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Preface

In 1982, the first release of the GenBank sequence database contained 601,438
residues. By 2005, this number had grown beyond and continues to increase
exponentially. Far from regarding this as “information overload”, we believe the free
availability of so much precise and fundamental data on the ultimate constituents of
life to be the hallmark of a golden age in biomedical research. Computational biology
is concerned with helping to understand these data.

The aim of this book is to give a first introduction to the computational aspects
of genome-scale molecular biology, also known as genomics. The interpretation of
biological data is often contingent on an understanding of the evolutionary history
that has generated it. Hence, we explain evolutionary models as well as classical
sequence analysis.

Our intended audience is primarily students of bioinformatics, as well as re-
searchers and students in neighboring disciplines including molecular biology, ge-
netics, medicine, physics, mathematics, and computer science. As background, we
assume familiarity with basic general and molecular biology as well as elementary
probability theory. We also expect an interest in computers and their programming.

In writing this book we have benefited from the expertise and support of a num-
ber of colleagues. Clemens Beckstein invited us in 1999 to give our first lecture series
on computational biology at Jena University. Wolfgang Stephan and Monty Slatkin
encouraged us to turn the lecture notes accumulated in Jena into a textbook. Steffi
Gebauer-Jung helped with some of the algorithms we present. Claudia Acquisti,
Frank Leßke, Peter Pfaffelhuber, Karl Schmid, and Daniel Zivkovic commented on
earlier versions of the manuscript. Our students improved our teaching of computa-
tional biology over the years. Finally, we owe a huge debt of gratitude to Angelika
Börsch-Haubold, who edited the entire book, compiled the index and guided this
project through the production stage. Without her contribution there would be no
book.

Freising and Köln, Bernhard Haubold
March 2006 Thomas Wiehe
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1

Introduction

The chromosome structures are at the same time instrumental
in bringing about the development they foreshadow. They are
law-code and executive power—or, to use another simile, they
are architect’s plan and builder’s craft—in one.

Erwin Schrödinger [220, p. 22]

Since the discovery of chromosomal inheritance in the early 20-th century it has
fascinated biologists that in contrast to, say, rocks or clocks, living organisms carry
with them their own miniaturized part list, the genome. This specifies in its DNA se-
quence the primary structure of all proteins that make an organism as well as the pri-
mary structure of catalytically active RNA molecules. From 1995 onward, a rapidly
growing number of genomes of free-living organisms have been sequenced in their
entirety. This means that the succession of all bases, or base pairs (bp) since DNA is
double stranded, of the organisms concerned is known. Figure 1.1 shows a sample
of 106 organisms whose genomes have been sequenced. It contains representatives
of all three domains of life, archebacteria (archaea), bacteria, and eucaryotes, which
include humans. Organisms that are mentioned elsewhere in this book are marked by
an arrow. There is a heavy bias toward bacteria, which is partly due to their medical
importance. Another reason is that bacterial genomes are small, e.g. bp for
the human pathogen Haemophilus influenzae, and hence easier to sequence than for
example the human genome, which is more than 1,000 times larger ( bp).
Reading and writing of the genome form the molecular basis of life.

1.1 Reading and Writing

In every organism constant reading of the genome by the molecular genetic machin-
ery of the cell is fundamental to sustaining its vital processes. The concomitant flow
of information from DNA to proteins, but never in the reverse direction, is summa-
rized by the well-known central dogma of molecular biology (Fig. 1.2).

Computational biology is traditionally concerned with two questions that build
directly on the central dogma: where are the genes and what are their functions?
In fact, these questions can be understood as an attempt to reproduce in silico the
molecular genetic machinery of a cell. The enzymes making up this machinery locate
specific genes with great precision. The subsequent expression of a particular gene
takes place in a context of hundreds or even thousands of other genes active in that



2 1 Introduction

Encephalitozoon cuniculi
Plasmodium yoelii

Plasmodium falciparum

Schizosaccharomyces pombe

Neurospora crassa
Oryza sativa

Thermoplasma acidophilum
Halobacterium sp
Methanosarcina mazei

Methanosarcina acetivorans
Methanobacterium thermoautotr
Methanopyrus kandleri
Pyrococcus abyssi
Pyrococcus horikoshii
Pyrococcus furiosus

Methanococcus jannaschii
Archaeoglobus fulgidus
Pyrobaculum aerophilum

Sulfolobus solfataricus
Aeropyrum pernix

Synechocystis sp
Anabaena variabilis

Chlamydophila caviae
Chlamydia muridarum
Chlamydia trachomatis
Chlamydophila pneumoniae

Chlamydia pneumoniae
Borrelia burgdorferi

Treponema pallidum
Leptospira interrogans
Fusobacterium nucleatum

Clostridium tetani
Clostridium perfringens

Clostridium acetobutylicum
Streptococcus mutans

Streptococcus pyogenes
Streptococcus agalactiae

Lactococcus lactis
Lactobacillus plantarum

Listeria monocytogenes
Listeria innocua
Enterococcus faecalis
Staphylococcus epidermidis
Staphylococcus aureus

Bacillus subtilis
Bacillus cereus

Bacillus anthracis
Helicobacter pylori

Helicobacter hepaticus
Campylobacter jejuni

Mycoplasma pulmonis
Ureaplasma urealyticum
Mycoplasma penetrans

Mycoplasma pneumoniae

Mycoplasma gallisepticum
Chlorobium tepidum

Bacteroides thetaiotaomicron
Rickettsia prowazekii
Rickettsia conorii

Caulobacter crescentus
Bradyrhizobium japonicum

Sinorhizobium meliloti
Mesorhizobium loti
Brucella melitensis
Agrobacterium tumefaciens

Ralstonia solanacearum
Nitrosomonas europaea
Neisseria meningitidis

Xylella fastidiosa
Xanthomonas campestris
Xanthomonas axonopodis

Pseudomonas syringae
Pseudomonas putida

Pseudomonas aeruginosa
Coxiella burnetii

Shewanella oneidensis
Vibrio vulnificus

Glossina brevipalpis
Yersinia pestis

Wigglesworthia glossinidia
Buchnera aphidicola

Pasteurella multocida
Deinococcus radiodurans

Streptomyces coelicolor
Streptomyces avermitilis

Mycobacterium leprae
Mycobacterium tuberculosis

Mycobacterium bovis
Corynebacterium glutamicum

Bifidobacterium longum
Thermotoga maritima

E

A

B

Arabidopsis thaliana

Caenorhabditis elegans

Streptococcus pneumoniae

Drosophila melanogaster

Escherichia coli

Haemophilus influenzae

Homo sapiens
Mus musculus

Mycoplasma genitalium

Saccharomyces cerevisiae

Vibrio cholerae
Vibrio parahaemolyticus

Salmonella typhi
Salmonella typhimurium
Shigella flexneri

Fig. 1.1. Phylogeny showing the three domains of life: E: eucaryotes; A: archebacteria; B:
bacteria. Computed from the ribosomal RNA sequences of 106 organisms whose genomes
have been sequenced completely. Organisms mentioned in this book are marked by an arrow.
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DNA RNA Protein

Selection

Selection

Transcription

Rev. Transcription

Translation

Replication

Fig. 1.2. Reading and writing at the machine level of life. Solid lines constitute the central
dogma and correspond to “reading” from the genome. Dashed and dotted lines correspond to
“writing” into the genome through reverse transcription and—on an evolutionary timescale—
selection, respectively.

cell. It is this context of expression that constitutes to a large extent the function of a
gene.

Given that there is enough information contained in a genome to largely de-
termine the shape of a bacterial cell or of a human being, we might ask, how this
information gets written into the genome. The answer is that some of it is written
directly by reverse transcription (Fig. 1.2), which leads to the apparently excessive
size of many eucaryotic genomes, including our own. However, more important for
the preservation of useful information is a process that operates on a very different
time scale from the molecular mechanisms mentioned so far: evolution by natural
selection, which interacts with proteins and, perhaps to a lesser extent, transcripts
(Fig. 1.2). The interaction between natural selection and these molecules is indirect:
an organism carrying a protein that functions better than the original “wild type”
leaves more offspring, who in turn leave even more offspring and as a result the ad-
vantageous information thrown up initially by a random mutation spreads throughout
the population. It is this subtle yet intimate relationship between the reading aspect
of the genome, which is the traditional subject of molecular biology and hence com-
putational biology, and its writing aspect, usually the preserve of evolutionary biol-
ogists, which has motivated us to include evolutionary models in this book together
with more classical sequence analysis methods.

1.2 Design and Scope of This Book

This book is divided in two parts. The first part deals with sequences in (sequence)
space, the second with sequences in (evolutionary) time. We have also included a
Glossary of important terms and Appendices on four topics:
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1. Appendix A describes the Software bioinformer, which we have written to
visualize some of the ideas treated in Parts I and II;

2. Appendix B briefly surveys important stochastic concepts that are used exten-
sively in computational biology;

3. Appendix C deals with the chemical nature of nucleic acids and amino acids;
4. Appendix D contains pointers to software and databases useful in the practice of

computational biology.

In addition, a web-page with supplementary material is posted at

http://adenine.biz.fh-weihenstephan.de/icb/

1.2.1 Sequences in Space

Amino acid and nucleotide sequences are often pictured as points in sequence space
[173, 58], the metaphor underlying Part I. In sequence space individual sequences
are ordered according to their distances measured in terms of the number of mu-
tational steps necessary to get from one sequence to another. Let us start with the
simplest case, a DNA “sequence” of length 1. There are four such sequences pos-
sible, A C G T , and the corresponding sequence space can be visualized as a
three-dimensional simplex or a tetrahedron (Fig. 1.3). Starting from any one of the

A C

G

T

Fig. 1.3. Tetrahedral sequence space for DNA sequences of length 1.

nucleotides, we can reach all three others in a single step. The sequence space that
accommodates all DNA sequences of length 2 consists of a tetrahedral hyperspace
where each vertex of the hyper-tetrahedron is occupied by a simple tetrahedron. As
before, the edges represent single mutational steps, i.e. the exchange of one residue
by another. Figure 1.4 shows a projection of this space onto two dimensions. Each
vertex in one of the four simple tetrahedrons is connected to three vertexes within
the structure as well as to the corresponding vertexes in the other three tetrahedrons.
For instance, vertex AA in the top tetrahedron is connected to CA, TA, and GA within
the tetrahedron, as well as to AG, AC, and AT in the three other tetrahedrons. Each of
the edges in this six-dimensional space has the same length.

In order to depict DNA sequences of length 3 in sequence space, we construct
a hyper-tetrahedron with vertexes consisting of the structure depicted in Figure 1.4.
Each sequence is connected to six other sequences within the basic tetrahedron as



1.2 Design and Scope of This Book 5

AA

CA

GA

TA

AC

CC

GC

TC

AG

CG

GG

TG

AT

CT

GT

TT

Fig. 1.4. Sequence space for DNA sequences of length 2.

well as to three other sequences at corresponding positions in the other three tetra-
hedrons. Figure 1.5 depicts the underlying nine-dimensional space, which represents
the mutational distances between the 64 codon triplets.

Sequence space has two important properties: (i) it is highly connected and (ii)
it has a high dimensionality. The connectedness means that within the space for se-
quences of length the largest distance between any two points is . The high di-
mensionality is a precondition for the connectedness. The number of dimensions
necessary for constructing sequence space, , is

where is the size of the alphabet over which the sequence is formed. In our DNA
example and hence the dimensionality of the codon space is , as we
have already observed in Figure 1.5.

The sequence space describing all possible sequences of 1 kb, the length of a
typical gene in Escherichia coli, contains vertexes. In this vast space
only a very small proportion of vertexes is occupied by actually existing sequences. A
larger number of sequences, albeit still vanishingly few compared to the total number
of possibilities, correspond to functional genes. Many different functions can be en-
coded in 1 kb. However, sequences with similar functions tend to cluster in sequence
space, forming clouds of functional variants in a sea of lethal or as yet evolutionarily
untested configurations.

The fact that close neighbors in sequence space tend to have similar functions
motivates the sequence comparison methods discussed in Part I.
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Fig. 1.5. DNA sequence space for DNA sequences of length 3, i.e. for all 64 codons.
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We start off in Chapter 2 with the treatment of pairwise alignment using dynamic
programming methods. These methods are effective but practical pairwise alignment
algorithms reduce the time and memory requirement of dynamic programming by
combining them with exact matching, the topic of Chapter 3. In Chapter 4 dynamic
programming is wedded with exact matching to yield fast pairwise alignment al-
gorithms. Pairwise alignments are a special case of multiple alignments, which are
dealt with in Chapter 5. The information contained in a multiple sequence alignment
can be used to classify protein sequences into protein families, of which there are
far fewer than actual protein sequences. The tools used for this classification, profile
analysis and hidden Markov models, are the topics of Chapter 6. Alignments, pro-
files, as well as hidden Markov models, are used in various combinations to predict
the location of genes in as yet unannotated DNA sequences. Our introduction to gene
prediction in Chapter 7 concludes Part I.

1.2.2 Sequences in Time

Part II is concerned with sequence evolution. Sequences change over time through
mutation, which corresponds to a random walk in sequence space. Given the sheer
infinite size of this space, it may come as a surprise that anything as useful as the
set of instructions specifying the molecular parts of a human being could ever be
found therein. However, we have already explained that in principle few mutational
steps are necessary to get from any given sequence to any other. In addition, selec-
tion provides a powerful signpost at every vertex in sequence space, thereby guiding
the mutational random walk. The condition for the evolvability of a sequence was
made precise in 1970 by the English evolutionary biologist Maynard Smith [173].
He noted that for evolution by natural selection to occur, sequence space needs to
be traversable in unit mutational steps without passing through non-functional in-
termediates. We have already seen that a sequence of length is embedded in an

-dimensional space. In other words, it has neighbors that can be
reached by a single mutational step. The condition for evolution by natural selection
is that for any given functional sequence there exists at least one functional one-
mutation neighbor. If we call the fraction of viable single-step mutations a given
sequence can change into, the condition for evolvability simply amounts to [173]

Since many mutations are known to have no effect on fitness, i.e. to be neutral, this
condition will often be met [221].

Chapter 8 introduces what is perhaps the best-known aspect of sequence evolu-
tion, the reconstruction of phylogenies. Such reconstruction is based on the differ-
ences between homologous sequences observed in a multiple sequence alignment.
These differences are the topic of Chapter 9. In particular, we shall be interested in
differences found between protein-coding sequences, as these can help us detect se-
lection, the force that keeps sequences on the straight and narrow in sequence space.
The analysis of phylogenies as well as the analysis of differences in coding sequences
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are usually based on inter-species comparisons. In Chapter 10 we zoom in on a given
species and concentrate on intra-species sequence comparisons. To be more precise,
we shall concentrate on the dynamics of genes found in one population of organisms.
The traditional method to trace the history of genes in populations moves forward in
time and this is also the perspective we start off with in Chapter 10. A reverse in time
perspective on evolution was developed in the late 1970s and early 1980s. Today it
is the standard way to think about genes in populations and Chapter 11 introduces
the corresponding methodology, known as coalescent theory. One of the central con-
cerns of any investigation of genes in time is the detection of selection. Without it,
there would be no function, that is no phenotype attached to the sequence genotype.
Chapter 12 makes this concern explicit by describing a number of formal hypothesis
tests that can be applied to sequence data in order to detect selection.
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2

Optimal Pairwise Alignment

So now we are going to sequence the human genome and
then we will sequence the chimp genome. Once this is done,
we align each gene from the two organisms and the gene that
is left over must be the language gene. If humans have it, we
call it the Chomsky gene. If chimps have it, we call it the
Chimsky gene.

Sydney Brenner [26]

Living organisms are the product of an evolutionary history. This has important con-
sequences for the practice of biology, whether of the organismal or of the molecular
kind. In classical biology, organs that derive from a recent common ancestor are
called homologous. For instance, a human hand is homologous to a chimpanzee’s
hand, a cat’s paw, and a bat’s wing. These structures are characterized by com-
mon anatomical features and similar, albeit highly diverse, functions. In contrast,
the wings of bats and flies are not homologous and anatomically very different, even
though they are both organs of flight. Such organs are said to be analogous. To put
matters simply, homology tends to imply similarity of function, while similarity of
function may be due either to analogy or to homology.

In molecular biology the search for homologous traits, in this case residues in
DNA or protein sequences, reappears in the guise of the alignment problem. As ex-
plained in detail below, two sequences are aligned by writing homologous residues
on top of each other. This may or may not work well, i.e. the resulting alignment
may or may not be convincing. If the two proteins can be aligned reliably, they tend
to be similar. Moreover, they tend to have similar functions. The fact that similar
sequences encode similar functions is the reason why we start this book with align-
ment algorithms: such algorithms are used for finding similar sequences of known
function and thereby efficiently determine to a first approximation the function of
novel genes.

Alignments can be either pairwise, comprising just two sequences, or multi-
ple, comprising an arbitrary number of sequences. Pairwise alignments might be
regarded as a special case of multiple alignments. In practice, however, the computa-
tional complexity of aligning multiple sequences is such that the corresponding algo-
rithms are usually not straight extensions of the pairwise approaches. Instead, multi-
ple alignments are often constructed by repeatedly merging pairwise alignments. In
this chapter we concentrate on basic pairwise alignments, while multiple alignments
are the topic of Chapter 5.
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There are numerous approaches to aligning two sequences, but three of the most
important strategies are known as global, local, and overlap (Fig. 2.1). A global
alignment algorithm is appropriate if two sequences are homologous across their en-
tire length. However, many sequences only share homologous regions while other
parts of the molecule are quite unrelated. Sequence regions that correspond to a
functional unit are also known as domains. For example, an important class of de-
velopmental genes, the Hox genes, were first discovered in the fruit fly Drosophila
melanogaster. There they act as transcriptional regulators that determine the iden-
tity of body segments along the anterior-posterior axis of the developing embryo. D.
melanogaster has eight Hox genes located on chromosome 3. The remarkable thing
about these genes is that their layout along the chromosome corresponds to the layout
of larval proto-segments in which they are most highly expressed. Today, Hox genes
have been discovered in almost all animals. In mammals, for example, they occur
in four complexes, which each correspond to one of the Drosophila Hox clusters.
Again, the polarity of the genes’ layout along the mammalian chromosomes reflects
the anterior-posterior ordering of their expression in the early embryo. All Hox genes
are characterized by a conserved region of 60 amino acids, the homeodomain, which
binds to specific regulatory motifs on the DNA. Figure 2.2 displays a global align-
ment of the two Hox proteins from human and D. melanogaster that are expressed in
the most anterior segments of the embryo. Homologous amino acids are written on
top of each other, deleted amino acids are indicated by gaps ( ). Notice that a dele-
tion in one sequence implies an insertion in the other. Hence insertions and deletions
are often referred to as “indels”.

As shown in Figure 2.2, the annotated homeodomain has remained highly con-
served over the approximately 590 million years [45, p. 389] that separate the proto-
stomes, to which D. melanogaster belongs, from the vertebrates. In contrast, regions
outside the homeodomain have changed beyond recognition. A local alignment al-
gorithm is appropriate for the discovery of specific conserved regions such as home-
odomains.

Overlap

Local

Global

Fig. 2.1. Types of pairwise alignment discussed in this chapter. Homologous regions are indi-
cated in black.
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Overlap alignments, finally, are used to align sequences where only the ends
match. This is the case for example in the context of the assembly of sequences from
a genome sequencing project.

MMDVSSMYGNHPHHHHPHANAYDGYSTTTASAANASSYFAPQQHQPHLQLQQQQQ 55
.MDNARMN.........SFLEYPILSSGDSGTCSARAYPS............... 30

HQHLQQPQQHLTYNGYESSSPGNYYPQQQAQLTPPPTSSHQVVQQHQQQQQAQQQ 110
.DHRITTFQSCAVSANSCGGDDRFLVGRGVQIGSP.................... 64

QLYPHSHLFSPSAAEYGITTSTTTGNPGTPLHPSSHSPADSYYESDSVHSYYATA 165
HHHHHHHHHHPQPATY...Q..TSGNLGVSYSHSSCGPS...YGSQNFSAPYSPY 111

AVATVAPPSNSSPITAANASATSNTQQQQQQAAIISSENGMMYTNLDCMYPTAQA 220
ALN...........QEADVSGG...........................YPQC.. 126

QAPVHGYAGQIEEKYAAVLHASYAPGMVLEDQDPMMQQATQSQMWHHQQHLAGSY 275
.AP.................................................AVY 131

ALDAMDSLGMHAHMHHGLPHGHLGNLANNPHQQQPQVQQQQQQPHQQPQHPQNQS 330
SGNLSSPMVQHHHHHQGYAGGAVG...................SPQYIHHSYG.. 165

PAAHQQHHQNSVSPNGGMNRQQRGGVISPGSSTSSSTSASNGAHPASTQSKSPNH 385
....QEHQSLALATYN.................N.SLSPLHASHQEACRSPASET 198

SSSIPTYKWMQLKRNVPKPQAPSYLPAPKLPASGIASMHDYQMNGQLDMCRGGGG 440
SSPAQTFDWMKVKRNPPK..................................... 216

GGSGVGNGPVGVGGNGSPGIGGVLSVQNSLIMANSAAAAGSAHPNGMGVGLGSGS 495
......TGKVGEYG...................................YLG... 227

Homeodomain

GLSSCSLSSNTNNSGRTNFTNKQLTELEKEFHFNRYLTRARRIEIANTLQLNETQ 550
..Q........PNAVRTNFTTKQLTELEKEFHFNKYLTRARRVEIAASLQLNETQ 272

Homeodomain

VKIWFQNRRMKQKKRVKEGLIPADILTQHSTSVISEKPPQQQQPQPPELQLKSQG 605
VKIWFQNRRMKQKKREKEGLLPISPATPPGNDEKAEESSEKSSSSP......... 318

SDLGGNELATGAPSTPTTAMTLTAPTSKQS 635
...........CVPSPGSSTSDTLTTSH.. 335

Fig. 2.2. Global alignment of two orthologous Hox proteins with annotated homeodomain. :
homeotic labial protein (Lab) from Drosophila melanogaster; : homeobox protein Hox-A1
from human; white on gray: identical amino acids; black on gray: similar amino acids; :
gaps, i.e sequence insertions/deletions.

Whether global, local, or overlap, alignments can be computed by two types of
algorithms: optimal and heuristic. Historically, optimal alignment algorithms were
developed first (Table 2.1) and are based on a computational technique known as “dy-



14 2 Optimal Pairwise Alignment

namic programming”. This guarantees that the best possible alignment is found given
the parameters chosen. Heuristic algorithms, on the other hand, can be thought of as
fast procedures for approximating their optimal counterparts. Heuristic approaches
to alignment are the topic of Chapter 4. The first optimal alignment algorithm was

Table 2.1. Landmarks in the development of pairwise alignment algorithms.

Year Authors Algorithm Approach
1970 Needleman & Wunsch Global Optimal
1981 Smith & Waterman Local Optimal
1988 Pearson & Lipman FASTA Heuristic
1990 Altschul et al. BLAST Heuristic
1997 Altschul et al. Gapped BLAST Heuristic

published in 1970 [189], while the first widely used heuristic alignment algorithm,
the FASTA algorithm, was published over a decade later [197].

In this chapter we explain how dynamic programming is used to compute global,
local, and overlap alignments (Fig. 2.1). We begin by clarifying further what is meant
by an alignment.

2.1 What Is an Alignment?

DNA sequences and the protein sequences they encode change in evolutionary time
through mutation. The simplest types of mutation are point mutations and inser-
tions/deletions, also known as indels. These two types of change are modeled by
classical alignment algorithms. Say we wish to align the two DNA sequences AACGT
and ACCGTT. This is done by writing their residues on top of each other such that
either two residues are paired, corresponding to presence or absence of a point muta-
tion, or a residue is paired with a gap, corresponding to an insertion or deletion. It is
not permitted to pair a gap with a gap. The reason for this is not that two sequences
cannot inherit the same deletion, they certainly can. However, there is not enough
information to infer such a course of evolution from just two sequences. Figure 2.3
displays six example alignments that can be generated by following these rules. The

1 2 3 4 5 6
AACGT- -AACGT A-ACGT AACGT------ AA-CGT- -A-A-C-G-T-
ACCGTT ACCGTT ACCGTT -----ACCGTT A-CCGTT A-C-C-G-T-T

Fig. 2.3. Six of the 3,653 possible ways to align the DNA sequences AACGT and ACCGTT.

question is, which of the possible alignments is the “best”?
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Intuitively, we might prefer alignment 1 with its four matched residues to align-
ment 2, which contains only a single matched residue. However, alignment 5 also
contains four matches. On the other hand, it contains three gaps, whereas alignment
1 contains only one gap, leaving us still with the feeling that alignment 1 is best.
How can we turn this intuition into an objective evaluation procedure?

2.2 Biological Interpretation of the Alignment Problem

In order to choose the “best” alignment, we need to recall that, biologically speak-
ing, we seek to align homologous residues. In addition, we assume that evolution is
parsimonious. In other words, when calculating an alignment we aim to minimize
the number of evolutionary changes implied by an alignment.

Consider again the alignments in Figure 2.3. The first one implies that since di-
vergence from their last common ancestor the two sequences have undergone one
point mutation and one insertion/deletion. Hence, the alignment implies two evolu-
tionary events. In contrast, the second alignment implies five such events: one inser-
tion/deletion and four point mutations. Therefore, we would prefer the first alignment
to the second.

Instead of minimizing the number of evolutionary events, it is conceptually equiv-
alent to maximize a score that reflects the similarity of the two sequences. All align-
ment algorithms surveyed in this chapter are based on such maximizing scoring
schemes and we will explain why this is so later on in Section 2.10.

2.3 Scoring Alignments

The minimal unit of an alignment consists of one position from each of the two
sequences being compared. When scoring such a pair of positions it is customary to
distinguish between pairs consisting of two residues and pairs that form part of an
indel.

As to indels, the simplest way to model them is known as the linear gap model.
Under this model the score of a gap, , is defined as

where is the length of the gap and and the gap extension cost. However, molecu-
lar biologists have known for a long time that gaps often extend over several residues.
In other words, the scoring of the existence of an indel needs to be distinguished from
the scoring of its length. This idea is embodied in the widely used affine gap model,
according to which the score for a gap is computed as

(2.1)

where denotes gap opening. A reasonable combination of parameters could be
and , i.e., gap opening is penalized more than twice as heavily as

gap extension [10].
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When scoring residues, it depends on whether nucleotides or amino acids are
considered. Nucleotides are often modeled as all having the same rate of mutation.
This is a simplification, as transitions (purine purine or pyrimidine pyrimi-
dine) are usually more frequent than transversions (pyrimidine purine), but in
practice this model works quite well. For simplicity we distinguish here only be-
tween matched and mismatched nucleotides. A mismatch might be scored as -3 and
a match as +1 [10].

In contrast to nucleotides, different amino acids mutate at very different rates. To
be more precise, it is the codons specifying the amino acid sequence that mutate and
it is clear that the number of mutational steps necessary for converting one amino acid
into another can range from one to three (cf. Table C.4). This variation in mutational
distance is one reason for the different mutation rates among amino acids. More
important, however, are their highly diverse physico-chemical properties (Fig. C.4),
which result in substitutions that disrupt protein structure to very different degrees.

Whatever the underlying molecular causes might be, the fact of differing amino
acid mutation rates is routinely described in terms of substitution matrices. These
give scores for all possible changes between amino acids and are dis-
cussed next.

2.4 Amino Acid Substitution Matrices

Today, there are far more nucleotide than protein sequence data available. This re-
flects the fact that genomes are bigger than the proteomes they encode. However,
protein sequencing started before the discovery of the double helical structure of
DNA in 1953. Between 1949 and 1955 the first complete protein sequence, that of
bovine insulin, was determined by Fred Sanger and coworkers [129, p. 212]. It was
only once Sanger and Maxam and Gilbert independently devised simple methods
for DNA sequencing in the mid 1970s that an organism’s nucleotide genotype be-
came much more accessible than its protein phenotype. For the early development of
alignment algorithms proteins were therefore the focus of research.

Molecular biologists often talk about “mutations in protein sequences”. This is
shorthand for saying that the sequence encoding the protein has mutated. Due to the
degenerate nature of the genetic code, the mutational distance between amino acids
varies from one to three steps. Figure 2.4 shows the 20 proteinogenic amino acids
in their codon space, which was already displayed in Figure 1.5. Consider, for ex-
ample the amino acid methionine (Met), which is encoded by a single codon, ATG.
Threonine (Thr), which is encoded by the four codons ACA ACC ACG ACT
AC[ACGT], is separated by one mutational step from methionine. Glycine (Gly),
which is encoded by GG[ACGT], is two mutations removed. Histidine (His,
CA[TC]), finally, is an example of an amino acid that can only be reached by chang-
ing all three nucleotides encoding methionine.

Apart from the differences in mutational distances separating the amino acids,
they also differ widely in their physico-chemical properties. Figure C.4 shows that
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Fig. 2.4. The 20 proteinogenic amino acids in codon space (Fig. 1.5). Starting from Met ,

Thr can be reached in one mutational step in the underlying codon, Gly in two steps and

His in three.

one half of amino acid side chains are classified as polar, the other half as non-
polar. Moreover, the size of the side chains ranges from tiny in glycine, where it
consists of a single hydrogen atom, to bulky in tryptophan, with its aromatic two-
ring side chain. Additional physico-chemical categories that distinguish the twenty
proteinogenic amino acids include negative and positive charge and aliphatic vs. non-
aliphatic. Given the diversity of amino acids in mutational distance as well as chem-
ical properties, a simple match/mismatch scoring scheme is not sufficient.

There is an additional fundamental aspect of biological sequences that the
match/mismatch scheme ignores: evolutionary time. Two sequences that are being
compared might have diverged for only a few thousand years. In this case a homo-
logous pair of residues is less likely to be mismatched than after tens of millions of
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years. Substitution matrices are designed to take both the diversity of amino acids, as
well as the evolutionary dimension of sequence comparison into account. Two series
of amino acid scoring matrices are in common use today, the PAM and the BLOSUM
series.

2.4.1 PAM Matrices

The first widely used scoring scheme for aligned amino acids was devised in the
1970s by Margret Dayhoff and coworkers [46]. In her model of protein evolution
Dayhoff incorporated the observation that pairs of amino acids mutate at different
rates, i.e. are differentially conserved. For instance, as shown in Table 2.2, lysine (K)
is 37 times more likely to mutate into its physico-chemical cousin arginine (R) than
into, say, the chemically more different leucine (L, Fig. C.4). Apart from physico-
chemical similarity, the rate of amino acid mutation depends on the divergence time
of the sequences concerned. In the limit of zero divergence time, two sequences are
identical and the probabilities of any mutations are all zero. This would correspond
to all entries in Table 2.2 being zero except for the values on the main diagonal,
which would be 10,000, i.e. correspond to a probability of 1. In contrast, in the limit
of infinite divergence time, any amino acid is equally likely to have mutated into
any other. In this case all entries in Table 2.2 would be equal to the background
frequencies of the amino acids labeling the rows. Therefore, a time-graded series
of substitution matrices is necessary for aligning pairs of protein sequences that are
separated by different divergence times.

Dayhoff’s starting point for accounting for sequence conservation over time were
alignments of closely related proteins from which all possible mutation
probabilities were computed. These probabilities were normalized such that they
corresponded to a change in 1% of amino acid positions (Fig. 2.5). In other words,
the original probabilities were normalized in order to correspond uniformly to com-
parisons of sequences separated by 1 Percent Accepted Mutations, or 1 PAM. “Ac-
cepted” refers to the fact that these mutations have passed the filter of selection, as
opposed to those mutations that never made it into an extant population.

300 amino acids

Fig. 2.5. Pairs of aligned protein sequences differ to varying degrees. Hence the need to nor-
malize the mutation probabilities computed from such alignments. : difference; : mutation.
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Table 2.2. Matrix of amino acid mutation probabilities (times 10,000), also known as a state
transition matrix. Large numbers on the diagonal indicate a high probability of no change. For
example, the probability of an alanine mutating into an arginine (A R) is AR ,
while the reverse mutation probability (R A) is RA . Data taken from [46].

A R N D C Q E G H I L K M F P S T W Y V
A 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2 18
R 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0 1
N 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 1
D 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0 0 1
C 1 1 0 0 9973 0 0 0 1 1 0 0 1 0 0 5 1 0 3 2
Q 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0 1
E 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0 1 2
G 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0 0 5
H 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4 1
I 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1 33
L 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 15
K 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0 1 1
M 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0 0 4
F 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28 0
P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0 2
S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2 2
T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2 9
W 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1 0
Y 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9945 1
V 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2 9901

The divergence time implied by 1 PAM varies strongly depending on the set of or-
ganisms we are looking at. In a comparison of 32 proteins from D. melanogaster and
D. obscura, 1.91 non-synonymous substitutions were found per non-synonymous
site per years [168, p. 191]. Since there are approximately two non-synonymous
sites per amino acid, this implies that 1 PAM corresponds to

million years. However, in the hominoid lineage substitution rates are lower. A
comparison of 97 protein coding genes from human and chimpanzee uncovered
0.006 non-synonymous substitutions per non-synonymous site [261]. Assuming hu-
man/chimpanzee divergence time of 5.5 million years, 1 PAM corresponds to

million years in this case, 1.75 times more than in Drosophila.
For sequences diverged by 1 PAM, Table 2.2 shows the probabilities with which

each of the 20 amino acids mutated into any of the other 19 amino acids or remained
unchanged. In order to obtain the probability matrix appropriate for an evolutionary
distance of PAM, the original probability matrix only needs to be taken to the
power of . In this way substitution probabilities for arbitrary evolutionary distances
can be computed.
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Notice the distinction between the number of mutations a stretch of 100 amino
acids has accepted, and the percent difference between sequences. For example, an
evolutionary distance of 160 PAM happens to correspond to an average difference
of 70% (Fig. 2.6). In order to calculate this, let be the probability of amino
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Fig. 2.6. Expected %-difference between two protein sequences as a function of their evolu-
tionary distance expressed in units of PAM (solid line). Dotted line: equality between PAM
number and %-difference; Dashed line: asymptotic %-difference for infinite PAM.

acid mutating into amino acid over an evolutionary distance of 160 PAM. The
corresponding percent difference is computed as

were is the frequency of the -th amino acid in the data set from which the original
PAM matrix was constructed. This is also referred to as the background frequency
of the amino acid. The percent difference will always be less or equal to the PAM
number, because mutations may affect the same amino acid more than once, which
is increasingly likely to happen with growing PAM numbers. Notice also that the
percent difference between two sequences must lie between 0% and 100%, while the
number of mutations a sequence has accepted varies between 0 and infinity.
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However, a PAM matrix like PAM160 depicted in Table 2.3, contains scores
rather than probabilities. The substitution probabilities appropriate for an evolution-

Table 2.3. PAM160 amino acid substitution matrix. Match scores are shown in bold.

A R N D C Q E G H I L K M F P S T W Y V
A 2 -2 0 0 -2 -1 0 1 -2 -1 -2 -2 -1 -3 1 1 1 -5 -3 0
R -2 6 -1 -2 -3 1 -2 -3 1 -2 -3 3 -1 -4 -1 -1 -1 1 -4 -3
N 0 -1 3 2 -4 0 1 0 2 -2 -3 1 -2 -3 -1 1 0 -4 -2 -2
D 0 -2 2 4 -5 1 3 0 0 -3 -4 0 -3 -6 -2 0 -1 -6 -4 -3
C -2 -3 -4 -5 9 -5 -5 -3 -3 -2 -6 -5 -5 -5 -3 0 -2 -7 0 -2
Q -1 1 0 1 -5 5 2 -2 2 -2 -2 0 -1 -5 0 -1 -1 -5 -4 -2
E 0 -2 1 3 -5 2 4 0 0 -2 -3 -1 -2 -5 -1 0 -1 -7 -4 -2
G 1 -3 0 0 -3 -2 0 4 -3 -3 -4 -2 -3 -4 -1 1 -1 -7 -5 -2
H -2 1 2 0 -3 2 0 -3 6 -3 -2 -1 -3 -2 -1 -1 -2 -3 0 -2
I -1 -2 -2 -3 -2 -2 -2 -3 -3 5 2 -2 2 0 -2 -2 0 -5 -2 3
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 5 -3 3 1 -3 -3 -2 -2 -2 1
K -2 3 1 0 -5 0 -1 -2 -1 -2 -3 4 0 -5 -2 -1 0 -4 -4 -3
M -1 -1 -2 -3 -5 -1 -2 -3 -3 2 3 0 7 0 -2 -2 -1 -4 -3 1
F -3 -4 -3 -6 -5 -5 -5 -4 -2 0 1 -5 0 7 -4 -3 -3 -1 5 -2
P 1 -1 -1 -2 -3 0 -1 -1 -1 -2 -3 -2 -2 -4 5 1 0 -5 -5 -2
S 1 -1 1 0 0 -1 0 1 -1 -2 -3 -1 -2 -3 1 2 1 -2 -3 -1
T 1 -1 0 -1 -2 -1 -1 -1 -2 0 -2 0 -1 -3 0 1 3 -5 -3 0
W -5 1 -4 -6 -7 -5 -7 -7 -3 -5 -2 -4 -4 -1 -5 -2 -5 12 -1 -6
Y -3 -4 -2 -4 0 -4 -4 -5 0 -2 -2 -4 -3 5 -5 -3 -3 -1 8 -3
V 0 -3 -2 -3 -2 -2 -2 -2 -2 3 1 -3 1 -2 -2 -1 0 -6 -3 4

ary distance of PAM are converted into scores in two steps. First they are divided
by the background frequency of the original amino acid. For example, the probabil-
ity of mutating from alanine to arginine (A R), AR, is divided by the background
frequency of A, A, while the probability of mutating in the reverse direction (R A),

RA, is divided by the background frequency of R, R. Thus for any pair of amino
acids , , we define the ratio :

Whereas the probability matrix shown in Table 2.2 is not symmetrical, i.e.
, it holds that . This is important, as the direction of a mutation is usu-

ally unknown when we try scoring a given pair of amino acids. Figure 2.7 shows the
original amino acid background frequencies used in the construction of the original
PAM matrices in addition to a set of background frequencies computed from a recent
release of the protein database SwissProt. The amino acid frequencies in both data
sets vary, ranging over almost an order of magnitude with tryptophan always being
the rarest amino acid at 1%. The most frequent amino acid is glycine (8.9%) in the
old data set and leucine (9.6%) in the more recent version. Perhaps surprisingly, the
frequencies of tyrosine and phenylalanine have remained virtually unchanged.
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Fig. 2.7. Background frequencies of amino acids. The filled bars show the data used for the
construction of the original PAM matrices in the 1970s [46]. The open bars display the amino
acid frequencies calculated from the 172,233 protein sequences totaling 62,615,309 amino
acids contained in the SwissProt database, release 46.2 of 2004.

The second step in converting transition probabilities into scores consists of tak-
ing the logarithm base 2 of :

The final entries, round , are known as log-odds scores.
PAM matrices were standard for aligning proteins until the early 1990s. They

are still in use today, but have frequently been replaced by the BLOSUM system
log-odds matrices [114].

2.4.2 BLOSUM Matrices

BLOSUM stands for BLOcks SUbstitution Matrices, because these matrices are de-
rived from the BLOCKS database [113] consisting of blocks of ungapped protein
alignments [113]. An example entry of the BLOCKS database is shown in Figure 2.8.

For deriving the entries in a BLOSUM matrix, consider an alignment of se-
quences. We can form pairs of amino acids at each column of an alignment of
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ID CLAUDIN1; BLOCK
AC IPB003548C; distance from previous block=(3,4)
DE Claudin-1 signature
BL PR01377; width=8; seqs=3; 99.5%=501; strength=972
CLD1_HUMAN|O95832 ( 152) MTPVNARY 83
CLD1_MOUSE|O88551 ( 152) LTPINARY 100

CLD1_RAT|P56745 ( 152) MTPVNARY 83
//

Fig. 2.8. Example entry in the BLOCKS database [202]. The sequences are taken from rat,
mouse, and human claudin1. Claudins are a family of transmembrane proteins that form a
major component of tight junctions [7, p.1068]. A BLOCKS entry consists of a four-line
header and a sequence part. In the sequence part each line consists of the following elements:
The SwissProt identifier, followed by the bracketed first position in the sequence included
in the block, the actual amino acid sequence, and finally a sequence-weight. The latter is
scaled such that 100 identifies the sequences that are most distant from all the other sequences
contained in the block. Clusters are separated by a blank line.

sequences. Let be the number of pairs of amino acids and ; then the observed
frequency of this pair is

where is the length of the alignment. The frequency of this pair expected to occur
by chance alone is

where is the observed frequency of amino acid . Entry in a BLOSUM matrix
is then calculated as the log-odds of finding amino acids and at a homologous
position in an alignment vs. the probability of observing this pair by chance alone:

This is then multiplied by 2 and rounded to the nearest integer to yield the actual
entries in the score matrix:

round

By way of an example, we now compute a BLOSUM matrix based on the single
BLOCK shown in Figure 2.8. It consists of a total of 24 amino acids occurring at
frequencies shown in Figure 2.9A. If for the time being we ignore clustering, we ob-
tain the expected probabilities of finding pairs of amino acids shown in Figure 2.9B.
Notice that the expectations of unobserved pairs of amino acids are set to zero, as
they are ignored in subsequent steps of the derivation.

There is a total of 24 pairs of amino acids in the block and Figure 2.10 shows
their raw counts and frequencies. By dividing entries in Figure 2.10B by the entries
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A B
Count

A 3 1/8
R 3 1/8
N 3 1/8
I 1 1/24
L 1 1/24
M 2 1/8
P 3 1/8
T 3 1/8
Y 3 1/8
V 2 1/12

A R N I L A M P T Y V
A 1/64
R 0 1/64
N 0 0 1/64
I 0 0 0 1/576
L 0 0 0 0 1/576
M 0 0 0 0 1/144 1/144
P 0 0 0 0 0 0 1/64
T 0 0 0 0 0 0 0 1/64
Y 0 0 0 0 0 0 0 0 1/64
V 0 0 0 1/144 0 0 0 0 0 1/144

Fig. 2.9. The frequency of amino acid , , in the alignment block shown in Figure 2.8 without
clustering. A: Amino acid counts and probabilities; B: probabilities of pairs of amino acids,

; probabilities of unobserved pairs of amino acids, e.g. RA, are set to zero.

A B
A R N I L A M P T Y V

A 3
R 0 3
N 0 0 3
I 0 0 0 0
L 0 0 0 0 0
M 0 0 0 0 2 1
P 0 0 0 0 0 0 3
T 0 0 0 0 0 0 0 3
Y 0 0 0 0 0 0 0 0 3
V 0 0 0 2 0 0 0 0 0 1

A R N I L A M P T Y V
A 1/8
R 0 1/8
N 0 0 1/8
I 0 0 0 0
L 0 0 0 0 0
M 0 0 0 0 1/8 1/24
P 0 0 0 0 0 0 1/8
T 0 0 0 0 0 0 0 1/8
Y 0 0 0 0 0 0 0 0 1/8
V 0 0 0 1/8 0 0 0 0 0 1/24

Fig. 2.10. Observed pairs of amino acids in the alignment block shown in Figure 2.8. A: Raw
counts; B: frequencies.

in Figure 2.9B and taking the logarithm to the base 2, we get Figure 2.11A. Mul-
tiplication by 2 and rounding to the nearest integer gives us finally the substitution
matrix in Figure 2.11B.

If we base our computations on the two clusters that make up the block in Fi-
gure 2.8, the expected probability of finding an amino acid is computed as the sum
of the two probabilities of finding it in either cluster. For instance, the probability of
finding a M is (Fig. 2.12A). As to the observed pairs
of amino acids, we now make only comparisons between clusters. Hence, there are
a total of 16 pairs as listed in Figure 2.12B.
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A B
A R N I L A M P T Y V

A 3.0
R - 3.0
N - - 3.0
I - - - -
L - - - - -
M - - - - 3.6 2.6
P - - - - - - 3.0
T - - - - - - - 3.0
Y - - - - - - - - 3.0
V - - - 3.6 - - - - - 2.6

A R N I L A M P T Y V
A 6
R - 6
N - - 6
I - - - -
L - - - - -
M - - - - 7 5
P - - - - - - 3
T - - - - - - - 3
Y - - - - - - - - 3
V - - - 7 - - - - - 5

Fig. 2.11. BLOSUM matrix computed from the alignment block shown in Figure 2.8. A: ;
B: . See text for details.

A B
Count

A 3 1/8
R 3 1/8
N 3 1/8
I 1 1/32
L 1 1/32
M 2 3/32
P 3 1/8
T 3 1/8
Y 3 1/8
V 2 3/32

A R N I L A M P T Y V
A 2
R 0 2
N 0 0 2
I 0 0 0 0
L 0 0 0 0 0
M 0 0 0 0 1 1
P 0 0 0 0 0 0 2
T 0 0 0 0 0 0 0 2
Y 0 0 0 0 0 0 0 0 2
V 0 0 0 1 0 0 0 0 0 1

Fig. 2.12. Clustered analysis of the alignment block shown in Figure 2.8. A: Count of amino
acid and its probability, ; B: Observed pairs of amino acids.

2.4.3 Comparison between PAM and BLOSUM

Recall that the PAM series of substitution matrices is constructed by extrapolating
from a single starting matrix of substitution probabilities (Fig. 2.2). In contrast, BLO-
SUM matrices are based on frequencies of pairs of amino acids obtained from align-
ment blocks of various degrees of conservation. A BLOSUM62 matrix (Table 2.4),
for instance, is derived from substitution probabilities based on alignments where
all those sequences with identity are grouped and given the same weight
as each of the ungrouped sequences. Hence, in contrast to PAM matrices, where a
high PAM number corresponds to high sequence divergence, in the BLOSUM sys-
tem high numbers correspond to a high degree of conservation and Table 2.5 shows
examples of pairs of similar matrices from the BLOSUM and PAM series.

Having introduced substitution matrices, let us state more formally the definition
of an alignment score. We consider an alphabet which contains the gap character.
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Table 2.4. BLOSUM62 amino acid substitution matrix. Match scores are shown in bold.

A R N D C Q E G H I L K M F P S T W Y V
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

Table 2.5. Examples of corresponding matrices from the BLOSUM and PAM series of amino
acid substitution matrices [114].

BLOSUM PAM
45 250
62 160
80 120

Then any two members , of this alphabet have a score attached. Further,
consider the sequences and and
denote by and their gap-containing versions (cf. Figure 2.3). Then the score
of an alignment of these two sequences of length is simply the sum of the scores of
pairs of characters:

Score

Notice that this formula implies that each position in an alignment evolves indepen-
dently. In many instances, for example in the case of protein coding sequences, this
is an oversimplification, which nevertheless works remarkably well.
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2.4.4 Application of Substitution Matrices

Consider an alignment of the polypeptides AHY and GHF, for example

AHY
GHF

According to the BLOSUM62 matrix (Table 2.4) the score of this alignment is
.

Substitution matrices such as BLOSUM62 are tuned to a specific evolutionary
distance between the sequences being compared. Since over time any given position
in a sequence is increasingly likely to have been hit by a mutation, PAM matri-
ces with increasing PAM numbers become effectively more tolerant of non-identical
amino acids and the same is true for BLOSUM matrices with decreasing BLOSUM
numbers. Figure 2.13 shows this effect for optimal local alignments of the two Hox
genes already shown in Figure 2.2. The alignment based on BLOSUM80 is sharply
centered on the homeodomain. The alignment based on BLOSUM62 is extended by
24 amino acids at the C-terminus, while the N-terminus has remained unchanged.
The alignment based on BLOSUM45, finally, has the same C-terminus as the BLO-
SUM62 alignment, but is extended by 386 amino acids at the N-terminus.

2.5 The Number of Possible Alignments

Now that we know how to score alignments the easiest way to decide our origi-
nal question of which alignment is best might be to simply enumerate all possible
alignments and look for the one with the highest score. Before embarking on such
a “naı̈ve” algorithm, let us estimate the number of possible alignments. As before,
we consider two sequences and ,
and further define as the number of alignments that can be formed between
them. The key insight necessary for calculating the number of possible alignments is
that any alignment ends in one of exactly three ways:

Consider the effect of these three possible ends on the number of alignments that
can be formed out of the remaining residues in the alignment. The ending

removes one residue from sequence , removes one residue from sequences

and each, and finally, the ending removes one residue from sequence
. Therefore we can write the following recursion:

(2.2)

where the righthand side lists the number of alignments corresponding to each of the
three types of ending. In addition to recursion (2.2) we need a “stop criterion”, also
known as boundary condition:
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BLOSUM80
Homeodomain

NSGRTNFTNKQLTELEKEFHFNRYLTRARRIEIANTLQLNETQVKIWFQNRRMKQ 562
NAVRTNFTTKQLTELEKEFHFNKYLTRARRVEIAASLQLNETQVKIWFQNRRMKQ 284

Homeodomain

KKRVKEGLIP 572
KKREKEGLLP 294

BLOSUM62
Homeodomain

NSGRTNFTNKQLTELEKEFHFNRYLTRARRIEIANTLQLNETQVKIWFQNRRMKQ 562
NAVRTNFTTKQLTELEKEFHFNKYLTRARRVEIAASLQLNETQVKIWFQNRRMKQ 284

Homeodomain

KKRVKEGLIPADILTQHSTSVISEKPPQQQQPQP 596
KKREKEGLLPISPATPPGNDEKAEESSEKSSSSP 318

BLOSUM45

SAAEYGITTSTTTGNPGTPLHPSSHSPADSYYESDSVHSYYATAAVATVAPPSNS 176
SFLEYPILSSGDSGTCSARAYPSDHRI-----------TTFQSCAVSANSCGGDD 51

SPITAANASATS------NTQQQQQQAAIISSEN-GMMYTNLDC--MYPTAQAQA 222
RFLVGRGVQIGSPHHHHHHHHHHPQPATYQTSGNLGVSYSHSSCGPSYGSQNFSA 106

PVHGYAGQIEEK----YAAVLHASYAPGMVLEDQDPMMQQATQSQMWHHQQHLAG 273
PYSPYALNQEADVSGGYPQCAPAVYSGNL----SSPMVQ--------HH------ 143

SYALDAMDSLGMHAHMHHGLPHGHLGNLANNPHQQQPQVQQQQQQPHQQPQHPQN 328
--------------HHHQGYAGGAVGS---------PQYIH-----HSYGQEHQS 170

QSPAAHQQHHQNSVSPNGGMNRQQRGGVISPGSSTSSSTSASNGAHPASTQSKSP 383
LALAT----YNNSLSP---LHASHQEACRSPASETSS---------PAQ------ 203

NHSSSIPTYKWMQLKRNVPKPQAPSYLPAPKLPASGIASMHDYQMNGQLDMCRGG 438
-------TFDWMKVKRNPPK----------------------------------- 216

GGGGSGVGNGPVG-VGGNGSPGIGGVLSVQNSLIMANSAAAAGSAHPNGMGVGLG 492
--------TGKVGEYGYLGQP---------------------------------- 229

Homeodomain

SGSGLSSCSLSSNTNNSGRTNFTNKQLTELEKEFHFNRYLTRARRIEIANTLQLN 547
---------------NAVRTNFTTKQLTELEKEFHFNKYLTRARRVEIAASLQLN 269

Homeodomain

ETQVKIWFQNRRMKQKKRVKEGLIPADILTQHSTSVISEKPPQQQQPQP 596
ETQVKIWFQNRRMKQKKREKEGLLPISPATPPGNDEKAEESSEKSSSSP 318

Fig. 2.13. Optimal local alignments of two Hox proteins based on different substitution ma-
trices. : homeotic labial protein (Lab) from D. melanogaster; : human Hox-A1; white on
gray: identical amino acids; black on gray: similar amino acids.
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(2.3)

When trying to evaluate recursion (2.2), we have two options: (i) direct top down
or (ii) indirect bottom up computation. We consider the top down approach first. It
is called top down, because it starts from the desired end-result, say , and
then works its way “downwards” by repeated application of Equation (2.2), until the
boundary condition (2.3) is reached. Figure 2.14 depicts this recursive process as a
tree to be read from the top. Convince yourself from this graphic that the number of
possible global alignments of two sequences of length 2 is 13 by summing all the
terms in the tree corresponding to the boundary condition (2.3).

Fig. 2.14. Top down computation of the number of possible alignments for two sequences
each of length 2 according to Equation (2.2).

Notice that appears three times in Figure 2.14, which means that this term
is evaluated three times. In order to avoid such inefficient duplication of computa-
tional effort, we need to change our point of view. In the top down approach just
discussed, the number of possibilities for the shortest alignments is computed last.
If we compute them first and save these results as input for the computation of the
next partial solution, the runtime of the algorithm becomes instead of ex-
ponential. To illustrate this, we start with an empty results matrix (Fig. 2.15A). This
is initialized using boundary condition (2.3) by filling the first row and first column
with 1’s (Fig. 2.15B). The interpretation of this step is that there is only one way of
aligning any sequence with a sequence of length zero, which consists exclusively of
gaps. Now we can fill in the empty rows in our matrix by repeated application of re-
cursion (2.2) going from left to right (or filling in columns of cells going from top to
bottom). Hence, we quickly get the result that (Fig. 2.15C). Notice that
the results matrix is symmetrical. This corresponds to our intuition that the number
of possible alignments does not depend on the way the two sequences concerned are
labeled ( ).

The idea used to speed up the computation of the number of possible alignments
is to store subproblem solutions. When we augment this strategy by an optimization
step, we arrive at the important computational method known as dynamic program-
ming.
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A B C
0 1 2

0
1
2

0 1 2

0 1 1 1
1 1
2 1

0 1 2

0 1 1 1
1 1 3 5
2 1 5 13

Fig. 2.15. Calculating the number of possible alignments from two sequences of length 2 by
storing subproblem solutions. A: Empty solutions matrix; B: initialized solutions matrix—
cells summed to compute the adjacent empty cell are shown in bold; C: filled in solutions
matrix.

2.6 Global Alignment

In the subsequent sections three types of optimal pairwise alignment algorithms are
dealt with: global, overlap, and local, which were first introduced at the beginning of
this chapter (Fig. 2.1). All three types of alignment are computed using variations on
the same underlying dynamic programming algorithm. Each algorithm is based on
a two-dimensional table similar to those shown in Figure 2.15, which is known as a
dynamic programming matrix. This data structure is subjected to the following three
steps:

1. initializing of the dynamic programming matrix;
2. filling in the dynamic programming matrix with scores of optimal partial align-

ments;
3. extracting one or more alignments from the dynamic programming matrix; this

is also called traceback.

We start by working through an example of global alignment, before stating the
relevant rules more formally. This is followed by a briefer treatment of overlap and
local alignments, which turn out to be simple extensions of the global alignment
algorithm. Our example consists of the two sequences ACCGTT and
AGTTCA throughout, which we wish to align using as scoring scheme ,

, and . In other words, we use a linear gap
model. The affine gap model is incorporated into the algorithm in Section 2.9.

Nomenclature

We need a certain amount of vocabulary when analyzing sequences. To a computer
scientist the sequences of molecular biologists are strings. A string is a list of
characters ordered from left to right. The following notational conventions are used
in this and subsequent chapters:

1. is the length of .
2. is a substring of .
3. is a prefix of .
4. is a suffix of .
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Characters in strings are labeled . As an example we consider

ADDISABEBA

In this case , ADD is a prefix, IS is a substring, and BA is a suffix. We
will often use “string” and “sequence” interchangeably. Notice, however, that a sub-
sequence is different from a substring. While a substring comprises only characters
that are contiguous in the parent string, a subsequence may contain non-contiguous
elements. For example, DSB is a subsequence, but not a substring of ADDISABEBA.

Initializing

In order to align our two example sequences, and , we write each sequence
preceded by a gap character along the two dimensions of the dynamic programming
matrix shown in Figure 2.16, along the horizontal axis and along the verti-
cal axis. We define the partial optimal score, , as the score of the optimal
alignment of the prefixes and . Since there is no alignment that
consists of two aligned gaps, . To find , we note that there is only
a single way of writing the corresponding alignment, , which has a score of -1.
In general, there is only a single way of aligning a sequence exclusively with gaps
and, hence, we can easily fill in the first row and also the first column of the dynamic
programming matrix (Fig. 2.16).

– A C C G T T
0 1 2 3 4 5 6

– 0 0 -1 -2 -3 -4 -5 -6
A 1 -1
G 2 -2
T 3 -3
T 4 -4
C 5 -5
A 6

index of

-6

first column of

index of
first row of

Fig. 2.16. Initializing the dynamic programming matrix for global alignment.

Filling in the Dynamic Programming Matrix

In order to calculate the remaining values of , we need to consider the three
ways in which an existing alignment can be extended by one unit. We have already
encountered this in Section 2.5 when calculating the number of possible alignments:

. These three possibilities correspond to three moves in the
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dynamic programming matrix: horizontal for aligning a residue from with a gap,
diagonal for aligning two residues, and vertical for aligning a residue from with
a gap (Fig. 2.17). The aim is to find the maximum of the three possible values of

implied by the three possible extensions of an alignment. In this way the
entire dynamic programming matrix is filled going from left to right and from top to
bottom (Fig. 2.18). This takes the same amount of time as computing the number of
possible alignments in Section 2.5: .

– A C C G T T
0 1 2 3 4 5 6

– 0 0 -1 -2 -3 -4 -5 -6
A 1 -1
G 2 -2
T 3 -3
T 4 -4
C 5 -5
A 6 -6

Fig. 2.17. Dynamic programming matrix for global alignment: an empty cell surrounded by
three filled cells can be evaluated by considering the three possible extensions of an alignment
indicated by the three arrows and selecting the configuration with the maximum score. In the
case shown, the three values to choose from are (i) , (ii) ,
and (iii) . Hence the cell is filled with as shown in
Figure 2.18.

– A C C G T T
0 1 2 3 4 5 6

– 0 0 -1 -2 -3 -4 -5 -6
A 1 -1 1 0 -1 -2 -3 -4
G 2 -2 0 0 -1 0 -1 -2
T 3 -3 -1 -1 -1 -1 1 0
T 4 -4 -2 -2 -2 -2 0 2
C 5 -5 -3 -1 -1 -2 -1 1
A 6 -6 -4 -2 -2 -2 -2 0

Fig. 2.18. Filled in dynamic programming matrix for global alignment. The score of the opti-
mal alignment can be read from the bottom right cell; in this example it is 0.

The score in the bottom righthand corner of Figure 2.18 is the maximum score.
In our example this happens to be 0, but it could be any number, positive or negative.
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Notice how the repeated application of simple rules has yielded this result, even
though there are 8,989 possible global alignments to choose from.

To summarize the strategy for filling in the global alignment matrix, we define
the score of the optimal alignment between and as

The values of are calculated through the recursions

where is the gap extension score.

Traceback

Having obtained the optimal score, we need to extract the corresponding alignment.
This is usually done by a process referred to as “traceback”. At each step of the
forward phase of the algorithm outlined above the cell in the dynamic program-
ming matrix from which the current value has been derived is “remembered”
through a back pointer. We visualize this as a little arrow that points to the cell from
which the entry in the current cell was computed (Fig. 2.19). There might be up to
three back pointers per cell corresponding to three cooptimal alignment extensions.

Once the dynamic programming matrix has been filled in, the back pointers are
followed from the bottom righthand corner to the top lefthand corner and the corre-
sponding alignment is constructed in reverse order (Fig. 2.19).

There is only one possible traceback path in Figure 2.19, which means that the
corresponding global alignment is unique. This is not necessarily the case and if
more than one traceback path is possible, there is no way to distinguish the resulting
cooptimal alignments under the model. In practice, most implementations ignore
this problem and return an arbitrary member of the potentially large set of cooptimal
global alignments.

Next we consider overlap alignment (cf. Fig. 2.1), which is applied in the context
of a widely used sequencing strategy known as shotgun sequencing.

2.7 Shotgun Sequencing and Overlap Alignment

There are two possibilities for sequencing large pieces of DNA: (i) “Walk” along the
target sequence in steps of a couple of hundred nucleotides. This is slow as a new
primer needs to be synthesized for every step in the walk. Moreover, walking can
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– A C C G T T
0 1 2 3 4 5 6

– 0 0 -1 -2 -3 -4 -5 -6
A 1 -1 1 0 -1 -2 -3 -4
G 2 -2 0 0 -1 0 -1 -2
T 3 -3 -1 -1 -1 -1 1 0
T 4 -4 -2 -2 -2 -2 0 2
C 5 -5 -3 -1 -1 -2 -1 1
A 6 -6 -4 -2 -2 -2 -2 0

ACCGTT--
A--GTTCA

Fig. 2.19. Dynamic programming matrix with back pointers. The optimal global alignment
(bottom) corresponds to the path marked in bold (top).

only be carried out sequentially, as the primer sequence necessary for a given step
is unknown until the previous step has been taken. An alternative approach is (ii)
shotgun sequencing, where random fragments of the target sequence are cloned into
a vector and sequenced using always the same primers complementary to the vector.

Shotgun sequencing [215] is motivated by the fact that each DNA sequencing re-
action identifies only between 400 and 800 nucleotides, a very small portion of even
small genomes (Table 2.6). With the shotgun approach many sequencing reactions
can be carried out in parallel. The resulting rapidly generated fragments overlap and
we will explain how this fact can be used to assemble the target sequence. But before
that we ask, how many such fragments are necessary for successful assembly?

Let be the length of the target sequence. When sequencing random bases from
that sequence, the probability of not sequencing a specific nucleotide is

where is the number of bases sequenced. The complementary probability that a
base has been sequenced is

where is called the coverage. Hence, with six-fold coverage of a genome,
99.8% of nucleotides are included in the data set ready for computational assembly.

The idea underlying the assembly of shotgun fragments is known as overlap
alignment, sometimes also referred to as end space free alignment [99, ch. 11]. With
this approach, gaps at either ends of the alignment are not penalized (Fig. 2.1). This
is done by initializing the first row and column of the dynamic programming matrix
to zero and then filling the matrix exactly as for the global alignment (Fig. 2.20). For
a linear gap model the corresponding recursions are



2.8 Local Alignment 35

The traceback step starts from the maximum score in the last row or column and
the positions left unaccounted for are filled with gaps. Notice that the cell containing
the entry on the traceback path in Figure 2.20 contains three back pointers, im-
plying that there are three cooptimal overlap alignments of the two input sequences.
Moreover, in contrast to global alignments, there might be more than one cooptimal
starting point for the traceback.

Table 2.6. Milestones of genome sequencing; bp: base pair, Mb: base pairs, Gb: base
pairs.

Year Organism Genome Size Commentary
1978 bacteriophage X174 5386 bp first genome [214]
1982 bacteriophage 48.502 bp shotgun sequencing [215]
1995 Haemophilus influenzae 1.8 Mb first free-living organism [78]
1996 Saccharomyces cerevisiae 12 Mb first eucaryote [88]
1998 Caenorhabditis elegans 97 Mb first metazoan [243]
2000 Arabidopsis thaliana 120 Mb first plant [245]
2000 Drosophila melanogaster 180 Mb first metazoan with whole-genome shotgun [3]
2001/2003 Homo sapiens 3.1 Gb aim of the human genome project [128, 252, 39]
2002 Mus musculus 2.5 Gb comparative pharmacogenomics [40]
2005 Pan troglodytes 3.1 Gb closest relative of humans [223]

2.8 Local Alignment

Two proteins often share only homologous domains rather than homology across
their entire lengths. In this case we seek a local, rather than a global alignment
as illustrated in Figure 2.1. Put slightly more formally, the local alignment prob-
lem is solved by finding a maximally scoring pair of substrings. This require-
ment increases the space of possible alignments, since all pairs of substrings need
to be considered. The sequence ACT, for example, contains the substrings
A C T AC CT ACT . In general, a sequence of length contains sub-

strings. For two sequences of lengths and there are correspondingly
pairs of substrings to be compared. Naı̈vely, we would need to compute a global
alignment for each one of these and then look for the highest scoring pair. However,
a slight variation on the global alignment scheme ensures that the time requirement
for local alignments is equal to that for global alignments, i.e. . This varia-
tion consists in taking the maximum over the three possible extensions of an existing
alignment and zero (Fig. 2.21). The corresponding recursions are



36 2 Optimal Pairwise Alignment

– A C C G T T
0 1 2 3 4 5 6

– 0 0 0 0 0 0 0 0
A 1 0 1 0 -1 -1 -1 -1
G 2 0 0 0 -1 0 -1 -2
T 3 0 -1 -1 -1 -1 1 0
T 4 0 -1 -2 -2 -2 0 2
C 5 0 -1 0 -1 -2 -1 1
A 6 0 1 0 -1 -2 -2 0

ACCGTT--
--AGTTCA

Fig. 2.20. Dynamic programming matrix for overlap alignment (top) and one of the corre-
sponding three cooptimal alignments (bottom). The traceback path corresponding to the align-
ment is marked in bold. It starts from the maximum score in the bottom row or last column.

The traceback step starts from the maximum score in the entire dynamic pro-
gramming matrix and proceeds until a cell with score zero is reached. As noted al-
ready for overlap alignments, there might be more than one possible starting point for
a local alignment, and more than one cooptimal alignment may correspond to each
starting point. Also, in the case of local alignments it is often interesting to include
high-scoring but suboptimal alignments in the result set. These might correspond to
weaker but still significant homologies.

2.9 Accommodating Affine Gap Costs

So far we have simplified matters by using a linear gap model. However, as explained
in Section 2.3, the affine gap scoring scheme is more realistic by distinguishing be-
tween gap opening and gap extension. The incorporation of the affine gap model
in the dynamic programming algorithms seen so far follows from the insight that a
gap insertion constitutes either the extension of an existing gap, or the opening of a
new gap and its concomitant extension by one. To account for this, the three types
of alignment endings need to be considered again. Let denote the maximum
score of an alignment ending in , the maximum score of an alignment
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– A C C G T T
0 1 2 3 4 5 6

– 0 0 0 0 0 0 0 0
A 1 0 1 0 0 0 0 0
G 2 0 0 0 0 1 0 0
T 3 0 0 0 0 0 2 1
T 4 0 0 0 0 0 1 3
C 5 0 0 1 1 0 0 2
A 6 0 1 0 0 0 0 1

GTT
GTT

Fig. 2.21. Dynamic programming matrix for local alignment (top). The path corresponding
to the optimal alignment (bottom) is marked in bold. In contrast to global and overlap align-
ments (Figs. 2.19 and 2.20), the local alignment consists of a pair of substrings from the input
sequences.

ending in , and the maximum score of an alignment ending in .
In order to calculate the recursions, we note not only , as we have done so
far, but also and . Then the following recursions can be applied to the
global alignment problem:

An example application of this strategy is shown in Figure 2.22 where the score
scheme , , , and is applied to the two
sequences ATC and AC. The traceback starts in the bottom righthand
corner of the matrix with the highest entry there; in our case this is matrix with the
entry -5. From there it moves diagonally, i.e. the nascent alignment consists of C

C .
At the same time, the traceback switches from matrix to matrix , which indicates
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that a gap is opened and extended by one position in the sequence written vertically,
yielding TC

-C . The next move switches back to , thereby closing the gap, and adds
one further position to return the final alignment, ATC

A-C . The score of this is -5, as
demanded by the affine gap model defined in Equation (2.1).

– A T C

– 0

A 1 -10 -12

C -10 -2 -5

– A T C

– 0 -7 -9 -11

A -6 -8

C -17 -9

– A T C

– 0

A -7

C -9 -6 -17 -19
ATC
A-C

Fig. 2.22. The three matrices needed for efficiently computing alignments with affine gap
costs. Only the traceback for the final alignment (underneath the matrices) is shown (arrows).
See text for further explanations.

Overlap and local alignment strategies can be adapted analogously for dealing
with affine gap costs.

2.10 Maximizing vs. Minimizing Scores

We noted in Section 2.2 that there are two ways of interpreting alignments. The first
is that they minimize the implied number of evolutionary changes. Alternatively, one
may say that they maximize the implied amount of sequence conservation. At a first
glance these two interpretations appear to be equivalent. This begs the question, why
all the scoring schemes we have covered in this chapter are of the maximizing kind?
The reason for this is that local alignments depend on the cutoff score of zero, which
implies as hidden assumption that the expected score of a random pair of residues
is negative. If this condition were not met, the score of a local alignment would
grow through the addition of random pairs of residues. With a minimizing scoring
scheme no such natural numerical barrier exists. In order to make global alignment
consistent with the local algorithm, global alignments are also usually calculated by
maximizing a score even though in this case a minimizing scheme would work just
as well because it always extends over the entire lengths of the input sequences.
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2.11 Example Application of Global, Local, and Overlap
Alignment

Figure 2.23 shows the result of applying the global, local, and overlap alignment
algorithms to the same pair of short DNA sequences. The global alignment looks
reasonable, indicating that the sequences are indeed homologous across their entire
lengths. The local alignment picks the block marked local in the global alignment.
This is the highest scoring pair of substrings from the two sequences. In contrast to
the global and local alignments, the overlap alignment has no biological meaning;
there simply is no substantial overlap at the end of the sequences to be detected.

Global, score = -52
local

ACTTCACCAGCTCCCTGGCGGTAAGTTGAT---CAAA---GGAAACGCAAAGTTT 49
GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTT 55

TCAAG 54
TCATC 60

Local, score = 7

GGTAAGT 7
GGTAAGT 7

Overlap, score = 1

ACTTCACCAGCTCCCTGGCGGTAAGTTGATCAAAGGAAACGCAAAGTTTTCAAG- 54
-----------------------------------------------------GT 2

------------------------------------------------------- 54
TTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTC 57

--- 54
ATC 60

Fig. 2.23. Optimal alignments computed using the three types of alignment algorithm dis-
cussed in this chapter. The input sequences consist of 60 nucleotides taken from the Adh locus
in two species of Drosophila. : D. melanogaster; : D. adiastola. The scoring scheme
was: match , mismatch , gap opening , gap extension .

2.12 Summary

Alignments are used for sequence comparison and typically model two evolutionary
events: point mutations and indels. A pairwise alignment between two sequences is
generated by writing the two sequences on top of each other such that either two
residues or a residue and a gap symbol are paired. An optimal alignment is one
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that either minimizes the implied number of evolutionary changes or maximizes a
particular scoring function. Residues are scored differently from indels. Match and
mismatch scores are applied to nucleotides, while PAM and BLOSUM amino acid
substitution matrices are used for protein sequences. Gaps are usually modeled using
the affine score function, which distinguishes between gap opening and gap exten-
sion. Since the scores of alignments can be defined recursively, dynamic program-
ming is used for efficiently calculating optimal alignments. There are three major
types of such alignments, global, local, and overlap. A global alignment is based on
the assumption that the sequences are homologous over their entire lengths. In con-
trast, local alignments search for local homologies. Finally, overlap alignments are
used for the assembly of overlapping sequence fragments, as might be generated in
the course of a shotgun sequencing project.

2.13 Further Reading

An advanced treatment of alignment algorithms is given in the textbook by Waterman
[253], who is also one of the coinventors of the optimal local alignment algorithm
and a number of other algorithms in computational biology.

2.14 Exercises and Software Demonstrations

2.1. Consider the following DNA alignment:

AACTCA---G
ATCTGATTTG

What is its score under the following scoring scheme: , ,
, ?

2.2. What is the probability of drawing a pair of distinct nucleotides from a nu-
cleotide database under the assumption that all residues have the same frequency?

2.3. The genome of Mycoplasma genitalium has the following composition:

Nucleotide Frequency
A 0.346
C 0.158
G 0.159
T 0.337

What is the probability of drawing a pair of distinct nucleotides from the genome of
M. genitalium?

2.4. Consider the following protein alignment:
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AAWGCCA
AVWGCCL

What is its score using the BLOSUM62 substitution matrix (Table 2.4)?

2.5. Use thebioinformer program Alignment Protein Substitution
Matrices (Section A.1.1) to calculate the expected difference between a pair of
protein sequences separated by 5 PAM and by 50 PAM. Do these values differ from
the PAM number? Explain.

2.6. Imagine you are given the task of replacing the old system of match and mis-
match scores for DNA sequence alignments by PAM matrices. From sequence align-
ments you have already computed the following mutation probability matrix for se-
quences that have diverged by one PAM.

A C G T
A 0.97 0.01 0.01 0.01
C 0.01 0.97 0.01 0.01
G 0.01 0.01 0.97 0.01
T 0.01 0.01 0.01 0.97

In addition, the background frequencies of all nucleotides are .

1. Compute the PAM1 substitution matrix.
2. Compute the PAM2 substitution matrix.

2.7. Use the information given in Figure 2.12 to compute the final BLOSUM score
matrix for the clustered BLOCKS data.

2.8. Consider two random nucleotide sequences of equally likely nucleotides and a
scoring scheme of , . What is the expected score of a
random pair of residues? Can this scoring scheme be applied in the context of local
alignment algorithms?

2.9. What is the number of global alignments between two sequences of lengths 3
and 4?

2.10. List all substrings of sequence ACG.

2.11. What is the number of pairs of substrings that can be formed between
ACG and ACGT?

2.12. What is the number of local alignments between ACG and ACGT?

2.13. Imagine a molecular biologist sends you a file containing the shotgun sequenc-
ing data for Escherichia coli strain K12. The genome of this bacterium consists of
4,639,675 nucleotides and the shotgun sequencing data consists of 82,500 fragments
of an average length of 500 bp.

1. What is the coverage of this genome?
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2. How many nucleotides do you expect to have remained unsequenced?
3. What coverage would have been necessary to obtain an expectation of a single

unsequenced nucleotide?

2.14. Write a computer program for calculating the number of global alignments that
can be formed between two sequences. How many different global alignments can
be formed between two sequences of lengths 390 and 400? Compare your answer
to that given by the bioinformer program Number of Alignments (Sec-
tion A.1.2).

2.15. Write down the missing two cooptimal alignments implied by the dynamic
programming matrix in Figure 2.20.

2.16. Construct an algorithm for computing the number of cooptimal global align-
ments.

2.17. Compute the optimal global alignment between ATA and ATTA
using dynamic programming and a scoring scheme of , ,

, . What is the score of the optimal alignment?
What is the optimal alignment? Is the optimal alignment unique? Compare your
results to those of the bioinformer program Pairwise Alignment (Sec-
tion A.1.3).

2.18. Global alignment can be regarded as a special case of local alignment. Rewrite
the recursions for local alignment such that they also become applicable to the global
case.
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Biological Sequences and the Exact String Matching
Problem

One needs some form of memory with which any required
entry can be reached at short notice. This difficulty
presumably used to worry the Egyptians when their books
were written on papyrus scrolls. It must have been slow work
looking up references in them, and the present arrangement
of written matter in books which can be opened at any point
is greatly to be preferred.

Alan M. Turing [117, p. 319]

The human genome consists of nucleotides [128, 252]. A printout of this
text would generate a rather massive book, given that Shakespeare’s collected works
amount to characters—blanks, punctuations, and all. In other words, a print-
out of the human genome would result in a small library of over 730 volumes, each
the size of Shakespeare’s collected works. If we wanted to look up the usage of, say,
the word “phoenix” in Shakespeare, we’d need to leaf through his oeuvre from start
to finish. That is, such a search would take time proportional to the size of the bard’s
works. However, if we had access to a concordance, i.e. an index, to the works of
Shakespeare, we could find the occurrences of “phoenix” much more rapidly. In this
case, our search would take time proportional to the length of the word or phrase we
are looking for. This old but nevertheless very pleasing insight should not let us for-
get that the construction of a concordance is a painstaking business (the concordance
to Shakespeare’s works by itself comprises nine volumes). Hence there is a trade-off
between the effort of constructing a concordance and the total time saved through its
usage.

In this chapter we shall encounter computational methods that emulate both types
of search mentioned so far: (i) linear in the size of the text and (ii) independent of
the size of the text through indexing.

3.1 Exact vs. Inexact String Matching

Biologists investigating a nucleotide or amino acid sequence often need to look up
specific patterns in this sequence. A simple example would be to search for potential
start codons in a protein-coding mRNA sequence. In this case we would be looking
for all the positions where an exact match between a pattern (ATG) and a text (the
mRNA sequence) starts.
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Alternatively, many protein families are characterized by inexact matches to sig-
nature sequences. PROSITE is a data base dedicated to the collection of such signa-
ture sequences [226]. For example, mitogen-activated protein kinases (MAP kinases)
form a class of threonine/serine kinases that are involved in many central cellular sig-
nal transduction pathways. They are characterized by the PROSITE-signature

F-x(10)-R-E-x(72,86)-R-D-x-K-x(9)-C.

Hyphens separate the elements of the pattern, letters refer to amino acids, and an x
indicates any amino acid. Bracketed numbers denote the repeat length of a residue;
if this repeat length varies, the range of this variation is quoted in the brackets. The
pattern reproduced above might appear somewhat long-winded as it is spread out
over approximately 100 residues. But it has the very useful property that all MAP
kinases conform to it, while no other proteins in the comprehensive protein sequence
database SwissProt [25] match this pattern.

A PROSITE-signature is a compact description of a potentially large set of se-
quences. Strings that describe sets of strings through a special syntax are known as
regular expressions and PROSITE-signatures are a particular kind of regular expres-
sion [80]. Notice that in order to generate such a signature, the approximate positions
of conserved regions have to be known. These can only be discovered by compar-
ing homologous proteins, i.e. proteins with a shared recent common ancestor. The
detection of such homologous proteins is usually carried out with a different kind of
inexact matching known as alignment. Alignments are dealt with in Chapters 2, 4,
and 5. In this chapter we look at exact matching and matching with at most mis-
matches. We will see that exactly matching a pattern with a text can be achieved in
time proportional to the length of the text, , using a variety of classical methods.
In the first part of this chapter we introduce an example algorithm that achieves this
time bound. Next we show how we can search for a set of patterns of total length
rapidly in time, where is the number of occurrences of the patterns.
Perhaps surprisingly, it is possible to improve dramatically on these strategies and
to execute exact pattern searches in time proportional to the length of the pattern
through the use of an index. We start our survey of exact string matching methods
with a simple, “naı̈ve” approach to clarify the issues involved.

3.2 Naı̈ve Pattern Matching

When comparing two characters, their identity is called a match, the converse a mis-
match. We usually talk about two kinds of strings, the text, , with length ,
and the pattern, , with length , where and usually . Solving
the exact string matching problem then amounts to finding all occurrences of in .
If we take as an example the DNA sequences CCACAGACACAT and ACA,
then occurs three times in starting at positions 3, 7, and 9.

A naı̈ve method for solving the exact matching problem is to align the left ends
of and and to compare each character going from left to right. If a mismatch is
found, or all letters in have been matched, is shifted to the right by one position
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Phase 1 Phase 2 Phase 3
Text CCACAGACACAT CCACAGACACAT CCACAGACACAT
Pattern ACA ACA ACA

ˆ ˆ ***

Fig. 3.1. First three phases in naı̈ve algorithm for exact string matching. The algorithm pro-
ceeds from left to right; mismatches detected by the algorithm are indicated by a circumflex
(ˆ), matches by a star ( ).

(Fig. 3.1). In the worst case and consist of a single type of character. Then the
naı̈ve algorithm performs comparisons and its runtime is therefore

. Through preprocessing of and (as we will explain in Section 3.3) the
exact matching problem can be solved much more effectively in time, that
is, in time linear in the size of the text.

3.3 String Searching in Linear Time

There is a rich tradition of string matching algorithms in the computer science liter-
ature [99]. Here we describe one algorithm that runs in time linear in the length of
the text, the Z-algorithm [99, p. 8ff].

The fundamental concept of the algorithm is that of a Z-value. Given a string
and a string position , the Z-value is the length of the longest substring of
that starts at and matches a prefix of . If we take as an example string the DNA
sequence CACAG, then , , , and so on. Notice that will
always be equal to and is omitted.

As an extension of the concept of Z-values, the substring is called
a Z-box at every position where . In order to simplify our notation for
the algorithm, let and denote the righthand and lefthand borders of the Z-box
corresponding to the current position in the text.

The algorithm to determine Z-values for string , , starts by comparing
the prefix of with the prefix of until a mismatch is found. The length of
the matching substring is . If , we set to and to . Assume now
that we already know for and the borders of the corresponding
Z-box, and . In order to compute we use the Z-values calculated previously:

1. If , find new Z-box. If , and .
2. If , we define and and consider two cases:

a) If , , and remain unchanged.
b) If , compare characters starting at positions and , until

a mismatch at position is found; then , , and .

To solve the exact string matching problem, we consider the string $ ,
where $ is a character that occurs neither in nor in . Every time , an
occurrence of in has been found. Z-values can be computed in
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and hence the exact string matching problem has been solved in time linear in
the size of the text.

Let us work through a concrete application of this algorithm. Our input string is
again CACAG, and we search for the pattern ACA. Figure 3.2 shows the
corresponding setup with the -values computed so far. We now wish to compute

. Currently and ; since , we compute ,
and as marked in Figure 3.2. Since , case 2(a) applies
and hence .

index 123456789
901003 ?

String ACA$CACAG

Fig. 3.2. Z-algorithm: searching for ACA in CACAG.

The Z-algorithm deals with a single pattern at a time. However, it is also possible
to simultaneously match an entire set of patterns against a text. The corresponding
algorithms are based on trees, which are introduced next.

3.4 Trees

The string search methods explained in the subsequent sections make use of a data
structure that reappears in many parts of this book: a tree. Trees are used as index
structures for rapid string searching in this chapter, as guide trees for multiple se-
quence alignment in Section 5.3, as phylogenies in Chapter 8, and as coalescent
trees for simulating gene samples in Chapter 11 and again in Section 12.3. In fact,
this book itself has a hierarchical, that is, tree structure.

We follow the treatment of trees by Donald Knuth, who defines a tree recursively
[151, p. 308]: A tree is a set of nodes containing one special node designated
the root of the tree. All nodes except for the root are partitioned into disjointed
sets, , each forming a subtree of the root. Consider for example the
tree shown in Figure 3.3A. By convention the root is drawn at the top, so node
is the root. It has three subtrees, , , and . These are connected
to the root by edges, sometimes also called links or branches. The root of subtree

is , and so on. The degree of a node is the number of subtrees rooted on
it. Terminal nodes or leaves have degree 0, while branch nodes or internal nodes
have degree 1. In Figure 3.3, nodes , , , and are leaves, the others are
internal nodes. It is important to be able to refer to the relative positions of nodes
in a tree. A root is called the parent of the roots of its subtrees, who are siblings
and children of their parent. In Figure 3.3A, node is the parent of the siblings ,

, and . Each node in a tree can be assigned a level. The level of each node is
one greater than the level of its parent and the level of the root is zero. Our example
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trees in Figure 3.3 consist of three levels. In an ordered tree the order of subtrees
matters, while in oriented trees it does not. If the two trees shown in Figure 3.3 were
ordered, they would be different, while as oriented trees they are equivalent. In this
book we shall imply that trees are oriented, unless stated otherwise. An important
special kind of tree is the binary tree. In it each node has children. Conventional
phylogenies such as the one shown in Figure 1.1 are a special case of binary trees,
where all internal nodes have degree 2. As we will see in Chapter 8, there is a further
peculiarity about phylogenetic trees: they can be rooted or unrooted (cf. Figure 8.2).
This flies in the face of the mathematical definition just given, but corresponds to the
usage biologists have established.

A B

level 0

level 1

level 2

A

B C D

E F G

A

D C B

G F E

Fig. 3.3. Example trees with different subtree order.

Binary trees are important, because there is a simple method of representing trees
with branch nodes of degree as binary trees. Consider again our example tree Fi-
gure 3.3 and remove at each node all references to child nodes except for the first one.
Next, insert references connecting groups of siblings, which leaves the total number
of links in the tree unchanged. The result of this operation is shown in Figure 3.4A,
which is a binary tree. This property becomes more apparent in the equivalent repre-
sentation Figure 3.4B, with the added rule, that traversal of the link changes the
level of the node, while traversal of the link does not.

This brings us to tree traversal. Many algorithms on trees depend on the ability to
efficiently visit each node of a tree once. Given a binary tree, tree traversal methods
proceed by visiting the root, the left child, and the right child. Depending on the
order in which the root is visited, we can distinguish preorder, inorder, and postorder
traversal. Preorder traversal proceeds in three steps iterated for each node in the tree:

1. visit node,
2. traverse link to left child,
3. traverse link to right child.

“Visiting” a node in this context means that the algorithm carries out some compu-
tation based on the node, while link traversal does no more than that. When applied
to the root of the binary version of our example tree (Fig. 3.4B), preorder traversal
visits the nodes in the sequence .

Similarly, inorder traversal proceeds in the following three iterated steps:

1. traverse link to left child,
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A B

A

B C D

E F G

A

B

E C

D

F

G

Fig. 3.4. Representation of Figure 3.3A as binary tree. A: Generated by removing the child
links except for the first one from each node and adding sibling links. B: Redrawn version of
A.

2. visit node,
3. traverse link to right child.

When applied to the root of Figure 3.4B, this procedure visits .
Postorder traversal, finally, proceeds thus:

1. traverse link to left child,
2. traverse link to right child,
3. visit node.

This traversal of Figure 3.4B visits .
When talking about trees, it is important to be able to visualize them and there

are many ways to do this. The explicit style with nodes and edges chosen for Fi-
gure 3.3 will be encountered in several variations throughout this book. However,
there is a simple representation using nested parentheses, which is often used for
textual representations of trees. Transcribing Figure 3.3A in this notation yields

.
With these important preliminaries mastered, we are in a position to look at string

matching with keyword trees.

3.5 Set Matching Using Keyword Trees

Imagine you wish to establish the location of a set of PCR primers in the human
genome. You could sequentially search the genome for every primer sequence. This
would take time , where is the total number of primers, i.e. patterns. How-
ever, it is possible to make this multiplicative time behavior additive using a keyword
tree.
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Keyword trees are used for matching a set of patterns against a text and this
search method is also known as the Aho-Corasick-algorithm in honor of its inven-
tors [5]. Given a set of patterns, e.g. , where ACG ,

AC , ACT , and CGA , the corresponding keyword tree is
constructed by starting with and a root node connected to a series of child nodes,
each one labeled by a single character of (Fig. 3.5A). The leaf node where the
first pattern terminates is labeled 1. The string obtained by concatenating the edge
labels on the path from the root to a node is called that node’s path label. In our ex-
ample, the path label of node 1 is ACG. Continuing with our tree construction we fit

AC into the existing tree by matching its characters with the characters of the
tree, starting at the root. Pattern terminates at an internal node, and accordingly
this node is labeled 2 (Fig. 3.5B). Next, ACT is added; it fits until the node 2
and the remainder of is placed on a new branch. Hence, node 2 has now become
a branching node (Fig. 3.5C). Finally, pattern CGA is added. Since its first
character mismatches the label of the branch emerging from the root, a new branch
is added to the root (Fig. 3.5D). This construction algorithm takes time proportional
to the combined lengths of the patterns, .

A B C D
A

C

G

1

A

C

G

1

2

A

C

G T

1

2

3

A

C

G T

C

G

A

1

2

3 4

ACG, AC, ACT, CGA

Fig. 3.5. Construction of keyword tree for pattern set ACG AC ACT CGA .

The keyword tree shown in Figure 3.5 can be used for text searching in the fol-
lowing way: let be the starting position of a putative pattern in the text and the
currently examined text position. Initially and are set to the starting position, usu-
ally 1. Start character comparisons at the root and match consecutive characters in
the text along the branches of the keyword tree. By doing so, is increased at every
step, while remains constant. If a labeled node is encountered, report an occurrence
of the corresponding pattern starting at position . If a mismatch is found, increase
by 1, set , and start again from the root.

This “naı̈ve” algorithm leads to repeated examination of characters left of . In
order to avoid this duplication of character comparisons, we introduce shortcuts in
the keyword tree that enable us to stay below the root even after a mismatch has been
encountered. These shortcuts are known as “failure links”. Consider node with
path label . The failure link connects to that node in the tree whose path label
is the longest suffix of . Figure 3.6 shows our example keyword tree with added
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failure links. Any failure link from a node whose path label has length 1 must lead to
the root. The failure links can be added to the keyword tree during a single breadth
first traversal of the tree, leaving the time requirement of keyword tree construction
unchanged.

A

C

G T

C

G

A

1 3 4

2

ACG, AC, ACT, CGA

Fig. 3.6. Keyword tree for pattern set ACG AC ACT CGA including failure links
shown as arrows.

How do the failure links speed up the pattern search? Consider the text ACGA.
When comparing this to our example keyword tree, we first encounter a hit to pattern
2 and then to pattern 1, before we cannot extend our match any further. In the naı̈ve
algorithm we returned to the root at this point and resumed our pattern matching
at position 2 in the text. In this case we would examine characters C and G twice.
Instead, we follow the failure link and find a match to pattern 4 with one more char-
acter comparison (Fig. 3.6). Careful implementation of this speedup leads to a pat-
tern search in time , where is the number of pattern occurrences [99,
p. 60]. If we include keyword tree construction, set matching therefore takes time

.
In many string matching applications the text is not only much longer than the

combined pattern lengths, but it is also constant, while the patterns are variable. An
example would be searching PCR primer sequences, which are typically between 15
and 20 nucleotides long, in a bacterial genome consisting of the order of to
nucleotides. In this situation it becomes very interesting to have a string matching
method that allows searches in time proportional to the length of the pattern, instead
of the text.

Turning the speed requirement of string searching on its head by making it in-
dependent of the size of the text may sound too good to be true. In fact, we started
this chapter by describing a familiar method of achieving this for books: the book’s
index. Suffix trees are a data structure that achieve the same as well as a number of
more advanced string searching tasks.
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3.6 Suffix Trees

A suffix tree is a special kind of tree associated with a string , where .
has as many leaves as the string has characters and these leaves are labeled .
Each edge in the tree is labeled with a substring of . The defining feature of the
suffix tree is that by concatenating the strings from the root along the edges leading
to leaf , the suffix is obtained. Figure 3.7 shows a suffix tree for ACCG.
If you start reading at its root and follow the path leading to leaf 2, you obtain the
string CCG. This is the suffix that starts at position 2 in .

1

2 3
C
G G 4

ACCG C G

1 2 3 4
A C C G

Fig. 3.7. Suffix tree of ACCG.

In order to search for a pattern in , start by comparing the first character in
to the first character of the edge labels emerging from the root of . If no match

is found, we are done and know that occurs nowhere in . If, on the other hand,
a match is found, follow the corresponding edge label comparing it to successive
characters in . Every time a node is encountered, the correct edge for continuing
the string comparison needs to be found. Once a pattern is detected by this process,
we know that contains an exact match to . Moreover, the leaf labels in the subtree
of the node in whose edge label the match ended indicate the position(s) of in .
For example, consider pattern C and ACCG. If we start matching at the
root of the suffix tree shown in Figure 3.7, we end at a node whose subtree contains
leaves labeled 2 and 3. These are the start positions of in . Looking up the leaves
of a subtree takes, to a first approximation, constant time. Given a suffix tree, the
exact string matching problem is therefore solved in , because at most
comparisons between characters in the pattern and characters in the text need to be
performed. This time estimate is slightly simplified since at every node encountered
during the search the number of necessary character comparisons is less or equal to
the size of the alphabet over which is formed. Nevertheless, pattern matching in an
existing suffix tree is extremely fast. This is highly advantageous when dealing with
stable databases that are queried frequently, as is often the case in biology.

Notice that it is possible that a suffix is a prefix of another suffix. For example, in
ACGC the suffix C is a prefix of the suffix CGC. In this case,

no suffix tree corresponding to exists, as the path labeled would not end at
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a leaf. A simple method for guaranteeing the existence of a suffix tree is to ensure
that the last letter of does not occur anywhere else in . In practice, a sentinel or
terminator symbol, often denoted as $ is added to and is constructed from $
(Fig. 3.8).

ACGC$

GC$ C $

1 3

G
C
$ $

2 4

5

1 2 3 4 5
A C G C $

Fig. 3.8. Suffix tree of ACGC including the terminator symbol $.

An extreme case of the identity of prefixes and suffices appears in suffix trees
for strings consisting of a single type of character. An example of this is shown in
Figure 3.9.

A

$

A

$

A $
A$ $

1 2

3

4

5

1 2 3 4 5
A A A A $

Fig. 3.9. Suffix tree of the uniform string AAAA$.

Our examples of suffix trees were so far restricted to strings over the nucleotide
alphabet. It should be clear that the definition of a suffix tree applies to strings
over any alphabet and the suffix tree for the string MADAMIMADAM is shown in Fi-
gure 3.10.

In suffix trees, internal nodes have at least two and at most as many child nodes as
the size of the alphabet over which is constructed. In the case of DNA sequences
the corresponding alphabet is A C G T $ . Hence, the maximal degree of
an internal node in a suffix tree is . Figure 3.11 displays the suffix tree
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1 2 3 4 5 6 7 8 9 10 11 12
M A D A M I M A D A M $

Fig. 3.10. Suffix tree of MADAMIMADAM$.

corresponding to the DNA sequence ACCGCTCAC, which contains an example
of an internal node with the maximal degree. Before we explain the uses of suffix
trees further, we take a brief look at their construction.

$ AC C GCTCAC$

TCAC$

10

$
C
G
C
T
C
A
C
$

8 1

$

A
C
$

C
G
C
T
C
A
C
$

G
C
T
C
A
C
$

TCAC$

9 7 2 3 5

4 6

1 2 3 4 5 6 7 8 9 10
A C C G C T C A C $

Fig. 3.11. Suffix tree of ACCGCTCAC$.
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3.7 Suffix Tree Construction

Suffix trees are usually constructed through a series of intermediate trees. One pos-
sible naı̈ve algorithm proceeds as follows: Construct a root and a leaf node labeled
. The edge connecting these two nodes is labeled . This initial tree is con-

verted to the final structure by successively fitting the suffices ,
into the intermediate trees. As demonstrated in Figure 3.12, each of these fitting steps
proceeds by matching the suffix along the edge labels starting at the root until a mis-
match is encountered. Remember that due to the sentinel character a mismatch is
guaranteed to occur. Once this is found, there are two possibilities:

1. The match ends at the last letter of an edge label leading to node . In this case,
an edge labeled with the mismatched part of the suffix is attached to . This edge
leads to a leaf labeled with the start position of the current suffix. Examples of
this are steps A B and C D in Figure 3.12.

2. The match ends inside an edge label. In this case, an interior node is inserted
just behind the end of the match. In addition, a leaf labeled is attached to
via an edge labeled with the mismatched part of the suffix. An example of this
splitting of an edge is step B C in Figure 3.12.

A B

1
ACCG

1
ACCG

2

C
C
G

C D

1

ACCG

2 3

C
G G

C

1

2 3

C
G G 4

ACCG C G

1 2 3 4
A C C G

Fig. 3.12. Naı̈ve construction of suffix tree of ACCG. Starting at the first position and
moving leftwards, the suffices of are successively fitted into the tree.

This naı̈ve algorithm runs in time, which makes it impractical for realistic
applications. Fortunately, there are three principal algorithms available that run in
linear time [177, 249, 259]. In other words, it is feasible to construct suffix trees
with the same time behavior as the Z-algorithm introduced in Section 3.3. However,
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we have already seen that once such a suffix tree is available, it can be searched
repeatedly in time proportional to the length of the pattern.

In spite of the availability of linear-time construction algorithms, suffix trees
come at some cost in both time and space. Since computer memory is often more
limiting than computer time, we now take a brief look at the space issue.

3.8 Suffix Arrays

A suffix tree has a maximum of nodes; its space requirement is therefore linear
in the length of the text and we might be tempted to leave it at that. However, suffix
tree nodes take up at least ten times more computer memory than a simple character
[158]. Moreover, for efficient string searching the complete suffix tree usually needs
to be held in the random access memory (RAM) of a computer.

A more space-efficient representation of some of the information contained in a
suffix tree is captured in a suffix array [172]. This consists of the lexical ordering
of a string’s suffices. Such an ordering can easily be obtained from a suffix tree if
edges are lexically ordered. For example, the edges of the suffix tree in Figure 3.11
are lexically ordered from left to right. A depth-first traversal of this tree retrieves
the suffices depicted in Table 3.1 in lexical order. Since a bare-bones suffix array
consists solely of a one-dimensional array holding the second column of Table 3.1,
it is very space efficient. In practice, suffix arrays are reported to take up three to five
times less space than suffix trees [172].

Table 3.1. Lexical ordering of the suffices contained in ACCGCTCAC. This can be ob-
tained by noting the leaf labels during an inorder traversal of the suffix tree depicted in Fi-
gure 3.11. A suffix array simply consists of the suffix start positions uncovered in this fashion.

index suffix start position suffix
1 8 AC$
2 1 ACCGCTCAC$
3 9 C$
4 7 CAC$
5 2 CCGCTCAC$
6 3 CGCTCAC$
7 5 CTCAC$
8 4 GCTCAC$
9 6 TCAC$

How can a suffix array be used for string matching? Since the array is ordered,
it can be searched using a technique known as binary search. Such a search starts at
the midpoint of the array and determines whether the corresponding suffix’s lexical
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position is greater or less than that of the string concerned. In this way half of the
array can be discarded for further search and this halving of the search space is
repeated successively until a match is found. In the case of suffix arrays, the position
of the highest and of the lowest match in the array should be searched for. These
boundaries then delineate all positions at which the desired pattern occurs. If for
example, we wish to know where in ACCGCTCAC pattern C occurs, we
find the lowest matching position at index 3 and the highest matching position at
index 7. The corresponding positions in the string are 9, 7, 2, 3, and 5.

The utility of suffix trees extends beyond rapid string matching. One area of
particular interest is their application to the detection of repetitive sequences, which
are an important feature of the genomes of complex organisms.

3.9 Repetitive Sequences in Genomics—the -value Paradox

The amount of DNA found in the haploid genome of an organism is called its -
value. Given that a genome encodes the organism of its host, it is perhaps surprising
that there is little correlation between the -value and an organism’s complexity:
The size of the genome of the unicellular baker’s yeast Saccharomyces cerevisiae is

base pairs (bp) [88], which is roughly 200 times smaller than that of humans
( bp) [128], whose genome in turn is approximately 200 times smaller that
that of the unicellular amoeba Amoeba dubia ( bp) [168, p. 383]. This lack
of correlation between complexity and genome size in eucaryotes is an observation
first made in the late 1960s [27] and is known to biologists as the -value paradox
[201]. The -value paradox is mainly caused by the varying amounts of repetitive
DNA found in metazoan genomes. Repetitive sequences can be classified into five
categories [128, p. 879ff]:

1. transposon-derived repeats; these are also referred to as interspersed repeats and
make up the vast bulk of repetitive DNA (Table 3.2); they vary in length between
100 and 6,000 bp and in the majority of cases are replicated through an RNA
intermediate;

2. inactive retroposed copies of cellular genes, also referred to as processed pseu-
dogenes;

3. simple sequence repeats, e.g. A or GC , also known as microsatellites;
4. segmental duplications, which are 10 kb-300 kb chunks of DNA copied from

one region of the genome to another;
5. blocks of tandemly repeated sequences, e.g. centromeres, telomeres, and riboso-

mal gene clusters.

The function of repetitive DNA remains unclear [201]. However, these elements
make assembly of shotgun fragments (cf. Section 2.7) difficult, which is illustrated in
Figure 3.13. This is a particularly tricky issue in the automated assembly of eucary-
otic genomes [180]. On the other hand, repetitive sequences have come to play an
important role in a number of molecular techniques. For example, microsatellites are
highly variable and for this reason are used as markers in mapping and population
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Table 3.2. Interspersed repeats as percentage of the genome of various multicellular eucary-
otes [128, 40].

organism trivial name interspersed repeats
Homo sapiens human 44.4%
Mus musculus mouse 38.6%
Arabidopsis thaliana thale cress 10.5%
Caenorhabditis elegans nematode worm 6.5%
Drosophila melanogaster fruit fly 3.1%

5’ 3’

Fig. 3.13. Automatic genome assembly is made difficult by repetitive sequence elements
shown as boxes along a chromosome (line). In our example the 3’ end of fragment can
either overlap with fragment or with fragment . Joining fragments and based on
their overlap results in the correct assembly. In contrast, joining fragments and leads to
the deletion of the genomic region .

studies. Further, the precise distribution of the most prevalent interspersed repeat in
humans, the Alu element, forms the basis of DNA fingerprinting used in forensics.
Thus, dealing with repetitive sequences is very much a feature of modern molecu-
lar biology. These repeats are usually inexact. They are routinely detected through
aligning known repeat elements to the genome of interest. However, such inexact
repeat elements often lead to an increased prevalence of exact repeats. In the follow-
ing section we give a first introduction to suffix-tree-based algorithms for detecting
exactly repeated as well as unique substrings.

3.10 Detection of Repeated and Unique Substrings Using Suffix
Trees

We have already seen in Section 3.6 that suffix trees can be used for rapid string
matching. A corollary of the way in which this matching is carried out is that any
prefix of an internal node’s path label is a repeat substring. The suffix tree depicted
in Figure 3.11 has two internal nodes with path labels AC and C. These substrings
together with the prefix A of AC are the only three repeats contained in the underlying
text ACCGCTCAC: AC and A are both repeated twice (positions 8 and 1), while C is
repeated five times (positions 9, 7, 2, 3, and 5).
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We define the string depth of an internal node as the length of its path label. For
example the node with string depth 5 in Figure 3.14 has path label MADAM, which
consists of five characters. String depths can be assigned to internal nodes in a single
depth first traversal. By looking up the internal node with, say, the greatest string
depth, we can rapidly locate the longest exact repeat in a string. Moreover, we have
already learned that, apart from the single root, trees only contain two kinds of nodes:
internal nodes and leaves. Hence a path label either ends at an internal node, in which
case it is a repeat substring, or at a leaf, in which case it is a unique substring.
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Fig. 3.14. Suffix tree of MADAMIMADAM$with string depths marked as circled numbers.

Unique sequence motifs are perhaps as important as repeat motifs in molecular
biology. They play a role in the construction of PCR primers, the molecular identifi-
cation of organisms, and the generation of specific antibodies. In natural sequences
the number of unique sequence motifs tends to be of the same order of magnitude
as the total number of substrings, i.e. for a sequence of
length . As grows, the number of candidate unique sequences quickly becomes
unmanageable. Here suffix trees suggest a way of reducing a problem of quadratic
complexity to its linear version: Visit each leaf in a suffix tree and look up its parent’s
string depth. This number plus one is the minimal length of a unique string starting
at the leaf’s position. There are such shortest unique substrings from which
all the remaining unique substrings can be generated by simple extension. Consider
for example the suffix tree shown in Figure 3.14 and say that the first leaf we visit
is 2. The string depth of its parent node is 4 and hence we know that the shortest
unique substring starting at position 2 has length . This is ADAMI and
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any extension of this string to the righthand side such as ADAMIM, ADAMIMA, etc. is
unique.

3.11 Maximal Repeats

As with unique substrings, there are usually very many repeat motifs contained in a
given sequence, for instance, about 1/4 of all positions in the genome of Escherichia
coli are occupied by A. In practice we are therefore often most interested in finding
maximal repeats. These have the property that they become unique when extended
either to the left or to the right. For example, the string TACACT contains a maximal
repeat of length 1 (T) and a maximal repeat of length 2 (AC). In contrast, the substring
A is a repeat, but not a maximal repeat.

The central idea for the detection of maximal repeats is to look up the left neigh-
bors of the leaf positions in the subtree of some internal node . For example, the
suffix tree for ACCGCTCAACCGCTCA is shown in Figure 3.15. Its rightmost
internal node has string positions 6 and 14 in its subtree. The left neighbor of both
positions is C. If in contrast to this example the left neighbors in the
subtree rooted on are occupied by more than one character, is designated left-
divergent [99]. The property of left-divergence propagates up the suffix tree, i.e. a
node with a child node that is left-divergent is itself left-divergent. The path label of
any left-divergent node corresponds to a maximal repeat. The path label of the left-
divergent node with the greatest string depth is the longest maximal repeat in . In
our example suffix tree (Fig. 3.15) all left-divergent nodes are circled and you should
verify that the longest maximal repeat in is ACCGCTCA, which is the path label
of the left-divergent node with the greatest string depth. It occurs in at positions 1
and 9.

3.12 Generalized Suffix Tree

So far, we have constructed suffix trees just from a single string. However, it is
straight forward to generate what is known as a generalized suffix tree represent-
ing more than one string. Consider the two strings and . We can proceed by
first constructing the suffix tree for and then inserting into this every suffix of .
All we need to do is change the leaf labels such that they now consist of pairs of
numbers identifying both the string of origin and the position within that string. As
an example, consider ACCGCTCAC; the corresponding suffix tree is shown in
Figure 3.11. If we insert into this suffix tree GCA, we obtain the tree topology
shown in Figure 3.16.

Using the new labeling scheme for leaves, generalized suffix trees of an arbitrary
number of strings can be constructed. This opens the way for solving the longest
common substring problem.
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Fig. 3.15. Suffix tree for ACCGCTCAACCGCTCA$. The circled nodes are left-divergent
(see text for details). The left-divergent node with the greatest string depth is labeled by the
longest maximal repeat in : ACCGCTCA.

3.13 Longest Common Substring Problem

The longest common substring problem is motivated by elementary biological con-
siderations. When comparing two or more coding DNA sequences, regions that are
well conserved are often of particular biological interest. They might encode func-
tionally important domains of the corresponding protein or point to novel regulatory
elements. In addition, they represent suitable sites for PCR-primers that work across
all of the sequences considered. So there are many occasions when we wish to know
the longest substring shared by all members of a set of strings. For example, the two
longest common substrings between ACCGCTCAC and GCA are GC and
CA.

To find the longest common substring between our example sequences
ACCGCTCAC and GCA, we need to find the lowest common ancestor of leaves
containing a suffix from and a suffix from . One way to do this is to note for
each internal node the string identifier of the leaves in its subtree. Those nodes that
are marked 1 and 2 end at a path that is labeled by a substring common to and .
All we need to do now is search for the internal node marked by 1 and 2 that has the
greatest string depth. In Figure 3.16 these are the two boxed nodes.

3.14 -Mismatches

The examples presented so far have given a first impression of the usefulness of suffix
trees in the context of exact string matching. However, in biology we are often more
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Fig. 3.16. Generalized suffix tree for the strings ACCGCTCAC$ (cf. Figure 3.11) and
GCA$. The leaf labels consist of pairs of numbers , where denotes the string of

origin, and the suffix position within that string. Notice that leaves may carry as many labels
as there are input strings. The path labels of the two boxed nodes are the longest common
substrings between and .

interested in similar rather than identical sequences. It turns out that the concept of
the lowest common ancestor first introduced in the context of searching for longest
common substrings (Section 3.13) is also useful for extending the application of
suffix trees to inexact matching. A standard version of the inexact matching problem
is known as the -mismatch problem. Given a string , the task is to find all positions
of pattern with at most mismatches. Now, the string depth of any lowest common
ancestor for two leaves pointing to positions and in indicates the length of the
longest match starting in positions and . The same observation applies if we build
the generalized suffix tree for and ; in this case the string depth of a lowest
common ancestor for position in and position in indicates the length of
the match starting at and . So we start by looking for the lowest common
ancestor between leaves labeled and . If its string depth, , is equal to ,
we have found an exact match of at position . On the other hand, if ,
repeat the procedure by looking for the lowest common ancestor for leaves pointing
to and . If at most repetitions of this step are sufficient to
cover , a match has been found starting at position . Lowest ancestor queries can
be carried out in constant time [99, ch. 8]. Therefore, generalized suffix trees allow
the detection of -mismatches in time . In other words, by allowing only
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a single mismatch, the runtime of our string search changes from being proportional
to the length of the pattern to being proportional to the generally much greater length
of the text.

In order to use this procedure to find repeats between ACCGCTCAC and
GCA with at most mismatch, we can return to the generalized suffix tree

depicted in Figure 3.16. We start at the leaves labeled and ; the corresponding
lowest common ancestor is the root, whose string depth is zero. So the next step is
to look at the leaves labeled and . The string depth of the lowest common
ancestor is 1, which means that is mismatched. Since and are mis-
matched, we conclude that there is no 1-mismatch of at . This procedure
is repeated until the lowest common ancestor of the leaves labeled and is
visited (boxed node in Figure 3.16). Its string depth is 2 and, hence, we have found a
1-mismatch occurrence of at . Another 1-mismatch occurrence of starts
at .

Notice that the inexact matching we have carried out so far does not encompass
insertions and deletions (indels). However, these are an integral feature of sequence
evolution and need to be accounted for in many biological contexts. Indels cannot
be handled easily using suffix trees. As explained in Chapter 2, string comparisons
incorporating indels are best done using alignments based on dynamic programming.
We shall see in Chapter 4 that a combination of dynamic programming and exact
matching techniques leads to very fast and memory-efficient alignment algorithms.

3.15 Summary

In computational biology one often needs to look up the occurrence of some pattern
in a text . Since the texts of computational biology include genome sequences,

which tend to be large, it is important to apply efficient methods of string matching.
Traditional string matching methods are guaranteed to take time , where is
the length of the text. By preprocessing a set of patterns into a keyword tree, this time
requirement can be extended to set matching. Instead of preprocessing one or more
patterns, it is also possible to preprocess the text. A suffix tree is a data structure that
can be constructed for a given text in . However, once it is constructed, it can
be used to search any in in time , where is the length of the pattern.
In addition to making string searching extremely efficient, a suffix tree reveals in
one fell-swoop the entire repeat structure of without the need for carrying out
any string comparisons. This has important biological applications where unique and
repeat sequences play a central role in many fundamental as well as biotechnological
problems. Finally, suffix trees can also be used for rapid inexact string matching,
where mismatches between and its occurrence in are allowed.

3.16 Further Reading

Gusfield has written a comprehensive and detailed guide to string algorithms in com-
putational biology [99].
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3.17 Exercises and Software Demonstrations

3.1. Suffix tree construction is relatively time consuming while searching a suffix tree
is quick. Use the program Match String Matching in the bioinformer
software (Section A.2.1) to see how this assertion compares with timings of real-
world string searches.

3.2. Generalized suffix trees provide a data structure for efficiently finding longest
exact matches between two sequences. Construct an algorithm based on dynamic
programming for achieving the same end. Compare the run times of the two ap-
proaches.

3.3. Draw the suffix tree corresponding to AAGCG and compare your result with
that calculated using the program Match Suffix Tree of the bioinformer
software (Section A.2.2).

3.4. Suffix trees are ideal for determining exact repeats in strings. The program
Match Repeat Search in the bioinformer software (Section A.2.3) im-
plements a search for repeat sequences based on a suffix tree. Use this program to
find the longest repeat sequence in the first genome to be completely sequenced—
that of bacteriophage X174 [214]—as well as the longest repeat sequence in the
paper in which James Watson and Francis Crick first proposed the doublehelical
structure of DNA [256].
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Fast Alignment: Genome Comparison and Database
Searching

In the process of routinely screening new sequences having
no known relatedness to previously determined protein
sequences, we noted regions of similarity of the catalytic
chain of bovine cAMP-dependent protein kinase (BOV-PK) to
the inferred amino acid sequences of the src gene products
(transforming proteins) of Moloney murine sarcoma virus
(MMSV) and of Rous avian sarcoma virus, Schmidt-Ruppin
strain (RSV-SR).

Winona C. Barker and Margaret O. Dayhoff [16, p.
2836]

Biology has traditionally been a comparative science and computational molecular
biology has inherited this approach in the form of a strong emphasis on sequence
comparison. If genomic regions of closely related organisms are available, a full
alignment of these is conceptually a simple extension of the global alignments of
genes that were a staple of the gene-centered pre-genomic era of molecular biology.
However, pairwise alignment by dynamic programming as introduced in Chapter 2
has a space and time requirement of , where and denote the lengths of
the sequences compared. This does not scale well.

In order to tackle the memory requirement of optimal alignment algorithms, ob-
serve that in order to fill the corresponding dynamic programming matrix, the al-
gorithms first encountered in Section 2.6 need only save one row (or column) plus
one additional cell. Starting from such a configuration (Fig. 4.1A), the algorithm
stores the value of a new cell and erases a cell that is not needed in subsequent steps
(Fig. 4.1B). This is repeated until the last cell in the row has been filled (Fig. 4.1C)
and the circle can start again (Fig. 4.1D). Since the dynamic programming matrix
can be filled either column-wise or row-wise, the maximum score of an alignment
can thus be calculated in space proportional to the shorter of the two sequences being
aligned. However, in most cases we are interested in obtaining the actual alignment
rather than simply its score. Based on the idea of computing the score in linear space,
an elegant algorithm has been devised that returns the alignment in linear space,
while leaving the time requirement proportional to the size of the original dynamic
programming matrix [116, 181]. This is a remarkable advance, as the memory re-
quirement of an algorithm may pose an insurmountable barrier, whereas a scientist



66 4 Fast Alignment: Genome Comparison and Database Searching

should never run out of patience. Still, with exponentially growing databases speed
is important.

A B C D

Fig. 4.1. A–D: Filling in the dynamic programming matrix using the space corresponding to
just one row plus one cell. Solid cells are active, dotted cells have been deleted.

For improving the run time of global alignment algorithms (as opposed to their
memory requirement), a more radical departure from dynamic programming is nec-
essary. One possible approach developed for aligning genomes of closely related
bacteria is discussed in this chapter. It involves a combination of suffix trees intro-
duced in Chapter 3 and dynamic programming introduced in Chapter 2.

On the other hand, initial annotation through homology involves finding a local
inexact match between a short query sequence and a large number of subject se-
quences that make up the text of the search. In this case we are looking for one or
more local alignments between the query sequence and the database entries. These
databases may be very large. For instance, the GenBank sequence repository has
been growing exponentially since it was started in 1982 (Fig. 4.2). Searching Gen-
Bank by dynamic programming is as impractical as in the case of globally aligning
bacterial genomes. However, the task is also of a different kind, as we expect that
the vast majority of entries in the database are of no interest in our search. Hence
most contemporary algorithms for searching biological sequence data bases aim to
filter or exclude these irrelevant regions before committing to a more detailed (and
time-demanding) investigation of regions that might contain a match.

In addition to algorithmic problems, database searching also poses statistical
challenges. When finding an alignment between a query sequence and an entry in a
potentially very large database, it is important to know how likely this match would
occur by chance alone.

In this chapter we first give an example of doing biology by fast global genome
comparison before explaining the algorithmic issues involved. This is followed by
two examples of using rapid local alignments as a guide to biological function, which
leads into an explanation of the corresponding computational ideas. Finally, an ap-
plication of fast local alignment to the problem of discovering the extent of genome-
wide gene duplication motivates our treatment of the statistical issues involved in
database searching.
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Fig. 4.2. The GenBank sequence repository has grown exponentially since its inception
in 1982. : residues (nucleotides and amino acids); : entries. Data taken from
www.genome.jp/dbget/db growth.html.

4.1 Global Alignment

Fast global alignment is often used for comparing the genomes of closely related or-
ganisms. This is particularly interesting in organisms where the relationship between
genotype and phenotype is comparatively easy to investigate such as in bacteria.
Many pathogenic bacteria have been subjected to comparative genome sequencing.
For instance, Vibrio parahaemolyticus is a gram-negative marine bacterium and a
frequent cause of food poisoning among people fond of seafood. A pandemic of gas-
troenteritis caused by this organism prompted the sequencing of its genome in 2003
[171]. In order to learn more about its virulence mechanism, the resultant sequence
of its two chromosomes, one 1.8 Mb and the other 3.3 Mb in length, was compared
to the genome sequence of the related bacterium Vibrio cholerae. The latter causes
cholera, a more severe epidemic diarrhea. Like V. parahamolyticus, the genome of
V. cholerae is organized in two chromosomes. One of the tools for carrying out
the genome comparison was the software MUMmer [48], which rapidly computed a
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global alignment of the larger of the two chromosomes [171]. The researchers were
surprised to find distinct virulence mechanisms in this comparison, even though both
bacteria cause similar diseases. V. parahaemolyticus contains a complex of genes
known as the type III secretion pathway, which is common among diarrhea-causing
pathogens including shigella, salmonella, and enteropathogenic Escherichia coli. V.
cholerae, on the other hand, does not contain the type III secretion pathway. Such
comparative information on bacterial pathogenicity obtained by genome alignment
is likely to impact future treatment of the corresponding diseases [171].

How does MUMmer achieve efficient global alignment on a genomic scale?

Strategy for Fast Global Alignment

In order to make direct pairwise comparisons between complete genomes feasible,
MUMmer is based on a generalized suffix tree [48]. Recall from Section 3.12 that
a suffix tree for a single sequence can be generalized to index any number of se-
quences. Here, we are interested in comparing only two sequences (genomes). In
the corresponding generalized suffix tree exact matches between the two sequences
are marked by internal nodes whose subtrees contain entries from both sequences.
MUMmer carries out three steps to align whole genomes [48]:

1. identify all maximal unique matches (MUMs) between the two genomes; such
repeats cannot be extended and occur only as a single pair of matching substrings
between and not within the genomes;

2. find the longest increasing subsequence of MUMs;
3. process the gaps in the resulting alignment.

We now explain these steps further. Notice first of all that—apart from the
uniqueness criterion—MUMs correspond to the maximal repeats introduced in Sec-
tion 3.10. These can be found in a suffix tree in linear time. The intuition behind
searching for these maximal repeats is that they are highly likely to form part of the
final global alignment.

To fix our ideas, let us represent a MUM by the triplet , where is the start
position in genome , the start position in genome , and the length of the repeat.
We can sort the triplets representing these fragments according to their position in,
say, genome . This induces a labeling on the matched fragments in genome ,
which is not necessarily monotonously increasing (Fig. 4.3, top panel).

The next step in the algorithm is to find the longest increasing subsequence of
MUMs from genome . This may well lead to the loss of fragment pairs. For exam-
ple, in the bottom panel of Figure 4.3 fragment 4 has been removed from the set of
MUMs in both genomes.

The longest increasing subsequence of MUMs usually contains gaps which need
to be filled next. Depending on the type of gap, their processing varies: large inser-
tions are simply marked graphically in the final alignment, while polymorphic re-
gions are subjected to alignment by dynamic programming. Since the two genomes
that are being compared are assumed to be closely related, the time spent on gap
closure by dynamic programming should be negligible [48].
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Fig. 4.3. Sorting step in the algorithm for constructing global pairwise alignments of whole
genomes. Top panel: Maximal unique matches (MUMs) sorted according to position in
genome . MUM 4 has been transposed. Bottom panel: Longest increasing subsequence
extracted from the MUMs of genome . Notice that in our example the longest increasing
subsequence is not unique, would also be a valid subsequence. The configuration of
MUMs induced by the longest increasing subsequence is finally subjected to gap processing.
(Redrawn from [48].)

Recall that alignment by standard dynamic programming is based on a rather
simple evolutionary model which encompasses only mutations and short indels.
Genomes, however, may be subject to large-scale changes due to, for example, trans-
position or horizontal gene transfer. The approach to global alignment presented
above can account for such changes. In addition, it runs in time linear in the com-
bined length of the input sequences if these are closely related [48].

Fast global alignment algorithms are set to play an increasing role as genome data
from closely related organisms accumulates [110]. However, annotation of individual
genes contained in these genomes is usually carried out using methods for rapidly
detecting local alignments.

4.2 Local Alignment

Rapid local alignment methods are often applied in the context of searching bio-
logical sequence databases. One of the earliest examples of how such a database
search can illuminate a protein’s function is connected to a seminal discovery in
medicine: the pathogenicity of cancer-causing viruses is due to their expression of
genes derived from homologous genes expressed in healthy cells. This astonishing
relationship between virology, cancer, and normal cell proliferation has its origins in
work started early in the last century. In 1911, the American Virologist Peyton Rous
described in chicken the first infectious agent capable of causing cancer. Fifty-five
years later Rous was awarded the Nobel Prize for his discovery of the “Rous Sar-
coma Virus” (RSV) as it had become known by then. The genome of RSV consists
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of a single-stranded RNA molecule comprising 9,392 nucleotides and by the time
of Rous’ Nobel Prize in 1966 it was speculated that this RNA molecule was reverse
transcribed into a DNA molecule, which then integrates into the genome of its host
[251, 23]. In 1970, David Baltimore and Howard Temin published independently
the discovery of an enzyme that could affect this reverse flow of genetic informa-
tion: the reverse transcriptase. RSV thus became the archetypical retrovirus, a group
of morphologically similar viruses that also contains the human immunodeficiency
virus (HIV). In the year after the discovery of reverse transcription, Peter Vogt iso-
lated a mutant that had lost the ability to transform its host cells into neoplastic cells,
but that replicated normally. This transformation-deficient yet replication-competent
mutant of RSV could be compared by hybridization to its wildtype, leading to the
isolation of the sequence-fragment that caused the difference between the two. This
fragment was then used as a probe specific for the gene, which became known as
src. The protein product of this gene was isolated in 1977 and its activity as a tyro-
sine protein kinase was established by 1980. Protein kinases play a central role in
intracellular signaling, which explains how a single transforming gene can cause the
many changes involved in the transition from normal cell cycle to neoplastic growth.
Intriguingly, a protein indistinguishable from the src protein was soon discovered
in healthy, uninfected cells. It became evident that the virus had captured a cellular
gene sometime in the evolutionary past. This gene had remained so well conserved
that it could be detected by successfully annealing a src-specific DNA probe from
chicken to the genomes of other vertebrates and even members of other phyla, in-
cluding Drosophila and Hydra [251, 23].

Still, the cellular identity of the src gene remained elusive. In 1981 the pro-
tein sequence of a bovine tyrosine kinase was published. This was compared to the
1,560 other protein sequences known at the time, revealing that it was similar to src.
The immediate conclusion from this computerized database search was that the se-
quenced mammalian tyrosine kinase was a proto-oncogene, i.e. a gene that occurs
in normal cells but may cause cancer upon changes in its expression level, or due
to certain point mutations. Unfortunately, the normal function of this gene remained
unknown at the time, although the authors speculated that it might play a central role
in normal growth and development [16].

The feat of assigning a function to a proto-oncogene through mere database
searching was achieved two years later by Russell Doolittle and his colleagues [50].
They showed that the transforming protein of another tumor retrovirus, the simian
sarcoma virus, was homologous to the sequence of human platelet-derived growth
factor (PDGF). This protein is stored in platelets and released into the serum in re-
sponse to wounding. PDGF contributes to wound healing by stimulating cell division
and it is not difficult to imagine how constitutive over-stimulation of cell division
might lead to neoplastic growth.

Today, database searches for annotating sequences form a routine part of research
in molecular biology. It turns out that the various programs available for this task are
based on the common algorithmic idea of basing slow, inexact string matching on
rapid, exact matching.
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4.2.1 Global/Local Alignment: -Error Matching

In Section 3.14 we first mentioned the -mismatch problem, which is solved by
finding all occurrences of pattern (length ) in text (length ), such that an
occurrence has at most mismatches. We now return to this problem and expand its
biological applicability by not only allowing mismatches but also indels.

Let denote the maximum number of errors (mismatches or indels) allowed in
a match. The crucial observation for the design of fast alignment programs is that
an occurrence of in implies that there exists at least one substring of with a
perfect match of length in . The length of can easily be computed by dividing

into contiguous substrings of equal length:

(4.1)

Figure 4.4 illustrates this idea for . If we divide the query into
segments of equal length and randomly distribute the errors along the query, at least
one of the fragments remains error free [15].

Fig. 4.4. An occurrence of pattern , , with at most errors, implies that contains
a perfectly matching substring of length .

The important insight here is that an exact match of non-trivial length is a nec-
essary condition for an inexact match. The resulting algorithm is divided into two
phases, a search and a checking phase. At the beginning of the search phase the pat-
tern is divided into contiguous segments of equal length. is then searched
for perfect matches to these segments. One rapid way of doing this would be to use a
suffix tree of and search this times. As a more memory-efficient alternative,
the substrings of might be preprocessed into a keyword tree (cf. Section 3.5).

For a random pattern and text with equiprobable characters, the expected number
of matches found in the search phase, , is equal to the probability of finding a
match of length times the length of the text, times the number of starting points for
fragments of length :

where is the size of the alphabet.
In the checking phase the matches returned by the search phase are processed

further. If a match is found starting at positions and , the algorithm examines
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substring for a match using dynamic programming.
Figure 4.5 illustrates this reasoning. Here , while the length of is only
given in units of . The algorithm is designed for the case where and hence
we can think of as, say, bp. The choice of the substring of to be aligned

Fig. 4.5. The principle of -error matching. The bold segment of length starting at position
in the pattern forms an exact match with the bold segment at position in the text . A

substring of the text spanning the length of the pattern plus the maximal error at each margin
is aligned with the pattern. The traceback starts at the cell with the maximum entry out of the
rightmost cells and stops upon reaching the top row. In case errors are encountered
along the path, the traceback is aborted. Not drawn to scale.

with means that there are dynamic programming operations for each
exact match found during the search phase. Therefore, the algorithm runs in time
proportional to

In other words, the algorithm runs in time . This might look like a dis-
appointing result given that straight dynamic programming takes time .
However, as long as the number of exact matches of length is small, the algorithm
is fast.

Notice two things about -error matching. (i) Its result is a type of alignment we
have not seen so far, as the query is aligned globally, while its match to the subject
is local. Colloquially we call this a glocal alignment. (ii) For biological sequences
the value of compatible with homology is usually unknown. In spite of this, the
strategy of MUMmer is clearly analogous. The central idea is to exclude “unpromis-
ing” regions from dynamic programming through the use of exact matching. This
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exclusion strategy also forms the basis of two of the most popular search tools for
biological databases.

4.2.2 Examples of Database Search Programs

Currently, perhaps the most frequently applied database search programs are FASTA
and BLAST. Both are based on the exclusion idea. FASTA was published in 1988 and
quickly became widely used by molecular biologists [197]. BLAST was published
two years later as an attempt to improve on the performance of FASTA [9]. Both
programs have evolved considerably since their inception more than a decade ago.
Here we restrict ourselves to outlining central algorithmic ideas incorporated in the
original versions.

FASTA

A common method for visualizing similarities between two sequences is known as a
dotplot. Two sequences are written along the two dimensions of a grid and matches
are marked by dots. Figure 4.6 shows a dotplot comparing the string madamimadam
with itself. As a consequence of the self-comparison, all cells on the diagonal from

Fig. 4.6. Dotplot comparing the string madamimadamwith itself. Each pair of identical char-
acters is marked by a dot.

the top left to the bottom right contain a dot. Moreover, madamimadam is a palin-
drome and hence the opposite diagonal going from the bottom left to the top right
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cell is also dotted1. In addition, the off-diagonal dots indicate the fact that madam is
repeated as well as palindromic itself.

Dotplots of DNA sequences are usually heavily populated with dots. It is there-
fore customary to restrict them to runs of matches of a certain minimal length, which
then appear as diagonals. An example of this is shown in Figure 4.7, where the se-
quences of the mRNAs of human -globin and -globin are compared. Figure 4.7C
suggests that the central portions of both sequences are more highly homologous
than the approximately 100 bp at their 5’ and 200 bp at their 3’ ends.

The central idea for dramatically speeding up local alignment compared to
straight dynamic programming is to concentrate on diagonals with the highest score
in order to exclude the other areas of the matrix from explicit searching [253, p. 172].
Notice that in the context of FASTA the dotplot is used only metaphorically to get
an intuitive understanding of the algorithm; it is not a data structure actually built
during execution of the algorithm.

Instead, the central data structure used by FASTA is known as a hash table.
This is a generalization of an array. An array consists of entries that are indexed
by monotonously increasing integers usually starting at or . A hash table is an ar-
ray that is indexed by arbitrary objects such as strings. This hash index is converted
to an ordinary array index using a hash function [41, ch. 11]. The great advantage
of such a data structure is that searching for one of the indices, also referred to as
keys, is very quick. The hash table we are interested in has as keys words of a cer-
tain length and as entries their positions in the text. For example, if we hash the text

ACCAGAGAATT into words of length , we obtain Table 4.1.

Table 4.1. Text ACCAGAGAATT hashed into words of length 2.

key position
AC 1
CC 2
CA 3
AG 4, 6
GA 5, 7
AA 8
AT 9
TT 10

FASTA proceeds in four steps:

1. The query sequence (pattern) is hashed into words of length . This hash
table is then used to localize exact matches of substrings of length in the

Notice that in molecular biology, as opposed to natural languages, a palindrome is a se-
quence that is equal to its reverse complement, for example ACGT.
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A B

C

Fig. 4.7. Dotplot of the mRNA sequences of human -globin ( ) and -globin ( ). A:
Matches of length ; B: matches of length ; C: matches of length . Notice the in-
creasing sparseness of the plots, as well as the fact that, in contrast to the dotplot in Figure 4.6,
the vertical sequence runs from bottom to top.

subject sequence (text). These matches can be imagined as diagonals of length
in a dotplot.

2. The ten diagonals with the highest density of matches are rescored using a scor-
ing matrix (in the case of protein sequences) or a simple DNA scoring scheme.

3. The diagonal regions that after rescoring have a score above some threshold are
joined into one region.

4. The joined region is aligned by dynamic programming.

In order to gain some insight into the time requirement of this algorithm, let us
concentrate on the filtering of exact matches from step 2 onwards. This takes time
proportional to the number of dots in the dotplot [253, p. 176]. For random sequences
of lengths and this amounts to

which is essentially . This might strike the reader as a rather disappointing
result, as it is identical to the time requirement of standard dynamic programming.
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However, the probability of finding a match of length , , is usually
very small, thereby still speeding up execution considerably. Consider, for instance,
an alphabet of equiprobable nucleotides and . In this case

, amounting to a potential time saving of orders of magnitude
[197].

As in the MUMmer program introduced in Section 4.1, FASTA proceeds by ap-
plying dynamic programming only to a very small portion of the space of possible
alignments. The next logical step would be to try doing without dynamic program-
ming altogether. This was also the conclusion of the developers of the Basic Local
Alignment Search Tool described next.

BLAST

BLAST was published two years after FASTA and at the time was an order of mag-
nitude faster [9, 18]. Like FASTA, BLAST is based on the exclusion of unpromis-
ing areas of the alignment matrix from detailed searching. The central notion of the
BLAST algorithm is the maximal segment pair (MSP). This is a pair of segments
(substrings) of identical length whose score cannot be improved by extension on
either side.

Figure 4.8 shows the three steps of BLAST: (i) compilation of a list of high-
scoring words, (ii) a scan of the subject sequences contained in the database for exact
matches to these words, and (iii) extension of the exact matches. We cover each step
in turn.

Construction of a list of high-scoring words (Fig. 4.8A) is essentially a refine-
ment of the -word approach described in the context of FASTA. Given a protein
query sequence, all substrings (words) of a certain length that have a match with
a score somewhere in the query are stored along with their match positions in
the query. Table 4.2 shows the word list constructed from the example query AHYV
based on the BLOSUM62 score matrix and . This word list contains 15 entries,
which is a considerable expansion of the three exact matches that can be formed (AH,
HY, and YV). In practice, a word length of 3 is frequently used for protein sequences.
In conjunction with the PAM120 substitution matrix, was found to give sat-
isfactory results [9]. The list of words [179] resulting from the choice of and
contains approximately 50 entries for each residue in the query, such that a protein
sequence of length 100 would induce a word list comprising perhaps 5,000 entries
[9].

The preprocessing of a DNA query sequence is simpler than that of proteins just
described. Given a DNA query, it is hashed into words of length , which is typically
set to 12.

The scanning phase (Fig. 4.8B) poses an exact matching problem that should
by now look familiar to the reader. If the database is stable, its transformation into
the suffix tree format would allow a rapid retrieval of all positions of word matches.
However, the authors of BLAST chose the far more memory-efficient option of pre-
processing the distinct query words into a keyword tree. The scan phase therefore
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A

Query

B

Subject

C Subject
MSP MSP

Fig. 4.8. The three steps in the BLAST algorithm. A: Generate list of high-scoring words from
query; B: search for exact matches between members of the word list and subject; C: generate
maximal segment pairs (MSPs) by extending exact matches to left and right as long as the
score increases. Notice that MSP could only be extended to the left.

takes time, where is the size of the database, the length of
the word list, and the number of matches of members of the word list.

Finally, in the extension phase (Fig. 4.8C) matches returned from the scanning
phase are extended in either direction. This continues until the score of the MSP
remains below a previous maximum score for, say, 20 residues. The extension phase
takes time proportional to the number of matches returned by the scanning phase.
Under a random sequence model this is proportional to the probability of finding a
certain word of length , , multiplied by the size of the database and the
length of the word list: . If we model our database as consisting
of equiprobable nucleotides, this time requirement becomes [9].

Run time assessments are associated with a classical trade-off between sensitiv-
ity and specificity encountered in many database search programs. Sensitivity is the
proportion of true homologues returned by a search. Consider, for example, a data-
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Table 4.2. List of high-scoring words constructed from the query sequence AHYV using word
length , score threshold , and the BLOSUM62 substitution matrix (Table 2.4).

Member of Word List Match in Query Score
AH AH 12
CH AH 8
GH AH 8
SH AH 9
TH AH 8
VH AH 8

HY HY 15
NY HY 8
YY HY 9
HF HY 11
HW HY 10

YV YV 11
YI YV 10
YL YV 8
YM YV 8

base containing 20 MAP kinases. A search for MAP kinases returns 25 sequences
of which 18 are MAP kinases. In this case the sensitivity of the search program is

. This quantity can trivially be maximized by returning the entire database. In
contrast, specificity is the portion of true homologues among the set of hits returned.
The specificity of our example search for MAP kinases is . Again, this can
be maximized in a trivial fashion by returning very few high-scoring hits. An ideal
database search program is characterized by specificity sensitivity .

In the case of BLAST, the algorithm runs in time proportional to the sum of the
time taken by each of the three steps outlined above: [9]. The larger
the word list (i.e. ), the smaller the probability that a significant MSP will be missed,
i.e. the higher the sensitivity. On the down side, this leads to a longer run time and
possibly a decrease in specificity. For a given query, the size of the word list is de-
termined by the word length, , and the threshold score, . Increasing inflates the
word list, but this effect is offset by the reduced likelihood of finding the longer word
in the database. This leaves as the critical parameter determining speed and sen-
sitivity: Lowering increases the size of the word list thereby making the program
more sensitive and also slower. However, there appear to be diminishing returns to
lowering , and in test runs a value of in conjunction with a PAM120 score
matrix recovered virtually all MSPs from various protein superfamilies [9].
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4.3 Database Composition

In our discussion of the -error string matching algorithm as well as of FASTA and
BLAST we have repeatedly referred to a random sequence model. This simplified
our time analyses, but biological sequences are highly non-random due to locally bi-
ased base composition (e.g. A/T-rich regions) and repetitive elements. A successful
database search tool needs to take account of this fact, since a query sequence con-
taining a region that matches a repeat element might otherwise return a huge number
of spurious results. For this reason BLAST incorporates two somewhat ad hoc but
effective filtering steps: The first scans the frequency of all 8-mer words in the data-
base and ignores matches to words with grossly elevated frequencies. The second
scans a compact library of repetitive elements and ignores query words that return a
match to one of its members.

4.4 Heuristic vs. Optimal Alignment Methods

All three of the fast alignment programs mentioned in this chapter, MUMmer, FASTA,
and BLAST, are based on so-called heuristic algorithms. In contrast, the alignment
algorithms based exclusively on dynamic programming are known as optimal meth-
ods as they guarantee to yield the best alignment under the scoring scheme. In the
context of MUMmer the heuristic nature of the algorithm means that there might be
alignments of the input sequences that have a higher score than the alignment re-
turned by the program. Similarly, for heuristic local alignment programs, there is
a (usually small) probability that a significant match does not contain a word
or a member of the word list employed by BLAST and the corresponding homo-
logy is missed. However, extensive tests have shown that in practice this problem is
negligible compared to the huge saving in time and memory achieved by the three
programs.

Database searching raises not only algorithmic issues but also the statistical prob-
lem of deciding whether a given local alignment might be due to chance alone. Per-
haps the most important innovation of BLAST was to incorporate statistical theory
allowing the direct computation of the significance of an MSP [134].

4.5 Application: Determining Gene Families

Many real-world applications of database search programs are critically dependent
on an assessment of the significance of a given alignment. We introduce such an
application in the context of the investigation of gene families in complex genomes.

In many eucaryotic organisms the deletion of a gene (knockout) has no pheno-
typic effect. On the other hand, the genome projects of the past decade have con-
firmed that in eucaryotes many genes exist as members of gene families. In fact,
the probability of a gene being duplicated has been estimated to be as high as 1%
per million years, which is greater than the probability that the gene mutates in this
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time window [170]. This high incidence of gene duplication suggests that the lack
of phenotypic effects in knockouts might in many cases be due to compensation by
a duplicated gene.

In order to investigate this idea further, Li and coworkers took advantage of two
extraordinary data sets: (i) the complete genome sequence of brewer’s yeast, Sac-
charomyces cerevisiae, which contains 6,357 genes and (ii) a set of measurements
on the fitness effects of knockouts for 5,766 of these genes [93]. The first step in
the analysis was to distinguish genes that were not duplicated (“singletons”) from
duplicated ones. This was done by an all-against-all FASTA search of the 5,766 pro-
tein sequences of the genes included in the study. Singletons were defined as genes
that had no significant homology to any other gene in the genome, while duplicates
had at least one significant hit and in addition could be aligned over of their
sequence with their putative homologue.

Figure 4.9 illustrates a procedure for extracting gene families from these pair-
wise comparisons. The results of the all-against-all comparison of a proteome just
outlined can be summarized in a pairwise match matrix . A match be-
tween protein and is denoted by and if no homology was
detected or if . The protein families are now assembled by starting from the
first entry equal to 1 in the matrix and recursively visiting the next 1 in that column
followed by the next 1 in that row. Every time a 1 is encountered, the correspond-
ing protein is added to the current cluster and the matrix entry is set to zero. This
procedure is repeated until all entries in are zero. An analogous but more sophis-
ticated clustering strategy is implemented in the program blastclust, which is
distributed as part of the BLAST software package.

Proteome Match Matrix Protein Families

0 1 0 0 0
1 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

,

Fig. 4.9. Strategy for the detection of protein families within a proteome.

Such a procedure led to the identification of 1,275 singletons and 1,147 gene
families in the yeast proteome. In the subsequent comparison between the single-
ton/duplicate classification and the data set on fitness effects of knockouts, dupli-
cated genes had a significantly higher probability of functional compensation than
singletons. Overall approximately 1/4 of deletions with no phenotypic effect could
be accounted for by gene duplication [93].
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4.6 Statistics of Local Alignments

In Section 4.4 the notion of a significant homology was central to the classification of
genes into families. The direct calculation of this significance was one of the major
advances in the development of fast local alignment tools.

4.6.1 Maximum Local Alignment Scores

The distribution of extreme values taken from multiple samples, be it the maximum
height of people in various towns, the maximum length of proteins in a sample of
proteomes, or the maximum score of local alignments between random sequences,
are described by the extreme value distribution. Its probability density function is
given by

(4.2)

where is the location parameter and the dispersion parameter. Figure 4.10 shows
this probability density function for and . The cumulative distribution
function of the extreme value distribution is

(4.3)

which is also shown in Figure 4.10 for and .
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Fig. 4.10. Probability density function, , and cumulative distribution function, , of
the extreme value distribution with parameters and .
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In order to estimate the parameter for the distribution of maximum local align-
ment scores, let be the background frequency of the -th residue in the database,
e.g. the amino acid background frequencies displayed in Figure 2.7. Then is the
unique positive solution of

where is the log-odds score of the residue pair taken from a given substitu-
tion matrix, e.g. BLOSUM62 (Table 2.4) [134]. The parameter is estimated as

(4.4)

where and are the effective lengths of the query and subject sequences, and is
a scaling parameter. The effective lengths of query and subject are less than their raw
lengths, which is due to the fact that high-scoring local alignments cannot start at
the ends of sequences. This edge effect, that is the difference between effective and
actual lengths, tends to become negligible for sequences longer than 200 residues. ,
which lies between 0 and 1, corrects for the fact that the entries in an alignment
matrix are not independent, as the paths to which these scores refer may intersect.
Computation of is more involved than and the interested reader is referred to
a publication by Karlin and Alschul [134]. By substituting into the complement of
Equation (4.3), we obtain the probability of observing a score greater or equal to
some threshold score by chance alone:

(4.5)

As an example application of the statistics of local alignments, we compare hu-
man -globin with a lupine leghemoglobin, which consist of 146 and 153 amino
acids, respectively. Using the BLOSUM62 substitution matrix, a gap opening score
of -12 and a gap extension score of -1, the optimal alignment is shown in Figure 4.11
and has a score of 39. Is this score significant?

human -globin: 50 TPDAVMGNPKVKAHGKKV 67
| . ||...|| ||

lupine leghemoglobin: 50 TSEVPQNNPELQAHAGKV 67

Fig. 4.11. Optimal local alignment between human -globin and lupine leghemoglobin.

According to the BLAST output, the effective length of -globin is 130, that of
leghemoglobin is 137, , and . Hence we can compute

. By substituting these estimates for and into
Equation (4.3) and taking the complement, we get .

Figure 4.12 shows the distribution of 100,000 maximum local alignment scores
obtained by shuffling -globin and realigning it to leghemoglobin. This can be com-
pared to the expected distribution obtained by substituting and
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into the probability density function given by Equation (4.2). The simulated prob-
ability of obtaining a score of by chance alone is 0.024, which is very close
to the result of 0.022 obtained much more efficiently by applying the extreme value
distribution. We can conclude that the alignment found is marginally significant.

theoretical
simulated

observed score

706560555045403530252015

0.12

0.1

0.08

0.06

0.04

0.02

0

Fig. 4.12. Simulated and theoretical distribution of optimal local alignments scores. The sim-
ulated distribution was obtained by shuffling human -globin 100,000 times and aligning it to
lupine leghemoglobin.

Instead of the probability of getting a score greater or equal to that observed,
, some implementations of BLAST quote the expected number of align-

ments with a score of at least . This is known as the -value, which is calculated by
assuming that a given dynamic programming matrix contains only few entries with
a score . The distribution of rare events can often be modeled by the Poisson
distribution. We start by considering the probability of an event occurring at least
once, which is simply the complement of the event not occurring at all. In the con-
text of our discussion, the probability of finding an alignment with score is
the complement of finding no significant alignment: . For
Poisson-distributed events , where is the mean of the distribution.
Here , and we solve

for to obtain
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Hence we get the expectation value by taking the logarithm of the complement of
Equation (4.5) and multiplying by :

(4.6)

It is important to remember the distinction between the expectation value at-
tached to a score and its significance. The range of expectation values ( ) is bounded
by zero and , while probabilities lie between zero and one. However, for small
probabilities, say , the -value and the corresponding -value are very
similar as shown in Figure 4.13.
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Fig. 4.13. The number of random alignments expected to have a score , , and the
probability of obtaining a score , , as a function of the score, . The parameters
for this example are taken from the alignment of human -globin and lupine leghemoglobin
described in the text, in which case and .

4.6.2 Choosing a Substitution Matrix

We explained in Section 2.10 that the mean score of a random pair of residues should
be negative for local alignments. However, the difference in score between a random
and a statistically significant match is maximized if the entries in the scoring matrix
fulfill a further requirement. Let be the frequency of amino acid in the database
and let be the probability with which amino acids and are found in homolo-
gous positions in protein alignments. Then the scoring scheme that best distinguishes
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significant from spurious alignments contains entries for residues and of the form
[8]

This is the log-odds form of the entries found in both the PAM and the BLOSUM
matrices (cf. Section 2.4). Moreover, entries of this format are on average negative,
i.e.

Of the two quantities that go into calculating an entry in a scoring matrix, is
the more interesting. It represents the frequencies of homologous pairs of residues.
This set of “target frequencies” changes over evolutionary time, hence the series of
scoring matrices. By choosing one of these, the user essentially chooses the set of
target frequencies she judges appropriate for the alignment problem in hand. Notice
that if evolution has gone on for long enough as to completely randomize residues
in homologous positions, . In other words, in the limit of infinite time
the target frequencies become equal to the corresponding product of the background
frequencies and all log-odds are zero.

4.7 Bit Scores

So far we have considered “raw scores”. These have the disadvantage of being depen-
dent on and , i.e. on parameters that are functions of the score matrix employed
and the background frequencies of the residues in the database. This makes it difficult
to compare the significance of alignments obtained using different score matrices. In
order to obtain expectation values that are independent of the score matrix, a bit score

has been defined:

(4.7)

Substituting Equation (4.7) into Equation (4.6) we get

(4.8)

The corresponding significance is obtained by the Poisson approximation already
outlined:

4.8 Summary

The comparison of DNA and protein sequences is one of the central applications
of bioinformatics in biological research. As the amount of data available for mean-
ingful comparisons has grown exponentially since the early 1980s, rapid algorithms
for approximating alignments obtained by optimal methods have become central to
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the practice of sequence analysis. The methods for rapid global and local alignment
introduced in this chapter are all based on the idea of excluding large parts of the
sequences compared from detailed investigation. In the global approach, the aim is
to cover as much of the alignment as possible through exact matches between the
two sequences analyzed. These exact matches can be discovered efficiently by the
application of a generalized suffix tree. In the local approach, promising regions in
the database are identified through an exact match to a substring of the query. This
procedure is heuristic as there is a (small) probability that a homologous sequence
might not contain an exact match to the substrings of the query. Designing the set
of query substrings is therefore a critical step in database search programs such as
FASTA and BLAST. Since these programs often scan large databases, it is impor-
tant to gain a measure of statistical significance for a given alignment. The statistical
theory accounting for the significance of local alignments is formally restricted to
ungapped alignments, but appears to work equally well for gapped alignments [198].
The significance of an alignment is summarized by the expectation value shown in
Equation (4.8). This corresponds to the number of alignments with a score greater or
equal to the one observed that are expected to occur by chance alone.

4.9 Further Reading

Bedell and his colleagues have written a comprehensive guide to the BLAST soft-
ware package [18] .

4.10 Exercises and Software Demonstrations

4.1. Consider a set of sequences containing 40 hexokinases. You compare a known
hexokinase to your collection using a pairwise alignment tool and obtain 35 hits, of
which 28 are true hexokinases. What is the sensitivity and specificity of your search
program?

4.2. Consider the following sequence of numbers

and use dynamic programming to find its longest increasing subsequence.

4.3. The genome of E. coli K12 has the following composition:

A 1,142,228 bp
C 1,179,554 bp
G 1,176,923 bp
T 1,140,970 bp

1. What is the probability of drawing two identical nucleotides from this genome?
2. What is the expected length of the longest repeat sequence?
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3. Let be an E. coli query sequence of length 100 nucleotides. In a search with
errors, what is the length of the substring of that is guaranteed to be

error-free?
4. How many exact matches of this length are expected to occur in the E. coli

genome?

4.4. Hash the string AGTAAC into substrings of length 2 and compare your result
to that obtained using the program Match Hash Table in the bioinformer
software (Section A.2.4).

4.5. Familiarize yourself with the idea of a dotplot by working through the tutorial
for the bioinformer program Match Dotplot in Section A.2.5).

4.6. How would you construct an alternative solution to Exercise 3.2 that runs in time
linear in the sum of the lengths of an arbitrary number of input strings?

4.7. You are given an unknown human protein and compare it to the mouse proteome
using BLAST. An abridged version of the BLAST output is shown in Figure 4.14.

1. What is the function of the unknown protein?
2. Is EWL part of the query sequence’s word neighborhood?
3. Calculate the raw score of the local alignment between the query and the sushi-

repeat containing protein.
4. Convert the raw score just computed to a bit score and compare your result to

the corresponding bit score on the printout.
5. Is the homology to the sushi-repeat containing protein reported in Figure 4.14

significant?
6. You repeat the BLAST search a year later using the same database, whose size

has doubled in the meantime. Everything else being equal, what result do you
expect for

a) the score?
b) the -value?

4.8. Given the BLOSUM62 score matrix, the raw score of the optimal local align-
ment between human -globin and lupine leghemoglobin shown in Figure 4.11 is 39
and its bit score is 19.6.

1. Recalculate the raw score based on the BLOSUM45 matrix shown in Table 4.3.
2. Convert the raw score to a bit score using the parameters and

returned by BLAST for the alignment of -globin and leghemoglobin
under the BLOSUM45 substitution matrix.



88 4 Fast Alignment: Genome Comparison and Database Searching

Score E
Sequences producing significant alignments: (bits) Value

gi|NP_062728.1| neuronal protein; neuronal protein N... 408 e-114
gi|NP_848713.1| transgelin 2 [Mus musculus] 308 2e-84
gi|NP_081114.1| sushi-repeat containing protein [Mu... 27 9.9

>gi|NP_062728.1| neuronal protein; neuronal protein Np25
[Mus musculus]

Length = 199

Score = 408 bits (1048), Expect = e-114
Identities = 198/199 (99%), Positives = 198/199 (99%)

Query: 1 MANRGPSYGLSREVQEKIEQKYDADLENKLVDWIILQCAEDIEHPPPGRAHFQKWLMDGT 60
MANRGPSYGLSREVQEKIEQKYDADLENKLVDWIILQCAEDIEHPPPGRAHFQKWLMDGT

Sbjct: 1 MANRGPSYGLSREVQEKIEQKYDADLENKLVDWIILQCAEDIEHPPPGRAHFQKWLMDGT 60

>gi|NP_848713.1| transgelin 2 [Mus musculus]
Length = 199

Score = 308 bits (790), Expect = 2e-84
Identities = 144/199 (72%), Positives = 170/199 (85%)

Query: 1 MANRGPSYGLSREVQEKIEQKYDADLENKLVDWIILQCAEDIEHPPPGRAHFQKWLMDGT 60
MANRGPSYGLSREVQ+KIE++YDADLE L+ WI QC ED+ P PGR +FQKWL DGT

Sbjct: 1 MANRGPSYGLSREVQQKIEKQYDADLEQILIQWITTQCREDVGQPQPGRENFQKWLKDGT 60

>gi|NP_081114.1| sushi-repeat containing protein [Mus
musculus]

Length = 467

Score = 27.3 bits (59), Expect = 9.9
Identities = 12/44 (27%), Positives = 22/44 (50%)

Query: 226 HLLTFSSFSKPSVPGFCKCCISAENPRCLLLPPPVHLELCKDSA 269
H++ ++++ + CK + + RC +L PP H L SA

Sbjct: 239 HVIRYTAYDRAYNRASCKFIVKVQVRRCPILKPPQHGYLTCSSA 282

Database: mouse_protein.fa
Posted date: Dec 19, 2003 3:47 PM

Number of letters in database: 11,582,853
Number of sequences in database: 25,371

Lambda K H
0.319 0.136 0.413

Gapped
Lambda K H

0.267 0.0410 0.140

Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1

Fig. 4.14. Abridged output of a BLAST search.
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Table 4.3. BLOSUM45 amino acid substitution matrix. Match scores are shown in bold.

A R N D C Q E G H I L K M F P S T W Y V
A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -2 -2 0
R -2 7 0 -1 -3 1 0 -2 0 -3 -2 3 -1 -2 -2 -1 -1 -2 -1 -2
N -1 0 6 2 -2 0 0 0 1 -2 -3 0 -2 -2 -2 1 0 -4 -2 -3
D -2 -1 2 7 -3 0 2 -1 0 -4 -3 0 -3 -4 -1 0 -1 -4 -2 -3
C -1 -3 -2 -3 12 -3 -3 -3 -3 -3 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1
Q -1 1 0 0 -3 6 2 -2 1 -2 -2 1 0 -4 -1 0 -1 -2 -1 -3
E -1 0 0 2 -3 2 6 -2 0 -3 -2 1 -2 -3 0 0 -1 -3 -2 -3
G 0 -2 0 -1 -3 -2 -2 7 -2 -4 -3 -2 -2 -3 -2 0 -2 -2 -3 -3
H -2 0 1 0 -3 1 0 -2 10 -3 -2 -1 0 -2 -2 -1 -2 -3 2 -3
I -1 -3 -2 -4 -3 -2 -3 -4 -3 5 2 -3 2 0 -2 -2 -1 -2 0 3
L -1 -2 -3 -3 -2 -2 -2 -3 -2 2 5 -3 2 1 -3 -3 -1 -2 0 1
K -1 3 0 0 -3 1 1 -2 -1 -3 -3 5 -1 -3 -1 -1 -1 -2 -1 -2
M -1 -1 -2 -3 -2 0 -2 -2 0 2 2 -1 6 0 -2 -2 -1 -2 0 1
F -2 -2 -2 -4 -2 -4 -3 -3 -2 0 1 -3 0 8 -3 -2 -1 1 3 0
P -1 -2 -2 -1 -4 -1 0 -2 -2 -2 -3 -1 -2 -3 9 -1 -1 -3 -3 -3
S 1 -1 1 0 -1 0 0 0 -1 -2 -3 -1 -2 -2 -1 4 2 -4 -2 -1
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -1 -1 2 5 -3 -1 0
W -2 -2 -4 -4 -5 -2 -3 -2 -3 -2 -2 -2 -2 1 -3 -4 -3 15 3 -3
Y -2 -1 -2 -2 -3 -1 -2 -3 2 0 0 -1 0 3 -3 -2 -1 3 8 -1
V 0 -2 -3 -3 -1 -3 -3 -3 -3 3 1 -2 1 0 -3 -1 0 -3 -1 5
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Multiple Sequence Alignment

The camel and the Llama are closely related species with
different habitats. Camels live in the plains and Llamas high
up in the Andes. The camel possesses a hemoglobin molecule
with an affinity for oxygen that is normal for an animal of
its size. But because of a single mutation in the gene coding
for one of the two globin chains that make up a hemoglobin
molecule, the Llama has a hemoglobin with an unusually
high oxygen affinity. The variant hemoglobin helps the Llama
breathe in the rarefied mountain air.

Max Perutz [200, p. 204]

The motivation for carrying out pairwise alignment is often to infer function from
sequence similarity. In the case of multiple alignments this motivation is reversed:
Given that a group of protein sequences have similar functions, we would like to
know which sequence features are essential for this function. Such essential sequence
motifs should be conserved, i.e. be similar, between homologous sequences from
diverse species. The easiest way to discover conservation is to align many sequences
encoding the function of interest and to look for invariant regions.

Figure 5.1 shows an alignment of seven globins, which are heme-containing pro-
teins involved in oxygen storage or oxygen transport [49]. The alignment contains
four globin sequences from mammals, one globin sequence from a fish, one myo-
globin sequence from a mammal and finally a globin from a leguminous plant, a
leghemoglobin. The last common ancestor of plants and animals existed over one
and a half billion years ago. In spite of this, the sequences can be aligned in a mean-
ingful way using the software clustalw [246], perhaps the best-known programs
available for this purpose.

How do we know that the alignment shown in Figure 5.1 is meaningful? One
method is to compare it to the three-dimensional structure of one of the aligned
proteins. Myoglobin from sperm whale (Fig. 5.1) was the very first protein whose
structure was solved. This work was carried out by John Kendrew and published
in 1960 [137], seven years after the structure of DNA had been determined in the
same Cambridge laboratory [256]. Not only was Kendrew the first to solve the three-
dimensional structure of a protein, he was also a proto-bioinformatician, for he ex-
tensively used the first computers acquired by Cambridge University after the second
World War to compute the structure of myoglobin from X-ray diffraction data [47,
p. 111ff]. A refined version of the original myoglobin model is shown in Figure 5.2.
The figure displays the eight helices that are also marked in the multiple alignment
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human --------VHLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYPWTQR 40
horse --------VQLSGEEKAAVLALWDKVN--EEEVGGEALGRLLVVYPWTQR 40
human ---------VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKT 41
horse ---------VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKT 41
lamprey g PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQE 50
whale m ---------VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLE 41
lupine l --------GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKD 42
consensus !* ** * * ! ** * * *** * * ! *

Conserved Histidine

human FFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDN-----LKGTF 85
horse FFDSFGDLSNPGAVMGNPKVKAHGKKVLHSFGEGVHHLDN-----LKGTF 85
human YFPHF-DLS-----HGSAQVKGHGKKVADALTNAVAHVDD-----MPNAL 80
horse YFPHF-DLS-----HGSAQVKAHGKKVGDALTLAVGHLDD-----LPGAL 80
lamprey g FFPKFKGLTTADQLKKSADVRWHAERIINAVNDAVASMDDT--EKMSMKL 98
whale m KFDRFKHLKTEAEMKASEDLKKHGVTVLTALGAILKKKGH-----HEAEL 86
lupine l LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL 90
consensus ! * *** ** ***!**** * ** *** *

Conserved Histidine

human ATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVA 135
horse AALSELHCDKLHVDPENFRLLGNVLVVVLARHFGKDFTPELQASYQKVVA 135
human SALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLA 130
horse SNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLS 130
lamprey g RDLSGKHAKSFQVDPQYFKVLAAVIADTVAAG---------DAGFEKLMS 139
whale m KPLAQSHATKHKIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALE 136
lupine l KNLGSVHVSKG-VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYD 139
consensus !* *!* ** *** ** ** * *** * *** * *

human GVANALAHKYH------ 146
horse GVANALAHKYH------ 146
human SVSTVLTSKYR------ 141
horse SVSTVLTSKYR------ 141
lamprey g MICILLRSAY------- 149
whale m LFRKDIAAKYKELGYQG 153
lupine l ELAIVIKKEMNDAA--- 153
consensus * * **

Fig. 5.1. Alignment of seven globin sequences. Dark gray: identical amino acids; light gray:
helices in myoglobin; / : / -globin; g: globin 5; m: myoglobin; l: leghemoglobin.

(Fig. 5.1). In the alignment we also notice that there are seven amino acids that have
not changed over their entire evolutionary history exceeding one and a half billion
years. Two of these conserved positions are specially marked histidines, which inter-
act with the heme group of the globins. The heme group is responsible for the ability
of globins to act as oxygen transporters and the amino acid residues that interact most
intimately with this molecule are necessary for the proper functioning of all globins.
The two histidines and the heme molecule of myoglobin are displayed in Figure 5.2.
From the multiple alignment we can infer the histidines in the homologous proteins
that interact with the heme molecule.

Multiple alignments are ubiquitous in molecular biology. They are used to

1. find sequence motifs that characterize protein families;
2. discover homologies between an unknown sequence and known sequence fami-

lies;
3. support the prediction of secondary and tertiary structure;
4. support the design of PCR primers;
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H
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93

Fig. 5.2. 3D-Structure of oxy-myoglobin. The two histidines interacting with the heme group
are shown in atomic detail. Notice also the bound oxygen molecule.

5. calculate phylogenetic trees.

In this chapter we will first look at the computation of multiple sequence alignments.
We start by a natural extension of the dynamic programming algorithm explained
in Section 2.6 and learn about a powerful speedup of this method. However, the
speedup is not decisive enough to make dynamic programming a viable option when
trying to align tens or hundreds of sequences, as one may wish to do when investi-
gating all the members of a large protein family such as the globins [133]. In these
cases heuristic multiple alignment methods developed since the 1980s are usually
applied. In essence these methods reduce the multiple alignment problem to a series
of pairwise alignments.

Heuristic multiple sequence alignments make use of two data structures not men-
tioned so far: sequence profiles and phylogenies. Both are used to compute multiple
sequence alignments; on the other hand, they constitute classical applications of mul-
tiple sequence alignments. We treat phylogeny reconstruction in Chapter 8 and pro-
file analysis in Section 6.1.
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In the following discussion of the computation of multiple sequence alignments
we concentrate on global approaches throughout, but local versions are of course
also possible and have been implemented [229, 184].

5.1 Scoring Multiple Alignments

Before we can compute a multiple alignment we need a scoring scheme. One of the
most popular schemes for scoring multiple sequence alignments is the sum-of-pairs
method. Here the score of a multiple sequence alignment, , is defined as

where is the length of the alignment, the number of sequences, and
is the score of position of sequence aligned with position of sequence .

The alignment of two gap symbols is scored as zero.

5.2 Multiple Alignment by Dynamic Programming

As explained in Section 2.6, dynamic programming based on a two-dimensional
matrix can be used to efficiently compute the score of a pairwise alignment. For

sequences the corresponding -dimensional matrix can be represented as an -
dimensional hyperlattice. Figure 5.3 displays the cuboid for aligning three sequences.
The path through this cuboid corresponding to a particular alignment can be repre-
sented as a series of coordinate triplets . The path depicted in Figure 5.3
corresponds to a global alignment, as it starts at position and ends at posi-
tion , where , , and correspond to the lengths of the aligned sequences:

. Notice that for each dimen-
sion the current coordinate indicates how many residues of the relevant sequence
have been incorporated into the alignment up to that point.

Now consider the alignment of globin sequences shown in Figure 5.1. If we
number sequences from top to bottom , and write the hyperlattice co-
ordinates in the same order, the path implied by the multiple sequence align-
ment is:

. The number of vertexes in the hyperlattice is . This number
increases rapidly with and for our example alignment it is of the order of .

While the volume of our hyperlattice increases by a factor proportional to the
length of each additional sequence, the time spent at each vertex also increases. This
is because the number of neighboring vertexes that can influence the score at the
current vertex increases, as illustrated in Figure 5.4. For two sequences we have al-
ready seen that the current score is formed as a function of three neighboring scores.



5.2 Multiple Alignment by Dynamic Programming 95

DPQV
AG−N
A−−V

D    P    Q    V

A

G

N

A

V

Fig. 5.3. Cuboid for the alignment of three sequences. The three sequences are written along
the three axes of the hyperlattice. The path corresponding to the alignment shown on the right
visits the circled vertexes.

For three sequences seven scores need to be considered, and for four sequences 15
scores. In general, each new matrix entry is a function of scores, where is
the number of sequences to be aligned. So the total time needed to align sequences
by “naı̈ve” dynamic programming is .

4 sequences: 15 vertices to visit

current
node

current
node

current
node

2 sequences: 3 vertices to visit 3 sequences: 7 vertices to visit

Fig. 5.4. The number of vertexes that need to be visited by a “naı̈ve” optimal alignment algo-
rithm at each vertex in the hyperlattice as a function of the number of sequences to be aligned.
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We called the approach to multiple alignment as presented so far “naı̈ve” because
the algorithm can be drastically accelerated by considering only those vertexes in
the hyperlattice that potentially lie on the path of an optimal alignment [35]. If the
sequences align well, this will be a narrow “tube” along the main diagonal of the
hyperlattice. The program msa implements such an improved optimal alignment
algorithm [169, 98]. Running the program on our data set of seven globins on a 1
GH pentium 4 computer with 250 MB RAM took 0.2 seconds. The resulting multiple
alignment is shown in Figure 5.5 and is very similar to our original example obtained
using a heuristic method (Fig. 5.1). However, there are four differences between the
two alignments, which all occur around the three largest gaps in the alignments.

human --------VHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQR 40
horse --------VQLSGEEKAAVLALWDKV--NEEEVGGEALGRLLVVYPWTQR 40
human ---------VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKT 41
horse ---------VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKT 41
lamprey g PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQE 50
whale m ---------VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLE 41
lupine l --------GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKD 42
consensus !* ** * * ! ** * * *** * * ! *

Conserved Histidine

human FFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDN-----LKGTF 85
horse FFDSFGDLSNPGAVMGNPKVKAHGKKVLHSFGEGVHHLDN-----LKGTF 85
human YFPHF-DLSH-----GSAQVKGHGKKVADALTNAVAHVDD-----MPNAL 80
horse YFPHF-DLSH-----GSAQVKAHGKKVGDALTLAVGHLDD-----LPGAL 80
lamprey g FFPKFKGLTTADQLKKSADVRWHAERIINAVNDAVASMDDTEK--MSMKL 98
whale m KFDRFKHLKTEAEMKASEDLKKHGVTVLTALGAILKKKGH-----HEAEL 86
lupine l LFSFLKGTSEVPQ--NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL 90
consensus ! * *** ** ***!**** * ** *** *

Conserved Histidine

human ATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVA 135
horse AALSELHCDKLHVDPENFRLLGNVLVVVLARHFGKDFTPELQASYQKVVA 135
human SALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLA 130
horse SNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLS 130
lamprey g RDLSGKHAKSFQVDPQYFKVLAAVIADTV---------AAGDAGFEKLMS 139
whale m KPLAQSHATKHKIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALE 136
lupine l KNLGSVHVSK-GVADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYD 139
consensus !* *!* ** *** ** ** * *** * *** * *

human GVANALAHKYH------ 146
horse GVANALAHKYH------ 146
human SVSTVLTSKYR------ 141
horse SVSTVLTSKYR------ 141
lamprey g MICILLRSAY------- 149
whale m LFRKDIAAKYKELGYQG 153
lupine l ELAIVIKKEMNDAA--- 153
consensus * * **

Fig. 5.5. Same as Figure 5.1, except that the latter was computed using the heuristic program
clustalw [246], while the optimal program msa [98] was used to obtain the present align-
ment.

In order to determine the minimum score a vertex might have and still be on
the path corresponding to an optimal alignment, msa first uses a heuristic alignment
algorithm before beginning the search for the optimal alignment [169, 98]. Hence
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heuristic alignment methods appear to be a prerequisite for practical optimal multiple
sequence alignment algorithms. Further, they are by far the most widely used class
of multiple alignment methods and we turn to them next.

5.3 Heuristic Multiple Alignment

Heuristic multiple sequence alignment programs proceed in essence by computing
only pairwise alignments. The trick is to compute these pairwise alignments in an
order corresponding to the evolutionary relationships of the sequences to be aligned.
Perhaps the most popular approach to heuristic alignment is known as progressive
alignment. The method was developed in 1987 by Feng and Doolittle [74] and is
the basis of such programs as clustalw, which we used to compute the alignment
shown in Figure 5.1.

At the time when Feng and Doolittle published their proposal, the standard
method for constructing multiple sequence alignments was to generate all pairwise
alignments and then to assemble the multiple alignment by hand without consider-
ing the evolutionary relationships of the sequences. The authors commented on this:
“It seems folly to us that a gap should be discarded in an alignment of two closely
related sequences merely because an alignment with some distantly related sequence
might be improved” [74, p. 352]. Since similar sequences can be aligned more reli-
ably than dissimilar sequences, the alignment of similar sequences should be given
more weight in the overall alignment scheme. This increased weight is achieved by
aligning the sequences progressively, starting from the most similar pair and follow-
ing the rule “once a gap, always a gap” [74]. In other words, gaps introduced early
in the alignment process are not changed later on.

distance0
0

0
0

0

1717

17
17

4

25
252525

10

Pairwise Phase

Multiple Sequence Phase
new gap

pre-existing gap

Fig. 5.6. Progressive multiple sequence alignment.

Figure 5.6 gives a graphical summary of the progressive alignment method. First,
all pairwise alignments are constructed and the pairwise distances between the se-
quences are calculated from these alignments. A simple distance measure would be
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the number of pairwise mismatches. The order in which individual sequences or
sets of aligned sequences progressively join the target alignment is then determined
by the construction of a cluster diagram from the distance matrix. In this cluster dia-
gram, also referred to as a “guide tree” [246], leaves represent sequences and internal
nodes represent alignments. Starting from the most similar pair of sequences, the al-
gorithm works from the leaves to the root of the guide tree. In the example shown in
Figure 5.6 and are the two most similar sequences. They get aligned first, fol-
lowed by and . The next node up the tree clusters the two pairwise alignments
formed so far and in the final step is added.

With the aid of a scoring scheme and a pairwise alignment method it is not dif-
ficult to align pairs of alignments and an example of this is shown in Figure 5.7.
However, during the multiple sequence phase of heuristic alignment, the intermedi-
ate alignments are often represented as so called profiles (Chapter 6) rather than the
standard alignments suggested by Figure 5.6.

Alignments to be aligned:

1.
AACGT
A-CGT

2.
AAGT
A-GT

Result:

AACGT
A-CGT
AA-GT
A--GT

-
-

A
A

A
-

C
C

G
G

T
T

-
-
A
A
A
-
G
G
T
T

Fig. 5.7. Global alignment of two alignments using dynamic programming. Gaps in the ex-
isting alignments are ignored, that is, their alignment carries a score of zero. In this example
match , mismatch , and gap . The traceback path corresponding to the final
alignment is marked in bold.

5.4 Summary

Multiple sequence alignments are often computed for known members of a protein
family. The aim is to discover sequence motifs that are conserved across the mem-
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bers of the protein family in order to infer the functionally important protein domains.
Like pairwise sequence alignments, multiple sequence alignments can be computed
using optimal or heuristic methods. In practice most multiple sequence alignments
are computed using heuristic methods. These proceed by reducing the multiple align-
ment problem to a series of pairwise alignments. The order in which these pairwise
alignments are fused into the multiple alignment is crucial for the success of the algo-
rithm. The pairwise alignments of the input sequences are used to calculate pairwise
distances. This in turn serves as input data for the construction of a guide tree, which
determines the order in which sequences are added to the multiple alignment.

5.5 Further Reading

A number of comprehensive surveys of multiple alignment methods have been pub-
lished over the years [176, 247, 62]. In addition, Chapter 14 in Gusfield’s textbook
treats many of the algorithmic aspects of multiple sequence alignment [99].

5.6 Exercises and Study Questions

5.1. How would you interpret the fact that at position 11 of the globin alignments in
Figures 5.1 and 5.5 all seven sequences have a leucine (L)?

5.2. Try to verify that the myoglobin molecule depicted in Figure 5.2 contains the
eight alpha helices marked in the myoglobin sequence of the globin multiple se-
quence alignment (Fig. 5.1).

5.3. Write down the hyperlattice for aligning the three sequences AATG, ATG, and
TG and trace the path corresponding to the alignment

AATG
A-TG
--TG

5.4. Write the alignment path traced in the previous exercise as a series of triplets of
coordinates in the hyperlattice.

5.5. Calculate the score of the alignment using the sum-of-pairs method and
mismatch , match , gap . Remember that the alignment of two
gaps is ignored (scored as zero).

5.6. Can you think of an alternative cooptimal path (and hence alignment)?

5.7. In the hyperlattice corresponding to the alignment in Figure 5.1, what are the
coordinates of the vertex following position ?
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5.8. What is the exact number of vertexes in the hyperlattice necessary for computing
an alignment of the seven globins shown in Figure 5.1 by dynamic programming?

5.9. Given that each operation in a “naı̈ve” version of the optimal multiple alignment
algorithm takes one nanosecond, how many sequences of length 100 can be aligned
in a decade?

5.10. Find all the differences between the alignments shown in Figures 5.1 and 5.5.

5.11. The first step in “progressive” alignment algorithms is the formation of all pos-
sible pairwise alignments. Given sequences to be aligned, how many such pairwise
alignments need to be computed?

5.12. Aligning the translation of a set of DNA sequences using clustalw is faster
than aligning the corresponding DNA sequences. Why is this the case and how much
faster is protein alignment compared to DNA alignment?

5.13. Use the dynamic programming matrix shown in Figure 5.7 to determine an
alignment that is cooptimal to the one shown.
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Sequence Profiles and Hidden Markov Models

Biologists should realize that before long we shall have a
subject which might be called ’protein taxonomy’—the study
of the amino acid sequences of the proteins of an organism
and the comparison of them between species.

Francis H. C. Crick [42, p. 142]

Sequence profiles summarize the information contained in a multiple sequence align-
ment. Such a summary can then be used to search for other members of the sample
contained in the underlying multiple sequence alignment.

Hidden Markov models are stochastic models originally developed in the context
of speech recognition. It was later realized that sequence profiles can be formulated
as hidden Markov models, thereby introducing powerful new methods to sequence
analysis. In this chapter we first introduce sequence profiles before turning our atten-
tion to their reformulation in the context of hidden Markov models.

6.1 Profile Analysis

Profile analysis is centered on protein families, which are groups of proteins that have
similar functions. An example of such a protein family is the globins, all of which are
involved in oxygen transport. A phylogeny of seven members of this protein family is
depicted in Figure 6.1. Members of a protein family may or may not all be connected
by significant pairwise alignments. For example, if we carry out a standard BLAST
search with human -globin as the query sequence marked in Figure 6.1, we get
significant hits up to the evolutionary distance of sperm whale myoglobin (boxed
sequences in Figure 6.1). However, we observe no hit to leghemoglobin. Hence, in
such a pairwise search, the homology between -globin and leghemoglobin would
go undetected.

Database search programs such as blastp, a member of the BLAST package
for comparing pairs of protein sequences, employ score matrices such as the PAM
and BLOSUM series. These matrices are position independent, that is, they are ap-
plied with equal weight to every position in an alignment. In contrast, profiles are
position-specific score matrices that capture the primary structure of a set of proteins
belonging to the same family. In order to demonstrate the power of profile analy-
sis, consider again our globin example. PROSITE is a database containing profiles
characteristic of protein families [226]. A scan of human -globin against PROSITE



102 6 Sequence Profiles and Hidden Markov Models

human -globin Query

human -globin

horse -globin

horse -globin

lamprey globin 5

whale myoglobin

lupine leghemoglobin

Fig. 6.1. Phylogeny of seven members of the globin protein family. Boxed sequences are those
detected by comparing human -globin against the complete set of seven sequences.

returns a match to the globin profile, and a match to the plant-globin profile, which
contains leghemoglobin from yellow lupine (Fig. 6.1). Hence, profile analysis can
detect homologies across greater evolutionary distances than standard pairwise align-
ment.

Profile analysis is carried out in two steps: (i) construction of the profile and (ii)
comparison of the profile with a single sequence or a database of sequences. Pro-
file construction always starts from an alignment of multiple homologous sequences.
The simplest method for extracting a profile from such a multiple sequence align-
ment is to count at each position in the alignment the frequency of each of the pos-
sible 20 amino acids. The result of subjecting the first 20 positions of our globin
alignment (Fig. 5.1) to such an analysis is shown in Figure 6.2. The profile consists
of 20 columns, one for each possible amino acid, and a row for each position in the
alignment. For example, at position 10 we find three valines (V) and one each of
alanine (A), histidine (H), proline (P), and glutamine (Q).

More elaborate scoring schemes that incorporate the standard amino acid score
matrices have been proposed [90]. For example, the weighted score of
amino acid at position can be defined as

where is the weight of amino acid at position and is the score of
aligning amino acids and as determined from an amino acid substitution matrix.
If the weighting scheme is linear, is the frequency of amino acid in column

of the multiple alignment from which the profile is computed. With a logarithmic
weighting scheme the of the frequency would be used with the added proviso that
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Position A C D E F G H I K L M N P Q R S T V W Y

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
9 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0

10 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 3 0 0
11 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 0 0 0
13 2 0 0 2 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0
14 3 0 0 2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
15 0 0 2 4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
16 1 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 1 0
17 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3 0 0 0
18 2 0 0 0 0 0 0 0 1 2 0 2 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 6 0 0
20 0 0 0 0 0 0 0 0 3 2 0 0 0 0 1 0 1 0 0 0

Fig. 6.2. Frequency count of the first 20 positions of the globin alignment shown in Figure 5.1.
The boxed entries are discussed in the text.

if an amino acid is missing from a particular column, it is counted as being present
once. The result of applying the linear scoring scheme together with an amino acid
score matrix (Table 6.1) to the first 20 positions of our globin alignment is shown
in Figure 6.3. The boxed entries are the same as those boxed in the simple profile
of Figure 6.2. In order to understand the entries in the matrix shown in Figure 6.3,
consider its first line. Since there is only proline (P) present in the first column of the
sequence alignment, all entries in the profile are simply P , where is the
number of sequences, i.e. seven in our case. For example, A P and hence the
entry in the first line and the first column of the profile is .

Notice that the last column of the profile gives a position-specific gap-score. The
first nine positions of the alignment contain gaps (Fig. 5.1), which is reflected by a
jump in the gap scores between positions and those (Fig. 6.3).

Aligning a sequence to a profile can be done using the standard local dynamic
programming technique. The only difference is that scores are now looked up in the
profile. Consider for example the multiple DNA sequence alignment in Figure 6.4A.
Given a score scheme of match and mismatch , we obtain the correspond-
ing profile shown in Figure 6.4B. Figure 6.5 shows how this profile can be aligned
with the example sequence ACCT. The sequence is written along the horizontal axis
of the dynamic programming matrix and the profile along the vertical axis. We carry
out a local alignment, so the first row and column are initialized with zeros. As be-
fore, gap extensions are scored as -1, and gap opening as 0. The score of a match
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Table 6.1. Amino acid substitution matrix for profile analysis [89]. Match scores are shown in
bold.

A B C D E F G H I K L M N P Q R S T V W Y Z
A 15 2 3 3 3 -5 6 -1 0 0 -1 0 2 5 2 -3 4 4 2 -8 -3 2
B 2 11 -4 11 6 -6 6 4 -2 4 -5 -3 11 1 5 1 3 2 -2 -6 -3 6
C 3 -4 15 -5 -6 -1 2 -1 2 -6 -8 -6 -3 1 -6 -3 6 2 2 -12 10 -6
D 3 11 -5 15 10 -10 6 4 -2 3 -5 -4 6 1 6 0 2 2 -2 -11 -5 8
E 3 6 -6 10 15 -6 5 4 -2 3 -3 -2 5 1 6 0 2 2 -2 -11 -5 11
F -5 -6 -1 -10 -6 15 -6 -1 6 -6 12 5 -5 -6 -8 -5 -3 -3 2 12 13 -6
G 6 6 2 6 5 -6 15 -2 -3 -1 -5 -3 4 3 2 -3 6 4 2 -10 -6 3
H -1 4 -1 4 4 -1 -2 15 -3 1 -2 -3 5 2 6 5 -2 -1 -3 -1 3 5
I 0 -2 2 -2 -2 6 -3 -3 15 -2 8 6 -3 -2 -3 -3 -1 2 11 -5 1 -2
K 0 4 -6 3 3 -6 -1 1 -2 15 -3 2 4 1 4 8 2 2 -2 1 -6 4
L -1 -5 -8 -5 -3 12 -5 -2 8 -3 15 12 -4 -3 -1 -4 -4 -1 8 5 3 -2
M 0 -3 -6 -4 -2 5 -3 -3 6 2 12 15 -3 -2 0 2 -3 0 6 -3 -1 -1
N 2 11 -3 6 5 -5 4 5 -3 4 -4 -3 15 0 4 1 3 2 -3 -3 -1 4
P 5 1 1 1 1 -6 3 2 -2 1 -3 -2 0 15 3 3 4 3 1 -8 -8 2
Q 2 5 -6 6 6 -8 2 6 -3 4 -1 0 4 3 15 4 -1 -1 -2 -5 -6 11
R -3 1 -3 0 0 -5 -3 5 -3 8 -4 2 1 3 4 15 1 -1 -3 13 -6 2
S 4 3 6 2 2 -3 6 -2 -1 2 -4 -3 3 4 -1 1 15 3 -1 3 -4 0
T 4 2 2 2 2 -3 4 -1 2 2 -1 0 2 3 -1 -1 3 15 2 -6 -3 1
V 2 -2 2 -2 -2 2 2 -3 11 -2 8 6 -3 1 -2 -3 -1 2 15 -8 -1 -2
W -8 -6 -12 -11 -11 12 -10 -1 -5 1 5 -3 -3 -8 -5 13 3 -6 -8 15 11 -8
Y -3 -3 10 -5 -5 13 -6 3 1 -6 3 -1 -1 -8 -6 -6 -4 -3 -1 11 15 -6
Z 2 6 -16 8 11 -6 3 5 -2 4 -2 -1 4 2 11 2 0 1 -2 -8 -6 11

Position A C D E F G H I K L M N P Q R S T V W Y -

1 0.7 0.1 0.1 0.1 -0.8 0.4 0.2 -0.2 0.1 -0.4 -0.2 0.0 2.1 0.4 0.4 0.5 0.4 0.1 -1.1 -1.1 1.2
2 0.0 0.2 -0.2 -0.2 0.8 -0.4 -0.4 2.1 -0.2 1.1 0.8 -0.4 -0.2 -0.4 -0.4 -0.1 0.2 1.5 -0.7 0.1 1.2
3 0.2 0.2 -0.2 -0.2 0.2 0.2 -0.4 1.5 -0.2 1.1 0.8 -0.4 0.1 -0.2 -0.4 -0.1 0.2 2.1 -1.1 -0.1 1.2
4 0.4 -0.7 2.1 1.4 -1.4 0.8 0.5 -0.2 0.4 -0.7 -0.5 0.8 0.1 0.8 0.0 0.2 0.2 -0.2 -1.5 -0.7 1.2
5 0.5 0.2 0.2 0.2 -0.4 0.5 -0.1 0.2 0.2 -0.1 0.0 0.2 0.4 -0.1 -0.1 0.4 2.1 0.2 -0.8 -0.4 1.2
6 0.8 0.2 0.8 0.7 -0.8 2.1 -0.2 -0.4 -0.1 -0.7 -0.4 0.5 0.4 0.2 -0.4 0.8 0.5 0.2 -1.4 -0.8 1.2
7 0.5 0.8 0.2 0.2 -0.4 0.8 -0.2 -0.1 0.2 -0.5 -0.4 0.4 0.5 -0.1 0.1 2.1 0.4 -0.1 0.4 -0.5 1.2
8 0.2 0.2 -0.2 -0.2 0.2 0.2 -0.4 1.5 -0.2 1.1 0.8 -0.4 0.1 -0.2 -0.4 -0.1 0.2 2.1 -1.1 -0.1 1.2
9 3.5 1.2 0.7 0.5 -1.0 3.5 -1.2 2.7 -0.7 1.4 1.2 0.0 1.4 0.0 -1.7 1.1 1.7 4.8 -4.8 -1.5 1.2

10 3.8 0.4 1.1 1.1 -2.0 2.1 1.8 3.5 0.0 2.4 1.8 0.2 4.0 2.8 0.0 0.2 1.5 6.1 -6.5 -2.4 4.5
11 -1.0 -8.0 -5.0 -3.0 12.0 -5.0 -2.0 8.0 -3.0 15.0 12.0 -4.0 -3.0 -1.0 -4.0 -4.0 -1.0 8.0 5.0 3.0 4.5
12 4.0 4.8 2.0 2.0 -3.0 5.4 -1.7 -0.1 2.0 -3.1 -2.1 2.7 3.7 -1.0 0.4 11.5 6.4 -0.1 0.4 -3.7 4.5
13 7.4 -0.2 4.8 6.1 -5.7 6.1 1.1 -1.5 1.0 -2.7 -1.5 2.5 6.4 3.4 -0.4 3.7 3.1 0.5 -9.1 -5.4 4.5
14 8.7 0.7 5.2 6.5 -5.1 7.0 0.1 -1.1 1.0 -2.5 -1.4 3.2 3.4 2.7 -1.5 5.2 3.2 0.4 -7.5 -4.1 4.5
15 2.8 -5.7 10.8 12.2 -7.4 4.8 4.2 -2.1 3.1 -3.2 -2.2 5.1 1.2 7.2 0.5 1.5 1.5 -2.0 -10.1 -5.1 4.5
16 1.0 -5.5 1.0 1.0 -3.2 -1.2 0.4 -2.1 10.8 -1.5 1.0 2.7 0.2 2.4 7.1 2.4 1.1 -2.2 1.7 -3.1 4.5
17 6.8 1.7 2.8 2.8 -4.2 4.5 -0.1 0.2 1.7 -1.4 -0.4 2.4 3.7 2.1 -0.5 4.4 7.8 1.0 -5.1 -3.5 4.5
18 4.5 -3.1 1.5 1.8 -0.2 1.2 0.7 1.1 2.4 2.4 2.8 4.2 0.7 2.0 -0.5 1.1 1.7 1.7 -1.5 -1.1 4.5
19 1.7 2.0 -2.0 -2.0 2.5 1.2 -3.0 11.5 -2.0 8.0 6.0 -3.0 0.5 -2.1 -3.0 -1.0 2.0 14.4 -7.5 -0.7 4.5
20 -0.1 -5.0 0.1 0.7 -0.2 -1.7 0.4 1.2 7.0 2.2 4.5 1.0 0.4 1.8 4.2 0.2 2.5 1.2 2.8 -3.0 4.5

Fig. 6.3. Profile of the first 20 positions of the globin alignment shown in Figure 5.1. For
details see text. The profile was calculated using the EMBOSS software package [209].
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between position in the profile and in the sequence is looked up as entry in
the profile. The two cooptimal best local alignments are AC

AC and CT
CT ; both carry a

score of 0.8.

A B
1 2 3 4 5
A C G C A
A C G C T
A C G C T
A G G G T
C G G T T

Position A C G T
1 0.6 -0.6 -1 -1
2 -1 0.2 -0.2 -1
3 -1 -1 1 -1
4 -1 0.2 -0.6 -0.6
5 -0.6 -1 -1 0.6

Fig. 6.4. A: Alignment of five DNA sequences with alignment positions given in the top row.
B: Profile computed from the alignment using a score scheme of match and mismatch

.

Position A C G T - A C C T
0 0 0 0 0 0 0 0 0 0

1 0.6 -0.6 -1 -1 0 0.6 0 0 0

2 -1 0.2 -0.2 -1 0 0 0.8 0 0

3 -1 -1 1 -1 0 0 0 0 0

4 -1 0.2 -0.6 -0.6 0 0 0 0.2 0

5 -0.6 -1 -1 0.6 0 0 0 0 0.8

Fig. 6.5. Local alignment between a profile (vertical axis) and a DNA sequence (horizontal
axis.

We now turn to a more realistic application of profile analysis. Imagine that we
have identified the six boxed globin sequences shown in Figure 6.1 by pairwise ho-
mology search. In order to look for further members of our protein family, we com-
pute a profile from these six sequences. An alignment of leghemoglobin to this profile
happens to result in a score of 725.36. Is this significant? One method to determine
this is to compare the original score to the distribution of scores obtained by align-
ing unrelated proteins to the profile. Alternatively, the sequence of leghemoglobin
can be repeatedly randomized and realigned to the profile. The result of 1,000 such
randomizations is shown in Figure 6.6A, which implies a marginal significance level
of 0.009. If we now iterate the analysis and include leghemoglobin in the profile
computation, we get the result shown in Figure 6.6B. It is clear that in this case the
original score is due to highly significant homology between leghemoglobin and the
globin profile. The superior sensitivity of profiles relative to pairwise comparisons
is the reason for using profiles as intermediate steps in heuristic multiple sequence
alignment algorithms such as clustalw [246].
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Fig. 6.6. The sequence of leghemoglobin was shuffled 1,000 times and aligned to the globin
profile. The resulting distribution of alignment scores can then be compare to the score of the
alignment between the profile and the unshuffled leghemoglobin sequence (original score).
A: Profile computed from the six boxed globin sequences shown in Figure 6.1. B: Profile
computed from all seven globins shown in Figure 6.1. Profile generation and profile alignment
was carried out using the EMBOSS programs prophecy and prophet, respectively [209].

We have already mentioned the limited sensitivity of classical pairwise align-
ment programs such as blastp. However, the BLAST package also contains a
program based on profile searches called psi-blast [10]. It works by iterating
pairwise searches. After each round of pairwise searching, a profile is calculated
from the set of homologous sequences and used as query for searching in the next
round. The iteration stops once no new homologues are found. When using human

-globin as query against the SwissProt database, psi-blast converges after five
rounds of iteration with a results list that contains a highly significant hit to leghe-
moglobin. No such hit was contained in the results list after the first round of search-
ing. Hence psi-blast considerably extends the reach of database searches in ho-
mology space.

Profile analysis had been applied to sequence analysis problems for a few years
when it was realized that profiles can be rewritten as hidden Markov models [155].
These are stochastic models that can be applied to the analysis of diverse kinds of
sequential data, most notably human speech and biological sequences.

6.2 Hidden Markov Models

Hidden Markov models (HMMs) are a class of stochastic models that are widely
used in computational biology. Perhaps their most successful applications are to gene
prediction and homology detection. Homology detection by HMMs is covered in
Section 6.3, while gene prediction is the topic of Chapter 7.

In the following we first explain what a hidden Markov model is and how it can
be used to analyze sequential data including DNA and protein sequences. This is fol-
lowed by a survey of a special kind of HMM, profile HMM, which is derived from a
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multiple sequence alignment. Profile HMMs are widely applied in protein classifica-
tion and can themselves be used to rapidly calculate multiple sequence alignments.

Hidden Markov models were made accessible to the scientific community in a
classical tutorial by Rabiner [205] and we follow his treatment. Consider a system,
such as your body, which can take one of distinct states, e.g. “healthy”
and “ill”. Let a certain state at time be called . A discrete, -th order Markov
chain has the property that a state at time depends on the system’s states at times

. Here we will only be concerned with first order Markov chains.
Dealing with a first order Markov chain means that the probabilistic description of a
state sequence is truncated to the present and the previous state:

As the system evolves from time to time , it switches between states according
to time-independent probabilities of the form

where and may be identical. Figure 6.7 depicts our healthy vs. ill example as
a Markov chain with two states. The transition probabilities marked in Figure 6.7
might alternatively be written as

�������� ��
��

	
������� ��

Fig. 6.7. Markov chain with two states “healthy” ( ) and “ill” ( ).

Given that you are healthy now, we can ask, what is the probability that you
will be healthy – healthy – healthy – ill – ill over the next five days? The answer
is . Perhaps more interestingly, we can ask, what is the
average duration, , of state ? This can be found by summing the probabilities of
all possible durations of a certain state

That is, our Markov chain in Figure 6.7 implies an expected 100 consecutive days of
health and consecutive days of illness, if states can switch once a day.

In many situations it is necessary to distinguish between a system’s state and the
value of an observable quantity which depends on that state. For example, a common
indicator of health or otherwise is our body temperature. Hence, we call “healthy”
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Fig. 6.8. Hidden Markov model with hidden states “healthy” ( ) and “ill” ( ). Each hidden
state emits one of two possible observable states, normal (n) and elevated (e) body temperature
with the indicated probabilities.

and “ill” hidden states which emit the observable states “normal” (n) or “elevated” (e)
body temperature (Fig. 6.8). Such a model can be used to generate a series of binary
temperature recordings: nnneennnnnn... Before we learn how to generate such an
observation sequence using our HMM, let us summarize its elements:

1. : the number of states ; a state at time is referred to as

2. : the number of observational symbols, that is, the size of alphabet

3. : state transition probabilities ,

4. : observation symbol probabilities; at ,
,

5. : initial state probabilities; ,

The complete parameter set is conveniently referred to as

If we now return to our task of generating an observation sequence

where all , we can use the following procedure:

1. choose according to ;
2. choose according to
3. change to new state according to ;
4. if , goto 2; else stop

We demonstrate the application of this procedure using the HMM of Figure 6.8 and
the following list of random numbers:
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0.66287 0.505421 0.495442 0.568873 . . .

The algorithm starts at “start” in Figure 6.8. By sequentially using up the random
numbers and following the steps in the algorithm it yields

Step 1: , therefore
Step 2: , therefore n
Step 3: , therefore
Step 2: , therefore n

Now that we are acquainted with the nuts and bolts of HMMs, we can start using
them to solve interesting problems. To fix our ideas, consider the HMM in Figure 6.9,
which models in a simplified fashion G/C- and A/T-rich genomic regions. Figure 6.9
also contains an observation sequence, a DNA sequence. It is convenient to think of
such a sequence as having been generated by a HMM, even though in most situa-
tions of practical relevance it would be real sequence data. The metaphor of a HMM
generating a given biosequence is a shorthand for saying that the HMM is believed
to model important properties of this sequence. Given such a model and the corre-
sponding empirical data we can solve the following three fundamental problems for
HMMs:

1. The scoring problem: given and , compute ; in the context of
our example in Figure 6.9 we wish to know the probability that a given DNA
sequence has been generated by a known HMM.

2. The detection problem: given and , find the optimal state sequence; for our
example this means that we wish to know which parts of the sequence are A/T-
rich and which are G/C-rich.

3. The training problem: given and an initial , maximize by adjusting
the model’s transition and emission probabilities (not its architecture of hidden
states); for our example we would start with DNA sequence data containing A/T-
and G/C-rich regions and would try to determine the corresponding emission and
transition probabilities.

All three problems can be solved efficiently and in the following we explain the
solutions to the scoring and the detection problem. Readers interested in the slightly
more advanced training problem are referred to Rabiner’s article [205].

A naı̈ve method for solving the scoring problem would be to write down all
possible state sequences, calculate the probability of each one and choose the state
sequence with the highest probability. However, the number of state sequences is

, which renders this approach unfeasible. Fortunately, a bottom up approach sim-
ilar to that encountered in the context of computing the number of possible global
alignments (Section 2.5) can also be applied in this case and is known as forward
procedure. We fill a two-dimensional table with rows and columns and deter-
mine its entries as follows:

1. initialization:
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�� A/T: 0.3, G/C: 0.7

Observed T G C T A T T G G T
Hidden

Fig. 6.9. Hidden Markov model of A/T and G/C-rich genomic regions and , respectively.
The sequence of observed and hidden states was generated using this model.

2. recursion: , ,
3. termination:

Figure 6.10 shows the first two columns in the table of values corresponding to
the data and HMM of Figure 6.9.

T G
0.72 0.14154
0.03 0.02961

Fig. 6.10. Calculation of the probability of an observation sequence using the forward proce-
dure. The data and underlying HMM are shown in Figure 6.9.

In contrast to the scoring problem, the detection problem contains an element of
optimization: we wish to find the state sequence that best explains the observation
sequence. A dynamic programming approach known as Viterbi algorithm can be
used to efficiently find the most likely sequence of hidden states. This algorithm is
based on a similar table as employed in the forward procedure.

1. initialization: ,
2. recursion: , , ; in

addition, keep back pointer to
3. back tracking: Start from and follow the back pointers

Application of this algorithm to our DNA sequence example (Fig. 6.9) yields the dy-
namic programming matrix of Figure 6.11. Notice that the most likely state sequence
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differs from the known state sequence in Figure 6.9 due to the stochastic nature of
the model.

T G C T ...
0.7200 0.1411 0.0277 0.0217 ...
0.0300 0.0195 0.0127 0.0035 ...

Fig. 6.11. Dynamic programming matrix used in the Viterbi algorithm according to the DNA
sequence and HMM shown in Figure 6.9. Back pointers for the most likely state sequence are
also shown.

The probabilities in the programming tables of Figures 6.10 and 6.11 rapidly
become very small and lead to numerical underflow in computer programs. The
corresponding algorithms are therefore always implemented on the basis of log-
probabilities.

Figure 6.9 suggests how HMMs might be useful in determining G/C-rich regions,
which are also often gene-rich. However, the models we have looked at so far are
unrealistically simple. In addition, they have the property of being fully connected,
that is, all transition probabilities are . As we will see in Section 6.3, profile
HMMs differ on both counts.

6.3 Profile Hidden Markov Models

As explained in Section 6.1, profiles model protein families through position-specific
residue scores as well as gap penalties. Such position-specific scores can then be used
to detect more subtle homologies than is possible using pairwise alignments. In the
mid 1990s it was realized that profiles could be rewritten as HMMs usually known
as profile HMMs, thereby making profile analysis more rigorous [155].

Profile HMMs consist of the three elements of an alignment: matches, insertions,
and deletions. As shown in Figure 6.12, these elements are interpreted as hidden
states in the HMM. The delete state is the simplest state; it emits only a single sym-
bol, the gap symbol. The insertion state, , emits amino acids drawn randomly from
their background frequencies. The match state, finally, emits amino acids according
to their frequencies at a given alignment position. It is important to realize that the
match state is position-specific and this property distinguishes it from the position-
invariant insertion and deletion states. In fact, the emissions of the match state cor-
respond to the profile constructed from the underlying multiple sequence alignment,
hence, the name profile HMMs.

Complete profile HMMs are built from a series of the elements shown in Fi-
gure 6.12 and an example model is displayed in Figure 6.13. The first thing to notice
is that it is directed from a “start” to an “end” state and contains no “backward”
transitions. The number of match states is equal to the length of the profile and the
probabilities of the emission states are derived from the profile entries.
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Fig. 6.12. Precursor of profile hidden Markov model. : observed frequency of amino acid ;
: background frequency of amino acid ; : delete state; : insertion state; : match state.

In contrast to profiles, which may contain arbitrary gap scores as well as pseu-
docounts, all free parameters of HMMs, including position-specific gap scores, are
derived from the data in a consistent fashion. These parameters correspond to prob-
abilities assigned to the arrows in Figure 6.13.

Given the complexity of protein structure, it might appear surprising that a first
order rather than a higher order Markov process should be able to account for protein
structure. It turns out that profile HMMs are at least as sensitive as traditional profiles
in the detection of distant homologues [54]. In addition, they are not only derived
from multiple sequence alignments, but can themselves be used to align hundreds of
sequences very efficiently.
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A: A,...,Y: Y A: A,...,Y: Y A: A,...,Y: Y

Fig. 6.13. Example profile hidden Markov model for protein sequences. Adapted from [155].
: observed frequency of amino acid ; : background frequency of amino acid ; : delete

state; : insertion state; : match state.

Searching for homologous sequences using hidden Markov models is concep-
tually simple: Given a set of profile HMMs characterizing protein families and an
anonymous protein sequence, compare the sequence to each HMM in turn using the
likelihood returned by the forward procedure as the alignment’s score. A signifi-
cant score then indicates which protein family the anonymous sequence belongs to.
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There are databases of profile HMMs that are routinely used for this purpose. The
best known of these is perhaps the protein family database PFAM [17].

While the forward procedure solves the problem of homology determination,
the Viterbi algorithm can be used to compute alignments. Consider the two protein
sequences GAHYA and GHA and let and

be the corresponding most likely state sequences. The alignment
implied by these state sequences is then obtained by writing amino acids emitted by
the same match state in the same column. For our example the connections

����
��

��

���
���

��

yield the alignment

GAHYA
G-H-A

This procedure can be extended to an arbitrary number of sequences. For example,
if we wanted to add the sequence HYA with the most likely state sequence

to our alignment, we would get

GAHYA
G-H-A
--HYA

Notice that an insertion in one sequence leads to the introduction of a gap into all
other sequences. In contrast, a deletion produces a gap only in the sequence con-
cerned.

The Viterbi algorithm runs in time proportional to the length of the profile HMM,
whose number of hidden states in turn is proportional to the length of the input se-
quence. Hence, the alignment procedure just described runs in time proportional to
the combined lengths of the input sequences. This contrasts with the standard pro-
gressive multiple sequence alignment algorithm, which runs in ,
where is the length of the input sequences. However, in spite of this computa-
tional efficiency, HMMs are in practice rarely used for calculating multiple sequence
alignments. The reason for this is that a good HMM needs to be calculated in the
first place, which tends to require a large number of sequences and is computation-
ally intensive. For most multiple sequence alignment tasks the progressive algorithm
implemented in programs such as clustalw [246] generates more reliable results
than alignments based directly on HMMs [247].

6.4 Summary

Profiles are position-specific score matrices derived from multiple sequence align-
ments. They are typically used for protein classification, where an unknown amino
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acid sequence is compared to a set of profiles characterizing known protein families.
Such comparisons between profiles and anonymous sequences are often more sensi-
tive than pairwise comparisons. Profiles can be rewritten as profile hidden Markov
models. Hidden Markov models are based on Markov chains. These consist of a
number of states and the probabilities of switching between them. The first order
Markov chains considered in this chapter have the property that the chain’s state at
some point in time depends only on its direct predecessor state. In hidden Markov
models (HMMs), the states of the Markov chain are said to be hidden and to emit
observation states, for example a DNA sequence. Given such data and a HMM, there
are three classical problems that need to be solved for HMMs to be useful in biolog-
ical sequence analysis: the scoring, the detection, and the training problem. Efficient
solution of these problems leads to many applications of HMMs in biology, including
homology detection, for which profiles were originally designed, but also extremely
rapid multiple sequence alignment.

6.5 Further Reading

The tutorial by Rabiner is a very good place to learn more about hidden Markov
models [205]. The textbook by Durbin and colleagues explains in detail how hidden
Markov models are applied in biological sequence analysis [52].

6.6 Exercises and Software Demonstration

6.1. Write down the entries for position 21 in the profile shown in Figure 6.2.

6.2. Consider the Markov chain

�������� ��
��

��������  �� (6.1)

describing the transitions between the states “ill” ( ) and “healthy” ( ). States can
switch at daily intervals. Given that a person is ill now, what is the probability of
observing the sequence over the next five days?

6.3. What is the expected duration of illness and health according to HMM (6.1)?

6.4. Consider the HMM shown in Figure 6.8. The following six random numbers are
drawn from a uniform distribution between 0 and 1: 0.222969, 0.731557, 0.583197,
0.547333, 0.821281, 0.163268. Use these numbers to generate the first three hidden
and observed states of the model.

6.5. Fill in column 3 in the forward process matrix of Figure 6.10.

6.6. Fill in column 5 in the Viterbi matrix of Figure 6.11.
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6.7. Given the DNA sequences ATGA, AGA, and TGT as
well as the corresponding most likely state sequences ,

, and , what is the corresponding multiple sequence
alignment?

6.8. Given the sequences ATGA and ACA, as well as the corresponding
most likely state sequences and , is the induced
sequence alignment unambiguous?

6.9. Work through the tutorial of the bioinformer program HMM Hidden
Markov Model given in Section A.3.1.
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Gene Prediction

Rates of spontaneous mutation to recessive lethal and visible
mutants in mammals are of the order of 10–6 to 10 –5 per locus
per generation. If there are 40,000 genes, the total rate of
mutation to lethal or nonfunctional alleles would be between
4 and 40 percent per gamete. From this consideration alone,
it is clear that there cannot be more than 40,000 genes.

Jack Lester King and Thomas H. Jukes [145, p.794]

7.1 What is a Gene?

The old question of “what is a gene” has been answered differently since their dis-
covery by Mendel in 1866. Mendel thought of genes as mathematical objects and
did not speculate on their material correlate. In 1927, Muller discovered that X-rays
could induce mutations in Drosophila and this hinted that genes consisted of mat-
ter that interacted with X-rays. In addition, cytological studies correlated the action
of genes with the structure and transport of chromosomes. However, chromosomes
consist of both proteins and DNA and it was unclear which of the two constituted the
genetic material. Certain was only that the molecule had to be able to self-replicate
and to mutate. Because proteins are so much more complex than nucleic acids, it
was often assumed that proteins carried the genetic information. In 1928, Griffith
[91] observed that avirulent Streptococcus pneumoniae became virulent in the pres-
ence of heat-killed virulent cells. Therefore, the genetic material seemed to remain
active even though its host was dead. In 1944, Avery and colleagues [13] repeated
Griffith’s transformation experiment but used DNA from virulent strains instead of
whole heat-killed virulent cells and again obtained the virulent form of S. pneumo-
niae from avirulent bacteria. This established that Griffith’s transforming principle
was DNA. Nine years later Watson and Crick [256] published the structure of B-
form DNA. The excitement about this structure was great because it fitted so well
the expectations of what a gene should be: a molecule capable of instructing its own
replication.

Today, we may think of a gene as a fragment of DNA that encodes a cellular
molecule, protein or RNA. In procaryotes this usually includes the promoter region,
which binds the RNA polymerase and is located at the 5’ end of the gene. Eucary-
otic genes may additionally be characterized by an intron/exon structure and signal
sequences located at the 3’ end of the gene or in introns. However, promoters and
other signal sequences often remain unannotated. For example, Figure 7.1 shows
the GenBank entry with accession number (ACCESSION) X78384 for the Adh gene
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of Drosophila melanogaster and its duplicate, the Adhdup gene. The entry contains
under the heading FEATURES annotations for introns, exons, the mRNA, and the
protein coding sequence (CDS) but none for the promoter. Figure 7.2 gives a graph-
ical representation of these features.

7.2 Computational Gene Finding

One aim of genome sequencing projects is to compile a catalog of all genes in a
genome and there is a lot of interest in automating this process, called automatic
sequence annotation. A number of programs have been published and are routinely
used for this purpose.

Initially, programs were developed for procaryote sequences. In this case, gene
finding by computational methods turned out to be relatively easy, because procary-
otes have a high gene density and genes—with a few exceptions—do not have in-
trons. For eucaryotes, the gene finding problem proved to be much more complicated.

In the years preceding the publication of the human genome, the total number of
human genes was a hotly debated subject and bets on the size of the gene complement
could be placed at a public website. Those numbers ranged from 20,000 to 200,000.
When the two draft human genome sequences were published, the total gene number
was estimated to be 31,000 [128] and 26,000 [252] genes in these papers. This is
far fewer than previously expected by most scientists, but very close to the rough
estimates from the 1950s [102] and 1960s [145], which were motivated by population
genetic arguments.

Below we explain a few general principles of gene finding in eucaryotes and
discuss why it still remains a difficult problem to exactly determine the number,
location, and structure of genes in a genome.

The first programs for automatized gene prediction were created in the early
1980s [75]. Subsequently, gene prediction became a rapidly advancing field within
bioinformatics. Today, different methods for this purpose are implemented in a large
number of programs. Two classes of gene prediction methods can be distinguished,
ab initio and comparative, sometimes also referred to as intrinsic and extrinsic
(Fig. 7.3).

Ab initio gene prediction refers to those programs which search a single query
sequence for certain signals—for example splice site signals—and compositional
features, from which location and exon-intron structure of hypothetical genes are de-
duced. Comparative methods, on the other hand, build their gene predictions upon
similarity of the query with other DNA or protein sequences and the differing de-
grees of similarity in functional and non-functional regions of the genome. Similar-
ity is determined by an alignment procedure. Many of the programs which are in
use for large scale genome annotation are hybrids of the two methods. Modern gene
prediction programs can detect genes on either strand, forward or reverse, of a given
query sequence (Fig. 7.4).

All gene prediction programs aim to decipher the exon-intron structure, i.e the
exact location of splice sites, and translation start and stop codons of the coding
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1 1000 2000 3000 4000 5000

genomic DNA

primary transcript

mRNA
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transcription

splicing

translation

5’ 3’

Fig. 7.2. Gene structure at the Adh locus in D. melanogaster, as annotated in GenBank entry
X78384. Two genes are shown, Adh in black and its duplicate Adhdup in gray. Boxes denote
exons, lines in the primary transcript denote introns; notice that translation of Adh starts in its
second exon; in Adhdup the mRNA is only partially annotated and the translation start is at the
beginning of the first annotated exon.

List of coordinates
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List of coordinates

Query Sequence
Input:

Output:

Program
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Splice Site Profiles
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Query Sequence
Subject Sequence(s)
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Gene Prediction
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Splice Site Profiles
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Fig. 7.3. Schematic flow chart of gene prediction algorithms. A: Ab initio; B: comparative.
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Model 1 : 5’ 3’

Model 1 : 3’ 5’

Model 2 : 5’ 3’

Model 2 : 3’ 5’

Single

Single

Initial Internal Final

Final Internal Initial

Fig. 7.4. There are two principal gene models: single-exon (Model 1) and multi-exon (Model
2) genes. For a given query sequence there may be genes on the positive (forward) strand
and on the negative (backward) strand. To decipher genes on the backward strand, the reverse
complement of the query sequence needs to be considered. Multi-exon genes can have any
number of internal exons, indicated by the back-looping arrow.

sequence (CDS) of protein coding genes. Some programs additionally try to identify
the exon-intron structure in the untranslated 5’ and 3’ regions of genes. And still
others also predict further upstream or downstream sequence signals, such as putative
binding sites for transcription factors or polyadenylation sites.

7.3 Measuring the Accuracy of Gene Predictions

A principal concern with gene prediction programs is their accuracy. In order to
quantify this, a standardized accuracy measure is needed. Such a measure has been
defined by Burset and Guigó [33]. To evaluate the accuracy of a gene prediction
program on a test sequence, the gene structure predicted by the program is compared
with the actual gene structure of the sequence as it has been established with the help
of an experimentally validated mRNA. The underlying assumption is that there exists
a well-defined, true gene structure which is not confounded by alternative splice
variants. In such a situation the accuracy of gene prediction can be evaluated at three
different levels of resolution, i.e. nucleotide, exon, and gene. These three levels offer
complementary views of the accuracy of the program. At each level, there are two
basic measures: sensitivity ( ) and specificity ( ). Sensitivity is the proportion of
correctly predicted elements (nucleotides, exons, or genes) among the true elements.
In contrast, specificity is the proportion of correctly predicted elements, among all
elements predicted. Consider the prediction at the nucleotide level ( ) shown in
Figure 7.5. In this case, sensitivity is
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FN TNTN FN TP FP TN FN TP

Reality

Prediction

Fig. 7.5. Measuring gene prediction accuracy at the level of nucleotides is based on the num-
ber of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) nu-
cleotides.

TP
TP FN

and specificity is
TP

TP FP

Both sensitivity and specificity take values from 0 to 1. Perfect prediction is charac-
terized by both measures being equal to 1. Neither nor alone constitute good
measures of global accuracy, since one can have high sensitivity with little specificity
and vice versa. It is desirable to use a single scalar value to summarize both of them.
In the gene finding literature, the preferred measure on the nucleotide level is the
correlation coefficient. It is defined as

CC (7.1)
TP TN FP FN

TP FP TN FN TN FP TP FN

CC ranges from -1 to 1, with 1 corresponding to perfect prediction and -1 to a pre-
diction in which each coding nucleotide is classified non-coding and vice versa. At
the exon level ( ), an exon is considered a true positive exon only if the predicted
exon is identical to the true one, in particular both 5’ and 3’ exon boundaries have
to be correct. A predicted exon is considered to be false positive, if it has no overlap
with any real exon. Sensitivity and specificity are the proportion of true positive ex-
ons among all true exons and among all predicted exons, respectively. A summary
measure on the exon level is simply the mean of sensitivity and specificity. At the
gene level ( ), a gene is considered to be a true positive (TP ) if all of the coding
exons are identified, every intron-exon boundary is correct, and all of the exons are
included in the proper gene. A gene is a false negative (FN ), or missed, if none
of its exons is overlapped by any predicted gene. Conversely, a predicted gene is a
false positive (FP ), or wrong, if none of its exons is overlapped by any real gene.
It is a well known problem that ab initio gene finders predict the initial and terminal
exons of a gene very poorly. This often leads to so-called chimeric predictions, one
predicted gene encompasses more than one real gene, or to split predictions, one real
gene is split in multiple predicted genes. Two measures, split genes, SG, and joined
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genes, JG, have been proposed to account for these tendencies [206]. SG is the total
number of predicted genes overlapping real genes, divided by the number of genes
that were split. Similarly, JG is the total number of real genes that overlap predicted
genes, divided by the number of predicted genes that were joined. Note, that SG and
JG may be larger than . The measures are summarized in Table 7.1.

Table 7.1. Basic definitions of accuracy measures [97].

Nucleotide Exon Gene
Sensitivity proportion of coding nu-

cleotides correctly pre-
dicted as coding

proportion of correctly
predicted exons among
actual exons

proportion of completely
correctly predicted genes
among actual genes

Specificity proportion of nucleotides
predicted as coding and
which are actually cod-
ing

proportion of correctly
predicted exons among
all predicted exons

proportion of completely
correctly predicted genes
among all predicted
genes

In practice, most programs achieve quite high values of gene prediction accuracy
at the nucleotide level, but much lower values at the level of exons, and very poor
values at the level of genes (Table 7.2).

Table 7.2. Accuracy on the nucleotide, exon, and gene levels of several gene finders used
in the GASP experiment [206] in which 2.9 Mb of genomic sequence from the Adh region
of D. melanogaster were annotated. For an explanation of , , FN, FP, SG, and JG see
text. Rows correspond to the results obtained with (1) fgenes [213], (2) GeneID [96], (3)
genie [157], (4) genie EST-version [207], (5) grail [248], (6) hmmgene [154], and (7)
magpie [83].

Nucleotide Exon Gene
FN FP FN FP SG JG

(1) 0.89 0.77 0.65 0.49 0.10 0.32 0.30 0.27 0.09 0.24 1.10 1.06
(2) 0.86 0.83 0.58 0.34 0.21 0.47 0.26 0.10 0.14 0.30 1.06 1.11
(3) 0.96 0.92 0.70 0.57 0.08 0.17 0.40 0.29 0.05 0.11 1.17 1.08
(4) 0.97 0.91 0.77 0.55 0.05 0.20 0.44 0.28 0.05 0.13 1.15 1.09
(5) 0.81 0.86 0.42 0.41 0.24 0.29 0.14 0.12 0.16 0.24 1.23 1.08
(6) 0.97 0.91 0.68 0.53 0.05 0.20 0.35 0.30 0.07 0.15 1.04 1.12
(7) 0.96 0.63 0.63 0.41 0.12 0.50 0.33 0.21 0.05 0.55 1.22 1.06
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7.4 Ab initio Methods: Searching for Signals and Content

The ideal gene finding program would perfectly mimic the cell’s transcription, splic-
ing and translation machinery. No such program exists, but a number of biologically
important sequence signals are exploited in existing algorithms.

Transcription Signals

There are three principal signals:

1. Transcription start site (TSS): Characterized by the CAP signal, a single purine
(A/G).

2. TATA-box: A/T-rich region about 30 bp upstream from the TSS.
3. Transcription termination: characterized by the so-called polyadenylation sig-

nal, a consensus AATAAA hexamer and a further, degenerate signal 20/30 bp
downstream from the polyadenylation signal.

Unfortunately, only 70% of human promoters actually contain these core signal se-
quences. Moreover, the AATAAA polyadenylation signal is absent from 50% of all
genes. Hence, it is hard to determine the beginning and the end of a gene.

Translational Signals

Two signals are important here:

1. The sequence motif gccaccAUGG is the optimal context for initiation of trans-
lation in vertebrate mRNA. This is sometimes referred to as the ‘Kozak signal’.
The corresponding signal sequence in DNA is gccaccATGG.

2. Termination codon: any one of the three stop codons TGA, TAA, and TAG should
occur at the end of the coding sequence (CDS), but not in the internal part. An
exception is the situation in which, due to alternative splicing, a premature stop
codon may lead in some transcript variants to an incomplete peptide. Further-
more, it is now known that, in certain very rare contexts, the triplet TGA can
code for selenocysteine, which is sometimes referred to as the 21-st amino acid
[24, 156].

Splicing Signals

Introns in pre-mRNA transcribed from nuclear genes are excised by spliceosomes.
These are large ribonucleoprotein complexes that recognize three kinds of sites:

1. The 5’ end of an intron, the so-called donor site, characterized by the dinucleo-
tide GT.

2. The 3’ end of an intron, the so-called acceptor site, characterized by the dinu-
cleotide AG and an upstream poly-pyrimidine tract.

3. The branch point, located close to the 3’ end of the intron and upstream
of its poly-pyrimidine tract. It is a degenerate motif [105] always containing
the nucleotide A. The mammalian consensus motif is the heptamer YNYTRAY
[228, 199].
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The rules about the donor and acceptor sites are almost universal with a few ex-
ceptions. The most frequent non-standard donor dinucleotide is GC, which occurs in
mammals in less than 1% of the exons [34]. Whether a splice-site is used or not may
also be influenced by additional exonic and intronic signals, known as exonic and
intronic splice-enhancers, which are located some distance from the splice junctions.

Programs which use such signals for gene prediction are also said to perform a
search by signal.

As illustrated in Figure 7.6, the reading frame is the offset at the beginning of the
exon when the DNA sequence is translated into a sequence of amino acids. It can
therefore take one of three possible values: 0, 1, or 2. Initial and single exons always

Intron y−1 Exon y Intron y

 Reading Frame = 1

 Remainder = 2

 Exon Length = 15

a g g t

Phase of intron y = 2 Codon

Fig. 7.6. Definition of reading frame, remainder, and intron phase.

have reading frame 0. The reading frame of an internal or terminal exon depends on
length and reading frame of the previous exon. It can be recursively determined by

frame

frame frame length (7.2)

where denotes the -th exon of a gene. Thus, one obtains the following scheme
for the frame of exon number :

length
frame

Equivalently, introns can be classified into three different types. These are often
called introns of phase 0, 1, or 2 (Fig. 7.6). From an intron phase the reading frame
can be uniquely determined and vice versa. Still another, equivalent, characteristic is
the remainder of an exon. As shown in Figure 7.6, this is the surplus of nucleotides
(0, 1, or 2) with respect to the end of the last complete codon at the 3’ end of an exon.
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Table 7.3. Exon types in eucaryotic protein-coding genes and their standard splice signals.
Capital letters: exonic signal; lower case letters: intronic signal.

type 3’ signal 5’ signal frame remainder

first initiation codon ATG donor site gt 0 0,1,2
internal acceptor site ag donor site gt 0,1,2 0,1,2
terminal acceptor site ag stop codon TAR,TGA 0,1,2 0
single initiation codon ATG stop codon TAR,TGA 0 0

Most programs concentrate on the prediction of protein-coding exons and dis-
tinguish four types of exons: first, internal, terminal, and single exons. Table 7.3
summarizes the sequence characteristics of these four exon types.

7.4.1 Codon Usage

Another important measure which informs prediction algorithms about coding and
non-coding parts of the query sequence is the frequency with which alternative
codons appear in the query sequence. In contrast to signal searches, programs which
use this kind of information are said to perform a search by content. Different amino
acids have different degrees of degeneracy in the genetic code (cf. Table C.4). There
are unique codons and 2-, 3-, 4-, and 6-fold degenerate codons. For instance, the nu-
cleotide triplets GGA, GGC, GGG, and GGT all code for the same amino acid glycine.
Thus, this set of codons is 4-fold degenerate. However, degenerate codons generally
are not used randomly but a particular codon is preferred. This property is called
codon bias. While being particularly strong in highly expressed genes, it is also char-
acteristic of a given species. Codon bias is caused by differential abundance of the re-
spective tRNAs. Figure 7.7 shows that the possible codons for a given amino acid are
used with different relative frequencies in mammals and insects (human/Drosophila
comparison), but that there are also differences within mammals (human/mouse com-
parison). This explains why gene prediction programs need to be optimized for each
species separately. This process is also called parameter-training.

7.4.2 Finding Splice Sites with a Sequence Profile

A common way to identify sequence signals is via a position weight matrix (PWM).
To illustrate its construction and application we build a “primitive donor finder”,
called PDF. It is known that nucleotides around the GT motif are not randomly dis-
tributed. To see this, we select from a database such as GenBank a set of experimen-
tally verified donors and extract the donor dinucleotide plus 3 nucleotides upstream
and 4 nucleotides downstream. For instance, GenBank entries U04239 and M61127
represent two genomic sequences from D. melanogaster with one multi-exon gene
each. From these entries the eight sequence fragments shown in Table 7.4 are ob-
tained. Counting the number of occurrences of each nucleotide at each position in
the alignment we derive the matrix of relative frequencies shown in Figure 7.8.
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AAA
AAC
AAG
AAT
ACA
ACC
ACG
ACT
AGA
AGC
AGG
AGT
ATA
ATC

--->ATG
ATT
CAA
CAC
CAG
CAT
CCA
CCC
CCG
CCT
CGA
CGC
CGG
CGT
CTA
CTC
CTG
CTT
GAA
GAC
GAG
GAT
GCA
GCC
GCG
GCT
GGA
GGC
GGG
GGT
GTA
GTC
GTG
GTT

--->TAA
TAC

--->TAG
TAT
TCA
TCC
TCG
TCT

--->TGA
TGC
TGG
TGT
TTA
TTC
TTG
TTT

codon

-1 0 1

log(relative usage)

hum
an/m

ouse com
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hum
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G
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Fig. 7.7. Differential codon usage in human, mouse, and Drosophila. Vertical axis: 64 codons;
horizontal axis: , where and are the relative codon frequencies for a given amino
acid in human/mouse and human/Drosophila comparisons. Non-degenerate codons are neces-
sarily unbiased, for instance the codon ATG.
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Table 7.4. Alignment of eight nonamers comprising the splice donors from two genomic se-
quences of D. melanogaster, GenBank entries U04239 and M61127. The donor dinucleotide
is displayed in bold. Nucleotides within exons are capitalized.

fragment accession number 5’ end of intron position sequence
f U04239 donor 1 868-876 CTGgtgagt
f U04239 donor 2 992-1000 GGGgtaagt
f U04239 donor 3 1481-1489 CGGgtaagt
f U04239 donor 4 2356-2364 AGGgtaagt
f U04239 donor 5 2669-2677 AAAgtaagt
f U04239 donor 6 3291-3299 TAGgtaact
f M61127 donor 1 226-234 TGGgtttgt
f M61127 donor 2 539-547 TAGgtgagt

-3 -2 -1 0 1 2 3 4 5
A 2/8 3/8 1/8 0/8 0/8 5/8 7/8 0/8 0/8
C 2/8 0/8 0/8 0/8 0/8 0/8 0/8 1/8 0/8
G 1/8 4/8 7/8 8/8 0/8 2/8 0/8 7/8 0/8
T 3/8 1/8 0/8 0/8 8/8 1/8 1/8 0/8 8/8

Fig. 7.8. Frequency matrix of each nucleotide at each of the nine positions in the alignment in
Table 7.4. The positions of the donor dinucleotide are set to and .

How do the observed nucleotide frequencies from donor sites compare to nu-
cleotide frequencies from random nonamers? To simplify matters, let us assume that
the four nucleotides occur with equal frequencies in the genome of D. melanogaster.
We then determine the log-likelihood of each nucleotide at each position by taking
the logarithm of the ratio of observed and expected frequencies, , and ob-
tain the log-likelihood, or position weight matrix (PWM), shown in Figure 7.9. The
PWM is said to be of Markov order , if the frequencies at all sites are evaluated
independently, as done here. For instance, consider the entry 0.58 at position 2 for
nucleotide A. It is computed as

As described in Chapter 6, a query sequence can be scanned with a PWM profile
and a score can be assigned to each position of the query. High scoring donor
candidates are those positions where the score exceeds some (positive) threshold.
When choosing the logarithm with base two, as done here, the log-likelihoods have
an information-theoretical interpretation. Consider a set of random oligomers of a
fixed length, say nine. The “uncertainty” [224] at each site in this set of oligomers
is given by
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-3 -2 -1 0 1 2 3 4 5
A
C
G
T

Fig. 7.9. Position weight matrix for the primitive donor finder (see text).

where is the relative frequency of nucleotide at position . When the back-
ground nucleotide frequencies are all equal, , uncertainty is .
The “information content” of a site in a profile such as Figure 7.9 is the “decrease
in uncertainty”, , and is given by

For the nine positions in the donor profile we derive the information content given in
Table 7.5.

Table 7.5. Information content at the individual sites in the donor profile from Figure 7.9. For
numerical evaluation of the information content we take in order to
avoid undefined values when the relative frequency is equal to .

position information content

The information content of a profile can be visualized graphically as a so-called
sequence logo [219]. Figure 7.10A displays the sequence logo for the donor profile
of the primitive donor finder. At each position letters A, C, G, T are stacked on
top of each other. The height of a letter, , is given by the product ; the
combined height is then equal to the information content of .

We now use the primitive donor finder to search for putative donor sites in a ge-
nomic sequence. As a test sequence we choose the Adh locus from D. melanogaster
(cf. Figure 7.2). We find three putative donor sites, indicated by arrows in Fi-
gure 7.11. The donor scores in Figure 7.11 are simply the sum of the respective
entries in the profile weight matrix. Only donors with positive scores are shown. By
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Fig. 7.10. A: Sequence logo of the eight donor sequences used for the primitive donor finder
shown in Table 7.4. B: Sequence logo built from 757 Drosophila donors available at http:
//www.fruitfly.org/GASP1/data/data.html. -axis: sequence position around
donor dinucleotide GT (at positions 0 and 1); -axis: information content at each position in
bits. Note that in B the number of informative positions around a Drosophila donor site is
limited to about five nucleotides downstream of GT and two nucleotides upstream.
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Fig. 7.11. Applying the primitive donor finder PDF to GenBank entry X78384. The vertical
arrows indicate positions of putative donors with a positive score.

comparing this result to the mRNA feature in the corresponding GenBank entry in
Figure 7.1, we see that the first two reported donor sites are true donors of the Adh
gene and that the third predicted donor site is a false positive: it does not correspond
to any of the annotated donor sites. Furthermore, the PDF tool fails to recover the
third donor of the Adh gene and both donors of the Adhdup gene (cf. the annotation
in Figure 7.1). Thus, there are three false negative predictions, and the PDF has a
sensitivity of

and a specificity of

Clearly, these values are not satisfactory. A strategy to improve the low accuracy
of our PDF tool would be to compile a much larger training set of verified donors
in order to build a better tuned position weight matrix. One such set, for instance,
has been compiled during the GASP [206] experiment and can be accessed through
their website. The sequence logo obtained with this set is displayed in Figure 7.10B.
There are additional parameters which should be optimized. For instance, the score
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threshold below which a putative donor site is discarded, may be chosen to be dif-
ferent from zero, as was done here. The optimization criterion is to maximize on a
well-defined training set some function of sensitivity and specificity, , for
instance the average .

7.4.3 Exon Chaining

In a similar manner to the donor search, genomic sequences may be scanned with
the help of position weight matrices for acceptor sites, translation start, and stop sig-
nals. These scans can be combined to yield candidate exons of the four types: single,
initial, internal, and terminal. The next step in predicting gene models with multi-
ple exons is to select suitable exons from the lists of candidates. This problem can
be solved by chaining of compatible exons [95]. Consider for example the “exons”
shown in Figure 7.12. Each exon has a score, indicated by its position along the -

Position

Sc
or

e

0

1

2

3

4

5

6

7

8

9

Fig. 7.12. The chaining problem consists of finding a path of non-intersecting intervals such
that the combined score of the intervals which are included in the path is maximized (bold
lines).

axis, and an identifier, indicated by the number written on top. What we are looking
for is the combination of non-overlapping exon candidates that yield the maximum
score. In our example this combination happens to consist of intervals 9, 7, 3, and
0, which are shown in bold; their combined score is 31. The chaining algorithm
shown in Figure 7.13 can be used to find such an optimal combination of exon can-
didates. Chaining is based on dynamic programming and starts from a list of exon
candidates, . The algorithm consists of the standard two phases of dynamic pro-
gramming: (i) a forward phase in which a table of size is filled in to find the score
of the optimal solution and (ii) a traceback phase in which the intervals belonging to
the optimal solution are retrieved.
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Require: //array of intervals
Require: //sorted array of the borders of the intervals

//Forward Algorithm

for all do
//initialize backpointers to “NULL”

score of
//initialize index to last element added to optimal chain

for to do
if is left border of interval then

else
if then

output
//Traceback
while do

output

Fig. 7.13. Exon chaining algorithm.

Apart from the list of exons, we also assume as given a corresponding list of
exon borders, , sorted in ascending order. Each border contains a reference to its
interval of origin. Table 7.6 shows the border table corresponding to our example set
of exons. The algorithm starts by initializing four variables:

1. : the current score of the growing chain is set to zero;
2. : the array of cumulative scores is set to the original interval scores;
3. : the array of back pointer indices to the previous element in the chain is set to

“NULL”;
4. : the index of the last element added to the chain is also set to “NULL”.

Figure 7.14A shows the initialized variable . After initialization, the algorithm pro-
ceeds along the list of borders starting at the left-most element. Say, the algorithm
is currently dealing with border , which refers to some interval . If is a left
border of interval , two operations are carried out:

1. is set to the score that the chain would have, if was added to it; and
2. is set to the last element that was added to the chain.

If, on the other hand, is a right border, we need to decide whether or not to add
to the chain. Addition is executed if the score of the chain including , , is greater
than , the score of the current chain. In that case is updated to the new score and

to the index of the current exon, . If is not added to the chain, nothing is done.
Figure 7.14B shows and the back pointers at the end of the forward phase of the
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algorithm. Next, the traceback starts from , which in our case is 9. By following the
back pointers, we get the exons shown in bold in Figure 7.12.

Table 7.6. Sorted list of borders of the intervals shown in Figure 7.12.

# Position Interval Side

0 1 0 l
1 2 2 l
2 2 1 l
3 2 0 r
4 3 3 l
5 4 4 l
6 7 5 l
7 9 6 l
8 10 3 r
9 11 1 r

# Position Interval Side

10 12 7 l
11 12 6 r
12 13 8 l
13 13 2 r
14 14 7 r
15 15 9 l
16 15 8 r
17 16 9 r
18 17 5 r
19 19 4 r

The chaining algorithm as described so far still needs to be refined by incorporat-
ing more of the biological reality it is designed to model. For a start, only those exons
which do not disrupt the reading frame can be included in a chain; furthermore, it
is attempted to build complete chains, which consist of exactly one initial exon, an
arbitrary number of internal exons, and one terminal exon. This procedure resembles
very much the way in which tiles in a domino game are laid out.

A B

0 3
1 7
2 2
3 14
4 18
5 6
6 8
7 12
8 8
9 2

0 3
1 7
2 2
3 17
4 21
5 9
6 11
7 29
8 25
9 31

Fig. 7.14. Scores and back pointers for chaining the exons shown in Figure 7.12. A: Initialized
array; B: filled in array.

In practice, before the chaining step is performed, additional requirements are
imposed to reduce the number of candidate exons. For instance, a coding exon can-
not contain internal stop codons and its length must fall within some pre-set range.
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Furthermore, the distance between neighboring exons in multi-exon genes may not
exceed an upper threshold. On the other hand, such requirements may themselves
become a source of errors. For example, the intron length distribution is highly vari-
able among species and giant introns are known to exist in most vertebrate genomes.
Given a conservative threshold regime, very long introns might be missed, possibly
resulting in the erroneous prediction of split genes.

In addition to these structural properties, measures of sequence composition are
also used to better discriminate between coding and non-coding sequences. One such
measure is codon bias. Furthermore, neighboring nucleotides are not independent of
each other. Therefore, nucleotide composition, in particular of coding regions, is not
adequately described by a Markov model of order zero. Experiments have shown that
it is a good strategy to consider instead the hexamer composition of a sequence. A
Markov model of order accounts for dependencies at the level of -mers. Hence,
a fifth order Markov model is sensitive to dependencies at the level of hexamers. In a
homogeneous model all positions are treated equally. In a non-homogeneous model
one can, for instance, account for the triplet structure of typical coding regions. The
gene prediction program GenScan [30] uses a homogeneous fifth order Markov
model for non-coding regions and a three-periodic fifth order Markov model for
coding regions. The parameters for this model are obtained from a training set with
known coding and non-coding regions. The switching between the coding and the
non-coding state is what makes the model a hidden Markov model. Hidden, because
only the emitted nucleotide sequences are directly observable, while the underlying
state (intron, exon, or intergenic) of the model remains hidden. GenScan switches
between states according to a Markov chain, but in addition the duration of each state
is influenced by empirical probability distributions of intron and exon lengths.

7.5 Comparative Methods

7.5.1 General Remarks

Instead of relying only on sequence signals and compositional features deduced from
the query sequence itself, comparative methods also use information obtained from
additional, homologous sequences. There are three types to be distinguished: (i)
methods in which a genomic sequence is compared with homologous proteins from
the same or different species, (ii) methods in which a genomic sequence is compared
with a collection of expressed sequence tags (ESTs) or cDNAs, and (iii) methods,
where two or more genomic sequences are compared with each other. Examples of
gene finding programs of the first type are procrustes [85] and genewise [22].
In the next section we discuss two example programs which are representative for
the second and third type. In all cases a so-called spliced alignment (Fig. 7.15) of
query and subject sequence highlights those fragments which are identical or highly
similar. Dedicated programs to compute spliced alignments, such as sim4 [79] or
est genome [185], can accommodate large gaps, which may correspond to pu-
tative introns. This is only possible if gap costs remain bounded, even if the gap
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Fig. 7.15. Types of spliced alignments. Top: genomic query and protein, cDNA or EST subject
sequence; bottom: genomic query and homologous genomic subject sequence.

size becomes large. Simple affine linear gap functions, described in Chapter 2, are
not suited for this task, but need to be adapted accordingly. At the same time, these
programs also attempt to identify potential splice junctions and to insert gaps prefer-
entially at those junctions.

When two (or more) genomic sequences are compared, a strategy to search for
exons and splice junctions is to inspect the pattern of sequence similarity in an align-
ment and the transitions between highly conserved and diverged regions. The under-
lying idea is that coding sequences are more conserved between species than non-
coding sequences. Therefore, the variation in sequence similarity can be used as a
quite reliable indicator of the location of protein-coding genes and of the boundaries
of (coding) exons and introns. Besides alignments of orthologous sequences (from
different species), alignments of paralogous sequences (from the same species) have
also been used for this purpose. A disadvantage of these programs is that they have
difficulty in locating untranslated exons. Although sequence similarity between or-
thologous untranslated exons tends to be higher than in introns, it is generally not
sufficient to clearly delineate the exact boundaries of the 5’ and 3’ untranslated re-
gions of genes. In principle, untranslated exons and their boundaries can be inferred
with the help of ESTs, since they are derived from mRNA. However, the drawback
here is that the necessary ESTs may be absent from the EST database.

7.5.2 Comparative Gene Prediction at the Adh Locus

As an example for a comparative gene prediction tool, we apply GeneSeqer [250]
to our test sequence with the two genes Adh and Adhdup from D. melanogaster
(Fig. 7.2). GeneSeqer computes spliced alignments of the query and all match-
ing ESTs, and returns putative gene locations, as well as explicit gene structure and
protein predictions. A GeneSeqer prediction is based on the consensus of a set
of clustered, or aggregated, ESTs (Fig. 7.16A). In contrast, the result of a simple
BLAST search in the D. melanogaster-EST database is shown in Figure 7.16B. Un-
fortunately, at the time of writing, no Drosophila ESTs were available which cover
the Adhdup region (position 3226 to 4761). Therefore, any EST-driven gene finder
would miss this gene (see Figure 7.16A).
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1 1000 2000 3000 4000 5000
mRNA (adult)
mRNA (larvae)
CDS

A

B

C

PGL
AGS
PGS
PGS
PGS
PGS
PGS
PGS
PGS
PGS
PGS
PGS
PGS
PGS
PGS
PPS
PPS
PPS
AGS
PGS
AGS
PGS
PGS
PGS
PGS
PGS
PPS
PPS
AGS
PGS
PPS

Fig. 7.16. Gene prediction at the Adh locus of D. melanogaster. A: Known gene struc-
ture (GenBank entries X78384 and M17827). B: Graphical output of GeneSeqer [250];
PGL—“putative gene location”, PPS—“predicted protein sequence”, PGS—“predicted gene
sequence”, AGS—“aggregate gene sequence”. C: Output of blastn when searching the D.
melanogaster EST database at NCBI (posted date September 27, 2005).
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In Figure 7.17 the gene structures predicted by GeneSeqer are compared with
the ones calculated by Slam. The latter is based on a pairwise alignment between
two genomic sequences. Here, orthologous sequences of D. melanogaster and D.
simulans were compared. The two fly species diverged about 1-2 million years ago.
Slam yields a perfect prediction of the coding part of the D. melanogaster Adh gene
and simultaneously also retrieves the Adh gene in D. simulans. Furthermore, Slam
detects part of the Adhdup gene. However, it predicts here a split gene, and only the
terminal exon of the Adhdup coding sequence is correctly predicted. Similarity-based
gene prediction programs tend to have a high false positive rate when divergence
between the two compared sequences is low. This is the case for the two Drosophila
sequences (see Figure 7.18).

Furthermore, note that GeneSeqer is able to correctly identify the 3’ untrans-
lated part of the Adh gene and nearly correctly the 5’ untranslated part, since EST-
support is available. In contrast, Slam was not able to find untranslated regions.
GeneSeqer identifies the internal coding exon, but it does not recognize the correct
start and stop codons of the Adh gene. It even splits its prediction into two different
genes (see Figure 7.17). Furthermore, it does not recognize intron 2, but joins ex-
ons 2 and 3 into a single exon. Adhdup is completely missed by GenSeqer. Finally,
note that the EST cluster at the Adh locus contains ESTs which support different
splice forms. One reason for this is that ESTs usually do not represent the complete
transcript (so-called full length cDNA), but only part of it. Sometimes they are con-
taminated with foreign DNA, for instance vector sequences. A much more important
reason, however, is that different ESTs may represent transcript variants and thus be
indicative of alternative splicing in this gene. In this case, alternative transcripts are
indeed known to exist [152]. Kreitman has described an adult and a larval form of
Adh (GenBank entry M17827). Nonetheless, none of the currently available ESTs
supports the known larval splice variant and it is therefore missed by GeneSeqer
(see Figure 7.16A and 7.16B).

1 1000 2000 3000 4000 5000

Adh Adhdup

GenBank

GeneSeqer

Slam

Fig. 7.17. Comparison of GenBank annotation and two comparative gene prediction programs,
GeneSeqer and Slam. The top track shows the GenBank annotation: grey boxes represent
the mRNA and black boxes the CDS.
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Fig. 7.18. Alignment of two genomic sequences from D. melanogaster and D. simulans. Upper
panel: -axis—D. melanogaster sequence (4,761 bp), -axis—D.simulans sequence (4,607
bp). Lines represent locally aligned segments. Note that the entire region is highly conserved.
Dark boxes (along the border) correspond to the Slam predicted exons, light boxes represent
the annotated exons (only CDS) of the Adh and Adhdup genes. Lower panel: Identity values of
the aligned segments. Note that traces of the gene duplication are still visible: there are short
fragments in Adh and Adhdup with an identity of about 55%. Since the duplicated fragments
occur in both sequences, the duplication event must predate the speciation event leading to D.
simulans and D. melanogaster.

7.6 Problems and Perspectives

Despite the success of automatic gene prediction in whole genome annotation
projects (genome.ucsc.edu, www.ensembl.org), a number of problems re-
main. Some of them were encountered in the above example. Many programs only
predict protein-coding sequences and ignore untranslated regions and regulatory ele-
ments of putative genes and non-protein-coding genes altogether. Long introns often
lead to erroneous splitting of genes. On the other hand, in regions of high gene den-
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sity, programs tend to join distinct genes. On a genomic scale it is difficult for gene
prediction programs, which are typically trained on a limited set of verified genes,
to deal with fluctuating gene densities along a genome. Furthermore, program accu-
racy is species-specific. This is especially true for all content-based programs, which
work with species-specific codon usage tables. Finally, alternative splicing plays an
important role in many eucaryotic genes. However, to predict possible transcript vari-
ants and to control at the same time the number of combinatorially possible variants
turned out to be an extremely difficult problem.

Comparative methods come with their own set of advantages and disadvantages.
EST-based gene prediction depends on the availability of a comprehensive EST data-
base. However, it is difficult to assess the degree of completeness of an EST database.
Inter-specific as well as intra-specific genomic comparisons require at least two ho-
mologous sequences at the appropriate evolutionary distance. Such sequences may
not always be available.

Much development effort is spent on combining the advantages of the differ-
ent gene prediction—or genome annotation—strategies. Developers aim to raise the
level of prediction accuracy. However, the exact number of genes in the human or
any other complex genome may well turn out to be fundamentally uncertain. Many
genes may not have the well-defined “true” structure, which is assumed to exist when
evaluating the accuracy of gene predictions. Alternative splicing, differential expres-
sion, and interaction with other genes within a complex network make genes much
less clear-cut objects than their underlying sequences.

7.7 Summary

Gene prediction is concerned with the automatic detection of genes in nucleotide
sequences. Genes consist of a number of features such as exons, introns, promoters,
coding sequence, untranslated regions, and transcriptional regulators. These differ
widely in the accuracy with which they can be predicted. The accuracy of a given
method of gene prediction is quantified through sensitivity and specificity. Sensi-
tivity is the number of correctly detected features divided by the total number of
detectable features. Specificity is the number of correctly detected features divided
by the number of features returned by a detection method. An ideal gene prediction
algorithm is characterized by a sensitivity and a specificity of one. There are two
classes of methods for gene finding: ab initio and comparative. Ab initio methods de-
tect signals contained in the DNA sequence in an attempt to emulate the transcription
and translation machinery of a cell. Comparative methods are based on alignments of
more than one input sequence. In such alignments functional regions such as exons
stand out as islands of elevated sequence conservation.

7.8 Further Reading

Reviews of gene prediction have been published by, among others, Guigó [94],
Burge and Karlin [31], and Zhang [264]. An excellent online bibliography on
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the topic has been compiled by Wentian Li and can be found at http://www.
nslij-genetics.org/gene/.

7.9 Exercises

7.1. The coordinates of the three exons that make up the CDS of Adh in D. melano-
gaster are 2021–2119, 2185–2589, and 2660–2926. What is the reading frame of
these three exons?

7.2. Determine a recursive formula, analogous to Equation (7.2), to compute the re-
mainder of exons.

7.3. Determine a formula to convert frame into remainder and vice versa.

7.4. Given a uniform distribution of the four nucleotides, what is the number of ex-
pected acceptor (donor) dinucleotides in a random sequence of length 100 kb?

7.5. How many stop codons do you expect to find in an exon of length 100 bp in any
of the three reading frames on both strands

(a) if the G/C-content is equal to 0.5,
(b) if the G/C-content is equal to 0.3,
(c) if the G/C-content is equal to 0.6?

7.6. What is the average distance between an acceptor and a donor site in a random
sequence? Are these distances different in an infinitely long and a finite sequence,
say, of length 100 bp (consider here only non-nested exons)?

7.7. Given the log-likelihood matrix in Figure 7.9, what is the expected number of
donor sites with positive score ( ) in a random sequence (all four nucleotides
have equal probability) of length 100 kb? Compare this number to the number of
expected GT dinucleotides.

7.8. Download the set of verified donor sequences listed in Figure 7.10B.

1. Build a frequency matrix and a log-likelihood matrix (PWM) comprising 10
positions (3 upstream + donor dinucleotide + 5 downstream).

2. Determine the information content of each position of this profile.
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Phylogeny

If evolution is true, why are there still monkeys?

Larry King [146]

Biological sequences are the product of evolutionary history and phylogenies are
graphical summaries of this history. The simplest and most widely applied model of
evolution is a bifurcating tree. As explained previously (Section 3.4), a tree consists
of nodes and edges connecting the nodes. The leaves in a phylogenetic tree represent
extant sequences of the corresponding organisms. Internal nodes represent common
ancestors of all sequences in the respective subtree. In a bifurcating tree each internal
node leads to exactly two child nodes. The distances along edges are often interpreted
as proportional to time and an example of such a tree is shown in Figure 8.1A, which
has been calculated from the globin multiple alignment of Figure 5.1.

As for every phylogenetic tree, there are two important aspects to the globin
tree in Figure 8.1A: (i) the topology or branching order of the tree, and (ii) its
branch lengths. Consider topology first. The globin tree implies that the -chain of
hemoglobin ( -globin) from human and horse form the most closely related pair of
sequences. The next most closely related pair of sequences consists of the -globins
of the same taxa. Together the - and -globins form a mammalian globin cluster.
The closest relative of this cluster is globin 5 from lamprey, followed by sperm whale
myoglobin, and finally leghemoglobin from yellow lupine as the sequence that is the
most basal member of the globin protein family.

We can interpret branch lengths in Figure 8.1A as proportional to time. If we
knew the mutation rate of globins, we could then calculate the times for each of the
internal nodes in the tree. The implicit assumption we are making here is that the
mutation rate is equal across the branches. This assumption is known among biol-
ogists as the molecular clock [28], which is further discussed in Chapter 9. Certain
phylogenetic algorithms are based on the assumption of a molecular clock. The ver-
tical line in Figure 8.1A emphasizes that all branches in the corresponding tree end
at the same point in time, the present. Other methods do not assume a molecular
clock and an example of such a tree for our globin data is shown in Figure 8.1B.
Here the interpretation of branch lengths as proportional to time raises the appar-
ent paradox that not all leaves of the tree are aligned along the present. Has globin
5 from lamprey, for example, not yet reached the present? It obviously has and we
need to read Figure 8.1B as a summary of the number of mutations estimated to have
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Fig. 8.1. A: Rooted phylogenetic tree of seven globin sequences calculated using the UPGMA
algorithm that assumes a molecular clock. The thin vertical line indicates the present point in
time. B: Midpoint rooted phylogenetic tree of the same globin sequences calculated using the
neighbor-joining algorithm that does not assume a molecular clock. C: Unrooted version of B.
D: Outgroup rooted version of B. M: position of midpoint root; O: position of outgroup root.

occurred between each pair of sequences. Figure 8.1B therefore tells us that in the
past the rate of mutation was not identical along all the branches of the topology and
in a biological setting one would often go on to test whether these deviations from
rate equality were significant [186]. Suffice it to say here that of the algorithms used
to reconstruct phylogenies some are based on the assumption of a molecular clock,
while others are not. We will make these differences more precise below.

As important as the distinction between algorithms with and without molecular
clock is the dichotomy between methods that return rooted and those that return
unrooted phylogenies. Formally, this distinction refers simply to the fact that a rooted
tree contains a single node (the root) that is not connected to a parent node, while an
unrooted tree contains no such node (Fig. 8.2).

In the absence of a molecular clock, the resulting tree is initially unrooted and
Figure 8.1C shows the unrooted version of Figure 8.1B. This unrooted tree implies
no particular direction for evolutionary time. In other words, Figure 8.1C gives no
indication as to the position of the last common ancestor of the clade depicted. There
are two widely used methods of determining the position of the root in this tree:
midpoint rooting [67] and the more commonly applied rooting by outgroup. When
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rooted unrooted

Fig. 8.2. The smallest rooted and unrooted phylogenies.

using midpoint rooting, the root is placed in the middle between the two most di-
vergent taxa, in our case lupine leghemoglobin and horse -globin. This position is
marked as M in the unrooted tree (Fig. 8.1C). When the tree is rooted at this point,
we get the topology shown in Figure 8.1B. This tree implies a constant rate of evolu-
tion between the two most divergent taxa and accordingly horse -globin and lupine
leghemoglobin are both flush at the imaginary present line.

Alternatively, we may note that the most recent common ancestor of leghe-
moglobin and the other six globins must have been the most recent common ancestor
of all our seven example globins. Biologists then speak of leghemoglobin as being
the outgroup with respect to the remaining six globin sequences. An outgroup can be
used to assign a “pseudo root” to a tree. This is done by rearranging the tree around
the node O in Figure 8.1C, which is the node at which the outgroup joins the tree. The
result of this rearrangement of branches is shown in Figure 8.1D. Notice that node
O is structurally the same as all other internal nodes in the tree as it is connected to
three other nodes. Recall that in a bifurcating phylogeny a true root is connected to
only two other nodes (Fig. 8.2), hence our designation “pseudo root”.

We have already seen that we might not be able to model evolution by a constant-
rate mutation process, which results in an unrooted tree possibly with uneven branch
lengths. Perhaps more worryingly, there might not even be a tree.

In the subsequent sections we start by investigating whether there is a tree to be
discovered in the first place. This is followed by a description of three widely used
classes of methods for phylogeny reconstruction: (i) distance-based methods, which
are also used to construct guide trees in progressive multiple sequence alignment al-
gorithms (cf. Section 5.3), (ii) maximum parsimony, and (iii) maximum likelihood.
We finish the chapter explaining how to assess the robustness of the clusters in our
phylogenetic tree through a simple but powerful resampling technique known as the
bootstrap [56, 71]. Readers interested in more details may wish to consult the com-
prehensive monograph on phylogenetic reconstruction by Felsenstein [73].

8.1 Is There a Tree?—Statistical Geometry

Statistical geometry is a method for assessing the phylogenetic signal contained in
a multiple sequence alignment. It is easiest to explain for binary sequences and we
concentrate on this case here. You might wonder what relevance binary sequences
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might possibly have for biological sequences, given that DNA is an alphabet over
four bases, not two. However, the bases can be recoded into purines and pyrimi-
dines yielding binary sequences. Consider, for example, the hypothetical quartet of
aligned sequences shown in Figure 8.3A. There are eight possible configurations for
each column and an example for each is given in Figure 8.3A: either all four nu-
cleotides are identical, in which case the position is designated as “0” and ignored
in the subsequent analysis; or one nucleotide is different from the other three, in
which case there are four ways of obtaining this configuration, designated , ,

, and ; finally, the quartet might divide into two pairs of equal nucleotides, in
which case there are three possibilities, designated , , and (Fig. 8.3A). Having
thus classified each position for a quartet of sequences, the next step in statistical
geometry is to count the number of occurrences of each configuration. The result is a
three-dimensional diagram, which correctly depicts the mutational distance (of four)
between all four sequences (Fig. 8.3B). If more than four sequences are analyzed,
all possible quartets that can be formed from sequences are investigated and
averages calculated for the seven parameters of interest, hence the name statistical
geometry.
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Fig. 8.3. Statistical geometry. A: Alignment of four sequences consisting of purines (R) and
pyrimidines (Y) and the class of sequence configuration each column is assigned to. B: Depic-
tion of the classes detected in A. Box dimensions are marked by bold lines and labels.

The method allows us to distinguish three principal topologies that might de-
scribe the data from which phylogenetic reconstruction is to be attempted: the tree,
the net, and the bush. A bush is obtained if all three of the box dimensions of the
net shown in Figure 8.3 are zero, collapsing the box into a point from which the taxa
emerge forming what is known as a “star” phylogeny (Fig. 8.4). If we start from a
bush and expand only one of the three box dimensions, we obtain the three possible
tree topologies (Fig. 8.4). If we expand more than one box dimension, we obtain the
four possible net topologies (Fig. 8.4). Since its inception [60], statistical geometry
has been further developed into likelihood-mapping which is explained next.

8.2 Likelihood-Mapping

We start again with the simplest case of phylogenetic reconstruction and consider
a quartet of taxa, . Any given quartet of taxa can be connected by three
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Fig. 8.4. The phylogeny of a quartet of taxa might approximate either a net, a bush, or a tree.
These topologies can be obtained by starting with the bush and expanding the box dimensions
written along the arrows.
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different unrooted trees (Fig. 8.5). The likelihood of a tree, , is the probability
of observing the input data, , given the tree: . For a set of sequences
the likelihood attached to each of the three possible trees is determined for each of
the possible quartets. We are at this point not concerned with the computation of
the likelihoods and regard them simply as scores for each of the three trees. Each
likelihood score can be normalized by division by the sum of all three likelihoods,
resulting in three numbers ranging between 0 and 1. These can be plotted into a
triangular coordinate system, where each vertex corresponds to one of the three trees
[237]. Such a plot is shown at the top of Figure 8.6 for the quartets that
can be formed from our seven globin sequences. If all quartets supported only one
tree each, then all 35 points in the diagram would lie on the vertexes of the triangle.
However, as displayed in the bottom right triangle in Figure 8.6, this is only true
for of the quartets. This indicates that overall
there is a strong phylogenetic signal in the data, but some parts of the tree will not
be perfectly resolved. Before we proceed to reconstruct a phylogeny, let us consider
how many possible topologies there are to choose from.

Fig. 8.5. Quartet analysis. Top: A tree consisting of the seven taxa can be
divided into quartets of taxa. An example quartet is shown in bold. Bottom: the three
possible topologies of the example quartet; the tree in the middle corresponds to the quartet
marked bold in the top tree.

8.3 The Number of Possible Phylogenies

The simplest unrooted tree consists of three taxa and has a single possible topology
(Fig. 8.2). The simplest unrooted tree with more than one topology connects four
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Fig. 8.6. Likelihood-mapping [237] of the phylogenetic content of the globin multiple se-
quence alignment shown in Figure 5.1. The likelihood-mapping was carried out using the
program TREE-PUZZLE [218].

taxa and there are three possible configurations (Fig. 8.5). If we add a fifth taxon to
our tree, this can be joined to each of the five branches in each of the three trees, i.e.
there are possible unrooted trees for five taxa. In general there are

possible unrooted trees.
The simplest rooted tree consists of two taxa and it has only a single topology

(Fig. 8.2). The simplest rooted tree with more than a single possible topology con-
nects three taxa and there are three possible configurations (Fig. 8.7). In order to un-

Fig. 8.7. The three possible rooted phylogenies connecting taxa .

derstand how many rooted trees there are for taxa, consider the process by which



150 8 Phylogeny

an unrooted tree is converted into its rooted version. This is done by splitting any
of the edges and connecting the free ends of the edges to the root (Fig. 8.8). An un-
rooted tree contains edges. Since any of the edges can receive the root, the
number of rooted phylogenies is

Thus, is a simple function of the number of unrooted trees, :

root

Fig. 8.8. Rooting a phylogeny. The unrooted phylogeny on the left is rooted at the position
indicated by the arrow. The resulting rooted phylogeny is shown on the right. The root can be
placed on any of the five edges of the unrooted phylogeny.

For merely 20 taxa there are unrooted and rooted phyloge-
nies. This raises the question of how to choose efficiently between the vast number
of alternative phylogenies. There are two general approaches to this problem: (i) to
search tree space or (ii) to use an algorithm that avoids this. Searching tree space
necessitates a score function for the trees visited, and either the length of the tree in
terms of implied mutational steps (maximum parsimony, Section 8.5) or the likeli-
hood of the tree given the data (maximum likelihood, Section 8.6) are used for this
purpose [238]. On the other hand, distance methods of phylogenetic reconstruction
(Section 8.4) directly calculate a phylogeny based on pairwise distances between

taxa.

8.4 Distance Methods

Before we can apply distance methods, we need to be able to measure the distances
between sequences. A naı̈ve method for calculating distances between aligned se-
quences is to count the pairwise mismatches. However, this underestimates the true
number of substitution events per site, as a site might change more than once in the
course of evolutionary history. The simplest model to correct for this effect is known
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as the Jukes-Cantor model [130]. As shown in Section 9.5, the number of substitu-
tions per site over time , , can be estimated under the Jukes-Cantor model from
pairwise sequence alignments using the formula

where is the probability that two homologous nucleotides differ after diver-
gence time . This quantity is estimated from a multiple alignment by counting the
number of pairwise mismatches and dividing by the total number of residues con-
sidered. Figure 8.9 shows an alignment of five primate nucleotide sequences. This
contains 16 polymorphic positions, all of which have only two nucleotide states, that
is, are bi-allelic. The number of pairwise differences and the corresponding Jukes-
Cantor distances are displayed in Figure 8.10.

Human GTAAATATAGTTTAACCAAAACATCAGATTGTGAA 35
Chimpanzee .....t.........c........c.......... 35
Gorilla .....t.........c........c.......... 35
Orangutan .....t.........c........t.......... 35
Gibbon .....c.........t........t.......... 35

Human TCTGACAACAGAGGCTTACGACCCCTTATTTACCG 70
Chimpanzee ...g.c..c..a.g.tcacg...c...at...... 70
Gorilla ...g.t..c..a.g.tcaca...c...at...... 70
Orangutan ...a.t..t..g.c.ccaca...c...at...... 70
Gibbon ...a.c..t..a.g.tcgaa...t...gc...... 70

Fig. 8.9. Alignment of 70 nucleotides of mitochondrial DNA sequences from five primates
containing 16 polymorphic sites. Dots indicate a match with the nucleotide in the top row; :
homoplasy as explained in Section 8.5. Data taken from [111].

Distances that fit onto a tree with a molecular clock (cf. Fig. 8.1A) are known
as ultrametric. Ultrametric distances obey the three point criterion, which states that
for any three taxa , there are two equidistant pairs of taxa, with the distance
between the third being less or equal to the other two [238]. Consider, for example,
the topology shown in Figure 8.11, where .

Distances that fit onto a tree without a molecular clock (cf. Figs. 8.1C and 8.1D)
are called additive. Additive distances obey the four point criterion [238]. Consider
four taxa, . Between these four taxa six distances and three pairs of dis-
tances can be formed. The four point criterion states that the sum of those pairs of
distances that traverse the trunk of the tree are equal and greater, or equal to the sum
of the remaining distances. The topology shown in Figure 8.12 gives an example of
this. Ultrametric distances are additive, but not vice versa. The UPGMA tree shown
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Human Chimpanzee Gorilla Orangutan Gibbon
Human - 0.014 0.044 0.141 0.195
Chimpanzee 0.014 - 0.029 0.124 0.176
Gorilla 0.043 0.029 - 0.091 0.176
Orangutan 0.129 0.114 0.086 - 0.176
Gibbon 0.171 0.157 0.157 0.157 -

Fig. 8.10. Distance data computed from the alignment shown in Figure 8.9. The bottom trian-
gle of the matrix contains the number of mismatches per position, the top triangle displays the
corresponding Jukes-Cantor distances, that is, the estimated number of substitutions per posi-
tion. The Jukes-Cantor distance is always greater or equal to the number of mismatches per
position, as it corrects for the possibility of a mismatch corresponding to more than a single
substitution event.

Fig. 8.11. Example of ultrametric distances, where .

in Figure 8.1A corresponds exactly to the distances in the input matrix if these are
ultrametric. In contrast, the neighbor-joining tree in Figure 8.1B exactly reflects the
distances in the input data if these are additive.

The UPGMA algorithm is an example of average linkage clustering. This is ex-
plained next, followed by the neighbor-joining algorithm.

Fig. 8.12. Example of additive distances, where .

8.4.1 Average Linkage Clustering

Average linkage clustering refers to a group of distance algorithms. The most widely
used member of this group is the unweighted pair-group method using an arithmetic
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average (UPGMA) [232]. If our distance data is ultrametric, UPGMA will recover
the correct tree. We start with only the leaves of our tree. The first internal node
is found from the distance matrix by grouping those two taxa that have the small-
est distance between them. These taxa are removed from the data set and replaced
by cluster . The distance between and each of the subsumed leaves is just half
the distance between the leaves. The distance between and some other cluster cur-
rently contained in the data set, , is the arithmetic average of the distances between
members of and . Hence, the algorithm performs the following steps:

1. Input is a matrix of pairwise distances between a set of taxa

2. Find pair of taxa with smallest distance
3. Cluster taxa:

Remove pair from set of taxa:
Add new cluster to set of taxa:
if , stop

4. Compute the distances between and all other taxa:

if the input data is ultrametric, this is always the same number
5. go to 2

1 2 3 4
1 -
2 6 -
3 2 6 -
4 6 4 6 -

5

1 3
0

1

5 2 4
5 -
2 6 -
4 6 4 -

5

6

1 3 2 4
0

2

1

5 6
5 -
6 6 -

5

7

6

1 3 2 4
0

2

3

1

Fig. 8.13. Phylogenetic reconstruction using the UPGMA algorithm. As the distance matrix
shrinks, the phylogenetic tree grows.
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Figure 8.13 illustrates these steps. Notice that ultrametricity of the distance data im-
plies that the number of distinct entries in the distance matrix must not exceed the
number of internal nodes (including the root) in the tree. The number of internal
nodes in a rooted binary tree for taxa is and, hence, if a given distance matrix
contains more than distinct entries we know that the distances are not ultra-
metric. The distance matrix shown in Figure 8.10 is an example of this. It contains
8 distinct entries, which is greater than . We can still apply the UPGMA
algorithm to this data and the result is shown in Figure 8.14. This tree agrees with

human

chimpanzee

gorilla

orangutan

gibbon

Fig. 8.14. Primate phylogeny computed from the data shown in Figure 8.10 using the UPGMA
algorithm.

the generally accepted primate phylogeny. However, in other cases a violation of the
assumption of ultrametricity can lead to an incorrect phylogeny. Consider for exam-
ple the phylogeny shown in Figure 8.15. The rates of evolution along the branches
leading to taxa 2 and 3 are much lower than the rates along the branches leading to
taxa 1 and 4. UPGMA would first cluster taxa 2 and 3 thus returning the wrong tree.
In contrast, the neighbor-joining method uncovers the correct tree from the distance
matrix shown in Figure 8.15.

A B

1 2

3 4

4 4

1 1
1

1 2 3 4
1 0 5 6 9
2 0 3 6
3 0 5
4 0

Fig. 8.15. A: Phylogeny with varying rates of evolution; B: corresponding distance matrix.
Branch lengths are italicized. The neighbor-joining method can recover tree A from data B,
while the UPGMA algorithm would erroneously cluster taxa 2 and 3.
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8.4.2 Neighbor-Joining

Pairs of nodes in a phylogenetic tree that are connected through a single third node
are called neighbors. For example, in the final tree shown in Figure 8.13 nodes 2 and
4 are neighbors and so are nodes 5 and 6, but not nodes 2 and 3. The neighbor-joining
method proceeds by calculating for each possible pair of neighbors the total length of
the branches of the corresponding tree. At each stage the pair of neighbors is chosen
which induces the shortest tree. This method recovers the correct phylogeny from
additive distance data [212] in the same number of steps as the UPGMA method
explained above. As with the UPGMA algorithm, we start with an by distance
matrix. The neighbor-joining algorithm then consists of four iterated steps:

1. For each pair of taxa compute

where is the sum of the distances from taxon to all other taxa :

2. Pick the pair of taxa with the smallest value of and cluster them to form
taxon . The distances from to the other members of the data set are

3. Finally, compute the branch lengths from to taxa and :

and

4. Replace taxa and by and reduce by one. If go to 1. Otherwise,
generate the last branch with length and stop.

To see this algorithm in action, consider again the distance matrix that defeated
the UPGMA algorithm in Figure 8.15. Figure 8.16 shows how the neighbor-joining
method recovers the correct tree.

Application of the neighbor-joining algorithm to the primate data (Fig. 8.10) re-
sults in the phylogeny shown in Figure 8.17. When comparing this to the correspond-
ing UPGMA tree in Figure 8.14 the two main differences, unrootedness and absence
of a molecular clock, can clearly be seen.
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Step Distance Matrix Branch lengths Tree

1

1 2 3 4
1 0 5 6 9 20
2 -12 0 3 6 14
3 -11 -11 0 5 14
4 -11 -11 -12 0 20

1

2

54

1

2

3 4 5
3 0 5 2 7
4 -12 0 5 10
5 -12 -12 0 7

1 4

2 3

5 64 4

1 1

3
5 6

5 0 1
6 0 1 4

2 3

5 64 4

1 11

Fig. 8.16. Neighbor-joining method. The top triangle of the distance matrices contains the raw
distances, while the corresponding -values are displayed in the lower triangle; hence in
step 1 for example, , where the first element of the sum needs to be
transposed from the top triangle of the matrix (see text for further details). Nodes are labeled
by bold numbers. Italicized numbers indicate branch lengths.

human
chimpanzeegorilla

orangutan

gibbon

Fig. 8.17. Primate phylogeny computed from the data shown in Figure 8.10 using the
neighbor-joining algorithm. The branch leading to chimpanzee is imperceptibly short.
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8.5 Maximum Parsimony

In contrast to the distance methods already discussed, both maximum parsimony as
well as maximum likelihood (Section 8.6) are strictly speaking only methods for
evaluating a given phylogenetic tree. In practice, they are always combined with a
search algorithm looking for the best tree. Under maximum parsimony we seek the
tree that implies the fewest mutations along its branches. One of the most popular
algorithms for calculating the number of mutations implied by a tree has become
known as Fitch-parsimony in honor of its inventor Walter Fitch [77]. The algorithm
takes as input a set of character data such as a multiple sequence alignment and a tree
(Fig. 8.18). The algorithm implies a model of symmetrical mutation and can there-

W
X
Y
Z

AC

W X

CT

Y Z

AG

W X Y Z

TC

W X

TC

Y Z

5

AC

W Y

CT

X Z

AG

W Y X Z

TC

W Y

TC

X Z

5

ATC
AT

W Z X Y

AG

W Z X Y

TC

W Z X Y

4

Fig. 8.18. Fitch-parsimony algorithm [77]. The three possible unrooted trees for four taxa
get arbitrarily rooted and are then evaluated at each position of the align-

ment. Each internal node is labeled according to the following convention: if the intersection
of the labels on the child nodes is empty, the union of the child labels is taken, otherwise the
intersection. Labels generated through the union operation are boxed. The number of boxed
labels is summed to generate the “length” of a tree.

fore only be used to derive unrooted trees. However, the tree traversal underlying the
algorithm requires a rooted tree as input. This problem is overcome by arbitrarily
rooting the given tree. Next, the algorithm goes through every position in the align-
ment in order to compute the “length” of the tree, . The quantity can be
thought of as the number of mutations implied by the tree. Our input data is a mul-
tiple sequence alignment from which an initial rooted tree is constructed. At each
alignment position, , the following steps are carried out:

1. Label the leaves with the character of the corresponding taxon at .
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2. Carry out a depth-first traversal of the tree and label each internal node by form-
ing the intersection of the labels of its two child nodes. If this intersection is
empty, the parent node is labeled by the union of the child labels, otherwise it is
labeled by the intersection. In case of an empty intersection, is increased
by one.

Once all trees have been evaluated, the shortest tree is chosen as the most parsimo-
nious evolutionary hypothesis. This procedure is illustrated in Figure 8.18. Here the
shortest tree is and, hence, under the maximum parsimony criterion it is selected
as the best tree. Notice, however, that trees and have the same value of .
In fact, the parsimony length of a tree can only vary between the number of variable
positions in the alignment, , and half the number of its branches times . The upper
limit is due to the fact that at each variable position in the alignment a maximum of
one mutation per pair of child nodes rooted on the same parent node can be accumu-
lated. A rooted tree has branches, where is the number of taxa considered,
and, hence,

The value of is usually much smaller than the number of possible trees and
as a consequence, numerous tree topologies may correspond to a given tree length.

human

chimpanzee

gorilla

orangutan

gibbon

Fig. 8.19. Maximum parsimony phylogeny computed from the data shown in Figure 8.9. Root-
ing by designating gibbon as the outgroup.

For our primate example data in Figure 8.9, . The most parsimonious tree
computed from this data is shown in Figure 8.19. Notice that this topology contains
no information about branch lengths, only about branching order. It is unique and has
length 17, that is one step more than the theoretical minimum necessary to account
for the data. In other words, the alignment must contain one position that can only
have arisen from two mutations. This position is marked by an arrow in Figure 8.9
and implies that, given the tree in Figure 8.19, either the T or the C must have arisen
twice in the course of evolution. The reasoning underlying this conclusion is illus-
trated in Figure 8.20. A character that arises twice in the course of evolution is known
as a homoplasy and the number of homoplasies on a maximum parsimony phylogeny
is .
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C

T

T

C

hu/C ch/C go/T or/T gi/C

T

T

T

C

hu/C ch/C go/T or/T gi/C

Fig. 8.20. Homoplasy in position 41 of the primate sequence data in Figure 8.9. The two
alternative reconstructions of ancestral character states each imply two mutations, shown as
bold branches.

It was said that the tree length equals to a first approximation the number
of mutations implied by the phylogeny. Now, the number of mutations that might
have taken place in the history of a sequence sample varies between zero and infin-
ity when in fact we have seen that under the parsimony criterion is bounded
above by . Equating with mutations is therefore only reasonable un-
der a model of evolution where each character analyzed has mutated only once. This
is approximated in reality by closely related DNA sequences, such as those shown
in Figure 8.9. For highly divergent sequences the parsimony criterion may lead to
an increasingly rapid convergence on an incorrect tree as more and more data are
analyzed [69]. This problem is overcome by using an explicit model of evolution
and searching for the tree which has the greatest likelihood of having generated the
observed data under the model. This method is known as “maximum likelihood”.

8.6 Maximum Likelihood

Maximum likelihood is a framework for statistical inference. Under this framework
the central quantity considered is the probability, , of observing some data, ,
given a hypothesis, , about how this data was generated: . This proba-
bility is called the likelihood of . In maximum likelihood inference we seek the
hypothesis with the highest likelihood.

Consider for example the DNA sequence TACTTCCTGT. We wish to infer its
GC-content, . If we assume that positions in our sequence evolve independently
from each other and that the GC-content is uniform across the sequence, we can
calculate the probability of the observed sequence data given , , by noting
that it contains 4 G/C and 6 A/T residues, and remembering that the probability of
observing an A or a T is the complement of the probability of observing a G or a C:

(8.1)

The graph of this likelihood function is displayed in Figure 8.21.
We now wish to compute the maximum of Equation (8.1) by taking its derivative

with respect to , setting the result equal to zero and solving for . This is best done
after first taking the logarithm of Equation (8.1):
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Fig. 8.21. The likelihood of the DNA sequence TACTTCCTGT as a function of its GC-content,
. This is a plot of Equation (8.1).

and differentiating

which yields . This is equal to the fraction of G/C residues in the original
sequence. In fact, the fraction of G/C residues is the maximum likelihood estimator
of .

Maximum likelihood was introduced into statistics by the English population
geneticist Fisher and first applied to phylogenetic reconstruction by Edwards and
Cavalli-Sforza in 1964 [55]. Given some data, , and an evolutionary model such
as the Jukes-Cantor model, , the most likely tree is the tree that maximizes the
probability of the data, given the model and the tree: . The search
for is computationally expensive as it ranges over all possible
states at each internal node in a given tree, over all possible branch lengths in that
tree and over all variable positions in the underlying multiple alignment. An efficient
algorithm for estimating these branch lengths based on dynamic programming was
introduced by Felsenstein in 1981 [70].

Figure 8.22 displays the maximum likelihood phylogeny based on the primate
data of Figure 8.9. The tree has a log-likelihood of . If we switch the position
of chimpanzee and gorilla in Figure 8.22 the resulting topology has a log-likelihood
of . In order to test whether the two topologies are significantly different,
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humanchimpanzee

gorilla

orangutan

gibbon

Fig. 8.22. Maximum likelihood phylogeny computed from the primate sequence data shown
in Figure 8.9. Notice that the branches leading to chimpanzee and gorilla are imperceptibly
short.

the likelihood ratio test can be applied [70, 125]. This is a general statistical test of
the goodness-of-fit between two alternative models. The test is based on the ratio, ,
of the likelihoods of the two models being compared:

approximately follows a -distribution. For our example,
. Since the phylogeny has branches whose lengths

were estimated with a one-parameter substitution model (Jukes-Cantor model), we
have seven degrees of freedom. For and seven degrees of freedom the crit-
ical value of the -distribution is 14.07 and we conclude that based on the data in
hand we cannot reject the alternative tree where gorilla is the closest relative of man
instead of chimpanzee.

8.7 Searching Through Tree Space

Optimality criteria such as parsimony or likelihood still leave the question open of
how to efficiently search the vast space of possible phylogenies. There is no solution
to this problem available that runs in polynomial time and is guaranteed to find the
optimal tree. Therefore, a lot of thought has gone into designing heuristic searches
in “tree space” as well as shortcuts in the full search.

The central problem of heuristic search methods is that they might lead to a lo-
cal instead of the global optimum. The probability of ending up with a suboptimal
search result depends not only on the method of navigating tree space, but also on
the strategy of pursuing a better tree once a candidate for optimality has been found.
A “greedy” approach would take the first tree with, say, a better likelihood and in-
vestigate its neighborhood of trees. However, such a strategy might quickly lead to a
local optimum with little opportunity for finding a better tree that is separated from
the present tree by one or more intermediate trees with a lower score (Fig. 8.23).

In the following sections we start by looking at two heuristic search methods,
nearest neighbor interchange and subtree pruning and regrafting, before explaining
an efficient optimal method for searching tree space known as “branch and bound”.
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Tree Space
Sc

or
e

Fig. 8.23. Searching in one-dimensional tree space. Each tree has a score attached, for ex-
ample, a likelihood. The dot indicates the starting tree. A greedy search strategy that always
pursues the next tree that is better than the present one would lead to the local optimum ( )
instead of the global optimum ( ).

8.7.1 Nearest Neighbor Interchange

An intuitive method for moving in tree space is to consider a quartet of subtrees con-
nected by an internal branch and to look at the two alternative topologies this quartet
may have. In an unrooted bifurcating phylogeny there are internal branches,
which means that trees can be reached from any given tree using nearest
neighbor interchange (Fig. 8.24). This is in most cases a very small proportion of tree
space and we may think of nearest neighbor interchange as a method for examining
the “microenvironment” of a given tree in tree space. However, any one of the trees

Fig. 8.24. Nearest neighbor interchange. A quartet of subtrees is rearranged into the three
alternative possible topologies.

reached by nearest neighbor interchange may become the starting point for a new
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round of nearest neighbor interchange, resulting in a higher portion of the tree space
searched.

8.7.2 Subtree Pruning and Regrafting

An alternative method for searching tree space is illustrated in Figure 8.25: a subtree
is removed and reinserted at a new position. If in a tree for taxa we
remove a subtree containing species, we obtain possible points to reinsert
the subtree. One of these is the original point and, hence, we get

neighbors at each internal branch. For each external branch
neighbors can be inferred. Since there are exterior and interior branches, the
total number of neighbors that can be reached is

. Not all of these are distinct but nevertheless, subtree pruning and
regrafting leads to a wider search of tree space than nearest neighbor interchange.

internal external

Fig. 8.25. Pruning and regrafting of internal and external branches on a tree with five taxa.
Dotted lines indicate pruned branches and bold lines indicate branches receiving a graft.

8.7.3 Branch and Bound

The space of all possible trees describing a given number of taxa can itself be de-
picted as a tree (Fig. 8.26). The method of branch and bound starts from the smallest
possible tree consisting of three taxa. Going outward from the original tree, succes-
sive topologies are generated by sequentially adding a new branch to each internal
branch of the ancestral tree. Each tree generated along this outward path is evaluated
by, say, the parsimony criterion. Once the first set of trees consisting of all taxa have
been found, their smallest parsimony score becomes the upper limit for any as yet
unfinished topologies awaiting completion. If the best complete topology found so
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far has a parsimony score of , then any subtree in the tree of trees rooted on a to-
pology that has a score of is ignored. The example in Figure 8.26 demonstrates
this principle. The best tree found at the depicted stage of the algorithm has length 7.
Hence the trees that can be reached from internal nodes (of the tree of trees) whose
score is 7 need not be considered, as their lengths must be 7. This strategy po-
tentially saves a lot of computation time while still guaranteeing that the best tree is
found.

ACGTGAC
CT.....
C.AG...
C.A.AC.
C.A.A.T

4

6

9 9 8 8 7

7 7

Fig. 8.26. Branch and bound traversal of tree space. Left: Alignment of DNA sequences taken
from five taxa, ; dots indicate identity to nucleotide in top row. Middle: The nine out
of a total of 19 topologies that need to be assessed during a search for the most parsimonious
unrooted phylogeny of . Right: Number of mutations implied by the corresponding
topologies. The optimal phylogeny and its score are boxed.

8.8 Bootstrapping Phylogenies

In Section 8.2 we used likelihood-mapping to show that the phylogenetic signal in
the globin alignment was quite strong, though not perfect. This indicates that some
parts of the tree might not be fully resolved, i.e. some of the quartets fit more than
one of the three possible trees. There are a number of methods for locating these
unresolved regions and the bootstrap is perhaps the most widely used approach to
this problem.

Classical statistical parameter estimation is usually based on the following sce-
nario: Given a sample and the estimator of a parameter calculated from this sample,
how would this estimator fluctuate if more samples were collected and the estimator
was recalculated from each of the new samples? In practice it is often not feasible to
obtain more samples. However, if the distribution of the desired statistic is known,
a confidence interval for the initial parameter estimation can be computed. Unfortu-
nately, in many cases this so-called null distribution of the estimator in question is
unknown. In such a situation the bootstrap can often be applied successfully. This
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consists of resampling from the original sample with replacement and recalculating
the desired statistic from each of these bootstrap samples to obtain its distribution.
The bootstrap was first proposed by Efron in 1979 [56, 57] and first applied to phy-
logenies by Felsenstein six years later [71].

With phylogenies the bootstrap works as follows. The input data is a multiple
alignment of the kind shown in Figure 8.9. This is essentially an by matrix of
amino acids or nucleotides, where is the number of sequences and the length of
the alignment.

1. Compute a phylogenetic tree, , from the multiple sequence alignment and save
it.

2. Generate a bootstrap sample by randomly drawing times with replacement
columns of nucleotides from the original alignment.

3. Compute a tree, , from the bootstrap alignment using the same algorithm as in
1.

4. Record the clusters in that also appear in .
5. Repeat steps 2–4 many times and sum the number of times a cluster in also

appears in .

An example of bootstrapping a multiple sequence alignment is shown in Fi-
gure 8.27. Notice two things: (i) some columns of the original sample appear more
than once in the bootstrap sample, others are left out. This is due to “sampling with
replacement”. (ii) The order in which the columns of nucleotides appear in the boot-
strap sample is quite different from their original order. The order of nucleotide
columns has no influence on the topology or the branch lengths of a phylogeny. This
corresponds to the standard assumption in phylogenetic reconstruction that residues
evolve independently.

Original sample

A
A
C
T

A
C
C
C

G
G
G
G

Bootstrap samples

G
G
G
G

G
G
G
G

A
C
C
C

A
C
C
C

A
A
C
T

A
A
C
T

A
A
C
T

G
G
G
G

A
C
C
C

Fig. 8.27. The bootstrap procedure in phylogenetic reconstruction. Each of the bootstrap sam-
ples would subsequently be subjected to phylogenetic analysis as further explained in the text.

Figure 8.28 shows the result of applying the bootstrap procedure to our globin
alignment. Next to each node there is a number which indicates in how many of
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the bootstrap trees the same set of leaves of the respective subtree was clustered. The
higher this number, the more reliable is the grouping of the corresponding sequences.
Notice that the (pseudo) root does not have a bootstrap number. This is because its
bootstrap support would always and trivially be maximal.

human -globin

human -globin

horse -globin

horse -globin

lamprey globin 5

whale myoglobin

lupine leghemoglobin

1000

1000

948

808

Fig. 8.28. Bootstrapped phylogenetic tree of seven globin sequences using the neighbor-
joining algorithm. The numbers next to the nodes indicate how many times the corresponding
cluster appeared in 1,000 trees computed from data sets generated from the alignment shown
in Figure 5.1 using the bootstrap procedure (cf. Fig. 8.27).

8.9 Summary

Phylogenetic reconstruction is concerned with uncovering the evolutionary history
of a group of taxa, given data on homologous characters. The result is usually a bi-
furcating tree. However, it is a priori not clear that the data support a tree. The type
of phylogenetic signal contained in the data can be explored using statistical geom-
etry or its more modern version, likelihood-mapping. Phylogenies are either rooted
or unrooted. Rooting can be achieved by assigning an outgroup or by assuming a
molecular clock. There are three classical approaches to phylogenetic reconstruction:
distance methods, maximum parsimony, and maximum likelihood. Distance meth-
ods may be based on ultrametric or additive distances. Ultrametric distances conform
to a molecular clock and are the assumed input to the UPGMA algorithm, while the
neighbor-joining algorithm builds a tree that reflects additive distances. Maximum
parsimony and maximum likelihood are methods for evaluating a given tree com-
pared to a set of possible alternative trees. The tree length returned by maximum
parsimony can be used to quantify the amount of parallel evolution, or homoplasy,
implied by the tree. Maximum likelihood tree reconstruction is based on an explicit
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evolutionary model and allows pairwise comparison of alternative phylogenies by
the likelihood ratio test. This gives an overall assessment of the quality of a phy-
logeny. The bootstrap procedure, in contrast, can be used to assess the robustness of
individual subclusters in the tree.

8.10 Further Reading

Swofford and colleagues have written a comprehensive review of phylogenetic re-
construction methods [238]. The monograph by Page and Holmes is a good intro-
duction for those new to the field [194], while Felsenstein provides a more compre-
hensive and advanced treatment [73].

8.11 Exercises and Study Questions

8.1. Consider the following multiple sequence alignment:

A TCGGTAGGCT
B ACCGTTCCAT
C ACCCAAGGCT
D ATGGTAGGCT

How many rooted and unrooted phylogenies can you construct out of the taxa shown
in the alignment?

8.2. Compute the pairwise number of mismatches between the taxa in Problem 8.1
and write down the corresponding distance matrix.

8.3. Use the UPGMA algorithm to compute the phylogeny of the taxa in Problem
8.1.

1. Is this phylogeny rooted?
2. Are the distances in the distance matrix ultrametric?

8.4. In Section 8.4.1 it was stated that a necessary condition for ultrametricity is that
distances only take distinct values, where is the number of taxa analyzed.
Is this condition also sufficient for ultrametricity?

8.5. Use the bioinformer program Evolution Phylogeny (Section
A.4.1) to compute pairwise distances from the alignment of primate DNA sequences
displayed there.

8.6. Use the bioinformer program Evolution Phylogeny to compute
the UPGMA phylogeny from pairwise distance data.
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8.7. Use maximum parsimony to find the best tree describing the evolution of the
data set shown in Problem 8.1 .

8.8. Consider the following phylogeny

and write down all phylogenies that can be reached using

1. nearest neighbor interchange,
2. subtree pruning and regrafting.

What fraction of the tree space is covered by each method?

8.9. Use the bioinformer program Evolution Phylogeny to visualize
the process of bootstrapping a phylogeny.
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Sequence Variation and Molecular Evolution

Sequence variation is the currency of genetics; the central
aim of all genetics is to correlate specific molecular variation
with phenotypic changes.

Aravinda Chakravarti [36]

Sequence variation is detected through the comparison of DNA or protein sequences.
In most cases, biologists compare sequences which are related by common ances-
try, for instance those shown in Figure 9.1. Such sequences are called homologous.

ACTGTACGTAACGC AATGAACGTAACGC

ACTGAACGTAACGC

A C
C T C A

sequence 1 ACTGTACGTAACGC
| || |||||||||

sequence 2 AATGAACGTAACGC

present day sequences

common ancestral sequence

sequence alignment

tim
e

Fig. 9.1. Diverging sequences accumulate substitutions, here represented as filled circles along
the branches of a genealogical tree. Substitutions lead to mismatches in the alignment (at
positions 2 and 5). Note that there may be more substitutions than mismatches.

Note that this definition does not imply that homologous sequences are necessarily
similar. Members of a set of homologous sequences may vary strongly in their simi-
larity to each other, as was already shown in the alignment of seven globin sequences
(Fig. 5.1). Homologous sequences are said to be orthologous if they are derived from
a speciation event, such as the -globin sequences from human and horse. Homolo-
gous sequences are paralogous if they are derived from a duplication event such as
the - and -globins in vertebrates. While we may not be able to infer sequence
similarity from the mere fact of homology, recently diverged sequences can safely
be assumed to be similar. The converse, that similar sequences are homologous and
hence have similar functions, is usually also true. There are exceptions to this rule,
however. For example, later on in this chapter we are going to describe a gene thought



170 9 Sequence Variation and Molecular Evolution

to be associated with human language, FOXP2. Surprisingly, the highly conserved
protein sequences encoded by this gene are more similar between chimpanzee and
mouse than between chimpanzee and human.

It is one of the fundamental aims of molecular evolutionary biology to infer the
type and time of past evolutionary events from the presently observable variability of
molecular sequences. Such events cover a time scale which ranges from days, as in
the evolution of strains of E. coli, to hundreds of millions of years, as in the evolution
of the phylum of arthropods.

In this chapter we will introduce some basic terminology and expand on the
evolutionary dimension of sequence comparison.

9.1 The Record of Past Events

When comparing homologous sequences, aligned positions may be occupied by
identical characters (matches). From an evolutionary point of view and the assump-
tion of parsimony, it is reasonable to conclude that matching characters are derived
from the same character in a common ancestral sequence. On the other hand, sub-
stitutions of one nucleotide by another during evolution become manifest as mis-
matches in the alignment (Fig. 9.1). Insertions or deletions of nucleotides lead to
alignment gaps.

At this point it is important to realize that the number of historical substitutions
is greater or equal to the number of observable mismatches (Fig. 9.2). The reason

0
0

number of mismatches per bp

nu
m

be
r

of
su

bs
tit

ut
io

ns
pe

r
bp

Fig. 9.2. The number of historical substitutions (gray shaded area) between two sequences is
at least equal to, but may be greater than, the number of observable mismatches.
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for this is that multiple substitutions at the same or at homologous sites cannot be
directly observed from the present record (Fig. 9.1). This effect is more dramatic for
distantly related sequences than for very closely related ones. Much effort in evolu-
tionary modeling is spent on correcting for this effect, as discussed in the following
sections.

9.2 Mutations and Substitutions

There are two fundamentally different ways in which one talks about DNA or protein
sequences. First, one may refer to a particular sequence of a particular individual. For
instance, a defense lawyer may state that “the DNA sequence of suspect X did not
match the probe”. Second, one may refer to a representative of a large class of equiv-
alent sequences, as in the phrase “the sequence of the human genome was published
in the year 2001”. The sequence deposited in, say, the NCBI genome database Gen-
Bank represents a class of several billion human sequences, many of which do not
even exist yet at the current time. Neither is it implied that the human genome in the
database was derived from one particular existing individual.

A mutation is a heritable change in the nucleotide sequence of a chromosome.
It takes place in a specific individual and will subsequently either vanish from or
spread throughout the population. If it spreads throughout the population, the result
is called a substitution. For instance, proline at position 4 in human -globin has
been substituted by alanine in horse at some time in the past (Fig. 5.1).

The number of mutations per nucleotide per individual is called the mutation
rate and abbreviated . The substitution rate, abbreviated , measures the fraction of
those mutations, per unit time, which have spread throughout the entire population
being studied. The substitution rate is also called the rate of molecular evolution.
The two terms mutation and substitution are sometimes applied synonymously. This
confusion is in part due to the following fundamental property of the two processes.

Consider a mutation that originates in a particular DNA sequence with muta-
tion rate per generation. In a finite population (or species) of diploid individu-
als, new mutations arise on average per generation. However, only a fraction
of these new mutants survives and is passed on to descendant individuals in sub-
sequent generations. Substitutions are exactly those mutations which will eventu-
ally be present in all individuals of a given population (or species). As explained in
Chapter 10, under a neutral model of evolution, the probability for a newly arising
mutation to be propagated to the entire population, i.e. to become a substitution, is

. Therefore, one has the following fundamental relationship between the rate
of substitution, , and :

(9.1)
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9.3 The Molecular Clock

Do substitutions occur at a clock-like pace, in other words, at a constant rate in time?
If so, then such a molecular clock could be used to date evolutionary events, for
instance the point in time at which two species diverged. The divergence time of
two sequences should be proportional to the number of mismatches in a pairwise
alignment, if the following three conditions hold: (i) mutations occur at a constant
and known rate, (ii) the fraction of mutations which eventually become substitutions
remains constant over time, and (iii) a monotonic relationship exists between the
number of substitutions and the number of observable alignment mismatches.

Zuckerkandl and Pauling [265, 266] were the first to investigate in detail the re-
lationship between the number of substitutions and divergence time. They compared
globins and other protein sequences from various mammalian species and noted that
the number of substitutions per unit time between two homologous sequences was
roughly constant. Based on these results, Zuckerkandl and Pauling suggested that
all proteins evolve at an essentially constant rate, known as the molecular clock hy-
pothesis. The existence of a molecular clock on the level of DNA became one of the
central concepts of the neutral theory of evolution, developed by Kimura and Ohta in
the 1970s and 1980s [144, 140, 141]. The question of how general is the molecular
clock for the evolution of DNA and proteins is still intensely debated today [28].

The seven globin sequences shown in Figure 5.1 are all derived from a “proto”-
globin which existed some 1.5 billion years ago. Table 9.1 shows the number of
mismatches in pairwise alignments of human -globin with five other globins and
their divergence times. Note that the percent mismatches at the amino acid level may
be equal to, larger, or smaller than at the DNA level. Figure 9.3A shows a strikingly

Table 9.1. Mismatch percentages between the coding sequence of human -globin and five
homologous globins .

DNA AA time
(1) human 20
(2) chimp 5
(3) horse 80
(4) carp 400
(5) human 450

using the program align [187] with substitution matrix BLOSUM50
pairwise alignment of the cDNA sequences
pairwise alignment of amino acid sequences
approximate divergence time in million years

linear relationship between the mismatch percentage and the divergence time. For
example, when comparing human - and horse -globins, one finds that out
of amino acids, i.e. , are identical and of the aligned positions are
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Fig. 9.3. A: Comparison of divergence time and percent mismatches from the globin example
(Table 9.1) of DNA (circle) and the corresponding proteins (triangles). Only the coding part
of the DNA is considered. Regression lines are plotted solid (DNA) or dashed (amino acids).
Numbers in parentheses refer to the correlation coefficients. B: Comparison of percent identity
in DNA (coding sequences, CDS) and protein alignments in a set of 110 orthologous genes
from humans and rodents. The dashed line represents . Its intersection with the regres-
sion line indicates an over-representation of synonymous differences in highly similar genes
(identity ) and of non-synonymous differences in less similar genes (identity ).

mismatches. Human - and -globins align identically only in out of amino
acids, i.e. there are mismatches. This difference is best explained by the fact
that - and -globins were derived from an ancient gene duplication which long
predates (about million years (Myrs) ago) the emergence of the mammalian lin-
eages about Myrs ago. On the other hand, -globins and -globins are present
in human and apes, but not in horses. They are derived from a duplication which oc-
curred about 20 Myrs ago. Despite their age, the coding sequences of these two genes
are completely identical. In contrast, the relatively short divergence time of 5 Myrs
between the orthologous human and chimpanzee -globins was sufficient to ac-
cumulate some sequence divergence at the DNA level. This observation contradicts
the molecular clock hypothesis. Is it therefore disproven altogether? To answer this
question, we have to look in more detail at the ingredients of evolutionary models.

9.4 Explicit Models of Molecular Evolution

In the preceding section, only the percent of mismatches in pairwise alignments was
compared to the divergence time. The molecular clock hypothesis, however, states a
linear relationship between the rate of substitution and divergence time. To investi-
gate this issue further, consider a particular position in a DNA sequence. It may be
occupied by any of the four nucleotides, adenine (A), cytosine (C), guanine (G), or
thymine (T). At the time of replication, a given nucleotide is replaced by nucleotide

with probability . The replacement probabilities can be summarized in a state
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transition matrix of size . Remember that an empirical state transition matrix for
amino acids was already shown in the context of the derivation of the amino acid
substitution matrices (Table 2.2). The simplest model of DNA sequence evolution is
that all possible state transitions are equally likely. The resulting matrix is shown in
Equation (9.2). Only one parameter ( ) is needed in this model and therefore it is
called the 1-parameter model, or, after its inventors, the Jukes-Cantor model [130].

A C G T
A
C
G
T

(9.2)

Repeating the process of replication with mutation infinitely many times, even-
tually any nucleotide occurs with equal probability at any given site. The state tran-
sition matrix has the following limiting property

(9.3)

where

and

A slightly more involved, but also more realistic way of modeling the mutation
process is captured in the so-called two-parameter or Kimura model. It distinguishes
between nucleotide-transitions and nucleotide-transversions. A transversion is the
replacement of a purine (A or G) by a pyrimidine (C or T). A transition is the replace-
ment of a purine by a purine or of a pyrimidine by a pyrimidine. This distinction
reflects biochemical differences between these two classes of nucleotides and the
fact that transitions occur at a different rate than transversions. Two parameters are
then needed to define the state transition matrix.

A C G T
A
C
G
T

(9.4)

It would be straightforward to set up a model with the maximal number of 12
parameters. However, it would be difficult to determine numerical estimates for all
these parameters from experimental data and to work with such a model in practice.
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9.5 Estimating Evolutionary Rates

With the help of an explicit model of sequence evolution, an estimate of the substitu-
tion rate, , can be obtained. Consider two sequences as depicted in Figure 9.1. Look-
ing at a particular position and starting from the ancestral sequence (time ), we
determine the probability that in the descendant sequences this position will
be occupied by identical nucleotides at time . We calculate this probability recur-
sively and consider the possible changes when going from one generation ( ) to
the next ( ). Two cases have to be distinguished. In the first case, both nucleotides
were identical in generation . The probability for this is . In addition,
no mutation occurred on any of the two branches between generations and .
Under the Jukes-Cantor model, the probability for the latter event is . In the
second case, the site was occupied by two different nucleotides in generation
and a mutation occurred, which made them identical in generation . The probabil-
ity for this combined event under the Jukes-Cantor model is ,
because there are two ways in which two distinct nucleotides can become identical.
Taken together, the desired probability can be expressed in terms of
as

For small mutation probabilities ( ), one has . Therefore,
terms involving the squared mutation probability may be neglected to obtain the
approximation

(9.5)

Abbreviating the difference by , one derives the following
difference equation

(9.6)

When treating time as a continuous variable and re-interpreting as a mutation rate
per unit time, the corresponding differential equation reads

(9.7)

This is an ordinary linear differential equation. The initial condition de-
rives from the fact that nucleotides are identical at time . The solution therefore
is

(9.8)

The complementary probability of observing two different nucleotides after di-
vergence for generations is

(9.9)
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Equation (9.9) represents the probability of a mismatch at one particular site in
a (gap-free) alignment. Assuming that sites evolve independently, this probability is
identical to the fraction of mismatches in the alignment. Let this fraction be denoted
by , where is the absolute count of mismatches and is the number of aligned
positions. By inserting on the lefthand side of Equation (9.9), solving for ,
and multiplying by , we obtain an estimate of the compound variable

(9.10)

We now switch our point of view and re-interpret the above two-sequence geneal-
ogy as a two-species genealogy. Because of the equality of mutation and substitution
rates under neutrality, stated in Equation (9.1), we only have to replace the mutation
rate by the substitution rate. In the Jukes-Cantor model, the substitution rate per unit
time is . Therefore, we obtain

(9.11)

There are two points to note about Equation (9.11). First, it relates the observable
quantity to the unobservable quantities and . Second, the product is the
expected number of substitutions per site on a two-branch genealogy with divergence
time . This can be seen as follows. Assuming a molecular clock, substitutions ac-
cumulate independently and with a constant rate. Since substitutions are rare events
they are well described by a Poisson-distributed random variable with parameter

. Given a divergence time , the total branch length in the genealogy is and the
expected number of substitutions per site is given by

(9.12)

It is now easy to combine Equations (9.11) and (9.12) to obtain

(9.13)

Figure 9.4 shows a plot of as a function of alignment mismatches, .
Note, however, that the actual value of may be different for different sites,
and that the righthand side of Equation (9.13) is an estimator for the mean of the
random variable . This estimate will be closer to its true value if many sites
are considered. One can derive an expression for the variance, , of this estimate. It
depends on the number of sites compared, i.e. the sequence length :

(9.14)

If increases the variance tends to zero. The variance has a singularity for
, i.e. the variance of the estimate of is infinitely large when two random

sequences are compared (Fig. 9.4).
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Fig. 9.4. Logarithmic plot of the expected number of substitutions, , vs. the number
of mismatches per nucleotide, (solid black). In random sequences, . Dashed
lines indicate the variance of the estimate of .

Equation (9.11) contains neither nor separately. In particular, it is not possible
to derive separate estimates for or without further information. In order to cali-
brate the molecular clock, the relationship between sequence divergence and actual
divergence time has to be known at least for one sequence pair from an independent
source. Paleontological data is often used for this purpose. Given such a calibration,
the divergence times for arbitrary sequence pairs may be inferred. However, in prac-
tice there are important caveats to be considered. For instance, the rate of evolution
may not be constant over time or sequences may not evolve according to a neu-
tral model. One way to deal with the latter is to take into account possible selective
constraints in the process of evolution and to distinguish between synonymous and
non-synonymous substitution rates when comparing protein coding sequences.

9.6 Coding Sequences: Synonymous and Non-Synonymous
Substitutions

In protein-coding DNA, substitutions are grouped into synonymous substitutions,
which leave the encoded amino acid unchanged, and non-synonymous substitutions,
which also change the encoded amino-acid. Consider an alignment of two protein-
coding sequences (Fig. 9.5). In order to compute the implied substitution rate,
we first determine the total numbers of synonymous ( ) and of non-synonymous
( , amino-acid-changing) sites. Next, we count the synonymous ( ) and non-
synonymous ( ) mismatches. In analogy to Equation (9.13), one can then derive
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and , the number of synonymous and non-synonymous substitutions per site,
respectively. Under the Jukes-Cantor model, these formulas are

and (9.15)

(9.16)

In order to apply these equations, one first needs to obtain and . Consider
sequence 1 in Figure 9.5 and assume that the grouping of nucleotide triplets reflects
the reading frame (i.e. frame in this case). For any site let denote the possible

Phe Thr Val Val Asn
sequence 1 TTT ACT GTC GTC AAT

::: ::: :: : : :
sequence 2 TTT ACT GTT GCC ACG

Phe Thr Val Ala Thr

Fig. 9.5. Alignment of two coding sequences.

number of synonymous changes at this site. can take values , , , or and can
be read from the genetic code table (Table C.4). In sequence 1, we start with the
first position of the Phe codon, which, like most first and second codon positions,
allows no synonymous changes, i.e. . At the second codon position we get
the same result ( ), but at the third position . Switching to the
next triplet encoding Thr, we find at its first position and so on. Any site

is counted as -synonymous and as -non-synonymous. In the
example, the first site of sequence 1 is therefore -non-synonymous, the second site
also, and the third site is -synonymous and -non-synonymous. Generally, the
total number of synonymous sites in sequence 1, , in a (gap-free) alignment of
length is

and the total number of non-synonymous sites is

The total number of synonymous ( ) and non-synonymous ( ) sites in the com-
plete alignment is the average of the numbers from sequence 1 and sequence 2
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and

respectively. In the above example, , , and . For the
non-synonymous sites one has , , and .

Next, the number of synonymous and non-synonymous mismatches between se-
quence 1 and sequence 2, and , need to be counted. There may be one, two,
or three differences in a pair of codons. If there is only one mismatch, it is counted
as one synonymous or one non-synonymous difference depending on whether the
amino acid is conserved between the sequences or not. For example, the third posi-
tion in codon in Figure 9.5 carries one synonymous difference, the second position
in codon carries one non-synonymous difference. If there are two or three differ-
ences in a codon pair, such as in the last codon of the example, one needs to con-
sider the possible pathways which can produce the observed constellation. Depend-
ing on the pathway chosen, different numbers of synonymous and non-synonymous
changes may be counted. For example, converting codon AAT to ACG requires at
least two changes, one from A to C and one from T to G. The two possible pathways
are:

pathway 1: AAT
1 non-syn.

ACT
1 syn.

ACG

pathway 2: AAT
1 non-syn.

AAG
1 non-syn.

ACG

Evidently, the number of non-synonymous and synonymous changes depends
on which codon position is changed first. This leaves the problem of choosing be-
tween the different pathways. One possibility is to consider all of them, but to ap-
ply a certain weighting scheme. The simplest weighting scheme assigns uniform
weights. Accordingly, and are the arithmetic average of synonymous and non-
synonymous mismatches over all possible pathways. This strategy was suggested by
Pamilo and Bianchi [195] and is implemented for example in the program DIVERGE,
which is part of the Wisconsin software package [86]. According to the Pamilo and
Bianchi algorithm, one gets for the above example
and . Thus, the numbers of substitutions per site
are and . The ratio is . This ra-
tio can be used as a test statistic to detect deviations from a neutral model of
evolution. In the absence of selection the ratio should be close to one. Values
smaller than one are indicative of purifying selection (the turn-over of amino acids
is slower than expected under neutrality) while values larger than one are indica-
tive of strong positive or diversifying selection (turn-over of amino acids is faster
than expected). Such tests are implemented, for instance, in the software PAML
(abacus.gene.ucl.ac.uk/software/paml.html).
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9.7 Substitutions in Globin Sequences

Table 9.2 shows the values of and obtained with the program dists1 [127]
for the globin coding sequences. Linear regression yields correlation coefficients of

and for the and data, respectively (Fig. 9.6A). Compared to the
correlation coefficient of for the DNA data shown in Figure 9.3A, it appears
that the synonymous substitutions have a less clock-like behavior. In particular, the

-value for human -globin is puzzling. On the other hand, the -values cluster
very tightly around the regression line and produce a similar correlation coefficient
as the amino acid data ( ) in Figure 9.3A.

Table 9.2. Number of substitutions per bp between human -globin and five other globins .

(JC) (K) (JC) (K) (JC) (K)
human
chimp
horse
carp
human

only the coding sequences (CDS) of the genes are considered
calculations are performed with the program dists1 [127]; JC refers to the Jukes-Cantor

model, K to the Kimura model

The generally observed low ratio of to in the comparison of human -
globin with its orthologues in chimpanzee, horse, and carp suggest that their evo-
lution is subject to purifying selection (Fig. 9.7A). In the comparison of human

-globin with its paralogue -globin one finds less evidence for purifying selec-
tion. A reasonable biological explanation for this is that duplicated genes may be
less subject to functional constraints and may therefore accumulate non-synonymous
changes more rapidly. On the other hand, the coding sequences of the recently du-
plicated human paralogues - and -globin are completely identical, leading to

. Differences in the two genes are limited to the non-coding part.
For a more rigorous analysis, it is advisable not to lump paralogues and orthologues
together. When the data point for the human -globin gene is removed from the re-
gression analysis, the correlation coefficient for the data increases to the value
of (gray line in Figure 9.6A). Instead of plotting vs. divergence
time, one may be interested in identifying regions under selection within a gene.
Figure 9.7B shows the result of a sliding window analysis of the ratio for
the human/horse comparison. The window size in this example was set to 120 bp
and the step size to 30 bp. The resulting graph oscillates around its mean value of

(Table 9.2). There is a minimum of around position 300,
indicating high conservation of the encoded amino acids in this region. This part of
the protein corresponds to the heme-pocket. However, the oscillations are in part also
due to random fluctuations around the mean value as described by the variance of the
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Fig. 9.6. A: Number of substitutions per bp for the globin data (Table 9.1) inferred from the
alignments and using the Jukes-Cantor model as implemented in the program dists1 [127].
Regression lines for the full data set (five comparisons) are in black. The regression line in
gray is obtained when the comparison of human -globin and -globin is excluded from the
analysis. The correlation coefficients are quoted in parentheses. B: Plot of vs. for a set
of 100 rodent-human orthologous genes. The solid line represents the linear regression line,
the dashed line the diagonal .

substitution rate in Equation (9.14). To distinguish random fluctuations of the ratio
from deviations caused by selection, a rigorous statistical test is needed.
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Fig. 9.7. A: Plot of the ratio of non-synonymous to synonymous substitutions ( ) for
the five globin comparisons (Table 9.1). Horse and carp -globin, which are orthologous to
human -globin, have almost identical values. The paralogues human - and -globin differ
strongly. B: Sliding window analysis of the human -globin vs. horse -globin comparison.

-axis: position along the coding sequence. Data points were taken in a window of 120 bp
and step size 30 bp. and values were calculated with the program dists1 [127].
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9.8 Applications of

Computations of relative synonymous and non-synonymous substitution rates are
usually carried out in order to detect selection on protein-coding genes. Such investi-
gations may either concentrate on a single gene of interest, or—given the completion
of suitable genome sequencing projects—survey entire proteomes.

9.8.1 A Language Gene?

Language is an exclusively human trait. This assertion may surprise some readers,
as reports of the allegedly fabulous linguistic abilities of intelligent animals such
as chimpanzees and dolphins periodically capture the public imagination. However,
we can safely state that no animal is capable of the kind of rule-based, open-ended
sentence production that three-year old children have mastered to a large extent. In
contrast, no human population without language has ever been discovered. In the
same highly specialized way in which some animals can fly and others can swim, we
can talk [203].

There is both a “nature” as well as a “nurture” aspect to this ability. Any new-
born infant discovers the grammatical rules of whichever language he finds himself
surrounded by. However, a childhood spent without verbal interaction leads to a life-
time of linguistic disability [203]. The “nature” part of language acquisition must be
grounded in genetics, but until the early 1990s there was no suitable model to study
this in. This changed with the publication in 1990 of a report on a family with a
dominantly inherited severe speech and language disorder [138]. Affected members
of this family, known as KE, are deficient in the coordinated movements required for
speech; for example, they have difficulty pronouncing somewhat complicated words
such as “rhinoceros”. However, there was immediate debate about the precise nature
of the disorder. One opinion was that it consisted of a blindness to grammatical fea-
tures such as case markers, etc. Others held that the disorder was due to problems
in language production due to impaired control of facial movements. Finally, it was
argued that the disorder was not attributable to a single cause. This uncertainty about
the interpretation of the disorder’s phenotype has persisted to the present day [138].

In contrast, the gene underlying the disorder was discovered in 2001. Forkhead
box protein 2, or FOXP2, belongs to a large class of transcription factors known as
winged-helix or forkhead proteins. It is located on human chromosome 7 (7q31) and
its dominant splice form consists of 715 amino acids. Members of the KE family are
characterized by the single amino acid exchange Arg His . Disruption of
FOXP2 by a translocational breakpoint in an individual unrelated to KE results in
the same speech disorder observed in the affected KE family members [138].

There is a great difference between the disruption of a function and its construc-
tion. Clearly, changes in FOXP2 can lead to an impairment of linguistic ability, but
so can many other mutations. The question is, how central is FOXP2 for the con-
struction of our talkative phenotype? Presumably language has selective value and
this premise led to a study of the evolution of FOXP2 in the wake of its identification
[63]. Figure 9.8 displays an alignment of FOXP2 proteins from human, chimpanzee,
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gorilla, orangutan, rhesus, and mouse. The proteins are characterized by two poly-
glutamine stretches that are variable. Since this variability does not co-segregate with
any known phenotype, it is disregarded in the analysis. However, outside these two
regions, only four amino acid replacements have occurred since the divergence of
mice and monkeys 70 million years ago. Humans differ from the mouse sequence
at three positions, and a fourth substitution differentiates the orangutan. This places
FOXP2 among the 5% most highly conserved mammalian proteins [63].

Human
Chimp
Gorilla
Orang
Rhesus
Mouse

A
A
A
V
A
A

D
D
D
D
D
E

N
T
T
T
T
T

S
N
N
N
N
N

R

Fig. 9.8. Alignment of FOXP2 sequences. The four amino acid substitutions outside of the
poly-glutamine regions are marked by columns of residues. The two human-specific substi-

tutions are shown in bold. The forkhead domain contains the arginine (R ) that is mutated
to a histidine in affected members of the KE family. Adapted from [63].

If both the synonymous as well as the non-synonymous polymorphisms in
FOXP2 are plotted on the phylogeny of the respective animals, a striking pattern
emerges (Fig. 9.9): two of the three amino acid substitutions that separate mice
and humans are located on the human lineage. The human population is fixed for
these two amino acid replacements. Moreover, along the human lineage only non-
synonymous substitutions have taken place. The null hypothesis that there is no
human-specific ratio could be rejected with high significance ( ).
In other words, positive selection might have driven the fixation of the human FOXP2
variant [63]. Notice that it was the combination of polymorphism analysis and phy-
logeny reconstruction that lead to this conclusion. Calculation of substitution rates
for FOXP2 irrespective of phylogeny would have simply led to the detection of very
low ratios.

9.8.2 Selection in the Human Genome

Estimating synonymous and non-synonymous substitution rates is also a key method
in comparative genome analysis. In a search for positively selected genes in the
genomes of humans and chimpanzees, 13,731 annotated genes from humans were
compared to their chimpanzee orthologues [190]. Based on their ratios, the
genes with the strongest signal of positive selection included proteins involved in
sensory perception and immune defense (Table 9.3). Perhaps surprisingly, the list
of genes under strong positive selection also included genes involved in tumor sup-
pression and apoptosis. Some of the genes for spermatogenesis also displayed strong
positive selection. Given the great interest in the molecular basis of the difference in
cognitive abilities between humans and chimpanzees, it was perhaps disappointing
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Human Chimp Gorilla Orangutan Rhesus Mouse

years

Fig. 9.9. Synonymous ( ) and non-synonymous ( ) substitutions in the FOXP2 gene plotted
on the phylogeny of six mammals. Note that the distribution of polymorphisms along the
dotted branches connecting the most recent common ancestor of the clade to mouse and the
most recent ancestor of monkeys is unknown in the absence of an outgroup. Adapted from
[63].

to learn that genes with maximal expression in the brain showed little or no evidence
for positive selection.

9.9 Summary

In this chapter we studied the relationship between sequence variation and the history
of sequences. The concept of evolutionary relatedness of two sequences is connected
to the idea of a common ancestral sequence and is visualized by a tree with two
branches. The most widely used method to measure evolutionary relatedness is based
on an alignment. Starting from this, the number of evolutionary events separating two
sequences may be inferred. Here we concentrated on point mutations and showed
how the number of substitutions can be computed. As far as the evolution of protein
coding sequences is concerned, the number of substitutions must be disassembled
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Table 9.3. The top 12 genes showing evidence for positive selection in a genome wide compar-
ison of human and chimpanzee orthologous genes. and : non-synonymous and synony-
mous substitutions between humans and chimps, respectively; and : non-synonymous
and synonymous segregating sites in humans, respectively; LR: likelihood ratio from the like-
lihood ratio test of vs. in the human-chimp alignment. Adapted from
a comparative analysis of all genes in human and chimp by Nielsen and colleagues [190].

Gene Name Function Human-Chimp Divergence Human Polymorphism LR

PRM1 Substitutes for histones in sperm 9 0 0 2 10.1
CMRF35H Leukocyte membrane antigen 13 0 0 0 9.3
DGAT2L1 Fatty acid synthesis (presumed) 10 1 2 0 6.6
FLJ46156 Unknown 10 1 4 3 6.4
USP26 Testis-specific expression 11 0 1 0 6.2
C15orf2 Testis-specific expression 18 2 12 4 6.1
ABHD1 Unknown 6 0 4 1 5.8
SCML1 Transcriptional repressor, 15 1 0 0 5.7

embryonic development (hypot.)
OR2W1 Olfactory receptor 8 0 2 1 5.7
LOC389458 Unknown 8 0 1 0 5.5
APOBEC3F Antiretroviral factor 11 0 2 1 5.5
MS4A12 Unknown 8 0 1 1 5.4

into two components—synonymous and non-synonymous changes. By considering
the ratio of synonymous to non-synonymous substitutions, selection can be detected.

9.10 Further Reading

Wen-Hsiung Li has written a comprehensive textbook on molecular evolution [168].

9.11 Exercises

9.1. Why is the maximal number of free parameters in a DNA substitution model
equal to twelve?

9.2. Verify the approximation in Equation (10.9).

9.3. What is the expected mismatch percentage, if two random DNA sequences are
compared?

9.4. Verify the limiting property of matrix in Equation (9.3).

9.5. Derive for the two-parameter model.
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9.6. How many possible pathways exist if a pair of aligned codons differs at all three
positions?

9.7. The Jukes-Cantor as well as the Kimura model assume that different sites in a
DNA sequence evolve independently. What must be changed if this assumption is
dropped?
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Genes in Populations: Forward in Time

The very small range of selective intensity in which a factor
may be regarded as effectively neutral suggests that such a
condition must in general be extremely transient.
Ronald A. Fisher [76, p. 95]

The principal evolutionary mechanism in the origin of
species must thus be an essentially nonadaptive one.
Sewall Wright [263, p. 364]

Genetic diversity is ubiquitous and some of the best-known examples in humans in-
clude the different sex chromosomes, the different blood groups, and the presence or
absence of genetic diseases such as cystic fibrosis. In fact, except for monozygotic
twins, all humans are genetically distinct. At the molecular level this observation
corresponds to the knowledge that no two humans have the same genome sequence.
Although there is evidence for abundant large scale genetic variation between hu-
mans [126], a major fraction of the hitherto studied human variation concerns sin-
gle nucleotide polymorphisms (SNPs). When comparing two homologous sequences
from humans, there is approximately one such SNP per kilobase [244, 11]. However,
this number can vary widely between different genomic regions, between different
populations and it can be very different in other species.

As Gillespie has put it, it is the “great obsession” of population geneticists to
account for the causes and consequences of genetic diversity found in natural popu-
lations [87, p. 4]. A population is a reproductive community of organisms belonging
to the same species. Figure 10.1 illustrates that a genealogical tree of organisms
taken from the same species is generally much shallower than a species tree. As
a consequence, the number of mismatches and indels found in intra-specific align-
ments is generally much smaller than in inter-species comparisons. This, in turn,
has important implications for the way we interpret and model sequences and their
polymorphisms.

10.1 Polymorphism and Genetic Diversity

In Chapter 9 we have stressed the fact that new mutations originate as a single copy.
The chromosome carrying the lone new variant or allele can be passed on to multiple
descendants in subsequent generations. In this way, the frequencies of the novel and
of the previously existing allele, also called wild-type allele, may change. Depending
on factors such as chance and reproductive success of their carriers, both alleles will
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...ACAAGTAA...

HumanChimpanzee
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G(4)−−>C(4)

A(8)−−>G(8)

deletion(4)

present

past

between species:

within species:
genetic diversity

divergence

Fig. 10.1. A genealogical tree of DNA sequences. The black lines indicate the genealogical
history of a sample of four homologous DNA sequences. While the most recent common an-
cestor of human and chimpanzee existed about 5 million years ago, the last common ancestor
of the three human sequences belonged to an individual who lived approximately 50,000 years
ago. The gray lines indicate lineages which are not present in the sample or which became ex-
tinct. The amount of variation is generally much smaller within species (genetic diversity) than
between species (divergence).

be present for some time in the population. However, eventually only one allele will
survive and there is some chance that the new allele will have substituted the previ-
ous wild-type allele (Fig. 10.2). The fluctuation of allele frequencies due to chance
and random fixation of one or the other allele is called random genetic drift. The
simultaneous presence in a population of two or more alleles at a defined position in
the genome is called a polymorphism. A single nucleotide polymorphism, or SNP,
refers to a polymorphism at a single nucleotide site in the genome. Its cause is a
point-mutation, i.e. a single base exchange. The vast majority of SNPs are bi-allelic.
An example is the G C polymorphism in the human lineage in Figure 10.1, with
the two alleles G and C at position . Another type of frequently occurring polymor-
phism is due to replication slippage and becomes manifest as length polymorphism,
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Fig. 10.2. Polymorphisms originate as mutations and may turn into substitutions due to ran-
dom genetic drift. A computer simulation was performed under a two-allele neutral Wright-
Fisher model with parameters and . The trajectory shown and originating
at generation eventually reaches frequency . In practice, the term “poly-
morphism” is often used only for those cases in which the frequency of the minor allele is

; this corresponds to the area shaded in gray.

in particular in tandem repetitive DNA. Stretches of tandemly repeated DNA are also
called micro- or minisatellites, depending on the size of the repeat unit (Fig. 10.3A).
Typical microsatellites have repeat units of length 2-3 bp, minisatellites of up to sev-
eral 100 bp. Microsatellites usually are multi-allelic and constitute important genetic
markers because of their high variability between organisms.

The average amount of polymorphisms measured within a population and across
some genomic region is called genetic diversity. The first study of genetic diversity
in D. melanogaster at the nucleotide sequence level was published by Kreitman in
1983 [152]. He sequenced a stretch of 2,721 bp at the Adh locus in a sample of 11
flies. Kreitman found 43 single nucleotide polymorphisms among the 2,721 sites. In
addition, his data set contained six indels, yielding a total of 49 variable sites. Two
out of the 11 sequences were identical, of the remaining nine each occurred only
once in the sample (Table 10.1). Notice, however, that Drosophila strain Wa-F is
distinguished from strain Af-F by a single nucleotide in the length of the insertion

located in the 3’ untranslated region. In our subsequent treatment of this data
set we will ignore this polymorphism and say that it contains a total of nine distinct
alleles.

We can also combine the analysis of genetic variation found within a population
or species with that found between species. For example, we may compare two se-
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A B
single nucleotide polymorphism:

indiv.1

indiv.2 ...ACATTCGT....

...ACGTTCGT....

...ACGGAGAGAGAGAGATTCGT....

...ACGGAGAGAGATTCGT....

indiv.1

indiv.2

small−tandem−repeat polymorphism:
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...ACACTAA...

...ACAGTAG...
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Chimp1
Chimp2
Human1
Human2
Human3

fixed
shared
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Fig. 10.3. A: Comparisons within a species or a population. The sketch shows the difference
between single nucleotide vs. length polymorphisms; the lower example depicts a dinucleotide
tandem repeat as found in microsatellites. The two alleles differ in their numbers of dinucleo-
tide repeats. B: Comparison within and between species or populations. According to their
distribution, the polymorphisms found in the five individuals are shared, private, or fixed dif-
ferences.

quences of a particular gene from chimpanzee with three sequences of the same gene
from human (Fig. 10.3). A private polymorphism is found only within one of the two
species. In our example the private polymorphism only occurs in the chimpanzee. In
contrast, a shared polymorphism is variable in both species. A fixed difference, fi-
nally, is monomorphic within a species but polymorphic between (Fig. 10.3B).

10.2 The Neutral Theory

The contribution of natural selection to shaping the genetic diversity around us has
been debated for over a century. Darwin himself wrote [44, p. 103]

I am inclined to suspect that we see in these polymorphic genera variations
in points of structure which are of no service or disservice to the species.

In the 1920s the American population geneticist Sewall Wright and his English col-
league Ronald A. Fisher started a controversy over the relative importance of adap-
tive and non-adaptive evolution that was to last until Fisher’s death in 1962 [204].
Fisher saw little role for non-adaptive evolution, while this was an important com-
ponent of Wright’s models of evolution. However, by the 1950s Fisher’s view that
essentially all heritable differences were adaptive had gained an ascendancy that is
rather surprising, given Darwin’s skepticism in this matter.

In 1966, two studies on genetic diversity in natural populations were published
that challenged the prevailing view. One study focused on genetic diversity in the
fruit fly Drosophila melanogaster [118, 167], the other on human genetic diversity
[104] and both were based on allozyme data. In order to collect these, total protein
is extracted from an organism, run on a non-denaturing gel, and then stained for
specific enzyme activity. The result is one or more bands on the gel, whose positions
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indicate the allele of the gene encoding the enzyme [210]. In Drosophila, 39% of the
loci investigated were polymorphic, leading to the estimate that 8–15% of all loci in
an individual fruit fly were heterozygous [167]. In humans, the amount of genetic
diversity uncovered was also surprisingly high [104]. This lead Kimura [139] and,
independently, King and Jukes [145] to propose that the unexpectedly high levels
of polymorphism at the molecular level were best explained by assuming that the
vast majority of them had no influence on an organism’s fitness. Under this neutral
hypothesis of molecular evolution, changes in allele frequencies between generations
are due to chance, that is genetic drift, alone and not due to selection. As we will see
in more detail below, the main effects of drift are:

1. Undirected change of allele frequencies.
2. Removal of established genetic diversity. The speed with which this happens

is inversely proportional to population size. Loss of diversity through drift is
therefore mainly relevant in small populations.

3. Removal of new mutations. This is important both in small as well as in large
populations because mutations are the only source of genetic diversity and hence
constitute the “raw material” of evolution.

The birth of new alleles through mutation and their death through drift tend to come
to a mutation drift equilibrium. According to the neutral theory, most genetic diver-
sity, which can be seen today, is a reflection of this equilibrium [141].

Two lines of reasoning were used to support the neutral theory. The first was put
forward earlier by Haldane [102] who proposed that allele substitution is the result
of positive selection acting on favorable alleles. However, each substitution is in-
evitably linked to a number of genetic deaths of those individuals that do not carry
the favorable allele. This effect was called the genetic load or the cost of natural
selection. Haldane [102] had estimated that a species could tolerate at most one sub-
stitution every generations in order to cope with the cost of natural selection.
Kimura examined globins (see Table 9.1) and other protein sequences from various
vertebrates and calculated an average rate of amino acid substitution per
years per amino acids [139]. Assuming a size of the mammalian genome of

nucleotides, he estimated that this rate would correspond to nucleotide
replacements per year, or one substitution per years. For the average mammalian
generation size of four years, this amounts to substitutions per generation [139].
This figure contrasts strongly with Haldane’s result, unless the assumption that all
substitutions are selective is dropped.

The second line of reasoning, put forward by King and Jukes in 1969, stressed
the fact that the genetic code allowed for synonymous substitutions which were not
affecting the encoded protein and were therefore invisible to selection (Table C.4).
The discovery only a few years earlier of the genetic code and its degeneracy [191]
was an essential prerequisite to this argument.

In this chapter we consider neutral models of evolution that move forward in
time, while backward in time models are introduced in Chapter 11. We start by ex-
plaining how population genetic quantities are simulated forward in time, before
approaching evolutionary models of increasing complexity and hence realism.
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10.3 Modeling Evolution Forward in Time

Evolutionary processes tend to unfold over long periods of time. There are excep-
tions to this rule, such as the evolution of pathogenic viruses and bacteria, which
is quick enough to generate vaccine-resistant or antibiotic-resistant strains within a
few years—a very short period on an evolutionary time scale. However, even with
microbes it takes dedication to observe evolution directly [61].

A popular substitute for direct observation of complex dynamical processes are
computer simulations. Figure 10.4 demonstrates how simple simulations of genetic
quantities can be carried out forward in time: the population, usually consisting of
a large set of haplotypes or genotypes, is represented in its entirety and reproduces
from one generation to the next by resampling with replacement. Genetic quantities
of interest, for example the frequency of an allele, are then computed either from the
entire population, or from a random sample.

Sample 1 Sample 2 Sample 3

Generation 1 Generation 2 Generation 3

Fig. 10.4. Simulating the evolution of a population (size ) on a computer by moving forward
in time. As the simulation moves from one generation to the next, samples (size ) are drawn
from which the statistic of interest, e.g. the frequency of a particular allele, is calculated.

Consider one generation of a population of size consisting of two alleles,
and : . The frequency of allele , , is equal to

and . Now simulate the process of evolving from the present
generation to the next by rolling a die six times returning, say, . For
the 1 we draw the first allele ( ), for the 3 the third ( ), and so on. This leads to
the allele configuration in the second generation. The allele
frequencies have changed and we repeat the random drawing of alleles to produce
the next generation. This time the result is ; in other words,

has become fixed and extinct, as in the absence of mutation there is no way of
regenerating . Thus, genetic diversity has been lost.

A standard measure of genetic diversity is the heterozygosity, , which is the
probability that two randomly drawn alleles are different. So for we have



194 10 Genes in Populations: Forward in Time

and for the diversity is

In finally, drops to and remains stuck at this value in all subsequent
generations. Our simple experiment reconfirms two important points about drift: (i) it
changes allele frequencies and (ii) it removes alleles from the population irreversibly.

10.4 The Neutral Wright-Fisher Model

The neutral Wright-Fisher model is the simplest population genetic model and makes
the following assumptions. A population is represented as a set of genes. When con-
sidering diploid organisms, i.e. those with a double set of chromosomes such as
humans, there are genes in a population of organisms. The model further as-
sumes that population size is finite and remains constant over time. Generations are
discrete and non-overlapping; therefore, they can be indexed with integers ,
and so forth. The genes of generation are drawn randomly from the gene pool,
i.e. the genes present in generation (Fig. 10.5). Drawing of genes is carried out with
replacement since any particular gene may be passed on to more than one offspring.
The biological counterpart to random sampling is the assumption of random mat-

Fig. 10.5. Evolution in a Wright-Fisher population. Arrows indicate the transition from gen-
eration to by drawing with replacement genes from generation . Note that the
frequency of alleles (represented as filled and empty circles) may change due to genetic drift.
In this example, the frequency of black alleles decreases from to .

ing or panmixis in sexually reproducing organisms. Randomly mating individuals
have no preference for a specific partner based on phenotypic traits or geographic
proximity.
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10.4.1 Fixation and Loss of Alleles

To formalize the ideas just presented, assume there are two versions of a given gene,
the alleles and . Let them be present in a finite diploid population of size in
generation with relative frequencies

and

where is a number between and . The frequency depends on the
outcome of a binomially distributed random variable with parameters and .
The possible states in generation have therefore the conditional
probabilities

Prob (10.1)

The righthand side of Equation (10.1) is independent of . This property is called
homogeneity. The associated stochastic process is Markovian with stationary
transition probabilities and transition matrix

Furthermore, the probabilities Prob are obtained from the matrix product
, for any and . The boundaries and are absorbing states. This

property corresponds to our observation made in the die rolling experiment that once
an allele is lost, it cannot be restored. The complementary allele is fixed and remains
so forever. Formally, if for some time then for all . Two
realizations of this process are depicted in Figure 10.6.

Claim 10.1 Either one of the two alleles will eventually be fixed, i.e. there is a time
, such that

Prob (10.2)

for all times .

PROOF. Let be the number of -alleles at time and the cumula-
tive binomial probability with parameters and , i.e.

For any time and independently of any initial conditions it holds that
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Fig. 10.6. Simulation of genetic drift over generations in a two-allele system. In the gray
trajectory allele is lost at time , in the black trajectory allele is fixed at .
The initial frequency of allele in both cases is and population size is .

Prob

The last inequality is valid for any value of . Thus, the probability

Prob for all (10.3)

The limit of the right side of Equation (10.3) is as grows and remains constant.
The probability that does not hit one of the boundaries before time can be made
arbitrarily small if is allowed to be sufficiently large.

Loss or fixation of an allele by drift is certain, but in large populations either outcome
may take very long to reach. For large the expression is close to , thus
the righthand side of Equation (10.3) is close to one. In the limit of infinitely large
populations, there is no drift and allele frequencies stay constant in time. This is one
of the two assertions of the Hardy-Weinberg law.
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10.4.2 The Hardy-Weinberg Law

Consider again two alleles, and . Let their frequencies in an infinitely large, pan-
mictic population be denoted by and . The three possible genotypes, the two
homozygotes AA and aa and the heterozygote Aa, have frequencies , , and

. The Hardy-Weinberg law states that (i) from the second generation onwards the
allele frequencies remain constant forever and that (ii) the genotype frequencies are
uniquely determined by the allele frequencies and vice versa by the relationship

In other words, alleles are assembled independently into genotypes. The law is
named after George Hardy and Wilhelm Weinberg, who formulated it independently
in 1908. In practice, one often finds the Hardy-Weinberg law to be violated. This
is mainly due to the fact that natural populations are not infinitely large. Other pos-
sible factors that may lead to deviations from the Hardy-Weinberg frequencies are
differential action of natural selection upon different genotypes, non-random mating
between individuals, or population substructure instead of panmixis.

10.4.3 Fixation Probability and Time to Fixation

We return now to a population of finite size . In contrast to Claim 10.1, stating that
either of two alleles will eventually be fixed, the following statement concerns the
fixation probability of a particular allele.

Claim 10.2 The fixation probability of an allele equals its current frequency .
Formally,

(10.4)

PROOF. There are several proofs of this claim. Recurrence theory of finite state
Markov chains provides the adequate framework and a detailed treatment of this can
be found in a monograph by Ewens [65]. Here, we only note the following. As a
consequence of Claim 10.1

Furthermore, the limiting matrix has the form

...
...

...
...

...
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Given that for some , the initial distribution in the state space
is , where entry is the -th entry in this

vector. By evaluating the product at its -th entry, one obtains

In fact, this is true for any time : given the process is in state at time , the
fixation probability for allele is equal to

The reason is, once again, the time-homogeneity of the underlying Markov process.
How long does it take for an allele to be fixed? To answer this question, the mean

absorption time for, say, allele with current frequency ,
has to be determined. Note, that the conditional mean absorption time is
different from the conditional mean fixation time, . For the latter, the addi-
tional condition that will be fixed (and not lost) is imposed (Fig. 10.7). A rigorous

0 0.5 1
0

0.5

1

mean time to absorption
mean time to fixation

tim
e

in
un

its
of

initial frequency

Fig. 10.7. Time to absorption and time to fixation of an allele as a function of its current
frequency. Time is measured in units of generations.

treatment of this problem either within the theory of discrete Markov chains or con-
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tinuous diffusion processes can be found in the book by Ewens [65]. However, there
is a very instructive approximate solution to this problem. Let and

. From Equation (10.1) one obtains for the expected change in
allele frequency

and, similarly, for the second moment

Treating allele frequencies as a continuous variable , we write instead of .
Mean absorption time is , given the process is currently in state . At the
next point in time, the process is expected to be in some state and the
counter of the time units which the process has spent before reaching or

is increased by one. Formally,

Assuming that is twice differentiable we approximate the above equation by its
Taylor series up to order two and obtain

Thus, one has to solve
(10.5)

subject to the boundary conditions . The solution is

(10.6)

With the above choice of boundary conditions, Equation (10.6) represents the mean
time to absorption, , given the current allele frequency is . In particular,
for a newly arising allele with frequency , the mean absorption time is

For the mean conditional fixation time essentially the same arguments
can be invoked. One only has to note that the transition probabilities (Eq. (10.1))
have to be replaced by the conditional transition probabilities that allele will
not be lost. At every generation, it has to be ensured that allele leaves at least one
offspring. Therefore, only alleles can be drawn at random and is the
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probability that among there are exactly alleles of type . Therefore,
these transition probabilities are

(10.7)

The differential equation, analogous to Equation (10.5), now reads

Its solution, subject to the boundary condition , is

(10.8)

In particular, for a newly arising allele with frequency , one obtains

(10.9)

Finally we mention the average conditional time to loss of an allele; it is

(10.10)

Given that the allele is lost and has frequency , it takes only

generations on average until it is lost.
An exact formulation of these arguments was provided by Kimura and Ohta [143]

based on the theory of diffusion processes.

10.4.4 Loss of Genetic Diversity

We now return to the study of genetic diversity under a two-allele model. Allele
is sampled with probability , allele with probability . There are two ways in
which two different alleles may be sampled: choose allele first and then allele or
vice versa. Therefore, genetic diversity in the two-allele model is

(10.11)

Note that can also be interpreted as the expected heterozygosity (hence the )
of a diploid individual, that is, the probability that a diploid individual carries two
different alleles. Let be a binomially distributed random variable with parame-
ters and
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and note that the second moment may be written in terms of the variance and the first
moment as

The dynamics of under random drift can then be determined as follows:

Iterating the above procedure, one finds

(10.12)

Thus, heterozygosity decays under random genetic drift at a rate of per gen-
eration. This is another way of stating that drift reduces genetic diversity. As an
immediate consequence of Equation (10.12), one finds the “half life” of heterozy-
gosity

(10.13)

With the approximation , it follows that

(10.14)

The half life of heterozygosity depends linearly on the population size. The above
arguments all rest upon the assumption that there are no new mutations entering the
population. But in reality, there is continuous influx of new alleles into a population,
created by mutation. The key arguments of the neutral theory of molecular evolution
rest upon the interplay of drift and mutation, which we consider next.

10.5 Adding Mutation to the Model

Depending on the degree of resolution with which molecular evolution is studied,
different models of the mutation process are employed. Here, we describe the finite
alleles model, the infinite alleles model, and the infinite sites model.
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10.5.1 Finite Alleles Model

The finite alleles model, in particular the two-allele model, has originally been used
to describe the evolutionary dynamics in situations where the alleles represent macro-
scopically observable phenotypes, such as eye or body color. The mutation dynamics
in this case is modeled as switching between a given finite number of states. In par-
ticular, mutations can also be reversible and there is no influx of new alleles.

In fact, one-locus two-allele models with back mutation belong to the classi-
cal repertoire of theoretical population genetics and have been treated by all three
founders of the subject, Haldane, Wright, and Fisher. In this case there exist non-
trivial equilibria of the allele frequencies. In the presence of drift, there is a station-
ary density of the allele frequency distribution [262]: given a diploid population of
size , two alleles and , and mutation rates (for mutation from to )
and (for mutation from to ) per chromosome per generation, the stationary
distribution of the frequency of allele is

The mean and variance are

and

If , then

Abbreviating by , the probability that two chromosomes, drawn at random
from the population, are of the same allelic type, is

This expression can also be interpreted as the expected fraction of homozygotes in
the population. The expected fraction of heterozygotes is then

With the advent of protein electrophoresis in the 1960s and the observation of
unexpectedly high diversity within species [167, 165], the finite alleles model started
to be superseded by the infinite alleles model.
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10.5.2 Infinite Alleles Model

With the infinite alleles model [142] it is possible to account for continuous muta-
tional influx into a population. In fact, its name derives from the assumption that any
mutation event creates a new allele, which was previously not seen in the population.
There is no back mutation to previous states. As a consequence, two alleles can be
identical only due to shared ancestry rather than chance mutation to the same allele.
Hence identical alleles are said to be identical by descent. In the framework of the
infinite alleles model it is possible to decide whether any two alleles are identical or
not. However, it is not possible to quantify the difference, for instance in terms of the
number of nucleotide mismatches between two different alleles. Put more formally,
allele space is a metric space with the trivial metric

if
if

The infinite alleles model is reasonable under many real-world scenarios, when the
level of resolution is fine enough. As an example, consider again the data from Kreit-
man shown in Table 10.1. While he found only two electrophoretic variants in his
sample of eleven genes, the number of alleles which are distinguishable at the level
of nucleotides was nine. To convince yourself why back mutation can be neglected
when dealing with (infinitely) many alleles, consider a sequence of 180 nucleotides.
Once this sequence has started mutating, it is unlikely to ever return to its original
state, as there are distinct sequences it can reach. Compare this to the
estimate that our universe has a volume of Å [59, p.35] and you can appre-
ciate that the space of possible nucleotide sequences is truly vast even for sequences
of only moderate length.

10.5.3 Infinite Sites Model

Under the infinite sites model each mutation affects a different position along a
stretch of DNA that has never mutated before. This model is realistic when describ-
ing and interpreting the evolution of sets of DNA sequences, where the mutation rate
per site is low. Allele space in the infinite sites model is equipped with a non-trivial
metric. The natural distance between any two sequences is the number of sites at
which the two aligned sequences differ. If all sequences have the same length and
are alignable without gaps, this metric is also called Hamming distance.

10.6 Mutation Drift Balance

10.6.1 The Rate of Fixation

How fast and how often new alleles are fixed is determined by the time to fixation
and the rate of fixation. Figure 10.8 shows sample trajectories of newly arising alle-
les which eventually reach fixation. Under the infinite alleles or infinite sites models
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Fig. 10.8. Fixation of new alleles under an infinite alleles or infinite sites model. -axis: time
in generations, -axis: relative frequency of mutant alleles. Shown are only the trajectories
of those alleles which eventually reach fixation. A: , mutation rate ; B:

, mutation rate ; C: , . The time to fixation ( ) depends
on (compare A and B), while the rate of fixation depends on (compare B and C). The
average time to fixation is generations. At any given time a random number of
alleles is present in the population. This number depends on and . Its lower bound estimate
is (Eq (10.20)). For our examples (A), (B) and (C). Note that
the figures do not display the trajectories that do not reach fixation, which are nevertheless
included in this estimate.
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and in a diploid population, new alleles are generated independently in each
generation. Any individual allele is eventually either lost or fixed. There is no equi-
librium frequency of individual alleles different from or . The rate of fixation
is the product of newly generated mutants per generation times their probability of
fixation,

This is the rate of molecular evolution, or rate of substitution, introduced in Chap-
ter 9.

The equality of substitution and mutation rates under the neutral infinite alleles
model is an immediate, but nevertheless surprising result given our intuition that the
mutation rate is some sort of universal constant, while the rate of substitution should
be a function of the population size. Both intuitions are correct and under neutrality
the corresponding terms cancel out. This calculation does not hold if mutations are
non-neutral.

loss fixation

polymorphic alleles

lost alleles fixed alleles
=’substitutions’
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Fig. 10.9. Mutation drift balance may be visualized as a balance of influx and outflux of
alleles. The mean sojourn time of a new allele destined to be lost is (Eq. (10.10)).
The mean time to fixation is (Eq. (10.8)).

10.6.2 Number of Alleles

We have seen that each individual allele is either lost or goes to fixation. However,
as genetic diversity is lost through drift, new diversity is generated through mutation
and these two factors lead to an equilibrium between the influx of mutations into the
gene pool and their subsequent outflux (Fig. 10.9). We can now ask, is there an equi-
librium under mutation and drift for the number of alleles which are simultaneously
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present in the population at any given point in time? A lower bound estimate of this
number was derived by Kimura and Crow [142]. Consider two randomly chosen al-
leles in generation . Let be the probability that they are identical by descent,
i.e. derived from either the same parent or from two alleles which were already iden-
tical by descent in generation . The quantity is also called homozygosity.
The probability that two alleles are identical by descent in generation is derived as
follows. Either they have descended from the same allele in generation . The
probability of this is in a diploid population of individuals; or they
have not descended from the same allele in generation ( ), but
have descended from the same allele in some previous generation; by definition this
is . In both cases neither of the two alleles is allowed to mutate while being
passed from generation to generation . The probability of this is .
Summarizing, we can write

(10.15)

In order to solve Equation (10.15) for , we simplify the algebra by remembering
that biologically reasonable mutation rates are small and populations large. Hence,
we ignore terms multiplied by and and write

(10.16)

In an equilibrated population the fraction of alleles which are identical by descent
remains constant between generations, i.e. . Thus, when
replacing and in Equation (10.16) by , equilibrium homozygosity
can be written as

(10.17)

In case the number of alleles and their frequencies are known, homozygosity is
calculated as

(10.18)

where is the number of alleles and is the frequency of allele . The proportion
of homozygotes ( ) in the population is minimal if all alleles are equally frequent,

for all . In this situation, one has

(10.19)

and a lower bound estimate for the number of alleles in an equilibrated population
therefore is



10.6 Mutation Drift Balance 207

(10.20)

This number has been called the effective number of alleles by Kimura and Crow
[142] and numerical values for this are shown in Figure 10.8. Note that the scaled
mutation rate, , which plays a central role in population genetics theory, is
featuring again in this formula. For non-uniformly distributed allele frequencies the
number of alleles is larger than . In Section 10.7 we will come back to a formula
for the number of alleles in a sample drawn from an equilibrated population.

10.6.3 Genetic Diversity

There are several measures of genetic diversity. One of them is the number of differ-
ent alleles in a population. This statistic has the advantage that it is easy to measure.
However, its disadvantage is that it is dependent on the size of the sample from which
diversity is estimated. This makes it hard to compare measurements which are based
on different samples with different sizes.

Another measure of genetic diversity is the proportion of heterozygotes in a po-
pulation or, equivalently, the probability with which two randomly chosen alleles are
different. In case of known alleles and allele frequencies, heterozygosity is

On the other hand, and as an immediate consequence of Equation (10.17), equilib-
rium heterozygosity is

(10.21)

This result entails one of the corner stones of the neutral theory of evolution [139].
Diversity in neutrally evolving populations is monotonically increasing with the
scaled mutation rate . In fact, if , then . Equation (10.21) applies
to average heterozygosity. Under the action of mutation and drift, heterozygosity is a
Markov process with stationary transition probabilities. For each point in time, het-
erozygosity is a random variable, . Three realizations of this stochastic process
under the infinite alleles model are shown in Figure 10.10. It demonstrates that het-
erozygosity as a random variable in time fluctuates around the value calculated in
Equation (10.21). The entire distribution of at a single locus and under the infinite
alleles model has been derived by Fuerst and colleagues [82]. In particular, for the
variance, , they obtained

(10.22)

Equation (10.21) plays a central role and will be rederived with different argu-
ments in Chapter 11. We consider further its implications. Notice first that Equa-
tion (10.21) establishes a relationship between heterozygosity , which can be



208 10 Genes in Populations: Forward in Time

0 100 200 300 400 500
generation

0

0.2

0.4

0.6

0.8

Fig. 10.10. Simulation of heterozygosity at three independent loci evolving under the infinite
alleles model. Each trajectory represents the heterozygosity at one locus. Input parame-
ters are and , which implies a mean heterozygosity of
(dotted line). Notice the fluctuations around the expected heterozygosity. For the parameters
considered the standard deviation is (Eq. (10.22)).

measured, and the unknown quantity . As an application consider the data set
shown in Table 10.1. If we ignore indels, we observe eight unique alleles and one
allele which occurs three times (Fr-F, Wa-F, Af-F). Hence, the observed heterozy-
gosity is , where the factor

corrects for the fact that we are using sample frequencies rather
than population frequencies [121]. Based on Equation (10.21) one would estimate
the scaled mutation rate to be , where the hat indicates that the value is
an estimate. Second, there are estimates of the (unscaled) mutation rate available
[51], which means that Equation (10.21) can be used to calculate the population size.
For Drosophila, Drake and his colleagues reported a mutation rate of
per bp per generation. Thus, the mutation rate for the 2,721 bp investigated in the
Adh region would be per generation. This yields an estimate of the po-
pulation size . We need to stress that population size refers here, as
always in our book, to the effective population size, not the census population size.
Roughly, effective population size is the number of reproducing individuals. This
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number is generally much smaller than the actual number of individuals. Finally,
Equation (10.21) predicts that heterozygosity approaches unity with increasing po-
pulation size. This prediction was central to attempts in the 1970s to falsify the neu-
tral theory by measuring in the largest populations known, those of bacteria. The
first of these studies came to the conclusion that for Escherichia coli , which
is far from unity [182]. However, the estimation of from is fraught with diffi-
culties. One of these follows from the shape of the graph of as a function of
shown in Figure 10.11. For large values of , cannot be predicted very accurately
as the curve flattens out. Moreover, Equation (10.21) is based on the assumption of
free recombination, which implies that all loci evolve independently of each other.
This assumption is not valid for asexual organisms such as E. coli [222, 175].
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Fig. 10.11. A: Expected heterozygosity and standard deviation as function of
the scaled mutation rate under the neutral infinite alleles model (Eqs. (10.21) and
(10.22)). B: Standard deviation as function of expected heterozygosity. The dashed line is a
plot of and shows that for small values of .

10.7 Sampling Alleles from Populations

10.7.1 Ewens’ Sampling Formula

A cornerstone of the study of the infinite alleles model is Ewens’ sampling formula
[64]. Consider a population in equilibrium under the neutral infinite alleles model and
a sample of size drawn from the population. The sample configuration is a vector

, where the components denote the number of
alleles represented exactly times in the sample. Then, . Ewens’
sampling formula gives the probability distribution for the sample configuration. The
probability for a particular configuration , where

are non-negative integers with the property , is

(10.23)
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where . Let further be the number of distinct alleles
in a sample of . Then, . The distribution of is

where is the coefficient of in the expansion of .
Ewens’ sampling formula is the basis for one possible test of the null hypothesis

of neutral evolution. More tests of this hypothesis are discussed in Chapter 12. Here,
we apply Equation (10.23) to the experimental data shown in Table 10.1. In this data
set sample size is ; therefore, we are dealing with a vector of the form

. The probability for this configuration is

For sample size , there are altogether possible configurations. The num-
ber of possible configurations is equal to the number of decompositions of into
integer summands without regard of order [1, sec. 24.2.1]. The probabilities for each
configuration depend only on . Figure 10.12 shows the probability distribution for
different numerical values of . The observed configuration is indicated by a vertical
black line. Crucial for deciding whether the observation is compatible with the model
of neutral evolution is an accurate estimate of . One can show that all information
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Fig. 10.12. A: Probability distribution of the possible configurations for a sample of size
and different values of . Configurations are ordered lexicographically. For instance,

configuration corresponds to the vector (i.e. all alleles are identi-
cal), configuration to , and configuration to the observed con-
figuration (i.e. there are eight singletons and one cluster contain-
ing three alleles). B: Probability distribution for and different values for . The observed
number of distinct alleles ( ) is indicated by the black vertical line. Vertical lines represent the
mean values for the three choices of .
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about which is deducible from a configuration is already contained in the num-
ber of distinct alleles , such that explicit knowledge of the configuration is not
needed. In statistical terms, is a sufficient statistic for . Indeed, the conditional
probabilities are independent of . It holds that

(10.24)

Thus, when writing the probability as a product of
and , only the last factor depends on .

This implies that a maximum-likelihood estimate of can be based on the probability
distribution of . Given an observation , it can be shown that this maximum
likelihood estimate is the solution of

(10.25)

Furthermore, using the fact that under neutral evolution
is independent of , one can construct a statistical test for the null hypothesis of

neutral evolution. Unlikely configurations of given would lead to a rejec-
tion of the null hypothesis. This idea is formalized in the Ewens-Watterson test.

Apart from the computation of the probability of an observed allele configuration
under the infinite alleles model, Equation (10.23) allows one to deduce the expected
number of singletons and the expected number of different alleles. The expected
number of singletons in a sample of genes is

(10.26)

The expected number of different alleles in a sample of is

(10.27)

where the last equality requires some arithmetical manipulations. In contrast, the
formula given by Kimura and Crow (Eq. (10.20)) is a lower bound estimate for the
number of simultaneously existing alleles in the population. In fact, is larger
than only if is sufficiently large. Furthermore, for large values of the expected
number of alleles in a sample, , may be smaller than the lower bound estimate
for the number of alleles in the population, (see Table 10.2).

Finally, we note the variance of . It is
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10.7.2 Application

For the data presented in Table 10.1, some values of and are shown
in Table 10.2. The observed number of alleles is . There are eight singletons
and one set of three identical alleles. There are two possible configurations with
. One of them—the one observed—is , the

other possible one is . From Equation (10.24)
the conditional probabilities are

The maximum likelihood estimator for derived from Equation (10.25) is

The observed allele configuration appears to agree well with the expected results for
and for the parameter (Fig. 10.12). On the other hand, 43

out of a total of 2,721 sites were polymorphic (or “segregating”), which is somewhat
less than the 58.6 segregating sites expected under neutrality (Table 10.1). Is
a reasonable estimate for D. melanogaster and a stretch of kb of its genome or do
the data have to be explained by other evolutionary mechanisms than mutation and
drift alone? After all, the two estimates of , obtained from Equation (10.21), which
was , and from Equation (10.27), which was , are similar but
not identical.

Table 10.2. Numerical values for the expected number of alleles, number of segregating sites
and singletons of the data presented in Table 10.1.

0.02 1.020 1.058 0.057 0.586 0.022
2.00 3.000 4.206 1.947 5.858 1.833
6.12 7.120 6.629 2.234 17.925 4.176
20.0 21.00 8.945 1.550 58.579 7.333

lower bound estimate according to Equation (10.20).
expected number of segregating sites according to Equation (11.8).

We will come back to the problem of testing the significance of the difference
between the neutral expectation and observation in Chapters 11 and 12.

10.8 Selection

The neutral theory of molecular evolution should not detract us for too long from
the really interesting question, namely how is adaptation of a species to certain en-
vironmental conditions possible? Most answers contain in one way or the other the
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concept of an “advantageous mutation” [76]. An organism carrying an advantageous
mutation, i.e. a genetic constitution which makes it better adapted to the given en-
vironmental conditions, will on average leave more offspring to the next generation
than its competitors. Such an organism is said to have an increased fitness. In a very
large population, which is the case envisaged by Fisher, the dynamics of such an
advantageous mutation can essentially be treated in a deterministic framework. The
following model captures the salient features of the spread of an advantageous mu-
tation within a population.

Let and be the relative frequencies of the two alleles “advantageous mutation”
(allele ) and “wild-type” (allele ), respectively. As always in a two-allele model,

. For diploid organisms, i.e. organisms which have two copies of each
chromosome, let the fitnesses of the three genotypes , and be

In other words, organisms with two copies of the advantageous mutation have a fit-
ness difference of compared to those which have two wild-type chromosomes.
The dynamics of the -type chromosomes is described by a difference equation
which accounts for the change in frequency of type when passing from one gen-
eration to the next

(10.28)

Note, that the denominator on the righthand side represents the average fitness of the
population, where the average is taken over the three possible genotypes. In fact, this
term is called mean fitness. The difference equation (10.28) is approximated by an
ordinary differential equation, the so-called deterministic selection equation

(10.29)

with the initial condition

The solution of this differential equation is

(10.30)

Since the advantageous mutation is initially present only on a single chromosome,
one typically assumes , where is the (effective) population size. The
time which the advantageous mutation requires to increase from frequency to
is obtained by solving

for . This is
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(10.31)

It can be shown that the righthand side of Equation (10.31) is a good approxima-
tion of the fixation time, , for an advantageous allele also in a non-deterministic
framework.

For the above fitness regime, mean fitness simplifies to

Since is a monotonically increasing function in , mean fitness also has this
property. In fact, Fisher’s fundamental theorem of natural selection states that “mean
fitness of a population increases”. In other words, evolution is a hill-climbing pro-
cess towards a fitness peak. However, it has to be emphasized that this is true only for
the deterministic dynamics of infinitely large populations. In finite sized populations,
positive selection and genetic drift act antagonistically. While a positively selected,
newly arisen, allele is still rare in a population, there is a non-zero probability that
this allele will be lost again by drift. It can be shown [65] that the fixation proba-
bility of an advantageous allele is goverend by its selective advantage and that it is
approximately

(10.32)

A positively selected allele initially increases at a rate per generation (see
Eq. (10.30)), while diversity is lost due to drift at a rate of per generation
(see Eq. (10.12)). Crucial for positive selection to prevail as an evolutionary force
over drift is the relation

(10.33)

Thus, rather than the net fitness advantage alone, it is its relation to population size
that is decisive for the possibility of adaptation. In sufficiently large populations,
there is a chance even for weakly selected alleles to become fixed. The issue whether
the “normal” mode of genome evolution is evolution under weak positive selection
is the matter of an old debate [153, 115]. One of the problems, implicated by Equa-
tion (10.33), is that the action of weak selection is hard to prove in laboratory ex-
periments. The quest remains to distinguish the action of selection from “molecular
noise”. This difficulty has been called the “uncertainty principle of molecular evolu-
tion” [235, 242].

The combined action of mutation, selection, and drift introduces rich dynamics
into the evolutionary system which allows for a variety of non-trivial equilibria de-
pending on the relative magnitudes of the selection coefficient, dominance effects,
mutation rate, and population size [32, 14]. A good part of the mathematical foun-
dation for these models has been laid out by Haldane, Fisher, and Wright in the first
half of the past century [100, 101, 76, 262].

10.9 Summary

This chapter is concerned with the dynamics of genes in populations. The neutral
Wright-Fisher model provides a convenient framework for describing such dynam-
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ics. This model is based on a population of constant size that evolves from one gen-
eration to the next by sampling the genes with replacement. Neutrality then simply
corresponds to the fact that all genes are equally likely to get transferred to the next
generation. Changes in allele frequencies are random and said to be due entirely to
genetic drift. Given such a model without mutation, any existing genetic diversity
will eventually be lost from the population. In other words, there will be only one
allele for each gene. The probability that a certain allele replaces all others, i.e. is
fixed, is equal to the initial frequency of the allele. If we add mutation to the model,
the mutation process can be described in three different ways: (i) under the finite
alleles model each mutation leads to a random switch between alleles; (ii) under
the infinite alleles model each mutation generates a new allele; (iii) under the infinite
sites model each mutation affects a different site along a stretch of sequence. Mu-
tations create new alleles, while drift removes alleles from the gene pool and these
two factors can come into a mutation drift balance. If mutation is balanced by drift,
it is possible to compute the number of alleles expected to occur in a population as
well as the probability of drawing a pair of distinct alleles, also known as the genetic
diversity. Since the number of alleles can easily be observed, a comparison between
observed and expected allele configurations is used as a test of neutral evolution.

10.10 Further Reading

This chapter is mainly based on the comprehensive textbook by Hartl and Clark
[106] as well as on the concise primer by Gillespie [87]. Either one of these books
should be consulted for further details and references on the foundations of popu-
lation genetics. Ewens [65] gives a mathematically advanced treatment of Markov
chain theory and diffusion models in population genetics. Finally, Provine describes
the history of population genetics by way of an illuminating biography of Sewall
Wright [204].

10.11 Exercises and Software Demonstration

10.1. The bioinformer software contains under Evolution Drift a pro-
gram that shows forward in time simulations. Work through the tutorial for that pro-
gram in Section A.4.2.

10.2. In the earliest attempt to test the validity of the neutral hypothesis using bac-
terial populations, a virtual heterozygosity of was measured in E. coli
[182]. Why was the genetic diversity in E. coli referred to as “virtual” heterozygos-
ity?

10.3. In the E. coli study a mutation rate of was assumed. Which popula-
tion size follows from this under the neutral infinite alleles model?
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10.4. Based on considerations independent of the genetic diversity, the population
size of E. coli was estimated to be . Given this estimate, what is the genetic
diversity, , expected under the neutral infinite alleles model?

10.5. The population size relevant for population genetics is usually referred to as
effective population size, . It may differ widely from a population’s head count.
Essentially, is the size an idealized population would have, given the effect of
drift on its allele distribution [106, p. 289]. A population study of E. coli has come
to the conclusion that , which is surprisingly small [107]. What is the
value of expected from this estimate of population size?

10.6. Show that allele frequencies do not change between generations when
, i.e. show that the Hardy-Weinberg law holds if the population size is infinitely

large. Hint: Start from Equation (10.1).

10.7. Consider a haploid population with . What is the probability that two
randomly selected alleles had their last common ancestor exactly 1,000 generations
ago?

10.8. In Section 10.7.1 a value of was found based on the assumption
that there are nine alleles in the sample of eleven Adh sequences of D. melanogaster.
Remember that there are ten alleles, if indel is included in the analysis. Estimate

on the basis of ten alleles.

10.9. Consider a diploid population with alleles. Show that the proportion of ho-
mozygotes is minimal if all alleles are equally frequent.



11

Genes in Populations: Backward in Time

The circle of ideas that has come to be known as the
coalescent has proved to be a useful tool in a range of
genetical problems, both in modeling biological phenomena
and in making statistical sense of the rich data now available.

John F. C. Kingman [149, p. 1461]

Intuitively, we imagine evolution as moving forward in time. Starting perhaps four
billion years ago in a marine RNA world, life evolved via the ancestor of all cells, the
invention of multicellularity, the conquest of land and air to the present, constantly
changing, overwhelming diversity. If we restrict our attention to the microevolution
of single populations, we have seen in Chapter 10 that the Wright-Fisher model,
which in its original formulation moves forward in time, is useful for capturing the
dynamics of genes. In this chapter we turn the Wright-Fisher model on its head
to look backward in time. This inversion of the arrow of time forms the basis of
almost all contemporary investigations of the dynamics of genes in populations. Such
investigations encompass a wide range of problems, in particular understanding the
distribution of polymorphisms along and between human genomes [244].

11.1 Individuals’ Genealogies vs. Gene Genealogies

We all have parents, grandparents, great-grandparents, and so
on. In other words, the number of our ancestors increases exponentially as we move
backward in time. This means that your ancestors rapidly also become the ones of
any other person you meet. If we assume panmixis and constant, sufficiently large
population size, the first common ancestor of all members of a sexually reproducing
population is expected to appear after generations, where is the population
size [208]. For humans this would place the universal ancestor in the Middle Ages.
Perhaps even more surprising than this extremely rapid appearance of universal an-
cestors is the discovery that after generations the ancestral population
has only two kinds of members: approximately 80% are universal ancestors, and the
remaining 20% have left no descendants in the present [208].

Figure 11.1A shows the simulated genealogy of a single member of a sexual
diploid population over 20 generations. Going back just five generations we reach
the first two individuals that are the ancestors of the entire population. The fact that
two such most recent universal ancestors turn up in the same generation is due to
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chance, it might have been just a single individual. Going back further in time we
enter a zone, where individuals might be ancestors of all, none, or part of the present
population. This only lasts for three generations, however, in all individuals are
either ancestors of the entire present day population, or have left no descendants at
all. This situation now remains stable ad infinitum. The only fluctuations we observe
from now on are in the distribution of the numbers of universal ancestors and “uni-
versal losers”.

Now, real populations are not panmictic and do not have constant size. Never-
theless, a realistic simulation of human history led to the conclusion that universal
ancestors of all of humanity lived around 1,400 B.C. in Asia. Further, from the year
5,353 onward into the past we all have identical ancestors [208].

At this point we come to the important distinction between the genealogy of
individuals just discussed and that of genes. In contrast to individuals, each gene has
only a single ancestor. This places common gene ancestry much further back in time
than common individual ancestry. As a consequence, it is not certain that a single
gene of a random individual living today can be traced back to our Asian ancestor
of not so long ago. Figure 11.1B traces the ancestry of the two homologous genes
contained in a single individual. We have to wait for 18 generations until they find
their first common ancestor.

In order to learn more about the dynamics of genes in time we now return to the
Wright-Fisher model of gene evolution already encountered in Section 10.4.

11.2 Forward vs. Backward in Time

The Wright-Fisher model (Section 10.4) is forward in time in the sense that a quantity
in generation is a function of the same quantity in generation . Let us look again
in detail at the structure of the Wright-Fisher model. The first thing to realize is that
for many evolutionary scenarios there is no need to explicitly model diploidy or
sexual dimorphism as was done in Figures 11.1A and 11.1B. Figure 10.5 illustrated
how through resampling with replacement the correspondingly uniform gene pool
in generation is transmitted to the gene pool in generation . The example
population depicted consists of diploid organisms and hence we simply model

homologous genes.
Figure 11.2A shows all lines of descent for our example population throughout a

simulation run of 15 generations. Notice that due to sampling with replacement five
genes get lost in the transition from generation to generation , while three genes
each leave one descendant, three genes leave two descendants and one leaves three
descendants. Otherwise, Figure 11.2A is too tangled for easy reading. Figure 11.2B
shows its untangled version, which allows tracing of individual lineages. As we pick
any gene, e.g. from generation , and follow its fate through the generations for-
ward in time, it is never clear whether it will go extinct or show up in the present
population. Conversely, if we concentrate on the genes in the present generation,

, and follow their fate backward in time, we will, given enough time, eventually
hit the first gene that was the ancestor of the entire population. In Figure 11.2 the
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most recent common ancestor of the population is marked by . Clearly, this most
recent common ancestor also has ancestors; in fact, as we go back in time, we find
in each generation beyond the most recent common ancestor exactly one gene from
which the members of our entire example population have descended. Among these,
the most recent common ancestor is very special. The reason for this is that genetic
events, such as mutations, that might differentiate the members of our population
must have occurred since their descent from this last common ancestor. Conversely,
any event along a lineage leading from somewhere in the past to the most recent
common ancestor has equally affected all members of the population and is there-
fore invisible.

However, we usually analyze samples of genes taken from large populations. The
genealogy of any random sample is a subgenealogy of the population genealogy. An
example for the sample of genes 1, 2, 4, and 8 is shown in Figure 11.3.

1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12 1 23 45 6 789 1011 12

Present

Past

Fig. 11.3. Lines of descent for a sample of genes form a subgraph of the population
genealogy shown in Figure 11.2. indicates the most recent common ancestor of the sample.
It coincides with the most recent common ancestor of the population with probability

[192].
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4 8 2 1

CA

CA

MRCA

Present

Past

Fig. 11.4. Coalescent of four genes sampled from the population shown in Figures 11.2 and
11.3. CA: coalescence event; : most recent common ancestor (MRCA); : time interval in
which the coalescent consists of lineages.

11.3 The Coalescent

Figure 11.4 displays the genealogy of the sample of genes 1, 2, 4, and 8 extracted
from their population context (Fig. 11.2). It is a binary tree rooted on the most recent
common ancestor. When moving from the tips of the tree, representing the sam-
pled genes, to its root, the most recent common ancestor, we pass internal nodes
where two lineages coalesce into their most recent common ancestor. Such a fu-
sion of two lineages is also known as a coalescence event. The complete topology
of coalescence events is called the coalescent and the theory built around this data
structure is referred to as coalescent theory. It was first proposed in the early 1980s
[147, 148, 119, 239, 149] and has in the meantime developed into a subdiscipline in
theoretical population genetics in its own right [120, 192].

Since a coalescent tree is a rooted bifurcating tree, it consists of nodes,
where is the size of the sample. In other words, construction of such a tree takes
time proportional to the sample size. This leads to a great efficiency gain compared
to forward simulation, where entire populations need to be represented in computer
memory and a possibly very large number of lineages is traced. The vast major-
ity of these lineages do not contribute genes to the sample from which the statistic
of interest is calculated (Fig. 11.2). Moreover, the constellation of genes in genera-
tion clearly depends on their constellation in generation . This leads to auto-
correlated measurements, such as those shown in Figure 10.6. However, statistical
analyses are usually based on the assumption of independence, which is best im-
plemented by constructing a separate coalescent for each measurement. Apart from
generating independent samples, coalescent simulations have the huge advantage of
just tracing the history of a gene sample rather than that of the entire population.

A collection of coalescent trees is shown in Figure 11.5. Notice that the time
to the most recent common ancestor, i.e. the height of these genealogies, appears
to be only weakly correlated with sample size. We will quantify this relationship in
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Section 11.5; but before we do so, we shortly comment on the differences between
coalescent and phylogenetic trees.

:

:

:

Fig. 11.5. Examples of neutral gene genealogies in a haploid population for sample sizes 2,
10, and 50. Time is measured in generations, where is the (usually unknown) size of
the population.
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11.4 Coalescent vs. Phylogenetic Trees

Coalescent and phylogenetic trees are both bifurcating trees, but their construction
and application is very different. Phylogenies are usually reconstructions of the one
“true” evolutionary history of a set of species. In contrast, coalescent trees are ran-
dom histories of genes sampled from a single population. Their construction is based
on model parameters, which may or may not have been obtained from empirical data.
Table 11.1 summarizes the main differences between these two important evolution-
ary trees.

Table 11.1. Comparison between the coalescent and the phylogeny of a sample of genes.

Feature Phylogeny Coalescent
Level of comparison Inter-species gene history Intra-species gene history
Purpose Reconstruct the true Simulate sets of potential

species history gene histories
Observation of interest Tree topology Frequency spectrum and

distribution of segregating sites
Data source Comparative data Model parameters
Multiplicity Single Many

11.5 The Infinite Sites Model and the Number of SNPs

Our first application of coalescent theory concerns the number of single nucleotide
polymorphisms (SNPs) expected under neutrality in a sample of genes. Among
geneticists SNPs are also known as segregating sites. The number of segregating
sites, which can easily be observed from alignments, is a simple function of the
unobservable quantity , the product of population size, , and mutation rate, .
Our derivation of the number of segregating sites is based on the infinite sites model,
according to which no two mutations hit the same nucleotide (Fig. 11.6). This is
a reasonable assumption, given that the majority of observed SNPs are bi-allelic
(cf. Table 10.1). Under the infinite sites model the number of SNPs in a sample is
equal to the number of mutation events in the corresponding coalescent. Hence, the
expected number of SNPs is equal to the rate of mutation times the total length of
the coalescent. We are now going to derive basic properties of the total length of a
coalescent, i.e. the sum of all branch lengths.
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present day
sequence
comparison

genealogical
history
of a sample
of two genes

Seq 1 Seq 2

MRCA

Fig. 11.6. Top: Genealogy for sample size . Mutations are depicted as dots along the
branches of the genealogy. Bottom: Comparison of the two sequences connected by the ge-
nealogy shown on top. Matching positions are shown as vertical lines. Under the infinite sites
model the number of (unobservable) mutations is equal to the number of observable segre-
gating sites (SNPs) in the sample. For a given coalescence time, say, the number of
segregating sites is a Poisson-distributed random variable with parameter , where
is the mutation rate per site per generation. MRCA: most recent common ancestor.

11.6 Mathematical Properties of the Neutral Coalescent

11.6.1 Tree Depth, Tree Size and the Number of Segregating Sites

Consider again the coalescent shown in Figure 11.4, which has time intervals
marked. Each coalescence event reduces the number of lineages by one. We call
the time interval in which the coalescent consists of lineages . Our first aim is
to compute the average length of . For this we need the probability at any point in
time that no coalescence took place in the previous generation. Consider a gene pool
of size ; that is, from each of members of a diploid population we include its
two copies of a particular gene, -globin say, in this pool. We move backward in time
from generation to generation . As we do so, we invert the traditional time-
forward metaphor of genes in generation leaving descendants in generation
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and imagine instead that genes in generation pick their ancestors in generation .
Two genes pick a particular common ancestor with probability . There are

possible common ancestors, hence the probability of two lineages coalescing is
in each generation and the probability of them not coalescing is .

We now turn our attention to the sample of genes. Obviously, the first gene has
some ancestor in the previous generation. The probability that the second gene has a
different ancestor is simply the probability of not coalescing,

The probability that three genes each have different ancestors in the preceding gen-
eration is

In general, the probability that genes have no common ancestor is

The approximation is obtained by assuming that population size is large and that
therefore terms of order or less may be neglected. The probability, , of a
coalescence occurring is the complement of it not occurring, i.e.

Thus, going backward in time, for each generation there is a probability for a
coalescence to occur. The probability that the first coalescence occurs after exactly

generations is therefore . This means that coalescence times are
geometrically distributed with parameter . Hence, the expected time it takes for
lineages to coalesce to lineages is . Implicit is the assumption that
population size, , remains constant over time. Furthermore, if is large compared
to the sample size , then and the geometric distribution is
well approximated by an exponential. By generalizing this to the waiting time for a
coalescence event in a sample of size , we can write

Each interval is then approximately exponentially distributed with parameter
. The tree depth is the expected time for all lineages to coalesce, i.e.

the expected time to the most recent common ancestor (MRCA; in Figure 11.6).
It can be computed by applying the rule that the expectation of a sum of random
variables is equal to the sum of the expectations:
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In other words, the expected time to the most recent common ancestor varies by a
factor of just between sample size and . This is the reason why the
heights of the coalescent trees displayed in Figure 11.5 do not increase much as we
increase the sample size by more than an order of magnitude.

Note, however, that the above property applies only to the expected time of the
MRCA, . Nothing has been said so far about the random variable
itself. In fact, it is a sum of exponentially distributed random variables each with
a different parameter , if . In order to compute the variance of ,
we note that the random variables are independent. The length of time interval

depends only on the parameters and , but not on time intervals , .
Therefore, the variance is

(11.1)

For large sample sizes we take the limit of the summation in Equa-
tion (11.1) and obtain the approximation

An approximate expression for finite can be found in the following way. We replace
the sum on the righthand side in Equation (11.1) by a definite integral ranging from

to . We then add a constant, such that for large the limiting values of
this integral and the above approximation become identical, and obtain

(11.2)

We now turn to the computation of the complete branch length, , of the coalescent
tree. This is the sum of the lengths of all branches contained in the tree. It is

Again, the expectation of , , is obtained from the sum of the individual
expectations, :

(11.3)

Using Euler’s constant , this equation can be approximated by

(11.4)
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To compute the variance of , we note that are independent random variables,
and so are . Therefore, the variance of is obtained from the individual
variances as well:

(11.5)

For large we take the limit of the summation in Equation (11.5) and find

The variance for finite is approximated by

(11.6)

Figure 11.7 shows a plot of the expectation and variance of and vs. sample
size .
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Fig. 11.7. Expectation and variance of (solid) and (dashed). Expectation is plotted
in units of (left -axis, black), and variance in units of (right -axis, gray).

Having discussed coalescent events, we now consider mutation events on the tree.
We noted above that mutations accumulate along the branches according to a Poisson
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distributed random variable with parameter per unit time. Under the infinite sites
model this number is identical to the expected number of polymorphisms (or SNPs)
in an alignment. For fixed time , the conditional expectation of the number
of mutations on the tree, and therefore the number of segregating sites, is

The conditional expectation , which is itself a random variable, has expec-
tation . Thus,

(11.7)
where the integral is evaluated with respect to the (unknown) probability density
of . Inserting the righthand side of Equation (11.3), one obtains

(11.8)

where . Equation (11.8) is due to Watterson [258] and is one of the most
widely applied results in population genetics.

To calculate the second moment, , we use the fact that [135, p.9]

Furthermore, using , the right-
hand side in the above equation can be written as

Therefore,

Finally, the variance of is

(11.9)

or, in terms of ,

Note that the expected number of segregating sites and its variance are only func-
tions of and , and do not depend on the topology of the underlying tree. In fact,
for given and given time intervals , , any two topologies have
the same total branch length and therefore the same expected number
of mutations. In contrast, tree topology can influence the frequency spectrum of mu-
tations. Consider the two topologies shown in Figure 11.8, each with one mutation.
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MRCAMRCA

Fig. 11.8. Depending on the topology, the frequency spectrum of polymorphisms may change.
The left panel shows one singleton mutation, because the mutation (dot) is located on a branch
leading to a leaf of the tree. In contrast, in the right panel the mutation is located on an
internal branch and, hence, there is no singleton mutation. The combined outer branch lengths
are and , respectively. The level of heterozygosity is influenced
as well. In the left topology the average number of pairwise differences is , in the right
topology it is .

The left panel shows a singleton mutation, as it affects only a single chromosome
in the sample. In contrast, the mutation on the right genealogy affects two of the
four sampled genes. Singleton mutations are the ones which occur only in a single
chromosome in the sample. Singletons can only accumulate on outer branches of the
tree. Therefore, the combined branch lengths of all outer branches determines the
expected number of singleton mutations in the sample. The two trees in Figure 11.8
have different combined outer branch lengths, yielding different numbers of single-
ton mutations observed in the sample.

In contrast to the number of segregating sites (or SNPs), heterozygosity is a mea-
sure of genetic variability which depends on the frequency spectrum of mutations.
As we will see in Chapter 12, this fact is exploited to construct statistical tests of the
neutral theory.

In the step leading to Equation (11.8) we had added mutations to the model and
it is instructive to consider the relationship between mutations along the coalescent
and the resulting SNP patterns. Mutations affecting many chromosomes tend to have
occurred early in the history of the sample as illustrated by the mutations shown
as dark gray dots on the left panel of Figure 11.9. In contrast, singleton mutations
can only have occurred on an outer branch of the genealogy (Fig. 11.9, left panel,
black dots). Any mutation occurring before the most recent common ancestor of a
sample leaves no trace in the SNP pattern (Fig. 11.9, left panel, light gray dots).
While the action of drift may lead to random fluctuations in coalescent times
and tree topology, natural selection leads to systematic changes of these quantities
(Fig. 11.9, middle and right panels).
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Fig. 11.9. Top: Gene genealogies and number of pairwise differences for different selection
regimes. Displayed are mutations (dots) on the coalescent for sample size and the
corresponding SNP patterns. The chromosomes are drawn vertically. Below them are plots
of the number of pairwise differences, also called the mismatch distribution, for each panel.
Under directional selection (middle panel) average heterozygosity is lower than in the neutral
reference case (left panel), because directional selection reduces the number of pairwise dif-
ferences. In contrast, balancing selection (right panel) maintains two allele classes and thereby
leads to an elevated number of pairwise differences and average heterozygosity. Bottom: Fre-
quency spectrum of segregating sites for the three cases. The number of chromosomes in
which the rarer of two alleles is found is plotted on the -axis (in this example, only
or are possible); the -axis shows the relative frequency among the total number of
segregating sites (which is , , and for the three cases, respectively).
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11.6.2 Heterozygosity

Let us return to heterozygosity, , the quantity we already discussed in the context of
models that move forward in time (Chapter 10). Recall that is the probability that
two randomly drawn homologous sequences differ. As we move along the coalescent
from the present into the past, the probability of a coalescence event is in
each generation, while the probability of a mutation is . Given
either one event occurs, the probability that mutation occurs first, thereby creating a
pair of distinct alleles, is the ratio

Thus, the random variable with the two states for “coalescence first”
and for “mutation first” has the distribution and

. Given sample size , is the same for any of
pairwise comparisons. For each of the pairwise comparisons there is a Bernoulli ran-
dom variable , , with the two states and .
They are all identically distributed with parameter , but not independent. Aver-
age heterozygosity is the expected value of the random variable

Since

average heterozygosity is identical to

(11.10)

We already derived this result in Equation (10.21) using the recursion approach, but
from the point of view of the coalescent we obtain an easy alternative derivation of
this classical result [142].

Due to the lack of independence of it is much harder to derive the variance
since is a function of sample size . Considering the case , the variance

is just the variance of the Bernoulli distribution

For large the variance is well approximated by the population variance of .
This has been obtained by Watterson [257] and is

(11.11)
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11.6.3 The Distribution of Segregating Sites

As a corollary to Watterson’s result on expected heterozygosity (Eq. (11.10)) the en-
tire distribution of the number of segregating sites, , can be calculated explicitly for
the case [258] and in recursive form for general . Averaging over coalescence
times and for one obtains

Prob Prob

The recursion formula for arbitrary is [120]

Prob Prob

where

We finally note that the distribution of segregating sites is well approximated by a
Gamma distribution with parameters and
(Figure 11.10). These are uniquely determined by the mean and variance of the num-
ber of segregating sites (Eqs. (11.8) and (11.9)).

11.7 Simulation Example

One of the important features of the coalescent is that it can be implemented as
a very efficient simulation tool. Using the coalescent simulation program ms (for
make sample) [122], it takes a few seconds to generate 100,000 gene samples of
size . If we use as input parameter, the expected number of SNPs
according to Equation (11.8) is . The simulated mean of

is virtually indistinguishable from this expectation (Fig. 11.10).
So far our evolutionary model only encompassed two events: coalescences and

mutations. However, at least two other classes of events need to be incorporated
to approach a tolerable semblance to evolution in nature: (i) recombination and (ii)
selection, the latter being the central tenet of Darwin’s theory of evolution [44].

11.8 Recombination

In the coalescent model with mutation, but without recombination, all nucleotides
along a given chromosome have the same evolutionary history. However, in sex-
ual eukaryotes recombination takes place in every generation during meiosis. In this
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Fig. 11.10. The distribution of the number of segregating sites in 100,000 samples of size
with . Solid histogram: Neutral coalescent without recombination; outlined

histogram: including recombination with rate . The black vertical line indicates the
distribution’s mean (35.52), which is almost indistinguishable from the expected mean (35.48).
In both cases, with and without recombination, the means of the number of segregating sites
are identical, although the distributions differ. The overlayed black and gray lines represent
the densities of the approximating Gamma distribution. The simulation was carried out using
the freely available program ms [122].

case, different chromosomal segments, e.g. and , may become unlinked and thus
have distinct evolutionary histories. Let be the rate per generation with which a
recombination event occurs between the two segments in a given chromosome. This
rate is proportional to the physical distance between segments and on the chro-
mosome. To a first order approximation one often assumes that , where is
the rate of recombination per nucleotide per generation. If , i.e. in the absence
of recombination, the genealogies of and are identical. In contrast, if becomes
large, the two genealogies become independent of each other. When tracing the ge-
nealogy of two chromosomes back in time, a recombination event may precede the
coalescent event (Fig. 11.11). In analogy to the case of mutation, the probability that
a recombination event occurs first is
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where .
As before, we wish to calculate the time to the most recent common ancestor,

, and the number of segregating sites, . For the two segments, and ,
there are two, usually distinct, most recent common ancestors (MRCAs), with cor-
responding times and (Fig. 11.11). For the waiting time
for one of the two events, recombination or coalescence, is geometrically distributed
with mean . Notice that a recombination event
increases the number of lineages by one (Fig. 11.11). As we follow the coalescent
into the past, further recombination or coalescence events may take place. However,
only those recombination events are relevant for the shape of the genealogy, which
involve chromosomal segments occurring in the original sample. In contrast, recom-
bination events involving the segments shown as dotted gray lines in Figure 11.11
would leave the genealogy unchanged, as they would not lead to the creation of
new lineages. The generalization of the coalescent, which includes recombination,
has also become known as the ancestral recombination graph and was introduced
by Griffiths and Marjoram [92]. The number of ancestral nodes, , at every point in
time can be described as a birth and death process with rates and

, respectively. The relative magnitude of these rates ensures the exis-
tence of a most recent common ancestor, although there is not only merging but also
splitting of branches in a coalescent with recombination.

Recombination complicates the explicit derivation of central quantities such as
and . However, since recombination splits the coalescent into a number of

subtrees, for each of these subtrees the expected total tree length remains identical
to the case considered before. Therefore, in the presence of recombination we also
have

Note that the argument is identical to the one which has been used above to derive
expected heterozygosity (Eq. (11.10)): the expectation is a linear operator. And again
for the same reason as above (the variance is not a linear operator), the variance
turns out to be more complicated. Kaplan and Hudson [131] derived the following
expression

(11.12)

where is an average of the total sizes of the genealogies of all segments weighted
by their lengths. Its variance is
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Fig. 11.11. Gene genealogy for sample size with recombination separating segments
and at time .

In the limit of no recombination ( ) collapses to and as a
consequence turns into the expression known from Equation (11.9). Further-
more, is monotonically decreasing in and has the limit .
Therefore, for the variance of we have . Thus, if all sites
along a chromosome are uncoupled, i.e. evolve independently, the number of seg-
regating sites is Poisson distributed. Linkage introduces deviation from the Poisson
distribution, although the mutation process along the gene genealogy is still Poisson.
However, in the presence of recombination the distribution of the number of segre-
gating sites is still well approximated by a Gamma distribution (Fig. 11.10) with its
location and scale parameters and uniquely determined by and .

When considering only two segments, and as in the introductory example, an
analytical expression for the correlation between times and has
been found [131, 120]. It is

Cor (11.13)

It confirms that in the absence of recombination and are com-
pletely correlated. Even stronger, Cor if and only if

.
Notice that the coalescent with recombination is a kind of super-genealogy con-

taining the genealogies of the constituent fragments, in our case and . In Fi-
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gure 11.11 the genealogy is longer than the genealogy. We therefore expect
segment to contain a higher SNP density than segment . Genealogies between
neighboring segments are uncoupled by recombination and therefore the times to the
MRCA for different segments may vary strongly. In apparent contradiction to this
observation is the finding that recombination reduces the variance (see Fig. 11.10
and Eq. (11.12)) of the number of segregating sites and thus reduces the variance in
genetic variability. However, while recombination introduces additional variation of
coalescence times on a local scale, it has an averaging effect on genetic variability
on a global scale.

11.9 Selection

We have seen that recombination can lead to drastic changes in the coalescent topo-
logy. This is also true for selection. In contrast to recombination, selection does not
change the branching structure of the coalescent, but it changes the branch lengths.
Depending on the mode of selection, time intervals between coalescence events can
shrink or expand. Consider a mutation that confers a selective advantage. This mu-
tation and its host chromosome have an increased probability (see Eq. (10.32)) of
rising in the population, and may finally become fixed. Given that the mutation does
become fixed, its rapid spread through the population, once it has reached a mod-
erate frequency, compresses the coalescent, leading to what is often referred to as a
star-like phylogeny. In Figure 11.12 six of the seven coalescence events take place
during the spread of the advantageous allele. In contrast, there is only one coales-
cence event during the subsequent neural phase of evolution. One effect of the star
shape of the coalescent with selection is that neutral mutations appear mainly on
the outer branches of the genealogy. This implies an excess of singletons or rare
polymorphisms compared to what would be expected under neutral evolution.

The effects of different types of selection on the shape of the coalescent and,
hence, on the distribution of SNPs is illustrated in Figure 11.9. The neutral genealogy
shown on the left panel forms the background to all discussions of selection. The
kind of selection that favors one allele over another is known as directional selection.
The majority of non-neutral mutations are harmful to an organism and are therefore
selected against. This type of directional selection is called negative, or purifying,
selection. The recurrent removal of disadvantageous mutants from a population is
termed background selection [38]. Occassionally, a non-neutral mutant may provide
a fitness advantage, for instance when it renders its carrier better adapted to given
environmental conditions. This type is called positive, or adaptive, selection. The
effect on the shape of the coalescent of such an adaptive mutation in the absence
of recombination is shown in the middle panel of Figure 11.9. It causes a star-like
phylogeny (cf. Fig. 11.12) that leads to an excess of singleton mutations.

A different scenario is created by the existence in the population of two alleles
that are beneficial only if present at the same time. A standard example for such
genetic synergism is sickle-cell anemia, where the combined presence of the sickle
allele of -globin and its wild type confers heightened malaria resistance [106, p.
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Fig. 11.12. Genealogy with selection (sample size ). A positively selected mutation, ,
(dot) gets fixed in the population and thereby dominates the genealogy of the sample in the
present. The frequency of the selected allele, , is plotted on the righthand side. The dotted
lines indicate the time interval with an elevated rate of coalescence events while allele rises
quickly to fixation, also called a “selective sweep”. The sweep is flanked by two phases of
neutral evolution.

230]. The resulting balancing selection leads to deep branching in the coalescent
and correspondingly a bimodal distribution of pairwise differences as shown in Fi-
gure 11.9 (right panel).

In summary, for a given sample of homologous DNA sequences drawn from
a panmictic population, the number of SNPs can easily be established. Coalescent
theory makes predictions about distributional properties of the number of segregat-
ing sites under diverse evolutionary scenarios. These theoretical predictions can be
compared to experimental observations. The number of evolutionary processes that
can be incorporated in coalescent models is only limited by a researcher’s ability to
implement the corresponding software. The widely used program ms incorporates
reciprocal recombination as well as gene conversion, migration between subpopula-
tions, and changes in population size over time [122].

11.10 Combining Recombination and Selection

Coalescent models that combine selection and recombination can be used to deter-
mine the influence of a selected allele on the number and distribution of polymor-
phisms in its chromosomal neighborhood. With low rates of recombination, the fate
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of this neighborhood is tightly coupled to the selection dynamics (see Fig. 11.9),
whereas with large recombination rates it is essentially unaffected by the kind of
selection upon neighboring alleles.

MRCA

0.0

0.5

1.0

presentpast

Fig. 11.13. “Hitchhiking” with a selected allele. The genealogy of the neutral alleles ,...,
depends on whether or not recombination takes place during the fixation of allele . Without
the recombination event ( ), the MRCA of the alleles in the sample would be much younger,
for example at time , because in that case all alleles would be descendants of a -carrying
chromosome. The frequency of allele , , is indicated by the bold line.

We now concentrate on the interaction of recombination and positive directional
selection. In this case, the neighborhood of the selected allele can be regarded as
hitching a ride to fixation with the adaptive trait. Hence, this evolutionary scenario
is also known as genetic hitchhiking [174, 227]. The effect of hitchhiking depends
strongly on recombination during the selected allele’s rise to fixation as illustrated in
Figure 11.13. Recombination leads to an uncoupling between a selected allele and
other portions of the chromosome. Conversely, in the absence of recombination any
episode of directional selection at any gene along a chromosome would impose a star
phylogeny on all these genes. Such a star phylogeny is characterized by low levels
of diversity (cf. Fig. 11.9, directional selection). This is the reason why it is difficult
to reject neutrality on the basis of finding the supposedly low genetic diversity of

in E. coli [182] as discussed in Section 10.6. This bacterium reproduces
asexually and has essentially a clonal population structure [222]. Due to periodic
selection such a population structure leads to a genome-wide reduction in genetic
diversity even in very large populations. How strong the effect of periodic positive
selection is on the levels of genetic diversity depends on its frequency and intensity
[164].

In the presence of recombination genetic diversity may also be reduced due to
recurrent episodes of positive selection. However, the effect depends additionally on
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Fig. 11.14. Scatter plot of genetic diversity per bp ( ) versus recombination rate ( ) for twenty
loci from Drosophila melanogaster (Table 11.2). Genetic diversity tends to be lower in regions
of low recombination. Linear regression analysis yields a correlation coefficient of for
these data (straight line). The curved line is obtained by fitting the parameters ,
and of the equation to the data [260]. The quantity
is the equilibrium level of genetic diversity per bp under neutral evolution. Population size was
estimated independently ( ). For the data shown, the estimates are ,

and .

the magnitude of the regional recombination rates [132, 236, 20]. In fact, as a result
of recurrent positive selection, one expects to observe a positive correlation between
the recombination rate and genetic diversity. Figure 11.14 shows measurements of
recombination rates and genetic diversity which were collected for a set of loci in
Drosophila melanogaster (Table 11.2). Genetic diversity refers here to average het-
erozygosity per bp, which is commonly abbreviated by the letter . The positive
slope of the regression line shown in Figure 11.14 confirms this expectation. Given
that selection was the driving agent to produce the positive correlation of and and
given a model of the hitchhiking effect, more information can be extracted from such
data. In one model [260] an explicit relationship between genetic diversity and the
recombination rate has been derived, where quantities such as the selection coeffi-
cient, , and the rate of selected substitutions, , are contained as parameters. Fitting
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Table 11.2. Measurements of recombination rate per bp ( ) and genetic diversity per bp ( )
for twenty gene loci in Drosophila melanogaster.

locus reference

X-linked loci
Yellow,Achaete 0.429 0.0008 [19]
Pgd 1.466 0.0030 [19]
Z,Tko 2.114 0.0044 [4]
Per 4.952 0.0014 [19]
White 13.30 0.0090 [183]
Notch 11.54 0.0050 [216]
Vermilion 5.619 0.0010 [20]
Forked 4.330 0.0020 [160]
Zw 4.619 0.0007 [53]
Su(F) 0.476 0.0000 [160]

autosomal loci
Gpdh 5.714 0.0078 [241]
Adh 4.621 0.0060 [161]
Ddc 1.314 0.0050 [20]
Amy 3.107 0.0080 [162]
Pu 5.129 0.0040 [241]
Est6 4.314 0.0050 [84]
MtnA 0.593 0.0010 [159]
Hsp70A 0.493 0.0020 [163]
Ry 3.364 0.0030 [12]
Ci 0.000 0.0000 [21]

In order to compare autosomal and X-linked data they need to be standardized. Since in
Drosophila recombination takes place only in female flies, has to be multiplied by for
autosomal loci and by for X-linked loci. To compensate for the differences in effective
population sizes for X-linked and autosomal loci, from X-linked loci needs to be multiplied
by . The standardized data are plotted in Figure 11.14.

these parameters to the experimental data, the curved graph of versus shown in
Figure 11.14, emerges. A parameter fitting procedure yielded estimates of
and per nucleotide per generation for these data [260]. That is, on av-
erage a selected allele has a three percent better chance of being passed on to the next
generation than its neutral homologue. Such analyses shed light on the old question
regarding the selective value of molecular polymorphisms. In contrast to the early
phase of the selectionists vs. neutralists controversy, this debate is today informed
by a wealth of molecular data on sequence polymorphisms seen within species and
populations. Based on these data, hitchhiking models are now widely used to trace
individual selective sweeps in a genome in addition to quantifying an overall rate of
positively selected substitutions. This area of research, with the scope of identifying
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those sites in a genome which currently are, or recently have been, under adaptive
evolution, is known as hitchhiking mapping [103, 217, 188]. Together with a set of
tests for neutrality, which is the topic of Chapter 12, the statistical significance of
putatively non-neutral regions in a genome can be established.

11.11 Summary

In this chapter we have turned the Wright-Fisher model of gene dynamics on its
head. Given a sample of genes, their lineages coalesce into common ancestors as
we move backward in time. If we trace back the gene genealogies until the most
recent common ancestor of the entire sample, this sample genealogy is called the
coalescent. Coalescent theory allows the derivation of important evolutionary quan-
tities such as the number of segregating sites expected under neutrality. In addition,
the coalescent is routinely used as a very efficient tool for simulating gene samples
under a diverse range of evolutionary scenarios, including recombination and selec-
tion.

11.12 Further Reading

A classical review of coalescent theory is written by Hudson, one of the founders
of coalescent theory [120]. More recently a number of surveys of this approach to
evolutionary modeling have been published, the most accessible of which is perhaps
an article by Nordborg [192]. In addition, Hein, Shierup, and Wiuf provide an intro-
ductory monograph on coalescent theory [112].

11.13 Software Demonstrations and Exercises

11.1. The bioinformer software contains under Evolution Coales-
cent a program that visualizes neutral coalescent trees with mutation and the cor-
responding SNP patterns. Start this program and work through the corresponding
tutorial in Section A.4.4.

11.2. The bioinformer also contains under Evolution WrightFisher
a program that visualizes ancestral lineages in a Wright-Fisher population. Work
through the tutorial for that program in Section A.4.3.

11.3. How many SNPs do you expect under the neutral infinite sites model in a sam-
ple of genes given ?
What is the sample size needed in a haploid population of size to get an
average time to the most recent common ancestor of 10 generations?

11.4. Use the freely available coalescent program ms [122] to simulate 10,000 gene
samples given the parameters and .
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1. How long does the simulation take?
2. What is the mean and variance of the number of SNPs in the simulated samples?

11.5. Repeat the simulation, but this time include reciprocal recombination with
and .

1. How long does the simulation take?
2. What is the mean and variance of the number of SNPs in the simulated samples?
3. Compare your results to the simulations without recombination.

11.6. In coalescent genealogies with recombination there is splitting and merging
of lineages. Do all coalescent genealogies with recombination have a most recent
common ancestor?
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Testing Evolutionary Hypotheses

For many years population genetics was an immensely rich
and powerful theory with virtually no suitable facts on which
to operate.

Richard C. Lewontin [166, p. 189]

Experimental data such as the eleven Adh sequences of D. melanogaster summarized
in Table 10.1 represent a single realization of an evolutionary process. In biology,
such data cannot be arbitrarily replicated since—in most cases—the evolution ex-
periment conducted by nature over long periods of time cannot readily be repeated.
This begs the question of how data of a single realization of a stochastic process can
be evaluated and interpreted. The answer is given by a number of statistical tests,
which are designed to compare scarce data with a probability distribution and to ask
whether or not the data are extreme with respect to the distribution. Such probabil-
ity distributions can sometimes be obtained analytically and one example of this is
Ewens’ sampling formula introduced in Section 10.7. However, in most cases they
are generated by computer simulations of the evolutionary process. Out of the multi-
tude of methods that have been developed over the years to test various evolutionary
hypotheses, we are going to concentrate in this chapter on examples from two areas:
tests of the neutral mutation hypothesis and tests of recombination.

12.1 Hudson-Kreitman-Aguadé (HKA) Test

According to the neutral mutation hypothesis, the genetic variability between pop-
ulations should be correlated with the variability within populations. The neutrality
test by Hudson, Kreitman, and Aguadé, also known as the HKA test, assesses this
prediction [124]. It requires sequence data from loci in two species that form
the basis for three statistics:

1. : number of segregating sites at locus in species , i.e. the within-species
diversity at locus ;

2. : number of segregating sites at locus in species ;
3. : number of nucleotides at which two randomly selected sequences at locus

from species and differ, i.e. the between-species divergence at locus .

The test is based on the following assumptions:
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1. discrete generations;
2. mutations are neutral, independent, Poisson-distributed, and non-recurrent (neu-

tral infinite sites model);
3. there is no recombination within loci;
4. all loci are unlinked, i.e. in linkage equilibrium;
5. species and have reached a constant size of , and , respectively;
6. species and have diverged from a common ancestral population gen-

erations ago; the size of this ancestral population was the average of the two
species’ present population size, i.e. .

Given this set of rather conservative assumptions, expectations ( ) and variances
(Var) for the central quantities of the test can be derived:

(12.1)

Var

Var

where , is the size of the sample drawn from species ,
the neutral mutation parameter of a diploid population, the population size,
the number of mutations per generation at locus , , the harmonic
number,

and the harmonic number of order :

The system of Equations (12.1) contains the unknown quantities , , and .
Their estimators, , , and , were obtained by solving the following system of
equations:

(12.2)
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By replacing the parameters in Equations (12.1) with their estimators, we get
estimators for the central quantities used in the test. Assuming that the within popu-
lation diversity and the between population divergence are normally distributed, the
following test statistic is approximately distributed [231]:

Var Var Var

To see how this works, let us take a look at the application given by the authors
of the HKA test [124]. Table 12.1 summarizes their diversity data from two fruitfly
species, D. melanogaster and D. sechellia. The data were obtained using restriction
length polymorphisms. Since restriction enzymes only sample a subset of the po-
sitions in a target sequence, Table 12.1 draws a distinction between the lengths of
the sequences surveyed and the number of sites compared. Moreover, it is clear that
the Adh locus and its 5’ flanking region are linked, thereby violating one of the as-
sumptions of the test. However, the authors showed that the test is conservative with
respect to its assumption of no linkage between loci. That is, if the loci tested are
linked, it becomes more difficult to reject the null hypothesis of neutrality and the
same applies to the assumption of no intra-genic recombination [124].

Table 12.1. Restriction fragment length polymorphism (RFLP) data to illustrate the HKA test:
distribution of variable sites (Var. sites) around the alcohol dehydrogenase (Adh) locus in D.
melanogaster and between D. melanogaster and D. sechellia. Data taken from [124].

5’ Flanking Adh locus

Length Sites Var. sites Length Sites Var. sites
Within species ( ) 4000 414 9 900 79 8
Between species 4052 4052 210 900 324 18

Let refer to the per nucleotide neutral mutation parameter, in contrast to the
used so far, which refers to the per locus neutral mutation parameter. Further, we

identify species with D. melanogaster and species with D. sechellia. By sub-
stituting the data on the distribution of genetic variation from Table 12.1, the top
equation in system (12.1) describing the within-species diversity becomes

(12.3)

There was no data available on within-species diversity. As a substitute it was sim-
ply assumed that the ancestral population of species had the same size as that of
species , i.e. that in the third and fourth equations of system (12.1) . The
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remaining equations of system (12.1) describing between-species diversity and con-
necting within- and between-species diversity therefore become

(12.4)

Solving Equation (12.3) and system (12.4) yields , ,
, and . This -value corresponds to a -value of ,

assuming a distribution with 1 degree of freedom; in other words, the data did not
agree with the neutral mutation hypothesis.

In order to discover the kind of evolutionary force that might have caused this
rejection of the neutral mutation hypothesis, it is necessary to reconsider the exper-
imental data (Table 12.1). There was an approximately equal amount of divergence
between species ( and ). In contrast, the diver-
sity within species was approximately four times higher at the Adh locus than in the
flanking region ( vs. ). The authors therefore conclude
that balancing selection is likely to affect the coding region of the Adh locus in fruit
flies [124].

12.2 Tajima’s Test

As we have seen, the HKA test requires polymorphism data from two species. In
contrast, Tajima’s test of the neutral mutation hypothesis is based on a sample of
sequences drawn from a single population [240]. Consider an alignment of homo-
logous sequences. For each of the possible pairs of sequences we can count the
number of positions at which they differ. The arithmetic average of this number is
defined as . This is an estimator of the neutral mutation parameter and
we define

Like the average number of pairwise differences, the number of segregating sites is
also a function of as well as of the sample size : . We therefore
define a second estimator of :

Based on these two estimators of , Tajima suggested the test statistic

Var
(12.5)
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Under strict neutrality and, hence, . The denominator ensures that
the standard deviation of is .

To understand how behaves under non-neutrality, notice that as long as the
number of alleles in a sample is constant, is independent of allele frequencies. This
leads to a disproportionately large contribution of rare alleles to . Since deleterious
alleles are rare, such alleles lead to a situation where . is therefore
indicative of purifying selection. Alternatively, if a gene is fixed through rapid selec-
tion of an advantageous allele, neutral genetic diversity linked to the advantageous
variant is also swept to fixation. Such a phenomenon is known as a “selective sweep”
or “genetic hitchhiking” [174] and is characterized by an excess of low-frequency al-
leles in the sample (cf. Section 11.10). This also leads to an inflation of relative to

and, hence, to a negative value of Tajima’s . Conversely, alleles that grow from
low to intermediate frequencies increase while leaving unchanged. A value of

therefore indicates balancing selection.
In order to actually apply Equation (12.5), we still need to estimate the statistic’s

denominator. This is obtained from equations given by Tajima [240]:

Var

As an example application for Tajima’s we return to the FOXP2 gene intro-
duced in Section 9.8.1. A single amino acid replacement in the DNA-binding domain
of the FOXP2 protein causes severe articulatory difficulties as well as linguistic and
grammatical impairment in humans [63]. In a survey of this gene, 14,063 nucleotides
were sequenced from 40 human FOXP2 genes. Table 12.2 shows the 47 polymorphic
sites detected, which occurred in 17 unique haplotypes. The dominant haplotype ac-
counted for over half of the sample (21 copies), three other haplotypes occurred
twice, and the remaining 13 were unique [63]. Figure 12.1 shows the frequency and
distribution of the 47 SNPs along the region surveyed. Two-thirds (31) of the poly-
morphisms occurred just once, which means they were generated by mutations that
affected either a single, or, though less likely, 39 genes in the sample. This excess of
rare variants is reflected in the inflated value of compared to
and a correspondingly small [63]. This is certainly less than zero, but is
this deviation from neutral expectation significant?

There are two methods for assessing the statistical significance of a given value
of : by assuming that follows a known null distribution, or by simulating this
null distribution. In the original publication of the test, Tajima suggested that the null
distribution of is approximated by the beta distribution. However, the application
of assumed null distributions for has been criticized [81] and coalescent simula-
tions are often used instead. The results of such simulations for the FOXP2 data are
shown in Figure 12.2. The neutral coalescent was used to generate 100,000 artificial
data sets conditioned on the sample size and the observed genetic diversity. From
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Table 12.2. The 17 unique haplotypes detected in a survey of 14,063 nucleotides at 40 human
FOXP2 loci. A dot indicates a match to the nucleotide in the top line. Count gives the number
of copies of the respecitve haplotype. Adapted from [63].

# Count Haplotype
1 21 AAATAGAAACACCAGAGAGAGACGTCCGATACGTGCTATAATGATCG
2 2 ..............A....................T...........
3 2 ..G............................................
4 2 ...G..........A.......T..TA..A..........G...C.A
5 1 .......................A.......................
6 1 ..............A................................
7 1 ..............A.........C..A..............A....
8 1 .......................A.....................T.
9 1 C..G.AGT...TTGA....TA.......CA..CC..A.GT...G...

10 1 ..............................G................
11 1 ........G.....A......G.............T...........
12 1 ........G.....A....................T...........
13 1 ...G..........A.......T..TA..A.T........G...C.A
14 1 ....G..........G...............................
15 1 ...G......G...A.AGC......TA..A....TT.....C.....
16 1 .T.............................................
17 1 .........T....A...C...............TT.C...C.....
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Fig. 12.1. Position and count of the rare allele at each single nucleotide polymorphism (SNP)
along the 14,063 nucleotides surveyed at 40 human FOXP2 loci. The position of the first SNP
is set to 1. Adapted from [63].
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each of these data sets was calculated and the resulting null distribution of has
a mean close to 0 (-0.06), as expected. The observed value of implies
that , which agrees with the hypothesis that FOXP2 was affected by a
recent selective sweep [63].
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Fig. 12.2. Testing neutrality at the FOXP2 locus in humans. Distribution of 100,000 values of
Tajima’s calculated using the neutral coalescent with and , as observed in
the FOXP2 sample shown in Table 12.2. The position of the arrow indicates that under a neu-
tral model of evolution the observed value of is highly unlikely ( ). Coalescent
simulations were carried out using the software ms [122].

12.3 Fu and Li’s Test

The test of neutrality due to Fu and Li is similar in spirit to Tajima’s test statistic, but
its justification is based squarely on coalescent considerations. The central idea of the
test is that under neutrality the number of mutations on external branches of a geneal-
ogy is equal to the number of mutations on its internal branches. Since deleterious
mutations tend to have arisen recently in a sample’s evolutionary history, they should
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accumulate on the external branches of the coalescent. As illustrated in Figure 12.3A,
such evolutionary events result in singleton mutations. The converse, however, is not
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Fig. 12.3. Relationship between the topology of a gene genealogy, the distribution of mu-
tations ( ) on this genealogy, and the resulting pattern of single nucleotide polymor-
phisms (SNPs). A: On a topology where neither of the two branches joined at the root are
external, all singleton mutations ( ) must have arisen on one of the genealogy’s external
branches. B: If one of the two branches leading to the root is external, mutations arising in the
two branches and both result in singleton SNPs.

always true. In order to see that not every singleton has necessarily arisen on the ex-
ternal branches of a coalescent, consider the genealogy shown in Figure 12.3B. Any
mutation along branch will cause a SNP pattern that is indistinguishable from a
singleton mutation. This constellation is not possible, if neither of the two branches
leading to the genealogy’s root is external, as is the case in Figure 12.3A. Taking this
into account, Fu and Li suggested the following test statistic:

Var

(12.6)

where is the number of singleton mutations. The variance of the numerator of
Equation (12.6) is obtained from the equations given by Fu and Li [81] as

Var

where
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The FOXP2 data set we have already investigated using Tajima’s (Table 12.2)
contains sequences and polymorphisms, of which are
singletons. Substitution of these numbers into Equation (12.6) yields ,
which is significant according to the critical values provided by Fu and Li ( )
[81]. This is in good agreement with the result we obtained using Tajima’s .

12.4 McDonald-Kreitman Test

Like the HKA test, the McDonald-Kreitman test is based on sequence data from at
least two species [178]. However, in this case a single locus suffices, which needs
to be protein-coding. First, all nucleotide positions in such a data set are classi-
fied as fixed differences or polymorphisms. A position represents a fixed difference,
if it is monomorphic within but polymorphic between the two species investigated
(Fig. 10.3B). A position is polymorphic, if it is variable within either or both of the
species. Next, the fixed and polymorphic positions are classified into synonymous
and non-synonymous substitutions. Under the neutral mutation hypothesis, sequence
changes accumulate at a constant rate along branches, regardless of whether they lead
to species or to individuals within species. This implies that the ratio of synonymous
to non-synonymous substitutions should be equal between fixed and polymorphic
positions. That is,

where and refer to the numbers of non-synonymous and synonymous fixed
differences, respectively. Similarly, and denote the number of non-synony-
mous and synonymous polymorphisms.

McDonald and Kreitman applied this test to the alcohol dehydrogenase gene
(Adh) of D. melanogaster, D. simulans, and D. yakuba, whose substitution data is
summarized in Table 12.3. Such a table is tested using Fisher’s exact test [231]. On
the basis of this test, the authors rejected the null hypothesis that .
In other words, there is a significant excess of fixed differences between the three
species. The authors conclude that this is due to adaptive fixation of selectively ad-
vantageous mutations [178]. This conclusion agrees with that drawn in Section 12.1
by applying the HKA test to the same locus.

12.5 Minimum Number of Recombination Events

The neutrality tests described so far were all based on the assumption that there has
been no recombination within the loci investigated. We now look at a procedure for
assessing the validity of this assumption.
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Table 12.3. Polymorphism data for the alcohol dehydrogenase gene (Adh) of D. melanogaster,
D. simulans, and D. yakuba. Data taken from [178].

Fixed differences Polymorphisms
Non-synonymous 7 2
Synonymous 17 42

Figure 12.4 shows a pair of chromosomes that differ at two positions along their
DNA sequences. Hence, these chromosomes form two distinct haplotypes, AA and
TT. If reciprocal recombination takes place between the two polymorphic loci, two
new haplotypes are formed, AT and TA, leading to a total of four haplotypes. Since
under the infinite sites model any position is assumed to mutate only once, the de-
tection of all four possible haplotypes between a pair of single nucleotide polymor-
phisms is evidence of a recombination event. Counting the number of four-allele
pairs of nucleotides should therefore give us an indication of the number of recom-
bination events that have taken place in the evolutionary history of a sample of DNA
sequences. However, there are two complications to consider. First, we have no guar-
antee that representatives of all four haplotypes generated by a recombination event
actually end up in our gene sample. The number of four-allele combinations is there-
fore going to lead to an estimate of a minimum number of recombination events,

[123]. Second, not all pairs of loci that display four alleles are evidence of a
recombination event.

T T

A A A A

T T

A T

T A

Fig. 12.4. Reciprocal recombination between two polymorphic sites generates the haplotypes
AT and TA out of the original pair of haplotypes AA and TT.

In order to calculate from a set of aligned DNA sequences with polymor-
phic sites, we can apply the following algorithm [123]:

1. Construct a matrix that contains for each pair of polymorphic posi-
tions an entry of if the pair forms all four possible haplotypes and

otherwise.
2. In the upper triangle of each pair with is interpreted as an

open interval and a list of such intervals
is formed, where .

3. Delete from the list all intervals that are subintervals of another interval.
4. Delete all intervals that overlap with , starting at and continuing to

.
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5. is the final number of intervals in the list.

If , we know that recombination has taken place. However, we cannot
conclude no recombination from because, as noted already, our sample
of DNA sequences might not contain all four haplotypes generated by reciprocal
recombination.

12.6 Detecting Linkage Disequilibrium

We have seen that the HKA-Test (Section 12.1) is not only based on the assumption
of no within-locus recombination, but also that the loci investigated are not linked.
There are two meanings of the term “linkage” between two or more loci. First, it
might refer to the fact that two loci occur on the same chromosome. Second, it might
refer to the fact that two loci are not statistically independent. In the context of hy-
pothesis tests this probabilistic interpretation is usually applied. Our investigation of
its implications starts with the simplest case of two bi-allelic loci, and . The
probability of finding allele “1” at locus is denoted by and at locus by .
The frequencies of the four possible haplotypes are denoted , and .
Our measure of linkage disequilibrium is then defined as

which is zero in case of linkage equilibrium. For more than two alleles, all pairs of
alleles need to be considered. If more than two loci are investigated, all pairwise
comparisons between loci need to be made. This expansion of pairwise comparisons
quickly becomes cumbersome, and a summary statistic, the index of association ( ),
was developed to measure linkage between an arbitrary number of alleles at an arbi-
trary number of loci [29].

The index of association is based on the number of pairwise differences between
a set of haplotypes. The computation of such pairwise differences is illustrated in Fi-
gure 12.5. Let denote the observed variance of this number and its expectation
under the null hypothesis of linkage equilibrium. At linkage equilibrium
and, hence, might be a useful measure of linkage disequilibrium, which
is zero at linkage equilibrium [29]. However, scales linearly with the number
of loci analyzed [121]. We therefore define the standardized index of association as
[108]

The value of can be estimated from the data as

where is the probability of drawing two distinct alleles at locus ,
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Fig. 12.5. Computation of the index of association ( ). Starting from haplotype data for a
number of organisms ( ) at a number of loci ( ), the matrix of pairwise mismatch values is
calculated as well as the genetic diversity at each locus ( ).

and where is the frequency in the sample of allele at locus .
The significance of a given value of can be assessed either by simulation or

by assuming that under linkage equilibrium is normally distributed. The simula-
tion proceeds by resampling the alleles at each locus without replacement, thereby
unlinking the loci [234]. From each resampled data set a new value of , is
calculated and the desired significance is the frequency of observing . This
procedure has a run time , where is the number of resamplings and the
number of haplotypes sampled. The alternative test is based on the assumption that
under linkage equilibrium is normally distributed. Given this scenario, a formula
for the variance of needs to be computed once in time [109]. This para-
metric test is one-sided, like the test based on simulations. The reason for this is that
any deviation from the null hypothesis of linkage equilibrium leads to an inflation of

compared to .
The index of association is most popular among microbiologists, because it is

easy to obtain the haplotype data on which the test is based from bacteria. In mi-
crobiology the application of the index of association has lead to the discovery that
bacterial populations have structures ranging from strictly clonal in Escherichia coli
to panmictic in Neisseria gonorrhoeae [175]. However, the test has also been ap-
plied to eucaryotes, for example to investigate the population structure of wild bar-
ley, Hordeum spontaneum [29], or of thale cress, among molecular biologists better
known as the model plant Arabidopsis thaliana [225].
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12.7 Implementations

With the exception of the index of association, the tests discussed in this chapter have
been implemented in the software DnaSP [211]. This is a freely available program
with a user-friendly graphical interface. The index of association has been imple-
mented in the software LIAN, which is also freely available [108].

12.8 Summary

Since the inception of the neutral mutation hypothesis in the 1960s, a large number of
tests have been devised that assess the validity of various evolutionary scenarios. In
this chapter we have covered four tests of neutral evolution, the Hudson-Kreitman-
Aguadé (HKA) test, Tajima’s , Fu and Li’s test, and the McDonald-Kreitman test.
The first three of these are based on arbitrary DNA polymorphism data. Tajima’s
as well as Fu and Li’s test have the pleasing property that the direction of selection
can be read from the sign of the test statistics. In addition, the data for these tests
are drawn from a single population, while the HKA test is based on data from two
species. Similarly, the McDonald-Kreitman test is based on DNA sequences obtained
from two or more species. However, in the case of the McDonald-Kreitman test the
input sequences need to be protein coding. All four tests of neutrality described in
this chapter assume that there has been no within-locus recombination in the history
of the sample. This assumption can be investigated by computing a minimum number
of recombination events, , based on the four-haplotypes test. If we know
that recombination has taken place, while the converse inference cannot be drawn.
In addition to the assumption of no within-locus recombination, the HKA test also
assumes that the loci investigated are in linkage equilibrium. A convenient measure
of linkage disequilibrium between an arbitrary number of loci with two or more
alleles is the index of association, .

12.9 Exercises and Software Demonstration

12.1. Calculate the harmonic numbers and .

12.2. Draw a genealogy for . What is the number of external and internal
branches on that genealogy? What is the general number of external and internal
branches in genealogies describing the history of sequences?

12.3. Use the bioinformer-Program Evolution Coalescent to familiar-
ize yourself with the relationship between the genealogy of a sample of genes, the
distribution of mutations on this genealogy, and the resulting observable polymor-
phism pattern.

12.4. Here is a stylized haplotype data set:
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Draw a possible genealogy that explains this data set.

12.5. Draw an alternative polymorphism pattern that might be generated by the ge-
nealogy just uncovered.

12.6. Draw an alternative genealogy that could generate the haplotype pattern shown
in Exercise 12.4.

12.7. Given the two haplotypes AG and TC, what are the haplotypes generated by
reciprocal recombination between the two SNPs?

12.8. Consider the following DNA sequence data

AGTCGA
AACCCC
TGTTCA
TACTGC

and calculate its .

12.9. Consider the following multilocus data set

1 1 3 2
1 1 3 2
2 2 3 2
1 4 5 7

and calculate its standardized index of association, .



A

bioinformer

bioinformer is an integrated collection of demonstration programs for visualiz-
ing a number of the concepts and data structures treated in this book. The following
sections give some background to each of the demos, describe the program, and con-
clude with a tutorial.

A.1 Alignment

A given sequence whose function is unknown can often be annotated by finding a
similar sequence of known function among the large number of sequences deposited
in public data bases. Searches for sequence similarity are usually based on align-
ments. The following programs concentrate on pairwise alignment through simple
dynamic programming and protein substitution matrices.

A.1.1 Protein Substitution Matrices

Pairs of residues in DNA alignments are traditionally scored by distinguishing only
between matches and mismatches. This works reasonably well for DNA sequences
but is not applicable to proteins. For a start, the number of mutational steps needed
to convert a codon for one amino acid into that for another varies between one and
three. In addition, amino acids differ markedly in their physico-chemical properties
(Fig. C.4). As a result, amino acid substitutions have highly variable effects on the
structure of the protein affected. Since most changes in a protein’s structure are dele-
terious, selection will filter out substitutions with drastic structural effects. Finally,
substitution probabilities change over time, making it necessary to construct series
of substitution matrices to cover a range of evolutionary time scales. Substitution
matrices summarize the log-likelihoods of observing a homologous
pair of amino acids (cf. Section 2.4).
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Description of Program

The program displays the PAM and BLOSUM matrices. On the PAM tab PAM
matrices are provided for evolutionary distances ranging from 2 PAM to 500 PAM.
The user selects the PAM number through a slider which can be manipulated using
either the mouse or the and keys. The entries of PAM matrices are expressed
in bits and by convention different bit fractions have been used to scale the majority
of matrix entries to single digit integers. The user can therefore choose from a range
of such scale factors. In addition, the program displays the expected percentage of
mismatched residues between proteins separated by an evolutionary distance of
PAM. The implemented calculations are based on the original data [46] and, hence,
the matrices may differ in numerical detail from the versions currently available, e.g.
as part of the BLAST distribution [10].

On the BLOSUM tab three commonly used BLOSUM matrices can be dis-
played: BLOSUM45, BLOSUM62, and BLOSUM80.

Tutorial

1. Look at the PAM matrix displayed when the program is first launched (use the re-
set button if necessary) and notice that the values along the main diagonal, which
represent match scores, are all positive. This contrasts with the off-diagonal en-
tries, which represent mismatch scores. These are on average negative. Identify
the two amino acids with the highest entries on the main diagonal, i.e. the two
most conserved amino acids. Can you make biological sense of their high degree
of conservation?

2. Slide the PAM number to small values. Notice that the expected difference is
now equal to the PAM number. This is because, say, two mutations per 100
amino acids will on average have caused a 2% difference in the corresponding
pairwise comparison.

3. Slide the PAM number to very high values. Notice three things:
a) The PAM number now vastly exceeds the Expected difference.

This is because mutations can hit a given position more than once and this
occurs with increasing frequency the more mutations are thrown randomly
at a segment of 100 amino acids. At a more basic level, percentages vary be-
tween 0 and 100, while the number of mutations per 100 residues (PAM )
can range between 0 and infinity.

b) The entries in the matrix tend towards 0. The reason for this is that the prob-
ability of finding the corresponding pair of residues due to homology be-
comes in the long run equal to the probability of finding the pair by chance.
The ratio of two equal numbers is 1 and .

c) A few amino acids retain high entries on the main diagonal even for high
PAM values. Identify the two amino acids with the highest entries.

4. Compare the entries between PAM160 and BLOSUM62 for amino acid pairs
histidine/alanine, valine/valine, and tryptophan/tryptophan. Do you notice any
differences?
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A.1.2 Number of Alignments

An alignment can end in three different ways:

n
-

n
n
-
n

where n indicates any residue. These three possibilities suggest the following recur-
sion for the number of possible global alignments [253]:

where is the number of possible alignments between two strings of length
and . If we further define the boundary condition that there is a single alignment

between a sequence of any length and a sequence of length zero, we are in a position
to compute the number of possible global alignments (cf. Section 2.5).

The possible number of local alignments is the sum of the number of global
alignments for all possible pairs of substrings. A sequence of length contains

substrings of length . Consider as an example two sequences of length two
each. Nine pairs of substrings can be formed between these. Four of the substring
pairs have length (1,1), yielding three possible global alignments each; another four
have length (2,1) or (1,2), yielding five possible global alignments each; one has
length (2,2), yielding 13 possible global alignments. The number of possible local
alignments is therefore .

Description of Program

The program calculates the number of different global or local alignments that can
be constructed for two sequences of lengths between 1 and 400. The user can choose
the lengths of the two sequences as well as the alignment mode (global or local).

Tutorial

1. Contemplate the number of global alignments that can be formed between two
sequences of lengths 339 and 320.

2. Compare that number to the number of molecules contained in a liter of water:
. How much water is needed to accumulate the same number of water

molecules as there are possible alignments between two sequences of lengths
339 and 320?

3. Compute the time it would take to list all possible global alignments between
two sequences of length 320 given that the calculation of a single alignment
takes, say, seconds.

4. Compute the time it would take to list all possible local alignments for two se-
quences of length 320.
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A.1.3 Pairwise Alignment

Similar sequences tend to encode similar functions. The search for sequence simi-
larities is therefore the bread and butter of computational biology. This program is
concerned with alignment by dynamic programming, which was pioneered for global
alignment by Needleman and Wunsch [189]. The local alignment algorithm is due
to Smith and Waterman [230].

Description of Program

This program visualizes the dynamic programming matrix used for computing opti-
mal pairwise alignments between two sequences over an arbitrary alphabet. It also
visualizes the path through the matrix that corresponds to an optimal alignment. In
addition, it displays the alignment, its score, and calculates the number of cooptimal
global alignments. Three alignment modes are implemented:

1. global: sequences are assumed to be homologous over their entire length (Sec-
tion 2.6);

2. overlap: sequences are assumed to have overlapping ends (Section 2.7);
3. local: sequences are assumed to possess only local homology (Section 2.8).

The user can enter any sequence and manipulate the following parameters:

1. match score,
2. mismatch score,
3. gap extension.

Notice that most alignment algorithms implement an affine gap scoring scheme,
i.e. the total gap cost, , is

where is the gap opening cost, the gap extension cost, and the length of the
gap. In this program the gap opening cost is ignored, i.e. set to zero.

Tutorial

1. Choose the global alignment algorithm.
2. Click on >> to set up the dynamic programming matrix corresponding to the

sequences entered.
3. Click again on >> to initialize the dynamic programming matrix.
4. Click on >> to fill in the dynamic programming matrix. Verify that the entry in

cell A A has the expected value.
5. Click one final time on >> to carry out the traceback. The corresponding align-

ment and its score is shown at the bottom of the panel. In addition, the number
of cooptimal alignments is displayed. These are alternative paths through the
matrix carrying the same optimal score. There is no algorithmic criterion for
distinguishing between these alternatives.

6. Repeat the above steps using the local alignment algorithm.
7. Repeat the above steps using the overlap alignment algorithm.
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A.2 Match

Operations based on string matching are an integral part of sequence analysis. The
following programs concentrate on exact matching with and without suffix trees.

A.2.1 String Matching

At its most basic, string matching consists of looking for a short pattern in a large
text. This is a classical topic of computer science [99]. However, string matching
methods are ubiquitous in computational biology, since a core concern of the field is
the interpretation of genetic sequence texts [99].

Description of Program

The program implements three methods of string matching:

1. Naı̈ve string matching (Section 3.2), which essentially consists of two nested
do loops, the outer running over the text, the inner over the pattern. Accordingly,
the worst case run time of this algorithm is , where and are the
lengths of the pattern and the text, respectively.

2. The Z-algorithm (Section 3.3) is a simple string matching algorithm that runs
in time linear in the length of the text [99].

3. A suffix tree (Section 3.6) is a data structure for indexing a text. Once this data
structure is built, it has the astonishing property that a text can be searched in
time proportional to the length of the pattern. Building the suffix tree itself only
takes time proportional to the length of the text, but the factor of proportionality
is rather large [249, 99].

To demonstrate the time requirements of the three algorithms the program displays
the time taken for searching and—with the exception of the naı̈ve algorithm, which
lacks preprocessing—the time taken for preprocessing. The text window can be
freely edited. In addition, three chunks of interesting prose are provided:

1. The sequence of the first genome to be sequenced, that of the bacteriophage
X174, which encodes 10 proteins in 5,386 nucleotides [6].

2. The alcohol dehydrogenase (Adh) gene of Drosophila melanogaster. In 1983
this was the first gene to be subjected to comparative sequencing [152].

3. The text of the paper by Watson and Crick announcing the double helical struc-
ture of DNA [256].

Tutorial

Select the genome of X174 and run the pattern search for all three algorithms pro-
vided. Observe in particular the variations in preprocessing time.
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A.2.2 Suffix Tree

Molecular Biologists often search for sequence patterns in molecular genetic data.
Consider for example the text ACCGTC and the pattern C. A string search
should tell us as efficiently as possible that occurs in at positions 2, 3, and 6.
Classical results in computer science have lead to algorithms that achieve this in time
proportional to the length of .

Suffix trees are an ideal data structure for improving on this result in cases where
the text is stable and needs to be searched repeatedly. Suffix trees are an index struc-
ture of the text, which can be built in linear time [249]. Once built, the text can be
searched for a pattern in time proportional to the length of the pattern rather than in
time proportional to the length of the text (Section 3.6).

Description of Program

The program draws a suffix tree for any input string. On this suffix tree it optionally
displays four features:

1. The leaf labels, which are the starting positions of the suffices constructed by
concatenating edge labels from the root of the tree to the respective leaf. A suffix
of text ACCGTC starts somewhere inside and ends at the end of , for
example the suffix GTC starts at position 4.

2. The edge labels, which return one of the text’s suffices when read from the root
to a leaf.

3. The string depth, which indicates the length of the string stretching from the root
to the node.

4. The suffix links, which make it possible for a suffix tree to be constructed in
linear time [249, 99].

Tutorial

1. Enter a single letter and construct the corresponding suffix tree. Notice that the
program always adds the sentinel character $ to a string before processing it.

2. Add a second letter to the input string that is different to the first letter and
construct the suffix tree.

3. Continue adding different letters. Notice that the program is case sensitive.
4. Add a repeated letter and observe the effect on the tree topology.
5. Construct a suffix tree from a string with lots of repetitions. Search it for a pattern

by matching from the root. If the pattern is found in the tree, its start positions
in the text are given by the leaves in the subtree marked by the end of the match.

6. Notice that the string read from the root to any internal node corresponds to a
repeated string in the input sequence. The length of this string is indicated by the
String Depth. Look for the longest repeat in the input string.
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A.2.3 Repeat Searching

Inexact repeats are ubiquitous in complex genomes such as those of mice [40] and
men [128]. In addition, exact repeats between two sequences can be used for con-
structing fast alignment algorithms [48]. As a result, there is a lot of interest in algo-
rithms for detecting repeats in strings (Sections 3.9 and 3.10).

Description of Program

The program uses a suffix tree for locating either repeats of a pre-defined length or
for identifying the longest repeat. Sets of repeats are marked by the same background
color. The text window can be freely edited. In addition, three chunks of interesting
prose are provided:

1. The sequence of the first genome to be sequenced, that of the bacteriophage
X174, which encodes 10 proteins in 5,386 nucleotides [6].

2. The alcohol dehydrogenase (Adh) region of Drosophila melanogaster. In 1983
this was the first gene to be subjected to comparative sequencing [152].

3. The text of the paper by Watson and Crick announcing the double helical struc-
ture of DNA [256].

Tutorial

1. Look for the longest repeat in the double helix paper.
2. Look for the next longest repeat in that paper. Is the repeat length correlated with

the phrase’s importance?

A.2.4 Hash Table

Hash tables are generalized arrays, where instead of using integers as indices, arbi-
trary objects are utilized. Such indices are usually referred to as keys and the object
accessed though a key as its value. The hashing of query sequences into words of a
predefined length is an important step in some fast database search tools, including
FASTA [197].

Description of Program

The program takes as input an arbitrary string and computes a table of words of
a certain length and their positions in the text. The word length can be varied by
the user. The program also displays an indexed version of the input string for easy
comparison with the table entries.
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Tutorial

1. Hash the default sequence into words of length 1.
2. Hash the sequence into words of increasing length. What is the longest repeat in

the input sequence?
3. Enter a short English sentence (e.g. O, take the sense, sweet, of my inno-

cence!) and hash it into words of length 3 by either pressing Enter or click-
ing >. Do you find a repeated hash key? Compare the result with a hash of
MADAMIMADAM.

A.2.5 Dotplot

A dotplot is a simple means of comparing two strings (Fig. 4.6). A simple general-
ization of the kind of dotplot shown in Figure 4.6 is achieved by plotting matches
of some length and this approach has been used to compare sequences on a
genomic scale [233]. In addition, dotplots are used to visualize the FASTA search
strategy (Section 4.2.2).

Description of Program

The program takes two sequences as input and displays matches of a certain length.
The user can enter new input sequences and vary the length of the matches displayed.
In addition, the user can randomize the input sequences to observe the length of
matches between random sequences.

Tutorial

1. Click > to draw a dotplot of the two alcohol dehydrogenase sequences supplied
by the program using a Match Length of 11.

2. Observe the matches, indicated as black lines, along the diagonal.
3. Notice the gap in the matches, which is caused by the insertion of the copia

transposon in Sequence 1 at that position (cf. header line of Sequence 1).
4. Randomize the two sequences by clicking the die and redraw the dotplot.
5. Vary the Match Length to find the longest match between the two random-

ized sequences.

A.3 Probability

Biological data is often described as “noisy”. Its analysis is therefore routinely cou-
pled to probabilistic considerations. The following program demonstrates the appli-
cation of probability theory in hidden Markov models.
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A.3.1 Hidden Markov Model

Hidden Markov models are probabilistic models of sequential data (Section 6.2).
Such sequential data could be a stream of phonemes uttered by a speaker or a stretch
of nucleotides. In the case of nucleotides we might be interested in inferring the
position of genes along the sequence. Say we knew that protein coding regions were
G/C-rich compared to non-coding regions. Then we could model our stretch of DNA
by postulating two hidden states corresponding to coding and non-coding. These two
states emit nucleotides with different probabilities. Moreover, given that the system
is in the coding state, it changes into the non-coding state with some probability and
vice versa. The set of transition probabilities between the hidden states and emission
probabilities attached to each of the hidden states is called the hidden Markov model.

Given such a model and an unannotated stretch of sequence, we can try to guess
the locations of coding and non-coding regions. If, on the other hand, we do not
know the probability parameters of the model, we can try to infer the model from
some “training” data using an arbitrary model as our starting point.

Description of Program

The program allows the user to manipulate the probabilities of a hidden Markov
model of a DNA sequence. The model consists of two hidden states and two ob-
servable states. The observable states are A/T and G/C, while the hidden states are
indicated solely by different colors. Given this model, the user can generate a DNA
sequence with hidden states indicated by color coding. Conversely, the program can
guess the most likely sequence of hidden states given simulated DNA sequence data.
The inferred hidden states can then be compared to the known states.

In addition, the program can take a simulated DNA sequence and a random hid-
den Markov model as input and by an iterative procedure infer the most likely model.

Tutorial

1. Detect Hidden States Tab
a) The hidden Markov model on the left consists of a starting point, which

changes into one of the two hidden states shown as colored panels with
the probabilities indicated on the transition arrows. The hidden states each
contain a histogram with two bars indicating the probabilities with which
they emit either an A/T or G/C. When emitting A/T, the model emits with
equal probability an A or a T, and similarly for G/C. Once the model is
in a certain hidden state, it either stays in that state with the probability
noted next to the self-referential arrow or changes to the other state with the
probability noted next to the arrow pointing to the alternative hidden state.
All ten probabilities displayed on the model can be manipulated with the
five sliders on the right. Try out all five sliders and observe the effect.

b) Reset the model by clicking the reset button.
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c) Generate a DNA sequence by clicking >. This sequence appears in the lower
panel on the lefthand side with the hidden states marked by the same colors
as they appear in the model.

d) Estimate the sequence of hidden states from the data by clicking ?. The
DNA sequence with the estimated annotations appears in the panel on the
bottom righthand side. Compare the known hidden states with those esti-
mated from the data.

2. Estimate HMM Tab
a) There are three hidden Markov models displayed here; from left to right they

indicate:
The model generated in the Detect Hidden States tab.
A random initial model.
The model yet to be estimated. This model is initialized to the same
values as the random model on its left.

b) Generate a new DNA sequence according to the model displayed on the left
by pressing >.

c) Estimate a new model by pressing ?. This may take some time.
d) Compare the estimated model to the random initial and the true models. Did

you get a good fit?
e) Generate a new random initial model by clicking the die and repeat the

model estimation. You will find that model estimation depends to some ex-
tent on the initial model. The reason for this is that the estimation algorithm,
also known as Baum-Welch algorithm, can easily converge on a local opti-
mum rather than the global optimum, which should be very similar to the
true model.

A.4 Evolution

The pattern of polymorphisms detected when comparing homologous sequences is
the product of evolution. The following programs demonstrate the construction of
phylogeny as well as the forward and reverse simulation of genes in populations.

A.4.1 Phylogeny

The human interest in reconstructing the ancestry of powerful families is at least as
old as the oldest literary documents. For example, Genesis 5 lists the descendants of
Adam down to Noah and Genesis 10 recounts the descendants of Noah’s three sons,
who go on to populate the earth. The preceding description of creation (Genesis 1)
is remarkably free of such genealogical thinking. However, at its most basic level a
phylogeny is simply the generalization of a family tree (Chapter 8).
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Description of Program

The program takes as input a set of aligned sequences in FASTA format and seven
primate mitochondrial DNA sequences are provided as default input. The program
computes the pairwise distances between these sequences. Users can choose between
three different distance measures:

1. number of mismatches;
2. normalized number of mismatches, that is, the number of mismatches divided

by the length of the alignment;
3. Jukes-Cantor distance [130].

A simple phylogenetic tree is reconstructed from these distances using the UP-
GMA (unweighted pair group method with arithmetic means) method (Section
8.4.1). In addition, the program demonstrates the application of the bootstrap in phy-
logeny reconstruction (Section 8.8).

Tutorial

1. Distance Matrix Tab
a) Compute the pairwise number of Mismatches between the displayed se-

quences by pressing >. Notice that the first number in the panel containing
the distance matrix is the number of taxa analyzed. This corresponds to the
file format used in PHYHLIP, a widely used package for calculating phylo-
genies [72].

b) Count the number of mismatches between the human and chimpanzee se-
quences and compare your result with the corresponding entry in the dis-
tance matrix.

c) Compute the Normalized Mismatches and make a note of the distance
between human and gibbon.

d) Compute the Jukes-Cantor distance. Compare the Jukes-Cantor dis-
tance between human and gibbon with the normalized number of mis-
matches for this pair of taxa.

2. Phylogeny Tab
a) Compute the phylogeny from the distance data (>>).
b) Display the branch lengths on the tree.
c) Compare the branch lengths with the distances in the distance matrix.

3. Bootstrap Tab
a) Generate a bootstrap sample from the original data. This is done by sampling

with replacement columns from the original alignment.
b) Compute the distance matrix for the bootstrap data (>>).
c) Generate the phylogenetic tree for the new distance matrix (>>). Is the tree

topology the same as for the original data set?
d) Repeat the process of bootstrapping and observe the range of tree topologies

generated (>>).
e) Click the gearwheel to animate the generation of bootstrapped trees. Notice

that you can vary the animation speed using the Step Time slider.
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A.4.2 Drift

Random changes of allele frequencies during evolution are called drift. This contrasts
with changes in allele frequencies due to a host of other possible factors, the most
interesting of which is selection. Since drift is easy to model, it often serves as a point
of departure for an investigation of the evolutionary forces acting on a population
(Section 10.3).

Description of Program

The program consists of two modules, Drift without Mutation and Drift with Muta-
tion.

1. Drift without Mutation: This demonstrates evolution in a two-allele system with
alleles and . The user can choose a population size and an initial frequency
of the -allele. By pressing the Run-button (>) the simulation starts showing the
frequency of the -allele and the genetic diversity, , as a function of time mea-
sured in generations. Repeated pressing of the Run-button launches new runs of
the simulation and a concomitant entry in the legend that displays the population
size.
All simulations can be stopped by pressing the Stop-button and the panel is reset
by pressing the Reset-button. If a simulation runs off the graph, you can still
follow it by dragging the graph panel with the left mouse button to the left. You
can also zoom into the graph by selecting a region of interest; to zoom out again
the same action of dragging the graph panel with the left mouse button to the left
is used. Furthermore, by right-clicking the graph a number of layout options are
opened.

2. Drift with Mutation: Here the user can set a population size and a mutation
rate ranging from to . Pressing the Run-button starts the simulation under
the infinite alleles model. The genetic diversity of the population is shown as
a function of time in generations. In addition, the expected genetic diversity is
also shown. Each click on the Run-button starts a new simulation, while pressing
the Stop-button stops all of them. The Reset-button returns the panel to its initial
state.

Tutorial

1. Drift without Mutation Tab
a) Using the default parameters, start a simulation run (>). Notice that the -

allele quickly goes either to fixation ( ) or extinction
( ) and that both events correspond to a genetic diver-
sity of zero.

b) Set the initial frequency of to and observe the frequency of runs that
go to fixation. Compare this with .



A.4 Evolution 271

c) Reset the program, increase the population size to 100, set
, and start a new simulation run. This time it takes longer on average for

to either reach fixation or go extinct.
d) Leave the population size at 100 but vary and observe the

frequency of fixation in a number of runs.
2. Drift with Mutation Tab

a) Using the default parameters, start one simulation run (>). Recall that with-
out mutation the frequency of a given allele eventually either reaches unity
(fixation) or zero (extinction). Both values correspond to a genetic diversity
of zero at which the locus in the population gets stuck in the long term. In
contrast, in the presence of mutation, genetic diversity can always recover
from a crash to zero as long as the mutation rate, , is greater than zero.

b) Continue to observe the first simulation run and notice the horizontal line
indicating the expected genetic diversity. This is computed as

where is the population size. Here is multiplied by rather than by ,
because the program simulates a haploid population, where the population
size is equal to the number of genes.

c) Stop the present simulation and reset the program. Change the population
size and mutation rate to, say, and , and start another
simulation run. Notice two things: (i) the observed genetic diversity fluctu-
ates strongly around its expectation and (ii) the values of when going from
one generation to the next tend to be similar to each other rather than being
drawn randomly from the full distribution of possible values. The values of

are therefore said to be autocorrelated.

A.4.3 Wright-Fisher

The Wright-Fisher model of neutral evolution consists of a population of constant
size that evolves by resampling with replacement. In its original formulation this
model moved forward in time (Section 10.3). However, it can also be analyzed back-
ward in time and this perspective forms the basis of coalescent theory (Section 11.3).
The aim of this module is to visualize descendants and ancestors under the Wright-
Fisher model using the original one-parent genealogy as well as the more familiar,
though genetically largely irrelevant, two-parent genealogy.

Description of Program

The program simulates the evolution of a Wright-Fisher population. It displays the
evolving entities and the lines of descent that connect them between the generations.
We can think of the evolving entities as homologous genes in the one-parent case or
as individuals in the two-parent case. The user can choose between these scenarios,
as well as select the number of generations simulated and the size of the population.
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1. One-Parent Genealogy: By default the program displays a “tangled” version of
the lines of descent, which results from letting genes in generation randomly
pick their parent (one per gene) in generation . A disentangled version of
this graph is generated by checking Disentangle. The offspring of individ-
ual genes can be visualized forward in time by clicking genes in generation 1.
Similarly, the ancestry of individual genes is displayed by clicking them in the
present generation. In coalescent theory the most recent common ancestor of a
sample of genes is the point at which the simulation stops. In our program the
most recent common ancestor of the selected genes is marked in red. Note that
it is possible that a sample of genes has not yet reached its most recent common
ancestor.

2. Two-Parent Genealogy: In the two-parent mode only color-coded invividuals are
displayed initially. Black individuals are those that have left some descendants
in the present generation; red individuals are universal ancestors and blue indi-
viduals have left no descendants in the present generation. Like in the one-parent
mode, clicking on individuals in the present or in the first generation displays an
individual’s ancestors and descendants, respectively. Notice that individuals pick
their parents randomly in the preceding generation. As a consequence, there is a

probability that an individual picks the same parent twice. This corresponds
to the original model and can be reconciled with common sense if we reinterpret
a dot as a couple rather than an individual [37]. Most couples have two couples
as parents, but occasionally the children of one couple mate among each other.

Tutorial

One-Parent Genealogy

1. Using the default parameters, run the program in the one-parent mode once. Red
numbers indicate generations, black numbers label individuals. Follow a few of
the descendants of individual genes by clicking on them in generation 1. Notice
that in quite a few cases genes leave no descendants in the present.

2. Follow the ancestry of individual genes by clicking on them in the present gen-
eration. Observe that the position of the most recent common ancestor shifts
depending on the genes selected.

3. Disentangle the lineages. This makes the graph easier to read. Notice also that
the order of the individuals in the last generation has changed due to the disen-
tanglement. Again follow the descendants and the ancestors of individual genes.

4. Run a few simulations. Notice that in the disentangled mode it takes on average
generations for the rightmost and the leftmost gene in the present generation

to find their most recent common ancestor. In contrast, all remaining genes in
the population coalesce on average twice as fast.

Two-Parent Genealogy

1. Run the program once in the two-parent mode using the default parameters. No-
tice that the layer of generations containing black dots, i.e. individuals with some
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descendants in the present, is rather thin. Red dots, that is universal ancestors,
appear early on and start to dominate the population further back in time.

2. Click on an individual in generation 1 to visualize its descendants. Notice that
blue individuals may or may not have their lineage terminated in generation 1.

3. Click on individuals in the present generation to visualize their ancestors. The
ancestors of different individuals start to rapidly overlap.

4. The one-parent and two-parent modes of the program are based on the same
underlying population. Hence by switching between the two modes, you can
observe that universal ancestors need not have contributed genetic material to a
given descendant.

A.4.4 Coalescent

When going backward in time, gene lineages coalesce at the point where they di-
verged from their last common ancestor. Hence the tree structure tracing back the
genealogy to the most recent common ancestor of a sample of genes is called the co-
alescent and the associated theory is referred to as coalescent theory (Section 11.3).

Description of Program

The program’s toolbar allows the manipulation of the sample size and of the popula-
tion parameter theta ( ). This is the scaled mutation rate

where is the size of a haploid population and the mutation rate. This parameter
has a simple relationship to the expected number of segregating sites, , found in a
sample of DNA sequences [258]:

(A.1)

where is the sample size. Notice that for a sample of two sequences the number of
segregating sites, also known as single nucleotide polymorphisms, SNPs, is equal to
. The program demonstrates the creation of sequence samples with mutations.

Tutorial

1. Click on >> to generate a genealogy. Notice the time scale measured in units of
generations.

2. Click on >> to throw mutations onto the genealogy. The mutations are displayed
as red squares and their average number is given by Equation (A.1).
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3. Click on >> to generate the haplotypes, or sequences, that correspond to the dis-
played genealogy with mutations. The sequences are stylized as labeled black
lines with the positions of the mutations indicated as before by red squares.
Each mutation on the genealogy corresponds to a segregating site, i.e. a poly-
morphic column of haplotype positions. Notice that mutations affect all the se-
quences that are located below it in the genealogy. Conversely, mutations on the
outer branches of the genealogy only appear in a single sequence. These are also
known as singletons and on average they make up

of all the mutations [192].
4. Click the gearwheel to animate the display of random genealogies. Notice that

you can regulate the speed of animation using the Step Time slider.
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Probability

Statistical reasoning as well as simple probability calculations crop up everywhere in
computational biology. In the following we give a very brief summary of these topics.
A more detailed account can be found in the textbook on statistical bioinformatics
by Ewens and Grant [66]. For an introduction to the subject of probability theory the
reader is referred to the classical textbook by Feller [68].

Random Events and Their Probabilities

Many biological processes have a random element, that is, their outcome is uncer-
tain. But even processes with uncertain outcome can be described quantitatively if
we observe enough of them under constant conditions. For example, it is uncertain
whether a boy or a girl will be born, but if we observe enough births we find that
51.5% of newborns are boys.

An experiment is a repeatable process with uncertain outcome. The outcome of
an experiment is called an elementary event. As an example consider the experiment
“dice rolling” and let be the set of all possible and mutually exclusive elementary
events of this experiment, that is, .

Every subset is called an event. An event occurs if and only if one of
the elementary events constituting occurs. In the above example
corresponds to the event of obtaining a number greater than 2 when rolling a die.
Every event has a probability attached to it, .

Addition Rule

The probabilities of mutually exclusive events are additive. To put this more formally,
let be random events, for , then

(B.1)

which is also known as the addition rule. As an example consider the probability
of obtaining a number greater than 2 when rolling a fair die, i.e. one where each
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elementary event has the same probability, , . According
to the addition rule, the probability in question is then

.

Conditional Probabilities

The conditional probability is the probability of event given that event
has already occurred. This is defined as the probability of both and occurring
divided by the probability of :

(B.2)

Independent events have the property that , which together
with Equation (B.2) leads to the multiplication rule

(B.3)

For example, the probability of obtaining an even number and a number greater than
2 when rolling two dice is .

Bayes’ Formula

Let the certain event consist of pairwise independent events, that is,
and for ; then we can represent any random event

as . According to the addition and
multiplication rules expressed in Equations (B.1) and (B.3), we obtain from this

The latter expression is also called the total probability of event . Instead of infer-
ring the probability of we can derive the probability of given , which is also
known as the posterior probability of . This leads to Bayes’ formula:

(B.4)

As an example of the application of Bayes’ formula consider playing in an occasion-
ally dishonest casino where 99% of the dice are fair, but the remaining 1% return a
6 in 50% of cases. Imagine you roll a die three times and obtain a six each time. Are
you dealing with one of the biased dice?

“biased die” “3 rolls of 6”

Probably not.
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Random Variables and Their Distributions

A (discrete) random variable is a numerical quantity, which, as a result of a random
experiment, can take any of some discrete set of possible values. For example, the
number of dinucleotides observed in 1 kb of nucleotide sequence is a variable
that fluctuates randomly between different 1 kb fragments. The possible values in this
example range between and . Associated with a random variable is its distribu-
tion. It assigns probabilities to the possible (subsets of) values of a random variable.
Random variables are customarily abbreviated by capital letters , whereas
particular values are usually abbreviated by small letters . Thus, the expres-
sion means that the “probability that the random variable takes
value is equal to ”. Important characteristics of a distribution are its moments. The

-th moment of random variable is defined as ,
where the summation ranges over all possible values of . The first moment is also
known as the mean or expectation. The variance is the difference between the sec-
ond moment and the squared first moment. For instance, for random variable with
mean , the variance is .

In genetics, a frequently encountered distribution is the Poisson distribution. A
discrete random variable which can take integer values is said to be
Poisson distributed with parameter , if

where is a real number. The mean and variance of a Poisson distributed
random variable are .

In Chapter 10 we use the concept of conditional expectations. The conditional
expectation of a random variable given that some other random variable takes
some value is written as . It is the first moment of under the
conditional probability distribution .

A more complete list of the basic properties of random variables, including con-
tinuous random variables, and conditional expectations can be found in the textbook
by Karlin and Taylor [136].

Parameters and Their Estimators

It is important to distinguish between parameters and their estimators. Parameters
are the usually unknown properties of populations. In contrast, estimators are defined
with respect to a sample drawn from the relevant population in order to estimate a
parameter. For example, the variance of a sample, , is a possible estimator of the
population variance .

Exercises

B.1. Consider a disease-causing recessive genotype that occurs in one individual out
of 10,000. What is the expected frequency of the corresponding disease phenotype?
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B.2. Imagine a genetic defect which increases the risk of colon cancer in old age
and which affects one in a million individuals. A test for this mutation has become
available recently. This test has a 0.01% false positive rate. Based on Bayes’ formula,
you decide not to undergo the test. Why not?

B.3. The genome of the mustard weed Arabidopsis thaliana contains approximately
nucleotides. Let be the rate of mutation per nucleotide per

generation. How many mutations do you expect to occur per generation throughout
the genome?

B.4. Assuming that the number of mutations is Poisson distributed with a rate of
the expected number of mutations just calculated, what is the probability that the
genome of A. thaliana has accumulated at least one mutation after one generation?
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Molecular Biology Figures and Tables

This book is centered on the analysis of nucleic acid and protein sequences.We there-
fore survey in the following a few fundamental properties of the constituents of these
sequences, nucleotides and amino acids. For more details on the current state of
molecular biology we refer the reader to Watson’s well-known textbook [255], while
Judson has written a vivid history of the early days of molecular biology [129]. This
history is brought up to date in Watson’s popular survey of all that is DNA [254].

Nucleic Acids

DNA and RNA are both nucleic acids and Table C.1 summarizes the nomenclature
of their constituents: nucleosides consist of a base and a pentose sugar moiety, while
nucleotides consist of a nucleoside plus a phosphate group. The energy-carrying
molecule adenosine triphosphate (ATP) is an example of a nucleotide. However,
in computational biology “nucleotide bases” is often used synonymously with “nu-
cleotides”. The carbon atoms of the central sugar molecule in nucleotides are num-
bered as shown in Figure C.1. The phosphate groups link the 3’ and the 5’ carbons
of the sugars into long polymers. One corresponding monomer of DNA and RNA is
shown in Figure C.2. The main difference between RNA and DNA is that in RNA
the sugar moiety has an extra hydroxyl group at the 2’ position. This makes RNA
much more reactive than DNA. In addition, uracil replaces in RNA the chemically
similar thymine found in DNA. In the cell both molecules can only be synthesized
in the direction 5’ 3’. The usual form of RNA is single stranded, while DNA con-
sists normally of two antiparallel complementary strands that assemble by specific
hydrogen bonding between A/T and G/C base pairs into the familiar double helix
(Figure C.3).

When sequencing DNA molecules, it is sometimes not possible to precisely de-
termine the identity of a given base. The set of ambiguity codes shown in Table C.2
is used to describe all possible base identifications.
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Fig. C.1. Numbering of carbon atoms in the ribose moiety of nucleotides.
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Fig. C.2. Example of a monomer of DNA (A) and RNA (B) molecules. The bases can vary
from position to position.

Fig. C.3. Structure of DNA.
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Table C.1. Nomenclature of nucleic acid constituents. The cut-off bond ( ) is attached to the
ribose moiety.

Base Structure Chemical Class Nucleoside Symbol

adenine N

N

NH

N

N

purine adenosine A

guanine NNH

N
H

O

N

N

purine guanosine G

cytosine N

N
H

NH

O pyrimidine cytidine C

thymine N

N
H

O

O

CH

pyrimidine thymidine T

uracil N

N
H

O

O pyrimidine uridine U

Table C.2. Ambiguity codes for nucleotides as defined by the International Union of Bio-
chemistry and Molecular Biology (IUBMB).

Symbol Meaning
A A
B TGC
C C
D TGA
G G
H TCA
K TG
M CA
N TGCA

Symbol Meaning
R GA
S GC
T T
U T
V GCA
W TA
X TGCA
Y TC

Proteins

Proteins consist of amino acids and Table C.3 lists the symbols of the 20 amino
acids specified by the genetic code. In Figure C.4 these amino acids are classified
according to their physico-chemical properties.
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Table C.3. The one letter and three letter codes for amino acids.

One Three Name
A Ala alanine
C Cys cysteine
D Asp aspartic acid
E Glu glutamic acid
F Phe phenylalanine
G Gly glycine
H His histidine
I Ile isoleucine
K Lys lysine
L Leu leucine

One Three Name
M Met methionine
N Asn asparagine
P Pro proline
Q Gln glutamine
R Arg arginine
S Ser serine
T Thr threonine
V Val valine
W Trp tryptophan
Y Tyr tyrosine

Proteins are synthesized by a fusion of the amino and the carboxyl groups of the
amino acids concerned. This is depicted in Figure C.5 and leads to the creation of
an N-terminus and a C-terminus in the resultant protein. Cellular protein synthesis
proceeds in the direction N C as the ribosome moves along the messenger RNA in
the direction 5’ 3’.

Genetic Code

The genetic code links the information contained in nucleotide sequences to the pri-
mary structure of proteins. Table C.4 summarizes the “standard” genetic code. Note
that small variations on this standard code exist in the mitochondrial codes of a wide
variety of organisms, including members of the metazoans (e.g. vertebrates), fungi
(e.g. Saccharomyces spp.), and green plants, including land plants. In addition, vari-
ant nuclear codes have been described for members of the fungi (e.g. many Candida
spp.), green algae (e.g. Acetabularia spp.), ciliates, diplomonads (e.g. Giardia spp.),
and firmicutes (e.g. Mycoplasma spp.) [150]. These variant codes can be looked up
at www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.
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Fig. C.4. Classification of the 20 proteinogenic amino acids according to their physico-
chemical properties.
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Fig. C.5. Synthesis of a dipeptide from two amino acids. and are side chains drawn
from the repertoire depicted in Figure C.4. and refer to the N- and C-terminus of the
peptide, respectively.
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Table C.4. The standard genetic code. If your have trouble remembering the order of the bases,
then “Think Carefully About Genes”.

5’ end
second position

3’ end

T CAG

T Phe/F
Ser/S

Tyr/T Cys/C
T

C

Leu/L

Ter/*
Ter/* A

Trp/W G

C Pro/P
His/H

Arg/R

T

C

Gln/Q
A

G

A Ile/I
Thr/T

Asn/N Ser/S
T

C

Lys/K Arg/R
A

Met/M G

G Val/V Ala/A
Asp/D

Gly/G

T

C

Glu/E
A

G
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Resources

In this book we have used and/or referred to a number of key bioinformatics software
packages and databases. The ones we use most frequently are listed in Tables D.1
(software) and D.2 (databases). However, our lists reflect only a small portion of
what is regularly used by working computational biologists. A good starting point to
explore the rapidly changing world of bioinformatics software and databases are the
software and database directories maintained by the journal Nucleic Acids Research
on their website nar.oupjournals.org.

Table D.1. A selection of bioinformatics applications.

Program Purpose Reference Website
BLAST Database search [9] www.ncbi.nlm.nih.gov/BLAST
clustalw Multiple sequence alignment [246] ftp-igbmc.u-strasbg.fr/pub
EMBOSS Various bioinformatics tasks [209] emboss.sourceforge.net
DnaSP Analyze DNA sequence polymorphisms [211] www.ub.es/dnasp
FASTA Database search [197] fasta.bioch.virginia.edu
GenScan Gene prediction [30] genes.mit.edu/GENSCAN.html
gff2aplot Plotting sequence comparisons [2] genome.imim.es/software
ms Coalescent simulations [122] home.uchicago.edu/rhudson1
MUMmer Genome alignment [48] www.tigr.org/software
PHYLIP Phylogeny reconstruction [72] evolution.genetics.washington.edu
SGP-2 Gene prediction [196] www1.imim.es/software/sgp2
Slam Gene prediction [193] bio.math.berkeley.edu/slam

Table D.2. A selection of bioinformatics databases.

Name Purpose Website
GenBank primary sequence repository www.ncbi.nlm.nih.gov
EMBL primary sequence repository www.ebi.ac.uk/embl
DDBJ primary sequence repository www.ddbj.nig.ac.jp
SwissProt curated protein sequences www.expasy.org/sprot
PDB macromolecular structures www.rcsb.org/pdb
INTERPRO protein motifs www.ebi.ac.uk/interpro
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Answers to Exercises

Chapter 2

2.1

2.2

2.3

2.4

2.6

1. First, we compute the matrix , that is,
and . Then we compute the rounded log-odds scores,

and get and .
2. We start by computing . For our example,

and . From this we compute
the rounded log-odds scores of and .

2.7 In this case clustering does not change the final result, so the answer is shown in
Figure 2.11B.

2.8 Expected score:

The scoring scheme can be applied in local alignment algorithms because the ex-
pected score is .

2.9 129

2.10 A C G AC CG ACG

2.11 The number of pairs of substrings is
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2.12 Let be the number of global alignments between two sequences of lengths
and . Then the sought number of alignments is

2.13 The hypothetical shotgun sequencing projects has the following parameters:

1. Coverage:

2. Unsequenced nucleotides: .
3. Coverage for one unsequenced bp: .

2.15

1. ACCGTT--
A--GTTCA

2. ACC-GTT--
---AGTTCA

2.16 Here is an algorithm for calculating the number of cooptimal alignments:

Require: //filled dynamic programming matrix
Require: //empty dynamic programming matrix
Ensure: number of cooptimal alignments

for all do
for all do

//initialize to zero
//initialize start point of traceback

for to do
for to do

if points back to then

if points back to then

if points back to then

return

2.18 Introduce a new variable, , for cutoff. Let for local alignments and
for global alignments. Then we can write the global/local recursions:
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Chapter 3

3.2 Start with a standard dynamic programming matrix for comparing two se-
quences. The first row and first column are initialized to zero, matches scored as
1, mismatches as . Then

Now we simply have to find the cell with the highest entry, which gives us the length
of the longest exact match between the two sequences. Notice that no traceback
is required for uncovering the match, its position as well as its length suffice for
looking it up in the original sequence. This algorithm has a run time .
Application of a generalized suffix tree reduces this to .

Chapter 4

4.1 Sensitivity = 35/40; specificity = 28/35.

4.2 Here is a summary of the solution strategy:

2 1 5 7 3 4 2 7 2 1

1 1 2 3 2 3 2 4 2 1

Path 2 1 5 7 3 4 2 7 2 1

Start by converting the given sequence of numbers into a graph mapping all possible
transitions. As shown in the top row, this graph consists of a set of vertexes, ,
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and a set of edges, , . Now we fill in the array ,
where is the length of the longest subsequence ending at vertex , using the
dynamic programming algorithm

for to do

In order to actually obtain the set of vertexes corresponding to , we store
for each one or more back pointers to (cf. middle row).
By starting from the maximal entry in and working backwards we obtain the two
cooptimal paths consisting of four nodes each shown in the bottom row.

4.3 Matching in the E. coli genome:

1. Let be the frequency of -th nucleotide and compute , which for our
data is .

2. The probability of obtaining a match of length is . The expected number of
matches of length between two sequence of length is . In our case

. If we make the assumption that the longest match of length
occurs only once, we can solve

for to find

3.
4.

4.6 Base your solution on a generalized suffix tree and consult Section 3.10.

4.7

1. It is a neuronal protein.
2. Yes, using the BLOSUM62 matrix (Table 2.4) we find that the score of alignment

EWL/KWL is 16.
3. 59
4.

5. No, we expect approximately 10 such alignments by chance alone.
6. Score: no change as it is independent of database size; -value: doubled, since

, i.e. if is doubled while and remain constant, is doubled,
too.

4.8

1.
2.
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Chapter 5

5.1 It implies that this position has been conserved throughout evolution and proba-
bly contributes critically to the 3D-structure of the globin protein.

5.3 The desired hyperlattice looks like this:

A

A    A    T    G

T

G

G

T

5.4

5.5

5.6 Here is an alternative alignment:

AATG
-ATG
--TG

5.7

5.8

5.9

5.11

5.12 A protein sequence is a third as long as the corresponding DNA sequence. The
pairwise and multiple alignment phases of the algorithm should therefore become
nine times faster. The impact of this on overall performance depends on the rela-
tive amount of time taken by the alignment phases and construction of the neighbor
joining tree ( ), as well as data loading, etc.

5.13 By following the alternative traceback path we get:

AACGT
A-CGT
A-AGT
A--GT
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Chapter 6

6.1 The desired column in the profile looks like this:

Position A C D E F G H I K L M N P Q R S T V W Y

21 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0

6.2 .

6.3 Illness: ; health: .

6.4 Here is a possible result:

hidden
observed n n e

6.5 The next observation state in the sequence is C; given the HMM, we therefore
get

6.6 The next symbol in the observation sequence is A; hence, we get the extended
Viterbi matrix

T G C T A
0.7200 0.1411 0.0277 0.0217 0.0170
0.0300 0.0195 0.0127 0.0035 0.0010

6.7 By writing the corresponding match states into columns we get the following
alignment:

ATGA-
A-GA-
-TG-T

6.8 The induced alignment is ambiguous as the state sequences are compatible both
with

ATGA
A-CA

and

ATGA
AC-A
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Chapter 7

7.1 All three exons have reading frame 0.

7.2 The remainder of exons can be computed as

7.3

7.4 Expect

donor and acceptor dinucleotides each.

7.5 Recall that TAA, TAG, and TGA are stop codons. Hence we get for the various
G/C-contents:

(a)
(b)
(c)

7.6 The average distance in an infinitely long sequence is the mean of the geometric
distribution:

If sequences have a finite length , then the upper bound for the exon length is
(to accommodate both flanking dinucleotides). At least one acceptor

dinucleotide has to be found among possible start positions. Therefore,

For instance, for , one finds .

7.7 There are possible nonamers. The number of nonamers with a score larger
than when scored with matrix from Figure 7.9 is

Out of these, nonamers have a score larger than . Therefore, one expects to find
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donor sites with a positive score in a sequence of kb. The expected number of
GT dinucleotides is , which is about times as many as the ones
qualified as promising donor sites by the profile matrix.

Chapter 8

8.1 Unrooted: 3; rooted: 15.

8.2 There are six distances between four taxa:

-
6 -
4 6 -
2 6 4 -

8.3 Here is the phylogeny:

0

1

2

3

1. The phylogeny is rooted: there is a node that denotes the ancestor of the entire
clade.

2. The tree is ultrametric. Since the distances fit this tree exactly, they too are ultra-
metric.

8.4 No; a counter example obtained by permutating the entries in the distance matrix
shown in Figure 8.13 would be

1 2 3 4
1 -
2 2 -
3 6 2
4 2 4 2 -

8.7 Notice that all polymorphic positions in the alignment except position 7 are
singletons. These are not informative for maximum parsimony evaluation, as they
add one mutation under any tree topology. The best tree under maximum parsimony
can therefore simply be found by considering position 7; it is ((A,B)(C,D)) and its
length .

8.8 Remember that nearest neighbor interchange will generate trees,
pruning and regrafting . The latter cannot all be distinct as there
are only topologies to choose from.
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Chapter 9

9.2 See p. 432 in the population genetics textbook by Crow and Kimura [43].

9.5 , where represent the
percentage of transitions and that of transversions.

Chapter 10

10.2 Bacteria are haploid organisms. While we can still compute the probability that
two genes drawn at random from the population are different, calling this quantity
“heterozygosity” is strictly speaking a misnomer. Hence, the “virtual”.

10.3 Solve

for to find .

10.4

10.5

10.7

10.8 Use Equation (10.25) and solve

for to find .

10.9 Homozygosity is a quadratic function in the allele frequencies, therefore there
is only one global minimum. Show by induction on the number of alleles that the
minimum is attained at , for .

Chapter 12

12.1 ,

12.2 There are external and internal branches.

12.4 Here is one possible toplology:
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4 1 5 23

12.5 The position of the groups of mutations along the sequences is entirely arbitrary.
One of the infinitely many alternative arrangements might look like this:

1

2

3

4

5

12.6 Again, there is a large number of possibilities, for example:

4 1 5 23

12.7 Reciprocal recombination would generate AC and TG.

12.8 The graphic below shows under A the matrix classifying all pairs of loci accord-
ing to whether or not all four alleles are present; the corresponding list of intervals
(B) is searched for overlaps, leaving four intervals (C). This means that .
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A B C
1 2 3 4 5 6

1 - 1 1 0 1 1
2 - 0 1 1 0
3 - 1 1 0
4 - 1 1
5 - 1
6 -

12.9

Appendix B

B.1

B.2 The probability that you are ill given a positive test result is

B.3 Multiply the genome length by the mutation rate:

B.4 Assuming that mutations are Poisson distributed the probability of obtaining
mutations is the complement of obtaining no mutation:
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Glossary

additive distances: Pairwise distances between taxa possibly evolving at different
rates.

affine gap cost: Gap costs consisting of a constant part and a part that scales linearly
with gap length: , where is the gap opening cost, the gap
extension cost, and the gap length.

alignment: An alignment consists of two or more sequences written on top of each
other in such a way that either residues are paired with residues or with gaps
representing insertions/deletions. The aim of alignment construction is usually
to align homologous residues.

allele: A particular version of a gene.
analogy: Similarity between biological traits not based on common descent.
bioinformatics: Discipline at the interface between molecular biology and com-

puter science established in the wake of the human genome project.
BLAST (Basic Local Alignment Search Tool): Software package for rapidly find-

ing local alignments between a query (pattern) and a subject (text) sequence. In
practice the subject often consists of a large set of sequences.

BLOSUM substitution matrices: Series of BLOcks SUbstitution Matrices con-
taining scores for all possible pairs of amino acids. A matrix entry consists of
the logarithm of the ratio between the probability of finding a pair of amino
acids due to homology and the probability of finding it by chance alone. Hence,
the scores are also known as log-odds scores. The BLOSUM series is based on
blocks of protein sequences that can be aligned without gaps. Sequences with an
identity of percent are grouped together resulting in a BLOSUM matrix.

bootstrap: Statistical procedure for simulating the process of repeatedly drawing
samples from a population. This is done by drawing with replacement ele-
ments from a sample of size . When applied to phylogenetic analysis, the result
consists of a phylogeny where numbers next to nodes indicate the frequency of
obtaining the particular cluster in trees constructed from bootstrap samples of
the input data.

breadth-first traversal: Tree traversal where sibling nodes are visited before child
nodes.
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cDNA: Complementary DNA. DNA molecule derived from a mRNA by reverse
transcription.

centromere: Region in a chromosome where the spindle apparatus attaches during
mitosis and meiosis. Often, but not always situated in the center of a chromo-
some and made up of repetitive, gene-poor sequence.

chromosome: Genomes are divided into one or more chromosomes, each consisting
of one long DNA molecule and associated packaging proteins.

coalescence: The merging of two lineages in a coalescent when moving from the
present into the past, i.e. from the tips of the coalescent toward its root.

coalescent: Gene genealogy used for the simulation of population genetic data.
codon: Triplet of nucleotides that codes for a single amino acid or stop.
DDBJ (DNA Data Bank of Japan): Comprehensive public nucleotide sequence da-

tabase maintained by the Japanese National Institute of Genetics. Its function is
similar to that of GenBank and EMBL.

depth-first traversal: Tree traversal where child nodes are visited before sibling
nodes.

diploid: In a diploid organism such as humans each cell carries two copies of each
chromosome.

disequilibrium mapping: Searching for genes by looking for associations between
a phenotype and anonymous genetic markers. This marker should be in linkage
disequilibrium with the desired gene and therefore close to it.

DNA (DeoxyriboNucleic Acid): Doublehelical molecule serving as repository of
genetic information in the vast majority of organisms. By convention a given
DNA sequence, e.g. AGT, is written in the 5’ to 3’ direction.

dotplot: A plot for comparing two sequences, each drawn along the edge of a two-
dimensional matrix. Wherever the two sequences match, a dot is drawn.

dynamic programming: Computational method for solving recursive optimization
problems by starting at the boundary conditions and storing subproblem solu-
tions rather than recalculating them.

EMBL: European Molecular Biology Laboratory. Also the name of the compre-
hensive public nucleotide sequence database maintained by the European Bioin-
formatics Institute (EBI) in Cambridge, UK. Its function is similar to that of
GenBank, and DDBJ.

EST (expressed sequence tag): A sequence tagged site derived from a cDNA.
eucaryote: Unicellular or multicellular organism where each cell contains a nu-

cleus.
exact matching problem: The problem of finding in a text all the positions where

an exact copy of a given pattern starts.
exon: Exons are the protein-coding regions of a primary transcript.
FASTA: Computer program for rapid local alignment; similar to BLAST.
fixation: Used in population genetics to describe the process whereby an allele be-

comes the only version of the corresponding gene in the population.
GenBank: Comprehensive public nucleotide sequence database maintained by the

American National Center for Biotechnology Information (NCBI). Researchers
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reporting results based on new sequence data are usually required to deposit their
sequence data either in GenBank, EMBL, or DDBJ before publishing their work.

gene: Transcribed stretch of DNA, possibly including its regulatory regions.
genetic diversity: The genetic diversity of a locus is the probability that two alleles

of that locus randomly drawn from a population are different.
genetic drift: Random changes of allele frequencies in the course of evolution.
genetic marker: A genetic landmark of known position along a chromosome. Such

a landmark might, for example, be a gene for white eye color in the fruit fly, or
a sequenced stretch of DNA.

genome: The entirety of an organism’s genetic information.
genomics: The study of whole genomes.
global alignment: An alignment strategy aimed at comparing the input sequences

along their entire length. Based on the assumption that homology extends along
the entire length of the sequences compared.

guide tree: In the context of multiple sequence alignment a guide tree is a binary
tree with sequence designations at its leaves. Starting from the leaves and work-
ing toward the root, this tree specifies the order in which clusters of genes should
be pairwise aligned in order to construct a multiple alignment.

haploid: In a haploid organism each cell carries just a single copy of each chromo-
some. Many asexual organisms, including most procaryotes are haploid.

hash table: Generalized array where any object, e.g. a string, can serve as index.
heterozygosity: The fraction of loci with distinct alleles in a diploid organism; more

generally also used as a synonym of genetic diversity.
heuristic alignment: Alignment strategy using approximate procedures for obtain-

ing an algorithm that is faster than optimal alignment algorithms. BLAST and
FASTA are well-known examples of programs based on heuristic alignment pro-
cedures.

hidden Markov model: Stochastic model consisting of hidden and ob-
servable states. Hidden states can change into each other with probabilities
also specified in the model. A given hidden state emits the observable states
with characteristic and predefined probabilities. A typical application of hid-
den Markov models is gene prediction where the observable states are the nu-
cleotides. The hidden states to be inferred from the observable states might in-
clude intron, initial exon, internal exon, final exon, intergenic region, etc.

hitchhiking: In the context of population genetics this refers to the process whereby
genetic diversity linked to an advantageous allele “hitches a ride” to fixation.

homology: Similarity between biological traits based on common descent.
inexact matching problem: The problem of finding in a text all the positions

where an inexact copy of a given pattern starts. Inexactness might be restricted
to mismatches or might include insertions/deletions.

infinite alleles model: Model of evolution where each mutation at a locus generates
a new allele. If a sequence of, say, 500 nucleotides is considered a locus and the
sequence as its allele, then the infinite alleles model is likely to apply.
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infinite sites model: Model of evolution where each mutation at a locus affects a
different site. This models mutations in a DNA sequence of reasonable length,
where the probability of two mutations affecting the same residue is negligible.

intron: Introns are regions of a primary transcript that are not protein coding; they
are removed by splicing. Introns are common in eucaryotic genes but very rare
in procaryotic genes.

keyword tree: Data structure for simultaneously searching a set of key words in a
text.

linkage: Loci residing on the same chromosome are said to be linked.
linkage equilibrium: Loci that are statistically independent of each other are said

to be in linkage equilibrium. This amounts to the requirement that the frequency
of a genotype consisting of alleles at two or more loci is equal to the product of
the alleles’ frequencies.

linkage disequilibrium: The absence of linkage equilibrium. Due to reciprocal re-
combination, linkage disequilibrium between two loci decays with distance.

local alignment: An alignment strategy aimed at detecting homologous regions be-
tween the input sequences.

locus: A position on a chromosome, often synonymous with gene.
match: In the context of string searching two identical characters are said to form a

match.
maximum likelihood: Framework for statistical inference. In the context of maxi-

mum likelihood phylogeny reconstruction it provides the criterion for evaluating
phylogenies by looking for the tree that maximizes the likelihood of the observed
data.

maximum parsimony: Criterion for evaluating phylogenies by minimizing the num-
ber of evolutionary changes (usually mutations) they imply.

microsatellite: Tandem repeats with short repeat units, e.g. GC . Frequently used
as genetic markers.

mismatch: In the context of string searching two distinct characters are said to form
a mismatch.

molecular clock: Evolutionary scenario in which the rate of evolution along all lin-
eages is equal.

molecular evolution: The study of evolution at the molecular level, i.e. by analyz-
ing DNA and protein sequence data.

multiple alignment: Alignment between sequences.
mutation: Random change in a protein or nucleotide sequence.
neighbor-joining: Method for reconstructing a phylogeny from additive pairwise

distance data.
neutral evolution: Evolutionary change without fitness effect.
non-synonymous substitution: Substitution in a protein-coding DNA sequence

that changes the encoded protein sequence.
open reading frame: Segment of a nucleotide sequence ranging from a start to a

stop codon.
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optimal alignment: Alignment method guaranteed to find the best possible align-
ment under the model. In practice this is usually based on dynamic program-
ming.

ORF: Open Reading Frame.
orthology: Similarity between homologous biological traits carried by different or-

ganisms.
overlap alignment: Alignment strategy for overlapping sequences. Applied in the

assembly of sequence fragments generated in the course of a shotgun sequencing
project.

pairwise alignment: Alignment between two sequences.
PAM substitution matrices: Series of Percent Accepted Mutations matrices con-

taining scores for all possible pairs of amino acids. A matrix entry consists of
the logarithm of the ratio between the probability of finding a pair of amino acids
due to homology and the probability of finding it by chance alone. Hence, the
scores are also known as log-odds scores.

paralogy: Similarity between homologous biological traits carried by the same or-
ganism.

pattern: In the context of string searching this refers to the string searched for in a
text.

PCR (Polymerase chain reaction): Procedure for rapidly increasing the concentra-
tion of a specific stretch of DNA sequence in a reaction mixture by orders of
magnitude.

PDB (Protein Data Base): Public collection of three-dimensional protein struc-
tures.

phylogeny: Species genealogy, usually computed from empirical data.
polyploid: In a polyploid organism each cell carries multiple copies of each chro-

mosome. For example, in hexaploid wheat each chromosome is present in six
copies.

population genetics: Study of evolutionary forces acting at the level of biological
populations.

profile: Also known as position-specific weight matrix. Used to represent protein
families.

procaryote: Organism without a nucleus; all procaryotes are unicellular.
protein family: Group of proteins with similar functions.
protein: Macromolecule consisting of amino acids, the sequence of which deter-

mines its three-dimensional shape and, hence, its function. Their amino acid se-
quence is specified in their gene’s DNA sequence. By convention a given protein
sequence, e.g. MTY, is written in the -terminal to -terminal direction.

proteomics: The study of the entire set of proteins from one or more organisms.
reading frame: One of six possible ways in which a DNA sequence can in theory be

translated by starting at positions 1, 2, or 3 on the forward strand or at positions
1, 2, or 3 on the reverse strand.

recombination: Exchange of genetic material between homologous chromosomes
during crossing over in meiosis. Reciprocal recombination refers to the pro-
cess whereby after recombination both participating chromosomes are changed
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downstream of the recombination point. In contrast, gene conversion leaves one
of the participating chromosomes unchanged.

recursion: A function expressed as a function of itself; for example, the -th Fi-
bonacci number is expressed recursively as the sum of the -th and the -
th Fibonacci number: for with the boundary conditions

.
RNA (RiboNucleic Acid): Single stranded molecule serving as intermediary be-

tween DNA and protein. Some RNAs also possess catalytic activity and complex
with proteins to form ribozymes, the most important of which is the ribosome,
the site of protein synthesis. By convention a given RNA sequence, e.g. AGU, is
written in the 5’ to 3’ direction.

rooted tree: Refers to a phylogeny with known position of the last common ances-
tor.

selective sweep: The evolutionary process during which an advantageous allele gets
fixed in a population.

sensitivity: In the context of gene prediction or database searching this refers to the
fraction of true targets returned.

shotgun sequencing: Method for sequencing long sequences by analyzing a large
number of small random fragments and automatically assembling these.

SNP (Single Nucleotide Polymorphism): Detected by analyzing homologous po-
sitions in two or more DNA sequences. If a position is occupied by more than
one nucleotide a SNP has been found.

specificity: In the context of gene prediction or database searching this refers to the
fraction of true predictions or database hits.

splicing: Removal of introns from primary transcripts. In eucaryotes this takes place
in the nucleus and the spliced RNAs are exported to the cytoplasm where they
are translated.

STS (Sequence Tagged Site): A molecular marker consisting of a stretch of per-
haps 100 nucleotides of known sequence that is unique within the genome. Often
used for genome mapping.

substitution: Mutation that leads to an observable allele.
suffix tree: Data structure for indexing a text such that it can be searched for a pat-

tern in time proportional to the length of the pattern irrespective of the length of
the text.

SwissProt: Reference database of protein sequences maintained by the Swiss Insti-
tute of Bioinformatics and the European Bioinformatics Institute (EBI).

synonymous substitution: Substitution in a coding DNA sequence that leaves the
encoded protein sequence unchanged.

taxon: A group of organisms, a taxonomic unit.
telomere: Terminal regions of chromosomes for protecting the ends of linear chro-

mosomes consisting of a characteristic tandem repeat, for example TTAGGG .
text: In the context of string searching this refers to the string in which a pattern is

to be found.
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traceback: In the context of optimal alignment, this refers to the process of ex-
tracting the alignment from the filled in alignment matrix by following the back
pointers specified during the forward phase of the algorithm.

transition: Mutation among members of the same chemical class of nucleotides,
i.e. among purines (A, G) or among pyrimidines (C, T).

transversion: Mutation between members of the chemical classes of nucleotide
bases, i.e. between purines (A, G) and pyrimidines (C, T).

ultrametric distances: Pairwise distances between taxa evolving at the same rate.
unrooted tree: Phylogeny with unknown position of the last common ancestor.
UPGMA (Unweighted Pair-Group Method using an arithmetic Average): Method

for reconstructing a phylogeny from ultrametric pairwise distance data.
weight matrix: Matrix of the frequency (or some function thereof) of each possible

residue along the aligned members of a protein family.
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