with nu and np being the numbers of
unpaired bases and base pairs, respectively, in the secondary structure  hence
n=nu+2np. For natural RNA molecules we have au=4 and ap=6, because six
base pairs are allowed in stacks. The vertex set of  is  Two compatible
sequences are neighbors of each other if they differ by either a point mutation
in the unpaired part or by the exchange of one type of possible base pair for
another one. Note that two sequences can be neighbors in  if their Hamming
distance in  is 2; assume, for instance, that a GC pair is replaced by a UA
pair.

The random graph model described in Sec. 4.1 can be customized to fit the
situation in RNA more closely by taking the factorization  into
account. Instead of a random subgraph of  we model the neutral network

 by a random induced subgraph  Two slightly different
probability measures for  are considered in Ref. 112 with essentially the
same qualitative results: One may conclude that if the restriction of the random
graph  to both factors  and  is dense and connected, then  itself
is dense and connected. Hence the discussion in Sec. 4.1 remains valid; one
just has to take into account that we have different threshold values for the
paired and unpaired factors.

TABLE 4 Various Strategies Applied to Study Sequence-Structure Maps of RNA
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5.2. Shape Space Covering

The random graph model can also be used to address the mutual location of
the neutral networks of two different structures φ and ψ. The basic fact in this
context is the so-called intersection theorem (Theorem 5 of Ref. 112):

Theorem 3. Let φ and ψ be two secondary structures with the same length.
Then 

The random graph approach then provides the following result (Theorem 8
of Ref. 112):

Theorem 4. Let φ, ψ be two secondary structures with the same length, and
suppose the neutral networks Γ[φ] and Γ[ψ] are dense and connected almost
surely. Then

1. The minimum distance of Γ[φ] and Γ[ψ] in  is a.a.s. at most 2.
2. The expected Hamming distance from a randomly chosen sequence

to the neutral network is a.a.s. at most

(20)

This predicts that the neutral networks of any two secondary structures come
very close together at least somewhere in sequence space. As a consequence,
any two common secondary structures should be accessible from each other.
We shall return to this topic in Sec. 5.3.5. Furthermore, Eq. (20) predicts that
we can find sequences that fold into almost all common secondary structures
within a ball of radius  centered at any given point in sequence space. This
phenomenon was termed shape space covering in Ref. 116 and was studied in
detail in Ref. 118.

5.3. Comparison of Random Graph Models with Data from RNA

5.3.1. Exhaustive Enumeration

One of the few examples that allow direct testing of the prediction of random
graph models is the mapping of RNA sequences into secodary structures. The
most straightforward strategy is exhaustive folding of complete sequence spaces

 and enumeration of results (Table 4). Because of the exponential increase
in the number of sequences with chain length n and the limitation of efficient
retrieval of data at sample sizes of a few 109 objects, this strategy is limited to
rather small molecules. This implies restriction to chain lengths n≤16 for AUGC
and n≤32 for AU or GC sequences. Table 5 contains a comparison of selected
data on the numbers of minimum free energy RNA structures from exhaustive
folding with the numbers  of all secondary structure graphs with minimum
stack length l=2 and minimum length m=3 of the unpaired stretch in a hairpin
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loop. These were chosen according to empirical experience: Very small hairpin
loops, m<3, and isolated base pairs, l=1, are highly unstable and occur only in
exceptional cases such as short sequences and sequences with an extremely
biased base composition. The examples shown in Table 5 contain only two
minimum free energy structures with isolated base pairs formed by GC
sequences of chain length n=12, nine structures for GC sequences of chain
length n=16, and 51 structures for AUGC sequences of chain length n=16.

Depending on the base-pairing alphabet, only a certain fraction of all
structures will actually appear as most stable conformation. We see also that
AUGC sequences sustain substantially more minimum free energy structures
than GC sequences. The number of structures formed by AU sequences is
rather small as a result of the relative weakness of AU base pairing and base
pair stacking (in comparison to GC). We shall compare in more detail two
cases with the prediction from random graph theory: (1) all sequences of chain
length n=16 and (2) GC sequences of chain length n=30. For longer sequences
we have to rely on statistical method to obtain direct information.

5.3.2. Sequences of Chain Length n=16

Structures, αk

formation from random sequences. These probabilities are simply derived by
dividing the size of the preimages in sequence space by the total number of
sequences,  Neutral networks in sequence space,
corresponding, to the structure ak, are characterized by their sequence of

a Values given in parentheses are the counted numbers of actually occurring minimum free energy
structures without isolated base pairs that are directly comparable to the numbers 

Source: Refs. 117, 118, 125, 126.

TABLE 5 Comparison of Exhaustively Folded Sequence Spacesa
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components, which are listings of component sizes. What we expect to observe
are either connected networks above the connectivity threshold or networks
consisting of several components with one largest giant component. We have
to recall, however, that the connectivity phenomenon discussed in Sec. 4.1 is
an asymptotic property and finite size effects may easily override it in the case
of short sequences. The most dramatic example is the sequence space

 of the sequences do not form a stable secondary structure at all.
For GC sequences the open chain amounts to only 2.2%, and in  we
have 63.1% sequences with a nontrivial minimum free energy structure.

The first eight most frequent shapes formed by sequences from  have a
single connected component. The neutral network of the open chain structure

TABLE 6 Shapes Frequently Formed by GC Sequences of Chain Length n=16 as
Minimal Free Energy Structure
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TABLE 7 All Shapes Formed by AU Sequences of Chain Length n=16 as Minimal
Free Energy Structures

TABLE 8 Shapes Frequently Formed by AUGC Sequences of Chain Length n=16 as
Minimal Free Energy Structures
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(rank 9), however, is partitioned into 13 components with a largest one containing
71.2% of the sequences. Unexpected partitions of neutral networks are found
with two structures (ranks 10 and 11): They consist of two components of
almost equal size. Further down in the probabilities of structures we observe
many examples of this kind (ranks 14–20), and eventually structures appear
whose neutral networks are split evenly into four equal-sized components (ranks
39 and 40). These clear deviations from the generic properties predicted by
random graph theory found a straightforward biophysical explanation [118].
All structures containing a stack that cannot be elongated (class I in Fig. 5)
behave perfectly normally in the sense tha they form generic networks. The
distribution of sequences belonging to such a network closely resembles the
symmetrical binomial distribution, which is also the distribution of random
sequences. Structures of class II, however, can form an additional base pair on
one side of the stack, and, in general, they will do so when compementary
bases are in the opposing positions. This is most likely the case when the
overall base composition is 50% G and 50% C, and hence class II structures
are less likely to be formed by sequences of equal percentages of G and C. The
highest probability to form class II structures is thus expected to lie at a certain
distance displaced from the middle of sequence space. Indeed, the two components
of the class II structures have maxima of the distribution functions at excess G
or excess C [(50+δ)% G or (50-δ)% G, respectively]. The distribution of each
component is close to binomial, with equal offset from the center of sequences
space (50% G/50% C). By the same token, structures of class III have two
independent possibilities of stack elongation at each end, and thus the probability
of their formation is largest if the sequence are displaced from the uniform
distribution by δ and ε (for the left-and right-hand ends, respectively). Without

FIGURE 5 Three classes of RNA stacks. Stacks are classified with respect to their
compatibility with stack elongation on the two ends. Class I stacks cannot be elongated,
class II stacks are compatible with elongation at one end, whereas class III stacks
can add base pairs at both ends of the stacks.
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further information we assume δ=ε. Independent superposition then yields four
components with maximal probability densities at the following G/C ratios:
(50+2δ)/(50-2δ), 50/50, 50/50, and (50-2δ)/ (50+2δ). These are precisely the
positions of the peaks observed with four-component networks. The structural
details of neutral networks, we may conclude, are well described by the random
graph model unless special structural features lead to systematic biases that
can be interpreted straightforwardly.

Minimum free energy structures over the sequence space are  little more
than an exercise in finding the most stable hairpin loops with the largest possible
number of base pairs. As said above, the shape space is dominated by the
open chain that expresses the overwhelming influence of finite size. Stable
structures are the three hairpin loops with six base pairs, the two triloops
(ranks 2 and 3), and the tetraloop (rank 4). The other structures with less
than six base pairs are apparently unstable.

The essential difference between  or  and  lies in the
cardinality, 65,536 versus 4.29×109 sequences. This has to be compared with
a rather small difference in the numbers of structures, 195 versus 274, and
leads to average numbers of 336 and 15.7×106 sequences per structure,
respectively. Distances in sequence space, however, are the same in  and

 and thus we suspect substantial differences in the sequence of
components. Indeed, most neutral networks in  belonging to frequent
structures are connected. The rank of the first network with two components
is 93, and the two components have a size ratio of about 7. Smaller networks
have numbers of components up to five, but nowhere did we find a situation
of two or four equal-sized components as in the  case. A straightforward
interpretation is based on the much higher cardinality of neutral networks in
the AUGC case, which leads to merging of components compared to networks
in  In summary, the data collected for all AUGC sequences of the small
chain length of only n=16 confirm the predictions of random graph theory
rather well and certainly better than those for GC sequences.

Finally, we choose a special rare class of structures that can be easily counted
and thus allows direct compare of all possible structures with the results derived

structures with two hairpins ((((•••))))••(((((•••))))) which are hard to form
at a chain length of n=16. Two hairpins of minimal size, ((• • •)), require 2×7
bases, and thus only two more bases remain that could be either a base pair or
two unpaired bases. The former case leads to two structures that are recognized
as the most common structures of this class on both sequence spaces 
(ranks 78 and 80) and  (ranks 144 and 145). All other 15 two-hairpin
structures are readily derived from the shorthand diagram by inserting the
two unpaired bases at all possible positions. It is worth noticing that all of
them are formed by the four-letter sequences, whereas only five of them appear
on  Interestingly, the stuctures formed by GC sequences are in the same
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sequence (with only one exception) as are the most common structures of AUGC
sequences.

5.3.3. GC Sequences of Chain Length n≤30

Data derived from folding all GC sequences into secondary structures have
been reported in detail [117,118]. We shall consider here mainly the chain
length dependence of the most prominent features of sequence-structure
mappings in order to be able to predict the behavior in the limit of long chains
and to eliminate thereby the finite size effects. First the fraction of sequences
forming no structure—i.e., the cardinality of the preimage of the open chain—
decrease exponentially with increasing chain length n. It already contains less
than 0.01% on  Second, careful inspection of the fraction of sequences
forming common structures allows us to extrapolate to long chains and leads
to the following conjecture. In the limit of long chains, almost all sequences
fold into common structures, which constitute only a minute fraction of all
structures, or, in other words, the fraction of sequences folding into common
structures approaches 1 in the lim n→8, whereas at the same time the fraction
of structures fulfilling the condition of being common goes to zero. The results
derived from exhaustive folding of binary sequences (GC and AU) with n≤30
still show tremendous finite size effects, but the general trends are already
clear at the long chain ends of the diagrams in Ref. 117.

5.3.4. Statistical Evaluation of Sequence Spaces with Chain Lengths n>30

Exhaustive techniques become infeasible when the total number of sequences
exceeds ~1010 and one has to resort to sampling techniques [116]. Neutral paths
(Sec. 4.3), for instance, can be used to detect neutral networks. The covering

TABLE 9 Structures of GC Sequences of Chain Length n=16 with Two Hairpins
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radius (Sec. 5.2). can be estimated by measuring the minimum distance that is
necessary to find a given structure from a chosen starting sequence and averaging
over the starting sequences and target structures weighted by their preimage
sizes. This provides an upper bound for the mean coverin g radius. Extensive
computer simulations reported in Refs. 70,116,120, and 127-129 provide strong
evidence for the existence of sequence space percolating neutral networks and
shape space covering.

TABLE 10 Structures of AUGC Sequences of Chain Length n=16 with Two
Hairpinsa

a For structures that are also formed by GC sequences, the rank is given in parentheses.
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5.3.5. Shape Space Topology

The topological (and possibly metric) properties of phenotype spaces are still
largely uncharted territory. In fact, the description of the genotype-phenotype
maps of RNA so far has made no reference to the structure of shape space
itself beyond a definition of equality of structures (Fig. 6).

To understand the sequence of phenotypic changes along an evolutionary
trajectory, however, it is necessary to know which phenotypes are accessible
from which genotypes. Accessibility can then be used to define a relation of
“nearness” among phenotypes, independently of their geometrical, biophysical,
or biological similarities [123,124]. In the simplest case, we might say that ψ
is accessible from φ if it is possible to jump from f-1 (φ) to f-1 (ψ) by means of a
point mutation. Shape space covering (Sec. 5.2) suggests that each structure
should be accessible from any other structure. However, sequence space is so
large that not all possible sequences are ever realized in the course of a
simulation run (or during the history of evolution). Fontana and Schuster
[124] argue that a more restrictive condition for accessibility is more suitable—
for instance, a minimum number of sequences in f-1 (ψ) that are neighbors of
sequences folding into φ

The evolutionary trajectories observed in computer simulations can be
regarded as a sequence (x0, x1,…) of those phenotypes on whose neutral
networks the population is concentrated during subsequent diffusion phases.
The question hence becomes whether there is a meaningful way of
distinguishing between continuous (smooth, expectable) and discontinuous
(surprising) evolutionary transitions. From a more abstract point of view,
continuity is a topological property of a map from one topological space into
another one. Having defined the topology by specifying a suitable notion of

FIGURE 6 Structural changes corresponding to continuous evolutionary transitions.
Shortening and elongation of stacks as well as opening of constrained stacks in
general lead to easily accessible structures. Closing a constrained stack, on the other
hand, leads to inaccessible structures and hence corresponds to discontinuous
transitions.
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accessibility, it becomes a matter of observation or computer simulation to find
out whether “real” evolutionary trajectories are in fact continuous. We find
that most evolutionary transitions are, indeed, continuous most of the time.
Rare discontinuous transitions are often associated with major structural
transitions [123,124,130]. We note, finally, that the topological notion of
continuity might sometimes be too restrictive. Weaker mathematical structures
such as filter spaces or convergence spaces, as introduced, for instance, in
Refs. 131–134, appear to be promising starting points for a generalization of
this approach.

6. CONCLUSIONS AND OUTLOOK

The lack of complementarity rules in discrete protein models makes the folding
problem much harder than in RNA and less straightforwardly accessible to
combinatorics. Some results, such as the relatively small extensions and
clustering of the neutral networks that have been observed in some lattice
models [11], are not very compatible with the simulations based on knowledge-
based potentials [135,136], suggesting that proteins and RNA behave in
essentially the same way. This discrepancy might be explained by the short
chains, n<30, and the two-letter HP alphabet used in the lattice models.
Whereas native-like proteins can be designed from reduced alphabets,
experiments [137] as well as computer simulations [135] suggest that two
letters are not sufficient.

The notion of neutral networks in RNA sequence space requires
modification when suboptimal conformations or folding behavior of molecules
are taken into account as an additional constraint. The degree of neutrality
will certainly be smaller than in the case of the minimum free energy structures.
Whether two folded RNA molecules are selectively neutral or not, after all, is
not only a matter of sequence-structure mappings. The answer also reflects
selection constraints and thus requires detailed information on experimental
conditions if one wants to deal with it in a quantitative manner.

Models of discretized RNA structures are inevitably based on the notion of
secondary structure, which restricts acceptable contacts by a base-pairing rule.
Although a rather crude structural concept, it has two highly relevant
advantages [35]: (1) for most RNA molecules the secondary structure is a
folding intermediate that becomes three-dimensional by the formation of
tertiary contacts; (2) the majority of tertiary contacts can be classified by a
few simple principles such as pseudoknots, terminal (non-Watson—Crick) base
pairs, base triplets, base quartets, and coaxial stacks. Making use of algorithms
that are not restricted by the conventional secondary structure concept, such
as the kinetic folding algorithm [81], these tertiary interactions can be
incorporated into structures. Thereby one would still stay within the realm of
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discreteness and at the same time approach a more realistic concept of RNA
structures.
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Protein Structure Folding and Prediction

William R.Taylor

National Institute for Medical Research, London, England

1. PROTEIN STRUCTURE

1.1. The Shapes and Sizes of Proteins

Proteins are linear heteropolymers that incorporate a sequence of the 20
naturally occurring amino acids. They vary greatly in length, from just a few
amino acids to many thousands of residues.* The larger extreme of the range
is usually confined to long (extended) fibrous proteins in which, typically, a
short unit is repeated many times. This unit can be from as small as three
residues (as in collagen) to about 100 (as in the muscle protein titan). The
proteins that are of primary interest in this chapter, however, lie in the middle
of the range, with lengths of several tens of residues to several hundred. They
tend to have more compact dimensions and are accordingly referred to as
globular.

This class includes the majority of proteins that perform the metabolic and
other active functions of the cell and also exhibit the greatest variety of

*Amino acids are referred to as residues when they are linked in a polypeptide chain. This
unexpected term derives from a description of the material left at the bottom of the test tube in the
early chemical analysis of the protein amino acid sequence.
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structure—hence their importance from both biological and physicochemical
viewpoints. A further class of proteins are intimately associated with the
phospholipid (bilayer) membranes and are of great biological importance in
cell-cell communication and environmental sensing because of their ability to
bridge the external and internal environments. Their structures appear to be
more limited (relative to globular proteins), either as a result of the constraints
imposed by the planar membrane or perhaps because we know the structure
of only a few members of this class.

and Kyte [2] for a more detailed approach.)

1.2. Amino Acid Properties

Before considering the structure of proteins in more detail, it is worthwhile to
review the individual properties of their constituent amino acids, because it is
the physicochemical properties of these that dictate how they will interact to

The most fundamental distinction among the amino acids is whether their
side chains incorporate “active” (or polar) atoms such as N, S, or O or whether
they are composed of “inert” hydrocarbon. The former class of atoms gives
rise to electronic bond polarization, allowing the possibility of forming
hydrogen bonds and participating in (usually catalyzing) chemical reactions.
By contrast, the hydrocarbon residues tend to form the core of the protein,
where their mutual repulsion of water (hydrophobic effect) allows them to
stabilize the overall globular structure by packing tightly together in a

When related protein sequences are aligned, the degree to which these
properties are conserved often provides a good guide to the role of the position
in the structure. Specifically, conserved polar residues are likely to be involved
in a specific function (ligand binding or catalysis), whereas conserved
hydrophobic residues are more likely to perform a structural role in the core.

Two residues, glycine (Gly) and proline (Pro), have unique stereochemical
properties and are often exceptions to this general trend. Glycine, which has
no side chain, can pack in the core, but it is also flexible (greater
conformational freedom around its main-chain torsion angles), making it
favored in tight turns on the surface of the protein. Proline, although
hydrophobic, is also often found on the surface because it has one of its
torsional freedoms fixed in a turn conformation, again making it favored in
surface turns.

1.3. Secondary Structure

The basic organizing principle of protein structure places the hydrophobic
residues in the core and surrounds them with a shell of hydrophilic (polar)

Copyright © 2004 by Marcel Dekker

dehydrated mass (Fig. 1).

(See Brändén and Tooze [1] for a basic introduction to protein structure

form the protein structure. (See Taylor [3,4] for a fuller analysis of this topic.)
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residues that provide an interface to the solvent. One complication of this
simple scheme, however, is that all residues also have polar atoms in their
main chain, which, like the hydrophilic side chains, cannot simply be buried
in the core.

A solution to this problem can be found by forming a hydrogen bond
between unlike charges (using carbonyl and amide groups from different parts
of the main chain: >=O-H-N<). When mutually satisfied in this way, the
bonded pair can then be buried away from solvent. One might imagine that
this solution could be achieved in an ad hoc manner (simply matching up
whatever pairs came nearby), but whether as a consequence of the complexity
of connecting such a network, or whether guided by divine symmetry, the
hydrogen-bonded networks found in proteins are remarkably ordered.

Hydrogen-bonded pairings are dominated by the shortest (unstrained) local
connection along the chain, bonding the carbonyl group of residue i to the
amide group of residue i+4, giving (when repeated along the chain) a helical

FIGURE 1 The hydrophobic core. A section (slab) has been taken through the core of
a small protein (PDB code: 3chy) and displayed (using RASMOL) to show the van
der Waals surface of all the (non-hydrogen) atoms. These are shown (using the defaut
RASMOL selections) gray for polar amino acids and black for hydrophobic amino
acids. The black hydrophobic core can be clearly seen, but (as with all “rules”
concerning protein structure) there are some exceptions, and a (gray) hydrophilic
residue can be seen in the core and a (black) hydrophobic residue on the surface.
The former probably is hydrogen bonded to another hydrophilic side chain or to main-
chain polar groups.

Copyright © 2004 by Marcel Dekker
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structure of period 3.6 residues known as the α-helix. The second, and almost
only, other solution of structural importance in proteins is to have two remote
parts of the chain line up to form a “ladder” of hydrogen bonds between
them. It is also a remarkable coincidence (some would say further evidence of
divine intervention) that the “ladder” of bonds can be formed when the
juxtaposed chains run either parallel or antiparallel. (See Reid and Franchini
[5] for a comprehensive survey of these constraints for protein design.)

1.4. Packed Layers

The units of globular protein are secondary structures that pack together to
form a hydrophobic core. Provided the protein main-chain atoms are tied up
in one of the two secondary structure types, a core can be constructed using
any mix of α or β building blocks. The incorporation of a β-sheet, however,
imposes a long-range constraint across the structure. The β-sheet has free
hydrogen bonds on its two edges that consequently prevent the sheet from
terminating in the core. This divides the core into two and, if considered more
generally, imposes a layered structure onto the further arrangement of
secondary structures in the protein. (See Figure 2 for examples.) (See Refs. 6
and 7 for further consideration of protein structure along these lines.)

FIGURE 2 Protein structures with one secondary structure type. (a) An all-β protein
(immunoglobulin) with two packed β-sheets. (b) An all-α protein (globin) showing
packed α-helices.

Copyright © 2004 by Marcel Dekker
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Seldom are more than four layers seen in proteins, and because these can
be composed of only one of two secondary structures (i.e., no mixed layers),
the possibilities are few enough to enumerate.

Two layers: BB; AB; AA
Three layers: BBB; ABB, BAB; AAB, ABA; AAA
Four layers: BBBB; ABBB, BABB; AABB, BAAB, ABAB, ABBA; AAAB,

AABA; AAAA

(These combinations allow for reversals, because proteins do not distinguish
top from bottom.)

This gives 19 possible combinations, but this is something of an
overestimate, because adjacent layers of α-helices are not always distinct. (The
helices lack the strict registration imposed by the hydrogen bonding through
the β-sheet.) Among these, not all possibilities are equally favored in nature;
among the three-layer options the ABA combination is very widespread,
whereas in the four-layer structures the corresponding ABBA structure is also
encountered frequently. (For a recent survey of the current state of known

1.5. Barrel Structures and βββββ-Helices

Other solutions can be found to tie up the “loose” hydrogen bonds on the
edge of a β-sheet. One commonly encountered solution is to twist the sheet so
that the two edges meet and can hydrogen bond to each other, forming a
closed barrel-like network of hydrogen bonds. This cannot easily be
accomplished with less than six strands. If only β-structure is used, then the
barrel must incorporate antiparallel pairings (for example, in the trypsin family
of structures, or completely antiparallel as in the calpactin family). However,
with a combination of secondary structure, α-helices can link one (open) end
of the barrel to the other and allow the formation of a predominantly or pure
parallel sheet. This arrangement is seen in the eightfold β- α-barrel ( βα)8, which
was seen originally in the enzyme triosephosphate isomerase (TIM*) and is

A barrel can also be formed with the β-strands running in the orthogonal
direction (leaving free hydrogen bonds on the open ends of the barrel). This
structure, however, completely dictates the course of the protein chain (as a
simple helix), giving little scope for evolutionary exploitation of the fold of
different functions. (See Ref. 9 for some examples.)

* This slightly contrived acronym was derived from the name of the son of one of the authors of
the structure!

Copyright © 2004 by Marcel Dekker
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1.6. Protein Topology

The preceding analysis of proteins as layers of secondary structure (forming a
hydrophobic core) neglected the path of the chain through the various layers
(frameworks or architectures) described above. Unfortunately for structure
prediction, the course of the chain through these frameworks is largely
unrestricted. Two constraints, however, are well observed. The strongest is
that two loops cannot cross on the same face between layers. The source of
this constraint is a simple consequence of the polypeptide chain: If two loops
cross, one will be shielded from solvent by the other, which will be energetically
unfavorable unless the buried loop can satisfy its main-chain hydrogen bonds.
Having done this, however, the loop is now a secondary structure, so the rule
that loops do not cross is preserved [10].

The second strong constraint derives from the chiral nature of the central
(α) carbon in each residue. This favors a particular (right) handedness for the
α-helix and a corresponding twist to the β-sheet. Together, this higher
propagation of the chirality results in a strong preference for connections
between strands in the same sheet to be right-handed (even if there is no

FIGURE 3 Eight-fold alternating β/α barrel protein. The protein chain spirals (as a
toroid) while alternating between β and α secondary structure types, giving rise to a
closed ring or barrel β-sheet in the center surrounded by a larger ring of α-helices on
the outside. The structure, first seen in the enzyme triosephosphate isomerase (after
which it is often named the TIM barrel) has been seen many times in unrelated
proteins.
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α-helix involved). The few exceptions to this rule are seen when the chain
meanders to a remote part of the structure (another domain) and the context
of the local constraint is lost [11] (Fig. 4).

1.7. Domain Structure

Large hydrophobic cores are not found in globular proteins, possibly because
of limitations in the folding kinetics and stability. Single compact units of
more than 500 residues are rare, with the typical size lying around half this
size (200–300 residues). Large proteins are then organized into units of this
size referred to as domains [12] (Fig. 5).

The definition of a domain is problematic. One suggestion is that if the
chain were to be cut, then the two parts would remain stable (with each having
its own hydrophobic core). With well-segregated domains (like beads on a
string) this is undoubtedly true, but with more closely interacting domains (in
particular, those in which the chain crosses between the domains more than
once) such an experiment cannot be carried out without exposing surfaces
that are not optimally evolved for solvation.

Various working definitions of domains have been derived, but in the more
difficult examples these seldom agree. The problem with all of these methods
is that they lack a sense of aesthetics, and either fortunately or unfortunately
(depending on your artistic vs. scientific leaning) this is clearly one of the
faculties that we (as humans) employ when we decide on the division of
proteins into domains. (See Taylor [13] for a recent effort and also references
to past approaches.)

FIGURE 4 Handedness in secondary structure connections. An α-helix linking two β-
strands (hydrogen bonded in a sheet) is shown as a backbone (α-carbon) trace in (a)
the common right-handed configuration and (b) the rare left-handed connection. The
different chiralities can be appreciated if the whole chain is viewed as a superhelix: In
the right-hand form, clockwise rotation would drive it into the page (like a screw or
corkscrew), whereas the same rotation would extract the left-hand form.

Copyright © 2004 by Marcel Dekker
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2. PROTEIN FOLDING

2.1. Folding In Vitro and In Vivo

Proteins fold spontaneously, and many can be unfolded (denatured) and
refolded back into their native state (usually indicated by restoration of
activity) [14]. In the cell the situation is slightly more complicated, because
there are a variety of other proteins (chaperonins) that aid the folding process
and yet another group that can modify the protein structure during or after
folding (posttranslational modification). (See Ref. 2 for a comprehensive
survey of the latter.) It is generally accepted that chaperonins function by
modifying the environment of the folding protein and that their role is mainly
to prevent intermolecular interactions that can result in tangling and
misfolding. Being a generic agent, they have no information capacity to
specifically direct the folding of individual proteins. A similar argument applies
also to the posttranslational modifications. This implies that the complete
information encoding the final three-dimensional form of the protein lies in
its sequence of amino acid residues.

There has been much debate over the years on the mechanisms of protein
folding. (See Ref. 15 for a review of some aspects of protein folding from a
computational viewpoint.) One model is that the hydrophobic core nucleates

FIGURE 5 Simple and complex domain connections. (a) Two immunoglobulin domains
linked by a single connection. (b) Two more closely packed domains (arabinose-
binding protein) between which the chain passes three times. (The linkers have been
drawn thinner for clarity.)

Copyright © 2004 by Marcel Dekker
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and the secondary structures “grow” out of it, simultaneously expanding the
core (Fig. 6). Alternatively, it can be argued that the secondary structures
form and pack (condense) together to form a core, allowing some limited
diffusion and rearrangement along the way until the correct fold is encountered
(Fig. 7). Almost all possible intermediate variants along these lines can be
imagined (and have probably been proposed). An attractive simplification
containing elements of both models (but lying closer to the condensation
model) is the model of Dill and coworkers; in which local hydrophobic residues
“zip” together, forming ever more compact structures [16].

Only with the application of NMR have we been properly able to “see”
snapshots of the folding process. This has revealed partly formed, packed
secondary structures (a bit of both of the above models). (See Ref. 17 for a
review of some recent papers reporting these results.)

FIGURE 6 Protein folding by accretion. An impression of the folding of pancreatic
trypsin inhibitor by the accretion of stable structure (thick lines) around a nucleating
core. (Thin lines indicate regions of variable structure) (a) A hydrophobic core is
formed from a three-strand β-sheet and a hydrophobic residue near the carboxyl
terminus. (b) The sheet grows, and α-helices grow on its surface. (c) The molten
globule state, which, as in Figure 6, compacts to give the native structure (d).

Copyright © 2004 by Marcel Dekker
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2.2. Theoretical Models of Folding

From kinetic studies it appears that the protein can attain a globular state
very quickly but must then wait a relatively long time for the exact packing
interactions that are seen in the native structure to be attained. This
intermediate state has been termed the molten globule, and it seems to be
essentially native-like in terms of the path of its chain. Although some time
may be required to search through all the possible side-chain packings (even
in the constrained molten globule state), a factor contributing to the

FIGURE 7 Protein folding by condensation. An impression of the folding of pancreatic
trypsin inhibitor by the initial formation of seed secondary structures. This is slmilar to
the hydrophobic “zipper” model of Dill and coworkers (see text). The backbone trace
is shown as a thick line where stable structure has formed (thin lines indicate regions
of variable structure). (a) Secondary structures nucleate (two α-helices and a β-strand
“hairpin”). (b) The structures grow and are drawn together as the linker regions
become shorter. (c) A reasonably compact structure is attained (equivalent to the
molten globule state). (d) After side-chain reorientation, the native compact state is
achieved.

                   (c)                                                          (d)
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perseverance of this state may be the propensity of prolines to flip the
orientation of their peptide bond. Clearly, the native structure cannot be
attained until all prolines have been “frozen” into their native conformation
(normally trans).

Although the molten globule allows side-chain packing rearrangement, it
is likely that at this stage the overall fold of the protein has become fixed (for
example, it is hard to imagine rearrangement of a β-sheet strand order). The
question still remains as to how the protein gets to this stage. If it follows a
“blind” conformational search through all the possible conformations allowed
under the flexibility of the polypeptide chain, then, as Leventhal noted, folding
could not happen. (See Honig [15] for a review of this topic.) This implies that
the chain must follow a directed folding (or kinetic) pathway. A simple model
for investigating this is the “hydrophic zipper” of Dill in which local
hydrophobic interactions zip together into larger and larger assemblies.
Elaboration of this approach, viewed as a two-dimensional energy landscape,
leads to the impression of a folding funnel (or perhaps a more complex
network of gullies) that directs the conformational evolution of the chain
toward the native structure represented by a deep hole. By contrast, the
equivalent energy landscape for the undirected conformational search has been
likened to the search for the hole over an almost flat golf green [18,19].

As with factors that stabilize the native protein structure, the factors that
determine the direction of its folding pathway must also be under selection
pressure during evolution. From theoretical studies, it has been argued that
the sequences that give rise to fast folding should be favored (i.e., those that
create the deepest, most unique funnel to the native structure). As with most
aspects of protein folding, the equation is never simple. It might seem that this
ideal could be attained simply by stabilizing the native structure, but for every
mutation that stabilizes the native state it is necessary to check that it does not
also stabilize any competing state. This is virtually impossible to do with any
realistic model of a protein, but it can be explicitly tested using very simple
models of protein structure in which every conformational possibility can be
enumerated. The favorite model is a 3×3×3 box filled with a chain consisting
only of hydrophobic and hydrophilic residues [20,21]. Running many
simulations of folding with this simple model revealed that the fastest folders
are those that have the biggest energy gap between the native structure and its
nearest rival folds.

2.3. Folding In Silico

The ability of the protein chains to self-organize and attain their own tertiary
structure (even if they have “a bit of help from their friends”) has given rise to
the hope that the native structure might be calculated from first principles (ab
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initio) using only the laws of physics and chemistry. Despite many attempts,
including the inclusion of realistic amounts of solvent, this goal has never
been attained for any structure of a reasonable size. One argument advanced
for the failure of this approach is that the formation of a hydrophobic core is
an entropic effect and the enthalpic components roughly balance. Taking a
simple tally, for every hydrogen bond found in secondary structure, two
protein-water bonds must have been broken and one water-water bond
formed. In short, (P–W)2→P-P+W–W, and taking the bonds as of equivalent
energy, the enthalpic sum is zero. In addition, the entropic components are
not obviously in favor of folding either. As the hydrophobic core condenses,
partially restricted (ordered) water is released to bulk solvent (disordered),
thus increasing the entropy; however, as the chain compacts, its degrees of
freedom are constrained and the side chains become fixed; both effects that
decrease entropy. The final energy of the folded protein is therefore a fine
balance between the difference of large enthalpic and entropic components,

15 for various pointers into this large body of literature.)
Suggestions to overcome these problems have included a more accurate

energetic model (perhaps involving quantum-mechanical approximations) on
the enthalpic side; for the entropic component, simulating the protein in
sufficient bulk solvent for a long time period has been considered necessary. A
long period in folding terms is the time it takes proteins to fold in vitro or in
vivo (typically from microseconds to milliseconds). For many years this seemed
an unobtainable goal (simulations encompassed only the equivalent of
picoseconds); however, with the ever-increasing power of computers, this was
recently attained (abeit, only for a small protein). Despite this achievement,
the native state of the protein was only partially attained.

3. PROTEIN STRUCTURE PREDICTION

The effective failure of the ab initio approach to protein folding (discussed in
the previous section) does not mean that it is impossible to gain some idea of
a protein structure from its sequence. The approach that has yielded the most
practical advantage simply looks at the structures we know, together with
their sequences, and attempts to derive rules, or correlations, between the
two. This approach, commonly referred to as empirical, is intellectually less
satisfying than the ab initio approach because it does not require
understanding of the physical processes tht gave rise to the correlation.
However, because many of these processes were until recently unobservable
(such as the details of the folding pathway), there is some advantage in using
an approach that does not rely on this knowledge.
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The empirical approach can be divided into two reasonably distinct
branches. One is based on the correlation of (sequentially) local amino acid
composition with local structure (typically secondary structure type) and
makes little claim to predict the overall fold of the protein. The other is based
on the alignment of sequences; when one of these sequences has a known
structure, a prediction of the overall fold can be made. Again, all intermediate
possibilities can be found. For example, only local alignments might be found
corresponding to a fragment of structure, which, in the end, might be only a
piece of secondary structure, at which point the two approaches converge.

3.1. Structure Preference Statistics

As noted above, amino acids have a “preference” to be either in or out of the
hydrophobic core. For less obvious physical reasons, a preference can also be
found for some acids to adopt a particular type of secondary structure. These
preferences have been variously encoded over the years with a view to
predicting secondary structure type, given the protein sequence. From some
poor beginnings, these methods are now reasonably accurate and attain their
best performance when multiple, aligned sequences are used [22]. One of the
state-of-the-art approaches uses a complicated neural net method and achieves
an average accuracy approaching 80% [23,24] However, as Zvelebil et al.
[22] point out, this good average is also accompanied by a large standard
deviation.

A reasonable prediction of exposure to solvent can also be made by using
similar methods that can in turn be used to infer the presence of a particular
secondary structure based on patterns of exposure along the sequence. The α-
helix is often half-buried in the core, leading to a sequential pattern of exposure
with roughly the same period as the α-helix (3.6 residues/ turn). Similarly,
many β-sheets have one buried face, leading to an alternating pattern of
exposure.

Unfortunately, none of these methods that are based on the properties of
relatively local parts of the sequence can place any constraints on the overall
fold of the chain. The best that can be expected is perhaps that a predicted
turn will be short enough to constrain two secondary structures to pack
together. The sequential arrangements of secondary structures along the chain
nevertheless gives some idea of the class or structure that can be expected,
and, as was seen in Sec. 1.4, this knowledge might confine the protein to one
of the few different architectures. Again as we have seen, knowing the
architecture (or framework) places few constraints on the possible folds, but
with small proteins some useful predictions can be made [25,26]. (See also

reviews.)
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Both secondary structure prediction and methods that try to pack the
secondary structures together, while perhaps not producing a unique solution,
greatly constrain the number of possible solutions. If some additional
constraints can be found (for example, common ligand binding residues or
disulfide bonding partners), then the number of folds that are consistent with
these can be much smaller, possibly only one [28]. This was investigated using
a general tertiary structure prediction method based on distance geometry,
and it was found that two such constraints per secondary structure were
enough to specify the fold. Again, unfortunately, such data are not generally
available (except from NMR experiments), and where they can be found they
are generally not ideally distributed over the structure [29].

A step toward deriving general constraints from the sequence was made
with the investigation of amino acid pairwise interaction preferences (such as
those derived by Sippl [30], which are commonly used in the threading
methods described below). Although these can restrict the pairing of residues
in the structure, they cannot distinguish, say, one pair of valines as any more
likely to be found together than any other, which, in a prediction context, is
often little better than saying that there is a core of hydrophobic residues.
There was some optimism that these vital specific pairwise interactions might
be generally derived from the analysis of residue covariation within multiple
sequence alignments. However, more recent analyses have cast doubt upon
whether this approach can provide data of sufficient specificity [31,32]. Unlike
RNA (where residue correlation provides good information), it seems likely
that proteins are too “soft” and that if a residue mutates there is no strong
pressure for any specific neighbor to compensate for it. Instead, the whole
structure might simply shift a little, with perhaps any added strain being
compensated for later at a residue position that is not in direct contact with
the original mutation site.

3.2. Alignment-Based Methods

3.2.1. Sequence Alignment and 3D–1D Matching

The surest way to predict a protein structure is to find a protein of known
structure that shares some sequence similarity with the sequence of the protein
one wishes to investigate. Because structure is more strongly preserved under
evolution than the sequences that determine it, any reasonable degree of
sequence similarity can lead to a good prediction of structure. The key in this
approach is to decide what is reasonable.

At one end of the similarity scale (close to 100%), clearly what constitutes
a reasonable alignment is obvious. As the sequences diverge, in particular
when their difference is greater than 50% in residue identity (counted over all
aligned positions), the intuitive guide of “obvious” begins to break down.
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Indeed, “reasonable” alignments have been made between sequences with
over 50% identity that are known from structure to have different folds.

An approach that alleviates much of this difficulty is to align more than
two sequences together. A simple strategy for this is to start on firm ground
with the most obvious pair and work outward in levels of increasing difficulty.
One can also start at more than one point and later align the subalignments.
This latter is the approach adopted by most of the practical multiple sequence

With such data it becomes more obvious which positions are conserved and
in what way, allowing like positions to be matched up with greater certainty.

Into this equation, precalculated secondary structure and exposure can also
be introduced, and, depending on the degree to which the sequences are similar,
these predicted components can be the main determining factors in the
alignment [35,36]. This approach of using predicted structure can also be
used with sequences on the one hand and a structure on the other. Indeed, the
approach is quite general, and any mix of sequences and structure can be
used.

3.2.2. Molecular Modeling and Threading

Aligning a sequence to a structure also has independent roots in molecular
modeling (sometimes call modeling by homology). This involves “mutating”
the side chains of a proteins structure by using the corresponding sequence
position of another. This procedure requires a starting alignment, but it can
be modified under the influence of the physical constraints imposed by the
framework structure [37,38]. This “by-hand” approach has become
increasingly automated with methods that combine the three-dimensional
fitting aspect simultaneously with the alignment. A major application of this
technique is in scanning the known folds to see if a novel sequence has a
significant fit (Fig. 8).

This is a computationally difficult procedure, and various heuristic
algorithms have been devised. Most simply, one can pick a new residue (fix a
point in the alignment) with reference only to the existing structural positions,
do this for each position, and then repeat. This is known as the “frozen”
approximation. Alternatively, more sophisticated algorithms can be used that
approximate a more simultaneous solution of all positions [39]. Where there
is any clear sequence similarity, the choice of algorithm makes little difference;
and where there is no clear sequence similarity, the rough models of residue
interaction, combined with the limitation of considering only pairwise
interactions, obscure any performance advantage of the different matching
algorithms.

The term “threading” has generally come to be applied to all methods that
match a sequence to a structure, whether they have their roots in sequence
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alignment or molecular modeling. However, the term was originally used to
describe the direct matching of a sequence to a three-dimensional (3D)
structure [39], and I consider the term “3D-1D matching” to be a better
description for the alignment of derived (predicted) properties. Rather than
consider detailed residue side-chain interactions, these methods employed
normalized preferences for residues to pack, sometimes called mean force
potentials, that were calculated from extensive analysis of the structure
databank [30]. Other approaches have attempted to restrict the interactions
to residue contacts, but there is no clear advantage either way. The current
trend with these methods is toward a more comprehensive inclusion of all
available data, including multiple sequences, and predicted secondary structure
along with any remnant of sequence similarity [40,41].
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FIGURE 8 Outline of threading used for fold recognition The sequence of unknown
structure (a) is compared (fitted or threaded) onto each of a library of representative
known structures (b). Each of the resulting models has an associated score or energy
that is plotted as a frequency histogram. Good matches should have significantly low
energy, and the best can be taken as the predicted fold (c).
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1. INTRODUCTION

Regulation of gene expression in higher organisms is achieved by a complex
network of transcription factors and their target genes. Large amounts of
sequence information for genes and transcription factors from genome
analyses are presenting a great challenge in the field of bioinformatics. In spite
of the tremendous amount of sequence and structural data for transcription
factors, the mechanisms of target recognition by transcription factors are not
well understood. Sequence similarity searches are the most commonly used
methods for extracting functional information from sequence data. However,
we are only beginning to discern meanings encoded in nucleic acid and protein
sequences. Structural data contain valuable functional information as well.
Inspection of structural data of protein-DNA complexes reveals that there are
no simple rules for the interactions between amino acids and base pairs, i.e.,
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the interactions are more redundant and flexible than expected. Sometimes
conformation of DNA plays an important role in protein binding. Because
transcription factors usually bind to multiple target sequences and regulate
multiple genes, cooperativity with other factors should play important roles
in target recognition. Because of the contributions from these multiple factors
to protein-DNA recognition, target prediction is a rather complicated problem.
To tackle such a problem, we need to use as much information as possible.
Here, we describe several methodologies of target prediction.

The methods for predicting target sites can be classified into four methods
according to the type of information used:

1. The sequence-based method uses sequence information obtained from
known binding sequences. From the alignment of collected sequences,
a consensus sequence pattern or profile is constructed and used to
scan the database for finding potential target binding sites.

2. The �G-based method is based on experimental measurements of
binding between protein and DNA. The binding affinity data for
systematic single-base mutations to a consensus binding site are used
for target prediction.

3. The structure-based method is based on the statistical analysis of the
structural database of the protein-DNA complex. Empirical potential
functions for specific interactions between bases and amino acids are
derived and used to evaluate the fitness of sequences to the complex
structures of particular transcription factors by a combinatorial
threading procedure similar to protein structure prediction.

4. The ab initio method does not rely on experimental data but uses
computer simulations to derive contact potentials between bases and
amino acids, serving to complement the structure-based method.

The first and second methods do not use structural information, whereas the
last two methods are based on the structure of the DNA-protein complex or
base-amino acid interactions. The first method is currently the most commonly
used of the four. Thus, we will not go into details of this method (see Ref. 1 for
review) and will describe the other methods in more detail.

Currently, complete genome sequences have been obtained for many
different organisms. Now the main focus of interest is to extract functional
information from these genomes. Finding target genes for transcription factors
at the genome level will lay a basis for the analysis of the gene regulatory
network. In the final section of the chapter we describe a strategy for the
application of target prediction to functional genomics.

Copyright © 2004 by Marcel Dekker



DNA-Protein Interactions 243

2. SEQUENCE-BASED METHOD

The sequence-based method relies on sequence information obtained from
known binding sites of transcription factors. Multiple sequence alignment of
those binding sites usually reveals that bases at some positions are more
conservative than others. Assuming that the conserved sites are more
important for specificity, we can derive a so-called consensus sequence pattern
(e.g., IUPAC ambiguity strings) and more quantitatively a position-specific
weight matrix based on the frequency of the occurrence of bases at each
position [2–4]. The simplest way to find potential binding sites is to use pattern
matching with the consensus sequence pattern [5]. However, this digital
detection method may miss many true binding sites, because pattern matching
is too sensitive to base changes. On the other hand, the weight matrix
calculates the probability for a protein binding to a given sequence; thus it is
more tolerant of base changes. More rigorous treatment by statistical
mechanics of protein-DNA binding enables one to calculate relative binding
affinity for any sequence [6]. Several hundred weight matrices have already
been constructed for different transcription factors and compiled in databases
such as TRANSFAC [7]. There are also several tools such as SignalScan [5,8],
MATRIX SEARCH [3], MatInspector [4], and ConInspector [9] to find
binding sites from a sequence database. These tools are widely used for target
prediction (see Ref. 1 for review).

The sequence-based method is quite straightforward, but its validity
strongly depends on the quality of the sequence information used. Some
binding sites were identified as targets for transcription factors from in vivo
experiments, whereas others were derived from in vitro screening procedures
for particular transcription factors. Although this method was shown to be
successful for some simple systems such as bacterial promoters [10], its
accuracy for general use needs to be tested. The weight matrices for eukaryotic
transcription factors are typically defined in a short range of sequences,
indicating that the intrinsic specificity is rather low. This may be partly because
the synergistic action of multiple transcription factors on the same promoter
may be the strategy for the complex regulation of gene expression. Thus,
screening of binding sites of a single transcription factor often produces many
false positives and false negatives. To minimize those false positives and false
negatives, it is critical to optimize the selection criteria by adjusting threshold
parameters. There have been some attempts to automate the adjustment
[4,11,12]. However, because the binding of a transcription factor to a given
site is likely to be context-dependent, completely automated adjustment will
be very difficult.

There may be several ways to improve the method. There have been some
attempts to incorporate physical properties of DNA such as conformational
properties and stability into the prediction scheme [13,14]. These additional
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pieces of information may enhance the accuracy by incorporating some
cooperative effects among different sequence positions. Furthermore, longer
range cooperativity through DNA bending, mediating molecules, etc. may be
caused by the synergistic action of multiple transcription factors on the same
promoter (see later sections for more discussion). Therefore, considerations
of other transcription factors and the context of neighboring sequences will
increase the accuracy of binding site prediction. Some tools have incorporated
such information [15].

Roulet et al. [16] evaluated currently available prediction tools for a
particular transcription factor by comparing their results with experimental
binding affinities and found that the values predicted by various methods are
internally correlated with one another rather than with the experimental
values. The sequence-based method relying only on sequence information may
suffer from the same problem as other sequence-based predictions of function
and structure, which lack information on physical processes. Thus, it
is desirable to incorporate other kinds of information into the prediction
scheme.

3. �����G-BASED METHOD

The sequence-based method is based on the assumption that the conserved
sequences are important for specificity in DNA recognition by proteins. This
assumption will be valid if the sequence selection during evolution has reached
an equilibrium under the pressure of protein binding. In reality, however,
conserved bases among a set of sequences do not necessarily reflect specificity.
If multiple proteins bind to the same site or different binding sequences
overlap, then the situation becomes more complicated. As noted above, the
accuracy of the sequence-based method will depend on the quality of sequence
data. On the other hand, the binding affinity data for systematic single-base
mutations at a consensus binding site can be used to derive matrices similar to
the weight matrices in the sequence-based method. Those matrices are based
on physical interactions under equilibrium conditions, and their accuracy
depends only on experimental errors. Thus, they will be more reliable than
the sequence-based weight matrices.

3.1. Binding Free Energy Change and Specificity

The binding free energy change due to single-base mutations is calculated
with the equation
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where R is the gas constant, T is temperature, and K(wild) and K(mutant) are
binding constants for wild-type and mutant DNA, respectively. If this quantity
is obtained for the complete single-base mutations within the binding region,
it will define a kind of matrix in terms of base position vs. base type. Thus, it
can be used for the prediction of potential binding sequences for the protein.
These ��G data are available for only a limited number of cases such as
phage Cro [17] and � repressor [18], c-Myb transcription factor [19], and
ethylene-responsive element binding proteins [20]. The original purpose
of these analyses was to examine the specificity of the interactions involved in
a DNA-protein complex, because the ��G values reflect the extent of
specificity.

Compared with the structures of the DNA-protein complex, the
relationship between structure and specificity can be examined in a
quantitative manner. Figure 1 shows an interesting example of the comparison
between specificity and structure for Cro and � repressor, which serve as a
genetic switch in the phage life cycle. Despite the fact that these regulatory
proteins have the same helix-turn-helix motif [21,22], bind as a dimer, and
recognize the same six homologous operator sequences (OR1-3, OL1-3), the
specificity represented by the pattern of ��G values is quite distinct; i.e., in
the case of Cro, most specific interactions come from the recognition helix of
the helix-turn-helix motif, whereas � repressor uses N-terminal arms for the
specific interactions rather than the helix-turn-helix region and recognizes the
sequences in an asymmetrical manner. These differences enable the two
proteins to distinguish sequences of the six operators.

3.2. Application to the Target Prediction

The spin-off of this binding analysis is its application to target prediction. In
order for this method to be applicable to the prediction, however, the ��G
values have to be independent of one another, i.e., they must be additive. The
additivity of ��G values has been tested for Cro and � repressor by multiple-
mutation experiments. These analyses have shown that summations of ��G
values agreed, with a few exceptions, with experimental measurements quite
well. The experimental ��G values seem to become constant when they exceed
a certain limit (in the case of Cro this corresponds to about 5 kcal/mol). This
indicates that the binding mode is changed from specific to nonspecific, where
the binding no longer depends on sequence. Cro and � repressor both recognize
OR1-3 and OL1-3 and bind with different affinities. The sum of ��G values
agrees with the binding orders of Cro and � repressor to the operators almost
perfectly (see Fig. 2). These results suggest that the binding affinity of these
proteins to any sequences can be predicted very accurately by adding the ��G
values. The calculation of binding affinity of Cro for every base frame in the
entire � phage genome (48 kb) has shown that OR3 is the strongest binding
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FIGURE 1 Binding free energy changes (��G) due to systematic single base
substitutions for Cro (a) and � repressor (b). The sequence shown is OR1 with a
boxed consensus sequence. The deviations from the consensus are shown by broken-
line boxes in (b). The structures of these proteins complexed with DNA (6CRO and
1LMB for Cro and � repressor, respectively) are aligned with the ��G profiles. (��G
values were taken from Refs. 17 and 18.)
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site in the genome and that the OR3 binding site is far from the tail of the
distribution in the histogram, as shown in Figure 3. These results demonstrate
the accuracy and sensitivity of the method.

The �G-based method has also been applied to c-Myb transcription factor
[23], which is an oncogene product. The binding experiment and structural
analysis for this protein have shown that the specific interactions are rather

FIGURE 1 Continued.
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localized in a narrow range (7 bp from +2’ to +8’ in Fig. 4), compared to the
prokaryotic repressors described above. The specific binding region of
ethylene-responsive element binding protein in plants is also narrow (about 6
bp). This low intrinsic specificity may be due to the required synergistic action
of multiple transcription factors on the same promoter for the complex
regulation of gene expression. Therefore, finding potential target sites for
transcription factors will be more complicated than in prokaryotic systems.
The c-Myb protein has been known to activate or repress the transcription of
several potential target genes. We have tested the method for the known
binding sites in those promoters [23]. The predicted binding sites agree with

FIGURE 2 Comparison between predicted ��Gtot, which is the sum of ��G values
(filled bars) and experimental values (hatched bars) for the binding of Cro (a) and �
repressor (b) to six operators. OR1 was used as a reference.
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many putative binding sites of known target promoters. However, there are
some binding sites not predicted by the analysis. When those sequences are
aligned, bases at a particular position deviate from the consensus sequence
derived from the binding analyses. In light of the structure of the Myb-DNA
complex, these results indicate that different DNA-binding modes may be
used by c-Myb to recognize different classes of binding sites. Nevertheless,
this method has enabled us to screen the sequence database for potential Myb-
binding sites and find sequences of several promoters that had not been
identified experimentally but could be targets for c-Myb.

The Myb case provides an opportunity to compare the sequence-based and
�G-based methods, because, in addition to the binding data, sequence
information exists on the target sites that was derived from experiments. The
results of the two methods may be compared in terms of the probability of
base occurrence at each position. In the case of the �G-based method, the
probability can be calculated from the ��G values by the Boltzmann relation.
The probabilities calculated from the alignment of 60 sequences derived from
random-oligo screening experiments correlated well with those from the ��G
data with a correlation coefficient of 0.94. When the number of aligned
sequences is reduced, the correlation decreases monotonously. In order for
the correlation to be higher than 0.9, the number of aligned sequences must
be greater than 30. This result indicates that a sufficient number of sequence
entries are required to derive high quality weight matrices for the accurate
target prediction by the sequence-based method.

FIGURE 3 Histogram of ��Gtot for the binding of Cro to the entire genome of �
phage. The position of ��Gtot for OR3 is shown by an arrow.
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FIGURE 4 The ��G profile for c-Myb. The structure of c-Myb complexed with DNA
(1MSE) is aligned with the ��G profiles. ��G values were taken from Ref. 19.
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3.3. Limitations and Prospects

The cooperative binding of Myb points out some limitations of the �G-based
method. The ��G values may not hold strict additivity for some proteins that
exhibit cooperative binding. The breakdown of the additivity may arise from
cooperative interactions within a single binding site or cooperative interactions
among different binding sites. As an example of the former case, even small
conformational changes in the DNA brought about by a base substitution
could affect substitutions at other positions in the same site. In particular, the
substitution of a base pair will change the local conformation or flexibility of
DNA, depending on which base pair is adjacent to the mutated base pair.
Also, long-range conformation changes such as DNA bending may be caused
by specific sequences. On the other hand, eukaryotic transcription factors
such as c-Myb have multiple binding sites in promoters, and they may interact
with themselves, other transcription factors, and coactivators in the
transcriptional machinery. Therefore, a certain level of cooperativity is likely
to occur in the binding to DNA. In the case of c-Myb, it has been reported
that an oligonucleotide sequence containing a duplicated Myb-binding motif
showed a higher affinity than the sequence with only a single Myb-binding
motif [61]. Furthermore, chromatin structure in the nucleus may introduce
more complex cooperativity than in the in vitro situation. The role of
cooperativity in DNA-protein interactions requires further investigation. The
relationship between cooperativity and specificity in some DNA-protein
complexes will be discussed in the next section.

4. STRUCTURE-BASED METHOD

Owing to the progress of X-ray crystallogphic and NMR spectroscopic
techniques, structural data on the protein-DNA complex have been rapidly
increasing, and more than 600 complexes have been registered in the Protein
Data Bank (PDB). These structural data provide us with a rich source of
information about the interactions between amino acids and base pairs at the
atomic level. However, we have not fully utilized the functional information
of these data. Several classes of DNA-binding proteins with distinct DNA-
binding motifs have been revealed. They show a variety of interactions between
proteins and DNA. Some interactions such as Asn-A and Lys-G are frequently
observed in the complex structures. For members of a single structural family
or for a group of families that interact in similar ways with DNA, some rules
about the base-amino acid interactions have been proposed. However,
statistical analyses of structural databases have shown considerable degrees
of redundancy in the specific interactions between amino acids and bases,
that is, the same amino acids often interact with different bases and vice versa
[24,25]. Furthermore, the analysis of structural data also shows that the
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position and conformation of amino acid side chains are widely distributed in
space around base pairs, as shown in Figure 5. Thus, strict code-like rules are
not likely to exist for protein-DNA recognition [26], and a rule-based
approach [27,28] may not be effective in the prediction of binding sites. The
spatial distributions of side chains around base pairs indicate a possibility
that the distribution may be converted to energy potential similarly to the
contact potential between amino acids in protein structures and can be used
for target prediction. In this section we describe the derivation of the potential
and its application to target prediction.

4.1. Database Analysis and Derivation of Contact Potential

To derive the statistical potential of interactions between bases and amino
acids, we analyzed the amino acid distributions around each base using 52
selected structures of protein-DNA complex [25]. As shown in Figure 5, we
defined a coordinate system by taking as the origin the N-9 atom for A and G
and the N-1 atom for T and C. We considered the amino acids within a given
box, and the box was divided into grids. Because the sample numbers are not

FIGURE 5 Distribution of Asn side chains around A. C� of the amino acid is shown by
a larger sphere. The definition of a coordinate system for amino acids around a base
is shown by the three axes. Amino acids within the box are considered for creating
potentials.
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where mab is the number of pairs a and b observed, w is the weight given to
each observation, ƒ(s) is the relative frequency of occurrence of any amino
acids at grid point s, and gab(s) is the equivalent relative frequency of occurrence
of amino acid a against base b. R and T are the universal gas constant and
absolute temperature, respectively. Here we used a box of |x|=|y|=13.5 Å and
|z|=6 Å and a grid interval of 3 Å, which was determined by examining various
intervals.

Figure 6 shows the typical potential maps of Asn-A and Asp-A projected
onto the purine plane. In Figure 6, the dark regions show that the C� atom of
Asn frequently appears at coordinates (0, -6) and (9, -6) in the minor groove
as well as (0, 9), (3, 9), and (6, 9) in the major groove. By contrast, the
distribution for Asp does not show a strong positional preference around A.
Adenine has one acceptor (N7) and one donor (N6) in the major groove and
one acceptor (N3) in the minor groove. Asparagine can form a double
hydrogen bond with A in the major groove, so that the distribution of C� of As
is highly restricted to the dark region. On the other hand, Arg and Lys, which

yet very large, we first considered the information about C� atoms. Then we
transformed the distributions of C� atoms of amino acids into statistical
potentials defined by the equations [29]

FIGURE 6 The potential maps of Asn-A and Asp-A projected onto the purine plane.
Dark regions show preferable C� positions of the amino acids.
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often interact with bases, are widely distributed around the bases because their
long side chains can accommodate to arrange their tip atoms to form a
hydrogen bond with a base [25]. In this way, different amino acids show different
distributions around each base. The potentials derived from the distributions
for all combinations of amino acids and base pairs will be useful in predicting
target DNA sequences by regulatory proteins.

4.2. Sequence-Structure Threading

Here we will describe how the potentials can be used to predict target DNA
sequences for regulatory proteins. Statistical interaction potentials between
amino acids derived from the protein structure have been used for screening
potential sequences that fit with a given structure (3D–1D matching) or for
screening structures that fit with a given sequence (threading method). These
methods have been successfully applied to the prediction of the 3D structure
of proteins. We surmised that the structures of protein-DNA complexes could
be used to predict DNA target sites for regulatory proteins because determining
DNA sequences that bind to a particular protein structure should be similar
to finding amino acid sequences that fold into particular structures. We can
calculate relative energy changes by using the potentials for any sequences
against a given protein-DNA framework, where the following coordinates
are used: C� of protein; N9, C4, and C5 of A and G; and N1, C2, and C4 of T
and C. An energy value summed over the sequence in the framework represents
a kind of fitness of the DNA sequence with the complex structure. By threading
different DNA sequences on the protein-DNA framework and calculating the
total energy, we can estimate the difference in the fitness among the sequences
quantitatively. We can also thread different protein sequences on the
framework and estimate the fitness of the sequence against the structure. Here
we assume the additivity of the interaction energies for simplicity, which was

There will be several applications of this method, and we describe the
following analyses:

1. One of the most interesting aspects of the structure-based method is
that it opened a way to examine the relationship between structure
and specificity in a quantitative way. By comparing the energy of the
target sequence against those of random sequences, we can quantify
the specificity of the protein-DNA complex by a Z-score. This enables
us to examine the structural effects such as DNA deformation and
cooperativity on the specificity.
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2. We can scan the genome sequence base by base by using a particular
protein-DNA complex structure, calculate the energy at each position,
and find potential binding sequences.

3. We can design sequences of both proteins and target sites for the
purpose of changing the specificity.

4.3. Relationship Between Structure and Specificity

Protein-DNA binding is usually accompanied by certain conformational
changes or deformation of protein and DNA. Thus, conformational flexibility
of protein and DNA should be an important factor in determining a good
structural match upon complex formation. In the case of c-Myb oncoprotein,
the flexibility and stability of its DNA-binding domain have been shown to
affect the DNA-binding activity [30]. The flexibility of DNA is sequence-
dependent [31,32], and it can affect the binding affinity with protein as well.
For some DNA and proteins, the structures of both free and complex forms
have been solved. They show that DNA in the complex form is usually
deformed from the canonical B form, more than the proteins in the complex
form [33,34]. Here we show by several examples that the statistical potential
is sensitive enough to detect the difference in structural deformation as the
specificity difference.

To quantify the specificity, we evaluated the Z-score by calculating energy
against 50,000 random DNA sequences. The Z-score is defined by (X-m)/σ
in the histogram, where X is the total energy of a DNA sequence in a
complex form, m is the mean energy over 50,000 different combinations,
and a is the standard deviation of the energy. For example, a Z-score of -3.0
means that there are potentially one or two DNA sequences that are better
fit to the framework among 1000 random sequences. We calculated the
histogram for nine different protein-DNA frameworks (Fig. 7). The average
Z-score was-3.1.

4.3.1. Specificity Difference in Cognate and Noncognate Binding

It is interesting to compare two structures, cognate and noncognate complex
structures, in order to understand what is important for specific binding and
what is different between them. For the target DNA sequence of glucocorticoid
receptor (GR), the cognate (PDB: 1GLU) [35] and noncognate (PDB: 1LAT)
[36] structures were solved. In the noncognate structure, GR has mutated to
an estrogen receptor (ER)-like DNA-binding domain by swapping GR’s amino
acids in the binding site with the corresponding ER amino acids. As a whole
the two complex structures are similar, and the proteins seem to interact with
the same DNA in the same manner. However, it was found that the spatial
distributions of amino acids around A–5 and T5 (1GLU residue number) were
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different when two structures are superimposed. In the cognate binding, C5M
of T5 and C�2 of Val462 have a favorable van der Waals interaction, whereas
the corresponding residue Ala in the noncognate binding does not. The loss of
the interaction seems to cause the shift of the helix in the binding interface
and changes the distribution of amino acids around the base pair (Fig. 8).
These changes are reflected as changes in the potentials and Z-scores. When

FIGURE 7 Histograms of Z-scores of nine different protein-DNA complexes for 50,000
random DNA sequences. In each histogram, the positions of the cocrystallized DNA
sequences with protein are shown as filled bars and arrows. In each case, the
database includes 52 complex structures, except where the test complex was itself in
the database, in which case it has been excluded. The considered DNA sites for wild
type are as follows: 5'-GTCACACTTT-3' for 1CGP; 5'-ATGCAAAT-3' for 10CT; 5'-
TAATCTGATTA-3' for 1FJL; 5'-CGTCA CGGTTGA-3' for 1PDN; 5'-
GGATGGGAGACC-3' for 1TF3; 5'-GCGTGGGCGT-3' for 1AAY; 5'-
TGAGGCAGAACT-3' for 1MEY; 5'-CGGCAATTGCCG-3' for 1PYI; 5'-
AGGTCACAGTGACCT-3' for 1HCQ.
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the noncognate complex was used as a template, the GR recognition site was
not detected (Z=-0.1). On the other hand, when a cognate complex structure
was used, a more favorable Z-score (Z=-1.9) was obtained.

Another example of cognate/noncognate binding is NF-�B p50, which is a
transcription factor of great importance in cellular signal transduction,
particularly in the immune system [37]. One complex structure is an NF-�B
p50 homodimer bound to a duplex oligonucleotide with an 11 bp consensus
recognition site located in the major histocompatibility complex class I
enhancer [38]; the other is bound to a 10 bp idealized motif elated, but not
identical, to the natural sites [39]. These complex structures are different in
that the former DNA is bent by 15° although they both have a B-DNA like
structure. It has been known that NF-�B binds 30 times as strongly to the
former as to the latter [40,41]. These structures were used to test whether the
subtle differences in specificity could be detected by the analysis of energy
potentials. As shown in Figure 9, we obtained the lower Z-score for the former
(-3.7 compared with -1.5 for the latter), which is consistent with the
experimental result. The difference in Z-score is attributed to the DNA
bending, which gives the different spatial distribution of amino acids around
DNA.

The cognate and noncognate structures of EcoRV present an interesting
example of the cooperative effect of sequence and structure on specificity
[62]. The crystal structures of EcoRV endonuclease complexed with its cognate

FIGURE 8 The interfaces of the cognate (PDB: 1GLU, heavy line) and noncognate
(PDB: 1LAT, light line) glucocorticoid receptor-DNA complex structures. The
noncognate structure is superimposed on the cognate structure against A–5 and T5
(numbering in 1GLU). C� atoms are shown by black spheres. Val 462 and C5M of T5
in the cognate structure are shown by the dotted spheres.
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DNA decamer GGGATATCCC (recognition sequence underlined) (4RVE) and
with a noncognate octamer CGAGCTCG (2RVE) were resolved by Winkler
et al. [63]. These structures exhibit significant differences in their conformation
and interactions with DNA. We obtained a Z-score of 1.0 using the
noncognate complex (2RVE) as a template, reflecting entirely nonspecific
binding, and a more favorable Z-score (-1.1) when the cognate complex
(4RVE) was used as a template, reflecting the specific binding within that
complex. To examine the respective effects of sequence and structure on the
specificity of EcoRV-DNA recognition in more detail, we considered virtual
states of EcoRV in which original DNA sequences from 4RVE (cognate DNA)
and 2RVE (noncognate DNA) were swapped for one another [these are

FIGURE 9 (a) Structure of NF-�B p50 complexed with 11 bp consensus sequence
(PDB: 1NFK). The DNA is bent by 15° against the helix axis. (b) Structure of NF-�B
p50 complexed with 10 bp DNA (PDB: 1SVC). As for the histograms, see Fig. 7
caption. Figs. 9 to 11 are drawn by MOLSCRIPT [64].
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designated as 4RVE (noncognate DNA) and 2RVE (cognate DNA), respectively]
and calculated the Z-scores. The results indicate that sequence substitution in
the structure of 2RVE [i.e., 2RVE (noncognate DNA)→2RVE (cognate DNA)]
caused the Z-score to change by-0.7, while that in the structure of 4RVE [i.e.,
4RVE (noncognate DNA)→4RVE (cognate DNA)] resulted in a much larger
change, -2.1. On the other hand, the Z-score change associated with the
structural change from 2RVE to 4RVE for the noncognate sequence [i.e., 2RVE
(noncognate DNA)→4RVE (noncognate DNA)] was negligible (0.0), and that
for the cognate sequence [i.e., 2RVE (cognate DNA)→4RVE (cognate DNA)]
was much larger (-1.4). Taken together, these findings indicate that the cognate
but not the noncognate sequence is sensitive to the structural change and that
the structure of 4RVE has a greater ability to discriminate DNA sequences than
that of 2RVE.

Although specificity does not always have a relationship with affinity
(thermodynamic preference), these results strongly suggest that the present
method can detect subtle differences in specificity, which is attributed to the
subtle structural differences.

4.3.2 Specificity Difference in Symmetrical
and Asymmetrical Binding

A number of proteins bind to DNA as either homodimers or heterodimers.
Homodimers often bind to target DNA sequences asymmetrically, leading to
quasi-symmetrical structures in which identical subunits adopt similar but
different conformations. Such structural differences are frequently observed
when the subunits respectively form cognate and noncognate protein-DNA
complexes. These examples are of particular interest because comparison of
the subtle structural differences among homologous contacts within the two
halves of a protein dimer provides valuable information about how specificity
is determined. We examined the Z-scores for dimers and individual protein
chains within protein-DNA complexes belonging to several structural families,
bZip transcription factor GCN4, � repressor, nuclear receptors, and
transcription factors containing a Zn2Cys6 binuclear cluster domain such as
HAP1, GAL4, and PPR1. These dimer structures exhibit varying degrees of
asymmetry, some showing very dramatic asymmetry and others showing subtle
asymmetry. It is difficult to determine how the differences in structure are
related to the differences in specificity or which regions are responsible for the
difference in specificity. The analysis of these structures in terms of Z-scores
has revealed clear specificity differences between the individual chains of each
homodimer and enabled us to identify those amino acids responsible for the
asymmetry in specificity [62].
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4.3.3. Effect of Cooperativity on Binding Specificity

Transcription factors usually bind to their target sites in cooperation with other
factors, and the combination of different factors allows a complex mode of
gene regulation. Thus, cooperative binding should play an important role in
protein-DNA recognition. An interesting example of cooperative binding can
be found in transcription factors MATal and MAT�2 homeodomain proteins in
yeast. They form a heterodimer in binding to DNA and repress transcription in
a cell-specific manner. The binding experiments have revealed that the �2 and
al proteins individually have only modest affinity for the target DNA, although
the al/�2 heterodimer binds to DNA with higher specificity and affinity. Using
the two complex structures MAT�2-DNA [42] and MATa1/�2-DNA [43] in the
structural database (see Fig. 10), we tested whether the potentials can detect
changes in binding specificity manifested in this cooperativity. Discrimination
of target DNA by MATa1/�2 (Z=-5.2) was significantly higher than that by
MAT�2 only (Z=-1.5), because the heterodimer covers a longer sequence. When
�2 was extracted from the a1/�2 structure, the extracted �2 showed a high
selectivity of target DNA (Z= -4.3). This clearly demonstrates the cooperativity
between MATal and �2. When the monomer and heterodimer complexes are

FIGURE 10 (a) MAT�2-DNA complex (PDB: 1APL) and (b) MATa1/�2-DNA complex
(PDB: 1YRN) structures. In the heterodimer complex of (b), DNA is bent by 60° against
the helix axis.
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compared, the most obvious difference between them is the DNA bending caused
by the heterodimer binding, as shown in Figure 10. This DNA bending
introduces subtle differences in the spatial distributions of amino acids around
each base and thereby affects both energy and specificity.

4.3.4. Effect of DNA Deformation

Deformations of DNA structures are often observed in protein-DNA
complexes, and they likely enhance the specificity of protein-DNA recognition
[44–46]. In the protein-DNA binding interface, DNA often takes an
intermediate conformation between the canonical A-DNA and B-DNA. As
such an example, we considered the structure of Zif268, a zinc finger-DNA

FIGURE 10 Continued.
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complex (Fig. 11a) [47]. The DNA is deviated from the A-DNA and B-DNA
by 4.2 Å and 2.9 Å, respectively, in terms of root-mean-square deviation. To
examine the effect of DNA deformation, we replaced the DNA in the crystal
structure with the modeled A-DNA and B-DNA and calculated the Z-score.
Both B-DNA and A-DNA complexes showed selectivity lower than the crystal
complex (Z=-1.9), but the selectivity of the B-DNA (see Fig. 11b) still remains
(Z=-1.4), whereas the A-DNA complex (Fig. 11c) has no selectivity (Z=0.8).
This indicates that the B conformation is more likely to be recognized by
Zif268. Although more analyses are necessary for assessing the role of DNA
deformation, these results, together with the examples of MATa1/�2 and NF-
κB, indicate that DNA deformation plays an important role in specificity.
Likewise, it is interesting to examine the role of protein conformational
changes in specificity.

4.4. Prediction of Binding Sites in Promoter Sequences

One of the most practical applications of the structure-based method is to
find target sites of regulatory proteins in real genome sequences. We show an
example of such applications here. MATa1/�2 regulates transcriptional
repression of the HO gene by binding to the upstream region (promoter) of
the gene [48]. Among the six consensus sites in the promoter region, and site
6 (nucleotides -715 to -761) have been experimentally confirmed to have site
3 (nucleotides -397 to -444) regulation by al/�2 proteins [49]. We predicted
the binding sites by calculating the sum of the potential energies for every 16
base pairs along the promoter sequence by shifting one base pair at a time
using a cocrystal structure as a template (PDB: 1 YRN). As shown in Figure
12, our calculation resolved binding sites for HO2–HO6, especially HO3,
HO4, and HO6, but not the binding site for HO1. In fact, deletion analysis
revealed that site 1 was not sufficient for regulation by al-�2 proteins [49].
This demonstrates that the method can be useful to detect candidate binding
sites in practice.

4.5. Protein Design

Another application of the method is for the rational design of sequence-
specific DNA-binding proteins that will provide reagents for both biological
research and gene therapy. In particular, zinc finger proteins appear to provide
the most versatile framework for design, because a zinc finger domain usually
recognizes three base pairs. Kim and Berg [50] reported the structure of a
newly designed protein which is composed of three zinc finger domains and
an oligonucleotide corresponding to their consensus DNA sequences. Each of
the three zinc finger domains recognized three bases: GAA, (G/T) C (G/A),
and GGG, [51,52]. The calculated Z-score for the crystal structure with the
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FIGURE 11 (a) Zif268-DNA complex (PDB: 1ZAA). (b) The DNA of 1ZAA was replaced
by a standard B-form DNA by least-squares fitting. (c) The DNA of 1ZAA was replaced
by a standard A-form DNA by least-squares fitting.

Copyright © 2004 by Marcel Dekker



Sarai and Kono264

FIGURE 12 Detection of the binding sites by a MATa1/�2 complex in the upstream of
S. cerevisiae site-specific endonuclease (HO) gene (accession No. M14678). The
sharp peaks are the predicted binding sites. In the upstream region of the HO gene,
six consensus patterns (including reverse sequences) exist (shown by underlines):
HO6, -736 TGTATTCATTCACATC (reverse); HO5, -669 TGTCTTCAACTGCATC;
HO4, -576 TGTATTTAGTTACATC (reverse); HO3, -411 TGTTATTATTTACATC; HO2,
-371 TGTTCACATTAACATC; HO1, -150 TTTAGAACGCTTCATC (reverse). Invariant
and highly conserved bases are highlighted in boldface.

FIGURE 11 Continued.
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corresponding DNA sequence GAA, GCA, and GAG was significantly high (-
3.2). The method also can give the most preferable DNA sequences for a
given protein (Fig. 13). These sequences, (A/G)AA, G(A/C)(G/A), and GGG,
agreed well with the experimental results, showing the potential use of the
method for the design of DNA-binding proteins to have either increased or
altered binding specificity.

4.6. Contribution from Indirect Readout Mechanism

The above method is based on the direct readout mechanism, in which protein
recognizes DNA sequence through direct contact between amino acids and
base pairs. On the other hand, substitutions of those base pairs not in contact
with amino acids often affect binding affinity, indicating that protein may
recognize DNA sequence through a particular structure or property of DNA.
This indirect readout mechanism may contribute significantly to the specificity
of protein-DNA recognition. We can quantify the specificity due to this indirect
readout mechanism by estimating the conformational energy of DNA [53,65].
For simplicity, consider six coordinates (three translational and three
rotational) to describe the conformation of each DNA base step. We can
approximate the conformational energy by harmonic potentials along each

FIGURE 13 Calculated base preference for the three zinc finger positions of 1MEY.
(A/G)AA, G(A/C)(G/A), and GGG are preferred by fingers 1, 2, and 3, respectively, in
terms of the derived potentials. DNA sequence numbers shown at the bottom of the
figure are taken from the crystal structure.
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coordinate. Now we need to know equilibrium conformation and force
constants. These parameters can be determined by the empirical analysis of
protein-DNA complex structures [54]. It may also be possible to generate a
conformational ensemble and estimate these parameters by computer
simulations (see Sec. 5). Once the potentials are derived, the conformational
energy of DNA can be estimated for a given structure and sequence, and the
threading procedure can be used to evaluate the fitness of sequence to the
structure of DNA. We can calculate the Z-score for indirect recognition in the
same way as for direct recognition. By comparing the two Z-scores we can
assess the relative contributions of direct and indirect readout mechanisms.
Because both potentials are independent quantities, they can be summed to
calculate the total energy and used to find target sites, although a weighting
factor needs to be determined because the two potentials were derived from
different statistics. We have compared systematically two kinds of Z-scores
for many transcription factors and DNA-binding proteins, and found that
both the direct and indirect readout mechanisms contribute to the specificity
of protein-DNA recognition significantly [65]. We also found that the
combination of the two mechanisms increased the accuracy of target
prediction [65]. We are applying the combined potentials to the target
prediction for transcription factors.

4.7. Limitations and Prospects

The accuracy of the structure-based method for target prediction is not yet
satisfactory for practical use because of the limited number of available
structural data. There may be several ways to improve the accuracy. The
present method requires only C� atom coordinates of proteins. Thus, high-
resolution structures are not essential for detecting binding sites. In fact, we
could detect the real binding sites using the NMR structure of TFIIIA (see 1TF3
in Fig. 7). The effects of flexible amino acids are partly considered as an entropic
effect. For more accurate estimation, we may need to consider more detailed
structural information such as the orientation of the C� atom and the effects of
neighboring amino acids.

We have used fixed complex structures for the threading and energy
calculation. In reality, however, the conformation of DNA and/or protein may
be sequence-dependent. Thus, we may need to relax the complex structure for
each threaded sequence. This procedure might increase the sensitivity of target
detection. Further investigations will be required to evaluate the importance
of these effects. Despite the current limitations, the structure-based method,
which is independent of sequence information, is a promising method for
target prediction, because the increase in structural data will be accelerated by
structural genomics.

Copyright © 2004 by Marcel Dekker



DNA-Protein Interactions 267

So far we have not considered explicitly the effect of water molecules in
protein-DNA interactions. Water molecules often mediate interactions between
amino acid and base in the interface of a protein-DNA complex. This can be
considered as one of the indirect readout mechanisms. Some of these interactions
are involved in the derivation of our statistical potentials. However, because of
the small number of such interactions in the structural data, we did not examine
the effect of water-mediated interactions separately. When a sufficient number
of such interactions become available, we can examine the interaction
independently and develop a statistical potential for water-mediated
interactions.

5. AB INITIO METHOD

The structure-based method has shown that the distribution of the Cα position
of amino acids around base pairs provides important information about
specificity in the DNA sequence recognition by proteins. However, the
accuracy of this prediction method is limited by the number of available
structural data. Thus, it is desirable to complement the method by some other
means. Computer simulation is one such possibility. However, computer
simulations of very large systems such as DNA-protein complexes are
formidable tasks even with the use of the most sophisticated computers. In
real DNA-protein interactions, many factors contribute to the recognition
process. It will be very difficult and even confusing to include everything at
first. A more feasible approach is to start with the simplest system and take
additional factors into account step by step. In the present case, the question
is how to reproduce the distribution of the C� position of amino acids around
base pairs observed in the experimental DNA-protein complex structures.
Thus, it would be reasonable to consider at first the interactions between base
pairs and amino acids. In reality, the C� position is fixed by the main chain of
the protein, and the possible range of C� direction may be restricted. However,
such biases, which are context-dependent, are difficult to evaluate a priori.
Therefore, at first we will consider intrinsic interactions between base pairs
and amino acids.

5.1. Conformational Sampling and Energy Calculation

In order to take account of side-chain flexibility, we have to sample many
conformations of side chains for a given C� position and calculate interaction
energy for each conformation. One way to perform conformational sampling
is to generate conformations systematically by changing C�-C� bond
orientation and all the dihedral angles. First an amino acid is positioned around
the base pair by placing its C� atom at grid points on the base plane (see Fig.
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14). Then an initial side-chain orientation is generated by specifying polar
angles � and � formed by the direction cosines of the C�-C� bond vector. Side-
chain rotamers are generated by systematically varying the torsion angles (	1
and 	2 for Asn; amide plane is fixed). For each conformation of the amino
acid side chain, bonded and nonbonded interaction energies (van der Waals
energies as the 6–12 potential, and electrostatic enegies as the Coulomb term)
are computed by using the force field parameters of AMBER 4.1 [55]. This
process is repeated at each point of the grid. The increments �� and �� are
adjusted to produce a uniform distribution of C� positions on the spherical
surface spanned by the C�-C� bond vector. Then the partition function can be

FIGURE 14 Coordinate system of base-amino acid interaction used in the computer
simulation. Asn side chain is shown.
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calculated by the Boltzmann average over the conformational space, and free
energy, entropy, and enthalpy can be calculated from the partition function
[56]. The number of conformers of amino acids increases rapidly with the size
of the side chain. Thus, the systematic sampling method is feasible only for
small amino acids. We are also using more efficient conformational sampling
algorithms called multicanonical Monte Carlo sampling [57]. This method
enables us to sample conformations more efficiently than systematic sampling
without sacrificing accuracy. It is also more accurate than the usual canonical
Monte Carlo sampling in that the sampling covers a wider energy range. We
have tested the accuracy and efficiency of the method by comparing it with
other sampling methods for small amino acids [58]. The method has produced
the same results as the systematic sampling method and yet the computation
time is much shorter. Thus, we are mainly using the multicanonical Monte
Carlo sampling for the calculation of free energy maps of base-amino acid
interactions.

5.2. Free Energy Landscape of Base-Amino Acid Interactions

By calculating the free energies for different C� positions and subtracting a
reference free energy at a large separation, we can obtain a contour map of
interaction free energy, which shows preferable positions of C�’s of amino
acids around a base pair. This can be directly compared with the distribution
of the C� positions of amino acids around base pairs derived from the DNA-
protein complex database. Figure 15 shows the free energy contour maps for
the interactions of Asn with A-T and with G-C base pairs calculated by the
above procedure. The preferable position of C� is localized in a narrow region
around A in the case of A-T. In this region, Asn and A form specific double
hydrogen bonds, C=O···HN6 and NH···N7, which are found frequently in
the Asn-A pair in the experimental structures of DNA-protein complexes.
Also, the distribution of C� is in agreement with the statistical potential
obtained by database analysis (see Fig. 6). On the other hand, Asn tends to be
more broadly distributed around G-C. The lowest �G values are located in
the middle of G-C and extend toward C, which does not have a methyl group.
This comparison indicates that the interaction of Asn is more specific toward
A-T than toward G-C. This example illustrates how we can quantify the
specificity in the base-amino acid interactions and complement the structure-
based method.

5.3. Limitations and Prospect

Before applying the ab initio method to general base-amino acid interactions,
we need to solve several problems. As noted above, the main chain of proteins
will restrain the ranges of C� positions and C� directions. Such an effect is
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reflected in the statistical potential derived from a structural database. It may
be possible to derive an effective potential for such restraint and combine it
with the simulation. Also, the DNA backbone moiety will significantly modify
the free energy landscape of base-amino acid interactions because of negatively
charged phosphate groups. The contour maps are indeed significantly
deformed by the backbone. However, if we are interested only in the difference
in the maps for different base-amino acid pairs, such a direct effect of the
backbone will be canceled. Adjacent base pairs will affect the map by

FIGURE 15 Free energy maps of interactions of Asn with A-T (a) G-C (b). The maps
were obtained by the systematic sampling method. Darker regions correspond to
preferred C� position of the amino acid.
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preventing amino acids from stacking over base pairs and by introducing
additional base pair-base pair interactions. Solvent molecules can interfere
with the base-amino acid interactions. Upon protein-DNA binding, most water
molecules and ions are excluded from the interface. However, some water
molecules are trapped inside the interface and mediate the protein-DNA
interactions. In such cases the solvent molecules could significantly modify
the free energy landscape. Further studies are necessary to assess how
important the above effects are on the free energy landscape of base-amino
acid interactions, by examining each factor carefully and comparing results
with experimental data.

The results obtained so far are consistent with the experimental
observations, and the simulation results for all the base-amino acid pairs may
be able to complement the statistical potential derived from the structure-
based method. Thus, a combination of the structure-based and ab initio
methods will become a powerful tool for the target prediction of transcription
factors.

Computer simulations may also be used to estimate conformational energy
of DNA, which contributes to the indirect readout mechanism. The
equilibrium conformations of DNA and force constants of harmonic potentials
described in the previous section can be estimated by generating many
conformations and fitting the potentials. The effect of sequence changes in
DNA on the total energy of the protein-DNA complex can be calculated by
molecular dynamics simulations and the free energy perturbation method.
However, the calculation of such a large system demands enormous computer
time, and currently it is not feasible to consider a large number of sequences.
If computer power increases substantially in the future, such large-scale
simulation will become a promising method for prediction.

6. APPLICATION TO FUNCTIONAL GENOMICS

So far, complete genomes of many organisms have been sequenced. However,
only a fraction of biologically significant information has been extracted from
sequence data. Regulation of gene expression is one of the most fundamental
processes in life, but its mechanism is not well understood in spite of many
known transcription factors. This is because the regulation is achieved by a
complicated network among transcription factors, effectors, and their targets.
To understand the mechanism of the regulatory network, we first need to
identify all the transcription factors and their target sites within a genome.
Achieving this goal by experiments alone would be a formidable task, and
computer analyses would certainly be required for the target prediction, data
archiving, and simulation of the network. Here we describe a strategy for the
application of present methods of target prediction to the analysis of gene
regulation at the genome level.
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Figure 16 illustrates the strategy for target prediction at the genome level.
Given a complete genomic sequence of certain organism, one can identify all
the putative transcription factors by experimental and computational methods.
For some transcription factors, consensus DNA sequences are available from
known binding sites. In this case, one can construct a weight matrix and use
the sequence-based method to screen potential binding sites and target genes.
For more accurate prediction, one can conduct systematic mutational and
binding analysis for the transcription factor to derive �G data and use the
�G-based method. If the transcription factor is new or no target sequences
are known, one can conduct random oligo screening experiments to derive a
consensus sequence and weight matrix and then use the sequence-based
method for the prediction.

Another independent route is to ask whether the structure of the
transcription factor complexed with DNA is known. If the answer is yes, we
can directly apply the structure-based method. On the other hand, if the
structure is not known, we can still construct a model structure. If the sequence
has homology with another transcription factor whose structure is known,
we can use a homology-modeling method to predict the 3D structure. Even if
the sequence homology is negative, we can use a so-called threading method

FIGURE 16 A strategy for the application of target prediction to functional
genomics.
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for the structure prediction. Then the structure-based method can be used to
predict potential target sites of the transcription factor based on its modeled
structure. In this case, the model structure requires only the coordinates of C�

atoms, i.e., side-chain modeling is not necessary. The advantage of the structure-
based method is that it provides us a possibility to predict potential targets for
new transcription factors without carrying out further experiments. The chances
for using this method will rapidly increase as more and more structures of
transcription factors become available. Furthermore, the emerging structural
genomics projects will make this method more promising. Information from
the ab initio method will help the structure-based method by increasing the
prediction accuracy, as mentioned before. The structure-based method is
independent of the sequence-based method in that they rely on different kinds
of information. Thus, when combined, they should complement each other.
This is in contrast with the situation for different methods based on sequence
information, which do not necessarily complement each other [16].

The accuracy of target prediction can be further improved by considering
specific information from the genome. For example, one can incorporate the
information of binding sites of other transcription factors in the neighborhood
of the predicted binding sites. The annotation information of the predicted
target gene will be useful, because genes with similar functions are likely to be
coregulated. Similarly, neighborhood information of the protein products in
the metabolic or signaling pathway will be useful. The evolutionary
information of genes among different species will suggest similarities in gene
regulation. These pieces of information will significantly enhance the
prediction accuracy. Once predictions are made for a set of transcription
factors in the genome, we can construct a library of target sites and target
genes, together with the library of transcription factors, and feed the
information to the database. Then we can carry out genome-level analyses
based on the data, such as experimental verification of the predictions, and
comparison with expression profile data. Some of these analyses can be fed
back to the prediction methods to improve their accuracy. Such cycles of
prediction and verification will refine the prediction method. Furthermore,
the link information between transcription factors and their target genes
together with other network information such as protein-protein interactions
would enable simulation of the network, providing insight into the gene
regulatory network. Genome-level analyses of this kind would reveal novel
mechanisms of gene regulation as systems, which would be impossible to
ascertain by the analysis of individual transcription factors. Thus, this kind of
systematic analysis of gene regulation by a combination of computational
and experimental methods will contribute significantly to functional genomics
in the era of post-genome science.
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APPENDIX 1: DEFINITIONS OF TERMS

AMBER force field. Molecular mechanics force field widely used for the
investigation of interactions and dynamics of biomolecules. http://
www.amber.ucsf.edu/amber/amber.html

Bioinformatics. The field of study dealing with management and analysis
of data in biological science.

Consensus sequence. A relatively short sequence pattern of DNA, RNA, or
protein that is found in various molecules and is associated with the same
function. Here we use it for DNA sequence, e.g., binding sites for transcription
factors.

Threading. A method for predicting a fold type of protein of unknown
structure using statistical potentials derived from the known protein structures.
By assigning an amino acid sequence of unknown structure on known protein
structures, evaluated is the fitness of the sequence on a given structure. Here,
we use the analogy for DNA-protein interaction. By assigning various DNA
sequences on a template of DNA-protein structure, the fitness of the DNA is
evaluated.

Z-Score. Z-Score is defined as (X-m)/σ, where X is energy, m is mean energy,
and σ is standard deviation. A large value (positive or negative) means high
specificity. Threading results are usually evaluated by the Z-score.

Multicanonical sampling. A generalized ensemble algorithm that enables
us to explore wider ranges of the phase space than conventional Monte Carlo
sampling. This algorithm is also referred to as entropic sampling.

APPENDIX 2: COMPUTER PROGRAMS AND DATABASES

to help users find eukaryotic transcription factor elements in a DNA sequence.
SignalScan uses both specific sequence elements derived from biochemical
characterization and elements from derived consensus sequences to match
against a user input DNA sequence.

program developed to facilitate the analysis of DNA sequences for known
transcription factor binding sites. It scores input sequences against matrices
of transcription factor binding sites using information theory [59].

utilizes a large library (~280 entries) of predefined matrix descriptions for
protein binding sites to locate matches in DNA sequences of unlimited length
[4]. It assigns a quality rating to matches and thus allows quality-based filtering
and selection of matches.

predicts potential binding sites in sequences of unlimited length by comparing
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SignalScan (http://bimas.dcrt.nih.gov/molbio/signal/). A program developed

MATRIX SEARCH (http://bimas.dcrt.nih.gov/molbio/matrixs/). A

MatInspector (http://www.gsf.de/biodv/matinspector.html). This tool

ConInspector (http://www.gsf.de/biodv/consinspector.html). This tool
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candidates with predefined consensus descriptions of protein binding sites
[60].

of three-dimensional macromolecular structures primarily determined
experimentally by X-ray crystallography and NMR.

TRANSFAC (http://transfac.gbf-braunschweig.de/). A database on
transcription factors, their genomic binding sites, and DNA-binding profiles.
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1. INTRODUCTION

Current computational issues in genome research have not only arisen from
the recent accumulation of genome data but have also been built up from past
experience of computer-assisted sequence analysis. Within the last three
decades, molecular biology and genetics have increasingly relied on the use of
computers for data analysis. At the same time the nature and scope of problems
to be solved with the help of computers have evolved because technological
advances have gradually modified details of laboratory work. Thus the nature
and quality of generated data have changed, as have the nature and quality of
inference from these data.

Molecular biology of the 1950s apparently relied on methods and
techniques adopted from physics* (the only aspect adopted from chemistry
was the term “molecule”). Since then biology has adopted numerous methods

* Chromatography, fluorescence and related methods, electron microscopy, and X-ray
visualization.
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from applied mathematics, computer science, and statistics. An obvious
advantage of this acquisition of formal methods was improvement in the clarity
of formulating problems as well as in arriving at their solutions. On the other
hand, formalisms in biology can (and often do) help to highlight the limitations
(or even irrelevance) of ill-conceived problems. An extra benefit (or perhaps a
mixed blessing) of formalization of molecular biology is the wide availability
of software for computer-assisted sequence analysis, genetics, and evolutionary
studies.

There is a definite analogy between laboratory and computational
experiments in biology; they both provide an experimental framework for
testing hypotheses to build models (see Fig. 1). The similarity, hence the
alignment, of two or more sequences can be viewed as a working (null)
hypothesis. The identification of a “signal” in a sequence or group of sequences
is an experimental result. According to a protocol sometimes called pragmatic
inference [1], a signal is believed to be meaningful if its presence in or absence
from a sequence is significantly correlated with a well-defined biological
function of this sequence. The demonstration of the existence of significant
correlation usually relies on laboratory or field experiments. If the signal is
meaningful, it can then represent a discriminating criterion for assigning
putative biological roles to sequences subjected to computational analysis.*

FIGURE 1 Overview of experimental biology. An experimental framework for testing
hypotheses to build models is the characteristic common to in vitro and so-called in
silico biology. The alignment of two or more sequences can be considered a working
hypothesis. The identification of a signal in a sequence or a group of sequences is an
experimental result. If the signal is meaningful, it will represent a discriminant for
computational analysis. The consistency of the resulting model relies on the
consistency of both interpretations.

* Ideally, the adequacy of such an assignment should be confirmed by some evidence in vivo.
Unfortunately, though, experimentation at the molecular level in vivo does not meet acceptable
standards of precision and conclusiveness thus far.
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Hypotheses set by the use of a computer program may suggest experiments
in vitro or, conversely, in vitro experiments may suggest computational
simulations (experiments) and new software tools. At any rate, consistency of
the resulting model relies on the consistency of both in vitro and computational
interpretations (Fig. 1). More generally, the validity of a model is a function of
the experimental means of testing two kinds of hypotheses:

1. Hypotheses involved in actually making (determining) the model
2. Hypotheses resulting from (generated by) the model

It should be mentioned that such methodological issues are generally not
included in manuals of bioinformatics. No emphasis is put on the evaluation
of the qualitative worth of data. On the other hand, practitioners of
computational biology are concerned with assessing the reliability and longevity
of hypotheses and models because such evaluations are crucial to the
understanding of biology. Unfortunately, these issues are only superficially
addressed in sparse paragraphs of existing texts (e.g., Gusfield [2], Baldi and
Brunak [3], and Durbin et al. [4]).

The short history of bioinformatics already tells us that some assumptions
turned out to be inappropriate. For example, it is now widely accepted that a
simple Markov model does not account for a genomic sequence. The underlying
assumption of a unique probability distribution constraining the occurrences
of nucleotides is clearly inadequate, because it fails to justify observed varying
compositional bias in whole chromosomes. More generally, implicit
assumptions defining a method can be too loose or too restrictive. However
sound a method of analysis is formally, if a hypothesis defining it contradicts
an underlying (usually unknown) principle constraining the analyzed sequence,
prediction cannot be reliable. For instance, summing entities without verifying
their additive properties is a common oversight [5], which fortunately loses
momentum in some applications [5a]. Calculations involving energy are
indicative. Indeed, if the free energy of an RNA hairpin appears to match the
sum of free energies of all base pairs involved, the overall contribution of
those amino acids of a protein binding to a ligand is not necessarily equated
to the sum of contributions of each individual amino acid [6].

Summing and subtracting (filtering) pieces of information in sequences
are common operations. It is tempting, of course, to adopt a classical
approach to problem solving for sequence analysis, that is, divide a problem
into more or less independent subproblems and solve those subproblems
first. But piecing solutions together encounters obstacles. Because
independence is a strong assumption that is not easy to prove, summing
may turn out not to be either associative [(a+b)+c≠a+(b+c)] or commutative
(a+b≠b+a) due to a possible underlying hierarchy of subproblems. Moreover,
the partition into subproblems may not be adequate because it cannot be
matched with a biological reality. Finally, given that a problem P was
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subdivided into N subproblems, assuming that an optimal solution to P is
the sum of all optimal solutions to subproblems 1-N may be inadequate.
Indeed, the minimal free energy of an RNA molecule is not the sum of all
helices with a minimal free energy.

The previous statement shows how a formally sound method such as
dynamic programming (DP) yields an elegant but inapplicable model of RNA
structure. The original DP algorithm designed by Zuker and Sankoff [7] is
simple and is suited to strings of symbols but does not accurately predict
RNA structure. There is some justification for looking for stable helices, and
parts of the structure are indeed identified by such a program, but only parts.
Amendments introduced in Ref. 8 improved prediction by somehow accounting
for the nonadditive properties of minimal free energy. Progress was limited,
however, by the assumption of relative independence between helices.
Moreover, the existing dependencies were not detectable because sequences
were processed linearly from the 5' end to the 3' end. On paper, a sequence
does begin at the 5' end and finish at the 3' end, but in action this is not true.
The underlying organization of information is not given by the order of
appearance in reading the sequence linearly but by the order in which segments
are being solicited to perform the overall function of the sequence (i.e., the
order of appearance in action). Analysis must respect such an order* to
maximize chances of identifying relevant constraints. Local alignment methods
provide efficient tools because the most constrained segments are considered
first wherever they lie in the sequence.

This example confirms that the formulation of a problem is as determinant
as the method used to solve it. Figure 2, as the reverse of Figure 1, exemplifies
the purposes of setting and checking hypotheses.

The delineation of a question in bioinformatics over a short period of
time can be made difficult. Indeed, the constant transformation of the
experimental setup goes along with the transformation of knowledge.†

* Such a statement is tautological when the structure is known, but it is common enough that only
sequence data are available.
† To confirm this, consider the difference between the two major types of sequences. What is
known about proteins today is only more precise than what was known 25 years ago. The
repertoire of structures is broader and more detailed. Indeed, the first X-ray crystallographic
data were collected roughly 40 years ago, and this technique remains the main source of protein
structural data (the use of NMR is also over 20 years old). Computer graphics contributed to
better precision. What is known about nucleic acids today is significantly different from what
was known 25 years ago. Hypotheses have been refuted (the genetic code is universal; RNA has
no catalytic activity; etc.), others have emerged (genes have many parts; nucleotides can be
modified to modulate the activity of nucleic acids; etc.), and many cases known as exceptions
have accumulated to finally become part of a proper mechanism. Alternative splicing is a classical
example, and, more generally, because many sites are cryptic, the variety of solutions chosen by
Nature is far from being uncovered.
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Consequently, questions set to computers have known various fates,
depending on how timeproof the related knowledge in biology was. This is
illustrated in the brief historical background given in the first section of this
chapter. In fact, for many years, rigorous methods have tended to be more
useful to formalize problems in biology rather than solve them. A formal
point of view and an experimental point of view take a while to reach a
common formulation.

Solving or understanding a problem in biology can be viewed as deriving a
model from empirical data. A phenomenon can be formalized even when
some data are missing, but the resulting model is more likely to require future
revisions. Convincing illustrations of such ongoing transformations of
models are reassessments of mechanisms of various cellular processes. For
instance, replication and transcription were long thought to result from the
binding of a polymerase complex to an origin or a promoter in DNA. In the
absence of experimental evidence, the model was justified by a common-sense

FIGURE 2 Specific situation in silico biology. A set of sequences is selected according
to a working hypothesis such as “same function” (1→2). Regular features are
extracted from the sequences following a certain protocol depending on the chosen
computer processing (2→3). The program is meant to identify local features such
as patterns and/or a global characteristic of sequences such as the overall structure
that need to be related to a biological property (3→4). When the correlation between
the presence or absence of regular features and a biological phenomenon is
confirmed, a model can be defined. Consistency can be demonstrated in silico by
identifying new instances of sequences verifying the model and in vivo by testing
the activity of newly identified sequences.
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assumption: The mobility of a molecule is a function of its size. The smaller
DNA polymerase was thus believed to be the more mobile and thought to
track along the DNA template. Various recent fluorescence-based methods
have shown that DNA polymerase is in fact immobilized in larger structures,
such that a transcript would be generated as the template slides through the
fixed polymerase [9]. Furthermore, these data emphasize a collective
behavior of groups of polymerases that is still poorly understood but the
existence of which renews questions related to transcription and replication
mechanisms. The reappraisal of knowledge is inherent to an empirical science
such as biology.

More specifically, knowledge of genetic sequences has evolved quickly since
the early 1980s. Models and concepts arose and changed as the quality and
quantity of sequence data increased. A conserved region of a sequence
alignment was first formalized as a consensus sequence, later described as a
weight matrix, then represented as a regular expression, among many other
options as discussed in the following.

Sequence databases and analytical methods have mainly been shaped by
successive versions of representation, comparison, and classification problems
and their corresponding solutions (comparing and clustering sequences or
structures and the various parameters used to describe them). Databases were
first expanded, and the unmanageable resulting collections were split into
more specialized and curated sets. In parallel, analytical tools initially designed
to perform rough classifications and produce pairwise alignments were then
adapted to specific searches, generalized to yield multiple alignments, and
geared to cope with massive data sets.

The availability of complete genomic sequences definitely shed a different
light on our knowledge of sequences. New problems emerged, and new tools
were designed for the analysis of totally sequenced chromosomes. Previous
efforts to develop sequence analysis tools were integrated into the wider picture
of genomic annotation. Most of the current automatic parsers contribute to
labeling genomic sequences. However, automated analysis of the genomic text
still cannot be equated to understanding it. It essentially helps to break the
genome into more analyzable parts.

In this context, Sec. 3 focuses on two relevant issues: on the one hand the
representation and characterization of sequences, and on the other hand the
validation of sequence analysis methods. Assessing these aspects of
bioinformatics leads to a banal statement: Biomolecules are active, and however
precise sequence characterization is, the knowledge of the conditions within
which a gene or a protein is active is necessary. Then we address issues currently
germinating: the definition of contextual rules (in particular, specify how
sequences interact with their environment) and the use of chronological rules
to specify further constraints defining sequence activity.
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A “permanent” task of sequence analysis is to determine the most
representative data set and the most suitable way to represent data in order to
bring information out. The cycling arrows in Figure 3 indicate this. Sequence
data sets and descriptions are usually defined and redefined several times to
improve analysis. A widespread strategy consists in gathering nucleotide or
amino acid sequences likely to share common features (in a set called S in the
following). For instance, to characterize transcription promoters in bacteria,
S would typically involve examples of the region situated before the Start
codon (at least 50 nucleotides long). Given this set, representation evolves
toward equating sequences to features such as composition, signals, and specific
folding (for RNA or protein).

In principle, analytical tools perform two distinct, though related, functions.
First, identify motifs, that is, regions common to most sequences of S,

FIGURE 3 Usual tasks of sequence analysis. A “permanent” task of sequence
analysis is to determine the most representative data set and the most suitable
way to represent data in order to bring information out. This is indicated by the
cycling arrows. Sequence data sets and descriptions are usually defined and
redefined several times to improve analysis. A widespread strategy consists in
gathering nucleotide or amino acid sequences likely to share common features
(in a set called S). In principle, analytical tools perform two distinct, though related,
functions. First, identify motifs, that is, regions common to most sequences of S,
that are unexpectedly regular or irregular with respect to a given feature such as
sequence composition. This identification task is either manual or automated.
Second, use this acquired knowledge on motifs and/or other assumptions to
determine a similarity measure and filter sequences that contain identified motifs
in larger sets (databanks or genomes).
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unexpectedly regular or irregular with respect to a given feature such as
sequence composition. This identification task is either manual or automated
as discussed later in the chapter. In prokaryotic promoters, specific features
were visible in small data sets. They minimally include the presence of the
Pribnow and the Maniatis boxes, respectively located about 10 and 35
nucleotides upstream of ATG. The occurrence of these boxes is further
constrained by the number of nucleotides (16 to 18) lying in between them
and the helical arrangement of the contact nucleotides (see, e.g., Ref. 10).
Second, use this acquired knowledge on motifs and/or other assumptions to
determine a similarity measure and filter sequences that contain identified
motifs in larger sets (databanks or genomes).

Most families of sequences are characterized by a motif as a result of
automatic or manual sequence analysis. A motif is represented either as a
consensus (sequence, matrix, regular expression, etc.) or as a set of rules
allowing the identification of various consensuses. In the best of cases, the set
of rules is good enough to unambiguously characterize a family. The presence
of specific motifs in sequences is set as necessary. But in the vast majority of
cases, filtering sequences this way yields a large number of false positives; the
above example of prokaryotic promoters is one of them. The two characteristic
signals were shown to co-occur in a 30-nucleotide-long segment every 200
nucleotides in random sequences.

Many sequence analysis methods stall after the statement of necessary
conditions, so quite a few widely used definitions qualifyng families of
sequences are incomplete. To refine the selection, sufficient conditions need to
be set. A variety of ad hoc filtering procedures are then implemented to do so,
most of the time in a nongeneralizable manner. The same example of promoters
will be illustrative again. The following rule was implemented to predict the
start point spacing in Ref. 10:

The start will occur on the 7th base after the -10 sequence if the 7th base
is a purine; if the 7th base is not a purine, the start will occur on the 8th
base if the 8th base is a purine; if neither is a purine, the start defaults to
a purine at either position 9 or 6; if a purine is lacking in all these positions,
the start defaults to a C at position 8.

What if a new promoter sequence lacks purine in all relevant positions and
position 8 corresponds to a start point but is a T? Should the rule be extended
to: The start defaults to a pyrimidine at position 8 (though the rule would
become tautological)? Such a rule surely does not follow Occam’s razor
principle, which remains a reasonable guideline when setting rules.

This situation shows that ad hoc filtering procedures are usually data-
dependent, and it also reinforces the need to reassess the selection and
representation of data as stressed in Figure 3. The validation and optimization
of a method are important issues to be addressed further.
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To further emphasize the necessity to complement frequency calculations,
let us recall that binding is only one of the several events taking place in a
process to which a protein contributes. Moreover, many processes are
performed in parallel in a cell and each involved mechanism implies time-
dependent transformations (binding, cleaving, releasing, etc.). The nature of
biological processes thus appears to be essentially sequential, i.e., most
molecular mechanisms are locally and temporally defined.

For instance, any secretory mechanism is depicted as a succession of specific
steps [11]. Secretory activity is composed of such mechanisms. The dynamics
involved can be described only by chronological rules. Given another instance
of a process such as splicing and answering the simple question of which
snRNP binds first helps to understand the assembly of proteins in the
spliceosome [12]. Data of this type of are currently poorly used in automated
splice site prediction.

Most molecular recognition simulations are based on an attempt to assign
a weight or a probability to each of the amino acids or nucleotides constituting
a binding site or any other type of known site. Sequence analysis methods
generate and/or use rules of pragmatic inference based on concepts of measure
(such as probability), logic, or various relations of order (such as trees or
hierarchies). The rules alone—albeit pragmatically useful—are generally
insufficient to assign biological functions to sequences or sets thereof. Different
dimensions of knowledge may be needed to supplement pragmatic protocols
of sequence analysis and to determine functionally meaningful correlations
between sequences and their alleged biological roles. Chronology could be a
key to setting sufficient conditions to unambiguously characterize a set of
sequences. Moreover, it would also help associate sequences within a context,
which is also governed by chronological rules.

There are cases of explicit sets of necessary and sufficient conditions used
to fine-tune computer analysis of a given family of sequences. For example,
tRNA sequences (provided they are not from organelles) are now unequivocally
identified in genomic DNA. Their rather simple and very regular secondary
structure can be described with various constraints on symbols. These
constraints are necessary. They apply with respect to a definite hierarchy or
chronology, which sets sufficient conditions. As a result, given any genome,
diverse reliable programs assist the automatic annotation of tRNA genes (see
Sec. 3.4 for details).

However, the role and influence of tRNAs in protein synthesis are ultimately
the reason one would consider such molecules. A thorough understanding of
this role entails taking different data into account. First, to remain at the
sequence level, the potential modification of nucleotides is of significant
importance. RNA edition may yield different outcomes from slowing down
translation to shifting reading frames [12a]. For instance, a single modification
of a nucleotide immediately downstream from the anti-codon bears on the
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efficiency and/or the sensitivity of translation. Second, various other features
such as the relative abundance of tRNA in the cell or the frequency of codons,
which are usually organism-dependent, are used to quantify the active role of
tRNA in translation. Finally, understanding of a function can be achieved by
trying to assess minimal requirements and answering questions such as: What
are the effects of deleting an arm of a tRNA? How far can the anticodon be
modified to denature translation?

This example demonstrates the need for formalizing the sequence of
operations or actions a gene or protein is involved in when active, that is, the
context within which a particular molecule interacts with other molecules
and contributes to a cellular process. The concept of interaction between
macro-molecules has long been considered only from a structural point of
view. Early X-ray data of protein-DNA or protein-protein complexes yielded
realistic descriptions of binding [13,14]. As such, they provided a solid basis
for the design of reliable computer graphics tools. However, the structural
constraints of binding can only partially explain the function of a protein
while accounting for the activity but not for prior events determining whether
binding will or will not take place. Binding is only one molecular action in a
series of many.

More generally, biology is mostly about potential versus realized events.
That is why Bayesian models are often more appropriate than any other
probabilistic models, and likewise it is what makes the “if… then” rules of a
knowledge-based system suited to solving some problems in biology, as will
be discussed further in Sections 3.3 and 3.4.

Compensatory mechanisms are another type of interaction, which defines
a context. Indeed, the compensation of a weak signal by another signal is
observed in a number of instances. As such, compensation provides the overall
consistency of a process.

Experimental setups more and more acutely account for the fact that
genes and proteins cannot be understood without knowledge of the
context within which they interact between themselves or with other
cellular constituents. Consequently, sequence analysis is slowly evolving
away from considering collections of gene or protein sequences based on a
unique criterion such as having the same function or the same structure.
However, because genes contain the information that ultimately encodes
for the function of proteins, interest has been focused on genomes,
confining interpretation to one direction: from genes to proteins. The
difficulty of understanding genomic data confirmed that such a
uniquivocal view is too restrictive. Gene expression and protein levels
vary with the cellular location as well as the global activity of the cell more
often than not in an unrelated way. To account for these variations,
concepts of transcriptome (all gene transcripts found in a given tissue at a
set developmental stage) and proteome (all proteins found in a given tissue
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at a set developmental stage) were recently proposed to help reassess the
role of genes and proteins in a living environment. So far, there is no
obvious way to express a relationship between these two sets. The
differential display of controlled variations is the main characteristic of
these new approaches.

As a concluding note for this introductory section, the ultimate scope of
computational experiments in biology is adequate simulation of a biological
entity or a mechanism. Provided hypotheses are well set, the more optimal the
algorithm, the more accurate the simulation. The optimality of an algorithm
relies on a definite hierarchy of operations following a set chronology. Whether
a program simulates RNA folding or successive or parallel steps of a biological
process such as splicing, the succession of operations will ideally reflect an
identified set of time constraints.

This chapter is devoted to methods of description and interpretation of
genomic data. Whenever appropriate the methods are illustrated by examples
from either molecular biology or the practice of sequence analysis. The
references cited in this chapter constitute a representative selection (often review
articles) but are by no means exhaustive.

2. HISTORICAL BACKGROUND

2.1. The 1970s: The Era of Consensus Sequences

The experimental heritage of the 1960s produced more data on protein than
nucleic acid sequences. Indeed, Edman and Begg’s test [15] was the first means
of generating protein sequence data. Dayhoff [16] organized the first
compilation of protein sequences more than 10 years before what was to
become genetic sequence databanks [GenBank, 1979 (see http://
www.ncbi.nlm.nih.gov/Genbank/index.html); EMBL, 1980 (see http://
www.ebi.ac.uk/embl/index.html)]. Structural data were collected in the
Brookhaven Protein Data Bank [17]. So, until Sanger et al. [18] and Maxam
and Gilbert [19] set up the conditions for sequencing DNA, sequence analysis
equated with protein comparison.

A computer solution was mainly sought for three types of problems.*
1. Protein Sequence Alignment. Sequence variations of the same protein in

different species were studied. Pairwise alignment of protein sequences is based

* Phylogeny is intentionally not included in the list. Classification-related problems were set
decades before any sequence data became available. Organisms were described in terms of
morphological characters.
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on Dayhoff’s work on amino acid replaceability [16]. The first computer
program aligning protein sequences was based on dynamic programming [20].
Dynamic programming was originally developed to tackle the issue of
sequential decision processes [21]. Such a reference to a formally defined
computer method was the first step toward importing algorithms not directly
related to statistics. The immediate widespread use of this algorithm imposed
a standard: The distance between two aligned sequences was to be set as a
minimized function of the number of substitution, insertion, and deletion
symbols [22,23].

Sequence alignment highlighted conserved regions, which gave rise to the
concept of consensus sequences, defined as the longest common subsequence
in a set of aligned sequences. A small collection of programs searching consensus
sequences was available at the end of the 1970s.

2. Protein Secondary Structure Prediction from Sequence Data. Anfisen et
al. [24] established the relevance of the question by showing that a protein
folds without further information than that in the sequence. This hypothesis
remains the base of most efforts in this area.

The first attempts to predict secondary structure were essentially
statistical methods [25,26], based on frequencies of a given amino acid in a
given type of secondary structure. α-Helix, β-strand, or coil propensity
factors were derived for each amino acid. Directed mutagenesis experiments
could confirm propensity values, though in a subjective way (intuitively
chosen amino acids were replaced by a few other intuitively selected amino
acids in a given protein). Basically, a predicted structure had one chance out
of two to be correct.

3. Automated Restriction Mapping. From a formal point of view, the
problem is simply combinatorial. Restriction enzymes cleave a DNA
sequence at specific sites. Initial data resulting from cleavage are sets of
overlapping fragments of various sizes to be mapped to reconstitute the
sequence.

The question, seemingly well set, caught the attention of mathematicians
and computer scientists in the late 1970s. Formal solutions came from work
in pattern matching, programming with constraints, or early applications of
artificial intelligence, (see review in Ref. 27). The challenge for mathematicians
and computer scientists was to generate a contradiction-free reasoning.
However, biologists needed to map a real sequence with real data, and none
of the computer methods accounted for experimental errors. Consequently,
biologists kept on mapping manually.

2.2. The 1980s: Exponential Growth and Increasing Speed

Changes in the 1980s were both quantitative and qualitative. Not only did
sequence databanks grow exponentially, but experimental techniques boosted
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data production in faster and more systematic ways. Organelle genomes (from
30 to 150 kb in size) were first targeted.

The development of polymerase chain reaction (PCR) methodologies [28]
brought complete genomes into the picture. In addition, rapid multiple peptide
synthesis [29,30] or cassette mutagenesis [31] provided tools to systematically
test the effect of replacing a native amino acid at any given position by any of
the 19 other possibilities. Competition experiments in vitro were also
transformed by methods such as SELEX (systematic evolution of ligands by
exponential enrichment) [32], which tests the affinity of 48 octamers as opposed
to a subjective selection of a dozen potential sites.

In this context of massive data increase, the use of computers spread,
and two questions corollary to those mentioned in the previous section
were set.

2.2.1. How Should Large Sequence Data Sets Be Managed?

The reaction to the increasing difficulty of searching for particular information
in exponentially growing sequence databanks was twofold. On the one hand,
because databanks are an important resource, efficient search tools were defined
(FASTA, by Pearson and Lipman [33]; BLAST, by Altschul et al. [34] with
complementary strategies. On the other hand, clean and consistent data sets
would be easier to search, so specialized databases began to arise. The first
compilations of RNA sequences were released (e.g., that of Sprinzl et al. [35]).
The PROSITE database is one of a kind, that inspired a number of subsequent
initiatives [36]. It is based on the extraction of protein sequences and the
selection of their most significant (sense is correlated to sequence function)
parts, and as such constitutes a dictionary or lexicon. Its structure allows fast
comparisons, indexing, etc. Dictionaries are eventually destined to create new
vocabularies and as such can be used to redescribe sequences. Searching
databases and making relevant comparisons requires a high dose of intuition
to interpret sequence similarity, as convincingly pointed out by Brenner [37].

2.2.2. How Should Sequence Data Be Represented?

The crucial importance of description in the use of formal methods requires
more work in the representation of raw data [38]. Going from a linear type of
information reduced in a consensus sequence to a two-dimensional type of
information presented in a weight matrix [39] is illustrative. The description
of sequence data in general has evolved toward more flexible representations,
shifting away from a strong statistical view to a more logical one. In particular,
sequence analysis has become a fertile ground for the validation of inductive
methods often developed for other purposes (statistical inference, neural
networks, pattern recognition methods, symbolic learning methods, etc.).
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Analyzing a sequence entails identifying regular features. Regularity can be
set as a list of constraints restricting the occurrence of nucleotides or amino
acids. To outline regular features in a sequence, most approaches rely on
rewriting its content. Exceptions to this rule are examples where an explicit
sequence could be isolated as a regular feature just by eye such as the Shine-
Dalgarno sequence.

Rewriting involves drawing a correspondence between two alphabets and
swapping the alphabets. Compositional bias can be made obvious by
swapping {A, T, G, C} and {R, Y}, setting the correspondence as {A,G}→R and
{T, C}→Y.

The more appropriate the expression of a sequence, the more apparent
regularities will be. In fact, trials of all kinds were made to visualize regular
features in genetic sequences. Examples include:

1. The use of geometrical rewriting rules to emphasize symmetry in DNA
[40]. Four orthogonal vectors a few millimeters long (as in north,
east, south, and west), each corresponding to a nucleotide, were
defined to draw a DNA sequence in a two-dimensional space.

2. The use of rewriting rule expressing the frequency of the
oligonucleotide YRY(N)iYRY in introns led to the identification of
several periodicity classes in nucleic acid sequences [41].

3. With the use of harmonic rules in a sophisticated rewriting script,
a melodic score could be derived from gene sequences, thus
demonstrating the underlying specificity of genetic information
[42].

More common, and constant throughout the years, has been the initial
alignment of sequences suspected to share common features to emphasize
similar regions. A widespread reductionist approach consists in associating
aligned regions with a set of sequences and defining a characteristic motif.
Local similarity refines descriptions and alignments [43,44], which gave rise
to a package called IDEAS, a precursor of current sequence comparison
programs.

Regularities extracted from an alignment can be represented as a frequency
matrix [44a] or logical formulas [45] that sum up the information on a
functional/binding site or a partial protein structure (HTH, turn, etc.). A family
of aligned sequences can also be equated to a profile [46]. The introduction of
diversity and flexibility of sequence description led to the performance of
various calculations of indices, weight matrices, and scoring functions with
numerous ad hoc methods (reviews in Refs. 47–49). Nakai et al., As it is now,
hundreds of similarity measures can be used to compare a short unlabeled
sequence to a given characterized site. Sorting out the most appropriate is not
a trivial problem.
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Protein structure prediction can be seen as an attempt to make explicit
rewriting rules that allow an amino acid sequence to be transformed into a
succession of secondary structures {helix, sheet, turn, coil}. Propensity factors
or any other amino-acid-associated index as listed in Nakai et al. [48] have
not provided the right terms to express such rules. The introduction of pattern
matching approaches [50,51] was in essence directed toward stating explicit
rewriting rules. A similar attempt was made with RNA [52]. In both cases,
regularities of secondary structures were searched for an correlated to the
presence or absence of specific amino acids or nucleotides. However, these
attempts have remained limited by the lack of further rules expressing the
dynamics of folding. To date, these rules are still very difficult to derive from
empirical data.

The variety of examples mentioned here confirms how rewriting procedures
can refine knowledge.

2.3. The Era of Genome Projects

The capacity to cope with increasing length and volume of sequences provided
a first rough selection criterion for computer software and databases. Such a
selection is not necessarily a reflection of the quality of a method. Even a
sound algorithm such as that of Smith and Waterman [43] could not keep up
with the increase, though optimization criteria were suggested by Gotoh [53]
to tackle memory size and running speed problems.

The release of organelle genomes over 100 kb long (such as the
mitochondrial genome of Podospora anserina [54]), the first yeast
chromosome [55], and long E. coli contigs [56] provided ideal examples to
test the worthiness of programs defined earlier as well as the relevance of the
problem they were meant to solve. For instance, the use of codon bias to
identify open reading frames or search for E. coli promoters revealed its
limitations (see discussion in Ref. 57).

Most programs were working with the implicit assumption that the 5' and
3' ends of genes or the N- or C- terminal ends of protein sequences were
given. Sequence comparison, structure prediction, and most motif and pattern
search methods were all more or less based on a one-to-one correspondence
between motifs and sequences. As a result, a whole new field of research opened
with data generated by the polymerase chain reaction (PCR), where beginning
or end meant little.

On the one hand, DNA sequences need to be inferred from “rawer” data.
Indeed, new techniques such as random or shotgun sequencing or the
generation of expressed sequence tags from cDNA libraries [58], brought about
the problem of assembling overlapping DNA fragments to put a gene sequence
together. On the other hand, the increased rates of generating false positives
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and false negatives while searching contigs (compared to searching well-defined
sequences) was a new challenge.

Similarly with database size, exponential growth was not always
appropriately handled. GNOMIC [59], a dictionary associating an
oligonucleotide with a biological context defined as adjacent nucleotides,
turned out to be too sensitive to an increasing number of sequences and
could not keep up with incoming new information. In contrast, motifs
(short consensus sequences), gathered with respect to functional properties
such that sequences containing a common listed motif are grouped together
in families, do not expand wildly while more sequences become available;
the number of families remains manageable. For nucleic acids
nonredundant databases containing very large collections of functionally
equivalent sequences (FESs; introns, exons, 3’UTRs, 5’UTRs, and
contiguous genomic fragments from different sources) have been made
available to facilitate efforts in genome annotation [1]. For proteins, early
attempts such as PROSITE [36] or PRINTS [60] initiated a trend for
defining protein families. In all cases, nonredundant collections of
functionally equivalent sequences help to generate standards (such as prior
frequency distributions) for statistical analysis of function-associated short
sequences.

The analysis of longer sequences also gave rise to various initiatives such
as the possible use of spectral analysis methods developed for physics
(review in Ref. 61) or the systematic rewriting (data reduction based on the
concept of local repetitiveness) of sequences with respect to their
informational content-compositional bias, based on the definition
complexity [62,63]. Though the application of Shannon communication
theory information theory [64] in biology is not new (see, e.g., Refs. 65–67),
it is made more interpretable with calculations performed at the scale of
entire chromosomes or genomes. It is completed by introducing methods of
data compression [68–70].

Within two decades, the three founding questions of bioinformatics listed
earlier have followed different tracks.

Sequence alignment tools are of intensive everyday use. Though the gap
penalty problem is still subject to various controversies as well as the choice
among dozens of scoring matrices, the issue has evolved to a point where
regular users know what to expect from the program they are using.

Sequence restriction mapping is outdated in the genome mapping era and
has definitely lost relevance as such. A renewal of the topic came recently
from a new experimental method reducing the error in assessing fragment
length [71].

Until recently, the issue of protein structure prediction evolved independently
of genome developments with mitigated success [72]. Threading was thought
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to have become a resourceful approach in the early 1990s, but the enthusiasm
died down [73]. The lack of quick enough experimental feedback has been
slowing progress. The most recent developments involving the increase of
structural data and the use of genomic data have, however, revitalized the
topic (including the comparative assessment of techniques of protein structure
prediction, known as CASP [74]).

3. GENOMIC SEQUENCE ANALYSIS

It may be obvious though relevant to specify the variety of automated
procedures defined and used in genome research. Computer applications
described in the literature can be categorized into three types:

1. Engineering software that reads data from sequencers and translates
it into nucleotide sequences. In this case, inputs and outputs are clearly
defined, and specifications can be made explicit. For instance, the
experimental setup requires programs to cope with noisy spectral data,
which is achieved by customizing signal processing methods. This
aspect will not be discussed here. Examples of detailed description of
methods can be found in Ref. 75.

2. Building software corresponding to algorithmic solutions to a
welldetermined problem for which the input is a consistent set of
sequences and the output is meant to be unique such as an assembled
sequence or a genome map. This part will be only briefly introduced
in the next section.

3. Analytical software designed to understand the content of genetic
sequences with varying assumptions. In this case, neither the input
nor the output can be uniquely determined. Indeed, the consistency
of a set of sequences input to detect a DNA binding site or to predict
a folded state is difficult to prove. On the other hand, the potentially
attached to outputs (e.g., is a detected site in an unannotated sequence
a real result or an artefact?) gives rise to multiple interpretations.
Except for Sec. 3.1, the remainder of the chapter is devoted to
describing and discussing the various methods implemented in the
context of interpreting genomic data.

3.1. Sequences and Contigs

3.1.1. DNA

The speed and cost of sequencing methods became an issue after the release
of a few organelle genomes in the early 1990s. Although the original
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method was still referenced [76], it was being challenged by attempts made
to skip the reading of electrophoretic gels. The idea of piecing short
sequences together to reconstitute a larger sequence was more in tune with
automation. However, random sequencing was limited to ~40 kb long
target sequences,* and the reliability of sequence coverage by a collection of
independent clones was begging the definition of a consistent model. As
clearly explained by Fraser and Fleischmann [77] for bacterial genomes, a
model evaluating the probability of a nucleotide not being sequenced given
the number of clones alrady processed gave rise to the shotgun approach. It
provided the threshold values necessary to set the number of clones for a
given sequence length and a given genome length, assuming sequencing was
performed from both ends with relatively long inserts. In fact, the shotgun
whole-genome sequencing method is an example of evolution of a
technology based on a computational model.

Final sequence assembly relies on the alignment of overlapping fragments,
which can be made difficult when DNA is very repetitive as it is in eukaryotic
genomes. The possible occurrence of gaps between contigs imposes the
definition of closure strategies, which involve the use of PCR and/or probing
by hybridization of identified gapped regions. Related questions have been
discussed for bacteria [77], nematodes [78], and humans [79]. In the latter,
the use of quality values of sequences indicating the likelihood of each base
being correct is emphasized. Distinguishing sequencing errors from true
polymorphism is of crucial importance. Combinatorial and pattern matching
methods used in this context are well described by Gusfield [2], who considered
sequences exclusively as strings of symbols.

Text search methods are appropriate because DNA sequences are not
random. Nonrandomness is demonstrated by the presence of regular features.
Periodicity, repeats, and compositional bias were observed (for early work
see, e.g., Refs. 65 and 66) and are still the focus of a number of studies (see
below for further references). The detection of these features depends on the
description of sequences. In the basic representation of strings of symbols, the
identification of regular features is based on only two possible parameters:
length (of strings or substrings) and frequency (of symbols or groups of
symbols). They are combined in different more or less complex ways depending
on the type of expected output. Criteria such as length of inserts and length of
overlap are used to piece sequences together, generate contigs, and map
genomes. Statistical analysis of strings of symbols allows the correlation of
regularity with known properties of sequences, which generally yields new

* Up to 1995, the size of the genome of phage � was the upper limit [76].
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assumptions or definitions. A basic representation can give rise to a variety of
interpretations, depending on the setting of the initial goal.

3.1.2. Expressed Sequence Tags

Expressed sequence tags (ESTs) are cDNA sequences generated by automated
single-pass sequencing and as such are rapidly produced at a low cost [58].
Generally, irrespective of their final use, EST sequence data are processed into
contigs to reduce redundancy and generate longer sequences. The process of
generating contigs involves, first, grouping homologous nucleotide sequences
into clusters and, second, assembling clustered sequences into a consensus
[80,81].

Assembling contiguous sequences from ESTs may, however, deprive us of
useful information. If potential isoforms are clustered together and condensed
into a single consensus sequence, information regarding polymorphism is lost.
Indeed, when a set of ESTs matches a known gene, the multiple alignment of
translated ESTs with the gene often shows variations. The question then
becomes that of distinguishing which variations represent isoforms and which
simply correspond to sequencing errors [82].

3.1.3. Maps

Physical mapping of a genome involves various techniques, which are well
presented in Ref. 83. Only the latest method, optical mapping, will be briefly
introduced here. Crystal clear explanations are given in Ref. 71. Large DNA
molecules can be digested on an open glass surface and visualized by
fluorescence microscopy to generate an ordered set of overlapping maps. Each
clone is mapped redundantly, and a maximum likelihood method is
implemented to select the most probable one. The probability of computing
the correct restriction map is a function of the number of cleavages in the map
and the number of DNA molecules used to create the map. Error arises from
incomplete digestion or mistaken cleavage sites, unknown orientation, or
erroneous sizing. A large statistical sample of maps (thousands) is preferred to
the minimal threshold value (hundreds) predicted by a probabilistic model,
and a confidence measure is used to rank maps.

A whole genome can be characterized in this way, and the resulting map
complements the shotgun approach to tackle the gap problem and overcome
the difficulty of mapping repeat-rich regions.

3.2. Sequence Data Description

3.2.1. Raw Sequences

Assuming initially that little is known about genetic sequences, chromosomes
or genomes are considered just as sequences of symbols. The study of the two
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basic parameters frequency and length yields various definitions qualifying
sequences.

1. Frequency. Compositional bias is usually estimated with respect to
random sequences. The design of relevant random sequences for
comparison purposes is a whole topic in itself and will not be debated
here. Nucleotide or oligonucleotide (di-, tri-, tetra-, etc.) frequencies
are examined in a given chromosome or genome. The interpretation
of some distributions, among others, gave rise to

Early Markov models [84,85]
The definition of isochores in human genes [86]
The definition of homogeneity or heterogeneity of sequences [87]
The definition of repetitious (compositionally simple) or

nonrepetitious (compositionally complex) sequences [1,63]
Various tables of over- or underrepresented words, simple repeats,

or tandem repeats (see, among others, Refs. 88–90)

2. Length. Relevant information identified by the study of frequency
parameters can be enhanced by working on distance distributions
such as

Length of over- or underrepresented words
Length of repeats
Distance between repeats

Sequences are also encoded in binary strings as the simplest representation
that allows the assessment of the informational content of DNA based on
information theory. Shannon entropy was applied in various conditions (it is
valid for all sizes of alphabets) to the study of biological sequences, in particular
to tackle the issue of sequence redundancy [1]. More recently, data compression
techniques have offered a variation on the theme and better insight into the
notion of repeat [69,70].

Assuming that global properties of sequences are known, the same
parameters are used to get further information.

Property 1: Sequences are coding.
* Frequency. Nucleotides are grouped as triplets or codons. In chromosomes

or genomes, codon and dicodon distributions are used to qualify sequences,
for example, coding versus noncoding in E. coli [91] or coding versus noncoding
in eukaryotes [88] (see also review in Ref. 92).

In coding sequences only, synonym codon use is studied. It is specific to
organisms [93] and characteristic of the level of expression of genes in E.
coli [94].

In noncoding sequences only, nucleotide distributions are examined. An
example is noncoding versus intragenic regions in humans [95].
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*Length. intron versus exon length in eukaryotes (review in Ref. 92) and
noncoding versus coding region length.

The two parameters can be combined, e.g., correlation of the G+C content
and coding sequence length [96]. The identification and annotation of open
reading frames in genomes rely on such features.

Property 2: Sequences are folding or binding.
In this case, frequency and length parameters are difficult to decorrelate.

*Frequency and length. Significant palindromes such as transcription
termination sites [97], unlabeled identifiable secondary structures [98], and
labeled identifiable secondary structures such as tRNA (see further for
references).

3.2.2. Generating New Descriptors

Sequence analysis programs are first and foremost designed and used to
generate new knowledge. There are two distinct issues:

1. The discovery of new patterns yielding the definition of new descriptors
of sequences

2. The extraction of relevant pieces of knowledge in massive and
miscellaneous collections of data, i.e., data mining

Both are addressed in the following sections.
The discovery of new patterns usually results from modeling, and various

frameworks in which models are generated are presented below. Most of the
time, supplementary information is required to refine the interpretation of
identified patterns, and further processing of data is also detailed.

Combining basic frequency and length parameters in mathematical formulas
is preliminary, as exemplified above. In this section, it is assumed that raw
genomic data have been partially processed so that some knowledge can be
associated with a group of sequences to be further analyzed. Assumptions can
be related to functional or structural properties.

As discussed earlier, rewriting a sequence provides a new look at data.
Moreover, rewriting is usually based on rules expressing a set of constraints,
that is, regular features. “Regular” is often equated with “frequent.” Many
instances of a nucleotide at a particular position in various sequences make it
regular. Frequency is not necessarily a reflection of how stringent a regularity
is, because a constraint can be strong without being frequent. Such is the case
of the letter “q” in most languages derived from Latin. A consensus word
containing “q” would be (vowel OR ‘c’) ‘q’ (‘u’ OR ‘’) (vowel OR ‘’ ). The low
frequency of words containing “q” makes it more difficult to identify
constraints. Such a situation is likely to be common enough in biological
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sequences and begs the question of how representative a set of sequences
actually is. In the majority of cases, the answer is rationalized posterior to
whatever analytical method is used.

Multiple alignment methods (global, Thompson et al. [99]; local,
Morgenstern et al. [100]) provide a common and simple means of revising
the definition of similarity. Portions of the alignment corresponding to
conserved regions can be used as new descriptors, that is, a motif. Particular
care in drawing an equivalence or a lineage of the various definitions of
motifs as well as the basis of a flexible motif search is taken in Bucher et al.
[101]. Motif descriptors are shown to fall into four categories depending on
all possible combinations of two criteria: qualitative/quantitative and
variable/fixed length.

Other recent methods do not require sequences to be aligned for the
identification of motifs [102,103]. Qualitative patterns of variable length are
generated using methods of this type. Two approaches for the discovery of
new patterns are detailed: a pattern-driven approach, which is based on
enumerating possible patterns and choosing the fittest, and a sequence-driven
approach based on a search for common parts in sequences. The two strategies
may actually be combined. The definition of pattern boundaries remains an
open question, in particular for proteins, when structural data are not available.
In that case, recent contributions attempt to provide approximate answers
(e.g., Ref. 104).

Generally speaking, systematic rewriting of sequences offers a wider basis
to the definition of similarity while suggesting measures and distances between
sequences other than the standard editing distance. A short discussion on the
matter can be found in Ref. 61.

A common motivation in using formal methods is the desire to identify
new descriptors of sequences, which would favor the selection of relevant
information from data sets. In that respect, acquiring knowledge from examples
is an important step. A learning phase or, more generally, inductive reasoning
has become almost unavoidable to identify regular features in a collection of
examples. Neural networks and evolutionary and hidden Markov models are
the main references. In fact, induction provides a means of reformulating a
problem. Once a correlation is inductively brought to the foreground, it is
used to define a filtering method, whether in the form of a metric or a scoring
function associated with threshold values. In the context of pragmatic inference
mentioned earlier, Konopka [1] states three directions along which such filters
are suitable: prediction, simulation, and generalization. Successful inference
is assessed by the quality of the outcome in any of these cases. More often
than not, if the quality is unsatisfactory, new assumptions can be tested and
properties of sequences refined.
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3.2.3. Learning Signals for Prediction

A signal is a sequence within which the occurrence of nucleotides or amino
acids is obviously constrained. In most cases, the automatic identification of a
signal is based on inductive reasoning or learning. Examples of a signal are
first gathered. The frequency and nature of the nucleotide or amino acid are
almost always the chosen initial descriptors. Consider the illustrative case of
splice sites.

The frequency of each nucleotide can be recorded in a weight matrix in
which each position within the signal is individually considered. However,
one nucleotide is likely to be restrained by the presence of others. Weight
arrays provide the possibility of accounting for dependencies between adjacent
positions [105], which seems appropriate in the case of codons. Dependencies
between two nonadjacent positions can be identified by the maximal
dependence decomposition method introduced in GENSCAN [106].
Dependencies between two or more nonadjacent positions can be identified
by a neural network such as in NetGene [107] or by another learning algorithm
such as the system described in LEGAL [108].

Various initial sequence sets are used in all gene-finding systems to adjust
parameters. Referred to as learning sets, they are used to derive the information
used later for the detection of new signals. This information is a function of
the way signals are described. For instance, signals are first described as weight
matrices in GENSCAN, or as profiles [109], whereas NetGene or LEGAL
require the binary encoding of signals.

Unexpected frequencies of nucleotides at two distinct positions within a
signal may indicate a correlation, which is detected by means of �2 calculations
in GENSCAN. Binary data are processed in NetGene or LEGAL so as to
extract the raw information content and combine logical operations with basic
counting operations.

Both Baldi and Brunak, [3] and Durbin et al. [4] are quite exhaustive on
the formalisms used in learning, and there is no point discussing them here.
The topic is here simply to put the matter into perspective and provide a few
references.

The Specific Case of Neural Networks. Neural networks were obviously first
designed to model functions of the brain* and as such were meant to perform
“intelligent” tasks. The early use of neural networks to approach and formalize
the definition of biological systems has a long history covering neurology
(e.g., Ref. 111), immunology (e.g., Ref. 112), etc.

* McCullough and Pitts [110] introduced the assumption of an all-or-nothing model for a neurone
and the simple threshold switch of the algebraic sum of inputs.
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The first application of a related concept known as a perceptron to the
recognition of ribosomal binding signals was implemented by Stormo et al.
[113]. A short time later, neural networks were given a fresh start when the
back-propagation algorithm was defined [114]. This method was applied
almost immediately to other signal recognition factors such as promoter
sequences [115] or to protein structure prediction [116].

Neural networks (NNs) are used to express a complex correlation between
an input and an output. They are composed of three or more interconnected
layers of units called neurones. A weight is associated with a connection
between neurones. The stronger the connection, the stronger its associated
weight. Examples of inputs bound to a known output are given to calculate
weights of connections in an attempt to minimize the error between the expected
and obtained output.

Nucleotides or amino acids within a gene or protein sequence are most
probably not linearly correlated, justifying the use of models where
discontinuous functions can be approximated. Using an NN mainly requires
(1) that data be described as subtly as possible so that inputs are informative
and (2) some clarity as to what the output should be.

The interesting comparative study of E. coli promoter prediction methods
of Horton and Kanehisa [117] emphasized the importance of data selection
and the corresponding description. The complex architecture of a network
used with a careless description of an arbitrary data set could not compete
with a simpler design such as a perceptron running with carefully selected
sequences and preprocessed descriptors.

Morever, neural networks are mostly used to discriminate between two
sets so that the output is a simple yes or no answer to a question. The issue of
setting counterexamples is discussed later in this section, but to remain here at
a more global level one should just note the lack of work put into defining
more sophisticated output layers.

Neural networks are useful tools considering the limitations of human
eyesight and the number and size of sequences to be scanned for search
purposes. However, they are not likely to generate new knowledge. The
black box setup of a neural net prevents the rationalization of an automatic
decision made by the program. Whatever site or sequence is supposed to be
recognized, the resulting score attributed by a network has no known
biological meaning. As such, neural networks do not generate much substance
to define explicit rewriting rules (between two different representations, see
Sec. 2.2.2).

In a compilation of the application of neural networks to biology, Wu
[118] says about some particular NN setup: “The uppermost limit for the
accuracy weakly depends on the specific network architecture, and confirms
the relevance of the input information as a determining factor.” Such a
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conclusion is tautological: The more we know about a subject, the more
efficient a neural net is. So can a neural net really go further than what is
known in biology?

3.2.4. Hidden Markov Model and Generalization

Various sequential problems are formalized by using stochastic models, which
minimally require a set of states and a set of transitions between states
individually associated with a probability value. To represent a given set of
related sequences as a probabilistic model is to instantiate the set of states and
the set of transitions along with their probabilities. The easiest way to do this
with DNA sequence is to consider each nucleotide as a state and calculate the
frequency of oligonucleotides of a given length corresponding to the order of
the model. Prokaryotic noncoding regions were found to match such a
description [91].

The demonstrated heterogeneity of sequences (see Sec. 2.2.2) rules out the
existence of a uniform probability distribution of nucleotides along
chromosomes—thus the relevance of simple Markov models. Moreover, in
terms of sequence representation, selecting the four nucleotides as the set of
states confines sequences to a static description.

Hidden markov models (HMMs) introduced new hypotheses as well as a
needed change of representation [119]. Interestingly, within this framework,
states are no longer static symbols but symbol transformations such as
“delete,” “insert,” and “match” as a hidden mechanism constraining the
occurrence of symbols. Such a dynamic description increases the chances of
rationalizing some mutation phenomena. Sequences are considered the
observable part of such a hidden mechanism, which supposedly corresponds
to a succession of states. A mapping between the observation and the hidden
mechanism levels is defined; the sequential change of states is governed by
transition rules. These rules are first weighed using a training set. A built-in
optimization algorithm guarantees the fitting of data to the model. The most

possible alternatives for optimization). Maximum likelihood as the basis of
the optimization procedure of an HMM is another formulation of the
minimum message length (maximum compression) used in coding theory
[120]. A rare attempt to clearly draw equivalence between models is to be
noted [101].

Although a large set of parameters has to be managed by an HMM, which
appears cumbersome to naive users, various applications range from the
multiple alignment of a set of related sequences to the detection of open
reading frames (ORFs) in genomic sequences. The PFAM database [121] of
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motifs generated by hidden Markov models contributes to widen the scope
of PROSITE.

3.2.5 Folding and Simulation

Covariations. As detailed earlier, the identification of dependencies between
nucleotides or amino acids is a first step in determining new sequence
descriptors. In the particular case of RNA, models of covariance were defined
[122–124] to tackle the problem at the nucleotide level. In an attempt to
predict task. To date, only one example of manual sorting has led to the
specification RNA structure, sorting relevant from irrelevant dependencies is
a tedious of structural covariations [125]. Dependencies as such express a
compensation mechanism. Two nucleotides covary to maintain the possibility
of base pairing.

Compensatory effects are likely to be involved at further levels such as
groups of nucleotides. Compensation could be intrinsically recursive. Strong
signals compensate for weak ones, but compensation is also observed at the
level of structures in terms of distance(s) and angle(s).* The angle formed by
the anticodon and the aminoacyl arms of the tRNA molecule is constrained to
maintain the distance between the tips of these helices [126].

Amino acid covariations in protein sequences have inspired related questions,
though no base-pairing rule holds. However, an amino acid change can be
understood as losing or acquiring a property such as charge. The loss of a
charged residue can be compensated for by the appearance of another charged
residue elsewhere in the sequence [127].

Genetic Algorithms and Simulated Annealing. The understanding of principles
of RNA folding motivated a revival of simulation. Genetic algorithms [128]
and simulated annealing [129] were introduced to provide a flexible framework
and avoid being trapped in local minima as with, for instance, a Monte Carlo
method. In a simulation framework, intermediary stages can be looked at and
folding pathways can be drawn. The sketch of a chronology is potentially
defined. In fact, as discussed by Culberson [130], particular cases where the
combination of local searches directs future search seem to be advantageously
dealt with by genetic algorithms over other approaches to optimization.
However, the setting of fitness functions remains a difficult question, and
arguments promoting the superiority of genetic algorithms in general terms
are not convincing.

* The L-shaped tRNA molecule is maintained by so-called stability bonds, which preserve the
right angle.
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3.2.6. Interpreting New Descriptors and Generating Models

A common distinction between computer solutions to concrete or real problems
(set in biology or any other empirical field) is that they are either data-driven
or model-driven. Data-driven solutions correspond to an attempt to rationalize
data using whatever means, whereas in a model-driven solution a preset model
guides the rationalization of data. The choice of model is obviously crucial,
and so far very few seem adequate to express properties of biosequences. The
hidden Markov model (HMM) as one of the latest, performs well in a limited
way (see Sec. 3.2.4). In each of the frameworks in which a set of sequences
can be modeled—primarily grammatical, phylogenetic, and structural—model-
driven solutions may never get to be experimentally tested. Experimental
feedback cannot be required in all instances, but the option of getting it should
always be there.

The ultimate goal of determining new descriptors is to define models that
can account for common properties of a family of sequences. Because strong
regular features are usually matched with conserved regions of an alignment,
sequence analysis tools either require an alignment as an input, as neural nets
do, or produce an alignment as an output, as some HMMs do. In a data-
driven model an alignment is usually the source, whereas in a model-driven
scheme it is the target or an element of rationalization.

The balance between model-driven and data-driven approaches is difficult
to set in an empirical science like biology. Our current lack of knowledge
often causes us to lean toward data-driven solutions.

Pattern Matching and Grammatical Models. The success of applying string-
matching algorithms to analyze genetic sequences lies in the obvious
analogy between searching words in long texts and searching patterns in
genomic sequences. As such, the results of decades of pure research in
computer science were made available for biology. These include a
collection of fast and efficient algorithms for search patterns [2]. Patterns
recorded in the PROSITE database, for example, are regular expressions.
Regular expressions are recognized by finite automata, which have been
studied since the 1930s. Moreover, most alignment tools are inspired from
related algorithms developed for matching substrings with strings. So there
is undoubtedly a strong formal background from which molecular biology
has benefited.

A natural interpretation of searching patterns as in words in a text is to
consider the language possibly represented in the text. Formal language theory
seems to provide a range of models and tools applicable to the genomic text.
However, practical issues do not meet formal expressions so easily, and the
model-driven approach is debatable in this case, at least in the short term.
Attempts to use formal grammars to express regularities in sequences have

Copyright © 2004 by Marcel Dekker



Lisacek306

not enhanced the understanding of a possible DNA syntax. It has been proven
in many instances that DNA is not a random text; regularities can not only be
found, they can also be expressed in terms of grammatical rules. It is therefore
not surprising that attempts to derive some syntactic rules are successful. But
RNA families of sequences are not refined filters [131]. They capture some of
the question is, How representative are these rules? Grammars defined with
the features of RNA but do not provide an unambiguous characterization of
RNA molecules.

So far, the predictive power of grammatical methods seems limited by the
complexity of context-sensitive grammars. Rules governing the occurrence of
symbols in chromosomes sequences are likely to be context-sensitive. The
recognition of such a language is an NP-complete problem.

With a lesser goal of simple discovery, most combinatorial pattern discovery
methods are data-driven. Although they are restricted to identifying regular
expressions, some attempts to identify new patterns have succeeded as described
in the review of Brazma et al. [102]. The conclusion of this survey does,
however, point out the need for more subtle patterns.

Phylogeny and Evolutionary Models. When sequences are considered
merely as strings of symbols and aligned, the editing distance will
determine how related sequences are that can be visualized in a tree. No
further information except the origin of each sequence is needed to carry
out such a task. Mathematics was used very early on for modeling
phylogeny, because it mostly requires optimization functions. Building
trees can remain very formal when a sequence alignment is considered as an
abstraction. That is characteristic of a model-driven approach. In this case,
the chance of being contradicted is low, because there is no experimental
framework currently available to test the overall worth of a genealogy by
mimicking mechanisms of evolution. The quest for the tree of life is of no
help for the time being (possibly never, as pointed out by Doolittle [132]),
because multiple contradictions keep arising from the incoming complete
genome sequences [133].

The strength of evolutionary considerations is given by the knowledge of
the function and/or the structure of the genes (or proteins) being aligned.
Interpretation is enhanced when species are closely related. Then more practical
questions can be solved. For example, in the context of the study of bacterial
transcription factors, the evolution of a motif such as a helixturn-helix DNA
binding motif [134] provides guidelines for the identification of other
transcription factors containing this motif.

From a very different perspective, in vitro testing of evolutionary
mechanisms gives some feedback on regions of a specified set of molecules
[135].
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Structural Models. If sequence data are easy to generate, structural data
are not. Most of all, the task is time-consuming. Consequently, sequences
of known structure are aligned with sequences of unknown structure to
take advantage of homology and predict structures. The same applies to
protein or RNA.

Physical models of thermodynamics or various other areas of physics as
well as mathematics have shaped much of our current knowledge of protein
and RNA folding. Structural biology is the most model-driven area of
biology, and justifiably so, because a large part of the knowledge overlaps
with physics. These models combined with empirical data yielded various
estimates to make free energy, hydrophobicity, solvent accessibility, and
other parameter calculations more precise. They also provided guidelines to
state the conformational rules that are commonly used to estimate possible
folding.

The relationship between the structure and function of a macromolecule
still needs to be thoroughly investigated in order to rationalize the involvement
of a particular set of shapes in a particular biochemical activity.

3.2.7. Optimization and Validation

Sequence analysis usually relies on the definition of filtering methods. A filter
is a selection operation and as such is associated with two sets of criteria
(possibly reduced to only one element). Intrinsic criteria constrain the method
itself (determining its quality), whereas extrinsic criteria constrain the way the
method is used. Optimizing the selection entails optimizing criteria.

Figure 4 illustrates a succession of filters characterizing sequence
analysis.

Selection 1: Choosing a Relevant Data Set. The slow building up of reference
sets for sequence analysis created intermediary messy situations. Early
compilations of sequences such as E. coli promoters [136,137]; transfer RNA
[35,138], and structures such as the dictionary of protein secondary structures
[139], lasted as standard sets for a number of years but were isolated cases.
Most of the time, home-made data sets would be used to determine similarity
measures, and a collection of indices, weight or probability matrices, profiles,
etc. (see large sample in Ref. 47) was accumulated. Specialized databases now
available provide better resources for standardizing data. However, particularly
when a method includes a learning step, which is common, choices of a learning
set and a test set are neither open nor debated enough. The systematic
production of genomic data is only a partial answer to the question of relevance
and consistency of data.

The automated version of the Selection 1 operation is usually based on
keywords that characterize the function or correspond to various features of
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sequences. Software such as SRS [140] is used for databank interrogation and
the extraction of sequence sets.

The optimization of a selection of sequences based on keywords usually
involves a criterion of nonredundancy. Other features such as the length of
sequences (i.e., getting rid of short fragments) can be added.

Selection 2: Choosing a Relevant Representation of Data. As discussed in
previous sections of this chapter, the issue of data representation is quite
crucial. Alternatives include, for instance, opting for a deterministic pattern
(e.g., a consensus sequence) as opposed to a probabilistic pattern (e.g., a
profile).

To get back to the issue of defining a learning set, it is important to note
that to set positive and negative examples is neither uniquivocal nor formally
well-founded. It is data-dependent. A positive example is presumably easy to

FIGURE 4 Successive filters of sequence analysis. Note that the optimization of
each step relies on feedback information because these operations are more often
than not repeatedly applied, taking into account knowledge acquired at an earlier
stage. Selection 1 involves choosing a relevant compilation of sequences.
Specialized databases provide good resources for standardizing data. The
optimization of a selection of sequences usually involves a criterion of
nonredundancy. Other features such as the length of sequences (i.e., getting rid of
short fragments) can be added. Selection 2 involves choosing a relevant
representation of data. Depending on how much is known about the biological
process relative to the data and the problem to be solved, this choice is relatively
unlimited. Optimization is therefore still an intuitive process as far as both type of
criteria are concerned. Selection 3 involves choosing a relevant measure of
similarity. Most analytical methods involve score calculations. Each analyzed
sequence is given a score, which will result in deciding whether the sequence is a
positive or negative instance. A score is usually optimized to fit the data. Strict
computer science criteria assessing the worth of the algorithm can reasonably be
included among extrinsic criteria to complete the optimization of the definition of a
biological entity.
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specify. A negative one may cover diverse cases including unknown or
undetermined data. There is no consensus definition of a nonsignal. There is
no satisfactory definition of a random sequence either. Shuffling nucleotides
or generating randomness via a Markov model is usual but barely reliable.
Underlying principles characterizing the occurrence of nucleotides being
unknown, there is no means of generating an artificial sequence that reproduces
the characteristics of a real sequence. Such an issue is debated in Ref. 141.

The Selection 2 operation is poorly automated as a result of such a thin
formal background. Optimization is therefore still an intuitive process as far
as both type of criteria are concerned.

Selection 3: Choosing a Relevant Measure. Most analysis methods involve
calculations of score. Each analyzed sequence is given a score, which will
result in deciding whether the sequence is a positive or negative instance. The
worth of an algorithm in biology journals has long been and is still often
measured only by the rate of success in coming up with the expected results;
that is, the worth of the scoring function is tested by whether it

Distinguishes positive from negative results
Distinguishes positive results from those generated with random

sequences
Generalizes to other sequences (identifies new instances with possible

experimental confirmation)

The unusual contribution of Wootton [142] introduces this too rarely
debated problem of evaluating results with a long series of interesting
questions* and discusses the relevance of the standard assessment by
calculating measures of sensitivity (Sn) and specificity (Sp). A measure of
relevance is suggested that is a constructive addition to current evaluations. In
this framework, a sequence as an instance of a particular set of features is
given a relevance weight depending on the source of knowledge used to
establish the relationship between the sequence and the set of features.
Indeed, an example of an active site is certainly more convincing if the activity
was experimentally demonstrated than if the example was selected only
because of similarity to a known active site.

* How do methods compare in discriminating a given class of functional features from other,
perhaps similar, sequence features? Which methods perform best in recognizing resemblances to
known features, albeit very subtle? Which strategies best favor the emergence of unprecedented
molecular features and new biological associations? How do methods compare in indicating the
existence of significant new associations that are not encoded in prior knowledge and databases?
How can optional parameters of methods be varied to achieve different goals? Can the strengths
of different algorithms be combined into new strategies that are more powerful than any
individual method?
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In fact, sensitivity (Sn) and specificity (Sp) should be used mostly as
feedback information to improve and optimize a model, that is, to rationalize
a posteriori a solution to classification or simple discrimination and refine
extrinsic criteria.

The Selection 3 operation usually involves imported methods, which are in
principle more or less intrinsically optimized. The worth of an algorithm in
computer science is estimated on the basis of complexity and running time
calculations (intrinsic criteria). A computer program is optimal if both
complexity and running time can be minimized.

Definitions tend to differ according to whether they are set in biology or in
computer science; optimization is an illustrative case. Truly, provided a method
runs reasonably well, priority should be given to the optimization of extrinsic
criteria. Indeed, concern for algorithm efficiency was not originally shared by
biologists whose priority was to test ideas and hypotheses. However, memory
size became a more pressing issue with growing data sets, even though computer
capacities continued to be upgraded at the same time. Running time had been
addressed earlier [143] but was really brought into the foreground with
programs like FASTA [33].

Pure computer science criteria assessing the worth of the algorithm can
reasonably be included among extrinsic criteria to complete the optimization
of the definition of a biological entity [144]. The optimization of sequence
analysis methods should, in fact, yield the optimized definition of biological
entities to be used for unambiguous recognition in any data set. If this goal
cannot be achieved, that is, if no such explicit sense can be made of a set of
sequences, there are reasons to believe that the set is inappropriately built.

3.3. Advanced Genomic Data Description

3.3.1. Rule-Based and Knowledge-Based Systems

Early artificial intelligence (IA) methods known as expert or rule-based
systems were specifically designed to accommodate issues related to problem
solving with ill-defined hypotheses and suited to molecular biology (e.g.,
MOLGEN [145]).

A rule-based system manages likely facts. It is supposed to analyze a new
fact by using in-built inference rules and assess how likely the new fact is.
Such an assessment is done only if the rules used do not conflict. The knowledge
of the system is improved by adding newly assessed facts.

A number of limitations were identified through use:

1. Explicit vs. implicit knowledge: A human expert cannot state all he
knows in terms of explicit rules, so the system’s knowledge is bound
to be lacking.
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2. Context dependence: It is not easy to restrict rule firing to specific
contextual conditions.

3. Justification: Likelihood is not easy to justify.
4. Likelihood varies with the quantity of knowledge.

Explanation modules were added to cater to the third limitation and slowly
evolved to become knowledge bases. The latter provide a more structured
environment where context can be drawn and explanations can be built
up. For instance, EcoCyc [146] is not a mere description of metabolic
pathways of E. coli. Further knowledge of chemistry and biochemistry is
included in various modules, providing the possibility of rationalizing the
putative function of a gene, a lack of carbon, or whatever fact is being
considered.

In parallel, to solve conflicting uses of rules and respond to limitation 4, a
new architecture, multiagents, began to supersede rule-based systems.
Multiagents rely on the division of tasks, which are distributed to a collection
of specialized programs called agents [147].

In an expert system, the more likely a fact is, the more likely a rule containing
that fact will be used. In a multiagent system, the knowledge of an agent is not
more or less likely than that of anoter, but the communication between agents
is given a degree of likelihood.

An agent’s contribution to reasoning is partial and circumstantial. It is bound
to be sustantiated and completed by communication with other agents. A
collection of facts is considered as a succession of agreements between agents
as opposed to a set whose consistency has to be worked out. Local consistency
is preferred in a multiagent scheme, which seems suited to biological sequence
analysis.

A multiagent system provides the framework for gradually putting
together pieces of information in order to solve a problem. The system is
given one or more “scenarios” to consider, that is, guidelines to reach a
solution. The system is organized in layers. Information is filtered through a
hierarchy of agents. The purpose of an agent is to process information. Lower
level agents, called basic agents, start with raw information. In principle,
information reaches higher level agents only after being processed by lower
level agents.

A modifiable list of properties characterizes an agent. For instance, a basic
donor agent is characterized by a position and the sequence surrounding the
invariant dinucleotide GT.

To process information means here to sort, revise, and update information.
It is achieved with two in-built operations:

1. Selection of the relevant agents
2. Co-operation between agents
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In the selection mode, at least one criterion of relevance is defined to filter
those agents fulfilling such criterion (possibly criteria). For instance, relevance
can be set to be a score of similarity of a signal to consensus above a given
threshold. Then it is considered as a new property and added to the list
associated with an agent. Consequently, the knowledge of the system is enriched
after selection.

In the co-operation mode, agents are merged and so are the associated lists
of properties. Information is gathered from distinct sources. An underlying
operation of selection is performed, because the merging is done according to
a criterion of compatibility. The knowledge of the system is also enriched
after co-operation.

The order in which selection and co-operation operations are performed
reflects a sketch of resolution (scenario) drawn in accordance with biological
models, thus defining a chronology of events. As a result, a higher level agent
is the result of a successful step in the resolution process. Missing or erroneous
information can be spotted by checking which properties of which list led to
selecting the wrong agent or discarding a relevant one.

The chronology can be altered whenever priorities need be modified.
Chronological variations of the recognition process can be included among
the various recognition steps to test the relevance of a model. Moreover, the
poor performance of some agents indicates which property should be modified.

Because the definition of “function” for a gene is becoming more difficult
to set, alternative denominations such as “role” or even “agent” are being
suggested to step out of the teleonomic frame that is attached to the word
“function.” The following section emphasizes this trend.

3.3.2. Networks and Graphs

A tendency is definitely emerging that entails focusing on interactions between
sequences as opposed to sequences themselves [148,149]. To begin with, the
very nature of metabolic data requires considering relationships between genes.
Interactions are made explicit with respect to a chosen type of representation,
preferably structured as in, for example, biochemical pathways.

Graph theory appears as a well-founded source of hypotheses to be studied,
especially as far as transitivity and direction are concerned. Relations in graphs
representing biological interactions are still poorly characterized.

Lattices provide a flexible definition of relationships between objects
[108,150]. Other logically based networks allow, for instance, a modular
expression of functions involved in regulatory mechanisms [151].

Quantifying contextual variations and setting the extent of mechanisms
involved in DNA transcription or an immune response are still beyond our
reach. Current trials to express data in networks may reveal new hypotheses
as optimistically stated by Tavazoie et al. [152].
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In fact, boundaries are generally quite difficult to specify in biology. In
particular, no obvious practical definition of reversibility is available.

Can a minimal set of interactions be defined? Is it a case of setting thresholds
or determining “atomic” elements? At the genomic level, gene knockout
experiments reveal not only the apparent contingence of some genes but the
often unsuspected consequences of codeletions. Understanding the
consequences of the inhibition of some functions helps in estimating the extent
of interactions. The same applies at the molecular level. For instance, most
eukaryotic tRNAs consist of four helices, but many mitochondrial tRNAs are
functional with only three; so what is a minimal tRNA?

3.4. Gene Annotation and Genome Data Interpretation

3.4.1. Gene Identification in Eukaryotic Sequences

The imaginative idea [153] that protein-coding regions in naturally occurring
nucleic acid sequences could be identified via statistical analysis has been an
inspiration for at least three generations of computational biologists. This
initial lack of appreciation stems from the fact that in 1981 very few DNA
sequences had been sequenced. In addition a widespread (however erroneous)
belief was that all DNA encodes proteins and therefore there appeared to be
no practical benefit from knowing that protein-coding regions exhibit
interesting statistical properties. The existence of introns was already known,
but the DNA sequences available for analysis were mostly those of E. coli and
its phages (no introns). In addition, the sequencing techniques of the time
allowed sequencing of the complementary DNAs, which were again protein-
coding regions. This created a false impression that the sequencing alone would
be good enough to find all genes. For these various reasons Shulman and
coauthors remain forgotten to this day despite the momentum generated by
sequence annotation software tools in the 1990s.

Interestingly the determination of gene structure acquired tremendous
popularity, though, clearly computational analyses could not be instrumental
in finding details of splicing mechanisms. However, statistical criteria for
defining functionally distinct regions in DNA were attractive to their original
inventors as potentially shedding some light on actual cellular mechanisms.

The first algorithm (and results of its implementation) for finding
approximate locations of introns, exons, and intergenic spacers in long
chromosomal fragments (assembled contigs) has been in use since 1988 [154].
The extraction of appropriate data from the available sequence databases
(GenBank, EMBL-DNA library, and PIR-Nucleic) was, however, very difficult
and time consuming.

Two main categories of currently known methods can be distinguished.
“By signal” procedures determine intron-exon structure of protein-coding
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regions starting with the detection of the exon/intron junctions, based on the
recognition of well-known splice sites consensus sequences and regularities.
But this leads only to poor detection performance due to large numbers of
false signals that are significantly similar to true sites [107,155]. This lack of
specificity reflects our incomplete knowledge of the splicing mechanisms. To
improve the detection, further analysis of coding regions is generally undertaken
[106,156–158]. Coding regions can also be identified as exons with “by
(statistical) content” criteria (such as codon use, compositional bias, and
periodicity). Such an approach cannot (and does not) rely on a known model
of the splicing process.

More generally, gene-finding methods usually do not provide adequate
models of splicing. In fact, splicing is only implicitly simulated. Parameters
are tuned to optimize the output from given inputs, mostof the time
through training and a testing phase. These parameters are inaccessible in a
neural network or a hidden Markov model but more explicit in a statistical
model [106] or a rule-based system [109]. The majority of methods are
tailored to match input and output data with currently available sets of
sequences and, as such, loosely reflect a biological phenomenon or
mechanism; a right or wrong prediction cannot be argued in biological
terms. Change started to occur with Burge and Karlin [106], Brendel and
Kleffe [159], and Vignal et al. [160].

The undeniably hierarchical nature of the recognition of splice sites and
our lack of knowledge of it warrant the choice of a rule-based system. Indeed,
if all steps of such recognition were to be precisely defined, conventional
methods (e.g., an automaton) would be suitable for simulation. In a rule-
based system, reasoning is made difficult because of conflicting sets of rules,
and problems cannot be solved. Furthermore, understandable justification of
how problems are automatically solved is lacking. To overcome the latter
problem, explanatory modules can be added, but the system soon becomes
unmanageable. Alternatively, a new architecture where tasks can be divided
into subtasks and distributed within the system, called a multiagent system,
can be designed. The framework of a multiagent system appears somewhat
more suited to tackle the problem. Most of the operations defined in a rule-
based system are built into the multiagent system. In particular, filtering
operations are predefined, and the instantiation of parameters is left to the
user. As in other methods, a preliminary learning phase is required.

The value of using a multiagent system is shown in Vignal et al. [160]. In
particular, the system is used to assess the relative importance of each identified
component involved in splicing, corresponding to an approach described in
Ref. 161 as “understanding and replicating “in silico” the rules by which
signals…are recognised and processed.” Results emphasize that sites are
differentially rated depending on varying contexts of donor sites. Such variation
could be biochemically specified. Furthermore, the poor recognition of some
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sites seems to indicate a requirement for at least one additional step
corresponding to the interaction between an enhancer sequence in the vicinity
of the donor site and proteins of the splicing complex.

Recent reviews [162,162a,162b] stress the permanence of the strengths
and weaknesses of the methods referred to in the present section.

3.4.2. Data Mining

Exploring Databases and Web Servers. The initiative of specialized databases
first introduced in the late 1980s (see Sec. 2.2) was boosted by the spread of
computer networks. Within a few years, various types of information (software,
sequences, annotations, collections of motifs, structures, sites, images, etc.)
became available on servers of the World Wide Web. The analysis and
interpretation of genomic data are now synonymous with searching the web.
A new challenge is to define intelligent automated strategies of information
retrieval from biology servers.

In recent years, themes of servers have evolved in grossly three phases:

General and traditional sequence or structure databases (nucleic acids
or proteins) as quoted in Sec. 2.2 (EMBL, GenBank, Swiss-Prot,
PIR, etc.).

Specialized databases 1: static objects such as sequence sites, specific
sequence families, or collections. Examples: Yeast genome (http://
speedy.mips.biochem.mpg.de/mips/yeast), collection of organelle
genomes (http://megasun.bch.umontreal.ca/gobase), ribosomal RNA
(http://www.psb.ugent.be/RNA/index.html).*

Specialized databases 2 (often more appropriately called knowledge bases):
dynamic objects such as sequence functions or relationships between
sequences. Examples: Transcription factors in eukaryotes http://
transfac.gbf.de/TRANSFAC) or prokaryotes http://www.cifn.unam.mx/
Computational_Biology/regulondb), metabolic pathways (http://
www.genome.ad.jp/kegg), etc.

Specialized databases 1 were discussed earlier in this chapter. Specialized
databases 2 are related to the functional annotation of genomes. Their
number is in constant progression. In some instances, the function of a gene
can be tested while information is being gathered on metabolic pathways of
similar genes and cross-genomic comparisons are being made. Still, a good
intuitive knowledge is required to do this. Intuition can be guided in

* Documentation (including those molecular biology servers designed to list and categorize existing
Web resources) and bibliographical databases are across the board. Example: http://www.ebi.ac.uk
or http://www.ncbi.nlm.nih.gov
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knowledge bases where various sequence analyses are performed, evaluated,
and compared to produce gene annotations [150,163].

Annotation is made difficult when at least 30% of sequences from newly
sequenced genomes turn out not to look like any others. The consequences of
such an observation are still at an early stage of understanding [164,165].
Recently, attempts to converge sequence annotation from independent
institutions gave rise to the Gene Ontology (GO) Consortium, which is striving
to develop a common vocabulary applicable to eukaryotes [166]. The objective
of GO is to provide controlled vocabularies for the description of the molecular
function, biological process, and cellular component of gene products. The
controlled vocabularies of terms are structured. GO is not suggested as a way
to unify biological databases. Sharing vocabulary is only a step toward
unification; it is not sufficient. Many aspects of biology are not included
(domain structure, 3D structure, evolution, expression, etc.).

A significant amount of the information gathered in biological servers is
hypothetical. The crucial issue of reproducibility of annotation cannot easily
be addressed, because there are so few instances of genomes being sequenced
and annotated more than once. However, doubts have arise as shown in Ref.
167, and updates are made for some of the most studied organisms [168–
170]. Variation in the gene count* is only the most obvious manifestation of
subtler changes in gene definition.

Moreover, diverse new experimental advances, such as gene expression
analysis (study of the transcriptome, that is, levels of messenger RNA in given
conditions) or two-dimensional gel analysis (study of the proteome, that is, all
proteins of a given tissue or organism) are likely to quickly bring more
information and further modify the landscape of servers. These topics are
developed further in this chapter.

Synthesizing Information. Whatever new sequence is released, it is compared
to a sequence databank by using a dedicated search program such as BLAST
or FASTA. Such comparisons yield a primary annotation of the new sequence
as in a set of matching sequences associated with a confidence value. In the
absence of such a set, the gene is said to be of unknown function. Gene products
ar further documented if they contain previously identified blocks preferably
known to be involved in an enzymatic reaction or any known or partially
known biochemical activity. Information is accumulated but is not reduced
by a synthetic view. A handful of attempts have been made to cross-link data
[171–174].

* The yeast genome content in genes in both cited publications is downsized from the original
range of 6300 to approximately 5500.
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Specific competencies are required to generate as well as interpret each
type of raw information, whether in genetics, biochemistry, protein chemistry,
immunology, etc., so that information piles up in parallel. As a result, a
number of different viewpoints, whch are seldom explicitly related to one
another, shed different lights on a given type of sequence. A simple example
such as the HTH (helix-turn-helix) DNA-binding motif illustrates how
diluted the information is. It can be considered as a protein motif defined by
structural features [175], or by a regular expression [36], or by a weight
matrix [176]. It can be detected with corresponding dedicated search tools or
through the use of more general methods [142,177]. It can also be considered
as a DNA motif whose sequence is more or less sensitive to mutations [178],
etc. If the purpose of characterizing an HTH motif in a protein is the
identification of genes potentially regulated by this protein and a better
knowledge of regulatory mechanisms, then a combination of all viewpoints is
necessary. Some families of regulators have been considered this way [179].
The example of the HTH motif is easily generalized to most sequence-related
information.

To list properties of sequences is informative but no more than the list
of ingredients to make a cake. It does not give the recipe, that is,
quantification and chronology. If the ultimate goal of accumulating
information is to discover or reveal the function and related biochemical
mechanisms, information has to be weighed and ordered. Such a situation
is illustrated in an instructive comparison of the increase in the number of
published articles in molecular biology versus the increase in sequence
records in general databanks such as GenBank [149]. It shows the
overwhelming growth of the latter and stresses how imperative data analysis
has become.

There are rare examples of an immediate operational interpretation of
similarities between a new sequence and a set of known sequences unless a
specific function is suitably targeted. The function need not be explicitly stated
but must be circumscribed. For example, a secretion mechanism was revealed
by the observation that the cluster of proteins present in pathogenic strains
and absent from nonpathogenic strains of some gram-negative bacteria was
very similar to the components of the flagellar biosynthesis apparatus. A
flagellum-like “syringe” model was defined [180] that explained how proteins
are secreted by the bacteria being directly “injected” into the host cytosol.
Such an easy-flowing interpretation of sequence similarity is unfortunately
exceptional.

The function of a gene or the consistency of a group of similar sequences
can be discovered while making educated guesses and searching relevant
databases. Intelligent strategies for data mining are yet to be designed. To
identify relevant sequence functional features, the subtlety of a handmade
selection of sequences from a complete genome is still highly competitive with
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a blind automated search on servers. A new control mechanism of
transcription termination in bacteria was determined from the careful
inspection of less than 30 sequences [181], in a way that does not lend itself
easily to automation.

3.4.3. Computer-Simulated Functions

Current efforts in sequence annotation are all directed toward automation.
The overwhelming volume of sequence data does impose systematic
approaches. For the time being, the quality of information found in databases
results from either constant updates in a flexible framework (e.g., Ref. 181a)
or from preliminary processing that qualify or disqualify sequences for
automatic annotation (e.g., Ref. 181b). In fact, reliable automatic annotation
is a recognition problem that entails setting necessary and sufficient conditions
that uniquely characterize a functional role for a macromolecule, as outlined
in the Introduction of this Chapter. These conditions are still too rarely met.

The identification of RNA motifs corresponding to specific molecules is,
however, a good example of a satisfactorily solved recognition problem.
Reliable and accurate algorithms have been designed in way that is briefly
summed up in the following example.

An Example: Tailor-Made Methods for Predicting RNA Motifs. A number of
self-contained methods tailor-made for searching for tRNA genes
(tRNAscan, [182,183], FAStRNA [144], tRNAscan-SE [184]), E. coli
transcription terminators [97], self-splicing introns (CITRON [185]), etc.
were designed to scan whole genomes. By construction, reported results are
usually quite accurate: Less than 3% are false negative and less than 1% false
positive. The outline of a common strategy for searching these motifs is given
in Ref. 186. A similar approach characterizes the various methods
independently defined to identify almost unambiguously different types of
RNA molecules in DNA fragments. Such dedicated searches are based on the
principle that the more conserved a region, the more easily recognized it is.
They depend on the use of weight matrices. Weight matrices make the
definition of the RNA motifs more flexible than consensus sequences.
Primary and secondary structure features are then used to gradually refine the
identification process. A variant definition of patterns as a class of words is
also tested in Ref. 144 (Table 1).

Table 1 sums up the search strategy in a more compact way than in
Ref. 186.

(A) and (B) are self-explanatory in the light of previous sections of this
chapter. (C) Regular distance and length features are used for filtering
potential helices. Regular nucleotide and base-pair features are used to assess
the quality of a potential helix. A potential molecule is assembled helix by
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helix. Depending on how stringent constraints are, potential helices are searched
locally or on an extended part of a sequence.

(D) Necessary conditions are implemented as selection rules. It is an all-or-
nothing filter. Sequences or structures must verify a number of set criteria.
Evaluation rules express a statistical bias observed in aligned sequences at one
or more positions. Each selected sequence segment is given a score with
evaluation rules (bonus or penalty according to whether rules are or are not
verified). Likewise, within helices the occurrence of certain base pairs is
statistically constrained. Two types of rules can be distinguished:

1. Context-free rules expressing an overall constraint such as the base-
pairing rule.

2. Context-sensitive rules expressing a constraint

a. With a biological interpretation: imposing (selection) or rating
positively (evaluation) the presence of (A, U) as the second or

TABLE 1 Outline of a Common Strategy for Searching RNA Motifs

A similar approach characterizes the various methods independently defined to
identify almost unambiguously different types of RNA molecules in DNA fragments.
Such dedicated searches are based on the principle that the more conserved a
region, the more easily recognized it is. Primary and secondary structure features
(A–C) are used to gradually refine the identification process. A potential molecule is
assembled helix by helix. Necessary conditions are implemented as selection rules
for each potential helix (D(i)). Each selected helix is given a score with evaluation
rules (D(ii)). The strategy relies on a succession of search procedures, according to
a preset chronology (E) and the use of an overall score to account for compensatory
effects (F).
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third pair in a fixed length helix as a reflection of a known tertiary
interaction

b. With no known biological meaning: imposing or rating
positively a limit to the number of A’s contained in a helix
strand as a means to reduce combinatorial explosion (see
discussion in Ref. 187).

(E) The strategy relies on a succession of search procedures, according to a
preset chronology. The most constrained helix is first searched for and serves
as an anchorage point. All other helices are searched for upstream and
downstream from this point. For instance, the TΨC arm of a tRNA represents
this anchorage point.

(F) One key characteristic in tRNAscan, FAStRNA, or CITRON is the use
of an overall score, S, to reduce the number of false positive. S is incremented
only if a selected potential helix verifies enough evaluation rules (above a set
threshold). Such a setup is a simple way to account for compensatory effects.
Indeed, the global S score increases only if the local score of an individual arm
is above a given threshold. Let us assume that a number of potential D arms
of a tRNA are found in a given DNA region. Each of them is scored locally
using evaluation rules. A low-score helix can be selected as a potential D arm
in a tRNA provided at least two other helices are stable enough (above
threshold).

The recognition of one molecule by another rarely involves a single event.
To understand how many events are involved, the chronology of these events—
more specifically, how many signals are required and their relative importance—
is a step toward more accurate modeling of biological phenomena. How and
what can affect chronology is the next step.

Necessary and Sufficient Conditions. Whether a single molecule or a whole
mechanism, the concept of sequence seems to dominate in biology. Moreover,
the formalism developed to analyze a succession of nucleotides can hold for a
succession of operations or actions involved in a molecular process or of events
in a cellular process. It seems to point to an intrinsic recursive nature of
biological phenomena. Such a hypothesis is illustrated in Figure 5. Assuming
that a cellular process is a succession of events, each of these results from
molecular activity, and different molecular activities compensate for each other,
depending on their relative strength. Assuming that a molecular process is a
succession of actions, each of these results from sequence activities, and different
sequence activities compensate for each other, depending on their relative
strength. Assuming that a gene or a protein is a succession of signals, different
signals compensate for each other, depending on the various structural
constraints. Furthermore, each signal expresses dependencies between
nucleotides or amino acids.
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To make sure that the definition of a function or a mechanism provides a
good basis for simulation, ambiguity must be minimized if not completely
discarded. A known principle of mathematics is to express a set of necessary
and sufficient conditions in order to characterize an object without ambiguity.
Examples given above show that sequence analysis methods often stall after
the statement of necessary conditions, and quite a few widely used definitions
qualifying sequences are incomplete.

The following empirical statement is an attempt to sum up the current
discussion:

To characterize a consistent set of sequences or a sequential process,
constraints on symbols are necessary conditions and the order in which
these constraints apply provides sufficient conditions.

“Symbol” is considered very broadly; it can range from a single nucleotide or
amino acid to a complex event. The set of necessary and sufficient conditions
provides a new description of a sequence or a family of sequences.

The uniqueness of such an order is open to discussion. There are examples
of alternative processes depending on given conditions. For instance, the two
ends of an exon are usually simultaneously recognized by the spliceosome
components. However, a two-step mode of recognition of a small vertebrate
exon was described by Sterner and Berget [188]. In this process, the miniexon
is first recognized as an exon-intron-exon unit, followed by subsequent
recognition of the intron.

The variable hierarchy or order in which constraints apply may provide
different ways of optimizing the definition of a family of sequences.

FIGURE 5 Sequential nature of biological processes. Even though many processes
can take place in parallel in a cell, biological processes appear as sequences within
sequences. Compensatory mechanisms and time constraints govern the occurrences
of patterns, whether these patterns represent groups of nucleotides or amino acids,
groups of sequences, or groups of molecular events.
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Conservation laws could be suggested to account for compensatory
mechanisms while preserving the global consistency of a biological entity.
These mechanisms are local and are likely to be constrained by rules of
precedence.

3.4.4. Defining a Biological Context

Functional Context. If necessary, genomic data confirm that a sequence or
family of sequences cannot be considered apart from the conditions in which
it is supposed to be active. Such context sensitivity is not easy to study and
returns to the notion of similarity to account for the situation where sequences
are close in one context but not in another. Attempts to assess the influence
of context are under way, as in Ref. 189, where the concept of
“neighborhood” is explored. In this framework, relatedness between genes
depends on them being involved in the same metabolic pathway or following
a similar patterns of codon use or else co-occurring in the same literature
reference. Such a variety of neighborhoods may give some clues as to what
unannotated genes do.

Cross-genome comparison provides another viewpoint on the functional
context of genes. A study of genes involved in a given metabolic pathway
shows that diverse organisms have opted for various solutions [164]. This
type of information is still at an early stage and curiously does not address the
question of defining the concept of “function.” This imperative discussion is
undertaken, however, when working on a reliable functional classification of
genes [190]. In particular, the current classification is based on a set of
nonoverlapping classes where any one gene carries a designation for a so-
called functional primitive (enzyme, regulator, transport protein, etc.) and a
process (electron transport, carbohydrate degradation, macromolecular
biosynthesis, etc.). This categorization creates conflicts when many proteins
are involved in more than one process or when single subunits of a multiunit
enzyme correspond to different processes (this is typically the case of
transport proteins that contain a membrane component). The definition of
overlapping classes is suggested to preserve the knowledge of nonidentified
interactions.

Subcellular Localization. Understanding the function of a protein is dependent
upon knowing where this protein is meant to be active. This information
seems to be deducible from the sequence itself as demonstrated by at least two
different approaches.

ANALYSIS OF AMINO ACID SEQUENCES. PSORT is a program designed
to predict the subcellular location of proteins from their amino acid sequences
[191,191a]. It comprises a collection of methods to identify different features,
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each characterizing a particular type of protein or part of a protein. As such,
it is valuable as an attempt to merge and synthesize diverse pieces of knowledge.
Unfortunately, the nature and quality of the various sources are very
heterogeneous. PSORT is yet another illustration of a collection of necessary
conditions lacking a sufficient counterpart.

Categories used in PSORT are the following:

Signal sequences. PSORT first tests the possible presence of a signal
sequence while considering the N-terminal positively charged region
(N-region) and the central hydrophobic region (H-region) that
characterize a signal sequence. A discriminant score is calculated from
three values: the length of the H-region, the peak value of the H-
region, and the net charge of the N-region. Because the detection of a
signal sequence does not necessarily imply that it is cleaved, the
possibility of cleavage is assessed next.

Cleavage sites. A weight-matrix method for signal sequence recognition
and the information generated at the previous step are used to detect
signal-anchor sequences. Among all candidate positions, a possible
cleavage site is the furthermost position of the C-terminal of the signal
sequence.

Transmembrane segments. A potential transmembrane segment is
identified if its average hydrophobicity (estimated from 17-residue
segments) is above a set threshold.

Lipoproteins. The recognition of lipoproteins relies on slightly modified
versions of the recognition of signal peptides and transmembrane
segments. Species-dependent data are also included.

Mitochondrial, peroxisomal, lysosomal, vacuolar, and chloroplastic
proteins. Proteins from organelles show some specificity based partly
on amino acid composition. Characteristic motifs are used, though
not in full confidence.

ER proteins. Endoplasmic reticulum proteins are still characterized by
weak motifs.

Ribosomal proteins. The recognition of ribosomal proteins is reduced to
matching a set of motifs.

Posttranslation modified proteins. The recognition of various
modification sites can help localize proteins. For example, prenylated
proteins are likely to be found in the plasma membrane and the
nuclear envelope.

Miscellaneous motifs. The program also relies on PROSITE motifs that
are loosely associated with a specified location. Furthermore,
searches for particular structural motifs such as coil-coil are
implemented.
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PSORT is a rare contribution is that it tries to combine and merge various
sources of knowledge but suffers from the lack of overlap between these
sources.

ANALYSIS OF THE NUCLEOTIDE SEQUENCES. Some proteins, such
as ribosomal proteins, can be found both in the cytoplasm and in mitochondria
while being encoded in the nuclear genome. Variations of the codon use in
these nuclear genes was shown to correlate to the final location of the proteins—
cytoplasm or mitochondrion [192].

3.5. The Differential Display Era

3.5.1. Gene Expression

As well detailed in Ref. 193, two technological strategies are used to assess the
role of genes. The first is based on the alteration of gene structure by disruption
(transposon mutagenesis, referred to as genetic footprinting) or deletion (gene
knockout) and is mainly available for microorganisms. These alterations are
studied to evaluate their effect on cell viability. Yeast is one of the first organisms
for which an extended set of results were generated (see Stanford web site:
http://genome-www.stanford.edu/Saccharomyces/).

The second strategy involves the analysis of intact genes to evaluate their
behavior in terms of levels of expression given specific conditions. It is
implemented via the hybridization of extended collections of cDNA clones
using either oligonucleotide chips (each gene is analyzed by 25-mers) or DNA
microarrays [each gene is analyzed by a full or partial target DNA sequence
(~1 kb)]. Deletion experiments are also carried out using this type of technology.
Thousands of genes can be represented on microarrays and chips to be analyzed
simultaneously. The same hybridization conditions are guaranteed in mRNA
assays as a result of parallel processing. Quantification is measured through
the use of fluorescent dyes (green and red).

An overflow of data is being generated by this new technology. Each step
of the process involves computer contributions from the design of arrays to
the analysis of experimental results. Some problems are hinted at in Ref. 194.
The accumulated data are meant to identify patterns and relationships among
expression profiles generated in an individual array or a collection of arrays.
Solved and unresolved issues of data analysis are presented and debated in
Refs. 195 and 196.

3.5.2. Protein Expression

Proteomics is mostly about assessing the consequences of a change of state in
a tissue or the whole cell by quantifying proteins and potential modifications.
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It is not based on new technology but rather on improved techniques of two-
dimensional electrophoresis* and mass spectrometry,† which are more formally
put together to identify and characterize proteins.‡

At least two empirical facts justify the viewpoint of proteomics [201]:

1. The presence of mRNA is a prerequisite to protein synthesis, but all
transcripts are not necessarily translated. Consequently, measured
levels of mRNA do not account for levels of proteins in a given
tissue.

2. It is not possible (currently) to infer posttranslational modifications
from a nucleotide sequence.

Protein function is expanded through amino acid modifications. Spatial
parameters (localization of proteins in the cell) and/or time-related parameters
(among others, the development stage of the organism) influence reactions of
glycosylation, methylation, etc. The change in molecular weight of a modified
protein is observable by electrophoresis as the corresponding spot on the gel
is perceptibly shifted. The shift is increased when the modification affects the
charge of the protein.

Proteomics provides a framework within which co- and posttranslational
modifications can be studied and related to a particular function. As set, it
seems to start from a reasonable basis. Indeed, if phosphorylation or
glycosylation sites are predicted solely from amino acid sequences, there is no
guarantee other than that supplied by more experimental testing that a
predicted site is real. Conversely, rationalizing the potential modification(s) of
a protein as observed as a shift on a gel from the variations of peptide masses
[202] provides a lead for further interpretation of a function. Contextual
information is needed as well [203].

Technical means to separate complex mixtures have been and still are a
central concern in physics and chemistry. The physicochemical properties of
biological molecules account for the common use of electrophoresis in
molecular biology. Alternatively, chromatographic separation can be achieved.
Separation, whatever the mode, is coupled with protein digestion (usually
with trypsin). Digestion generally follows the electrophoretic approach but

† Recent improvements in the resolution of mass spectrometers as in Refs. 199 and 200.
‡ To identify a protein is to name it, but to characterize a protein is to specify the properties of the
named protein. For example, a protein identified as a tyrosine kinase can be characterized as a
phosphorylated tyrosine kinase.
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precedes the chromatographic approach. Peptide masses are directly estimated
by a mass spectrometer.* The collection of masses associated with a digest is
compared to a protein digest database.† This process is known as peptide
mass fingerprinting (PMF). When a sufficient number of matches (threshold-
dependent) are found, a protein is identified. Needless to say, this approach
makes more sense with completely sequenced organisms for which the set of
available proteins is close to exhaustive. A variety of PMF engines [204] can
help identify proteins. Tools for characterization from mass data are sparser
[202]. In fact, the various forms (splice variant, polymorphic variant,
posttranslationally modified, etc.) of a protein are currently distinguished by
mining web resources.

Applications in proteomics are often divided into three categories
[205].

The Identification of Proteins in a Cellular Extract. The mapping of total
cellular proteins mainly involves the study of model organisms, which
provides a testing ground for identifying practical problems inherent to
proteomics research. A major distinction lies in mapping either all cellular
proteins or the subset found in subcellular complexes. As pointed out by
Godovac-Zimmermann and Brown [206], the ideal objective of total
mapping can be summed up in four points: (a) All protein must be
quantitatively extracted from the original biological sample, (b) proteins
must be resolved and displayed, (c) each protein must be accurately
quantified, and (d) each protein must be identified.

There are still major difficulties in implementing extraction methods. Protein
quantification involves a number of issues related to protein expression.
Expression reflects a cellular response to a given perturbation, and the
distinction between responses may be difficult to establish.

Subcellular complexes such as ribosomes (E.coli, yeast, mammalian
mitochondrial), organelles, and human or yeast spliceosomes are being studied
(see Ref. 206 for review).

The human nucleolus provides another very recent example of a fully
characterized organelle (see review in Ref. 207). Some 271 nucleolar proteins
were identified on the basis of the human genome data. Approximately 30%
of these correspond to uncharacterized genes.

Differential Display for Comparison of Protein Levels. The most common
comparison criterion is pathological versus nonpathological. Healthy and
diseased tissue samples are processed and compared to identify protein

† For details; see ExPASy Proteomics tools at http:/www.expasy.ch/tools/.
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expression changes due to expected differential expression. A variety of diseases
are considered as discussed in Ref. 208.

Detection of Protein-Protein Interactions. A variety of methods provide
data on protein-protein interactions. Physical data generated by X-ray
crystallography and NMR, antibody-based methods, various assays and
screenings, etc., have contributed to the accumulation of information
related to interactions that is now stored in databases of interactions (see,
e.g., Ref. 209). In the context of automation and high throughput, the main
method for detecting the studying protein-protein interactions is the two-
hybrid system. Two alternative applications are common: Given two
specific proteins, this technique can detect the interaction given a collection
of proteins, it can detect which ones are interacting with which. In this case,
the method is systematized such that all possible interactions of a given
protein can be listed [210].

4. CONCLUSION

The main point of this chapter was to give an overview of essential
questions and problems set in the framework of biomolecular sequence
analysis, particularly the widely recognsized strengths and weaknesses of
data interpretation. Rapid changes in the technology increase the
production of data and their consistency, but in the short term efforts are
mostly needed in organizing and managing these growing sets. Such an
organization requires dependable definitions of biological objects or
entities, which can be acquired only from representative and reliable sets of
data. The simulation of biological processes is potentially an important part
of future experimental biology. Thoughtful insights into quantification
methods will be required [211].

Finally, and at the risk of sounding like a movie producer, scenarios are
badly needed. There will be no valuable long-lasting annotation of genomes
without a clearer picture of the processes involved at the cellular level. Going
beyond identified similarities and correlations between sequences and trying
to relate them to each other will help in sketching and testing new processes.
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GLOSSARY OF TERMS

Bayesian Model. A model that describes a phenomenon with conditional
probabilities. It quantifies the likelihood of events. Bayes’ theorem expresses
the relationship between the probability of an event A occurring knowing
event B [denotedp p(A|B)] and the probability of B occurring knowing A as
well as the respective probabilities of event A and event B. The formula states:
p(A\B)=p(B|A)×p(A)/p(B).

Consensus Sequence. The most elementary way of describing a pattern as the
most frequent segment containing constrained nucleotides or amino acids.

Curated Set. A collection of nonredundant sequences.

Data-Driven Approach. An attempt to rationalize data using formal means.

Data Mining. The use of computer tools to modify the representation of data
and help discover previously unknown relationships among the data.

False Positive. Assuming that a method is defined to select a given type of
sequence, a sequence selected by the method that is in fact not of the wanted
type.

False Negative. Assuming that a method is defined to select a given type of
sequence, a sequence of the wanted type that is not selected by the method.

Family. A set of sequences assumed to share a common property whether
structural or functional.

Genetic Algorithm. An optimization procedure. Given a population of entities
such as sequences and the definition of a fitness criterion, operations of
crossover and random mutations are implemented to simulate an evolutionary
process. The process is supposed to converge toward a population of the
fittest.

Hidden Markov Model. A probabilistic representation of a succession of events.
A biological sequence can be considered as the observable part of a hidden
mechanism that supposedly corresponds to a succession of states. A mapping
between the observation and the hidden mechanism levels is defined; the
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sequential change of states is governed by transition rules. These rules are first
weighed using a training set. A built: in optimization algorithm guarantees
the fitting of data to the model.

In Silico Biology. A new area of experimental biology that uses computer
programs to generate new assumptions. Such knowledge discovery can be
achieved by mining data (e.g., extracting consistent information from
various databases) or by using specialized analytical tools (e.g., a specific
motif search).

Knowledge-Based System. An enhanced rule-based system that includes
heuristics and strategies that improve the reasoning capacities of the system.
Knowledge is often organized in complementary modules.

Model-Driven Approach. An attempt to fit data to a preset model.

Motif. A combination of patterns co-occurring in sequences.

Multiagent System. A system that provides the framework for gradually
putting together pieces of information in order to solve a problem. Given one
or more guidelines to reach a solution, the purpose of the agent is to process
information. Information is filtered through a hierarchy of agents. Lower
level agents start with raw information. In principle, information reaches
higher level agents only after being assessed by lower level agents. The
knowledge of one agent is not more or less likely than that of another, but the
communication between agents is given a degree of likelihood. An agent’s
contribution to reasoning is partial and circumstantial; it is substantiated and
completed by communication with other agents. A collection of facts is
considered a succession of agreements between agents as opposed to a set
whose consistency has to be worked out.

Neural Net. A network used to express a complex correlation between an
input and an output. It is composed of three or more interconnected layers of
units called neurones. A weight is associated with each connection between
neurones; the stronger the connection, the stronger its associated weight.
Examples of inputs bound to a known output are given to calculate weights
of connections in an attempt to minimize the error between the expected and
obtained output.

Pattern. A regular feature in a sequence or structure. It can be a segment
within which nucleotides or amino acids consistently occur. It can be a
substructure (e.g., a helix in RNA or in proteins) that is consistently present in
a structure.
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Profile. A frequency matrix that provides a means to describe a sequence
alignment. It features the N positions of the alignment in rows and scores
based on the frequency of occurrence of the 20 amino acids and of gaps in
columns.

Proteome. The set of all proteins found in a given tissue at a set developmental
stage of a given organism.

Proteomics. The study of proteomes. It involves either protein separation on
two-dimensional electrophoretic gels and the labeling of proteins by measuring
their molecular mass or the so-called two-hybrid system, which generates a
set of protein-protein interactions.

Regular Expression. A flexible definition of a pattern allowing degenerate
positions.

Rewriting. Setting a correspondence between two alphabets and swapping
alphabets.

Rule-Based System. A system that performs logical deductions. It contains
logical assertions known as facts that are each assigned a degree of likelihood.
It also contains built in inference rules that are used to analyze a new fact, that
is, assess its consistency with the rest of the facts and its likelihood. Deductive
reasoning is performed by an inference engine that chains compatible rules in
a nondeterministic way.

Sensitivity. The property of a classification method (usually involving
discrimination between positive and negative examples of a given type of
sequence) that is quantified by the ratio of the number of true positives to the
sum of the number of false positives and the number of true positives.

Specificity. The property of a classification method (usually involving
discrimination between positive and negative examples of a given type of
sequence) that is quantified by the ratio of the number of true positives to the
sum of the number of false positives and the number of false negatives.

Simulated Annealing. An optimization procedure. Given a set of states,
transition and probability rules, and a cost function assigned to the states,
changes of state take place for as long as the cost of a new state is lower than
that of a current state.

Transcriptome. The set of all expressed genes found in a given tissue at a set
developmental stage of a given organism.
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Weight Matrix. A frequency matrix that provides a means to describe a pattern.
It features the four nucleotides or the 20 amino acids in rows and scores based
on the frequency of occurrence of the nucleotides or amino acids in columns.
The number of columns is set by the length of the pattern described by the
matrix.
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1. INTRODUCTION

Genomic science and technology have brought us to the brink of being able to
describe the genetic blueprint and molecular evolutionary history of the human
species. But we will not be able to fully interpret these data in isolation. This
is one of the reasons the Human Genome Project has, from its inception,
included the study of so-called model organisms whose biology, experimental
advantages, and smaller, simpler genomes have provided not only important
biological insights but also steppingstones for technological development.

2. WHAT IS COMPARATIVE GENOMICS?

Biologists have been comparing organisms from the very beginning of the
discipline [1]. Development of evolutionary ideas brought explanation and
meaning to such comparisons. Two different organisms share some features
because they share common origins. With new tools available and new
territories of biological research, comparative biology also is exploring new
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levels of biological organization. It is not a suprise that with the advent of
genomic research, a new field—comparative genomics—appeared.

Although, like any young scientific discipline, comparative genomics is not
well defined, it is possible to distinguish two different meanings of this
approach. Some researchers refer to comparative genomics when they compare
different organisms’ genetic or physical maps; others define comparative
genomics as the large-scale or even whole-genome comparison of the DNA
and genes of at least two organisms. Here, we will use the term comparative
genomics in the latter sense.

The completion of genomic sequences for multiple prokaryotes and yeast
has provided a wealth of information, and the value of comparative analysis
of coding sequences from distantly related organisms (e.g., nematode and
human) is beyond dispute. Nevertheless, there are limitations to functional
inferences based on interspecies comparison of anciently diverged coding
sequences. Furthermore, noncoding regions are generally not amenable to
comparative analyses across such vast evolutionary distances because sequence
divergence is simply too great. Thus it is necessary to study more closely related
organisms in order to detect and interpret the conservation of regulatory,
noncoding sequences [2,3].

3. EVOLUTIONARY BASIS OF COMPARATIVE GENOMICS

As mentioned in Sec. 2, comparative genomics has its basis in evolutionary
biology. We are able to compare and interpret genes because they share some
evolutionary history. Some genes may have originated in the past from the
same gene, i.e., they share a common ancestor. In fact, most genes share a
common ancestor in the recent or more distant past. Such a sequence could be
called “molecular Adam.” Most probably there was no single molecular Adam
existing in the past but rather a group, a whole tribe, of molecular ancestors.
Unfortunately, we are not able to reconstruct such a deep molecular
evolutionary history. This is simply because at a certain point two sequences
mutate (diverge) beyond any similarity recognition, especially if such a
divergence is associated with a change in the function of some proteins. From
the comparative genomics point of view there are two significant evolutionary
events: gene duplication and speciation. Both events lead to proliferation of
genes but in different ways. A gene duplication event results in an increased
number of genes in a given population or species. However, speciation
increases the gene number automatically by increasing the number of species.
In the first process, usually only a small number of genes are involved (although
exceptions are known); in the latter, whole sets of genes are proliferated.

These two processes are illustrated in Figure 1. Consider a single gene that
exists at time t0; let us call it an “ancestral gene.” At time t1, the first
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evolutionary event, gene duplication, occurs. As a result we have two related
genes that originated in an “ancestral gene,” gene A and gene B. At time t2,
another evolutionary event occurs; this time it is speciation. As a result two
descendant copies of the ancestral gene exist in two related species: species 1
and species 2. Additionally, there’s another duplication of gene A in the lineage
leading to species 1. Therefore, we now have five related genes: A1, A3 and
B1 in species 1, and A2 and B2 in species 2 (see Fig. 1). All five genes have one
thing in common: They originated in an ancestral gene. In evolutionary
biology, two features that share a common history (ancestry) are said to be
homologous. The same is true at the molecular level: If two genes share a
common evolutionary ancestry, they are said to be homologous. It is
convenient and desirable to further distinguish paralogous and orthologous
genes among the homologous ones. Two genes are orthologous if their last
common ancestor existed at the time of speciation. Two genes are paralogous
if their last common ancestor existed at the time of gene duplication. Therefore
in our example in Figure 1, at present all five genes A1, A2, A3, B1, and B2
are homologous. Furthermore, genes A1 and A2 should be called orthologous
because their last common ancestor existed at time t2 when speciation into
species 1 and 2 occurred. Similarly, genes B1 and B2 are orthologous because
their last common ancestor existed at speciation time. Gene A1 has four
homologs: A2, A3, B1, and B2. Interestingly, gene A2 is orthologous to both
A1 and A3 even if A1 and A3 are paralogous in relation to each other. Genes
B1 and B2 are paralogous to all A genes because their last common ancestor
existed at time t1, which marks the ancestral gene duplication event. Similarly,
we can define relationships between all five hypothetical genes at the “present”

FIGURE 1 Schematic representation of gene evolution. See text for details.
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time (see Table 1). Note that the relation of orthology can be assigned only to
genes present in different organisms; paralogy and homology relations apply
to genes in either the same or different species.

3.1. Phylogenetic Approach to Data Selection

The evolutionary definition of homologous, especially orthologous, genes
suggests that the phylogenetic approach, i.e., plotting phylogenetic trees to
infer a relationship between investigated genes, is the only rigorous approach
to the selection of such genes. This approach is the only one that allows one to
distinguish between paralogous and orthologous genes with high confidence.
The procedure usually starts with gene sequence clustering using fast
algorithms such as FASTA [4] or BLAST [5] followed by multiple sequence

TABLE 1 Relationships Between Different Homologous Genes Presented in
Figure 1
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alignment and phylogenetic tree inference. Next, orthologous genes are
selected by looking at their phylogenetic relationships. Obviously, this
approach has strong limitations. First of all, it is very time-consuming.

Two steps are extremely slow: phylogenetic tree inference and the selection
of orthologous gene groups. Additionally, this method requires data from as
many organisms as possible, including outgroup organism data. An outgroup
represents an organism that is known to have separated from the analyzed
group during an early evolutionary stage. An outgroup organism should be as
closely related as possible to the analyzed group of organisms but not actually
belong to that group. For example, for mammals, bird and reptile sequences
are good outgroups, amphibian and fish sequences not quite as good, and
invertebrate genes are phylogenetically too distant to serve as a good outgroup.
On top of that, the described method passes on all the theoretical and practical
problems of multiple alignments and phylogenetic tree inference. These
problems are beyond the scope of the current discussion.

The phylogenetic approach has been successfully applied many times as a
means of selecting orthologs, and one of the resources, the HOVERGEN
database, is described in detail, in Sec. 4.1.1.

3.2. Heuristic Approach to Data Selection

Because of the problems described above, several heuristic approaches have
been developed for both when the whole set of genes for an analyzed genome
are known and when only part of the genome is known.

3.2.1. Complete Genome Case

In the case when the complete genome is known, the procedure is based on
the simple notion that any group of proteins from distant genomes that are
more similar to each other than they are to any other proteins from the same
genomes are most likely to belong to an orthologous family. The procedure
involves the following steps.

1. All-against-all protein sequence comparison using a fast search
program.

2. Selection of the reciprocal best hits between analyzed genomes. For
example, if gene A in organism O1 is the most similar to gene B from
organism O2, then the reciprocal relation also has to be true; i.e.,
gene B in organism O2 has to be the most similar to gene A.

3. Combining all the selected pairs of genes into families of orthologous
genes.

This approach has been implemented in clusters of orthologous groups of
proteins (COGs), which will be described in detail in Sec. 4.1.2 [6].
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3.2.2. Partial Genome Case

In a case when the whole proteome is not available, the approach described
above cannot be directly applied. To understand the possible problems
encountered in dealing with incomplete data, consider again the evolution of a
single gene (Fig. 2a). At present, five descendants of an ancestral gene exist (Fig.
2b). Let us assume that information on only two out of the five genes is present
in a database (Fig. 2c). Based on this information, only an incomplete gene
history can be plotted ](Fig. 2d), from which it is impossible to conclude whether
the last common ancestor of genes A1 and B2 existed at the speciation or gene
duplication time. A gene similarity score is not very helpful here, because
different genes evolve at different rates, and similarity is not a good factor for
orthology-paralogy discrimination [2]. Therefore, in the case presented in Figure
2 it is very easy to misinterpret data and describe genes A1 and B2 as orthologs.
In the case of incomplete genomes, additional information is desired.

Wheelan et al. [7] developed a set of rules to increase the reliability of
orthology assignment. In the comparison of human and Caenorhabditis
elegans, they started with BLAST searches of 1800 human proteins against a
nematode database. To avoid assignments based on protein domains only, the
“70%” rule was applied, i.e., the initial BLAST alignment had to cover at
least 70% of both query and subject sequence. Interestingly, it is not always
the top alignment that meets this criterion; sometimes local (domain)
alignment gives a slightly higher score in paralogous protein comparison than
more global alignment of orthologous proteins. In the next step, selected
“best” nematode sequences were used as queries in BLASTp searches against
a vertebrate protein data set. This step was based on the assumption that the
distance between a human and C. elegans protein should be equal (with some
small variation) to that of any vertebrate ortholog, e.g., identity between
human and nematode orthologs is equal to identity between the same
nematode protein and its frog ortholog and is equal to identity between the
same nematode protein and its chicken ortholog, and so on. In this step the
10% rule is applied, i.e., only those human-worm sequence pairs for which
the BLAST score lies within 10% of the best score for all nematode-vertebrate
alignments are considered to be orthologous. This conservative approach
leaves some orthologous pairs undiscovered but ensures that no paralogous
gene pairs are assigned as orthologs. Using this method, Wheelan et al.
compiled 819 human-worm orthologous gene pairs out of 1880 human
proteins surveyed.

3.3. Large-Scale Sequence Alignment

There are two aspects of large-scale sequence alignment. First, how to deal
with a large number of relatively short and consistent sequences; for example,
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FIGURE 2 The effect of incomplete information on ortholog assignment. See text for
details.
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we have to align a number of proteins or mRNA sequences that are already
grouped into orthologous or homologous clusters. Second, how to align long
homologous fragments of genomic sequences from two different organisms.

The first problem can be relatively easily solved by choosing the correct
alignment algorithm and a good program. To align a collection of orthologous
mRNA sequences, a global alignment algorithm should be applied. There is
an underlying assumption that orthologous genes maintain similar size and
structure, i.e., there is no protein domain shuffle. This assumption may not
hold for distantly related organisms, because during metazoan evolution many
genes underwent extensive rearrangement and quite often concatenation,
forming multidomain, multifunction proteins. In such a case, a local alignment
algorithm might be a better choice, although in these cases very often it is
impossible to infer an orthologous relationship. In the case of mixed domain
or multidomain proteins, it is better to split the domain first and then align
only single domains, which allows us to apply a global alignment algorithm.

There are many relatively good programs that use global alignment
algorithms. All of them perform well on relatively similar sequences, and all
of them have some difficulty in aligning more divergent sequences. In the
latter case, parameters controlling gap handling are very important. For long
gaps (insertions or deletions), a logarithmic gap penalty better reflects natural
processes than a linear gap penalty [8]. Unfortunately, only a few programs
have introduced this idea; one of them is the map program developed by
Huang [9]. In most cases, the user can control only two parameters: gap
opening and gap extension penalty. This is probably the reason that most
global alignment programs have great difficulty in aligning sequences that
differ significantly in size. In such cases alignment programs have a tendency
to scatter shorter sequences along a longer one. For most applications
(sequences to be aligned), a gap opening penalty should be set at a value of 3–
5 times that of a match score, and the gap extension should be penalized
similarly to mismatches. Nevertheless, it is always a good idea to test different
alignment parameters for a given set of sequences.

The other problem, i.e., the alignment of long homologous fragments of
genomic sequences, is more complicated. Many factors have to be taken into
account. First, the homology has to be recognized. The best markers in this
case are probably genes coding for orthologous proteins. Many genomes are
occupied by different classes of repetitive elements, which can make up to
50% of a genome [10]. Some of the independent elements can share a
significant sequence similarity; they share a remote ancestry, but their
insertions are independent events. For example, two mammalian short
interspersed elements (SINEs), primate Alu and rodent B1, originated in the
same 7SL gene [11] and share extensive sequence similarity. As the most
abundant repeats in their respectful lineages, they are very often present in the
syntenic locations on primate and rodent chromosomes, but they were inserted
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there during independent retropositions. Therefore, it is advisable to mask
repetitive elements before aligning syntenic sequences. The two most widely
used programs for masking repeats are RepatMasker, written by Arian Smit
(A.F.A.Smit and P.Green, unpublished) and Jerzy Jurka’s CENSOR [12]. Both
programs work in a similar way. The user submits a sequence in FASTA format
and in return gets several files, among which the most important is a FASTA
file with a sequence in which repeats and very often low-complexity regions
are replaced by stretches of letters not used in nucleic acid sequence notation,
e.g., a series of N’s. Both programs also provide additional information such
as names of repeats found, their position in the analyzed sequence, alignment
of a relevant sequence fragment with a repeat consensus sequence, etc. This
additional information is sometimes used in other applications; see, for
example, the description of PipMaker in Sec. 4.3.

4. TOOLS FOR COMPARATIVE GENOMICS

4.1. Data Selection Tools

As mentioned above, data selection is a crucial step in gene comparison. With
the amount of sequence data growing exponentially, the correct assignment
of orthologous or even homologous sequences might be a difficult and
timeconsuming task. Because sequence identity distributions for paralogous
and orthologous genes of any two species overlap significantly on both the
protein and DNA levels, simple sequence identity is not a good discriminatory
factor for these two types of homologous genes. To ensure pairing of correct
genes, different approaches have to be taken. In the following pages we discuss
two tools for orthologous sequence selection. One is an example of a formal
(phylogenetic) approach to data selection, and the other applies a heuristic
approach to the problem.

4.1.1. Homologous Vertebrate Genes Database (HOVERGEN)

HOVERGEN is a database of homologous vertebrate genes, structured under
the ACNUC sequence database management system [13]. It allows one to
select sets of homologous genes among vertebrate species and to visualize
multiple alignments and phylogenetic trees. The database itself contains all
vertebrate sequences from GenBank (except ESTs), with some data corrected,
clarified, or completed. Homologous coding sequences have been classified
into gene families, and protein multiple alignments and phylogenetic trees
have been computed for each family. The database is updated every four
months. As of April 2000, HOVERGEN contained information on 8626 gene
families. HOVERGEN data and software are freely available through
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anonymous ftp at Universite Claude Bernard, Lyon, France (ftp://pbil.univlyon
l.fr/pub/hovergen) or at NCBI, Bethesda, MD (ftp://pbil.nlm.nil.gov/
repository/hovergen).

A dedicated graphical interface has been developed to visualize and edit
trees. Genes are displayed in color according to their taxonomy. Users have
direct access to all information attached to sequences or to multiple alignments
simply by clicking on the gene. A screen shot of the main window is presented
in Figure 3. This interface was written in C using the Simple User Interface
Toolkit (SUIT), which is compatible with many UNIX systems. To run this
interface, one needs to use an Xwindows-based computer (either a UNIX
computer or a Macintosh or Windows microcomputer with an emulator).
Currently, HOVERGEN is available for the following operating systems: Sun
workstation using SunOS or Solaris, IBM RS6000, SGI IRIX 5.3, and DEC
Alpha.

Advantages of HOVERGEN. The biggest advantage of HOVERGEN is
its precomputed data. GenBank records for each sequence are enriched by
adding new features such as GC% content or partialness of coding sequences
and more consistent labeling of introns, exons, and untranslated regions.
Precomputed multiple alignments are stored, so access to them is very fast.
It is important to remember that those alignments, as well as phylogenetic
trees based on them, are produced in a completely automatic manner and
are not manually corrected. Therefore, both alignments and trees should be
treated with reservation, and in some cases manual correction may be
required.

One of the biggest strengths of HOVERGEN is its graphical interface. Once
a gene family has been selected, most of the information is “just a mouse click
away.” A user can manipulate a phylogenetic tree easily by selecting an
outgroup, magnifying a tree, or selecting a subtree (Fig. 3). Sequences for a
given systematic group of organisms are color-coded, and the depth of the
group can be easily changed by assigning different colors to a single species or
to larger groups up to orders. This feature is very useful during the sequence
selection process. For example, if one is interested in the selection of human-
mouse orthologous gene pairs, a single species may be color-coded. In our
example, human sequences are red and mouse sequences are green. If one is
interested in the selection of all mammalian homologs, orders of vertebrates
can be color-coded. A user can select some or all sequences to review an

FIGURE 3 A “screen shot” from HOVERGEN. A phylogenetic tree occupies
central spaces of the display with a “GenBank information/Protein alignment”
window below it. Option controls and information windows are grouped on
the right ride of the display.
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alignment. At the same time, information on sequence identity between aligned
sequences and gap frequencies is displayed (Fig. 4). The latter information, in
particular, gives a glimpse of an alignment and sequence quality. Finally,
information on a given sequence can be accessed in the format of an enhanced
GenBank record (see above).

Limitations of HOVERGEN. Authors of the database tried to avoid
redundancy as much as possible. This is a very difficult task, because in many
cases it is impossible to distinguish between paralogous genes, different splicing
variants, different alleles, and sequencing errors of the same allele. Because of
that, in some cases the same gene is represented by several entries clustered at
the end of a branch, making the tree less legible (see Fig. 5a). Another problem
in HOVERGEN is the inclusion of partial sequences in the database. Although
in some cases the partial sequence might be the only sequence available for a
given gene, in many others when a full sequence is available the partial one
produces unnecessary redundancy. In the first case, even a partial sequence
might give valuable information, for example, serving as an outgroup for a
given protein subfamily. In the latter case, it gives an additional branch, making
the overall gene family picture more obscure. Additionally, partial sequences
produce a “weird” tree section with zero branch lengths (Fig. 5b). Another
weak point of the database is a gene family selection. Although it is possible
to extract almost all the information from the database through the ACNUC
software, it is not the easiest program to use, especially when a mixture of
English and French commands has to be used. The HOVERGEN graphical
interface allows the selection of data based on gene family name or sequence
name. Unfortunately, both ways are far from being perfect. Gene family names
are selected randomly from a gene name annotated in a GenBank record and
therefore have all the limitations of gene names provided in a GenBank record,
among which inconsistency is one of the biggest problems. Names for the
same gene vary from record to record (different research groups assign
different names to the same gene) and from species to species. The sequence
name in HOVERGEN means a “locus name” from a GenBank record. This
leads to two problems: (1) Locus name is a rather historical field in GenBank,
and is almost obsolete; (2) locus names for a given record are changed from
time to time.

FIGURE 4 Sequence alignment in HOVERGEN. The alignment of two groups
of paralogous genes of GABA-A receptor (subunit 1 and beta-3) is presented.
Note information on sequence divergence and gap frequency in the
“Alignments” interface window.
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Even if HOVERGEN has some limitations, so far it is the best resource for
data selection for comparative genomics of vertebrates. Similar databases have
been created for other sets of organisms on a less regular basis. HOVERCEL,
the experimental database of vertebrate and nematode C. elegans genes, was
created for one project and is available upon request from Laurent Duret
(duret@biomserv.univ-lyonl.fr). Bacterial genes were also compiled by Duret
and coworkers in a similar way [14].

4.1.2. Clusters of Orthologous Groups of Proteins

The Clusters of Orthologous Groups (COGs) of proteins database was
designed as an attempt to classify proteins from completely sequenced genomes
based on their orthological relationship. The original set included the proteins
from five bacterial, one archaeal, and one eukaryotic genome and consisted
of 720 COGs; subsequently, as of April 2000, the COG database consisted of
2111 COGs and included 26,919 proteins from 21 complete genomes:
Archaeoglobus fulgidus, Methanococcus jannaschii, Methanobacterium
thermoautotrophicum, Pyrococcus horikoshii, Saccharomyces cerevisiae,
Aquifex aeolicus, Thermotoga maritima, Synechocystis, Escherichia coli,
Bacillus subtilis, Mycobacterium tuberculosis, Haemophilus influenzae,
Helicobacter pylori, Mycoplasma genitalium, Mycoplasma pneumoniae,
Borrelia burgdorferi, Treponema pallidum, Chlamydia trachomatis,
Chlamydia pneumoniae, and Rickettsia prowazekii. COGs have been
identified on the basis of an all-against-all sequence comparison of the proteins
encoded in complete genomes using the gapped BLAST program after masking
low-complexity and predicted coiled-coil regions. The COGs were classified
into 17 functional categories [15]. Some of the proteins could not be assigned
to any of the functional categories. As a matter of fact, this is the largest single
category of COGs. New proteins are assigned to respective COGs using the
COGNITOR program. The COG web site (http://www.ncbi.nlm.nih.gov/
COG) contains the following principal types of data:

A list of all COGs organized by functional category
Individual COG pages
The COGNITOR page, where a protein sequence can be pasted, searched

against the database of proteins from complete genomes, and assigned
to a COG

FIGURE 5 Unusual phylogenetic trees in HOVERGEN. (a) Redundant
GenBank records cause decrease of tree legibility; (b) inclusion of partial
sequences leads to frequent “zero length” branches as in the example of the
hexokinase II cluster (AF148513 and HUMHK22 represent full length and
partial sequence of the same human protein resulting in “paralogous genes”
like tree topology).
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FIGURE 5 Continued
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A phylogenetic pattern search tool
A matrix of co-occurrence of genomes in COGs

COG pages show the respective phylogenetic pattern and are hyperlinked to

Pictorial representations of BLAST search outputs for each member of
the COG, including links to the respective GenBank and Entrez-
Genomes entries

A multiple alignment of the COG members produced automatically
using the ClustalW program

A cluster dendrogram generated by using the BLAST scores as the
measure of similarity between proteins

Limitations of COGs. The Clusters of Orthologous Groups of proteins
database has some serious limitations. The procedure for its use is limited to
complete and rather simple genomes, in which duplicated genes are rather
exceptions. It is not clear how it would work for more complicated genomes
such as those of Drosophila or humans. The C. elegans genome was deciphered
in 1998 [16], yet this information has not been included in the COG database
so far. Another potential problem stems paradoxically from the ease of use of
the COGNITOR program. The main goal of the program is to assign a new
protein to the relevant COG in the hope that it will be possible to infer the
unknown protein function based on the function of known members of the
COG. The problem is that function is not always preserved during protein
evolution; for example, the lysozyme gene changed its function to that of
lactalbumin during mammalian evolution [17,18]. Inferring gene function
based only on protein similarity may lead to erroneous prediction (compare
Refs. 19 and 20). To deal with this problem some sophisticated methodologies
have been proposed, for example, phylogenomics [21].

4.2. Alignment Tools

As mentioned earlier, two kinds of large data sets are used in comparative
genomics: (1) large sets of relatively short sequences representing genes,
proteins, or mRNAs and (2) large segments of syntenic regions of compared
genomes (for example, the whole locus of the MHC gene family in the mouse
and human genomes [22]. These two types of data require slightly different
alignment tools. For the first type of data, almost any good multiple alignment
software will work well, but so-called command line software will be more
convenient than a “menu”-driven program. This is because it is very tedious
to enter the same alignment parameters over and over again when, let’s say,
we want to compare several hundred or even thousands of homologous genes.
In most cases one wants to align all the gene families using the same alignment
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parameters (mismatch penalties, gap opening and extension penalty, etc.); it is
also less error-prone if we define those parameters once and not key them for
each sequence set separately. Command line programs are common for the
UNIX operating system, which is why this system is so popular among
computational biologists.

Several good programs are available on the market right now. Julie
Thomson and coworkers critically evaluated some of them using a set of
distantly related proteins [23]. It would be useful to have a similar benchmark
test for nucleotide sequences because they are more commonly used in
comparative genomic studies. Among well-performing programs a few are
worth mentioning here. ClustalW is one of the most widely used and is based
on the idea of multiple progressive alignment [24]. The program calculates a
series of pairwise alignments, comparing each sequence to every other
sequence, one at a time. Based on these comparisons a distance matrix is
calculated that is used in computing the phylogenetic tree. This tree is used as
a guide for the multiple alignment starting with the closest sequence pair and
adding more distant sequences to the alignment in the order suggested by the
tree. Although the menu-driven version of ClustalW is the most popular, a
command line version of the program enables the analysis of a large number
of gene families more automatically. Figure 6 presents a simple UNIX shell
script to run ClustalW automatically on a number of sequence data sets. Some
reliable multiple alignment programs and the web sites at which they can be
found are listed in the Appendix.

Alignment of long stretches of syntenic regions is more complicated. In this
case regions of significant similarities are very often interlaced with no
homologous regions such as different retroposons or by homologous regions
mutated eyond recognition. Therefore local alignment programs tend to
perform better in this situation. Among these, dot matrix programs are very
convenient because they can detect and present very clearly regions of
duplication, inversions, and recombination. Because transposable elements
and other repeats may further complicate the situation, it is recommended to
mask them out before performing an alignment, owing to the high similarity

FIGURE 6 UNIX shell script to execute ClustalW program on number of
sequence data sets. Names of files are stored in the list file. Script reads a
name of each file and then executes ClustalW program with the current file
name as an input file.
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of related but not orthologous elements. In most cases, the best solution would
be to mask repeats “on the fly” during a search for local similarities and
unmask them in the process of alignment extension. Another challenge for
this kind of alignment is a visualization of sequence comparison results. For
very long sequences, the graphical representation of an alignment is more
convenient than the actual alignment of nucleic acid or protein residues.

4.3. Visualization Tools

4.3.1. DOTTER

As mentioned above, a simple yet powerful approach for a two-sequence
comparison is a dot matrix algorithm. This allows the user to see the whole
sequence alignment at once as a graphic box. An excellent program based on
this idea is DOTTER, written by Sonhammer and Durbin [25]. To generate a
plot, the program first computes a two-dimentional matrix of scores of all
pairwise residue comparisons. To increase the signal-to-noise ratio of a plot, a
window is stepped along the diagonals, which assigns a new score calculated
by averaging all the points within the window. Each point in the matrix now
has a value in the range of 0–255 and corresponds to a gray-scale dot that can
be set with the mouse. The Greymap tool provides two thresholds, which can
be set by the user. Scores above the maximum are displayed as black, whereas
scores below the minimum are white; all scores between these two thresholds
are plotted as a gray-scale tones. The Greymap tool allows the dotplot
thresholds to be changed dynamically to help find an optimal signal-to-noise
ratio and optimal graph resolution. An example of the DOTTER output is
presented in Figure 7.

4.3.2. PipMaker

PipMaker computes alignments of similar regions in two DNA sequences [26].
The resulting alignments are summarized with a “percent identity plot,” or
“pip” for short. PipMaker compares the first and second sequences.
Alignments are plotted according to the position in the first sequence file. To
generate a pip, PipMaker requires four user-supplied files:.

1. First sequence data file. A FASTA file containing the first sequence,
with nucleotides given as capital letters:

One-line header (sequence description)
ACGTACGTACGTCGTACGTACGTAGTACGTACGTACTACG-

TACGTACG

The maximum length is 2 million nucleotides.
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FIGURE 7 Comparison of human and mouse ERCC2 locus with DOTTER.

Copyright © 2004 by Marcel Dekker



Computational Aspects of Comparative Genomics 363

2. First sequence mask file as produced by RepeatMasker, e.g., a file
with “out” extension that contains entries such as

4135.60.00.0 HUMAN 1 54 (92195) C La SINE/La (238) 62 9 SINE/
La (238) 62

3. Exons file for the first sequence. An optional text file providing the
positions of transcriptional units in the first sequence. The
directionality of a gene (<or>), its start and end positions, and its
name should be on one line, followed by separate lines specifying the
start positions of each exon as in the following example:

>100 800 My First Gene
100 200
300 400
600 800
<1000 2000 My Second Gene
11001900
1000 1200
18002000

4. Second sequence data file. A FASTA file containing the second
sequence. The maximum allowable length of this sequence is 2 Mb.

PipMaker produces three files as output.

1. The percent identity plot. The pip consists of rows that show sequence
conservation and features along segments of the first sequence. Each
short horizontal line inside the large box corresponds to a section of
an alignment bounded by successive gaps. Different types of repetitive
elements, annotated genes and exons, and CpG islands associated
with the first sequences are visualized with different icons above the
alignment box. An example of a pip is presented in Figure 8.

2. A text file with a tabulated form of the alignments. This information
is useful for precisely identifying sequence positions corresponding to
conserved regions indicated in the pip. An example of such a file is

2870–2926↔2281–2337 68% (57 nt)
3117–3128↔2500–2511 83% (12 nt)
3129–3179↔2513–2563 73% (51 nt)

 
The first line asserts that positions 2870–2926 in the first sequence
(57 base pairs) aligns to positions 2281–2337 of the second sequence,
without gaps and at 68% identity.
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3. The traditional form of the alignments. For example, the following
alignent corresponds to the first line of the compressed form above.

Some Limitations of PipMaker. PipMaker is a great program for graphical
presentation of a long alignment. The main disadvantage is its complete lack
of flexibility. The user has to rely on a “black box” approach to an alignment
and display problem. It is not clear what program is used for the actual
alignment, and the user has no control of any alignment parameters, such as
match and mismatch values or gap penalties. Also, the graphical display is not
at all flexible. Only regions of similarity between 50% and 100% are presented
in a pip graph, but in many cases a user would wish to display more or less
stringent hits, as allowedin DOTTER (see Sec. 4.3.1).

FIGURE 8 The graphical presentation of human and mouse ERCC2 locus comparison
with PipMaker.
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5. CONCLUSION

With dozens of bacterial genomes completely sequenced and several eukaryotic
genomes, including our own blueprint, deciphered, we are truly in a genomic
era in biology. Comparative genomics is a key to understanding all the
information hidden in four genomic letters.

Comprehensive understanding of genomes will be possible only when
biologists and computer scientists combine forces. The number of
computational resources available to biologists interested in genomes is already
impressive. Yet many problems are waiting to be solved. One of the biggest
challenges will be data presentation. An unprecedented amount of data is
flooding biologists, and computer scientists are expected to come up with
new, clever ideas to make the data accessible for them. In this chapter we have
discussed some computational resources and problems associated with
comparative genomics. Although this work is far from being comprehensive
and exhaustive, we hope that it will be useful for both parties involved in the
comparative analysis of genomes.

APPENDIX

Some of the resources for comparative genomics available on the World Wide
Web are given in the following table.

Program Function URL

BLAST Homology search http://ncbi.nlm.nih.gov/BLAST
FASTA Homology search http://fasta.bioch.virginia.

edu/fasta/cgi/searchx.cgi
ClustalW Multiple alignment http://www2.ebi.ac.

uk/clustalw
MULTICLUSTAL Multiple alignment http://www.sgi.com/chembio/

resources/clustalw/
parallel_clustal.html

MultAlin Multiple alignment http://protein.toulouse.inra.
fr/multalin

DIALIGN Multiple alignment http://bibiserv.techfak.
uni-bielefeld.de/dialign/

MAP Multiple alignment http://genome.cs.mtu.
edu/map.html

HMMER Multiple alignment http://hmmer.wustl.edu
SIM Pairwise alignment http://www.expasy.

ch/tools/sim.html
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1. INTRODUCTION

This chapter focuses on the most popular methods used in the study of the
evolution of the mitochondrial genome. This theoretically implies the
knowledge of the structure and function of this organellar genome, which has
several peculiar features. Therefore, its study often requires the adaptation
and/or modification of already existing methodologies, and sometimes even
the implementation of new tools.

In this light we believe it necessary to report some basic features of the
mitochondrial (mt) genome together with the computational methods used in
the study of the evolution of this genome. Major attention is paid to the mt
genome of metazoa, whose complete DNA sequences are available in the
databases.
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2. ORIGIN OF MITOCHONDRIA

Mitochondria are cytoplasmic organelles present in all eukaryotic organisms,
but in only a small group of phagothrophous or micropinocytotic
nonphotosynthetic protists, Giardia, Trichomonas, and Microsporidia,
called Archaezoa [1] to denote a primitive amitochondriate phase of
eukaryotic evolution. The endosymbiotic theory of the origin of
mitochondria, already almost a century old, has been strongly supported by
the discovery of the structural and functional properties of these organelles,
in particular their genetic system. Recently, it has been further supported by
the typically bacterial features of the mtDNA of the protozoan Reclinomonas
americana [2] and by the similarity between the mitochondrial genome and
the genome of the α-proteobacterium Rickettsia prowazekii, an obligate
intracellular parasite evolutionarily rather close to the mitochondrial
ancestors [3].

The original endosymbiotic theory, called serial endosymbiotic theory,
postulated that a eubacterium had entered into symbiosis with a primitive
amitochondriate eukaryotic cell and had established a permanent
relationship with the primitive nuclear genome. Then, owing to the
endosymbiotic life style, the protomitochondrial genome progressively
transferred most material into the nucleus. Indeed, several functions were
taken over by the host cell or became useless. Hence, the protomitochondrion
changed from an occasional endosymbiont to an obligate host, and its
genome progressively decreased in size and gene number. Later, it was further
proposed that eukaryotes originated through symbiosis between spirochetes
and wall-less bacteria [4]. Indeed, the colonization of the primitive cell by
eubacteria, which originated the mitochondrion, could be single or multiple.
Comparative studies on mtDNA gene organization and content in different
organisms and phylogenetic analyses carried out on mitochondrial genes
support the hypothesis that modern mitochondrial genomes all descend from
a single common ancestor, and thus their origin is monophyletic (see Ref. 5).
However, the genome reduction process has followed different and often
diverging evolutionary patterns in the various taxa, which is the foundation
of the present diversity in size, gene content, gene organization, and mode of
expression of modern mtDNAs [6–11].

Recent studies based on the analysis of the genetic system of some protists,
previously scarcely known at the molecular level, provided evidence
challenging this serial endosymbiosis theory. The hypothesis has been put
forward that mitochondria originated essentially at the same time as the
nuclear component of the eukaryotic cell rather than in a subsequent separate
event. This is based on the finding that Archaeozoa originally did have
mitochondria and lost them during evolution; indeed, genes coding for
typically mitochondrial proteins were found in the nucleus of these organisms
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[12]. This mitochondrion-driven scenario of the first eukaryote has been further
supported by the finding that a genome of mitochondrial descent has also been
identified in hydrogenosomes of Nyctotherus ovalis, an anaerobic
heterotrichous ciliate [13]. Hydrogenosomes are membrane-bound
organelles present in some protozoa and chytridiomycete fungi that produce
ATP anaerobically and generate molecular hydrogen as a by-product. Indeed,
we are now dealing with a new theory, the “hydrogen hypothesis,” according
to which the eukaryotic nucleus and mitochondria/hydrogenosomes stemmed
from a single fusion event between a methanogenic archaebacterium
requiring hydrogen and an α-proteobacterium producing hydrogen; then the
passage from an anaerobic (hydrogenosomic) to an aerobic (mitochondrial)
metabolism took place [4,14].

The recently discovered properties of nuclear genes provide grounds in
support of the simultaneous acquisition of the nucleus and the mitochondrion
by the primitive eukaryotic cell. It is becoming increasingly clear that the
nuclear genome is not a descendant of a primitive archaebacterium but rather
a chimera that incorporates contributions from both archaebacterial and
eubacterial progenitors. The eubacterial component of the nuclear genome
could, however, be much greater than is usually attributed to specific gene
transfer from the evolving mitochondrial genome and would include genes
that have nothing to do with mitochondrial biogenesis and function. This
may be due to the fusion of eubacterial and archaebacterial patterns in the
creation of the eukaryotic cell.

3. THE MITOCHONDRIAL GENETIC SYSTEM

3.1. Uniparental inheritance

Among the peculiarities of mitochondrial genetic system is the non-
Mendelian uniparental inheritance of mtDNA; in metazoans, only one of the
parents, namely the mother, transmits the genome to the offspring.

In female germinal cells, mtDNA has a very special fate. Pedigree analysis
of Holstein cows showed that heteroplasmic breeds recover mtDNA
homoplasmy in as little as two generations [15,16] owing to the fast
segregation of mtDNA molecules. This phenomenon of fast mtDNA
segregation is explained by a bottleneck effect in the female germinal line or
in the early stages of embryo development.

During maturation of the primary oocyte, mtDNA molecules increase
manyfold in number, from 103 to 108 depending on the species [17,18].
During this process, the selection and then replication of a small
subpopulation of mold molecules could cause a rapid change in mtDNA
genotype in even a single generation [16]. The alternative hypothesis is based
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on the remark that the embryo undergoes several cellular divisions before
mtDNA replication is started. In mice, at the early blastocyst stage, a small
number of cells (10–12), each containing 103 copies of mtDNA, forms a small
cellular mass, which gives rise to the three germinal layers of the embryo
while the other blastocyst cells originate extraembryonic tissues [19]. The
uneven distribution of mtDNA in the inner mass cell could contribute to the
fast segregation of different mtDNA genotypes.

The transmission of the paternal mitochondrion to the offspring is stopped
by a number of molecular and cellular mechanisms that occur over one or
several stages of the reproduction process, at prezygotic stage, during
fecundation, or at the zygotic stage [20]. Among the prezygotic mechanisms
involved in gamete genesis there are uneven cell division and differences in the
growth of male and female gametes, producing large female gametes and
small male gametes. Hence, female gametes are rich in mitochondria whereas
male gametes are poor in them. In the extreme, prawn male gametes
completely lack mitochondria due to the uneven cytokinesis during
gametogenesis [21]. In the tunicate ascidia, uniparental inheritance is due to
the fact that sperm mitochondria do not enter the oocyte during fecundation
[22]. A stochastic zygotic mechanism probably acts in yeast; mtDNA
molecules from one of the parents replicate more often than those of the other
in a totally random process; hence their rate of transmission to the offspring is
higher [20].

In mammals, the whole spermatozoan enters the oocyte during
fecundation, including the middle portion containing mitochondria. The only
known exception is the Chinese hamster (Cricetulus griseus). In this species,
during fecundation the tail and middle portion of the sperm remain outside
the oocyte; hence there are no chances for the paternal mtDNA to be
transmitted to the offspring. In all other mammals, the maternal inheritance
of mtDNA is due to processes occurring after fertilization [23]. It is well
known that in fertilized eggs of the common hamster, paternal mitochondria
degenerate during the two-cell stage, when several multivesicular bodies
surround and fuse with sperm mitochondria and digest them [24]. In humans,
mitochondria from the sperm middle portion have been found in the
fecundated oocyte, where they survive to the stage of morula; it is not known
whether and when they are finally destroyed (references in Ref. 23).
Generally, in mammals maternal inheritance seems to be due to the dilution of
the small quantity of mtDNA in sperm into the great quantity of
mitochondria present in the oocyte. Thus, the random mtDNA replication in
the zygote would nullify the contribution of paternal mtDNA in most
individuals [23]. Usually, mammalian spermatozoa contain 50–75
mitochondria in the middle portion, each having a single mtDNA molecule
[25], whereas oocytes contain 105-108 mitochondria [26], each accounting
for several copies (up to 10) of mtDNA molecules [18,27].
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Paternal mtDNA transmission has been studied in rodents using highly
sensitive techniques such as PCR; however, the results remain ambiguous
because they essentially cover interspecies crossbreeds rather than
intraspecies ones. Gyllensten et al. [28] observed that paternal mtDNA is
transmitted in very small quantities to the offspring over several generations
in retrobreeding between Mus musculus and Mus spretus. One paternal
mtDNA is inherited on average for each 104 maternal mtDNA molecules,
which is in agreement with expectations based simply on the dilution of
spermatozoan mtDNA into the oocyte. Furthermore, Gyllensten et al. [28]
found that, if inherited, paternal mtDNA is distributed more or less evenly in
the tissues of the offspring. Completely opposite results were obtained by
Shitara et al. [29] from the examination of interspecific retro-crossbreeds
among the same species. These studies showed that paternal mtDNA is not
distributed in all tissues of the hybrids and neither is it transmitted to the
following generations; rather it is present only in the first generation of
interspecies crossbreeds.

Polymerase chain reaction analyses carried out on Mus musculus
intraspecies hybrids on single cells at the early stages of embryogenesis
showed that paternal mtDNA is present in these hybrids only to the
pronucleus phase and disappears soon afterward when the membrane
potential of sperm mitochondria is annihilated [30]. In contrast, in Mus
musculus and Mus spretus interspecies hybrids, paternal mtDNA is found in
70% of the examined hybrids and at different stages of the fecundated
oocytes since birth [30]. Based on these results, species-specific mechanisms
have been suggested to act on fertilized eggs to recognize and eliminate
spermatozoan mitochondria. These mechanisms would involve recognition
and interaction of oocyte cytoplasmic factors with the proteins of the
spermatozoan middle region. Consequently, only in interspecies crossbreeds,
where the above mechanisms can be completely inactivated or have reduced
efficiency, could paternal mtDNA transmission occur, because spermatozoan
mitochondria would not be recognized as such and thus would not be
eliminated [29,30].

Maternal inheritance makes mtDNA crucial in studies on molecular
evolution because it allows the evolutionary history of a species to be traced
back to the common ancestor following a linear evolutionary pathway.
Furthermore, uniparental inheritance excludes the occurrence of
recombination events between the genetic pools of the parents, because it
occurs in nuclear DNA, which could further bewilder the evolutionary
processes. More recently, Awadalla et al. [31] found signs of mixing through
recombination between paternal and maternal mitochondrial DNA in
humans and chimpanzees. As mtDNA has been widely used as a tool to trace
human ancestry and relationships, this finding could have profound
implications in the study of the origin of modern humans [32,33].
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A correlation between transmission mechanisms and the evolutionary rate
of mtDNA has been proposed for mollusks of the genera Mytilus and
Anodonta. They represent a peculiar type of mtDNA transmission called
“double uniparental inheritance” (DUI) [34]. Females are homoplasmic and
have mtDNA F of maternal origin, which they transmit to both female and
male offspring; males are heteroplasmic and have maternally inherited F
molecules that they do not transmit to the offspring and paternally inherited
M molecules that they transmit to male offspring only. It has been suggested
that this transmission mechanism is responsible for the faster evolution of M
mtDNA molecules than of F mtDNA [35,36].

3.2. Recombination

Gene recombination is one of the sources of mtDNA variability in plants,
fungi, and protists; however, this process does not seem to affect animal
mtDNA. Differences in the number of tandem repeat copies in the nematode
Meloidogynes javanica have been interpreted as the result of possible
recombination events [37]. In mammals, the lack of recombination has been
demonstrated by the absence of mtDNA crossing-over [38] and by the lack
of recombinant mtDNA molecules (that is, hybrids between two different
mtDNA donors) in hybrids of somatic cells and of cytoplasm (cytoplasm
hybrids or “cybrids” are formed through the fusion of an anucleate cell with
a nucleate cell) (references in Ref. 9, but see also below). However, as
reported in the previous subsection, findings have been reported that would
support some recombination in human and chimpanzee mtDNAs [31].

Generally the absence of recombination in mtDNA can be due to the
capability of cells to keep mitochondrial organelles separate from one
another and/or to the absence of enzymes for recombination. If each
mitochondrion makes up an independent unit in a cell and does not fuse with
the others, mtDNA molecules from different organelles will not have the
chance to recombine. Conversely, if mitochondria make up a dynamic
network, mito chondrial DNA and components from different organelles
could mix and make recombination and complementation possible.
Although the existence of interconnections between mitochondria in vivo
would suggest the occurrence of mitochondrial fusion under well-established
physiological conditions, this issue is still much debated.

Hayashi et al. [39] showed by microscopic analysis that two different
mitochondrial populations, marked with two different fluorescent DNA-
binding dyes and introduced into HeLa cells deprived of mtDNA (rho-0),
spread rapidly to all rho-0 HeLa mitochondria. Moreover, coexisting
wildtype mtDNA and mutant mtDNA with a large deletion distribute
homogeneously throughout mitochondria. This study demonstrated that all
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mitochondria in a cell behave as a single dynamic cellular unit, which is in
agreement with what had been observed in previous studies [40–42].

Yoneda et al. [43] performed several experiments on cytoplasmic hybrids
to test the capability of different mtDNAs to mix and complement one another.
Indeed, complementation of two mitochondrial mutations can occur only if
both mutated mtDNAs are in the same organelle. Hence, two distinct
mitochondrial populations, each bearing mtDNA mutated in a different tRNA,
are inserted into human rho-0 cells without taking into account the
complementation process of the obtained cytoplasmic hybrids; furthermore,
no transductional complementation has been observed between CAPs

(chloramphenicol-sensitive) and CAPr (chloramphenicol-resistant)
mitochondria differently from what was previously reported by Oliver and
Wallace [42].

Because experiments carried out by Hayashi et al. [39] and Yoneda et al.
[43] examined the properties of cytoplasmic hybrids at different cell stages,
the conflicting results obtained have been reconciled by hypothesizing a pattern
whereby mitochondria fuse in the first stage of hybrid formation and make
up compartments that do not communicate during the later stages of cell
division and growth [44].

As far as the existence of a mitochondrial enzymatic system for
recombination is concerned, studies have demonstrated that mammalian
mitochondria possess several DNA repair systems (references in Ref. 45),
among which is a repair system for homologous recombination (HR) [46].
This latter could explain the repair of mtDNA from interstring cross-links
caused by cisplatin [47]; indeed, this damage is repaired in prokaryotes and in
yeast nucleus by homologous recombination [48]. The HR system has been
identified in mammalian mitochondria through the analysis of protein
extracts obtained from mitochondrial subcellular fractions. These extracts
catalyze conservative homologous recombination reactions between plasmid
substrates in the presence of ATP or a similar nonhydrolyzable agent, and the
process appears to be mediated by a protein homologous to recA bacterial
protein [46]. However, it has been suggested that, as in the yeast system, HR
activity in mammalian mitochondria is used for DNA repair only and is not
associated to gene recombination. Indeed, MHR1 gene of the mitochondrial
recombination/repair system in yeast takes part only in gene conversion and
not in crossing over [49]; similarly, in mammals, the HR mitochondrial
system could be involved in gene conversion only and hence only in DNA
repair, which would explain the lack of crossing over in mtDNA [38].

On the whole, presently available data support the absence of gene
recombination in animal mtDNA and make this molecule particularly suitable
for molecular phylogenetic studies because all mitochondrial genes are
inherited as a single linkage group and there are no processes confusing their
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evolutionary history, which then coincides with the evolutionary history of the
species.

3.3. Size and Shape

Because of the different evolutionary pathways that generated the segregation
of genetic information in the eukaryotic cell in different cellular compartments
such as the nuclei and the mitochondria, the mitochondrial genome shows a
great variability in terms of structure, gene content, organization, and mode
of expression in the different organisms. Several features, however, are
common to the majority of mitochondrial genomes.

The circular double-stranded structure appears to be almost a constant
feature of mtDNA, which exhibits an extraordinary variability in length,
particularly in the lower eukaryotes and in plants. The size ranges from only
about 6000 base pairs (6 kbp) in some protists (e.g., Plasmodium and
Theileria) to 2500 kbp in plants.

In Ciliata, e.g., Tetrahymena pyryformis and Paramecium aurelia, the
genome is linear with a double helix molecule 46 and 40 kbp long,
respectively. In the alga Chlamydomonas reinhardtii, besides the linear
(major species) mitochondrial genome (16 kbp long), a circular (minor
species) mtDNA might also be present [50]. In the kinetoplasts of the
Tripanosomatidae Crithidia fasciculata, Leishmania tarentolae, and
Trypanosoma brucei, the mt genome has a very peculiar structure, being
composed of an intricate network containing two types of molecules: many
thousands of minicircles (1–3 kbp, depending on the species), accounting
for 90–95% of the DNA, and 50–100 maxicircles (20-40 kbp). Minicircles
lack long amino acid coding frames, and maxicircles are the equivalent of
mtDNA in other organisms [51]. Minicircle-encoded RNAs are necessary to
guide the editing process required to generate functional mRNAs from the
maxicircle transcripts (see below).

In higher plants, the mt genome ranges from 200 to 2500 kbp, and it has
been demonstrated that its size can vary by as much as sevenfold within the
same family. This peculiar feature is not related to the number of repeated
sequences and detectable translation products. The entire genetic complexity
is contained in a circular chromosome (master) that may be resolved into
subgenomic circles by recombination through directly repeated sequences.
This mechanism is also involved in the rapid and extensive rearrangements
that characterize the evolution of plant mtDNA. Moreover, frequent
acquisitions of genes from nuclei and chloroplasts take place, resulting in
the formation of mosaic genomes [52–56]. Table 1 reports the size and shape
of the 47 mt genomes so far completely sequenced in lower eukaryotes and
in plants.
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TABLE 1 List of Completely Sequenced Mitochondrial Genomes in Lower Eukaryotes
and Plantsa,d
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In contrast to such a great variability, the size of the mt genome in metazoans
is extremely small compared to that of other eukaryotes, with a roughly constant
length (14–19 kbp). Table 2 lists the mt genomes completely sequenced in
Metazoa. More recently, several cases in the literature have been described
where the length of mtDNA exceeds the normal, rather constant average size
found in animal cells. Such a difference in length can range from twice the
average size (14–28 kbp) to even more (35 kbp, as in the sea scallop,
Placopecten magellanicus [57]). In such cases, however, a duplication of some
genomic regions seems to have occurred. Length variations are more frequent
in invertebrates and in poikilothermic vertebrates, and they appear to generate
very rapidly and distribute both within (heteroplasmy) and between
individuals. In general, length differences are confined to the control region,
but in some cases they are dispersed and/or also include structural genes (for
review, see Refs. 11, 58, and 59).

Despite such a variety of structures and sizes, the information content of
all mt genomes is not dramatically different in the various organisms, because
the information content of the mtDNA is sufficient to code for ribosomal
RNA species (two or three), a reduced but complete set of transfer RNAs
(with some exceptions), and a small set of proteins (13 in Metazoa). In
general (with some exceptions like plants), the differences concern mainly

TABLE 1 Continued

Source: Unpublished sequences are from the Organelle Genome Megasequencing Project (OGMP,
http://megasun.bch.umontreal.ca/ogmpproj.html) and from Fungal MitochondrialGenome Project
(FMGP, http://megasun.bch.umontreal.ca/People/lang/FMGP/FMGP.html).
a For each genome the relevant accession number, the size, and the shape are reported.
b Three “chromosomes” of 58.8, 1.4, and 1.1 kb.
c Head-to-tail tandem repeats of 6 kb unit [7].
d For an updated list see www.ncbi.nlm.nih.gov/genomes/ORGANELLES/organelles.html
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TABLE 2 Mitochondrial Genomes Completely Sequenced in Metazoab

Copyright © 2004 by Marcel Dekker



Saccone and Pesole380

TABLE 2 Continued
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the noncoding and regulatory regions. Indeed, the mt genome is a good
example of several different strategies that the eukaryotic cell can use to
express the same information content. Among these, the most peculiar is
certainly RNA editing (see below), which is particularly active in Protozoa
and in plants [60].

Despite the relatively constant gene content, gene order and organization
vary strikingly in the various organisms. The mitochondrial genome
organization in lower eukaryotes, such as Saccharomyces cerevisiae, is very
loose (two-thirds contain A-T-rich, noncoding sequences), and several genes,
in particular the apocytochrome b, the cytochrome oxidase subunit I, and the
21S rRNA, are discontinuous. The number of introns and G-C- and A-T-rich
mini-inserts within the genes are strain-dependent. Some introns of these split
genes code for proteins involved in RNA processing or intron transposition
[61,62].

In plants, where, as previously reported, the mt genome is much larger than
the fungal or animal counterpart, gene organization is highly dispersed.
Extensive noncoding sequences separating the coding regions and introns have
been detected in several genes. Mitochondrial DNAs show a tri- or multipartite
structural organization and, owing to frequent recombination, they are

TABLE 2 Continued

a NA: Although described in the literature, the complete genome sequence is not yet available in
the database.
b For an updated list see www.ncbi.nlm.nih.gov/genomes/ORGANELLES/organelles.html
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TABLE 3 Deviations from the Universal Genetic Code Described for the Mitochondrial
Genomesa
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continuously rearranged. A consequence of this peculiar evolutionary pattern
is that genome organization varies greatly in linear gene orders. Thus, highly
conserved coding sequences are often flanked by completely different
sequences in the mtDNAs of plant species, even closely related species.
Moreover, chloroplast DNA sequences and plasmid-like sequences are present
in the mtDNA [63].

The gene structure and organization of Metazoa differ markedly from those
of yeast and plant mtDNAs. The most distinctive feature of the metazoan mt
genome is its extremely compact gene organization.

In conclusion, the features of the mt genomes can have either a prokaryotic
(e.g., naked DNA, absence of introns in Metazoa) or a eukaryotic (e.g.,
presence of introns in lower eukaryotes and plants, presence of 5'-end
polyadenylated mRNAs in Metazoa) nature. This indicates that although
derived from the same ancestral progenitor, the mtDNA has followed multiple
and different evolutionary pathways in the various taxa, thus leading to the
variable situation we observe in extant organisms.

3.4. Genetic Code

As soon as the first mtDNA sequences became available, the comparison
between gene and protein sequences revealed several deviations from the
universal genetic code in mitochondria of different species. Table 3 shows the
deviations from the universal genetic code observed so far in mitochondria. In
mtDNA of most phylogenetic groups, UGA is used as a tryptophan codon

Notes to Table 3.
a A complete list of genetic code deviations and the relevant references can be found
at http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
b Systematic range includes Ascidiacea (sea squirts).
c Systematic range includes Asterozoa (star fishes) and Echinozoa (sea urchins).
d Systematic range includes Nematoda (Ascaris, Caenorhabditis), Mollusca (Bivalvia,
Polyplacophora), Arthropoda/Crustacea (Artemia), Arthropoda/Insecta (Drosophila,
Apis mellifera).
e This is the ancestral mitochondrial code, and its systematic range includes
Mycoplasmatales, Fungi (Emericella nidulans, Neurospora crassa, Podospora
anserina, Acremonium sp., Candida parapsilosis, Trichophyton rubrum, Dekkera/
Brettanomyces, Eeniella sp., and probably Ascobolus immersus, Aspergillus
amstelodami, Claviceps purpurea, and Cochliobolus heterostrophus), Protozoa
(Trypanosoma brucei, Leishmania tarentolae, Paramecium tetraurelia, Tetrahymena
pyriformis, and probably Plasmodium gallinaceum) and Coelenterata (Ctenophora
and Cnidaria).
f The systematic range includes Saccharomyces cerevisiae, Candida glabrata,
Hansenula saturnus, Schizosaccharomyces pombe, and Kluyveromyces
thermotolerans.
Source for yeast data: Ref. 198.
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rather than as a termination codon. On the other hand, AGR (R=A or G),
coding for arginine in the universal code, is a stop codon in mtDNA of
vertebrates, and it codes for serine in the mtDNA of echinoderms and for
glycine in the ascidian Ciona intestinalis. CTN codons (N=A, C, G, U) code
for threonine in yeast, and AUA is an additional codon for methionine in
most metazoans and in yeast.

Another surprising feature of the mitochondrial genetic system is the use of
an oversimplified decoding mechanism allowing translation with a reduced
set of tRNA species. In vertebrates this reduction is achieved with a wider
wobbling between the third base of the codon and the first base of the
anticodon, where a U is able to recognize all bases in the third codon position
of four-codon families. This implies that only 22 tRNA species are required to
translate all sense codons for the 20 amino acids.

In general, mitochondrial tRNAs are shorter and may present unusual
structures with respect to tRNAs involved in cytoplasmic translation [64].

3.5. RNA Editing

The generation of RNA molecules having nucleotide sequences differing from
those encoded by genes was first discovered by Benne et al. [65] in
trypanosome mitochondria, where the process of uridylate insertion in
encoded transcripts generates the functional mRNA. Since then, many other
examples of posttranscriptional alterations of the informational content of
the mRNA, generally known as “RNA editing” were discovered, mostly
located in mitochondria.

RNA editing can be roughly divided into two major mechanisms, insertion/
deletion editing (which changes the total number of nucleotides in the RNA)
and conversion/substitution editing (which changes nucleotide identity).
Insertion/deletion editing has been observed in the mitochondria of
kinetoplastid protozoa and of the slime mold Physarium polycephalum. This
process may create initiation and termination codons, correct frameshifts, and
even build entire open reading frames from nonsense sequences. As already
said, mitochondrial DNA of trypanosomes and of kinetoplastid protozoa
consists of a network of maxicircles and minicircles. Maxicircle transcripts
are edited at numerous sites by the insertion (or much less frequently, deletion)
of uridylate residues, which in some cases account for more than 50% of the
nucleotides of an mRNA.

The information for the correct pattern of insertion/deletions is provided
by small guide RNAs (gRNAs), which are antisense with respect to the edited
RNA regions and possess 3’U tails of 5–24 residues. These gRNAs are mostly
encoded by the minicircle component of the mtDNA.

In the mitochondria of the slime mold Physarium, editing sites are spaced
at approximately 25 nucleotide intervals, where insertions occur of single
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cytidines, uridines, and certain dinucleotides containing adenosine and
guanosine as well as cytidine and uridine.

Conversion/substitution type editing occurs in plant mitochondria, where in
the RNA encoded by the mitochondrial genome many cytidines are converted
to uridines. For example, in Oenothera bertheriana mitochondrial RNAs, more
than 500 editing sites have been observed with C→U conversions (but a few
U→C conversions have also been detected). The mechanism of the specific
C→U conversions in higher plant mRNA, which probably occurs by oxidative
deamination, is largely unknown, but it has been observed to be mostly
conservative as it generally improves the degree of conservation at the protein
level between plant and non-plant organisms. For example, it has been observed
in the nad3-rps12 mitochondrial genes of some plant species that all three
codon positions evolve at comparable dynamics, under a quasi-neutral
evolutionary process, and most of the editing events occur in the first and
second codon positions, restoring codons for conserved amino acids (see Table
1 in Ref. 66). This implies that RNA editing accounts for most of the selection
control in plant mitochondrial RNA.

tRNA editing has been also observed in Gastropoda and in noneutherian
mammals. In gastropods the editing events involve changes from cytidine,
thymidine, and guanosine to adenosine residues [67]. In platypus GCU Ser-
tRNA, three editing events have been described, C→U, C→A, and A→U [68],
as well as a C→U change in marsupial Asp-tRNA [69].

The origin, evolution, and functional role of RNA editing is still rather
unclear, although it certainly provides an extra level of regulation of gene
expression. A better knowledge of its evolutionary origin could clarify its role
and possible selective advantages.

4. EVOLUTION OF THE MITOCHONDRIAL GENOME IN METAZOA

4.1. General Properties

In contrast with the high variability displayed by the mitochondrial genome
of lower eukaryotes and plants, evolutionary forces molded metazoa mtDNA
into a molecule characterized by compact arrangement, constancy of gene
content, and the presence of a main noncoding region. Apart from the
replication origin region(s), the genome is saturated with discrete genes lacking
intronic sequences and flanking untranslated regions. These genes are often
contiguous and sometimes slightly overlapped or separated by only few
nucleotides.

Several hypotheses have been put forward to explain why the metazoan
mitochondrial genome has attained such a small but constant size. A small
genome has several advantages, such as faster replication and a constitutive
type of transcription. However, the “race for replication” hypothesis of A.C.
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Wilson (personal communication), according to which those genomes that
replicate the fastest will win, has not found experimental support so far. Moraes
and Schon [70] found no difference in the replication rate of a heteroplasmic
population of normal and partially deleted human mtDNA genomes in
fibroblasts.

In general, metazoan mtDNA consist of a single circular molecule. In the
phylum Cnidaria, linear DNA molecules, present as a single 16 kb molecule
or two 8 kb molecules, have been reported in species from the classes Hydrozoa
(e.g., Hydra fusca, Hydra attenuata), Scyphozoa (e.g., Cassiopea sp.), and
Cubozoa (e.g., Cariodea marsupialis), whereas Cnidaria species included in
the class Anthozoa have circular DNA molecules [71].

The uniformity of gene content is another remarkable feature of the
majority of metazoan mtDNAs. The same set of genes is found in all metazoan
mtDNA, namely, two ribosomal RNA species, a reduced but complete set of
22 tRNAs, and a set of 13 proteins. In addition, there is at least one region
that does not encode any structural gene and that has been shown to include
elements for the initiation and control of replication and transcription; this is
called the control region and, in vertebrates, the D-loop region.

As rare exceptions to the rule of constant gene content, in Cnidaria only
two tRNA genes are found in Metridium senile and only one in Renilla
koellikeri and Sarcophyton glaucum [72]. In Nematoda the gene for ATP8 is
missing. The mollusk Mytilus edulis not only lacks the ATP8 gene but also
host an additional tRNA expected to recognize the AUA codons for
methionine [73]. Despite the constancy in size and gene content, gene order
and organization vary extensively within Metazoa due to gene rearrangements
that consist of a different distribution of genes between the two strands
(polarity inversions), gene transpositions, and gene losses.

4.2. Genome Features and Organization

Owing to the reduced size of the molecule, the sequencing of the metazoan mt
genome has become very popular, providing a lot of information about its
variations both between and within phyla. Table 2 lists the metazoan mt
genomes that have been completely sequenced.

The length of mtDNA has been reported to be in the range of 13–19 kb.
Indeed, when the mt genome is considered without the repeated sequences, its
size ranges between 13,738 bp, the smallest size recorded for the platyhelminth
Echinococcus multilocularis, and 19,517 bp, the largest for Drosophila
melanogaster. However, genome size can reach up to 20 kb in Meloidogyne
javanica and 42 kb in Placopecten magellanicus due to the presence of repeated
sequences. Length variation is more frequent in invertebrates and in
poikilothermic vertebrates, and it appears to generate very rapidly and
distribute both within (heteroplasmy) and between individuals [11]. Changes
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in the copy number of tandem repeated sequences have been reported to be
entirely consistent with a mechanism of mtDNA recombination, although, as
previously pointed out, recombination in mtDNA remains undocumented [37]
(see also Sec. 3.2).

It is commonly accepted that gene order varies between lineages and that
conservation of gene order is frequently observed among recent evolutionary
neighbors. Indeed, the progressive acquisition of new sequences into mtDNA
databases has shown an increasing number of mt genomes whose structures
deviate from the previous congruent picture of this molecule. The gene
organization of some representative animal mtDNA are shown in Figure 1.

In the phylum Cnidaria, generally considered to be one of the most primitive
groups of metazoans, there are peculiarities not shared with other
mitochondrial systems. In a member of the class Anthozoa subclass
Hexacorallia, Metridium senile, two mitochondrial protein genes, COI and
ND5, contain a group I intron. Furthermore, COI intron encodes a putative
homing endonuclease and the ND5 intron contains the ND1 and ND3 genes
[74]. Other Anthozoa members of the subclass Octocorallia, Renilla kolikeri
[72] and Sarcophyton glaucum [75,76], do not have introns but an extra gene
coding for a protein with similarity to a bacterial mismatch repair protein.
Among Anthozoa (Cnidaria), octocorallians have the same gene order, which
differs from that of hexacorallians [72,77,78].

In protostomes (Arthropoda, Mollusca, Annelida, and Nematoda), mt gene
arrangement is not stable within major groups. Among nematodes, Ascaris suum
differs from Caenorhabditis elegans only in the location of the AT-rich region,
but extensive rearrangements have occurred in the mtDNA of Meloidogyne
javanica [79,80]. Particularly intriguing is the case of Mollusca, where all five
available genomes show different gene arrangements. Interestingly, the two
species of pulmonate gastropods, Euhadra kerklotsi and Cepaea nemoralis,
although classified in the same superfamily, Helicoidea, have quite different
arrangments of tRNA and protein coding genes. On the other hand, the mtDNA
of Albinaria cerulea, another pulmonate gastropod only distantly related to the
two just mentioned, shows in a portion of the genome the same gene order as in
Euhadra mtDNA and in another portion the gene order of Cepaea mtDNA.
This demonstrates that a gene rearrangement has occurred in members of the
same superfamily and suggests an accelerated rate of gene rearrangement in
some pulmonate lineages [81]. The mtDNA gene arrangement of another
mollusk, Katharina tunicata, is highly unlike that of all other mollusk mtDNAs
available so far but notably similar to that of Drosophila (Arthropoda).
Furthermore, this mollusk contains two additional sequences that can be folded
into tRNA-like structures, but it is not clear whether these are functional genes
[82]. Finally, the mollusk Mytilus edulis, whose difference in mt gene content
was mentioned in Sec. 4.1, has a mitochondrial gene arrangement radically
different from those reported above [73].
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FIGURE 1 Comparative gene organization of metazoan linearized mtDNAs arbitrarily starting at the Phe-tRNA gene. The tRNA
genes are indicated according to the transported amino acid: L, Leu(CUN); L*, Leu(UUR); S, Ser(AGY); S*, Ser(UCN); Ψ, a
pseudogene. M° and M’ denote the two tRNA genes for methionine in Mytilus edulis. NC: noncoding region. Introns found in
Metridium senile are shaded in gray. Gene abbreviations: cytochrome oxidase subunits I, II, and III (COI, COII COIII); cytochrome b
apoenzyme (Cyb); NADH dehydrogenase subunits 1–6, 4L (ND1–6, ND4L); ATP synthase subunits 6, 8 (ATP6, ATP8); small and
large rRNA subunits (12S, 16S).
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The only representatives of the Annelida, Lumbricus terrestris and Platynerei
dumerii, have a gene organization different from each other for the location of
the tRNA genes and different from that of the other major protostome groups.
Interestingly, the ATP8 gene is not immediately upstream of ATP6, a condition
found only in pulmonate gastropods [83].

Extensive gene rearrangements can be observed also in Arthropoda. In the
Insecta, the comparison of the gene order between Apis mellifera [84] and
Drosophila [85,86] showed a rearrangement of 11 tRNA genes, whereas the
organization of the genome of Artemia franciscana (Crustacea) is very similar
to that of Drosophila, showing a single rearrangement affecting only two
tRNAs [87]. The entire mt genome from two different ticks, Ixodes hexagonus
and Rhipicephalus sanguineus, representative of the subgroups Prostriate and
Metastriate of the subclass Acari, have been reported [88]. The sequences
show an extensive rearrangement, which also implies the duplication of the
control region in the Metastriate tick. All these data suggest that phylogenetic
studies based on gene arrangement comparisons may be very misleading in
many cases [89].

A survey of deuterostome mtDNA sequences would suggest a less frequent
gene rearrangement. In three different classes of Echinodermata, i.e.,
Asteroidea, Echinoidea, and Crinoidea, Asterina pectinifera (Asteroidea) and
Florometra serratissima (Crinoidea) show similar gene organizations with few
tRNA transpositions but slightly different from that of Echinoidea (Arbacia
lixula, Paracentrotus lividus, and Strongylocentrotus purpuratus) on account
of a major inversion of a 4.6 kb fragment spanning from the 16S rRNA gene to
13 of the 15 tRNA genes in the main tRNA region [90–92]. Therefore, limited
gene rearrangements have occurred in echnoderms, in spite of the fact that the
different classes diverged approximately 450–550 million years ago, according
to paleontological evidence.

The overall gene order of the hemichordate Balanoglossus carnosus
shows substantial differences from echinoderms but is quite similar to
that of vertebrates. In contrast, it shares with echinoderms some aspects
of the genetic code, sequence motifs in the control region, close similarity
of the two Leu-tRNA genes, and the presence of an N-terminal extension
of ND5 [93].

All studies on tRNA gene localization in animal mt genomes clearly
suggest their accelerated mobility relative to other mitochondrial genes [94].
Cantatore et al. [95], on the basis of comparative analyses, suggested that
events of duplication and remolding of tRNA genes occurred during the
evolutionary rearrangement of mt genomes in the sea urchin Paracentrotus
lividus. In particular, a high similarity between the tRNALeu (CUN) and the
tRNALeu (UUR) was observed, together with an altered location of the tRNALeu

(CUN) gene in the mtDNA of sea urchin compared to vertebrates. In addition,
a sequence (72 bp long) containing a trace of the old tRNALeu (CUN) gene at
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its original location was observed in the sea urchin, where it coded for an
extra amino acid sequence at the ND5 gene amino termini. These data
were interpreted by assuming that during evolution a tRNA gene lost its
function and became part of a protein-coding gene. This loss was
accompanied by the gain of a new tRNA through duplication and divergence
from a tRNA gene specific to a different family of codons, namely the
tRNALeu (UUR) gene. On the basis of these assumptions and of other
observations indicating that tRNAs are present at the end of duplications
and deletions, it has been suggested that tRNAs should be considered as
mobile elements involved in gene rearrangement [96,97]. To explain this
property we put forward the hypothesis that a gene flanked by two tRNAs
can be considered to be very similar to a transposable element, with the
two tRNAs corresponding to long terminal repeats (LTRs), each of which
has short inverted sequences (amino acid stems) at its end [97]. In addition,
it should be considered that as a consequence of the compactness of the
metazoan mt genome, tRNA genes were forced to assume multiple roles
and regulatory functions. It has been indicated that mitochondrial tRNAs
might play a role in the origin of replication [98]. It is known that tRNAs
act as recognition signals in vertebrates, where they are scattered along the
molecule and make up a sort of punctuation signal for the processing of
polycistronic transcripts [99]. On account of the acquisition of such multiple
roles by tRNAs, we have speculated that in the course of evolution animal
mt tRNAs, which had to cope with the dramatic size reduction of mtDNA,
adapted in order to fulfill new tasks. This caused a less stable L-shaped
structure and a wider ambiguity in the decoding of the genetic code [100].

It is well known that gene rearrangement events may be used to
reconstruct the ancestral gene order and then the phylogenetic
interrelationships between organisms (see below). In this case, by assuming
that tRNAs move independently of other genes, the possible phylogenetic
interrelationships between metazoans can be established because of the
transposition events of the ribosomal and messenger genes. The unrooted
tree constructed by Cantatore et al. [95] using this criterion with the genomes
of Vertebrata, Nematoda, Echinodermata, and Insecta places Echinodermata
and Vertebrata more closely in relation, because they are separated by only
four events.

4.3. The Noncoding Regions

A peculiar feature of metazoan mt genomes is the presence of a main noncoding
region that contains the regulatory elements for the replication and expression
of the mtDNA. Regardless of the high degree of conservation of the coding
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genes, this region shows great variability in length and base composition. It
ranges fromonly121 bp in the sea urchin to 4601 bp in Drosophila [101].

Differently from Vertebrata, in Invertebrata the structure and evolution of
the regulatory region has not yet been fully characterized. In Ascaris and
Drosophila this region is called an AT-rich region for its extremely high A+T
content. In Ascaris the main AT region is 886 bp long, and a smaller noncoding
sequence of 117 bp, which can be folded into a stem-and-loop structure, is
also present. In Drosophila the AT region is extremely polymorphic; it varies
in sequence and length both in different species (1077 bp in Drosophila yacuba
and 4601 in Drosophila melanogaster) and within individuals of the same
species or in different mtDNA molecules of a single fly. The putative promoters
and the replication origin are contained in two conserved regions, one of which
can form a hairpin structure.

In echinoderms the main noncoding region (121–445 bp) is located in the
tRNA cluster. It appears as a condensed version of the vertebrate replication
origin, and the nascent strand coincides with a very stable stemloop structure.

In vertebrates the main noncoding region is called the D-loop-containing
region, because starting from the strand replication origin (OH) the heavy strand
displaces (D) the parental one, creating a triple-strand structure (see Sec. 5.2).
This region, ranging from 879 bp (mouse) to 2134 bp (Xenopus), also contains
the promoters for both the heavy strands (HSP) and light strands (LSP). The
two strands are called heavy (H) and light (L) according to their isopycnic
sedimentation in the cesium chloride gradient. The other noncoding region
contains the origin of the light strand replication (OL); it is only 30 bp long and
is flanked by five tRNA genes. This region can be folded into a stable stem-
and-loop structure that is very conserved in all vertebrates except birds. Indeed,
the sequence equivalent to the OL has not been found at the same position in the
bird mt genomes sequenced so far.

In rats and humans the two origins of replication show an intrinsic DNA
curvature, correlated with periodic distribution of dinucleotides in the sequence
and involved in protein interactions [102,103].

4.4. Base Composition

Table 4 reports the nucleotide composition percentage of the complete genome
and of the third codon positions of protein-coding genes of several metazoans.
It can be observed that the AT/GC content is highly variable, with the highest
GC content observed in Balanoglossus carnosus and the lowest in Apis
mellifera, whose genome is extremely AT-rich. A striking heterogeneity of
the base composition can be observed between different lineages as well as
within the same lineage. The general compositional pattern is also reflected
in the nucleotide composition percentage at the third codon positions. For
example, in arthropods the G+C content at the third codon positions ranges
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FIGURE 2 Graphical representation of mean and standard deviation of GC and AT
skews calculated on the whole mitochondrial genome for all metazoan taxa in
Table 2.
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between 37% in Daphnia pulex and 4.80% in Apis mellifera. A conserved
compositional pattern is observed in vertebrates where a remarkable
asymmetrical distribution of the complementary nucleotides between the two
strands can be observed, particularly evident for the GC distribution, with G-
ending codons generally avoided [104,105] (see Sec. 5.3). A different pattern
is observed in other metazoans whose complete genome base composition
displays a relatively high content of G, with the C content surprisingly low in
some species.

The compositional features of the metazoan mitochondrial genomes can be
represented in terms of the degree of asymmetry between complementary
nucleotides (GC and AT skews; see Sec. 5.3). Average AT and GC skews
calculated on the base composition of complete genomes for various metazoan
lineages are shown in Figure 2.

In Chordata the GC skew is always considerably negative, with the
exception of Cephalochordata and Urochordata, whereas the AT skew is
very low but generally slightly positive. A taxon-specific pattern can be
observed for other organisms both between different taxa and within the
same taxon. Urochordata, Nematoda, and Platyhelminthes show a strong
compositional asymmetry with a positive GC skew and a negative AT
skew. The same pattern, but to a lesser extent, is shown by Mollusca and
Cnidaria, where, as in all the remaining taxa, the compositional
asymmetry is very low.

5. EVOLUTION OF THE MITOCHONDRIAL GENOME IN CHORDATA

5.1. Genome Features and Organization

The mitochondrial gene organization seems relatively stable only in
Chordata, where only a few transpositions are tolerated as reported in
Figure 1. As a matter of fact, an identical genome organization has been
found among many different eutherian mtDNAs. In particular, it should
be noted that the gene arrangement described in Eutheria has been found
to be identical to that in Prototheria, Amphibia, Testudines (Pelomedusa
subrufa),  Osteichthyes, and Chondrichthyes. Marsupialia show
rearrangements of tRNAs only, whereas the tRNALys has been lost and the
corresponding sequence has become a pseudogene. Therefore, marsupial
mitochondria should import a nuclear coded tRNALys to ensure the
complete set of tRNAs [106]. In Aves, tRNAGlu and ND6 are translocated
immediately adjacent to the control region [107]. Interestingly, a novel
arrangement of bird mtDNA was described by Mindell et al. [108],
suggesting that the ancestral translocation involving ND6+tRNAGlu was
accompanied by a duplication of the main noncoding region. The presence
or absence of the duplicated control region should account for the two
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alternative arrangements observed in the mtDNA of extant birds
investigated so far [6]. It is also remarkable to note that a nontranslated
extranucleotide has been found in the ND3 gene of some birds and turtles,
thus further supporting diapsid affinity of turtles [109,110]. In Alligator
mississippiensis (Crocodilia) only three tRNAs moved to different locations
[111], and in Dinodon semicarinatus (Serpentes) not only is one tRNA
transposed but the control region is duplicated and flanked by a
pseudogene consisting of the 5' half-portion of the tRNAPro, which can be
folded into a rather stable secondary structure [112]. In Petromyzon
marinus (Agnatha), the control region is transposed, and it is interrupted
by the presence of two tRNAs [113]. In Branchiostoma lanceolatum
(Cephalochordata), the control region is translocated and reduced to only
about 80 nucleotides, and few tRNAs have been transposed [114].

In comparing the mt gene organization in Vertebrata to that of other
animals, the most remarkable feature is the different distribution of tRNA
genes. In Vertebrata, tRNA genes are scattered along the molecule and
make up a sort of punctuation that functions as signals for RNA
processing [99].

5.2. The D-Loop Region

As noted in Sec. 4.3, vertebrate mtDNA possesses a unique main noncoding
region, called the D-loop, that contains the regulatory elements for the
replication and expression of the genome. Regardless of its functional
importance, this is the most rapidly evolving part of the mtDNA. Detailed
comparative analysis of this region has revealed several peculiar well-conserved
features in the evolution of vertebrates [115–117]. In particular, the 5' and 3'
ends contain thermodynamically stable secondary cloverleaf-like structures and
short conserved sequence boxes (CSBs) and terminationassociated sequences
(TASs), which are associated with the start and stop sites of the nascent H
strand. How the function of this region is preserved in spite of such primary
structure diversity remains to be clarified.

The D-loop region has been extensively studied only in mammals, where it
shows great variability in length and base composition. For this reason, the
complete alignment of the D-loop region is not possible between mammals
even within the same order. Figure 3 shows the structural organization of the
D-loop region of 10 mammalian orders. The organization is similar in all the
organisms considered, and on the basis of both degree of conservation and base
content, the D-loop has been divided into three domains: a highly conserved
central domain flanked by two hypervariable regions, the “extended TAS”
(ETAS) and CSB domains, whose rapid evolution is responsible for
heterogeneity in both length and base composition. The two peripheral domains
are subject to insertion and deletion of elements and to the generation of small
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FIGURE 3 General scheme of the organization of the D-loop-containing region in
various mammalian orders. ETAS, central, and CSB domains are defined. In the
ETAS domain, the shaded boxes represent the conserved sequences. In the CSB
domain, the filled boxes correspond to CSB1, CSB2, and CSB3. SR, short repeats;
LR, long repeats.
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repeats by replication slippage. The repeated sequences seem to be peculiar to
each order and are inserted in the two peripheral domains generally at the
same locations.

Table 5 reports the lengths and the G+C compositions of the three domains
in all mammalian sequences available so far. The G+C content of the central
domain, on average 47%, is remarkably higher than that of the ETAS and
CSB domains, which average 36% and 39%, respectively. The G content of
the central domain is generally higher than that found in the other genomic
regions coding for rRNA, tRNA, and mRNA, and G stretches can be found
almost exclusively here. In this domain, the degree of conservation is very
high; conserved stretches are spaced by short sequences, which are peculiar
to each order. The central domain shows a constant length, on average 321
bp. In contrast, a remarkable length heterogeneity, partially due to the
presence of repeated elements, can be observed in the two peripheral domains,
with the CSB domain, on average 587 bp, generally longer than the ETAS
domain, on average 344 bp. The 3' ETAS domain, where synthesis of the
heavy strand pauses, ranges from 222 in the dog (Canis familiaris) to 623 in
sheep (Ovis aries). In addition to the TAS sequences previously identified,
our alignments highlight two conserved blocks of about 60 bp, which we
have called ETAS1 and ETAS2, with variable distance within them and from
the 3' end of the D loop [117]. Repeated sequences are present in this region
in several species.

The 5' CSB domain contains the principal regulatory elements of the
vertebrate mitochondrial genome: the two promoters (heavy and light strand
promoters, HSP and LSP) and the origin of replication of the H strand (OH).
The peculiar features of this domain are the small conserved sequence blocks
(CSB1, CSB2, and CSB3) suggested to be involved in the synthesis of the H
strand [118]. It is striking to note that only CSB1 has been found always present,
sometimes in multiple copies, in all mammalian D-loop regions sequenced so
far, even with variable degrees of sequence conservation. In contrast, CSB2
and CSB3 may or may not be present (see Fig. 3). This finding opens the debate
on the functional roles of CSB2 and CSB3.

This is a very variable region of the genome, and its length ranges from 227
bp in the cow (Bos taurus) to 1348 bp in the hedgehog (Erinaceus europaeus).
The domain length is greatly increased by the presence of repeats, which are
frequently found. The region spanning between CSB1 and CSB2 is a hotspot for
the insertion of repeated sequences that are found in several species (rabbit,
horse, seal, hedgehog, opossum, etc.). Repeated motifs can also be found in the
region spanning between CSB3 and tRNAPhe (e.g., rabbit, opossum, and
hedgehog).
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TABLE 5 Length and Base Composition of D-Loop Domains in Mammals
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5.3. Base Composition and Skew

The data in Table 4 show that base composition is rather variable between
species, with G being always the less abundant nucleotide. This is particularly
evident at the third codon positions of protein-coding genes.

In mammals, a sharp separation, mainly at the level of the third codon
positions, is evident between base composition of Primates and that of other
mammals with A%>C% in the former and C%>A in the latter. On the whole,
the only constant element in gene base composition of the H strand is the low
percentage of G, which is avoided at all positions, although with different
rates.

All species show a rather similar base composition at the level of the first
and second codon positions (data not shown). This is expected because of the
strong functional constraints acting on these sites and the high degree of
conservation of mitochondrial proteins.

The peculiar amino acid composition of mitochondrial proteins, which are
rich in hydrophobic residues because they are membrane proteins, would
explain base composition observed at the two first codon positions. Namely,
the higher Py(pyrimidine) than Pu(purine) content in the second codon
positions (P2) can be easily explained with the fact that, due to their genetic
structure, codons with Py in P2 code most hydrophobic acids, whereas those
with Pu in P2 code for hydrophilic amino acids. The abundance of Ile, Thr, and
Met, amino acids coded by codons having A at first positions (P1), makes A the
most represented base in P1, the other bases being present in rather comparable
percentages.

As reported earlier, one of the most striking features of the vertebrate
mitochondrial genome is the uneven distribution of G and C bases on the two
strands (compositional asymmetry). This is so strong as to cause differences
in buoyant density in the CsCl gradient between the H strand, rich in G, and
the L strand, poor in G. Asymmetry is evident also in other properties of
mtDNA, namely gene distribution on the two strands and the replication
mechanism. Hence there appears to be a correlation between compositional
asymmetry and other forms of mtDNA asymmetry.

The H strand codes most mitochondrial genes (29 out of total 37); among
these are 12 of the 13 protein genes (only ND6 gene is coded by the L strand).
Owing to the high G content of the H strand, mRNAs coded on this strand
are particularly poor in G. This is most evident at the third codon position of
protein-coding genes where G-ending codons are avoided.
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The degree of compositional asymmetry, expressed in terms of GC and AT
skews, can be calculated by using the formulas of Perna and Kocher [119]:

 

where G, C, A, and T are the occurrences of the four nucleotides. According to
these formulas, skew values are in the range -1, +1 and compositional
asymmetry is greater the closer the skew absolute values approach one (positive
or negative sign) and lower the closer the skew values approach zero.

The standard deviations of the skew values can be calculated according to
Lobry [120]:

 

Figure 2 shows GC and AT skews calculated on the complete genomes of various
vertebrate taxa. In all the cases a remarkably negative GC skew is observed,
higher in Reptilia, Aves, and Mammalia. To a much lesser extent, a generally
positive AT skew is observed. Various models can be suggested to explain the
peculiar compositional bias of the vertebrate genome. Metabolic discrimination
between nucleotide bases and/or replication erros followed by biased repair
could account for this property. Other explanations may be based on the
mechanism of mtDNA replication, which, being asymmetrical, leaves one DNA
strand as a single, unprotected filament for two-thirds of the replication cycle
(see below).

The possibility of damage directly at the level of RNAs cannot be excluded
[58]. The need to protect mtDNA transcripts against the attack of free radicals,
preferentially affecting G [121], could have originated the dramatic reduction
in G content of transcripts and hence an increase in the G percentage on the
template strand of transcription (the H strand) and the consequent compositional
asymmetry [101].

The strong compositional bias, in particular the trend to avoid G at the
third codon position, might also explain several deviations of the vertebrate
mt code with respect to the universal one. In vertebrate mitochondria, the
most used initiation codon is AUA instead of AUG, which is a G-ending codon.
One of the three nonsense codons, UGA, becomes an additional tryptophan
codon because of the two contiguous G’s in the canonical UGG tryptophan
codon, which is very rare in the sense strand of metazoan mtDNA. In other
words, the compositional bias was so strong as to influence the genetic code
itself.
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To gain insight into the cause of mtDNA compositional asymmetry and to
identify possible differences in the substitution processes acting on the two
DNA strands, the compositional properties of mtDNA from 34 mammalian
species have been studied. Figure 4 is a graphical representation of GC and AT
skews calculated on the entire genome of 34 mammalian species. In all cases,
the GC skew, on average -0.34, was more than twofold (as absolute value) the
corresponding AT skew, on average +0.07. Primates showed the highest GC
skew. To study the compositional bias and asymmetry of mt genomes, we also
considered the third positions of the quartet codons (P3Q) because they should
better depict genome compositional pressure on account of their more relaxed
functional constraints. Indeed, in all cases the compositional bias and
asymmetry was much more evident when P3Q positions were considered. In
particular, we studied the possible relationships between the compositional
features of mammalian genomes and the replication process. It is well known
that the replication of vertebrate mtDNA is asymmetrical and unidirectional
[122] according to the D-loop mechanism shown in Figure 5. Mitochondrial
DNA replication takes place according to an asymmetrical mechanism of
asynchronous displacement between the H and L strands, which are synthesized
in opposite directions starting from two different replication origins. The
replication process starts with the synthesis of the new H strand; the synthesis
of the new L strand starts later when the relevant replication origin (OL) is
exposed as a single-helix structure (see Fig. 5), that is, the parental L strand is
never left as a single helix during replication, whereas the parental H strand
exists as a single helix until the corresponding complementary region of the L
strand is newly synthesized. Because replication takes place rather slowly [122],
the different regions of the parental H strand remain as a single helix for a
rather long time, varying according to their distance from OL (distance
measured in the replication direction of the H strand). During this time, the
single helix of the parental H strand is protected only partially by mtSSB
proteins; thus it could be more exposed to oxidative or hydrolytic damage and
more prone to mutations than the L strand. Therefore, it has been suggested
that differences in mutational pressure on the two H and L strands could cause
the compositional asymmetry of mtDNA [123]. It is striking to note that DNA
polymerase γ, used for mtDNA replication of both strands, is one of the most
accurate among eukaryotic polymerases [124–126].

We have found that AT and GC skews, the base composition of P3Q sites,
and the degree of gene conservation are correlated to the duration of the single-
stranded state of the H-stranded genes during replication (DssH) calculated
according to Reyes et al. [127]. Figure 6 shows the correlation between the
base composition on P3Q of the H-strand protein-coding genes and DssH. We
observed a significant increase in A and C frequencies and a corresponding
significant decrease in G and T frequency with the DssH. On the basis of our
results we suggested that the hydrolytic deamination of both C and A, depending
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FIGURE 4 Graphical representation of GC and AT skews on the whole mitochondrial
genome for 34 mammalian species (see Table 2).
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on the duration of the single-stranded state of the H (heavy) strand during
replication, might be responsible for such a correlation [127]. The mutation
pattern we hypothesize, in the upper box of Figure 6, shows that spontaneous
deamination of C on the H strand produces U, which base-pairs with A rather
than G, and consequently the percentage of G decreases and that of A increases
on the L (light) strand according to DssH. In the same way, the deamination of
A results in hypoxanthine [128], which base-pairs with C rather than T, resulting
in a reduction of T and increase of C correlated to DssH. Assuming that
hydrolytic deamination is the major mechanism responsible for compositional
asymmetry in P3Q, the ratio can be calculated between deamination rates of C
and A (ratio between the slope of lines A/ G or C/T and the frequency of bases
subject to deamination, that is, A% and C%, on the H strand). The two
deamination events are not equally probable; the AH deamination rate is 0.22
and the CH deamination rate is 1.88. Thus, C deamination is about 8-fold that
of A deamination, as reported in studies carried out on human mtDNA only
[129].

If the main factor responsible for the compositional asymmetry and mutation
rate of mtDNA is the time for which genes are left as a single helix, most
constrained genes should be located closer to OL so as to be less subject to
mutational pressure. The position of a gene in the genome of vertebrates should
be the result of a balance created during evolution between gene functional
constraints and mutational pressure on that region of the genome.

FIGURE 5 Schematic representation of the asymmetrical replication of the
mammalian mitochondrial genome from H- and L-strand replication origins (OH and
OL). Dashed lines refer to the newly synthesized strands.
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By measuring the degree of functional constraint for each gene as the number
of variable nucleotide sites, the genes left for a shorter time as a single helix
should have fewer variable sites than those left for a longer time as a single
helix. Indeed, we found that the degree of gene conservation, with the exception
of ATP8 and Cyt b, decreases with the increase of DssH and that the most
conserved genes are located in the regions that remain in single-stranded form
for a short time [127].

FIGURE 6 Bottom: Correlation between nucleotide percentages calculated on the
third position of quartet codons (P3Q) and the single-stranded state duration for
each H-stranded gene (DssH) as mean values for 34 mammalian species (see Table
2). The linear regression equations are also reported (* p<0.05; *** p <0.005). Top:
Suggested deamination processes that may take place in the single-stranded H
strand: cytosine (C) into uracil (U) and adenine (A) into hypoxanthine (hX), which
would imply changes of G into A and of T into C on the L strand.
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5.4. Evolutionary Rate of the Mitochondrial Genome in Mammals

In vertebrate genes, owing to the rare occurrence of insertions and deletions,
evolution measurement is essentially based on the analysis of nucleotide
substitutions. The mathematical model used to calculate evolutionary rates is
crucial to obtaining correct results. Generally, any nucleotide substitution model
is more reliable the lower the a priori assumptions on the substitution process,
because accurate estimates of the evolutionary rates will be obtained only if
the actual substitution process meets the assumptions. Furthermore, the model
should suitably take into account the base composition of the examined
sequences, particularly when it is not homogeneous and there is a strong
compositional heterogeneity between different sites and/or sequences, because
compositional differences can cause misinterpretation of genetic distances
[130,131]. Compositional asymmetry of mammalian mtDNA, with high GC
skew values, implies that the probabilities that each nucleotide has be
substituted by any of the others are not the same and thus the two transitions
and the four transversions are not equiprobable. Because of the above
characteristics of mtDNA evolution, a new model, the stationary Markov model
(SMM), was devised by our group [131,132]. This method does not impose the
a priori assumptions that are at the basis of other stochastic models available
in the literature [133,134], because it allows different rates for the two types of
transitions (A↔G and C↔T) and the four types of transversions (A↔C, A↔T,
C↔G, G↔T). Furthermore, it takes into account the nucleotide composition of
the sequences under examination. The only prerequisite for its applicability
(which also holds for other stochastic models) is that sequences under analysis
must have, within statistical fluctuations, the same base composition at
compared sites. The stationarity condition is preliminarily verified on the
sequence data by using a simple chi-square test described in Saccone et al.
[131]. When the “stationarity condition” is obeyed, the SMM can be reliably
used for evolutionary analysis. The stationary Markov model has also been
defined as the “general time reversible” (GTR) model and has been included
in the new version of the PAUP package. An online version is also available
at the web server of the Italian EMBnet node (http://bighost.ba.itb.cnr.it/BIG/
Markov/).

The stationary Markov model used in the quantitative analyses of mtDNA
makes it possible

1. To determine the four-nucleotide substitution rate matrix, Rij, which
describes the propensity of nucleotide j to be substituted by nucleotide
i independently from time T

2. To calculate the actual average evolutionary rate of sequenee sites
(i.e., the rate of silent codon position in mRNA genes)

3. To construct phylogenetic trees
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For a given pair of sequences, evolutionary distance can be transformed into
absolute rate if divergence time is known, possibly from accurate external
sources, between the species to which they belong. Unfortunately, commonly
used paleontological dating can be controversial or uncertain, due to both
difficulties in the interpretation of dating of fossil remains and to their
incompleteness [135]. Therefore they are a relevant source of error in
determining absolute evolutionary rates which should be suitably considered.

Using the Markov model, we have calculated the average evolutionary rate
of mitochondrial genes and of specific tracts of the D-loop region [136]. To
obtain accurate estimates of the absolute nucleotide substitution rate, we
considered only pairs of organisms that share a recent ancestor, to avoid the
problem of saturation of nucleotide substitutions, and whose times are known
with sufficient accuracy from other molecular and nonmolecular sources.
Saturation is essentially due to multiple mutational events affecting the same
nucleotide position and occurring with an apparent reduction in the number of
nucleotide differences observed for longer divergence rates. The overall effect
of saturation is thus an underestimate of evolutionary distances, mainly between
evolutionarily distant sequences.

Figure 7 reports the absolute nucleotide substitution rates of the
mitochondrial functional regions, calculated as mean rate values for 6 closely
related mammalian species belonging to the orders Primates, Carnivora,
Cetacea, and Perissodactyla. In general, two classes of functional regions can
be identified: (1) slow evolving regions including nonsynonymous sites, tRNA
and rRNA genes, and D-loop central domain [117]; (2) fast-evolving regions
including synonymous sites, CSB, and ETAS D-loop domains, defined according
to Sbisà et al. [117]. The non-synonymous sites are the most slowly evolving
and the synonymous sites the most rapidly evolving, the latter being about 16-
fold faster than the former. tRNA and rRNA genes evolve at a rate slightly
higher than the nonsynonymous sites (about twofold), with 16S rRNA about
1.5-fold faster than 12S rRNA. All these regions are subject to strong functional
constraints. However, unlike nonsynonymous sites, which are forced to retain
a specific primary sequence, tRNA and rRNA genes are mainly constrained to
maintain specific secondary and tertiary structures, thus allowing slightly higher
variability at the level of their primary structures.

Within the D-loop region, the central domain evolves about twofold faster
than the nonsynonymous sites but much slower than the two peripheral D-loop
domains. The central domain shows quite a homogeneous evolutionary rate
among species, whereas in the CSB and ETAS domains strong rate heterogeneity
has been found, as indicated by their high standard deviation (Fig. 7). The
species-specific evolution of the D-loop region is due to its peculiar evolutionary
pattern, because this region is prone to accept insertions/deletions as well as
repeated sequences, particularly in the ETAS and CSB domains [116,117].
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In the species considered, similar substitution rates have been found for
tRNA, rRNAs, and protein-coding genes at the level of nonsynonymous sites.
In contrast, a rather high rate variability has been reported for the protein-
coding genes of some mammalian orders [137–139].

The mean synonymous and nonsynonymous absolute rates for each of the
13 protein-coding genes have been calculated for the same abovementioned
species pairs and are reported in Figure 8. As expected, in each gene the
synonymous rate is about one order of magnitude higher than the
nonsynonymous rate and, taking into account statistical fluctuations, it is
approximately uniform between the various genes, with ND3 and ATP8
slightly slower and Cyt b slightly faster. The nonsynonymous rate exhibits
wide variations between genes, depending on the functional constraints, the
cytochrome oxidase subunits (COI, COII, and COIII) being the slowest and
the ATP8 the fastest evolving genes.

To compare the evolutionary dynamics of mtDNA and nDNA, nuclear and
mitochondrial encoded tRNA, rRNA, and protein genes in the same species

FIGURE 7 Absolute nucleotide substitution rate, in substitutions per site per year×10-

9, of the different mtDNA functional regions as mean for six pairs of closely related
mammalian species (human-chimpanzee; pygmy-common chimpanzee; harbor
seal-grey seal; horse-donkey; blue whale-fin whale). Mean and standard deviation
values are reported. (From Ref. 136.)
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pairs (human-chimpanzee and rat-mouse) were analyzed. Table 6 compares
the evolutionary rate calculated for various mitochondrial and nuclear genes.
For noncoding regions, the different structures of the mitochondrial and nuclear
genomes makes the comparison quite meaningless. In the protein-coding genes,
the synonymous sites evolve about 22-fold faster in the mitochondrial genome
than in the nuclear genome, whereas in the nonsynonymous sites a remarkable
rate heterogeneity is observed in both genomes, as expected, due to the action
of different selective constraints on the genes. The small and large rRNAs
evolve about 19-fold and fourfold faster, respectively, in the mitochondrial
genome than in the nuclear genome. The highest rate difference has been found
for mitochondrial tRNA genes, which evolve about 100-fold faster than their
corresponding nuclear genes.

The highest mitochondrial evolutionary rate of synonymous sites and tRNA
genes compared to the nuclear counterparts could be due to the relaxed
constrains causing a larger wobbling of the codon-anticodon pairing in the
mitochondrial system, and the tRNA rate could be related to the additional
roles these molecules have acquired during evolution in processes other than

FIGURE 8 Mean absolute nucleotide substitution rate, expressed as a
common logarithm, at nonsynonymous and synonymous sites for each of the
13 mitochondrial protein-coding genes as the average for six pairs of closely
related mammalian species. Standard deviations are also reported. (From
Ref. 136.)

Copyright © 2004 by Marcel Dekker



Saccone and Pesole416

translation, such as transcription punctuation [99] and probably DNA
replication [98,122,140,141] and gene rearrangement [95,142], as pointed out
in the previous section (sec. 4.2) on genome structure. In other words, the
additional regulatory functions acquired by mt tRNAs, which mainly depend
on the interaction with nuclear coded products, require a lot of flexibility and
adaptation capability. The higher rate of mutation accumulation in
mitochondrial tRNAs could also be explained by the “Muller’s ratchet” effect,
which predicts a higher rate of mutation in asexually propagated genomes
[143]. On the other hand, the lower nuclear synonymous substitution rate could
be related to very high specific constraints and to the isochore structure of the
nuclear genome [144].

5.5. Rate Heterogeneity of the Mitochondrial Genome in Mammals

To verify the existence of a molecular clock in the evolution of mammalian
mtDNA we used the relative rate test (RRT) of Muse and Gaut [145] for
protein-coding genes and that of Muse and Weir [146] for rRNA genes [147].
The RRT is able to detect substitution rate heterogeneity along different gene
lineages. The analyses were carried out on gap-free multialigned supergenes
of the 12 H-stranded protein-coding genes and the two ribosomal RNA genes.
In the case of protein-coding supergenes (CDS), only the first and second
codon positions were taken into account. In the case of ribosomal RNAs,
ambiguously aligned sites, mostly adjacent to gaps, were excluded. In total,
7401 sites were analyzed for the CDS and 2136 for the ribosomal supergene.
The RRT method compares the evolutionary rate of two species, A and B,

TABLE 6 Mitochondrial and Nuclear Sequence Divergence and Corresponding
Rate Ratio

a Sequence divergence, expressed in percent substitution per site, was calculated
using the stationary Markov model [131].
b Referred to the human-common chimpanzee pair.
c Referred to the rat-mouse pair.
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called ingroups, using a reference outgroup O. For the ingroup species pair AB
diverging from the internal node 1, the relative rate ∆RAB can be calculated as

O being the outgroup species and d the genetic distance calculated by the
stationary Markov model [131]. The relative rate between species A and a set
of species, i.e., B1, B2,…, Bn, can be calculated as the average of the relevant
∆RABi values.

The accuracy of rate difference estimates depends on the correct choice of
the outgroup, which should be the closest possible to the two ingroup species;
on the genetic distance between the two ingroup sequences, which should not
be too high so as to prevent the problem of substitution saturation; and on the
reliability of the mathematical method used to estimate the genetic distances.

We found significant rate variations not only between orders but even
between closely related species of the same order. Figure 9 plots the ∆R values
calculated on the P12 sites against those calculated on rRNA sites. A significant
correlation was found, suggesting a high level of congruency between ribosomal
and nonsynonymous sites. Primates and Proboscidea were found to be the fastest
evolving orders, whereas Perissodactyla was the slowest. Indeed, the observed
rate variation did not exceed 1.8-fold between the fastest and the slowest orders,
thus supporting the suitability of mtDNA for drawing mammalian phylogeny.

At the intraorder level, statistically significant rate differences on P12 CDS
sites have been found in several orders. Baboon and orangutan rates were
found significantly greater than those of other primates (∆R=1.30± 0.09 and
1.30±0.08, respectively). The Indian rhinoceros evolved 1.22 ± 0.08 times faster
than other Perissodactyla. Within Artiodactyla, the hippopotamus evolved
1.22±0.08 faster than other ruminants considered. In Rodentia, the squirrel
was found to be the slowest evolving species (∆R=0.82±0.10) whereas the
dormouse evolved 1.17±0.05 times as fast as the mouse. When considering
ribosomal genes, no significant rate difference was observed for the above
species at the intraorder level except for the higher rate of the orangutan within
Primates (∆R=1.61±0.22).

The existence of a correlation between the evolutionary rate and several
physiological and metabolic variables such as body size, generation time,
and specific metabolic rate (SMR) was investigated for both P12 CDS and
ribosomal sites. For species pairs showing rate differences, the relative
values of SMR, generation time, and body size were plotted against the
corresponding relative rate (∆R). No significant correlation was observed
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between these variables and the relative substitution rate, with the exception of
a marginal statistical significance observed for the correlation involving
generation time [147].

6. PHYLOGENETIC RECONSTRUCTIONS

6.1. Phylogenetic analysis based on the gene order differences
of mitochondrial genomes

The phylogenetic relationships between major animal phyla are still not well
defined, and several alternative views have been proposed derived from
morphological, developmental, ultrastructural, or molecular data [148– 150].
The observation that the gene content of the mitochondrial genomes of Metazoa
is nearly invariant, with few exceptions, makes the comparison of gene
arrangements in different taxonomic groups a promising additional tool for
resolving phylogenetic relationships, especially those involving distantly related

FIGURE 9 Plot of the mean relative rate calculated on P12 protein-coding sites
against that calculated on ribosomal sites for the interorder comparisons with
statistically significant rate differences reported in Gissi et al. [147]. Regression line
and correlation coefficient are also reported.
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taxa. Indeed, due to the rather high mutation rate of animal mitochondrial
genomes, distant phylogenetic relationships may remain unsettled due to
saturation of nucleotide substitutions and compositional bias effects. On the
other hand, the great number of potential gene arrangements, even with the
relatively small set of 37 genes encoded by the mitochondrial genome of
Metazoa, makes it unlikely that different taxa independently evolved identical
gene orders. Therefore, the comparison of gene orders in metazoan
mitochondrial genomes may significantly contribute to the reconstruction of
metazoan phylogeny. Indeed, it has been observed that unique gene
arrangements characterize well-established evolutionary lineages such as birds,
marsupials, and echinoderms [89].

The availability of over 100 completely sequenced animal mitochondrial
genomes (see Table 2) from several animal phyla, including Chordata,
Hemichordata, Urochordata, Echinodermata, Arthropoda, Mollusca, Anellida,
Nematoda, and Cnidaria, makes it now possible to carry out an extensive
comparative analysis of gene arrangements and determine the most likely
phylogeny within and between metazoan phyla.

The quantitative comparison of gene order differences is necessary to infer
phylogenetic relationships between organisms whose genome structure is
known. This requires suitable computational methods to measure the minimum
number of edit operations, including gene inversions, transposition, and strand
changes, necessary to convert one genome arrangement into another. The use
of methods adopting global objective functions able to reconstruct ancestral
gene organizations, although in principle more interesting, is not
computationally feasible even for moderately sized genomes. However, the
“breakpoint distance method” [94] proved to be quite tractable in the case of
mitochondrial genomes.

In the case of mitochondrial genomes the most economical explanation for
observed differences in gene order between two genomes in terms of the
minimum number of rearrangement processes can be reformulated as the
problem of calculating an edit distance between two circular permutations of
the same set of genes. The elementary edit operations (see Fig. 10) are

1. The inversion or reversal of any number of consecutive genes
2. The transposition of any number of consecutive genes from one position

to another with (or without) strand change

A weight can be associated to each kind of move, in order to influence the
overall proportion of each kind of operation in the final solution.

To calculate the number of breakpoints between two genomes, A and B, let
us consider their gene arrangements,

genome A: a1…an     genome B: b1…bn  
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on the same set of genes {g1,…, gn}, where each gene is signed (+ or -) depending
on its orientation in the genome. If we deal with a circular genome, we say that
an precedes a1 or, as illustrated in Figure 10, that gene M precedes gene A. If
gene E precedes gene F in genome A but neither does E precede F nor -F precede
-E in genome B, then they determine a breakpoint. Gene strandedness has not
been considered here, although if two genes are neighbors a breakpoint is
generated when they are located on the same strand in one genome and on

FIGURE 10 Elementary edit operations including transpositions, strand changes,
and inversions that introduce breakpoints in the comparison of the gene order
between two genomes. In this example, the breakpoint distance between genome
A and genome B is 4.
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different strands in the other. In the example shown in Figure 10, four breakpoints
can be observed between genomes A and B, corresponding to two moves, i.e.,
one inversion and one transposition.

Blanchette et al. [94] used this methodology to infer the phylogenetic
tree of some major animal phyla. The phylogenetic tree calculated from
pairwise breakpoint distances of mitochondrial genome arrangements of
11 organisms belonging to six different metazoan phyla is quite compatible
with the commonly accepted metazoan phylogeny. It significantly supports
the deuterostome grouping (Chordata+Echinodermata) but surprisingly
places Arthropoda as their sister group. However, it has to be stressed that
this methodology also has several drawbacks. The first is that the study of
genomic rearrangement inevitably encounters the problem of
nonuniqueness because there are often many distinct solutions, all equally
optimal. The second problem is that, as for other methods for the
reconstruction of phylogeny, rapidly evolving lineages tend to cluster
together, producing the so-called longbranch attraction effect. Indeed, it
seems evident that in Metazoa some phyla, such as nematodes, snails,
and echinoderms, show a higher gene mobility than genomes from other
phyla, such as Chordata, which appear more conservative. Finally, there
is the problem of saturation, because some lineages may have diverged to
randomness (it can be calculated that random genomes with n genes would
have on average n-1/2 breakpoints between one another). A further striking
feature of the evolution of gene order in the mitochondrial genomes of
metazoans is the higher mobility of the tRNA genes with respect to rRNA
and protein-coding genes [94]. This feature was first described by Saccone
et al. [97].

The computer program Derange2 (publicly available by anonymous FTP at
ftp.ebi.ac.uk/pub/software/unix) was designed by Mathieu Blanchette to sort a
given permutation of genes to identity permutation using inversions,
transpositions, and inverted transpositions. It also allows the user to specify a
weight associated to each kind of move in order to influence the overall
proportion of each kind of move to the final solution.

Also available is the computer program BPAnalysis http://
www.cs.washington.edu/homes/blanchem/software.html), which computes
minimal breakpoint trees [94] from a set of gene orders. It can be used for
phylogenetic reconstructions and for inference of ancestral gene order.

6.2. Phylogenetic Inferences Based on the Evolutionary
Analyses of mtDNA Supergenes

The mitochondrial genome, because of its maternal inheritance, lack of
recombination, and especially the presence of orthologous genes, is particu-
larly suitable for molecular phylogeny analyses. Conversely, nuclear genes
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can be paralogous or could evolve under different evolutionary pressures (e.g.,
insulin in guinea pigs with respect to other mammals [151]), thus leading to
controversial results from different gene sets. mtDNA revealed a powerful tool
for dealing with the reconstruction of phylogenesis at both interorder and
intraorder levels. Either single mitochondrial genes or the entire genome can
be used in the analyses. In consideration of the large stochastic fluctuations of
the estimates based on a limited number of sites, it is generally advisable to use
concatenated genes. For this reason we were the first to propose the use of
concatenated protein-coding genes and rRNA genes (commonly denoted as
CDS and rRNA supergenes) to carry out evolutionary analyses [131].

The analysis of complete mammalian mt genomes has generated many
unexpected and surprising results, concerning mainly the polyphyly of Rodentia
and Artiodactyla, the unreliability of the cohort Glires (Lagomorpha and
Rodentia), the position of Edentata and Chiroptera, and the grouping of
Marsupialia and Monotremata in the same clade.

Evolutionary studies performed on completely sequenced mitochondrial
genomes are summarized in Figure 11. Perissodactyla cluster with
Carnivora, and Cetacea with Artiodactyla, all of them included in the
Ferungulata clade. Lagomorpha and Edentata are sister groups of
Ferungulata, while Rodentia diverged before Primates. Insectivora and
noneutherian orders (Marsupialia and Monotremata) are placed at a basal
position of the mammalian tree.

Rodentia have been unanimously accepted as monophyletic on account of
morphological data, but this vision was first challenged by Graur et al. [152],
who compared 15 nuclear protein genes from rat, mouse, guinea pig, and
other non-rodent mammalian species. The analysis of the complete mt
genomes of these three rodent species [153] and the other available mammalian
mtDNA genomes strongly supported the hypothesis of rodent polyphyly.
Moreover, the addition of the complete sequence of the fat dormouse [154] to
the analysis gave further evidence of rodent polyphyly, with dormouse
clustering with guinea pig in a different clade from that of rat and mouse (Fig.
11). However, other molecular evidence, not really strongly supported, suggest
rodent monophyly, making this issue one of the most debated in mammalian
phylogeny (see Ref. 154 and references therein).

A close relationship between Artiodactyla and Cetacea was proposed on
the basis of morphological [155], biochemical [156], and molecular grounds
[157,158]. Molecular data provided some evidence for the inclusion of Cetacea
within the order Artiodactyla [159]. Indeed, the sequencing of pig mitochondrial
genome [160] demonstrated the polyphyly of Artiodactyla, as cow clustered
with fin whale, taking pig as the outgroup (Fig. 11).

The phylogenetic position of Lagomorpha has not been settled
definitely. According to the species sampled or the methodology used for
phylogenetic reconstruction, it can be placed in different positions within
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Mammalia [153,154]. Neither mitochondrial [154] nor nuclear genes [161]
support Lagomorpha association with the representatives of Rodentia in the
cohort Glires (but see [199]).

Paleontological and morphological evidence related the order Edentata
(armadillos) to Pholidota [162,163] and placed both of them at a basal position
of the eutherian phylogenetic tree. Instead, the analysis of the mt genome
suggests a sister group relationship between Edentata and Ferungulata [164].
This is one of the most dramatic inconsistencies reported so far between
comprehensive molecular data sets and commonly acknowledged understanding
of eutherian phylogeny.

The position of the order Chiroptera has been debated on the basis of both
morphological and molecular data, and different orders have been proposed as

FIGURE 11 Majority-rule consensus tree based on first and second codon
positions of the H-strand protein-coding supergene obtained by concatenating all
12 single genes. The tree was obtained with the neighbor-joining method [197],
using the distance matrix as calculated with the stationary Markov model [131].
Bootstrap values are based on 100 replications. Frog sequence was used as
outgroup. Branch length is not proportional to the genetic distance. For an updated
mammalian tree see Ref. 199.
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sister taxa, namely Dermoptera, Primates, Scadentia, Lagomorpha, Carnivora,
and Artiodactyla [165]. The analysis of the complete mt genome of Artibeus
jamaicensis revealed a close relationship between fruit bats and Ferungulata
(Fig. 11). This result is in agreement with previous molecular mtDNA studies
but in contrast with traditional morphological criteria and incomplete fossil
records (see Ref. 166 and references therein).

The generally accepted hypothesis concerning the origin of monotremes
postulates a dichotomy between Prototheria (monotremes) and Theria
(placentals and marsupials) [162]. However, other authors have claimed that
monotremes and marsupials are sister groups, clustered in the so-called
Marsupionta group [167–169]. The analysis of complete mt genomes of two
marsupials (opossum and wallaroo) and one monotreme (platypus) strongly
supports the Marsupionta hypothesis [106].

It is clear that with all the limitations of the analyses, mt genomes have
opened a new era in molecular evolutionary studies, especially at the
interspecies level, which could change our vision in the classification of living
organisms.

Saturation is the main limitation of analyses based on mitochondrial DNA
when deep evolutionary divergences, i.e., vertebrate phylogenies, are
investigated. Although in this case some inconsistencies in metazoan
relationships have been reported [170–172], these seem to be due more to the
analytical approach than to intrinsic limitations of mtDNA reconstruction.
Indeed, the reanalysis of the data used by Naylor and Brown [172] made by
Arnason (personal communication) recovered the correct tree.

At this point, we should wonder whether mt data are supported by nuclear
gene analyses. The studies available in the literature are controversial, and
moreover the nuclear genes sequenced so far are still scanty and offer a
nonhomogeneous sample. It should also be considered that for nuclear genes
there remains the problem of paralogy.

7. EVOLUTION OF THE HUMAN MITOCHONDRIAL GENOME

The study of the variability of human mtDNA, in particular its main control
region, has greatly contributed to the problem of the origin of modern humans.
The highest intraspecies variability has been observed in the two peripheral
domains of the D-loop region, which in humans are denoted as HV1 (ETAS
domain) and HV2 (CSB domain) [173]. It is striking to note that the most
variable part of the human D-loop, contained in the HV1 region, is a short
tract of about 100 bp we call the IS sequence [116], which is present in humans,
chimpanzees, and gibbons, but not in gorillas. Figure 12 shows the average
rate matrix computed using the stationary Markov model of Saccone et al.
[131] for the HV1 regions between African and non-African individuals.
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It is evident that transitions are much more likely than transversions, but different
classes of transitions and transversions show different probabilities. In
particular, C↔T transitions are more frequent than G↔A transitions or G↔C
transversions with respect to the other transversions.

In 1992, we included in our Markov model a rate heterogeneity-among-sites
factor [174]. More simply, when comparing actual and simulated sequences by
using chi-square statistics, we calculate the percentage of variable sites and
then we correct our measures accordingly. Other models taking into account
rate heterogeneity among sites were introduced by Hasegawa and Horai [175]
and Tamura and Nei [176].

We report here the evolutionary analysis of 44 complete human D-loop
sequences from various continental areas carried out using the method

FIGURE 12 Average rate matrix computed by using the stationary Markov model
[131] comparing the HV1 region from African and non-African individuals.
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described by Pesole et al. [174]. Common and pygmy chimpanzee complete
D-loops (alignment length 1140 bp) were used as the outgroup. The
percentage of invariable sites was calculated by using the maximum
likelihood method with a six-parameter substitution process and assuming
a discrete gamma distribution for rate heterogeneity (four categories). The
percentage of variable sites turned out to be about 45%, and the gamma
distribution shape parameter was <0.5. Using these factors we corrected
estimates on the time of our last common ancestor (LCA), obtained by using
the stationary Markov model, expressed as a fraction of the divergence
between human and chimpanzee (HC).

assuming THC=5 million years ago (Mya), then

TLCA=314±78 kya  

(kya=thousand years ago). If genetic distances are calculated without considering
the six most variable sites in the HV1 region (positions 16311, 16189, 16362,
16129, 16223, 16278 in the numeration according to Anderson et al. [177]),
determined according to a maximum parsimony estimate [178], then TLCA

becomes 270±68 kya.
The nucleotide substitution rate was calculated by comparing the reference

human D-loop sequence [177] with one of the most divergent African D-loop
sequences [179]. Absolute rates were calculated by fixing the time of LCA at
200,000 years ago, and the genetic distances were determined with the
stationary Markov model [131] assuming 55% of sites are invariable and a
discrete gamma distribution shape parameter of 0.5.

For the whole D-loop,

v=5.7±1.7×10-8 substitutions/(site.year)  

or
12.8±3.8×10-8 substitutions/(variable site.year)

(i.e., 9–16%/My)

For the HV1 D-loop region,

v=8.0 ± 2.4×10-8 substitutions/(site.year)  
or

10.7±3.2×10-8 substitutions/(variable site.year)

(i.e., 8–14%/My)  
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Our data are not in disagreement with those previously reported by us and
other authors and obtained with phylogenetic approaches [180]. But it is well
known that the evolutionary rate of the mitochondrial D-loop in humans is a
matter of high controversy.

The data available in the literature on this subject can be divided into two
classes:

1. Data obtained from phylogenetic studies
2. Data obtained from empirical studies through observation of the

number of substitutions in several maternal lineages

The results differ by more than one order of magnitude, the former having a
value of about 10-7 and the latter about 10-6 substitutions per site per year
[180], but some factors should be taken into account.

The empirical approach may suffer from the fact that data are still too
scanty and thus we cannot exclude heterogeneity in substitution rates among
families and/or the possibility that a disease state of the individuals from which
the majority of data are derived may affect the mutation rate. In addition,
empirical data reveal only the most variable sites, and thus it is clearly not
legitimate to extrapolate the results for the whole region.

FIGURE 13 Minimum number of changes per site inferred by NEWEST program
[178] on 500 HV1 regions of the D-loop (positions 16024–13323 in Anderson et al.
[177]). ETAS1, ETAS2, and the primate insertion sequence (IS; see Refs. 116 and
117) are also indicated. A more recent study can be found in Ref. 200 and the
related WebVar software at www.pesolelab.it/Tool/
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The phylogenetic data set can be obscured by multiple hits and reversions at the
same sites and suffer from several a priori assumptions that underlie the method
used for the study. For example, some methods consider a fixed ratio between
transitions and transversions in the evolution of the mtDNA; others do not take
into account the bias in base composition of the mtDNA and/or assume rate
homogeneity among sites. Indeed, the real problem is to measure the variability of
sites taking into consideration also the type of nucleotide substitution events.

The site variability of the D-loop HV1 region shown in Figure 13 was
calculated with an approximate method that, using trees constructed with the
neighbor-joining method [197] on Kimura-corrected distances, calculated the
minimum number of base changes for each site required by the inferred
phylogenetic tree [178]. This method relies on the correctness of the tree and, of
course, provides an underestimate of site variability.

8. MITOCHONDRIAL DNA AND HUMAN DISEASES

About 40 years ago, Luft et al. [181] described the first mitochondrial
dysfunction. Since then, research in this field has exploded, partially because
of progress made in the sequencing of mitochondrial genomes from human and
other animal species, mainly mammals, and the understanding of the
mitochondrial genetic system and its interrelationships with the
nuclearcytoplasmic genetic system. In the late 1980s, several pathogenic
deletions and point mutations in mtDNA were described and were then
correlated to clincal phenotypes, opening a new field in human pathology,
mitochondrial medicine, which has become a dynamic and rapidly developing
research area.

Because mitochondrial biogenesis is the result of the activity of two cellular
genetic systems, the organellar genome and the nuclear genome, mitochondrial
pathologies may be due to defects of both mtDNA and nuclear DNA. The
former are obviously only maternally inherited, whereas the latter follow
Mendelian inheritance. However, mitochondrial diseases can present a
combination of the two types of inheritance because of the strict correlation
between mitochondrial and extramitochondrial metabolic pathways [182] and
the multiple cellular functions performed by mitochondria such as energy
production, generation of reactive oxygen species (ROS), and regulation of
apoptosis.

Pathogenic mtDNA mutations are usually classified as (1) base substitutions
or (2) rearrangements. Base substitutions can be subdivided into missense
mutations in the mtDNA protein-coding genes and those in mt-coded rRNA
and tRNA genes involved in the protein-synthesizing machinery of the
organelle. Table 7 reports a list of mutations that have been found to be
involved in mitochondrial pathologies. (see www.mitomap.org) The majority
include purine transitions or G-involved transversions. This is in line with the
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TABLE 7 Mitochondrial DNA Base Substitution Diseases as Reported in MITOMAP
and MitBase (updated table available at www.mitomap.org)
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TABLE 7 Continued
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observation that in mtDNA the propensity of each nucleotide to change is not
the same. In particular, changes involving G are very rare, probably avoided.

The phenotypes derived from mtDNA mutations follow complex and
peculiar patterns. The degree of penetration of a given pathology differs greatly
among the offspring of the same mother. This can be explained by the degree
of heteroplasmy in the affected tissue of a particular individual, i.e., the number
of mutated molecules compared to normal molecules. It is important to
remember that a mammalian cell contains roughly 500–1000 mitochondria,
each possessing several (1–10) mtDNA molecules. Thus mitochondrial genetics
has many aspects of population genetics in which polyploidy and
heteroplasmy, both intramitochondrial and intracellular or intraorgan, play a
fundamental role.

TABLE 7 Continued

a See Table 8 for disease names.
Source: Refs. 190 and 184.
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TABLE 8 Mitochondrial Diseases
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Another characteristic aspect always connected to the peculiar features of
mitochondrial genetics is that the same mutations can be found in different
types of diseases as well as in healthy phenotypes, and different mutations can
produce similar phenotypes.

On the basis of the above considerations, the great difficulty in the
classification of mitochondrial diseases (listed in Table 8) can be easily
understood. Most mitochondrial diseases have a delayed onset, which suggests
that an age-related factor is required in addition to pathogenic mutations. Since
the early 1990s many reports have appeared in the literature demonstrating
that in aging the decline in mitochondrial functions and the presence of mt
somatic mutations, base substitutions, and rearrangements are common
features.

Attardi’s group [183] revealed the onset of specific point mutations in the
control region of human mtDNA during aging. The cause of somatic mutations
is likely to be the damage of mtDNA by ROS production that increases with
age. Defects in mtDNA in turn produce a decline in oxidative phosphorylation,
which affects the cellular bioenergetic capacity, causing senescence and
pathologies.

Mutations in mitochondrial DNA have also been described in cancer cells.
The recent discovery that mitochondria regulate apoptosis opens interesting
perspectives on the role played by oxidative metabolism in the cell cycle.

In spite of the numerous pathogenic mutations described in the literature
and the intensive research carried out by multidisciplinary teams, we still know
very little about the mechanisms underlying mitochondrial pathologies,
ultimately due to the interrelationship of the two genetic systems of the
eukaryotic cells. In this respect, interesting possibilities are offered by studies
carried out with cells lacking mitochondria or with animal models, such as the
mouse, in which the effects of specific mutations or inactivation of specific
genes can be studied.

9. MITOCHONDRIAL SPECIALIZED DATABASES

The great quantity of information related to the mitochondrion at the levels
of both DNA and protein for a large number of species and variants is of
great interest to the scientific community. Hence it is imperative to have
these data available through specialized databases where information is
organized in a structured form and accurately annotated by expert
researchers. Mitochondrial sequence data can be classified into two
categories: data related to mtDNA sequences and data related to nuclear
genes involved in mitochondrial bioenergetics and biogenesis. The available
mitochondrial data are distributed worldwide in primary databases (as of
May 2004, 201,640 mtDNA entries were available in the EMBL data library,
release 78, including redundant sequences), and in specialized databases.
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Several types of data (e.g., human mtDNA variants and fungal mtDNA
mutants) are available only in the literature and in specialized databases.
Hence a lot of information is available but, as in a puzzle, the dispersed
pieces need to be assembled.

This section summarizes the most relevant databases reporting
mitochondrial data and lists Web sites where information on the mitochondrion
can be accessed. Most databases are simply archives rather than structured
collections of data. Archives, due to the organization of the information they
contain, allow only data consultation; structured collections, on the other hand,
have a high potential for analysis.

Before describing in detail mitochondrial databases, some notes can be
useful to the reader to clarify the difference between primary and specialized
databases. Primary databases report rough and very general information,
i.e., the minimal set of information needed for classifying a nucleotide
sequence (the taxonomic data, the bibliographic references, the biological
function of the sequence, if known). Moreover, primary databases report
nucleic acid sequences related to the most “disparate” classes of organisms
and genomic functions. Hence, in order to keep a common structure and have
a common guideline for submitting authors, primary databases report only
basic information of common interest.

A specialized database is structured with the aim to collect data derived
from primary databases or related to them and belonging to a homogeneous
set of organisms and/or genes and genomic regions. In specialized databases,
in addition to the basic set of information derived from primary databases,
value-added information is structured. This information is derived from the
literature and in silico analyses performed by the annotators of the database in
order to release as exhaustive a set of data as possible.

Below is a synthetic description of the worldwide available mitochondrial
databases.

MitBASE. [184] MitBASE has been designed as an integrated and
comprehensive database of mitochondrial DNA data that collects, under a
single interface, databases for plant, vertebrate, invertebrate, human, protist,
and fungal mtDNA and a pilot database on nuclear genes involved in
mitochondrial biogenesis in Saccharomyces cerevisiae. MitBASE reports all
available information from different organisms and from intraspecies variants
and mutants. Data have been drawn from the primary databases and from
the literature; value-added information has been structured, e.g., editing
information on protist mtDNA genomes, pathological information for human
mtDNA, variants. Other salient features of MitBASE are the storage of data
related to the editing process occurring in plants and protists species, the
annotation of fungal mutants, and the definition of a standard gene name
classification based on GOBASE gene names with some modifications and on
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the KEYnet structure [185]. MitBASE gene name classification includes names
of fungal intronic open reading frames as assigned by the MitBASE experts
on fungi. The different databases have been integrated under ORACLE. The
database, funded within the IV EU Framework programme, is no more updated
due to lack of funding. However the authors are willing to recover the
database with the aim to annotate mitochondrial variation data. The new
goal should be to contribute in Biodiversity studies based on mitochondrial
DNA variability.

GOBASE. Originating at Montreal, Canada and available on the Web at
http://megasun.bch.umontreal.ca/gobase), GOBASE [186] is a taxonomically
broad organelle genome database that organizes and integrates diverse data
related to organelles. The current version focuses on the mitochondrial and
chloroplast subset of data. In a next phase, GOBASE will also include
information on representative bacteria that are thought to be specifically
related to the bacterial ancestors of mitochondria and chloroplasts. The
GOBASE database contains all mitochondrial and chloroplast nucleic acid
sequences and deduced protein data obtained from NCBI’s Entrez database,
taxonomic information extracted from the NCBI’s Taxonomy database,
standardized gene names and product names assigned by the GOBASE biology
experts, and various types of information about gene products. There are
links to the Entrez/NCBI database, to the intron and ribosomal RNA
secondary structure database [187], to the ENZYME [188] and WIT (Puma)
[189] databases, to the OGMP (http://megasun.bch.umontreal.ca/
ogmpproj.html) and FMGP mitochondrial databases (http://
megasun.bch.umontreal.ca/people/lang/fmgp/fmgp.html), and to the Protist
Image Database (PID http://megasun.bch.umontreal.ca/protists/). GOBASE
allows sophisticated queries, including completely sequenced genomes, and
the use of search criteria concerning the general function of gene products.
The majority of data contained in GOBASE have been verified by experts
with respect to the consistency of their gene and product nomenclature.

MITOMAP. A Human Mitochondrial Genome Database. Based at Emory
University in Georgia, MITOMAP is available on the WEB at http://
www.mitomap.org), MITOMAP [190] is a report of all variations detected in
human mtDNA samples from subjects affected by mitochondrial pathologies
and from subjects whose DNA has been sequenced for genetic population
studies. The report is in html format and hence can be browsed using any
Internet browser. Moreover, a query system has been implemented that allows
a search of the data in a very simplified modality; it does not allow one to
navigate through the stored data. The database is regularly updated to contain
data available in the most recent literature.
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MITOP. A Database for Mitochondria-Related Genes, Proteins, and
Diseases. This is available from MIPS, Munchen, Germany, at http://
ihg.gsf.de/mitop2). The MITOP database [191] reports data on nuclear
encoded mitochondrial proteins for human, yeast, and Neurospora crassa.
Each entry in MITOP is a protein. The following information is reported for
each protein: function category, EC number, protein class, protein complex,
PROSITE motifs, subcellular localization, molecular weight, isoelectric point,
disease correlation, pathways and metabolism, and putative orthologs. The
site where the database is available also contains the MITOPROT program,
which identifies mitochondrial targeting sequences. Direct links are provided
to other databases such as the Genome Data Base (GDB), PIR, Mouse Genome
Database (MGD), Online Mendelian Inheritance in Man (OMIM), GenBank,
and Medline.

MitoNuc. Mitonuc [193] is a database collecting genes and proteins, involved
in mitochondrial biogenesis. Each MitoNuc entry defines a nuclear gene
coding for a mitochondria-related protein in a given species. Each entry
reports a set of defined information: gene description, species name and
taxonomic classification, gene name, EC (Enzyme Classification) code in the
case of genes coding for enzymes, gene product name, synonymous and
functional classification as defined in the KEYnet database [185], metabolic
pathways in which the protein product is involved, cellular and
submitochondrial localization of the encoded proteins, and possible presence
of tissue-specific isoforms. Cross-references to the EMBL, Swiss-Prot/TrEMBL
are also present.

MitoNuc can be retrieved through the SRS server in Bari (http://
bighost.ba.itb.cnr.it/srs) under mitochondrial databases section [193], and
specific functional regions of nuclear coded mitochondrial mRNAs can be
selected and extracted (5' and 3’UTRs, signal peptides, etc.).

AMmtDB. AMmtDB multialigned data can be accessed through SRS (http://
bighost.ba.itb.cnr.it/srs) under mitochondrial section and can be viewed and
managed using multialignment editors such as Genedoc or Seaview. Both these
editors can be easily downloaded through the Web. AMmtDB [194] is a database
collecting the multialigned sequences of vertebrate and invertebrate
mitochondrial genes coding for proteins and tRNAs as well as the multiple
alignment of the mammalian mtDNA main regulatory region (D-loop)
sequences. For genes coding for tRNAs, multialignments based on the primary
and secondary structures are both provided. For 27 mammalian D-loop
multialignments, the conserved regions of the entire D-loop are reported. The
database is organized into three main sections: CDS, tRNA, and D-loop
sequences. The genes coding for proteins are multialigned on the translated
sequences, and both the nucleotide and amino acid multialignments are
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provided. The taxonomic classes for the presently available data are
mammalian, amphibian, reptilian, birds, osteichthyes and condroichthyes, and
agnatha and cephalocordata.

PLMItRNA. PLMItRNA [195] is a database developed to facilitate retrieval
of information on the distribution of tRNA molecules and genes in
mitochondria of green plants (higher plants and green algae) and
Cryptophyta, Rhodophyta and Stramenopiles algae. Retrieval of
information or sequences can be accomplished according to several
characteristics of the tRNA gene or molecule through the Bari SRS server
under “Sequence-related” database section. Currently PLMItRNA contains
610 entries for 577 genes and 33 tRNA sequences identified among 28 higher
plants, ten Chlorophyta (green algae), one Cryptophyta, four Rhodophyta
(red algae) and four Stramenopiles.

MitoDat. Available on the Web at http://www-lecb.ncifcrf.gov/mitoDat/,
MitoDat is a database collecting nuclear genes specifying the enzymes,
structural proteins, and other proteins, many still not identified, involved in
mitochondrial biogenesis and function. MitoDat highlights predominantly
human mitochondrial proteins, although proteins from other animals in addition
to those currently known from yeast and other fungal mitochondria as well as
from plant mitochondria are coded. The database consolidates information
from the various biological databases such as GenBank, SwissProt, Genome
Data Base (GDB), and Online Mendelian Inheritance in Man (OMIM). Because
the mitochondrion has a central role in cellular metabolism, it is involved in
many human diseases. This database should help users in studying these
diseases.

HvrBase. (Available on the Web at http://www.hvrbase.org), HvrBase [196] is
a compilation of human and ape mtDNA control region sequences. The
collection is also available as a Mac/PC database application with a graphical
user interface. The current collection comprises 9388 human sequences from
hypervariable region I (HVRI) and 3302 human sequences from hypervariable
region ii (HVRII). From apes, 469 HVRI sequences and 13 HVRII sequences
are available.
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Computational Biology: Annotated
Glossary of Terms*

Compiled by Andrzej K.Konopka,
Philipp Bucher, M.James C.Crabbe,
Maxim Crochemore, Jaap Heringa,
Frederique Lisacek, Izabela Makalowska,
Wojciech Makalowski, Graziano Pesole,
Cecilia Saccone, Marie-France Sagot,
Akinori Sarai, Peter Schuster, Peter Stadler,
and William R.Taylor

A

A. (1) Symbol for alanine (Ala) in the one-letter naming convention for
amino acids. (2) Symbol for nucleotide adenine in DNA or RNA. (3)
Symbol of one of four alleles of human blood types (the other three being B,
AB, and O).

Ab initio. (1) From the most elementary building blocks (literally “from the
beginning”) imaginable in a given experimental or model-making situation.

* Cited references appear in Appendix References following Appendix 2.
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For instance, computational models of organic molecules that take into
account only the input data concerning properties of carbon, hydrogen,
oxygen, and nitrogen could be considered ab initio. Derivation of properties
of matter from elementary particles could also be considered ab initio. (2)
Model of a system that does not take into account specialized experimental
data concerning the system, just the basic, commonsense knowledge thereof.
(3) Calculation based on the simplest model available while experimental
description is completely missing.

A-DNA. One of three best-known conformational variants of 3-D structure
of DNA (the two others are B-DNA and Z-DNA).

Acceptor site (of an intron). The 3' end of an intron (often the dinucleotide
AG).

Acid. A substance that can release a proton (hydrogen cation H+) in solution.
Solutions of acids in water display pH lower than 7.0. The lower the pH (i.e.,
the closer to 0), the stronger the acid.

Activation energy. (1) Difference between the energy of substrates of a chemical
reaction and the energy of the hypothetical transition state (activated complex)
of this reaction. (2) Minimum amount of energy needed to activate atoms or
molecules to a condition in which it is equally as likely that they will undergo
chemical reaction or transport as that they will return to their original
(nonactivated) state.

The transition state theory of chemical reactions postulates the existence of
a high-energy transition state between the low-energy initial conditions and
the (also low-energy) product conditions of a one-step reaction (or each single
step of a multistep reaction.) Within this theory the activation energy is the
amount of energy required to boost the initial materials (substrates) “uphill”
to form the transition state (consistent with meaning 1, above). The chemical
reaction then proceeds “downhill” of the energy barrier to form the
intermediate (in a multistep reaction) or final (in a one-step reaction) products.
Catalysts (such as enzymes) lower the activation energy by altering the
transition state.

Active site. The region of an enzyme where the substrate binds to form the
enzyme-substrate complex.

Adaptation. (1) A heritable feature of an individual’s phenotype that improves
its chances of survival and reproduction in the existing environment. (2) An
activity of a system (such as an organism, a population, or an ecosystem) that
leads to better chances of its own survival in a given environment.
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Adenine. One of four nucleotides found in nucleic acids. In RNA or DNA
sequences adenine is symbolized by the letter A.

Adenosine triphosphate (ATP). A compound containing adenine, ribose, and
three phosphate groups. When it is formed, useful energy is stored; when it is
broken down (to ADP or AMP), energy is released to drive endergonic
reactions. ATP is an energy storage compound.

Algorithm. A systematic list of a finite number of step-by-step instructions for
accomplishing some task that has an end result.

Alignment. Juxtaposition of two or more sequences in a way that emphasizes
maximum similarity among them according to predefined criteria of similarity.

Alternative splicing. Selection of different sets of donor and acceptor splice
sites to produce two or more different mRNA molecules from the same pre-
mRNA.

Allele. One of possible alternative forms of the same gene occupying a given
locus (position) on a chromosome.

Allele frequency. The relative proportion of a particular allele in a specific
population.

Alphabet. An ordered finite set of symbols (letters). Symbols can be elementary
(not fractionable into “smaller” symbols) or composite (fractionable into
smaller units.) The alphabet that contains only elementary symbols is referred
to as an elementary alphabet.

Amine. An organic compound that contains an amino group,—NH2 (see also
Amino acid).

Amino acid (ααααα-amino acid). Organic compound of the general formula:

 

Protein primary structures (polypeptides) are formed of amino acid residues
bound linearly to each other by peptide bonds (result of condensation
between carboxyl group of one amino acid with amino group of another). Of
the 20 α-amino acids usually present in naturally occurring proteins, 19 have
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the general structure shown in I. The twentieth protein residue, proline, is an
imino acid (amino group NH2 in formula I is replaced by the imino group -
NH). Some amino acids are involved in other than protein biosynthesis
cellular processes or functions such as regulation of protein turnover and
signal transduction.

Except for glycine (H2N-CH2-COOH), the a carbon is asymmetrical in all
α-amino acids. Therefore, each of the 19 (out of 20; the 20th being glycine)
naturally occurring amino acids can exist as either a dextro- (D-) or levo- (L-)
optical isomer (enantiomer). However, in naturally occurring proteins one
finds only L-amino acids. [This fact is considered extraordinary because from
the chemical (in vitro) point of view there should be no reason for such
selection of one enantiomer over another. Biology is apparently full of such
(physical) symmetry-breaking phenomena].

Amino terminal, N-terminal (of a peptide). The first amino acid residue in the
peptide. The amino group -NH2 is present but not involved in a peptide bond.

Aminoacyl tRNA. Transfer RNA (tRNA) carrying an amino acid. The amino
group of the amino acid is covalently bound to one of the hydroxyl groups (3'
or 2') of the terminal nucleotide of tRNA.

Analogy. (1) A resemblance in function or structure that is due to convergence
in evolution but not to common ancestry. (Resemblance due to common
ancestry is referred to as homology.) (2) A relation between two phenomena
that can be described by means of the same model. For example, a mechanical
pendulum and an electric condenser are analogous to each other because their
behavior can be adequately described by the same mathematical formalism.

Animal. A member of the kingdom Animalia. In general, a multicellular
eukaryote that obtains its food by ingestion.

Annotation. An explanation or comment appended to a database entry.

Antibody. One of millions of proteins produced by the immune system that
specifically recognizes a foreign substance and initiates its removal from the
body.

Anticipatory system. A system containing a predictive model of itself and/or
its environment.

Anticodon. A trinucleotide in transfer RNA that is able to pair with a
complementary triplet of nucleotides (a codon) in messenger RNA.
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Antigen. Any substance that stimulates the production of antibodies in the
immune system of a vertebrate.

Antisense strand. The noncoding strand in a protein-coding region of double-
stranded DNA. The sequence of this strand is complementary to the sequence
of pre-mRNA resulting from its transcription catalyzed by a DNA-dependent
RNA polymerase.

Apoptosis. A series of genetically determined events leading to cell death.

Archaea. One of the three domains of living organisms (the other two being
Bacteria and Eukarya). Their separate phylogenetic position has been
confirmed by small subunit rRNA sequence analysis and also by investigation
of their physiological, biochemical, and genetic features.

ATP. See Adenosine triphosphate.

ATP synthase. An integral membrane protein that couples the transport of
proteins with the formation of ATP.

Automaton. (1) A completely or partly self-operating machine or mechanism.
(2) A system whose activity can be described by a set of subsequent transitions
between states.

Autosome. Any chromosome in a eukaryote other than a sex chromosome.

B

Bacteria. One of the three domains of life (the other two being Archaea and
Eukarya).

Bacteriophage. A virus that infects bacteria.

Base. (1) A substance that can accept a proton (hydrogen ion; H+) in water
solution. A water solution of a base has pH greater than 7. (2) In nucleic
acids, a nitrogen-containing base (according to meaning 1) that is attached to
each sugar in the backbone. Bases found in cellular DNA and RNA are purines
(adenine and guanine) and pyrimidines (cytosine and thymine in DNA; uracil
in RNA).

Basal factors. Transcription factors that interact directly with DNA in a
transcription complex. Most transcription factors in a eukaryotic transcription
complex are not basal.

Base pairing. (1) Formation of dimers (pairs) of purine or pyrimidine molecules
(bases) via hydrogen bonds. (2) Formation of hydrogen bonds between bases
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residing in two different single strands of the same double-stranded nucleic
acid molecule (DNA or RNA). The energetics of base pairing between strands
of double stranded nucleic acid follows the so called Watson-Crick-Chargaff
rules of complementarity: Pairing A with T (or U in RNA) leads to more
stable complex than other possibilities for A and T while C preferentially
pairs with G. (See also Complementary base pairing.)

B cell. A type of lymphocyte involved in the immune response of vertebrates.
Upon recognizing an antigenic determinant, a B cell develops into a plasma
cell, which secretes an antibody. (Other major kinds of cells in immune system
are T cells and macrophages.)

B-DNA. A conformational variant of 3-D structure of DNA. This variant is
best known as a double-helical, right-handed Watson-Crick structure. (The
double-helical structure of B-DNA is today used as an icon that signifies DNA.)
Two other well-known 3-D structures of DNA are A-DNA (right-handed)
and Z-DNA (left-handed).

Beta-pleated sheet. Type of protein secondary structure.

Binomial. Consisting of two names. For example, the binomial nomenclature
of biology gives the name of the genus followed by the name of the species.

Binomial distribution. A discrete probability distribution of obtaining an exact
number (say n) of successes out of N Bernoulli trials. Each Bernoulli trial is a
success with a fixed probability p and failure with (also fixed) probability
q=1-p.

Bioinformatics. (1) Information technology-based trend in biology-related
academic and industrial activities of computer scientists, engineers,
mathematicians, chemists, physicists, medical professionals, and biologists.
Activities include archiving, searching, displaying, manipulating, and
otherwise integrating life science-related data. Examples of bioinformatics
tasks include mapping genomes, high-throughput contig annotation,
interpretation of gene expression data, and creation of databases. (2) A
subfield of computer science that is devoted to biological applications of
computer programming, databases, and related activities.

In both meanings, bioinformatics differs from computational biology (the
field of biology in which some methods require the use of computers). The
difference is primarily in the motivation of practitioners of bioinformatics
(desire to demonstrate better software than the competition) as opposed to
the motivation of practitioners of computational biology (curiosity and the
desire to learn and understand biological systems).
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Biological species (concept). A population or group of populations within
which there is a significant amount of gene flow under natural conditions but
that is genetically isolated from other populations.

Biota. All of the organisms, including animals, plants, fungi, and
microorganisms, found in a given area.

Biotechnology. Application of molecular biology to produce food, medicines,
and other chemicals usable for controlling the living conditions of humans or
other animals.

Body plan. A hypothetical spatiotemporal design that includes an entire
animals, its organ systems, and the integrated functioning of its parts.

C

cAMP (cyclic AMP). A compound formed from ATP that mediates the effects
of numerous animal hormones. Also needed for the transcription of catabolite-
repressible operons in bacteria. cAMP functions in the capacity of a “signal”
molecule for communication between cellular slime molds to form organized
colonies that superficially resemble multicellular organisms.

Capsid. The protein coat of a virus.

Carboxylic acid. An organic acid whose structure contains the carboxyl group
-COOH. A given carboxylic acid R–COOH dissociates in water to the
carboxylate anion R–COO¯ and a proton H+.

Catalyst. A chemical substance that accelerates a reaction and can be detected
as unchanged after this reaction. In the transition state theory of chemical
reactions, catalysts lower the activation energy of a reaction via restructuring
its transition state to a lower energetic level than the transition state would
assume without catalysis.

Cation. An ion with one or more positive charges.

cDNA. See Complementary DNA.

Cell cycle. The stages through which a cell passes between one division and
the next. Includes all stages of interphase and mitosis.

Cell division. The reproduction of a cell to produce two new cells. In eukaryotes,
this process involves nuclear division (mitosis) and cytoplasmic division
(cytokinesis).

Cell theory (Wirchov rule). The assumption that all living things consist of
one or more cells and that all cells can be made only from other cells.
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Central dogma. (1) A postulate that every individual act of protein biosynthesis
is irreversible because translation is irreversible. In other words, a “message”
encoded in a DNA protein-encoding region (a gene) can be (sometimes
reversibly) transcribed into mRNA and then translated from mRNA to
protein, but the protein cannot encode its own protein-coding DNA region
(because it cannot be translated back into its own mRNA). (2) A restatement
of the known mathematical fact that many-to-one mappings (mathematical
functions) are irreversible. The translation code for protein biosynthesis (the
genetic code) is a many-to-one mapping whose domain is a set of 64 symbols
of trinucleotides (codons) and whose counterdomain is a set of 20 symbols of
amino acid residues. One can uniquely encode 20 symbols by using 64
symbols, but one cannot uniquely encode all 64 symbols by using only 20
symbols. In other words, a given protein-coding region in DNA (or in mature
mRNA to be precise) can encode a unique polypeptide sequence, but a given
polypeptide sequence cannot be uniquely decoded into a DNA sequence. (3).
Original (historic) formulation: “Once information has passed into protein, it
cannot get out again. In more detail, the transfer of information from nucleic
acid to nucleic acid, or from nucleic acid to protein may be possible, but
transfer from protein to protein, or from protein to nucleic acid is impossible”
(Crick, 1958).

cGMP (cyclic guanosine monophosphate). Compound that serves as an
intracellular “signal” in metabolic pathways that involve G proteins.

Channel. A membrane protein that forms an aqueous passageway though
which specific solutes may pass by simple diffusion. Some channels are gated;
they open and close in response to the binding of specific molecules.

Chaperone protein. A protein that “assists” a newly produced protein in
folding to form a functionally appropriate tertiary structure.

Chemical bond. An attractive force stably linking two atoms within a molecule
of a chemical compound.

Chemical reaction. (1) A chemical process in which substances are changed
into different ones (with different properties) via rupture or rearrangement of
the chemical bonds between atoms in a way that does not affect atomic nuclei.
(2) Based on IUPAC recommendation: A process that results in the
interconversion of chemical species. Chemical reactions may be elementary
reactions (one-step reactions) or stepwise reactions (multistep reactions).

Noted that definition 2 includes experimentally observable interconversions
of conformers of the same compound. Detectable chemical reactions normally
involve sets of molecular entities, but it is often conceptually convenient to
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also use the term to denote changes involving single molecular entities (i.e.,
“microscopic chemical events”).

Every chemical reaction can be studied in terms of its mechanism (series of
subsequent intermediary compounds between the substrates and products.)
Reactions occur at a particular rate that depends on several parameters such
as the temperature and concentrations of the reactants. Many chemical
reactions go to completion—i.e., attain equilibrium—over a period of minutes
or hours and can be monitored by classical techniques such as pressure change
or electrochemistry. Chemical dynamics explores the detailed behavior of
molecules during the most crucial moments of reactions, for example, when
bonds are being broken and new bonds are being formed.

Chemical kinetics. Studies of rates of chemical reactions and inference of possible
mechanisms based on such studies. (Knowledge of a reaction mechanism comes
in part from a study of the rate of a reaction.) The fact that a reaction is
thermodynamically favorable does not necessarily mean that it will take place
quickly. Many reactions that do proceed are endothermic. Therefore, the enthalpy
change is not the ultimate arbiter of the spontaneity of a chemical reaction, and
an additional term, the change in free energy, is an important factor. In addition,
the rate of the reaction—the change in concentration of a reactant or of a product
with respect to time—gives information on how the reaction will proceed. Some
of the factors that influence the rate of a reaction are the concentrations of
reactants and/or products, temperature, surface area, and pressure. When a
catalyst (e.g., an enzyme) is present, then the concentration of the catalyst also
influences the rate of reaction.

Chloroplast. An organelle containing the enzymes and pigments that perform
photosynthesis. Chloroplasts occur only in eukaryotes.

Chromatin. The nucleic acid-protein complex found in eukaryotic
chromosomes.

Chromosome. In most bacteria and viruses, the DNA molecule that contains
most or all of the genetic information of the cell or virus. In eukaryotes, a
structure composed of DNA and proteins that bears part of the genetic
information of the cell.

Citric acid cycle. A set of chemical reactions in cellular respiration. Also known
as the Krebs cycle.

Class. In taxonomy, the category below the phylum and above the order; a
group of related, similar orders.

Clone. Genetically identical cells or organisms produced from a common
ancestor by asexual means.
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Coacervate. An aggregate of colloidal particles in suspension that can serve as
a physical model of the origin of life and prebiotic evolution.

Code. (1) A mapping from one symbolic representation (input representation)
of a system into another (output representation). If the input and output
representations can be expressed in the form of elementary symbols chosen
from finite alphabets, then the code can be seen as a relation between input
and output alphabets of a device that does encoding (an encoder) or decoding
(a decoder). (2) A transformation whereby messages are converted from one
representation to another.

Coding region. A protein-encoding region in a DNA sequence whose non-
coding strand (template) undergoes transcription leading to mRNA that in
turn can be translated into a polypeptide chain.

Coding strand. The strand in a protein-encoding region of double-stranded
DNA that has the DNA sequence equivalent (Ts in place of Us) of the mRNA
sequence resulting from transcription of this region. The term “coding strand”
is always relative to a given coding region and should not apply to entire
DNA that contains many genes. The strand which is coding in one protein-
encoding region can be (and often is) noncoding in another (protein) coding
region within the same chromosome.

Codominance. A condition in which two alleles at a locus produce different
phenotypic effects and both effects appear in heterozygotes.

Codon. A trinucleotide in messenger RNA that, according to the genetic code,
corresponds to a specific amino acid.

Coenzyme. An additional molecule that plays a role in catalysis by an enzyme.

Coevolution. Concurrent evolution of two or more species that mutually affect
each other’s evolution.

Collagen. A fibrous protein found extensively in bone and connective tissue.

Communication. (1) A process of sharing knowledge or units thereof. (2) A
process of sending and receiving messages.

Community. Any ecologically integrated group of species of microorganisms,
plants, and animals inhabiting a given area.

Comparative analysis. In evolutionary biology, an approach to studying
evolution in which hypotheses are tested by measuring the distribution of
states among a large number of species.
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Comparative genomics. Computer-assisted comparison of DNA sequences
from different genomes to reveal functionally significant sequence regions that
may play related biological roles.

Complementary base pairing. The A-T (or A-U), T-A (or U-A), C-G, and G-C
pairing via hydrogen bonds between bases in double-stranded DNA, in
transcription (i.e., between DNA and pre-mRNA), as well as between anti-
codon loops of tRNA and codons in mRNA. (See also Base pairing.)

Complementary DNA (cDNA). DNA formed by reverse transcriptase (RNA-
dependent DNA polymerase) acting with an RNA template; essential
intermediate in the reproduction of retroviruses; used as a tool in recombinant
DNA technology; lacks introns.

Compound. (1) A substance made up of atoms of more than one element. (2)
Made up of many units, as the compound eyes of arthropods (as opposed to
the simple eyes of the same group of organisms).

Computing. Executing an algorithm by a symbol-manipulating device placed
in appropriate conditions. The nature of “appropriate conditions” usually
includes modeling relation between a mechanical device (real or abstract) and
the formal system for general description of (all) algorithms. Both the
mechanical device and the formal system for algorithms’ description can be
thought of as idealizations (i.e., models) of the actual symbolmanipulating
equipment that does a specific computation. (See also Modeling relation.)

Consensus sequences. An artificial sequence (string data structure) that
represents the most frequent nucleotide (amino acid) in a given position of a
selected region in a properly aligned set of longer sequences. Example: In a
selected pentanucleotide region in three aligned (longer) sequences, we have
the following pentanucleotides:

P1: ···ACCGA···
P2: ···GTGGA···
P3: ···ATCGT···

It can be seen that in the 5'-most position 1 we have A twice and G once.
Therefore the first nucleotide of consensus pentanucleotides is A. In the similar
way, the second position is most frequently occupied by T, and so on. The
consensus pentanucleotide for the set P1 through P3 is thus ATCGA. It can be
noted that the consensus sequence does not need to actually occur in any of
the aligned sequences that lead to its determination. (It is an “artificial”
sequence.)
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Convergent evolution. The evolution of similar features independently in
unrelated taxa from different ancestral structures.

Covalent bond. A chemical bond formed by sharing electrons between two
atoms.

Crossing over. The reciprocal exchange of corresponding segments between
two homologous chromatids.

Cyclic AMP. See cAMP.

Cyclin-dependent kinase (cdk). A kinase is an enzyme that catalyzes the
addition of phosphate groups from ATP to target molecules. Cdk’s target
proteins are involved in transitions in the cell cycle and are active only when
complexed to additional-protein subunits, cyclins.

Cytoplasm. The contents of the cell, excluding the nucleus.

Cytosine. A nitrogen-containing base found in DNA and RNA.

D

Data (datum). (1) Unit of representation (elementary model) of selected aspects
of reality provided in a form suitable for symbolic manipulation such as
intellectual reflection, discussion, or mechanical transformation
(computation). Data can be characterized (described) with the help of at least
three properties: (a) content, (b) medium, and (c) structure. (2) Set of unitary
representations (of something) organized in a way suitable for symbolic
processing. (3) Synonym of “information”: a unit of knowledge that can be
communicated and processed. (4) A set of units of information or a
combination of these units plus some consequences of combining them.

Data structure (information structure). An organized (and often codified) form
in which data are available for symbolic processing with the help of specific
algorithms or classes of algorithms.

Degeneracy. With respect to the genetic code: Many-to-one mapping
(encoding) in which an amino acid residue can be coded for by more than one
codon of the translation code for protein biosynthesis (the genetic code). Most
amino acids can be represented by more than one codon.

Deletion. (1) Subsequence of one DNA (or polypeptide) sequence that is absent
from another, otherwise identical, DNA (or polypeptide) sequence. The opposite
of deletion is insertion. Two biopolymer sequences are related by an insertion-
deletion relation if the same subsequence is present in one and absent from the
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other. (2) A mutation resulting in deletion. Deletions in DNA can be as small as
a single nucleotide, but they can also be so large as to contain several subsequent
protein-encoding genes and spacers between them. The larger the deletion
(insertion), the easier it is to detect by methods that do not require knowledge
of sequences. For instance, missing parts of chromosomes (very large deletions)
can be detected by routine microscopic analysis of chromosomes. Deletions of
the size of a few protein-encoding genes (medium-size deletions) can be detected
by using fluorescent in situ hybridization (FISH) techniques.

Denaturation. Loss of activity of a protein (such as an enzyme) or a nucleic
acid as a result of structural changes usually induced by heat or radiation.

Deoxyribonucleic acid. See DNA.

Development. Progressive change during the lifetime of an individual organism.

Differentiation. Process whereby originally similar cells follow different
developmental pathways.

Diffusion. Random movement of molecules or other particles, resulting in an
even distribution of the particles when no barriers are present.

Diploid. Having a chromosome complement consisting of two copies
(homologs) of each chromosome.

Directional selection. Selection that favors phenotypes at one extreme of the
population distribution of phenotypes.

Disruptive selection. Selection that favors phenotypes at both extremes of the
population distribution of phenotypes.

Distance chart. Frequency distribution of distances (number of nucleotides or
amino acid residues) separating two sequence motifs in a given long sequence
or a collection of functionally equivalent long sequences.

DNA (deoxyribonucleic acid). Major chemical component of hereditary
material (chromosomes) of all living organisms. In molecular biology it is
assumed that cellular DNA contains encoded instructions about the
biosynthesis of all proteins every cell contains or could contain. In eukaryotic
organisms DNA is stored in the cell nucleus of every cell but also occurs in
cytoplasm and in organelles (mitochondria and chloroplasts).

DNA structures. B-DNA is the well-known right-handed double-helical DNA
structure postulated by Watson and Crick in 1953. Other three-dimensional
DNA structures (structural isoforms of DNA) that have attracted the attention
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of researchers since 1953 primarily differ from each other by their handedness
(right-handed or left-handed) and, at least in the case of helical isoforms, the
number of nucleotides contained in the region between two (360°) turns.
Examples of known DNA structures in vitro include

A-DNA: Right-handed antiparallel helix with about 11 nucleotides per
helical turn and a helix diameter of about 23 Å.

B-DNA: Right-handed antiparallel double helix with about 10
nucleotides per turn and a helix diameter of about 19 Å.

Z-DNA: Left-handed antiparallel double helix with about 12 nucleotides
per helical turn and a helix diameter of about 18 Å.

It is believed (but not proved beyond a doubt) that B-DNA is, in fact, the
structure that DNA assumes in vivo whereas its isoforms (such as A-DNA or
Z-DNA) exist primarily in vitro.

DNA chip. A small glass or plastic square onto which thousands of single-
stranded DNA sequences are fixed. Cell-derived RNA or DNA can be
hybridized to the target sequences. (See DNA hybridization.)

DNA hybridization. A process by which DNAs from two species are mixed
and heated so that interspecific double-stranded DNA is formed.

DNA ligase. Enzyme that unites Okazaki fragments of the lagging strand
during DNA replication; also mends breaks in DNA strands. It connects pieces
of a DNA strand and is used in recombinant DNA technology.

DNA methylation. Addition of methyl groups to nucleotides in DNA.

DNA polymerase. An enzyme that catalyzes the formation of a DNA strand
complementary to a nucleic acid (DNA or RNA) template.

Domain. (1) The largest unit in the current taxonomic nomenclature. Members
of the three domains (Bacteria, Archaea, and Eukarya) are believed to have
been evolving independently of each other for at least a billion years. (2) Well-
defined structural or functional region in nucleic acid or protein (such as the
catalytic domain in kinases). (3) A contiguous subsequence of nucleic acid or
protein that can clearly be correlated with a functional or structural role in
the organism. (4) A region in a chromosome whose super-coiling is
independent of other parts of the same chromosome. (5) A region in a
chromosome that contains an expressed gene and is hypersensitive to
degradation by enzyme DNAse I.

Dominance (allelic). In genetics, the ability of one allelic form of a gene to
determine the phenotype of a heterozygous individual, in which the
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homologous chromosome carries both itself and a different allele. For example,
if A and a are two allelic forms of a gene, A is said to be dominant to a if AA
diploids and Aa diploids are phenotypically identical and are distinguishable
from aa diploids. The a allele is said to be recessive.

Donor site (of an intron). The 5' end of an intron (often the dinucleotide GT).

Duplication, genetic. A mutation resulting from the introduction of an extra
copy of a segment of a gene or chromosome into the genome.

Dynamic programming (DP). An optimization technique designed primarily
for search problems. It is used extensively in nucleotide and protein sequence
analysis (Needleman and Wunsch, 1970) for flexible pairwise string matching.
The algorithm makes use of a two-dimensional matrix with the lengths of the
two compared strings as its dimensions. The strings are compared by
calculating the optimal (best-scoring) alignment over a vast number of possible
alignments. To calculate the scores, an exchange table is used whose entries
are weights for all pairwise exchanges between the alphabetic symbols
occurring in the strings (the exchange table dimensions are 20×20 for amino
acid comparisons and 4×4 for nucleotide sequence comparisons). A gap
penalty is assigned for the insertion of gaps in either string. The output of the
DP algorithm is the guaranteed optimal alignment, given the residue exchange
weights and gap penalties, with the corresponding alignment score.

E

Ecological niche. The set of conditions where the organism lives (the habitat
of the organism) together with the functional role of this organism in the
ecosystem. Few more specific definitions include: (1) All the places and
conditions where an organism of a given species (potentially) could survive.
(2) A set of environmental conditions under which specific functions of an
organism in the community of organisms could assure its survival. (3) A
function of a species in the community that consists of other species and their
environment. (4) A region (volume) in multi-dimensional space of
environmental factors that affect the welfare of a species.

Ecology. The scientific study of the interaction of organisms with their
environment, including both the physical environment and the other organisms
that live in it.

Ecosystem. The organisms of a particular habitat, such as a pond or forest,
together with the physical environment in which they live.
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Electron. An elementary particle with a mass of approximately 0.00055 amu
and charge of -1.

Electronegativity. The tendency of an atom to attract electrons when it occurs
as part of a compound.

Electrophoresis. A technique that separates substances from one another on
the basis of their electric charges and molecular weights.

Elementary alphabet. An alphabet whose letters cannot be fractioned into
smaller textual units.

Emergent property. A property of a complex system that is not exhibited by
its individual component parts determined from a model of the system.

Enantiomers. See Optical isomers.

3' End. The end of a DNA or RNA strand that has a free hydroxyl group at
the 3'-carbon of the sugar (deoxyribose or ribose).

5' End. The end of a DNA or RNA strand that has a free phosphate group at
the 5'-carbon of the sugar (deoxyribose or ribose).

Endergonic reaction. A reaction for which energy must be supplied. (Contrast
with Exergonic reaction.)

Endo-. A prefix used to designate an innermost structure.

Endosymbiosis. The living together of two species, with one living inside the
body (or even the cells) of the other.

Endosymbiotic theory. A speculative evolutionary scenario in which the
eukaryotic cell evolved from a prokaryote that contained other endosymbiotic
prokaryotes.

Energetic cost. The difference between the energy an animal would have
expended had it rested and the energy it expended in performing a behavior.

Energy. The capacity to do work.

Enhancer. In eukaryotes, a DNA sequence, lying on either side of the gene it
regulates, that stimulates a specific promoter.

Entropy. A state function of a thermodynamic system in equilibrium.
Spontaneous irreversible processes in a closed system lead from an equilibrium
state with lower entropy to another equilibrium state with higher entropy. See
also Shannon entropy.
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Environment. An organism’s surroundings, both living and nonliving; includes
temperature, light intensity, and all other species that influence the organism.

Enzyme. A protein that serves as a catalyst for a chemical reaction. (RNA-
based catalysts are also called RNA enzymes by some scientists, but in principle
the term “enzyme” refers to a protein.)

Epigenesis. A process of interaction between genes and their environment that
ultimately results in the distinctive phenotype of an organism.

Epigenetic effect. Also referred to as an epigenetic phenomenon, any
generegulating activity that does not involve changes to the regions in DNA
coding for proteins being regulated and that can persist through one or more
generations. Two known examples of epigenetic effects are gene silencing and
imprinting.

Epigenetic hypothesis. The concept that patterns of gene expression, not genes
themselves, define each cell type. (This is the original concept of epigenetics
coined by Waddington in the early 1950s to explain differentiation.)

Epigenetic rule. A model of an alleged trend in epigenesis that could channel
development in particular directions.

Epigenetics. The study of heritable changes in gene function that occur without
a change in the DNA sequence (at least not the one that encoded the studied
protein).

Episome. A plasmid that may exist either free or integrated into a chromosome.

Epistasis. An interaction between genes in which the presence of a particular
allele of one gene determines whether another gene will be expressed.

Equilibrium. (1) In biochemistry, a state in which forward and reverse reactions
are proceeding at counterbalancing rates so there is no observable change in
the concentrations of reactants and products. (2) In evolutionary genetics, a
condition in which allele and genotype frequencies in a population are constant
from generation to generation. (3) In thermodynamics, a state of the system in
which all parameters describing the system have constant values that do not
change with time.

Estimator. A rule (a random variable) for determining the value of a population
parameter based on a random sample from this population. Example: The
sample mean is an estimator of the population mean.
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Eukaryotes. Organisms whose cells contain their genetic material inside a
nucleus. Include all life forms other than the viruses, Archaeobacteria, and
Eubacteria.

Evolution. Any gradual change. Organic evolution, often referred to as
evolution, is any genetic and resulting phenotypic change in organisms from
generation to generation.

Exergonic reaction. A reaction in which free energy is released. (Contrast with
Endergonic reaction.)

Exon. A segment of protein-coding region that is incorporated in mRNA after
pre-mRNA splicing. The exons of a given protein-coding region (gene)
constitute the portion of this region that eventually undergoes translation at
the end of a protein biosynthesis event.

Experiment. A scientific method in which particular factors are manipulated
while other factors are held constant so that the potential influences of the
manipulated factors can be determined.

F

Family. In taxonomy, the category below the order and above the genus; a
group of related, similar genera.

Feedback control. Control of a particular step of a multistep process, induced
by the presence or absence of a product of one of the later steps.

First law of thermodynamics. The total energy of a closed thermodynamic
system can be neither created nor destroyed and therefore must remain
constant. An example of a closed system is the entire universe, which is why
the original formulation of the first law was that the energy of the universe
cannot be either destroyed or created.

Fission. Reproduction of a prokaryote by division of a cell into two
comparable progeny cells.

Fitness. The contribution of a genotype or phenotype to the composition of
subsequent generations, relative to the contribution of other genotypes or
phenotypes.

Frame-shift mutation. A mutation resulting from the insertion or deletion of a
single base pair into or from the DNA sequence of a protein-coding gene. As
a result of such mutation, mRNA transcribed from the gene is translated
normally until the ribosome reaches the point at which the mutation has
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occurred. From that point on, codons are read out of proper register, and the
amino acid sequence bears no resemblance to the normal sequence.

Free energy. Energy that is available for doing useful work after allowance
has been made for the increase or decrease of disorder. Designated by the
symbol G (for Gibbs free energy), and defined by G=H-TS, where H= heat,
S=entropy, and T=absolute (Kelvin) temperature.

G

G protein. A membrane protein involved in signal transduction; characterized
by binding guanyl nucleotides. The activation of certain receptors activates
the G protein, which in turn activates adenylate cyclase. G protein activation
involves binding a GTP molecule in place of a GDP molecule.

Gated channel. A channel (membrane protein) that opens and closes in
response to the binding of specific molecules or to changes in membrane
potential.

Gel electrophoresis. A method of separating molecules according to their size
and electric charge. The medium on which the separation occurs is a semisolid
material (gel) suspended in a salty buffer and with electric current passing
through it.

Gene. A unit of heredity. The term is used in biology in three alternative
variants: (1) The unit of genetic function that carries information for a
functionally important unit of biological function. (2) The determinant
(Mendelian factor) of an observable characteristic of an organism. (3) The
protein-coding region in a cellular DNA (or RNA) sequence. The protein
encoded by such a region is referred to as the “gene product.”

Variant 3 is favored in molecular biology and its biotechnology-related
derivatives.

Gene duplication. A DNA rearrangement that generates a supernumerary copy
of a gene in the genome. This would allow each gene to evolve independently
to produce distinct functions. Such a set of evolutionarily related genes can be
called a “gene family.”

Gene family. A set of genes derived from a single parent gene via gene
duplication. Individual genes from a family need not be on the same
chromosomes.

Gene flow. The exchange of genes between different species (an extreme case
referred to as hybridization) or between different populations of the same
species caused by migration following breeding.
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Gene pool. All of the genes in a population.

Gene structure. The annotated sequence of a coding region in DNA. The
annotations indicate in the lexicographic order from the left (5' end) to the
right (3' end) upstream region, 5' untranslated region, first exon, first intron,
second exon, second intron, and so on up to the last exon followed by the
transcription termination sequence (if known) or the 3' untranslated region
or both. The most important issue in determining gene structure is to find
correct boundaries (junctions) between introns and exons. Two or more
different structures of the same coding region reflect two or more possibilities
for gene products resulting from alternative splicing.

Gene therapy. Treatment of a genetic disease by providing patients with cells
containing wild-type alleles for the genes that are nonfunctional in their bodies.

Genetic code. Also called the translation code or the universal genetic code.
Many-to-one mapping (function) that assigns one of 20 naturally occurring
amino acids to each of 61 “sense” trinucleotide code words (codons) during
protein biosynthesis. Three additional trinucleotides—TAA, TAG, and TGA—
serve as signals for termination of translation during protein biosynthesis but
do not encode any amino acid. The initiation of translation is often encoded
by the trinucleotide ATG, which is also a codon for the amino acid methionine.
(Many protein sequences begin with methionine for this reason.)

Genetic drift. Changes in gene frequencies from generation to generation in a
small population as a result of random processes.

Genetics. The study of heredity.

Genome. (1) The complete set of genes of an organism. (2) All the DNA
contained in an organism (or a representative cell thereof), which includes
both the chromosomes within the nucleus and the DNA in mitochondria. (3)
Complete genetic information defining an organism.

Genotype. An exact description of the genetic constitution of an individual,
either with respect to a single trait or with respect to a larger set of traits.

Genus. A group of related, similar species.

Germ cell. A reproductive cell or gamete of a multicellular organism.

Glucose. The most common monosaccharide sugar with the formula C6H12O6.

Glycolysis. The enzymatic breakdown of glucose.

Guanine. A nitrogen-containing base found in DNA, RNA, and GTP.
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H

Half-life. The time required for half of a sample of substrates (reactants) in a
process to undergo transition into products.

Haploid. Having a chromosome complement consisting of just one copy of
each chromosome. This is the normal “ploidy” of gametes or of asexual spores
produced by meiosis or of organisms (such as the gametophyte generation of
plants) that grow from such spores without fertilization.

Hardy-Weinberg equilibrium. The percentages of diploid combinations
expected from a knowledge of the proportions of alleles in the population if
no agents of evolution are acting on the population.

ααααα-Helix. A type of protein secondary structure.

Heterochromatin. Chromatin that retains its coiling during interphase;
generally not transcribed.

Heterogeneous nuclear RNA (hnRNA). The initial product of transcription
of eukaryotic gene, including transcripts of introns. In the older literature
hnRNA is often called pre-mRNA.

Heterozygous. Descriptive of a diploid organism having different alleles of a
given gene on the pair of homologs carrying that gene. (Contrast with
Homozygous.)

Hidden Markov model. See Markov source.

Histone. Any one of a group of basic proteins forming the core of a nucleosome,
the structural unit of a eukaryotic chromosome. (See Nucleosome.)

hnRNA. Pre-mRNA. See Heterogeneous nuclear RNA.

Homeobox. A 180-base-pair segment of DNA found in a few genes (called
Hox genes that perhaps regulates the expression of other genes and thus
controls large-scale developmental processes.

Homeostasis. The maintenance of a steady state, such as a constant
temperature or a stable social structure, by means of physiological or
behavioral feedback responses.

Homolog. One of a pair or larger set of chromosomes having the same overall
genetic composition and sequence. In diploid organisms, each chromosome
inherited from one parent is matched by an identical (except for mutational
changes) chromosome—its homolog—from the other parent.

Homology. A similarity between two biopolymer sequences (or structures)
that is a result of inheritance from a common ancestor. The sequences
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(structures) are said to be homologous if they display significant similarity
and can be shown to be related to a common ancestral sequence (or structure).
Homologous structures or genes have the same evolutionary origin, but their
function may differ widely, e.g., the flipper of a seal and the wing of a bat.

Homoplasy. The presence in several species of a trait not present in their most
common ancestor. Can result from convergent evolution, reverse evolution,
or parallel evolution.

Homozygous. Descriptive of a diploid organism having identical alleles of a
given gene on both homologous chromosomes. An organism may be a
homozygote with respect to one gene and at the same time a heterozygote
with respect to another.

Hox genes. See Homeobox.

Hydrocarbon. A compound containing only carbon and hydrogen atoms.

Hydrogen bond. A weak chemical interaction that arises from the attraction
between the slight positive charge on a hydrogen atom and a slight negative
charge on a nearby atom of another element (such as fluorine, oxygen,
phosphorus, sulfur, or nitrogen).

Hydrolyze. To break a chemical bond, as in a peptide linkage, with the
insertion of the components of water, -H and -OH, at the cleaved ends of a
chain. The digestion of proteins is a type of hydrolysis.

Hydrophilic. Having an affinity for water.

Hydrophobic. Not mixing with (repulsing) water.

Hydroxyl group. The -OH group, characteristic of alcohols.

Hypothesis. (1) A tentative assumption (usually about a set of facts) that can
be verified as true or false by either experiment or reasoning. (2) A statement
assumed to be true for the purpose of argument or further testing. (3) An
antecedent H of the conditional statement “if H then P.” The P is a prediction
or consequence that should be valid if H can be proven to be true.

Hypothesis testing. In statistics, making a decision between rejecting or not
rejecting a given null hypothesis on the basis of a set of specific observations.

I

Immunoglobulins. A class of proteins, with a characteristic structure, that are
active as receptors and effectors in the immune system.
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Immunological memory. The persistence of certain clones of immune system
cells made to respond to an antigen. This leads to a more rapid and massive
response of the immune system to any subsequent exposure to that antigen.

Imprinting. (1) In genetics, the differential modification of a gene depending
on whether it is present in a male or a female. (2) In animal behavior, a rapid
form of learning in which an animal comes to make a particular response,
which is maintained for life, to some object or other organism.

Inducer. (1) In enzyme systems, a small molecule that when added to a growth
medium causes a large increase in the level of some enzyme. (2) In embryology,
a substance that causes a group of target cells to differentiate in a particular
way.

Information. A vague metaphoric concept that relates what we perceive (by
observing, reading, or listening) to a change in our knowledge. There is no
single, universally accepted definition of the term.

Informatics. (1) The art of management of data and management-oriented
data analysis. (2) Synonym for applied computer science that includes
database-related tasks, computer programming, and hardware-related tasks.

Inhibitor. An “anticatalyst” that prevents a catalyst from functioning properly
in its catalytic capacity. When the catalyst is an enzyme, an inhibitor is a
substance that binds to the surface of the enzyme and interferes with its action
on its substrates.

Initiation complex. Combination of a ribosomal light subunit, an mRNA
molecule, and the tRNA charged with the first amino acid coded for by the
mRNA; formed at the onset of translation.

Initiation factors. Proteins that assist in forming the translation initiation
complex at the ribosome.

Inositol triphosphate (IP3). An intracellular second messenger derived from
membrane phospholipids.

Insertion. (1) A mutation in which a relatively short segment (sequence) of a
biopolymer such as DNA or polypeptide is inserted into another—usually
larger—segment of the biopolymer. The inserted sequence itself is sometimes
called an insertion. Two sequences that differ only by the inserted sequence
are bound by an insertion-deletion relationship. See also Deletion. (2) A
chromosome abnormality in which a part of one chromosome is inserted into
another nonhomologous chromosome.

Interferon. A glycoprotein that is produced by vims-infected animal cells and
increases the resistance of neighboring cells to the virus.
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Interleukins. Regulatory proteins produced by macrophages and lymphocytes,
that act upon other lymphocytes and direct their development.

Intermediate filaments. Fibrous proteins that stabilize cell structure and resist
tension.

Interphase. The period between successive nuclear divisions during which the
chromosomes are diffuse and the nuclear envelope is intact. During this period
the cell is most active in transcribing and translating genetic information.

Intron. A portion (intervening sequence) of a protein-coding region in a
eukaryotic DNA sequence that is spliced out from pre-mRNA during
posttranscriptional modifications. The mature mRNA that participates in
translation does not contain introns. Translated portions (exons) of most
eukaryotic genes are interrupted by one or more introns. It has long been
known that intron-containing and intronless versions of the same gene can be
expressed in dramatically different ways. Despite this early knowledge,
possible biological roles of introns are still unknown, but it is clear that
intervening sequences (and the process of their splicing) can influence many
aspects of mRNA metabolism. (See also Exon, Gene structure, Transcription,
Translation.)

In vitro. In a test tube (“in glass”) after removal (separation) from a living
organism.

In vivo. In a living organism. Many processes that occur in vivo are believed
to be reproducible during their in vitro simulations. Such simulations are often
termed in vivo as well.

Ion. A chemical entity (usually an atom or molecule) with electrons either
missing (positively charged cation) or present in excess (negatively charged
anion).

Ion channel. A membrane protein that can let ions pass across the membrane.
The channel can be ion-selective, and it can be voltage-gated or ligand-gated.

Ionic bond. A chemical bond that arises from the electrostatic attraction
between positively and negatively charged ions. Usually a strong bond.

Iso-. Prefix used to denote similarity or near-identity regarding a set of
characteristics.

Isoforms. (1) Different forms of the same protein encoded by different protein-
coding regions in DNA. (2) Different proteins encoded by the same
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protein-coding region in DNA but translated from different mRNAs resulting
from either alternative splicing (after transcription) or selection of different
promoters (for transcription initiation). (3) Different structural variants of
the same general kind of molecule (such as A-DNA, B-DNA, and Z-DNA).

Isomers. Molecules consisting of the same numbers and kinds of atoms but
differing in the way in which the atoms are combined.

K

k-Gram. String of k symbols chosen from a given elementary alphabet. In the
case of nucleotide sequences, k-grams correspond to oligonucleotides of length
k. The most frequently used nucleic acid elementary alphabet is {A, C, G, T
(or U)}, where letters stand for adenine, cytosine, guanine, and thymine (or
uracil) nucleotides, respectively. Other alphabets used in nucleic acid studies
include {K, M}, where K is either guanine or thymine (uracil in RNA) and M
is either adenine or cytosine; {R, Y}, where R is a purine (adenine or guanine)
and Y is pyrimidine (either cytosine or thymine); and {S, W}, where S is either
cytosine or guanine and W is either adenine or thymine (or uracil in RNA).

k-Gram Alphabet. If the elementary alphabet (say A) contains n symbols and
k is fixed, we refer to a set of all nk k-grams as the k-gram (nonelementary)
alphabet over A or as the kth extension Ak of A. If A is an elementary alphabet,
we can consider a class of all its extensions up to a k-extension (k can be a
large integer). We could symbolically represent it as {Ak}=A & A2 & A3… &
Ak, where the symbol & means set-theoretic union. We call {Ak} a generalized
k-gram alphabet.

Karyotype. The number, forms, and types of chromosomes in a cell.

Kinase. An enzyme that transfers a phosphate group from ATP to another
molecule. Protein kinases transfer phosphate from ATP to specific proteins,
playing important roles in cell regulation.

Kinesis. Orientation behavior in which the organism does not move in a
particular direction with reference to a stimulus but instead simply moves at
an increasing or decreasing rate until it ends up farther from the object or
closer to it. (Contrast with Taxis.)

Koch’s postulates. Four rules for establishing that a particular microorganism
causes a particular disease.

Krebs cycle. See Citric acid cycle.
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L

Lactic acid. The end product of fermentation in vertebrate muscle and some
microorganisms.

Lagging strand. In DNA replication, the daughter strand that is synthesized
discontinuously.

Law of independent assortment. Nonhomologous chromosomes and genes
carried on nonhomologous chromosomes separate randomly during meiosis.
Mendel’s second law.

Law of segregation. Alleles segregate independently from one another during
gamete formation. Mendel’s first law.

Leader sequence. A polypeptide sequence that precedes the N-terminal end of
a newly synthesized protein. It participates in protein secretion into the
destination location in the cell.

Leading strand. In DNA replication, the DNA strand that is synthesized
continuously with the help of DNA-dependent DNA polymerase.

Ligand. A chemical entity (such as a molecule, ion, or atom) that is part of a
larger molecule or molecular complex. (In biochemical systems, a ligand binds
to a receptor site of another molecule.)

Likelihood. A hypothetical estimate of the chance that an event that has
already occurred would yield a specific outcome. The concept of likelihood
differs from that of probability. (Probability refers to the occurrence of future
events with possibly unknown outcomes; likelihood refers to past events with
known outcomes.)

Linkage. Association between genetic markers on the same chromosome such
that they do not show random assortment and seldom recombine; the closer
the markers, the lower the frequency of recombination.

Locus. In genetics, a specific location on a chromosome. May be considered
to be synonymous with a gene or an allele.

M

Macroevolution. Evolutionary changes occurring over long time spans and
usually involving changes in many traits. (Contrast with Microevolution.)

Macromolecule. A giant polymeric molecule. Proteins, polysaccharides, and
nucleic acids are macromolecules.
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Major histocompatibility complex (MHC). A complex of linked genes, with
multiple alleles, that control a number of immunological phenomena; it is
important in graft rejection.

Mammal. An animal of the class Mammalia, characterized by the production
of milk by the female mammary glands and the possession of hair for body
covering.

Map unit. In eukaryotic genetics, one map unit corresponds to a recombinant
frequency of 1%.

Mapping. (1) In genetics, determining the order of genes on a chromosome
and the distances between them. (2) In sequence analysis, an older name for
sequence annotation. Putative functional or structural domains in long nucleic
acid or protein sequences are detected (mapped), and the sequence is labeled
(annotated) with names of domains (annotations). (3) In mathematics, a name
for a function or transformation that assigns every element of one set (domain)
to one and only one element of another set (counterdomain).

Markov process. A probabilistic model in which the probability of the next
state of a system depends solely on the probability of the previous state or a
finite sequence of the previous states.

Markov source. A device that generates symbols with probabilities that could
be determined from a Markov process. The terms “Markov source” and
“hidden Markov model” are synonymous.

Mass number. The total number of protons and neutrons in the nucleus of an
atom.

Maternal inheritance. Inheritance in which the phenotype of the offspring
depends on factors such as mitochondria or chloroplasts that are inherited
from the female parent through the cytoplasm of the female gamete. Also
called cytoplasmic inheritance.

Median. “Middle value” of a sorted list of numbers. The smallest number
such that at least half the numbers in the list are no greater than it.

Mean (arithmetic mean). Given a finite list of N real numbers x1, x2, x3,…, xN,
the mean is a real number M calculated from the formula M=(1/N)

 In statistics, the sample mean is an estimator of the expected value of
the distribution.

Meiosis. Division of a diploid nucleus to produce four haploid daughter cells.
The process consists of two successive nuclear divisions with only one cycle of
chromosome replication.
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Mendelian population. A local population of individuals belonging to the
same species and exchanging genes with one another.

Meso-. A prefix often used to designate a structure located in the middle of
another or a stage that appears at some intermediate time. For example,
mesoderm, Mesozoic.

Messenger RNA (mRNA). A transcript of one of the strands of DNA, mRNA
carries information (in the form of a sequence of trinucleotide codons) for the
synthesis of one or more proteins.

Meta-. A prefix used in different fields in different ways that often pertain to
some concept of “beyond” or “above.” (1) In general biology, the prefix meta-
can denote a change (as in metabolism) or a shift to a new form or level (as in
metamorphosis). (2) In logic and systems science, the prefix meta- can denote
description (or other form of “processing” such as formal derivation or
computation) from the perspective of a next higher level of organization of
thought. For instance, language can be described with the help of a
metalanguage, logic can be discussed with the help of metalogic, and so on.

Metabolic pathway. A sequence (succession) of enzyme-catalyzed reactions in
which a product of one reaction is a substrate of the next.

Metabolism. A set of all chemical reactions that occur in an organism, or a
well-defined specific subset of that set (as in “respiratory metabolism”).

MHC. See Major histocompatibility complex.

Micro-. A prefix used to denote something small.

Microbiology. The scientific study of organisms (usually bacteria and viruses)
too small to be visible by the human eye but detectable with the help of optical
or electron microscopes.

Microevolution. The small evolutionary changes typically occurring over short
time spans and generally involving a small number of traits and minor genetic
changes.

Mimicry. The superficial resemblance of an organism to an inanimate object
in its environment or to another kind of organism.

Missense mutation. A mutation that changes a codon for one amino acid to a
codon for a different amino acid. (Contrast with Frame-shift mutation,
Nonsense mutation, Synonymous mutation.)

Mitochondrion. An organelle that occurs in eukaryotic cells and contains the
enzymes of the citric acid cycle, the respiratory chain, and oxidative
phosphorylation. A mitochondrion is bounded by a double membrane.
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Mitosis. Nuclear division in eukaryotes leading to the formation of two
daughter nuclei each with a chromosome complement identical to that of the
original nucleus.

Model. With respect to a system or a complex thing, a representation of
selected aspects (characteristics) with a simultaneous abstraction-away of all
other imaginable or observable points of view and facts.

Modeling relation (MR). A general methodological scheme that binds four
relations together: (1) a given natural system of observable objects and
phenomena (that we wish to model) to itself, (2) the same natural system to a
formal system of inferences, (3) the formal system to itself, and (4) the formal
system to the initially mentioned natural system.

Mole. A quantity of a compound whose weight in grams is numerically equal to
its molecular weight expressed in atomic mass units. One mole of a substance
contains Avogadro’s number of molecules (i.e., 6.023×1023 molecules).

Molecular biology. Field of life sciences that aims to provide biologically relevant
explanations of the structure and function of chemical compounds (i.e., their
molecules) found in living cells and tissues. It developed from a tradition that
adopted mechanistic methods of thinking from physics and applied them to
integrate genetics with cell biology, evolutionary biology, embryology,
immunology, and other classical fields of biology (such as systematics).

Molecular clock. An assumption that biopolymers (nucleic acids or proteins)
diverge from one another over evolutionary time at an approximately constant
rate, which in turn is assumed to be well-correlated with phylogenetic
relationships between organisms.

Molecular evolution. An evolutionary process leading to present-day DNA
and protein sequences from their ancestral forms.

Molecular weight. Algebraic sum of atomic weights of atoms in a molecule.

Molecule. An electrically neutral chemical entity (particle) made up of two or
more atoms joined by covalent or ionic bonds.

Moment (the kth moment). (1) Of a sequence of N numbers (a list), the
arithmetic mean of the kth powers of the individual members of the list:

 (2) Of a random variable X, the expected value E(Xk) of
a random variable Xk. The mean of X is the first moment of X.

Mono-. Prefix denoting a single entity.
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Monoclonal antibody. Antibody produced in the laboratory from a clone of
hybridoma cells, each of which produces the same specific antibody.

Monomer. A small molecule, two or more of which can be combined to form
oligomers (consisting of a few monomers) or polymers (consisting of many
monomers).

Motif (sequence motif). (1) String or regular expression that significantly often
occurs in a collection of similar sequences. Vast majority of “motifs” discussed
in molecular biology literature are “signature” sequence patterns (such as Shine-
Dalgarno fragments or signature sequences in variable regions of
immunoglobulin genes) that distinguish a specific set of protein (or nucleic acid)
sequences from all other sequences. The word “motifs” reflects here a tacit
assumption of the existence of meaningful functional and structural constraints
that are unique and detectable at the sequence level. Some authors also assume
the existence of a true homology (as opposed to sequence or structure similarity)
relating sequences in a given set of proteins (or just domains) or nucleic acid

pattern that can be considered a letter (unit of pattern) in an alphabet that is
adequate for studying a specific correlation between sequences and their
functional or structural role. (3) An icon or label (such as a “signature” sequence
or an essential descriptor in sequence annotation) that abbreviates the essence
of results of data integration. Sequence alignment is a special (but not necessarily
most important) case of data integration. It pertains to meaning (1).

Motif descriptor. A data structure used to define a sequence motif. Best known
descriptors include consensus sequences, weight matrices, and profiles.

mRNA. See Messenger RNA.

Multicellular. Consisting of more than one cell, as for example a multicellular
organism. (Contrast with Unicellular.)

Mutagen. Radiation or chemical that increases mutation rate.

Mutation. (1) An inheritable change in one or more genes of an organism that
leads to a detectable change in phenotype. (2) Insertion, deletion, or
substitution of one or more amino acid residues in a protein. (3) Inheritable
modification of a region in DNA sequence. Insertions, deletions, and
substitutions are the most frequent kinds of DNA sequence modifications.
See also Silent mutation, Sense mutation, and Nonsense mutation.

Mutation pressure. Change in gene proportion caused by different mutation
rates alone.
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N

Natural selection. The differential contributions of offspring to the next
generation by various genetic types belonging to the same population.

Neutral allele. An allele that does not alter the functioning of the proteins for
which it codes.

Neutral theory. A view of molecular evolution that postulates that most
mutations are silent mutations, which do not affect the amino acid being coded
for. Such mutations are believed to accumulate in a population at rates driven
by genetic drift and mutation pressure but not by fitness of the phenotype.

Nonsense (chain-terminating) mutation. Mutation that changes a codon for
an amino acid to one of the codons (UAG, UAA, or UGA) that signal
termination of translation. The resulting gene product is a shortened
polypeptide that begins normally at the amino-terminal end and ends at the
position of the altered codon. (Contrast with Frame-shift mutation, Missense
mutation, Synonymous mutation.)

Nonsynonymous mutation (substitution). A nucleotide substitution in a
protein-coding region that leads to a change of an amino acid in the
corresponding polypeptide chain.

Nuclear envelope. The surface, consisting of two layers of membrane, that
encloses the nucleus of a eukaryotic cell.

Nucleic acid. A chain copolymer of nucleotides. RNA is a copolymer of
ribonucleotides; DNA is a copolymer of deoxyribonucleotides.

Nucleoid. Compartment in a prokaryotic cell that stores chromosomes. Unlike
the eukaryotic nucleus, it is not surrounded by a membrane.

Nucleolus. Organized subcellular structure found inside the nucleus of eukaryotic
cells. The function of the nucleolus is to biosynthesize ribosomal RNA.

Nucleosome. A portion of a eukaryotic chromosome, consisting of part of the
DNA molecule wrapped around a group of histone molecules and held
together by another type of histone molecule. The chromosome is made up of
many nucleosomes.

Nucleotide. The basic chemical unit (monomer) in a nucleic acid. A nucleotide
in RNA consists of one of four nitrogen-containing bases linked to ribose,
which in turn is linked to phosphate. In DNA, deoxyribose is present instead
of ribose.
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Nucleus. (1) In chemistry, a positively charged portion of every atom. (2) In
cells, the compartment of eukaryotic cells that contains chromosomes. It is
surrounded by a double membrane that physically separates it from the
cytoplasm.

Null hypothesis. In statistics, the hypothesis we wish to falsify (reject) on the
basis of the data. The null hypothesis is typically a statement that there is no
difference between the result of an experiment and a control.

O

Okazaki fragments. Separate DNA strands that constitute the lagging strand
during DNA replication. With the help of an enzyme (DNA ligase) the Okazaki
fragments join together and form one contiguous strand.

Oligomer. A molecule of polymer or copolymer of intermediate size, made up
of few monomers.

Oligopeptide. See under Peptide.

Ontology. (1) The branch of metaphysics concerned with the nature of being
(reality itself) as opposed to the nature of our representations of reality. (The
latter is handled by another branch of metaphysics: epistemology.) (2) Name
given by a group of computer scientists to an idealized integrated collection of
databases of structured vocabularies that can be connected to life-sciences-
relevant databases. Each vocabulary is a data structure of a
computermanageable kind such as a directed acyclic graph in which nodes
are in a well-defined relation of ancestry (descent). (3) A computer-friendly
representation of complex data that can be read and manipulated by computer
programs.

Open reading frame (ORF). A string of amino-acid-encoding trinucleotide
codons of the genetic code that begins with a start codon (usually ATG) and
ends with a stop codon (TAA, TAG, or TGA) and does not contain any other
stop codon (in frame).

Operator. The region of an operon that acts as the binding site for the repressor.

Operon. A genetic unit of transcription in bacteria. It usually consists of several
structural genes that are transcribed into the same (single) mRNA.

Optical isomers (enantiomers). Isomers that differ in the configuration of the
four different groups attached to the same carbon atom. Two enantiomers are
mirror images of one another.
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Organelles. Organized and distinguishable structures such as ribosomes,
nuclei, mitochrondria, chloroplasts, cilia, and contractile vacuoles that can be
found inside cells.

Organic. Pertaining to any aspect of living matter, e.g., to its evolution,
structure, or chemistry. The term is also applied to any chemical compound
that contains carbon.

Organism. Any living creature.

Origin of replication. A DNA sequence in which helicase unwinds the DNA
double helix and DNA polymerase binds to initiate DNA replication.

Orthologs. Genes or sequences that result from a speciation event followed by
a sequence divergence. Such genes may not exist side by side in the same
organism. The last common ancestor of two orthologous genes existed during
the speciation event.

Osmosis. The movement of water through a differentially permeable
membrane from one region to another where the water potential is more
negative. The letter is often a region in which the concentration of dissolved
molecules or ions is higher, although the effect of dissolved substances may be
offset by hydrostatic pressure in cells with semirigid walls.

Oxidation. Loss of electrons in a chemical reaction—either outright removal
to form an ion or the sharing of electrons with substances having a greater
affinity for them, such as oxygen.

Oxidative phosphorylation. ATP formation in the mitochondrion, associated
with the flow of electrons through the respiratory chain.

Oxidizing agent. A substance that can accept electrons from another. The
oxidizing agent becomes reduced; its partner becomes oxidized.

P

p-value. The probability of erroneously rejecting an acceptable null hypothesis
by chance alone. For instance, a p value of <0.05 means that the probability
that the evidence supporting rejection of the null hypothesis was due to chance
alone is less than 5%.

Paradigm. A general methodological framework along with a set of
assumptions, beliefs, and cultural biases within which questions are asked
and hypotheses are formed.

Parallel evolution. Evolutionary patterns that exist in more than one lineage,
often the result of underlying developmental processes.
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Paralogs. Genes or sequences that result from duplication of existing genes
followed by sequence divergence. Such genes may descend and diverge while
existing side by side in the same organism. If speciation occurs after gene
duplication, then two paralogous genes may exist in two different organisms
(species). The last common ancestor of two paralogous genes existed during
the gene duplication event.

Parsimony. A principle of preferring a minimal change between subsequent
steps of a process. For instance, a single-point mutation is a parsimonious
change between two generations of evolving DNA sequence.

Pattern. Any logical, geometrical, or (broadly) factual connection between
elements of a model that attracts our attention. “Pattern” is usually understood
pragmatically by experienced explorers of the same model. (See also Sequence
pattern.)

Pattern formation. In animal embryonic development, the organization of
differentiated tissues into specific structures such as wings.

PCR. See Polymerase chain reaction.

Pedigree. The pattern of transmission of a genetic trait in a family.

Penetrance. Of a genotype, the proportion of individuals with that genotype
who show the expected phenotype.

Peptide bond. The covalent bond formed in a condensation reaction (removal
of a water molecule) between the α-amino group of one amino acid and the α-
carboxyl group of another amino acid.

Peptide. A chain of amino acid residues joined together via peptide bonds.
Oligopeptide (or just peptide) is a name that is sometimes used for a peptide
that contains only a few residues in the chain, whereas “polypeptide” denotes
a peptide that is made up of a substantial number of amino acid residues. [By
a somewhat different convention, a polypeptide chain is a primary structure
of a protein (no matter how many residues it contains), whereas a peptide is
understood to be a chemical whose biological role is to be a peptide (not a
protein).]

pH. The negative logarithm of the hydrogen ion concentration; a measure of
the acidity of a solution. A solution with pH=7 is said to be neutral; pH values
higher than 7 characterize basic solutions, and acidic solutions have pH values
less than 7.

Phage. See Bacteriophage.
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Phenotype. The observable properties of an individual that have developed
under the combined influences of the genetic constitution of the individual
and the effects of environmental factors.

Phenotypic plasticity. The fact that the phenotype of an organism is determined
by a complex series of developmental processes that are affected by both its
genotype and its environment.

Phosphate group. The functional group -OPO3H2. The transfer of energy from
one compound to another is often accomplished by the transfer of a phosphate
group.

Phosphodiester bond. The chemical bond that connects two subsequent
nucleotides in one strand of nucleic acid molecule.

Phospholipids. Cellular materials that contain phosphorus and are soluble in
organic solvents. An example is lecithin (phosphatidylcholine). Phospholipids
are important constituents of cellular membranes.

Phosphorylation. The addition of a phosphate group.

Phylogenetic tree. Graphical representation of the evolutionary relationships
of ancestry and descent among a group of genes or species. When species are
considered, they are represented as line segments, and points of branching
correspond to subsequent speciation events. In the case of genes, points of
branching correspond to gene duplication either during speciation or gene
duplication during the evolutionary history of a single species.

Phylogeny. The evolutionary history of descent of a group of taxa such as
species from their common ancestors, including the order of branching and
sometimes absolute ages of divergence. Also the diagram of the “family tree”
that shows genetic linkages between ancestors and descendants. [The term
also applies to the genealogy of genes derived from a common ancestral gene
(homologous genes).]

Phylum. In taxonomy, a high-level category just beneath kingdom and above
class; a group of related, similar classes.

Physiology. The scientific study of the functions of living organisms and the
individual organs, tissues, and cells of Which they are composed.

Plant. A member of the kingdom Plantae. Multicellular, gaining its nutrition
by photosynthesis.

Plasmid. A DNA molecule distinct from the chromosome(s); that is, an
extrachromosomal element. May replicate independently of the chromosome.
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Pleiotropy. The determination of more than one character by a single gene.

Point mutation. A mutation that results from a small, localized alteration in the
chemical structure of a gene. Such mutations can give rise to wild-type revertants
as a result of reverse mutation. In genetic crosses, a point mutation behaves as if
it resided at a single point on the genetic map. (Contrast with Deletion.)

Poly-. A prefix denoting multiple entities.

Polygenes. Multiple loci whose alleles increase or decrease a continuously
variable phenotypic trait.

Polymer. A large molecule made up of similar or identical subunits called
monomers.

Polymerase chain reaction (PCR). A technique for the rapid production of
millions of copies of a particular stretch of DNA.

Polymerization reactions. Chemical reactions that result in obtaining
polymers. There are often three stages of these reactions: initiation, elongation,
and termination.

Polycondensation. Polymerization via the reaction of condensation (release
of water molecules).

Polymorphism. (1) In genetics, the coexistence in the same population of two
or more distinct phenotypes that correspond to different alleles. (2) The co-
existence of two or more crystal structures for the same chemical entity.

Polypeptide. See under Peptide.

Polyphyletic group. A group containing taxa that do not all share the most
recent common ancestor.

Polyploid. A cell or an organism in which there are more than two complete
sets of chromosomes.

Polysaccharide. A macromolecule composed of many monosaccharides
(simple sugars). Common examples are cellulose and starch.

Polysome. A complex consisting of a threadlike molecule of messenger RNA
and several (or many) ribosomes. The ribosomes move along the mRNA,
synthesizing polypeptide chains as they proceed.

Polytene. An adjective describing giant interphase chromosomes, such as those
found in the salivary glands of fly larvae. The characteristic, reproducible
pattern of bands and bulges seen on these chromosomes has provided a method
for preparing detailed chromosome maps of several organisms.
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Population. Any group of organisms coexisting at the same time and in the
same place and capable of interbreeding with one another.

Population density. The number of individuals (or modules) of a population
per unit area or volume.

Population genetics. The study of genetic variation and its causes within
populations.

Population structure. The proportions of individuals in a population belonging
to different age classes (age structure). Also, the distribution of the population
in space.

Positive control. The situation in which a regulatory macromolecule is needed
to turn on the transcription of structural genes. In its absence, transcription
will not occur.

Positive cooperativity. A condition that occurs when a molecule can bind
several ligands and each one that binds atters the conformation of the molecule
so that it can bind the next ligand more easily. The binding of four molecules
of O2 by hemoglobin is an example of positive cooperativity.

Pragmatic. Practical. Dealing with facts and occurrences.

Pragmatics. In linguistics, one of three main aspects of studying languages
(two others being syntax and semantics). Pragmatics refers to the use of
sentences in the context of other sentences as well as real-world situations.

Pragmatic inference. (1) The art of determining sequence motifs from their
instances and the knowledge context to which they pertain. (2) The art of
determining an alphabet (vocabulary) of function-associated motifs based on
one or more individual patterns and the knowledge of strutures or mechanisms
that correlate well with the presence of these patterns.

Primary structure. In biochemistry, the sequence of amino acids in a protein
or the nucleotide sequence of a nucleic acid.

Primate. A member of the order Primates, such as a lemur, monkey, ape, or
human.

Primer. A short, single-stranded segment of DNA serving as the necessary
starting material for the synthesis of a new DNA strand, which is synthesized
from the 3' end of the primer.

Pro-. A prefix often used in biology to denote a developmental stage that
comes first or an evolutionary form that appeared earlier than another. For
example, prokaryote, prophase.
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Probability. A measure of the chance (possibility) that a particular event (or
set of events) will occur. Values of probability measure are positive real
numbers from the closed interval [0,1]. Probability of impossible events equals
0, and probability of sure events equals 1. (The concept of probability is related
to but different from the notion of likelihood.)

Probe. A segment of single-stranded nucleic acid used to identify DNA
molecules containing the complementary sequence.

Profile. A generalized representation of sequence properties derived from a
family of functionally or structurally related biopolymer (protein or nucleic
acid) fragments. Just like single sequences expressed in appropriate sequence
alphabets (nucleotide symbols for DNA and RNA or amino acid residues for
primary protein structures), profiles can be used for database searches via
dynamic programming or other optimization algorithms. Because profiles
allow position-specific scoring systems and gap parameters, profile searches
offer a high sensitivity in detecting distant relationships between naturally
occurring biopolymer sequences because they allow position-specific scoring
as well as simplicity in handling gaps.

Prokaryotes. Bacteria. Unicellular organisms whose genetic material is not
contained within a well-formed cell nucleus.

Promoter. Part of a protein-coding region in DNA to which DNA-dependent
RNA polymerase binds at the beginning of transcription. Binding of RNA
polymerase (and transcription factors) to the promoter is considered to be a
transcription initiation event.

Proofreading. The correction of an error in DNA replication just after an
incorrectly paired base is added to the growing polynucleotide chain.

Prophage. A noninfectious unit that is linked with the chromosomes of the host
bacteria and multiplies with them but does not cause dissolution of the cell.

Prophase. The first stage of nuclear division, during which chromosomes
condense from diffuse, threadlike material to discrete, compact bodies.

Prosthetic group. Any nonprotein portion of an enzyme.

Protease. See Proteolytic enzyme.

Protein. One of the most fundamental building substances of living organisms.
A long-chain polymer of amino acids with 20 different common side chains.
Occurs with its polymer chain extended in fibrous proteins or coiled into a
compact macromolecule in enzymes and other globular proteins.
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Protein secondary structure. Local substructures in a protein’s three-
dimensional structure, each corresponding to a consecutive stretch of amino
acids. The two most regular secondary structural elements are the α-helix,
with an average number of 3.6 amino acids per turn, and the β-strand, which
is the most extended secondary structure seen in proteins. Elements comprising
the latter structure typically associate in hydrogen-bonded β-pleated sheets
constituted by β-strands in a parallel or antiparallel fashion. Other secondary
structure elements that can be classified by the automatic secondary structure
assignment algorithm DSSP (Kabsch and Sander, 1983) are the 3/10 helix
(tighter than the α-helix), π-helix (wider than the α-helix), β-bulge, hydrogen-
bonded turn, bend, and coil.

Proteolytic enzyme (protease). An enzyme (such as trypsin) whose main
catalytic function is the digestion of a protein or polypeptide chain.

Proteome. Complete set of all proteins encoded in the nuclear component of
the genome of a given organism.

Protobiont. Aggregate of abiotically produced molecules that cannot
reproduce but does maintain an internal chemical environment that differs
from its surroundings.

Proton. Hydrogen cation H+ (the nucleus of the hydrogen atom). In particle
physics a proton is also known as an elementary particle with an atomic mass
of 1 amu and electric charge of +1.

Protozoa. A group of single-celled organisms classified by some biologists as a
single phylum; includes the flagellates, amoebas, and ciliates. This volume
follows most modern classifications in elevating the protozoans to a distinct
kingdom (Protista) and each of their major subgroups to the rank of phylum.

Pseudogene. A DNA segment that displays a significant sequence similarity to
a functional gene but whose complete expression cannot be accomplished. A
pseudogene usually contains insertions, deletions, or substitutions that alter
the sequence of the original (expressible) gene. These sequence modifications
can be either a reason for impaired expression or a consequence of not being
expressed. The so-called processed pseudogenes are DNA sequences
complementary (sometimes with a few mutations) to a mature (processed)
mRNA of the functional gene. Their existence is often cited as indirect evidence
for potential regulatory roles of noncoding part (3'- and 5'-UTRs, introns,
upstream regions, downstream regions) of the corresponding functional genes.

Punctuated equilibrium. An evolutionary pattern in which periods of rapid
change are separated by longer periods of little or no change.
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Purine. A type of nitrogenous base. The purines adenine and guanine are found
in nucleic acids.

Pyrimidine. A type of nitrogenous base. The pyrimidines cytosine, thymine,
and uracil are found in nucleic acids.

Pyruvate. A three-carbon acid; the end product of glycolysis and the raw
material for the citric acid cycle.

Q

Quantum. An indivisible unit of energy.

Quaternary structure. In reference to aggregating proteins, the arrangement
of polypeptide subunits.

R

Randomness. Logical equivalent of a lack of pattern. A situation in which
patterns are undetectable or nonexistent.

Random genetic drift. Evolution (change in gene proportions) by chance
processes alone.

Rate constant. In reference to a particular chemical reaction, a constant that,
when multiplied by the concentration(s) of reactant(s), gives the rate of the
reaction.

Reactant. A chemical substance that enters into a chemical reaction with
another substance.

Recessive. See Dominance.

Recognition site. A sequence of nucleotides in DNA to which a restriction
enzyme binds and then cuts the DNA. Also called a restriction site.

Recombinant. An individual, meiotic product or single chromosome in which
genetic materials originally present in two individuals end up in the same
haploid complement of genes. The reshuffling of genes can be either by
independent segregation or by crossing over between homologous chromo
somes. For example, a human may pass on genes from both parents in a single
haploid gamete.

Recombinant DNA technology. The application of genetic tools (restriction
endonucleases, plasmids, and transformation) to the production of specific
proteins by biological “factories” such as bacteria.
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Redox reaction. A chemical reaction in which one reactant becomes oxidized
and the other becomes reduced.

Reducing agent. A substance that can donate electrons to another substance.
The reducing agent becomes oxidized, and its partner, the oxidizing agent,
becomes reduced.

Reduction. (1) In chemistry, gain of electrons; the reverse of oxidation. Reductions
often lead to the storage of chemical energy, which can be released at any time
via an oxidation reaction. (2) In methodology of science, replacement of the
modeled complex system by a simpler surrogate system (a model).

Reductionism. (1) Causal: An academic doctrine according to which the only
legitimate conclusion about a system can be reached from studying its parts
but one should not infer properties of parts from studying the whole system.
(Downward causation is “forbidden.”) (2) Methodological: An academic
trend according to which complex systems should be represented by simple
models (surrogate systems), which in turn could be studied with a variety of
scientific methods.

Regular expression. (1) In sequence analysis and bioinformatics, a flexible
definition of a sequence pattern that allows groups of motifs to reside in the
place of a single motif. (2) In information technology (IT), a valid formula of
a specialized programming or scripting language dedicated to serve a software
tool or database. For example, most information retrieval systems (such as
library searchable catalogs) accept queries formulated in a “language” that
consists of simple regular expressions. Another example is a scripting language
for textual pattern matching in the UNIX operating system. Some
programming languages (such as PROLOG or PERL) are entirely designed
for textual pattern matching as a way of writing down programs, i.e., regular
expressions actually constitute the programming language.

Regular grammar. A formal grammar that is equivalent to a finite-state
automaton.

Regulatory gene. A gene that contains the information for making a regulatory
macromolecule, often a repressor protein.

Replication fork. A point at which a DNA molecule replicates. The fork is
formed by the unwinding of the parent molecule.

Repressible enzyme. An enzyme whose synthesis can be decreased or prevented
by the presence of a particular compound. A repressible operon often controls
the synthesis of such an enzyme.

Copyright © 2004 by Marcel Dekker



Appendix 1492

Repressor. A protein that can bind to a specific place in a transcription complex
and thereby prevent transcription from happening. (For instance, in bacteria
the repressor can bind to a specific operator and prevent transcription of the
entire operon.) Repressors are usually coded by designated regulatory genes.

Restriction endonuclease. Any of several enzymes, produced by bacteria, that
break foreign DNA molecules at very specific sites. Some produce “sticky
ends.” Extensively used in recombinant DNA technology.

Restriction map. A partial genetic map of a DNA molecule, showing the points
at which particular restriction endonuclease recognition sites reside.

Retrovirus. An RNA virus that contains reverse transcriptase. Its RNA serves
as a template for cDNA production, and the cDNA is integrated into a
chromosome of the mammalian host cell.

Reverse transcriptase. An enzyme (RNA-dependent DNA polymerase) that
catalyzes synthesis of DNA (cDNA) using RNA as a template.

Reverse transcription. Synthesis of DNA whose sequence is complementary to
a given RNA sequence. The process is catalyzed by reverse transcriptase and
sometimes is followed by insertion of reverse-transcribed DNA (complementary
DNA, cDNA) into the nuclear DNA genome. [This kind of insertion is a
mechanism by which cellular oncogenes (c-oncogenes) can be created from their
viral counterparts residing in RNA viruses called retroviruses.]

RFLP (restriction fragment length polymorphism). Coexistence of two or more
patterns of restriction fragments (patterns produced by restriction enzymes),
as revealed by a probe. The polymorphism reflects a difference in DNA
sequence on homologous chromosomes.

Ribonucleic acid. See RNA.

Ribosomal RNA (rRNA). RNA molecules that are incorporated into
ribosomes via interaction with ribosomal proteins. The evidence exists that
rRNAs (at least in bacteria) are actively involved in translation of mRNA and
the formation of peptide bonds in growing polypeptide chains.

Ribosome. A small organelle that is the site of protein synthesis.

Ribozyme. An RNA molecule with catalytic activity.

RNA (ribonucleic acid). A nucleic acid that contains the sugar ribose. Various
classes of RNA are involved in the transcription and translation of protein-
coding regions in DNA. The genetic material of some viruses (such as
poliovirus or retroviruses) is made of RNA instead of DNA.
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RNA polymerase. An enzyme that catalyzes the formation of RNA from a
DNA or RNA template.

RNA splicing. One of the last stages of posttranscriptional RNA processing in
eukaryotes, in which transcripts of exons are joined together to form mature
mRNA while the transcripts of introns are removed.

rRNA. See Ribosomal RNA.

S

S phase. The stage of the cell cycle during which DNA is replicated.

Secondary structure. Local substructure in a biopolymer three-dimensional
structure that corresponds to a consecutive sequence of monomer residues
(nucleotides in nucleic acids or amino acids in proteins).

Second messenger. A compound, such as cyclic AMP or IP3, that is released
within a target cell after a hormone or other “first messenger” has bound to a
surface receptor on a cell. The second messenger usually triggers further
reactions within the cell.

Segregation, genetic. The separation of alleles or of homologous chromosomes
from one another during meiosis so that each of the haploid daughter nuclei
produced by meiosis contains one or the other member of the pair found in
the diploid mother cell but never both.

Semantics. In linguistics, systematic studies of meaning of linguistic expressions
(such as sentences).

Semiconservative replication. The common way in which DNA is synthesized.
Each of the two partner strands in a double helix acts as a template for a new
partner strand. After replication, each double helix consists of one old and
one new strand.

Sense mutation. A mutation that leads to a visible or measurable change in
phenotype. At the molecular level a sense mutation in a protein-encoding
region leads to the replacement of one amino acid by another in a polypeptide
encoded by this gene.

Sequence hypothesis. The first of two basic assumptions of molecular biology
(the second is the central dogma). (1) Original formulation: “Specificity of a
piece of nucleic acid is expressed solely by the sequence of its bases, and this
sequence is a (simple) code for the amino acid sequence of a particular protein”
(Crick, 1958). (2) In cellular protein biosynthesis, the amino acid sequence of
a polypeptide (primary structure of a protein) is collinear with and determined
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(solely) by the sequence of a specific protein-encoding region in chromosomal
DNA.

Sequence pattern. Given a generalized k-gram alphabet, we select strings of
length ranging from 1 to k that we call motifs and strings that we call
punctuations. Usually strings that are not selected to be motifs and their
concatenations serve as punctuations. A sequence pattern is a string of motifs
and punctuations that begins and ends with a motif. A contiguous pattern is a
sequence pattern that does not contain punctuations, whereas a noncontiguous
pattern is a sequence pattern that does contain punctuations. Note: Some
authors define sequence patterns as k-grams only and then talk of motifs as
combinations of patterns that are repeated in a sufficiently large number of
sequences from a given collection of sequences. In this sense patterns are
always k-grams (contiguous), whereas motifs may be both contiguous and
noncontiguous.

Sex chromosome. In organisms with a chromosomal mechanism of sex
determination, one of the chromosomes involved in sex determination. In
humans these are chromosomes X and Y.

Sex linkage. Inheritance controlled by genes located on (or coexpressed with)
the sex chromosomes of organisms having a chromosomal mechanism for sex
determination.

Shannon entropy. A mathematical function of a random variable that measures
deviation of a probability distribution (of this variable) from the discrete
uniform distribution. Shannon entropy and its variants have been extensively
used in sequence analysis as statistical tools of choice.

Shine-Dalgarno sequence. A “signal” sequence apparently responsible for
binding a ribosome to an mRNA molecule just before translation in bacteria
(most studies were done on E. coli). The most representative (consensus)
sequence is a heptanucleotide TAAGGAG (at the DNA level) in which the
palindrome AGGA appears to be the most conserved part. The
heptanucleotide like that occurs only a few nucleotides (approximatelly 13)
upstream of the translation start site. The Shine-Dalgarno sequence is a good
example illustrating the definition of motif as a conserved function-associated
sequence feature (“signal” sequence).

Signal sequence. The sequence in nucleic acids or proteins that is recognized
by other agents (also nucleic acids or proteins) as an indicator of specific
function. Examples are Shine-Dalgarno sequences, signal sequences in variable
regions of immunoglobulin genes, or a region of a protein that binds necessary
substrates to transport this protein through a particular cellular membrane.
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Signal transduction pathway. The series of biochemical steps whereby a
stimulus to a cell (such as a hormone or neurotransmitter binding to a receptor)
is translated into a functionally meaningful response of the cell.

Significance (statistical): (1) The probability that a test or experiment leads by
chance alone to an erroneous rejection of the null hypothesis when the null
hypothesis is in fact acceptable. (2) The likelihood that a statement is true. (3)
The degree of deviation of an observation from its occurrence by chance alone
according to a model of chance. The degree of nonconformity to a (presumed
correct) model of chance in the foregoing sense.

Silencer. A sequence of eukaryotic DNA that binds proteins that inhibit the
transcription of an associated gene.

Silent mutations. Genetic changes that do not lead to a phenotypic change. At
the molecular level, these are DNA sequence changes that, because of the
redundancy of the genetic code, result in the same amino acids in the resulting
protein. See also Synonymous mutation.

Simulation. Imitating the behavior of a real system by using properties of its
model or a class thereof.

Small nuclear ribonucleoprotein particle (snRNP). A complex of an enzyme
and a small nuclear RNA molecule, functioning in RNA splicing.

Somatic. Pertaining to the body or body cells but not to germ cells.

Speciation. Evolution of reproductive isolation within an ancestral species,
resulting in two or more descendant species. An evolutionary process leading
to the emergence of two or more new species from the ancestral one.

Species. (1) A population or series of populations of closely related and similar
organisms. (2) In biology, a set (group) of individual organisms capable of
interbreeding freely with each other and at the same time incapable of
interbreeding with organisms from outside this set.

Spliceosome. An RNA-protein complex that is involved in splicing out introns
from eukaryotic pre-mRNAs.

Splicing. The removal of introns from pre-mRNA (hnRNA) and the
simultaneous joining together of exons to form mature mRNA that contains
a protein-coding region ready for translation.

Spontaneous reaction. A chemical reaction that will proceed on its own
without any outside influence. A spontaneous reaction need not be rapid.

Stability. (1) The capacity for a system to remain within a nominal range of
(nonextreme) behavior. (2) Resistance to change, deterioration, or
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displacement. (3) The ability of a system (or an object) to maintain equilibrium
or resume its original state after alteration (such as resuming its original
position after displacement).

Stabilizing selection. Selection against the extreme phenotypes in a population,
so that the intermediate types are favored. (Contrast with Disruptive selection.)

Start codon. The mRNA triplet (AUG) that acts as a signal for the beginning
of translation at the ribosome.

Statistical inference. Finding out properties of an unknown statistical
distribution from data generated by that distribution.

Standard deviation (SD). Square root of the variance of a distribution. Can be
estimated from the sample standard deviation, which is the square root of the
sample variance.

Stop codons. Triplets (UAG, UGA, UAA) in mRNA that act as signals for the
end of translation at the ribosome.

Structural formula. A representation of the positions of atoms and bonds in a
molecule.

Sub-. A prefix often used to designate a structure that lies beneath another or
is less than another.

Substrate. One of the chemicals (chemical entities) that enter into a chemical
reaction. (Every reaction proceeds from substrates to products.)

Symmetry. (1) The property of the relation between two objects A and B such
that if A is in relation with B, B must be in relation with A. (2) Identity of two
objects regarding dislocation in space (such as translation or rotation), time,
or the generation of a mirror image.

Synonymous mutation (substitution). A nucleotide substitution in a protein-
coding gene that does not change the amino acid assigned by the genetic code
to the trinucleotide affected by substitution.

Syntax. In linguistics, a set of rules whereby words or other elements of
sentence structure are combined to form grammatically correct sentences
without regard to their meaning.

System. A group of interacting, interrelated, or interdependent elements
forming a complex whole whose properties are not a simple combination of
the properties of the elements. Specific additional meanings include the
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following. (1) A functionally related group of elements, especially (a) the
organism regarded as a physiological unit; (b) a group of physiologically or
anatomically complementary organs or parts (the immune system, nervous
system, and digestive system are representative examples); (c) a group of
interacting mechanical or electrical components functioning in a robust
manner within a mechanical or electrical device (machine) (an exhaust system
or electrical system in an automobile are representative examples here); and
(d) a network of objects or structures with indication of connections between
them (a Metro or road system in a big city is a representative example here);
(2) An organized set of interrelated ideas or principles such as a religion,
ideology, or other belief-based general paradigm. A scientific system, legal
system, and ethical system are representative examples here. (3) A naturally
occurring group of objects or phenomena. The solar system, a (specific)
ecosystem, or a pack of wolves are representative examples here. (4) A set of
objects or phenomena grouped together for the purpose of classification or
analysis. All life forms in the ocean or all elementary particles in the cosmos
could be representative examples here. (5) A method, a procedure, or a
paradigm that can be systematically reused without changing details each time
it is used. A number system (such as binary or decimal), writing system (such
as roman script), and cryptographic system are representative examples here.

Systematics. The scientific study of the diversity of organisms via appropriate
classification and coding (naming).

T

TATA box. A short consensus sequence (usually octanucleotide)
approximately 25 base pairs upstream of the transcription initiation site within
the promoter region of protein-coding genes.

Taxis. The movement of an organism in a particular direction with reference
to a stimulus. Taxis usually involves the employment of one sense and a
movement directly toward or away from the stimulus or else the maintenance
of a constant angle to it. Thus positive phototaxis is movement toward a light
source, negative geotaxis is movement upward (away from gravity), and
chemotaxis is movement toward or away from a chemical.

Taxon. A unit in a taxonomic system.

Taxonomy. The science of classification of organisms.

Telomeres. Repeated DNA sequences at the ends of eukaryotic chromosomes.

Template. In biochemistry, a molecule or surface upon which another molecule
is synthesized in complementary fashion, as in the replication of DNA.
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Template strand. In a protein-coding region of double-stranded DNA during
transcription, the strand that is transcribed (antisense strand) to eventually
produce the mRNA.

Tertiary structure. (1) In reference to a protein, the relative locations in three-
dimensional space of all the atoms in the molecule. (2) The overall three-
dimensional shape of a protein.

Theory. (1) Systematically organized knowledge applicable in a relatively wide
variety of circumstances, especially a system of assumptions, accepted
principles, and rules of procedure devised to analyze, predict, or otherwise
explain the nature or behavior of a specified set of phenomena. (2) Abstract
reasoning; speculation. (3) A belief that guides action or assists comprehension
or judgment. (4) An assumption based on limited information or knowledge;
a conjecture. (5) A narrative describing a possible scenario (chain) of events
that could lead to a given outcome.

Thymine. A nitrogen-containing base found in DNA.

Tissue. A group of similar cells organized into a functional unit and usually
integrated with other tissues to form a functional part of an organ.

Trait. An observable form of character. For example, hair color is a character;
brown hair and red hair are traits.

Transcription. The synthesis of RNA, using one (noncoding) strand of DNA
as the template.

Transcription factor. Any protein other than RNA polymerase that participates
in a transcription initiation complex and is required for transcription.

Transduction. Transfer of a portion of genetic material from one cell to
another, with a virus, plasmid, or other vector acting as the carrier.

Transfection. Uptake, incorporation, and expression of foreign DNA by a
cell.

Transfer RNA (tRNA). A category of relatively small RNA molecules (about
75 nucleotides). Each kind of transfer RNA is able to accept a particular
activated amino acid from its specific activating enzyme. It is also able to
recognize (via an anticodon loop) the mRNA codon for this particular amino
acid. Recognition of a codon is usually coordinated with detaching the amino
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acid and incorporating it into an elongated polypeptide chain at the translation
complex (ribosome, mRNA, and aminoacyl-tRNA).

Transformation. Mechanism for transfer of genetic information in bacteria in
which pure DNA extracted from bacteria of one genotype is taken in through
the cell surface of bacteria of a different genotype and incorporated into the
chromosome of the recipient cell.

Transgenic. Containing recombinant DNA incorporated into its genetic
material.

Translation. Synthesis of a protein (polypeptide) according to the sequence
encoded in mRNA.

Translocation. In genetics, a rare mutational event that moves a portion of a
chromosome to a new location.

Transposable element. A segment of DNA that can move to, or give rise to
copies at, another locus on the same or a different chromosome.

Triplet. A trinucleotide. (See also Codon).

Triplet repeat. Occurrence of a repeated trinucleotide. It is believed that some
genetic diseases can be associated with excessive triplet repeats. For instance,
excessive repetition of CGG is associated with the condition called fragile-X
syndrome.

tRNA. See Transfer RNA.

U

Unicellular. Consisting of a single cell; as, for example, a unicellular organism.
(Compare Multicellular.)

Uniform distribution (discrete uniform distribution) (DUD). A probability
distribution of a random variable in which all events are independent of each
other and occur with probabilities p equal to each other. Considered the most
conceptually important statistical distribution to the formal foundations of
today’s probability theory. A good model of DUD is the socalled Bernoulli
text, a very long random string of letters from an alphabet of size N in which
every letter occurs independently from all other letters and with probability
(the same for all letters) equal to 1/N. Another good model is a sequence of
outcomes of a large number of tosses of an unbiased coin. Here both outcomes
are independent of each other and occur with probability 1/2 (same result as
with Bernoulli text over two-letter alphabet.)
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V

van der Waals interaction. A weak attraction between atoms resulting from
the interaction of the electrons of one atom with the nucleus of the other
atom. This attraction is about one-fourth as strong as a hydrogen bond
(another type of weak interaction).

Variable region. The part of an immunoglobulin molecule or T-cell receptor
that includes the antigen-binding site.

Variance of a distribution. A measure of dispersion of a distribution of a
random variable X around the expected value E(X). In qualitative terms the
value of the variance indicates how representative of the distribution its
expected (mean) value is. The variance of a given distribution X can be
determined from the formula var (X)=E[(X-m)2], where m is the expected
value (mean) of X, E(X).

For a finite sample of size N the estimator of variance is the sample variance,

 

where xi is the ith element of the sample and mean  is the
sample mean.

Vector. (1) An agent, such as an insect, that carries a pathogen that affects
another species. (2) An intermediary object (such as a plasmid or a virus) that
carries an inserted piece of DNA into the chromosomal DNA of a cell. (3) In
mathematics (algebra), an element v of a vector space V over a field F. A one-
dimensional array. For a fixed natural number k, any sequence of k real (or
complex) numbers can be considered a vector in a k-dimensional vector space.
In particular, a sequence of three numbers can be considered a vector in three-
dimensional space provided that the appropriate algebraic operations are
defined. (4) In physics, a mathematical object characterized by magnitude
and direction that can be used to quantitatively represent properties of physical
systems such as velocity or force.

Vertebrate. An animal whose nerve cord is enclosed in a backbone of bony
segments called vertebrae. The principal groups of vertebrate animals are the
fishes, amphibians, reptiles, birds, and mammals.

Virion. The virus particle, the minimum unit capable of infecting a cell.

Viroid. An infectious agent consisting of a single-stranded RNA molecule with
no protein coat; produces diseases in plants.
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Virus. Ultramicroscopic infectious particle that contains nucleic acid packed
inside a capsid (coat) made of protein.

W

Wild-type. Geneticists’ term for standard or reference type. Deviants from
this standard, even if the deviants are found in the wild, are said to be mutant.

Wirchov rule. See Cell theory.

X

X-linked. A character that is coded for by a gene on the X chromosome. (Also
called sex-linked.)

Y

Yeast artificial chromosome. A laboratory-made DNA molecule containing
sequences of yeast chromosomes (origin of replication, telomeres, centromere,
and selectable markers) so that it can be used as a vector in yeast.

Z

Z-DNA. A form of DNA in which the molecule spirals to the left rather than
to the right.

z-Value (z-score). The observed value of a Z statistic that is constructed by
standardizing some other statistic. The Z statistic is related to the original
statistic by measuring the number of standard deviations by which a given
data point differs from the expected value:

Z=(observed–expected value of original)/[standard deviation (observed)]

Zygote. The cell created by the union of two gametes, in which the gamete
nuclei are combined in one nucleus. Creation of a zygote is the initial stage of
development of an individual diploid organism.
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Appendix 2

A Dictionary of Programs for
Sequence Analysis*

Andrzej K.Konopka

BioLingua Research Inc., Gaithersburg, Maryland, U.S.A.

Jaap Heringa

Centre for Integrative Bioinformatics VU (IBIVU), Faculty of Sciences
and Faculty of Earth and Life Sciences, Free University,
Amsterdam, The Netherlands, and MRC National
Institute for Medical Research, London, England

This listing was compiled in an attempt to enrich description of the methods
that are in use in today’s sequence analysis. It is written for those brave
individuals who do not like to use other people’s programs but would certainly
like to know what programs have already been written. We hope the
compilation will be of use to computational biology software writers as well
as to readers who desire to understand details of specific sequence analysis
methods in their original (“pure”) form. For the purpose of clarity we do not
list many software solutions that pertain to artificial learning (such as artificial
neural networks or hidden Markov models) that otherwise rely on
combinations of “pure” methods.

*Cited references are listed in Appendix References following this appendix.

Copyright © 2004 by Marcel Dekker



Appendix 2504

Some of the programs described in this collection do not have names, so
they are identified by author name and year of publication. The corresponding
research paper is listed in the Appendix References. The fact that some
programs have no names is a reflection of the computational biologists’ spirit
in the early postpioneering period that spanned the 1980s and early 1990s.
Writing computer programs was considered the least important part of a
research task. With very few exceptions, scientists involved in the field of
computer-assisted sequence research actively resented the commerce-oriented
attitudes of Microsoft and other commercial software development companies.
In fact, scientists of this period wrote a number of first-rate software tools
without making much noise about this fact. However, many of these tools are
widely used today either in the original standalone form or as adaptations
within larger commercial or semicommercial packages. This is one reason
why we decided to make descriptions of algorithms available to a larger
community of readers. We believe these descriptions (primarily included in
the original papers cited) will be particularly valuable to the readers who
work with software within computational biology and bioinformatics.

The actual origins of computational methods almost always predate by a
few years the first publication about them. That is the major reason, we think,
why the actual inventors of the method are sometimes not the authors of the
initial journal publication concerning it. In compiling this dictionary we
attempted to keep the record of pivotal methods as fair to the inventors as
possible, but in many instances the only reliable source of the original
description of methods is the first journal article.

Argos (1987). Program by Argos (1987) to generate dot plots for pairwise
protein sequence comparison. The method uses classical alignment-based
amino acid similarity scores combined with five physicochemical parameters
per amino acid in calculating the window scores. Windows of different lengths
are tested simultaneously, and ones with the best scores appear in the final dot
plot.

Barton and Sternberg (1990). A flexible profile-searching technique to search
with a multiple sequence alignment for sequences that show similarity with
the alignment. Significant residue positions are selected on the basis of
sequence conservation, functional importance, or the presence of secondary
structure. These residues, constituting the pattern, can be separated by gaps
that serve to exclude variable regions from the analysis. For each gap, minimal
and maximal possible lengths are derived from the initial sequence set. A
lookup table similar to a profile is then calculated, which results in scores to
compare each element of the pattern with each residue type. The flexible
pattern is subsequently compared to every databank sequence using a modified
every databank sequence using a modified Needleman and Wunsch (1970)
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technique. The method is especially recommended for sequence alignments in
which crucial elements are separated by long noisy stretches, which are
effectively discarded by the method.

BLAST. BLAST (Basic Local Alignment Search Tool) (Altschul et al., 1990) is
a widely used rapid program for searching sequence databanks for similarities
to a given query sequence. To some extent it mimics the local alignment
procedures described by Smith and Waterman (1981) but employs hashing
techniques to gain speed. Recent additions to the BLAST suite of programs
are PSI-BLAST (Position Specific Iterative BLAST) (Altschul et al., 1997),
which uses information from multiple sequences in iterative database searches,
and PHI-BLAST (Pattern Hit Initiated BLAST) (Zheng et al., 1998), which

local similarities surrounding the fragments found by the pattern matching.

BLASTN. An adaptation of BLAST designed for comparing DNA sequences
with other (or the same) DNA sequences.

BLASTP. An adaptation of BLAST designed to search for related proteins.

BLASTZ. A version of BLAST designed to compare very large nucleotide
sequences.

BLITZ. Parallel implementation by Collins and Coulson (1990) of the full
Smith and Waterman (1981) local pairwise sequence alignment technique.
The computer protocol is devised to perform database searches based on the
MPsrch technique (Sturrock and Collins, 1993), which runs on massively
parallel computers with SIMD (single instruction, multiple data) processors.
Available also is an implementation of the BLITZ server by Compugen.

BLAZE. A database search tool that implements the formalism of Smith and
Waterman (1981) applied to a modified version (Gotoh, 1986, 1987) of the
Needleman and Wunsch (1970) algorithm. The program was first
implemented on the massively parallel computer MassPar by Brutlag et al.
(1993).

Boguski et al. (1992). A semimanual program suite that incorporates the space-
efficient local alignment routine SIM of Huang et al. (1990) as well as the
MSA method for global multiple sequence alignment of Lipman et al. (1989).
For each pair of sequences, the highest scoring local alignments containing
gaps are determined, from which nongapped regions in each of the sequences
are extracted. Whenever meaningful, neighboring blocks of such motifs with
the intervening sequence fragments are aligned using the MSA method, thus
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allowing gaps. The method of Boguski et al. (1992) also provides a user
interface through which parts of the alignment can be manually edited.

Bucher and Hofmann (1996). Statistical local alignment technique for pairwise
sequence comparison in which each cell[i, j] in the DP search matrix is
interpreted as the total probability that a local alignment would go through it.
This is achieved by summing the scores of all local alignments intersecting
cell[i, j]. Using this approach, Bucher and Hofmann (1996) reported an
increase in pairwise sequence search capabilities.

Chou and Fasman (1974). Early protein secondary structure prediction
method for single protein sequences. Predictions are based on differences in
residue composition for three states of secondary structure: α-helix, ß-strand,
and turn. Preferences for each type of amino acid to constitute any of these
secondary structures were derived from protein tertiary structures using sliding
window approaches. Secondary structures are predicted for each sequence
position according to the highest preference values of the structural states.
Extensions of secondary structures are made as long as preferences remain
above a threshold and certain disruptive residues are not encountered (such
as proline, which breaks an α-helix).

Clustal. A widely used global multiple sequence alignment method. The first
version of Clustal was first published by Higgins and Sharp (1988) and was
specially designed for use on small workstations. Computation was reduced
for the pairwise alignments of the sequences by using the Wilbur and Lipman
(1983, 1984) algorithm. From the pairwise similarities, a guide tree is
constructed using the UPGMA clustering criterion. The sequences are then
aligned following the branching order of the tree. For the comparison of
groups of sequences, Higgins and Sharp (1988) used consensus sequences to
represent aligned subgroups of sequences and also employed the Wilbur-
Lipman technique to match these. The Clustal package has been subjected to
a number of revision cycles. Higgins et al. (1992) implemented an updated
version, ClustalV, in which the memory-efficient dynamic programming
routine of Myers and Miller (1988) is used, enabling the alignment of large
sets of sequences using little memory. Further, two alignment positions, from
different alignments, are compared in ClustalV using the average alignment
similarity score of Corpet (1988). The largely extended version ClustalW
(Thompson et al., 1994) uses the alternative neighbor-joining (NJ) algorithm
(Saitou and Nei, 1987), which is widely used in phylogenetic analysis, to
construct a guide tree that can also be used for phylogenetic analysis.
Sequence blocks are represented by a profile in which the individual
sequences are additionally weighted according to the branch lengths in the NJ
tree (Thompson et al., 1994). An integrated user interface is implemented in
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ClustalX (Thompson et al., 1997) that is integrated with accessory programs
for tree depiction. A WWW server for ClustalW is available at http://
www2.ebi.ac.uk/clustalw/.

COILS2. A program to predict coiled-coil structures in globular proteins
from sequence information (Lupas et al., 1991; Lupas, 1996). The usual left-
handed coiled-coil interaction (superhelical twist) involves a repeated motif
of seven helical residues (abcdefg), where the a and d positions are normally
occupied by hydrophobic residues constituting the hydrophobic core of the
helix/helix interface, whereas the other positions display a high likelihood to
comprise polar residues. Furthermore, the heptad e and g positions are often
charged and can form salt bridges. The COILS2 method exploits these facts
and compares a query sequence with a database of known parallel two
stranded coiled coils. A similarity score is derived and compared to two score
distributions, one for globular proteins (without coiled coils) and one for
known coiled-coil structures. The two scores are then converted to a
probability for the query sequence to adopt a coiled-coil conformation.
Because the program assumes the presence of heptad repeats, probabilities
are derived using default window lengths of 14, 21, and 28 amino acids. The
program can also use user-defined window lengths for the prediction of
extreme coiled-coil lengths. A recently updated scoring matrix, based on data
from recent coiled-coil structures and containing amino acid type
propensities for various positions in the heptad repeat, shows improved
recognition of coiled-coil elements. The COILS2 method accurately
recognizes left-handed two-stranded coiled coils but loses sensitivity for
coiled-coil structures consisting of more than two strands. The method is not
suited to recognize right-handed or buried coiled-coil helices and therefore is
not applicable to transmembrane coiled-coil structures. A WWW server for
the COILS2 method is available at http://www.ch.embnet.org/software/
COILS_form.html.

DCA. Fast implementation of the global multiple sequence alignment method
MSA (Lipman et al., 1989) by Stoye et al. (1997). Speed is optimized by using
a divide-and-conquer strategy (Stoye et al., 1997). However, the DCA method
remains extremely CPU- and memory-intensive and is applicable only to small
data sets.

DIAGON. Program by Staden (1982) to generate dot plots for pairwise protein
sequence comparison. The program is based on filtering techniques originally
published by McLachlan (1971, 1972, 1983). Sequence regions showing
significant similarity are identified by using windows of fixed length that are
effectively slid over the two sequences to compare all possible stretches of
typically five matched residue pairs. The mean value and standard deviation
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of scores from comparing randomized windows gathered from shuffled
sequences are compared with the window scores from the two query sequences
(using the Z-score; i.e., the number of standard deviations of the real scores
above the random mean). The output values are filtered on the basis of a
cutoff value for placing dots in the comparison matrix.

DIALIGN. Local multiple sequence alignment method by Morgenstern (1999).
DIALIGN is a segment-based local procedure that constructs a multiple
alignment by assembling a collection of high-scoring segments in a sequence-
independent progressive manner. The method is thus based on segment-to-
segment comparisons rather than the residue-to-residue comparisons used in
other programs. The segments are incorporated into a multiple alignment
using an iterative procedure. The method aligns only sequence fragments that
have sufficient sequence similarity; other regions remain unaligned. A WWW

DISTAN. Program originally written as part of the method for frequency
analysis of distances between short oligonucleotides (Konopka and Smythers,
1987) in long DNA and RNA sequences and in large collections of such
sequences. The algorithm is based on a concept of noncontiguous sequence
patterns (contiguous oligonucleotide motifs separated by gaps of variable
length).

DISTANP. A program for scoring frequency counts of distances between
short oligopeptides expressed in several different alphabets (including the 20
amino acid residue alphabet) in individual polypeptide (protein) sequences as
well as in large collections of such sequences. The program was originally an
extension of DISTAN adapted for analysis of proteins (Konopka and
Chatterjee, 1988). Today it is a stand-alone software tool used for nonroutine
sequence analyses.

DSC. A method to predict the protein secondary structure for a set of multiply
aligned sequences (King and Sternberg, 1996). The DSC method combines
the compositional features of multiple alignments with empirical rules that
are important for secondary structure prediction. The information is processed
using linear statistics. The empirical rules and concepts used that relate to
multiple alignment information are (1) N-terminal and C-terminal sequence
fragments normally adopt a coiled structure; (2) alignment positions
comprising gaps are indicative for coil regions; (3) periodicity in positions of
hydrophobic or conserved residues; and (4) residue ratios in the alignment.
These patterns are detected using autocorrelation, feedback of predicted
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secondary structure information, and some simple filter rules. Prediction
occurs in five consecutive steps:

1. The basic prediction of the secondary structure is carried out using
the GOR method (see GOR entry), which is used on each of the
aligned sequences. The average GOR score for each of the three states
is then compiled for each alignment position.

2. For each alignment position a so-called attribute vector is compiled,
consisting of 10 attributes: the three averaged GOR scores for H, E,
and C from step 1; distance to alignment edge; hydrophobic moment
assuming helix; hydrophobic moment assuming strand; number of
insertions; number of deletions; conservation moment assuming helix,
and conservation moment assuming strand.

3. The positional vectors are doubled in size to 20 attributes by adding
the same 10 attributes in a smoothed fashion (using running averages).

4. Seven more attributes are added to the 20 attributes of the preceding
step: weights for predicted α-helix and ß-strand, based on the 20-
attribute vectors of step 3, and the fractions of the five most
discriminating residue types, His, Glu, Gln, Asp, and Arg. To convert
these 27-attribute vectors to three-state propensities, a linear
discrimination function is used. This is effectively a set of weights for
the attributes in the positional vector corresponding to each of the
secondary structure states, so three sets of 27 attribute weights are
used. The optimal weights used in the DSC method were gathered
using a training set of known 3-D structures. After applying the
weights to the attribute vectors for each alignment position, the
secondary structure associated with the highest scoring vector is
taken.

5. A set of 11 simple filter rules are used for a final prediction, such as
([E/C]CE[H/E/C][H/C])→C, where [E/C] denotes E or C. These filter
rules were derived automatically using machine learning techniques.

The accuracy of the DSC method, as assessed by the authors, is 70.1% (King
and Sternberg, 1996). As an additional option, the DSC method can also be
used to refine a prediction by the PHD algorithm of Rost and Sander (1993).
The average accuracy of this PHD-DSC combinatorial procedure is 72.4%
(King and Sternberg, 1996). A WWW server for the DSC method is available
at http://bonsai.lif.icnet.uk/bmm/dsc_read_align.html.

DSSP. Widely used protein secondary structure assignment method by Kabsch
and Sander (1983). Input for DSSP is a three-dimensional structure (protein
coordinate data) from the Protein Data Bank (Bernstein et al., 1977).
Assignment is based on hydrogen-bonding patterns and geometrical features
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of the protein main chain. DSSP groups protein secondary structures into
eight classes: α-helix (H), 3/10-helix (G), π-helix (I), β-strand (E), β-bulge (B),
bend (S), hydrogen-bonded turn (T) and coil (‘ ‘).

Eisenberg et al. (1982). Protocol to measure helix amphipathicity. The measure
was named the hydrophobic moment and defined as the vector sum of the
individual amino acid hydrophobicities radially directed from the helical axis.
In general, the hydrophobic moment provides sufficient sensitivity to
discriminate between amphipathic α-helices of globular, surface, and
membrane proteins.

FASTA. Program for fast comparison of a given query sequence with a library
of sequences created by Pearson and Lipman (1988). For each sequence pair,
the highest scoring local alignment is determined. Speed is obtained by
delaying the application of the dynamic programming technique to the
moment where the most similar segments are already identified by faster and
less sensitive techniques. The FASTA routine operates in four steps. The first
step searches for identical words of a user-specified length occurring in the
query sequence and the target sequence(s) using the algorithm of Wilbur and
Lipman (1983, 1984). This technique involves searching for identical words
(k-tuples) of a certain size within a specified bandwidth along search matrix
diagonals. The search is performed by hashing techniques, where a lookup
table is constructed for all words in the query sequence, which is then used to
compare all words encountered in the target sequence(s). For not-too-distant
sequences (>35% residue identity), little sensitivity is lost and speed is greatly
increased. Generally, for proteins, a word length of two residues is sufficient
(ktup=2). Searching with higher ktup values increases the speed but also the
risk that similar regions will be missed. For each target sequence, 10 regions
with the highest density of ungapped common words are determined. In the
second step, these 10 regions are rescored using the Dayhoff PAM250 residue
exchange matrix (Dayhoff et al., 1983), and the best scoring region of the 10
is reported under init1 in the FASTA output. In the third step, regions scoring
higher than a threshold value and sufficiently near each other in the sequence
are joined, now allowing gaps. The highest score of these new fragments can
be found under initn in the FASTA output. The fourth and final step performs
a full dynamic programming alignment over the final region, widened by 32
residues at either side, because earlier steps tend to cut similar regions short.
The final score is written under opt in the FASTA output.

Feng and Doolittle (1987). Method for the construction of a phylogenetic tree
through progressive global alignment of the sequences. The algorithm uses
only strictly pairwise sequence comparisons; it does not use any consensus
sequences or averaging of similarities to compare blocks of sequences. Gaps
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in already aligned sequences are fixed by inserting special gap characters at
gap positions. First, a rough branching order is determined using the
phylogenetic tree-building method of Fitch and Margoliash (1967). This tree
order is basically followed, but the alignment order of nearest neighbors in
each obtained subgroup of sequences is reversed and the highest scoring
alignment is selected for further comparison. For example, if the initial
branch order is ((AB)C)D, then A and B are aligned first. The alignment
orders ABC and BAC (alignment taking place successively from left to right)
are then checked and the best alignment is taken; for example, BAC. Then,
BACD and BADC are examined. Only nearest neighbors are swapped to keep
computation manageable; other possible permutations are not considered.

Fickett (1982). One of the first programs to recognize protein-coding regions
in naturally occurring nucleotide sequences. The algorithm is based on the
calculation of the weighted sum of eight frequency-count-related parameters
determined for a given studied sequence.

Frishman and Argos (1992). Profile-based method to delineate conserved
sequence blocks and use them to flexibly search sequence databanks. First, a
neural network is used to elucidate unknown patterns from a multiple
alignment of N sequences. One segment of width W in each position of the
alignment is tested, and the net is trained on the alignment of the segment
including N-1 sequences, after which the excluded sequence segment is
submitted for recognition and the network output recorded. This is repeated
with each of the N segments removed. The average net recognition is then
used as a measure of conservation for this alignment region. In the second
step, the M most conserved protein blocks are used to extensively train M
corresponding neural networks, which are then used to scan the protein
sequence databank. Variable constraints can be imposed on the distances
between the blocks, although the M blocks must be in the same sequential
order as in the multiple alignment.

GCG Wisconsin Package. A collection of basic public domain sequence
analysis programs that have been integrated into a common graphic interface
and input/output format.

GIBBS. Local multiple sequence alignment program by Lawrence et al.
(1993). The method is based on the Gibbs statistical method of iterative
sampling. The GIBBS algorithm searches for gap-free motifs of a certain
preset length W, which are found by a random optimization procedure.
Individual sequence segments of given length W are sampled iteratively from
a set of N sequences. In the first step the segments are taken from random
positions of N-1 sequences, one randomly selected sequence being excluded.
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A tentative “conserved” region of length L is constructed from these
segments, for which observed and statistically expected residue frequencies
for each of the L positions are calculated. Then all possible segments from the
excluded sequence are tested, one by one, for their consistency with the amino
acid probabilities of the generated subalignment. If at least a small fraction of
the randomly selected segments are actually related, thus providing a weak
information signal, the probability of successful extension of the nascent
pattern by related segments from other sequences in the set will be slightly
higher than could be expected for a completely random situation. The
procedure is repeated iteratively, and the pattern probabilities are
recalculated at each step, with the discriminative power of the pattern
possibly growing with the inclusion of each new related member.

GOR. Method to predict protein secondary structure for a single protein
query sequence. The GOR method quickly became the standard for about a
decade after its first appearance (Garnier et al., 1978). The first versions,
GOR I and II, predict four states by discriminating between coil and turn
secondary structures. GOR III (Gibrat et al., 1987) and the most recent
version, GOR IV (Garnier et al., 1996), perform the common three-state
prediction. The GOR method relies on the amino acid frequencies observed
and uses a 17-residue window (i.e., eight residues N-terminal and eight C-
terminal of the central window position) to derive the probability of the
window’s central residue for each of the three structural states. The amino
acid frequencies associated with secondary structure observed in the
structural database (PDB) are exploited using an information function based
on conditional probabilities for each amino acid to occur in any of the three
states H, E, or C. The early versions of the GOR algorithm simply summed
the individual propensities associated with each of the 17 residue types in the
window and thus did not take the order of the amino acids in the window
into account. Considering the amino acid order in full is not feasible, because
it would require the sampling of all possible 17-residue fragments directly
from the PDB (there are 1720 possible fragments). Subsequent versions of the
GOR method over the years have explored increasingly detailed approaches
to this combinatory problem, along with the growth in the amount of data
available in the PDB. The current version, GOR IV (Garnier et al., 1996),
supplements the basic propensities with pairwise information over all
possible paired positions in the window considered (there are 17×16/2
possibilities). However, relatively small weights are used for the pairwise
propensities compared with the basic propensities. In the GOR IV method, a
final filter is implemented to refine the predictions. If a helix shorter than four
residues or a strand fragment with less than two amino acids is initially
predicted, the method assesses the probabilities of extending the fragment to
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the minimum associated length or deleting it (i.e., changing it to coil). WWW
servers for GOR I, III, and IV can be found at http://pbil.ibcp.fr.

Gotoh (1982). A significant modification of the Needleman-Wunsch algorithm
that leads to much better performance of optimization via dynamic
programming.

Gotoh (1986, 1987). Algorithm for pairwise sequence alignment. Gotoh
(1986, 1987) devised a dynamic programming algorithm that dramatically
decreased the storage requirements from order N2 to order N (assuming that
two sequences each N amino acids in length are matched) while keeping speed
on the order of N2.

Gribskov et al. (1987). The first computer algorithm for profile analysis. The
technique combines a full representation of a multiple sequence alignment
with a sensitive searching algorithm to search for sequences that show
similarity with the alignment. The procedure takes as input a multiple
alignment of N sequences. First, a profile is constructed from the alignment,
i.e., a position-specific scoring matrix (PSSM), that comprises the likelihood
of each residue type occurring in each position of the multiple alignment. A
Gribskov et al. profile has L(20+1) elements, where L is the total length of the
alignment, 20 is the number of different amino acid types, and the last matrix
row contains gap penalties. As a measure of similarity between different types
of residues, a residue exchange matrix is used as in dynamic programming.
Each residue position receives as a score the sum of the amino acids at that
position, where the contribution for each residue type is weighted with the
corresponding residue exchange matrix. For example, if an alignment column
contains 3 phenylalanines (F), 2 valines (V), and 5 asparatates (D), the profile
value (propensity) for the positional alanine matrix cell would be 3s(A,
F)+2s(A, V)+5s(A, D), where s(A, F) is the residue exchange matrix value for
an A→F mutation (or vice versa). Gribskov et al. (1987) used a single extra
column in the profile to describe the local weight for both the gap opening
and the gap extension penalty. For alignment positions not containing gaps,
Popen=Pextend=100, whereas for positions with insertions or deletions these values
are lowered depending on the maximum length of any gap crossing a given
alignment position. The advantage of such positional gap penalties is that
regions with gaps (probably loop regions) will be more likely to attract gaps
in a target sequence during profile searching, consistent with structural
considerations. Gribskov et al. (1987) use the Smith and Waterman (1981)
dynamic programming procedure to align their profile with each individual
target sequence. The profile scores are then corrected for sequence length,
represented in the form of Z-scores, and ranked to create the final list of
databank search hits. Top-scoring sequences with scores above some threshold
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level are then likely to be related to the multiply aligned sequences used to
build the profile. In addition to aligning a single sequence to a profile, it is also
possible to align two profiles. In this case two matched profile positions receive
a score by summing over the 20 residue types the products of the corresponding
propensities from the two profiles.

Hogeweg and Hesper (1984). First integrated progressive algorithm for global
multiple sequence alignment. A dendrogram is constructed based on all
pairwise similarities of sequences matched by dynamic programming. This
dendrogram, also called a guide tree, is then used to progressively align the
sequences pairwise, using the Needleman and Wunsch (1970) algorithm, in
the order dictated by the tree. Various similarity measures widely used in
constructing phylogenetic trees can be applied, such as the Unweighted Pair-
Group Mean Average (UPGMA) of Sneath and Sokal (1973), the present-day
ancestor method of Blanken et al. (1982), or the neighbor-joining method of
Saitou and Nei (1987). During progressive alignment, aligned blocks of
sequences are represented by so-called internode sequences, which act as likely
ancestral sequences (each internode sequence is associated with the root of
the subtree). These are constructed using the subtree covering the sequences
of the aligned block. A backtracking algorithm is applied on the subtree
associated with the sequence block to infer the most parsimonious amino or
nucleic acid at each position; i.e., the acid requiring the fewest mutations at
the alignment position considered within the sequence block. The Hogeweg
and Hesper (1984) method was also pioneering in that it was the first iterative
procedure: From the initial tree based on pairwise alignments, carrying no
information yet of related groups of sequences, a multiple alignment is
generated from which the associated pairwise sequence similarities are inferred.
Using those, a new tree is constructed that is used to create a succeeding
alignment, each time based on increased information.

Hopp and Woods (1981). An early sliding-window-based method to predict
antigenic sites from protein sequences. Antigenic sites (ASs) are locations on
the protein molecule responsible for specific antibody binding. Their
detection is an important step in biochemical characterization of a protein.
AS prediction techniques are based on the preferred location of antigenic sites
on the surface of the protein. The method of Hopp and Woods (1981)
calculates a smoothed hydrophilicity plot using a sliding window approach
based on hydrophilicity values given by Levitt (1976). Tentative antigenic
sites are identified as peaks in the hydrophilicity plot. Hopp and Woods
(1981) found that a window length of six residues produced the best results,
although many false positive or false negative predictions of antigenic sites
occur with their method.
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Jameson and Wolf (1988). A synthetic sliding window technique for prediction
of antigenic sites from sequence information. The method combines various
signals in a single so-called antigenic index, which includes the acid flexibility
propensities of Karplus and Schultz (1985), surface probabilities (Janin et al.,
1978), and residue hydrophilicities (Hopp and Woods, 1981). These three
signals are appropriately weighted to optimize the prediction results. Although
this method leads to more reliable predictions than the method of Hopp and
Woods (1981), sliding window methods are not applicable to discontinuous
antigenic determinants where the residues that constitute the antibody-binding
pocket are not close in sequence but are close in proximity in the tertiary
structure of the protein.

Jpred. A protocol for running various secondary structure prediction methods
for a given multiple alignment and creation of a consensus secondary structure
prediction. The Jpred server (Cuff and Barton, 1999) runs state-of-the-art
prediction methods such as PHD (Rost and Sander, 1993), PREDATOR
(Frishman and Argos, 1995, 1996), DSC (King and Sternberg, 1996), and
NNSSP (Salamov and Solovyev, 1995), while the methods ZPRED (Zvelebil
et al., 1987) and MULPRED (Barton, unpublished) are also included. The
NNSSP method has to be activated explicitly, because it is the slowest of the
ensemble and often will not be finished in the computing time slot allocated
to the user. The server accepts a multiple alignment and predicts the secondary
structure of the sequence on top of the alignment: Alignment positions showing
a gap for the top sequence are deleted. A single sequence can also be given to
the server. In the latter case, a BLAST search is performed to find homologous
sequences, which are subsequently multiply aligned using ClustalX (Thompson
et al., 1997) and then processed with the user-provided single sequence on top
in the alignment. If a sufficient number of methods predict an identical
secondary structure for a given alignment position, that structure is then taken
as the consensus prediction for the position. If no sufficient agreement is
reached, the PHD prediction is taken. This consensus prediction is somewhat
less accurate when the NNSSP method is not included. The Jpred server also
accepts a single query sequence, in which case it constructs a set of related
sequences by launching a BLAST database search, after which the sequences
found are aligned by ClustalX. The resulting multiple alignment is then
subjected to the actual Jpred consensus prediction technique. The Jpred server
is available at http://barton.ebi.ac.uk/servers/jpred.html.

Karplus and Schultz (1985). A method to predict protein loop flexibility, aimed
at delineating antibody-antigen binding sites. The importance of loop
flexibility in antibody binding for establishing a so-called induced fit is
supported by experimental evidence (Rini et al., 1992). In their method,
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Karplus and Schultz (1985) use empirically determined crystallographic
temperature factors, which correspond to mean-square atomic displacement.

Konopka (1990). Two highly effective methods to determine the approximate
location of putative functional domains (particularly protein-coding regions)
in unannotated nucleic acid sequences. The program explores the frequency-
count-based measures of sequence heterogeneity: the local compositional
complexity (LCC) and periodic asymmetry index (PAI).

Kyte and Doolittle (1982). A technique to identify transmembrane (TM)
regions in protein sequences. Although the globular interior of soluble proteins
is less apolar than the lipid bilayer, Kyte and Doolittle (1982) used globular
protein data to derive their classical hydrophobicity scale. The hydrophobic
scale is used to build a smoothed curve, called a hydropathic profile, by
averaging over a sliding window of given length. Stretches of hydrophobic
amino acids likely to reside in the lipid bilayer then appear as peaks whose
lengths should correspond to those expected for transmembrane segments,
typically 16–25 residues. The choice of window length should correspond to
the expected length of a TM segment. Given that the average membrane
thickness is about 30 Å, approximately 20 residues form a helix reaching
from one lipid bilayer surface to another. To determine the boundaries of a
membrane-spanning segment, a cutoff value for the hydrophobic peaks is
required.

LALIGN. A widely used version of the Waterman and Eggert (1987) algorithm
for local sequence alignment created by Huang and Miller (1991) that is part
of the popular FASTA package (Pearson and Lipman, 1988). A WWW server
for LALIGN can be found at http://www.ch.embnet.org/software/
LALIGN_form.html.

MACAW. The Multiple Alignment Construction and Analysis Workbench
(MACAW) by Schuler et al. (1991) allows the user to lock or shift regions in
an alignment while nonlocked subsequences are aligned automatically. It is
thus possible to define iteratively conserved regions such that the fraction of
poorly defined segments that must be aligned automatically becomes smaller
with each iteration. The local similarity analysis method GIBBS of Lawrence
et al. (1993) has been incorporated in the MACAW procedure.

MEME. A local multiple sequence alignment method by Bailey and Elkan
(1994). The method is able to delineate local motifs occurring in a set of input
sequences when it is given the width of the suspected motif. More than one
occurrence of the motif can be recognized in individual sequences. The
technique makes use of an expectation maximization algorithm that relies on
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Dirichlet mixtures to estimate the relative frequency of motif occurrences.
Thus recognized related motifs all contain the preset number of amino acids
and contain no gaps.

MSA. A method for simultaneous global multiple sequence alignment by
Lipman et al. (1989) that performs dynamic programming through a
multidimensional search matrix. The algorithm MSA (Multiple Sequence
Alignment) is based on the approach by Carillo and Lipman (1988), who
showed that the optimal alignment path of N sequences is limited to a small
region in the N-dimensional search matrix. The upper bounds can be inferred
from pairwise comparisons of the sequences. Although this reduces
computations, the method is extremely slow, and no more than eight or nine
sequences of 200–300 residues in length can be aligned with it in practice.
MSA assigns weights to the aligned sequences because similar sequences should
not dominate the multiple sequence alignment. Lipman et al. (1989) used the
weighting scheme of Altschul et al. (1989) based on phylogenetic trees. A
WWW server of the MSA method can be found at http://www.ibc.wustl.edu/
ibc/msa.html.

MultAlin. A global multiple sequence alignment method based on hierarchical
clustering by Corpet (1988). MultAlin can refine alignments by performing
iteration of the clustering and progressive alignment steps. For matching two
prealigned blocks of sequences, the average over the amino acid exchange
values associated with all pairwise intercolumn residue comparisons is taken
as a score between a pair of matched prealigned block positions i and j,

 

where Ai,m is the amino acid type in sequence m of alignment block position i,
Aj,n is the amino acid type in sequence n of alignment block position j, D is the
amino acid exchange weight, and M and N denote the numbers of sequences
in the two aligned sequence blocks. A WWW server for the MultAlin method
is available at http://www.toulouse.inra.fr/multalin.html.

MULTALIGN. A multiple global sequence alignment method by Barton and
Sternberg (1987). MULTALIGN establishes a simple chain order in which the
individual sequences are aligned one by one. Initially, all pairwise alignment
scores are determined and the two most similar sequences are matched first.
During further iterations, the sequence showing the highest alignment score
when matched with the prealigned sequence block is added to it. To determine
the alignment score, each sequence position i of the kth sequence matched

Copyright © 2004 by Marcel Dekker

http://www.toulouse.inra.fr


Appendix 2518

with position j of a prealigned block of k-1 sequences receives a score per
matched position averaged over the corresponding residue substitution values:

 

where D(Ak,i, Ap,j) is the amino acid exchange weight. The PAM250
substitution matrix (Dayhoff et al., 1983) is used with a constant of 8 added
to remove all negative matrix elements. Matched gaps are evaluated by the
lowest exchange weight of zero. The resulting multiple alignment can be
progressively refined by realigning each sequence with the previous alignment
from which that sequence is deleted; i.e., sequence A1 is matched with aligned
sequences A2,…,AN, sequence A2 is then realigned with the alignment of A1,
A3,…,AN and so forth. This process is repeated until all N sequences are
realigned. Barton and Sternberg (1987) recommend two such complete
refinement cycles.

MULTAL. A fast global multiple sequence alignment method by Taylor (1988)
that constructs a tree during the progressive alignment. MULTAL uses a fast
sequential branching method to align the closest pairs of sequences first and
then subsequently align the next closest sequences to those already aligned.
The order in which the sequences are aligned is largely based on the global
amino acid composition of the sequences, which is one of the reasons for the
speed of the method. Progressive alignment of the sequences is done by
dynamic programming. The MULTAL method can be downloaded from http:/
/mathbio.nimr.mrc.ac.uk.

Myers and miller (1988). A memory-efficient DP algorithm, in which basically
only two rows of the N2 search matrix linear space algorithm need to be
stored (see Needleman and Wunsch, 1970). The algorithm is based on the
Gotoh approach and on the “divide-and-conquer” trace-back strategy of back
strategy of Hirschberg (1975).

Needleman and Wunsch (1970). Algorithm to align two protein sequences
over their full lengths, which is also called global alignment. The algorithm
relies on the dynamic programming (DP) technique first introduced by
Needleman and Wunsch (1970) to the biological community. Input
parameters for the DP algorithm are a set of weights for each possible
pairwise amino acid substitution (including self-conservation values),
typically given as a so-called amino acid exchange matrix, and a gap penalty
value applied each time a gap is inserted in one of the sequences. Based on
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these input parameters, the DP technique is guaranteed to find the optimal
and highest scoring alignment of two given sequences. A DP algorithm
operates in two steps. First a search matrix is set, with one sequence displayed
horizontally and the other vertically. The matrix is basically traversed from
the upper left to the lower right, but a path can start anywhere from the first
row or column and end anywhere within the last row or column. Each cell [i,
j] in the matrix receives as a score the value composed of the maximum
possible value that is the sum of the cell’s own substitution value (i.e., the
exchange value of the associated matched residue pair of cell [i, j]) and the
value of the highest scoring cell in row i-1 or column j-1 (with subtraction of
the proper gap penalty values). After traversing the matrix, each cell [i, j]
therefore contains the maximum score of all possible alignments of the two
subsequences up to cell [i, j]. Because each step in the DP algorithm is
independent of its past, the technique falls in the class of hidden Markov
models (HMMs). In the second step of a DP algorithm, usually called the
trace-back step, the actual optimal alignment is reconstructed from the
matrix cell containing the highest alignment score. The path then follows
successively lower scores but each time selects the highest available in the
preceding row and column up to the current matrix cell. The Needleman and
Wunsch (1970) DP algorithm uses a fixed penalty value for the inclusion of a
gap of any length. Most present alignment routines take an intermediate
approach by using the formula P(x)=Po+Pex, where Po is the penalty placed
upon the opening of a gap of length x and Pe is the value for each extension of
the gap. Many researchers use a Po value 10–30 times as large as Pe. The
choice of proper gap penalties is also closely connected to the residue
exchange values used in the analysis. The Needleman-Wunsch DP algorithm
uses a two-dimensional search matrix, so that the algorithmic speed and
storage requirements are both of the order NM, when two sequences
consisting of N and M amino acids in length are matched.

NNSSP. A protein secondary structure prediction method of Salamov and
Solovyev (1995). Its input is a set of multiply aligned sequences. The NNSSP
(nearest-neighbor secondary structure prediction) method is an extension of
the k-nearest-neighbor approach of Yi and Lander (1993). In the NNSSP
method, N- and C-terminal positions of helices and strands and ß-turns are
explicitly taken as types of additional secondary structures. For each
prediction, the database of exemplars (see above) is restricted to sequences
similar to the query multiple alignment. This reduces computation time and
leads to biologically related nearest neighbors. The NNSSP method combines
window sizes of 11, 17, and 23 residues, nearest-neighbor numbers (k) of 50
or 100, and balanced or nonbalanced training. This leads to a total number of
3×2×2=12 different prediction implementations, from which a consensus
prediction is established using a simple majority rule. These consensus
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predictions are subjected to three final filter rules: (1) Helices of less than
three residues are deleted (changed to coil), but (EHE) becomes (EEE); (2)
strands of length less than three residues are deleted, but (HEEH) becomes
(HHHH); (3) helices of four or fewer residues are deleted. The latter rule is
applied only after a full cycle of rules (1) and (2). The overall accuracy of the
method as reported by the authors is 72.2%. A WWW server for the NNSSP

Parker et al. (1986). A method for protein antigenic site prediction from
sequence, using window averaging as in the method of Hopp and Woods
(1981). However, the surface profiles (or hydrophilicity plots) are calculated
using an alternative set of hydrophilicity values derived from retention times
in high-performance liquid chromatography. The Parker et al. (1986) method
yields more accurate predictions than that of Hopp and Woods (1981).

Patthy (1987). A method to extract common sequence patterns from a set of
protein sequences. As a first step, the sequences are pairwise aligned and the
most similar of them grouped. For each group, the alignments are inspected
to identify residues conserved in most of the sequences, and an initial pattern
is formulated. Then every sequence within the group is optimally aligned with
the pattern, resulting in the generation of a multiple alignment. As a next step,
the consensus sequences derived for the different groups are amalgamated,
each individual sequence realigned with the pattern, an extended multiple
alignment generated, and so on. While producing the consensus sequences,
the algorithm relies on user-specified thresholds such as the fraction of
residues deemed similar or identical according to the Dayhoff PAM250
residue exchange matrix at a given position for it to be included in the
consensus.

PHD. A widely used method to predict protein secondary structure when given
a set of multiply aligned protein sequences (Rost and Sander, 1993). PHD
combines the information from multiple sequence alignments with the
optimization strength of the neural network formalism. It makes use of two
complete neural networks consecutively: The first network produces a raw
three-state prediction for each alignment position by sliding a 13-residue
window along the alignment. A second network then refines the first-level
predictions by taking the three-state secondary structure propensities produced
by the first network and processing the information using a slightly longer 17-
residue window. The output of the second network results in three adjusted
state probabilities for each alignment position. The PHD method includes a
number of such network pairs, which are trained and optimized independently,
and feeds the predictions for each alignment position produced by each
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network pair into a third network to yield a so-called jury decision. The
predictions by the jury network are subjected to a final filtering step to simply
delete predicted helices of one or two residues, changing those into coils.
Initially assessed to predict with 70.8% accuracy, the PHD method has been
refined since this assessment and currently attains about 74% correct
predictions. If given a single sequence for prediction, the server performs a
BLAST search to obtain a set of homologous sequences and aligns those using
the MAXHOM alignment program (Sander and Schneider, 1991). The
resulting alignment is then fed into the actual PHD neural net algorithm. A

predictprotein/.

PILEUP. A global multiple sequence alignment routine from the GCG package
(Genetics Computer Group, 1993). The algorithm closely follows ClustalV. It
generates a UPGMA-based tree and for the alignment of two sets of matched
sequences uses the average alignment similarity score of Corpet (1988).

PRALINE. A method for multiple sequence alignment created by Heringa
(1999). It does not use a precalculated search tree like most progressive
alignment methods but performs at each alignment step a full profile search
and compiles the optimal alignment scores of the most recently aligned
sequence block with all other blocks and hitherto unaligned sequences. For
the next alignment step PRALINE then selects the highest scoring pair of
sequences or blocks of sequences to be aligned. The alignment order and
associated tree are thus established during the progressive alignment. The
PRALINE method offers a number of strategies based on dynamic
programming to optimize the quality of multiple alignment, including profile
preprocessing, secondary structure prediction-based alignment, and local
alignment-driven global alignment.

The profile preprocessing strategy is aimed at incorporating into each
sequence trusted information from other sequences. For each sequence, a
multiple alignment is created by stacking other sequences (N-to-1 alignment)
that score beyond a user-specified threshold when aligned pairwise with the
sequence considered. A low threshold would result in a preprocessed
alignment for each sequence comprising all other sequences (where the
chance of alignment error is large), while higher thresholds would allow
fewer and fewer sequences into the alignment (with fewer alignment errors).
A profile is constructed for each of the thus formed preprocessed alignments.
PRALINE then performs progressive multiple alignment using the
preprocessed profiles, where each sequence is now represented by its
preprocessed profile. The preprocessed profile for each of the sequences
incorporates knowledge about other sequences (in particular, similar
sequences) and comprises position-specific gap penalties. This enables
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increased matching of distant sequences and likely placement of gaps outside
the ungapped core regions in the preprocessed profiles during progressive
alignment. The multiple alignment of the preprocessed profiles can also be
used to derive consistency scores for each amino acid in the alignment, which
for each sequence reflects the consistency among the pairwise alignments
used that include that sequence.

The second strategy of exploiting secondary structure prediction to optimize
alignments (and vice versa) derives from the fact that state-of-the-art secondary
structure prediction methods rely on multiple alignments as input information.
This allows an iterative protocol of multiple alignment construction followed
by secondary structure prediction using the multiple alignment. A new
alignment can then be produced using the predicted secondary structure. The
alignment then gives rise to a new secondary structure prediction, and so
forth. The secondary structure information is incorporated in the dynamic
programming protocol by means of secondary structure-specific exchange
matrices (Lüthy et al., 1991) for α-helix, ß-strand, and coil. This is done in a
conservative manner: Only when the secondary structures in either of the
aligned sequences (or sequence blocks) are identical is a secondary structure-
specific exchange matrix used to score the matched positions; otherwise the
default residue exchange matrix is used.

The local alignment-driven global alignment strategy operates in two steps.
First, for each possible positional match between two sequences (or sequence
blocks), the score of the optimal local alignment including the match is
calculated. Then the optimal global alignment is compiled based on these
local alignment scores. This two-step alignment protocol is a variation of the
double dynamic programming protocol. The strategy ensures that the global
alignment is biased toward matching local motifs and is recommended when
local sequence similarity is suspected (for example, in cases of very different
sequence lengths). The PRALINE method allows the execution of these
strategies in an optionally iterative fashion. It can be obtained at http://
mathbio.nimr.mrc.ac.uk.

Pred2ary. A profile- and neural net-based method created by Chandonia and
Karplus (1998) for prediction of protein secondary structure. Pred2ary was
assessed to have a prediction accuracy of 748% and shows a balanced
prediction over the three structural states. It employs a second neural net to
filter the raw predictions of the first net, as does the PHD method of Rost and
Sander (1993). A recent extended version, which combines in a jury decision
the outputs of 120 individually trained networks, is claimed to predict with
75.9±7.9% accurately. The accuracy is achieved by converting each possible
pair of network output weights for helix and strand into an a priori probability
for the pair to predict the true structural state. These probabilities are then
used for a final prediction corresponding to the highest of the a priori
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probabilities for each of the three states. The Pred2ary method is accessible
through the Web at http://yuri.harvard.edu/~jmc/2ary.html.

PSA. A method of Stultz et al. (1993) that predicts secondary structure for
single sequences but employs tertiary structural information using a hidden
Markov modeling (HMM) approach. PSA is based on a threading-like
approach, in that for a query sequence the goodness of fit is tested with 15
basic tertiary structural models called discrete space models (DSMs).
Included as DSMs are, for example, the α-helical globin structure and the
flavodoxin-type α/β fold. Each of these models is composed of secondary
structure elements chosen from 13 types distinguished by the method: N- and
C-cap (for helix); average, buried, and exposed α-helix; buried β-strand;
buried and exposed amphipathic β-strand; form β-turn positions; and coil.
Using the HMM formalism for modeling the DSMs, the most suitable
implementation for each DSM (e.g., the flavodoxin-type DSM can hold five
to seven helices) is selected, and the secondary structure of the best-fitting
model is then presented to the user as a probability contour plot. Although
PSA might not be among the best performers, the approach is interesting,
and the method’s graphic outputs are useful as a starting point for gaining
insight into the probabilities for each of the secondary structures along the
sequence. A WWW server for the PSA method is available at http://
bmercwww.bu.edu/psa/.

PSIPRED. A protein secondary structure prediction method based upon the
neural network formalism (Jones, 1999). PSIPRED relies on position-specific
scoring matrices (PSSMs) as generated by the PSI-BLAST algorithm and feeds
those into a two-layered neural network. The PSSMs contain information
from local fragments of sequences that are homologous (as assessed by PSI-
BLAST) to the query sequence. Only one similar local fragment per
homologous sequence is included. Because PSIPRED invokes the PSI-BLAST
database search engine to gather information from related sequences, it needs
only a single sequence as input. It does not use a third neural net for a jury
decision, as the PHD and Pred2ary methods do, but shows a significant
accuracy of 76.5% (Jones, 1999). A web server for the method is available at
http://insulin.brunel.ac.uk/psipred/.

PREDATOR. A method to predict protein secondary structure using a single
query sequence or a set of multiple unaligned sequences (Frishman and
Argos, 1995, 1996). The PREDATOR method owes its accuracy mostly to
the incorporation of long-range interactions for ß-strand prediction. It attains
68% prediction accuracy for single-sequence prediction (Frishman and
Argos, 1995). The method uses a k-nearest-neighbor approach and selects
each time, for a sliding window of 13 amino acids, 25 exemplars with known
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secondary structure from a nonredundant database. A total of seven
propensities are derived for each position: three general states (PH, PE, and PC)
are gleaned from the distribution of the exemplars. An extra α-helix potential
separation of four residues, taken over a seven-residue window. A propensity
(PHelix) is obtained using pairwise hydrogen bonding potentials at a sequence
for β-turn (PTurn) is computed by summing single-residue propensities in
classic β-turn positions 1–4 using a four-residue window. Finally, two more
propensities for β-strands are determined using tentative long-range β-strand
interactions. This is done by assessing the likelihood for each five-residue
fragment to form a parallel or antiparallel β-bridge with any other five-
residue fragment (separated by more than six amino acids). The propensity
calculations are based on summing residue hydrogen bonding propensities
obtained from a large collection of β-sheet structures. The maximum
corresponding window score was taken as the final parallel and antiparallel
ß-strand propensity for each residue (PPar and PAntipar). For each of the seven
independent propensity values, threshold values (T) were calculated and used
in five decision rules applied consecutively to get a three-state prediction for
each residue.

If the PREDATOR method is applied to multiple sequences, it does not use
or construct a multiple alignment but compares the sequences using pairwise
local alignments (Smith and Waterman, 1981). The predictions are then carried
out for a single base sequence and a number of related sequences. A set of
highly scoring local alignments is compiled through matching the base
sequence with each of the other sequences. A weight is then calculated for
each local fragment based on the local alignment score and the length of its
alignment with the base sequence. For each residue in the base sequence, after
gathering exemplars using the base sequence and the stacked fragments, the
weighted sum over all exemplars is compiled independently for the seven
propensities and subjected to the five decision rules to arrive at a three-state
prediction. The per-residue accuracy of the method is 74.8% (Frishman and
Argos, 1996). The PREDATOR method is accessible via the Web at http://
www.embl-heidelberg.de/cgi/predator_serv.pl.

PRRP. A global multiple sequence alignment program by Gotoh (1996). The
method optimizes a progressive global alignment by iteratively dividing the
sequences into two groups, which are subsequently realigned using a global
group-to-group alignment algorithm. Pairwise sequence weights are derived
from a tree constructed with the UPGMA cluster criterion and used to calculate
the alignment scores when sequence blocks are matched.

PROSITE. A semimanual method for finding characteristic protein patterns
developed by Bairoch (1993). The aim of the approach is to make the derived
patterns as short as possible but still sensitive enough to recognize the
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maximum number of related sequences and also sufficiently specific to reject
most if not all unrelated sequences (false positives). A large collection of motifs
gathered in this way is available in the PROSITE databank (Hofmann et al.,
1999). Associated with each motif is an estimate of its discriminative power.
The PROSITE databank and related software constitute an invaluzable and
generally available tool for detecting the function of newly sequenced and
uncharacterized proteins. To enhance the discriminatory power of many
protein sequence motifs, the PROSITE database also represents many entries
using the extended profile formalism of Bucher et al. (1996).

Rost et al. (1995). A method to predict protein transmembrane regions from
multiple sequence alignments using a neural network algorithm. Rost et al.
used multiple sequence information and trained the protein secondary
structure prediction method PHD (Rost and Sander, 1993) on multiple
alignments for 69 protein families with known TM helices. The prediction
accuracy of the PHD transmembrane prediction method is 95% as assessed
by the authors. A WWW server of the method can be found at http://
dodo.cpmc.columbia.edu/predictprotein/.

SAGA. A global multiple sequence alignment method by Notredame and
Higgins (1996). SAGA uses a genetic algorithm (GA) to gradually optimize a
multiple alignment using crossing-over and selection in order to evolve to the
best possible alignment. It selects from an evolving alignment population the
alignment that optimizes a so-called objective function (OF), that is, a function
that reflects the quality of the alignment. SAGA allows any userdefined OF.
Provided OFs include the weighted sum of pairs as used in the MSA program
(Lipman et al., 1989) and a measure of consistency between the considered
multiple alignment and a corresponding library of Clustal pairwise alignments.
The latter OF was developed for the COFFEE algorithm (Notredame et al.,
1998).

Shepherd (1981). A method to determine the correct reading frame in a
potential protein-coding nucleotide sequence. It is based on uneven purine/
pyrimidine nucleotide distribution in various positions of trinucleotide codons.

Shulman et al. (1981). One of the first (if not the first) programs to determine
the location of protein-coding regions in naturally occurring nucleotide
sequence. The main finding from running the Shulman et al. algorithm on a
test coding sequence is the three-base quasiperiodicity of short
oligonucleotides. This kind of periodicity is much less pronounced in or
absent from other functionally important regions of naturally occurring
nucleic acids. The specific method proposed by Shulman et al., the diversity
index, has been used in many other string analysis tasks under the name
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“index of coincidence.” Many (if not all) other prominent algorithms to
locate protein-coding regions explore the three-base quasiperiodicity
discovered by Shulman et al.

SIM. A space-efficient version of the Waterman and Eggert (1987) method for
local pairwise sequence alignment by Huang et al. (1990). The method
calculates a user-defined number of aligned local fragments. The alignments
are nonintersecting, i.e., they have no matched amino acid pair in common.
The memory requirements of the algorithm are reduced from order N2 to
order N, thereby allowing very long sequences to be searched at the expense
of only a small increase in computational time. A Web server for SIM can be

Smith et al. (1990). A technique to derive conserved sequence patterns from
sets of homologous sequences. Conserved motifs are identified by listing all
common three-residue combinations, with the maximal length of allowed
spacers between these three residues set at 24 amino acids. The most frequent
occurrences among the group of specific combinations are found and joined
into blocks, and a mean score for each column of the block is calculated using
the PAM250 residue exchange matrix. Then the best matching subsequences
from the rest of the proteins in the group are found, after which the final
sequence pattern is specified.

Smith and Waterman (1981). An algorithm to compare two sequences by
aligning a best matching local fragment from each sequence only. A problem
with global dynamic programming methods (Needleman and Wunsch, 1970)
that match complete sequences can arise when highly dissimilar sequences are
compared. In such cases global alignment techniques might fail to recognize
highly similar internal regions because they are overshadowed by dissimilar
regions, and strong gap penalties are normally required to achieve proper
global matching. Moreover, many biological sequences are modular and show
shuffled domains (Heringa and Taylor, 1997), which can render a global
alignment of two complete sequences meaningless. The occurrence of varying
numbers of internal sequence repeats (Heringa, 1998) can also severely limit
the applicability of global methods. In general, when there is a large difference
in the lengths of two sequences to be compared, global alignment routines
become unwarranted. To address these problems, Smith and Waterman (1981)
developed a so-called local alignment technique in which the most similar
regions in two sequences are selected and aligned. For local dynamic
programming, the amino acid exchange values used must include negative
values. If in the DP search matrix the maximum value (with subtraction of the
proper gap penalty) of the highest scoring cell in the row of column preceding
the current cell is negative, its contribution is set to zero. This is done to allow
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the considered cell to occur as the first cell in any local alignment. For each
cell, the following function is evaluated:

 

where Max is the maximum of four terms compared to three for global
alignment, which does not feature the zero term. The final highest alignment
score value does not have to be in the last row or column as in global alignment
routines but can be anywhere in the search matrix. The local alignment
algorithm thus relies on dissimilar subsequences producing negative scores
that are subsequently discarded by placing zero values in the associated search
matrix cells.

SSPRED. A method for predicting protein secondary structure from multiply
aligned sequences by Mehta et al. (1995). SSPRED exploits an alternative
aspect of the positional information provided by multiple alignments, in that
it uses the amino acid pairwise exchanges observed for each multiple alignment
position. An advantage of the SSPRED technique is its speed and conceptual
clarity. Using the 3D-ALI database (Pascarella and Argos, 1992), which holds
multiple alignments of distantly homologous proteins constructed based on
structure superpositioning and sequence alignment, amino acid exchange
matrices were compiled for helix, strand, and coil. Each matrix simply contains
preference values for amino acid exchanges observed at alignment positions
with the corresponding secondary structure in the 3D-ALI database. The
matrices are used to predict the secondary structure of a query alignment by
listing the unique observed residue exchanges for each alignment position and
summing the corresponding preference values over each of the three exchange
matrices. Each exchange type (e.g., alanine to/from proline) is counted only
once for each query alignment position, which provides implicit weighting of
the sequences to avoid predominance of redundant sequences. The secondary
structure corresponding to the matrix showing the highest sum is then assigned
to the alignment position. Following these raw predictions, three simple
cleaning rules are applied and completed in three successive cycles: (1) Single-
position interruptions are cleaned, e.g., (H[E/C]H) becomes (HHH) and (E[H/
C]E) is set to (EEE), where [E/C] indicates E or C. (2) Double-position
interruptions are cleaned, e.g., (HH[EE/ CC]H) or (H[EE/CC]HH) becomes
(HHHHH) and (EE[HH/CC]E) or (E[HH/CC]EE) is changed to (EEEEE),
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where [EE/CC] designates EE or CC. (3) Helices of four or fewer residues and
strands of two or fewer residues are changed into coils. The accuracy of the
method was assessed by the authors at 72% correct prediction, albeit over a
relatively small test set of only 38 protein families.

STRIDE. A method, by Frishman and Argos (1995) for secondary structure
assignment using protein atomic coordinate data. STRIDE combines many of
the features used by protein experts to assign secondary structure, such as
hydrogen bonding patterns and stereochemical characteristics. These features
are implemented in the program using a knowledge-based approach. STRIDE
generally yields assignments in close agreement to those made by
crystallographic experts.

Staden (1984). One of the first programs to detect potential protein-coding
regions in naturally occurring sequenced nucleotides. The algorithm explores
the nonrandomness of frequencies of nucleotide occurrence in different
positions of trinucleotide codons.

Sunyaev et al. (1998, 1999). A profile construction method based on a
weighting scenario reminiscent of phylogenetic parsimony methods, aimed at
increasing the sensitivity of database searches with multiple alignments. To
achieve this, amino acid propensities at each alignment position in the
alignment profile are weighted according to the probability that identical
amino acids occur in more than one sequence at the alignment position. If
more alignment positions show identical conservation for a given subset of
sequences (not necessarily the same conserved amino acid type over all the
alignment positions involved), the occurrence of the amino acids at those
positions becomes more expected, which is corrected for by appropriately
lowering the weight for the considered position. This approach leads to
position-specific sequence weights, which are implemented in the position-
specific probabilities for each of the amino acids in a profile. The authors
reported increased sensitivity if searches were performed using profiles
constructed with this technique.

Taylor (1986). A template-directed method for multiple sequence alignment.
The method allows the specification of one or more templates as consensus
subsequences that, for example, can be associated with secondary structural
elements. Based on these templates the sequence are included in a multiple
alignment one by one. The templates are progressively updated to include the
variabilities introduced by newly added residues. After a template is created
from the initial alignment, it can be extended to include additional related
proteins. This process is repeated iteratively until no other protein sequence
can be added without giving up essential features.
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TMAP. A method of Persson and Argos (1994) to predict protein transmembrane
(TM) segments that relies on information from multiple alignments. TMAP is
based on the propensities of amino acids to be positioned in either the central or
flanking regions of a transmembrane, calculated using more than 7500 individual
TM helices as annotated in the Swiss-Prot sequence databank. Using the residue
TM propensities for each segment of a multiple sequence alignment and for
each sequence included in the segment, average values of the central and flanking
propensities are calculated over sliding windows. The optimal window lengths
were found to be 15 and four residues for central and flanking propensities,
respectively. If the peak value for a central TM region exceeds a certain threshold,
this region is considered a possible candidate to be membrane-spanning. The
algorithm then expands this region in either sequence direction until a flanking
peak is reached or the central propensity average falls below a certain value.
Some further restraints are imposed on the possible length of a tentative TM
segment. The additional sensitivity compared to standard sliding window
approaches is a result of using multiple alignment information as well as the
second propensity for flanking regions. A Web server for the TMAP method is
available at http://www.cbb.ki.se/tmap/.

TopPred2. A combinatorial technique for transmembrane (TM) segment
prediction based on a standard hydrophobicity analysis supplemented by
charge bias analysis (von Heijne, 1992). TopPred2 was devised for prokaryotic
protein sequences, because the “positive inside” rule (von Heijne, 1986) (i.e.,
the overrepresentation of positively charged amino acids within intracellular
surface loops positioned in between transmembrane elements) is more
pronounced in prokaryotes than eukaryotes (Sipos and von Heijne, 1993).
However, the algorithm has been adapted to handle eukaryotic sequences also.
A Web server for the method can be found at http://www.biokemi.su.se/
~server/toppred2/toppredServer.cgi.

Vingron and Argos (1990). An algorithm to determine all optimal and suboptimal
alignments of two sequences. The resulting alignments are depicted in a dot
plot. The technique is aimed at recognizing reliably aligned regions, which can
be defined as those for which alternative local alignments do not exist.

Vingron and Argos (1991). A method to delineate motifs that are consistently
aligned across a given set of sequences. The method is based on all pairwise
dot matrices and elucidates consistent and related regions in all matrices
through matrix multiplication. A requirement for such a region to be identified
is that it be consistently present in all given sequences.

Waterman and Eggert (1987). A local alignment routine for pairwise sequence
comparison based on the Smith and Waterman (1981) local alignment
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algorithm, which allows the calculation of a user-defined number of top-
scoring local alignments instead of only the optimal local alignment. The
obtained local alignments do not intersect; i.e., they have no matched amino
acid pair in common. If during the procedure an alignment is encountered
that intersects with any of the top scoring alignments listed thus far, the highest
scoring of the conflicting pair is retained in the top list.

Zuker and Steigler (1981). An efficient algorithm for single-stranded RNA
folding. Today’s version of this popular program has undergone significant
modifications, but the optimization principles (variants of dynamic
programming) of folding prediction remain the same.

Zuker (1991). An algorithm to determine optimal and suboptimal alignments
of two sequences. This algorithm can be used to ascertain the significance of
alignments found, because it is entirely possible that an optimal alignment is
not the biologically correct alignment. A useful heuristic is that reliably aligned
regions are those for which alternative local alignments do not exist.
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