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Recent advances in experimental methods have resulted in the generation

of enormous volumes of data across the life sciences. Hence clustering and

classification techniques that were once predominantly the domain of ecologists

are now being used more widely. This book provides an overview of these

important data analysis methods, from long-established statistical methods

to more recent machine learning techniques. It aims to provide a framework

that will enable the reader to recognise the assumptions and constraints that

are implicit in all such techniques. Important generic issues are discussed first

and then the major families of algorithms are described. Throughout the focus

is on explanation and understanding and readers are directed to other resources

that provide additional mathematical rigour when it is required. Examples

taken from across the whole of biology, including bioinformatics, are provided

throughout the book to illustrate the key concepts and each technique’s

potential.
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Dedication

This book is dedicated to the memory of Derek Ratcliffe. Derek,

who was one of Britain’s most important biologists, died during the writing of

this book. I had the great pleasure of helping him in some very small ways

with data analyses and he kindly provided a reference for my Leverhulme

Fellowship award. His humility, breadth, insight and commitment are

a great inspiration.
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Preface

When I was originally asked to write this book I said no, several times.

My reticence was a consequence of workload and not because I thought there

was no need for the book. However, Katrina Halliday from Cambridge University

Press persisted and eventually I gave in. However, I can only blame myself

for any errors or omissions in the text.

Katrina asked me because of my editorship of an earlier machine learning

book and favourable comments about some of my web material, in particular

a postgraduate multivariate statistics unit. My interest in multivariate statistics

arose from my research as a conservation biologist. As part of this research

I spent time trying to develop predictive species distribution models, which

led to my exploration of two additional topics: machine learning methods

as alternatives to statistical approaches; and how to measure the accuracy

of a model’s predictions.

If you are not an ecologist you may be thinking that there will be little

of value for you in the book. Hopefully, the contents will alleviate these fears.

My multivariate statistics unit was delivered to a diverse group of students

including biomedical scientists, so I am used to looking beyond ecology and

conservation. In my experience there is much to be gained by straying outside

of the normal boundaries of our research. Indeed my own research into the

accuracy of ecological models drew greatly on ideas from biomedical research.

At a fundamental level there is a great deal of similarity between a table

of species abundance across a range of sites and a table of gene expression

profiles across a range of samples. The subject-specific information is obviously

important in devising the questions to be answered and the interpretation of

results, but it is important to be aware that someone in another discipline

may already have devised a suitable approach for a similar problem. Classifiers

are in use in many biological and related disciplines; unfortunately there seems

to be little cross-fertilisation. Throughout the book I have attempted to draw
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examples from a wide range of sources including ecology and bioinformatics.

I hope that readers will recognise that other disciplines may already have

a solution to their problem, or at least a catalogue of the difficulties and pitfalls!

As you read this text you may notice a low equation and symbol

count. While this opens the text up to some obvious criticism I feel that the

additional accessibility benefits outweigh the deficiencies. I am ready, if

somewhat nervous, to face the reviewers’ criticisms. While there are many

good printed and online resources, which provide the necessary theoretical

detail, I think that there is a shortage of overview resources which attempt

to provide a framework that is not clouded by too much technical detail.

However, the readers are expected to have some basic understanding of

statistical methods. What many biologists need, and what I hope to achieve,

is support in deciding if their problem can be investigated using a clustering

or classification algorithm. I hope to do this by providing general guidelines

and examples drawn from across biology. Given the ephemeral nature of

many web pages there are relatively few web links in the text. The main

exceptions are classic ‘papers’ and data or software sources.

During the writing several colleagues have commented on parts of the text.

I am particularly grateful to Paul Craze, Les May and Emma Shaw. My research

colleagues (Paul Haworth, Phil Whitfield and David McLeod) kept me

entertained and revitalised during the several research meetings that we had

while I was writing this book. However, I fear they may be responsible for

physiological damage!

Finally, this book could not have been written without the continuing

support of my wife Sue and daughter Rosie.
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Introduction

1.1 Background

Searching for patterns in biological data has a long history, perhaps

best typified by the taxonomists who arranged species into groups based on

their similarities and differences. As computer resources improved there was

a growth in the scope and availability of new computational methods. Some of

the first biologists to exploit these methods worked in disciplines such as

vegetation ecology. Vegetation ecologists often collect species data from many

quadrats and they require methods that will organise the data so that relevant

structures are revealed. The increase in computer power, and the parallel

growth in software, allowed analyses that were previously impractical for other

than small data sets.

However, the greatest data analysis challenges are undoubtedly more recent.

Advances in experimental methods have generated, and continue to generate,

enormous volumes of genetic information that present significant storage,

retrieval and analysis challenges see Slonim (2002) for a useful review.

Simultaneously there has been a growth in non-biological commercial databases

and the belief that they contain information which can be used to improve

company profits. One consequence of these challenges is that there is now a wide,

and increasing, variety of analysis tools that have the potential to extract

important information from biological data.

The analysis tools that extract information from data can be placed into two

broad and overlapping categories: cluster and classification methods. This book
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examines a wide range of techniques from both categories to illustrate their

potential for biological research. For example, they can be used to:

1. find patterns in gene expression profiles or biodiversity survey data;

2. identify class membership from some predictor variables (e.g. type of

cancer, sex of a specimen, used or unused habitat);

3. identify features that either contribute to class membership or can be

used to predict class membership.

1.2 Book structure

This chapter introduces the main themes and defines some terms that

are used throughout the rest of the book. Chapter 2 outlines the important roles

for exploratory data analysis prior to formal clustering and classification

analyses. The main part of this chapter introduces multivariate approaches,

such as principal components analysis and multi-dimensional scaling, which can

be used to reduce the dimensionality of a dataset. They also have a role in the

clustering of data. Chapter 3 examines different approaches to the clustering of

biological data. The next three chapters, 4 to 6, are concerned with classification,

i.e. placing objects into known classes. Chapter 4 outlines some issues that are

common to all classificationmethods while Chapters 5 and 6 examine traditional

statistical approaches and a variety of more recent, ‘non-statistical’, methods.

Chapter 7 is related to the classification chapters because it examines the

difficulties of assessing the accuracy of a set of predictions.

Although the methods covered in the book are capable of analysing very large

data sets, only small data sets are used for illustrative purposes. Most data sets are

described and listed in separate appendices. Others are freely available from

a range of online sources.

1.3 Classification

Classification is the placing of objects into predefined groups, the

archetypal biological example being identifying a biological specimen (assigning

a species name). This type of process is also called ‘pattern recognition’, which is

defined by Wikipedia (2005) as ‘a field within the area of machine learning

and can be defined as ‘‘the act of taking in raw data and taking an action based

on the category of the data. As such, it is a collection of methods for supervised

learning’’ ’. The terms ‘machine learning’ and ‘supervised learning’ are defined

in Section 1.6. However, classification is used here in a more general sense

to include an element of prediction. For example, do we expect to find a species
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in a particular habitat (species distribution modelling), or given a particular

genetic profile do we expect an individual to belong to a disease-free or disease-

prone class?

Despite this increased breadth for the definition, it excludes the type of

statistical predictions generated by, for example, a linear regression. Techniques

such as linear regression predict a continuous, quantitative value, e.g. the

expected yield of a crop given a certain fertiliser application. In this text pre-

diction is applied almost exclusively to the identification of class membership,

a categorical variable. Techniques, such as logistic regression and artificial neural

networks, which produce a real-valued output (often between 0 and 1) that is

subsequently split into discrete categories by the application of some threshold

value, are included. Throughout this text the term classifier is used to describe a

general predictive technique which allocates cases to a small number of

predefined classes.

1.4 Clustering

Clustering is related to classification. Both techniques place objects

into groups or classes. The important difference is that the classes are not

predefined in a cluster analysis. Instead objects are placed into ‘natural’ groups.

The term natural is a little misleading since the groupings are almost entirely

dependent on the protocols that were established before starting the clustering.

Clustering and classification approaches differ in the type of ‘learning’ method

used. Classification methods use supervised methods while clustering algo-

rithms are unsupervised (see Section 1.6). It is also important to realise that

there is no concept of accuracy for an unsupervised classification, the only way

of judging the outcome is by its ‘usefulness’. For example, is the classification

‘fit for purpose’? If it is not then one should rethink the analysis.

There is some unfortunate confusion in the use of terms. For example,

Gordon’s (1981, 1999) excellent books have ‘Classification’ as the title, but they

are entirely concerned with clustering of data. In this text classification is

restricted to supervised classification methods.

1.5 Structures in data

1.5.1 Structure in tables

A common starting point for all clustering and classification algorithms

is a table in which rows represent cases (objects) and columns are the variables.

Once data are in this format their original source, for example microarrays,

Structures in data 3



quadrats, etc., is largely irrelevant. The hope is that we can find some structure

(signals) in these data that enable us to test or develop biological hypotheses.

If the data contain one or more signals there will be some structure within the

table. The role of a cluster or classification analysis is to recognise the structure.

In the simplest case this structure may be masked by something as simple as

the current row and column ordering. Table 1.1 is a simple example in which

there is no obvious structure.

A clear structure becomes apparent once the rows and columns are reordered

(Table 1.2). Unfortunately, analysing real data is rarely that simple. Although few

clustering and classification algorithms explicitly re-order the table, they will

generate information which reveals the presence of some structure. This topic is

covered again in Chapter 2.

1.5.2 Graphical identification of structure

Looking for structures in data tables is only feasible when the table

dimensions are relatively small. As tables become larger graphical summaries

become more useful. Principal components analysis (Chapter 2) is a commonly

used method that can reveal structures in interval data. As an example the data

from Table 1.1 were subjected to an analysis. At the end of the analysis each case

has a score for two new variables, PC1 and PC2. If these scores are plotted against

each other it is obvious that there is some structure to these data (Figure 1.1).

Note that the points are arranged in the same order as the re-ordered table

(Table 1.2). No further explanation or interpretation is presented here but it is

obvious that this approach can reveal structures in data tables.

Table 1.1. A simple dataset with ten cases (1�10) and nine variables (a�i)

Case a b c d e f g h i

1 2 0 1 4 0 5 3 0 0

2 2 4 3 0 5 0 1 4 3

3 1 3 2 0 4 0 0 5 4

4 0 1 0 0 2 0 0 3 4

5 4 4 5 2 3 1 3 2 1

6 3 5 4 1 4 0 2 3 2

7 5 3 4 3 2 2 4 1 0

8 3 1 2 5 0 4 4 0 0

9 4 2 3 4 1 3 5 0 0

10 0 2 1 0 3 0 0 4 5
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1.6 Glossary

The fields of clustering and classification are awash with terms and

acronyms that may be unfamiliar. This is not helped by redundancy and overlap

in their use. For example, some methods have more than one name while the

same termmay be used for completely different methods. The following is a short

glossary of some of the more important terms that appear throughout the book.

Table 1.2. The dataset from Table 1.1 with re-ordered rows and columns.

Zeros have been removed to highlight the structure

Case f d g a c b e h i

1 5 4 3 2 1

8 4 5 4 3 2 1

9 3 4 5 4 3 2 1

7 2 3 4 5 4 3 2 1

5 1 2 3 4 5 4 3 2 1

6 1 2 3 4 5 4 3 2

2 1 2 3 4 5 4 3

3 1 2 3 4 5 4

10 1 2 3 4 5

4 1 2 3 4

Figure 1.1 Principal component score plot for the data from Table 1.1. Points are

labelled with the case numbers.
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1.6.1 Algorithm

An algorithm is a finite set of unambiguous instructions that describe

each step needed to accomplish a task. Normally, the term refers to the design of

a computer program. An algorithm differs from an heuristic (chance-based)

approach because, given some initial state, it always produces the same result.

For example, given a shuffled deck of playing cards, the following simple

algorithm will always produce a pile of red cards on the left and a pile of black

cards on the right. The order of the cards in each pile will be random.

Repeat

Turn over the top card.

If it is red place it to the left of the shuffled deck.

If it is black place it to the right of the shuffled deck.

Until no cards remain

1.6.2 Bias

Bias is the difference between the estimate of a value and its true value.

A low bias is a desirable property for all classifiers. Unfortunately this may be

difficult to achieve given the need to trade off bias against variance. Bias and

variance are two parameters that feature significantly in the evaluation of

classifier performance.

1.6.3 Deviance

The deviance is a measure of the variation unexplained by a model and

is, therefore, a guide to the fit of data to a statistical model. It is calculated

as twice the log-likelihood of the best model minus the log-likelihood of the

current model. The best model is generally a saturated model (see maximum

likelihood estimation).

1.6.4 Learning

Supervised learning

The use of the term ‘learning’ is potentially fraught with problems when

biologists are involved (see Stevens-Wood (1999) for a review of ‘real learning’

within the context of machine learning algorithms). However, learning, as

applied to classifier development, refers to the gradual reduction in error

as training cases are presented to the classifier. This is an iterative process with

the amount of error reducing through each iteration as the classifier ‘learns’

from the training cases. Supervised learning applies to algorithms in which

a ‘teacher’ continually assesses, or supervises, the classifier’s performance during

training by marking predictions as correct or incorrect. Naturally, this assumes

that each case has a valid class label. Learning in this sense relates to the way
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in which a set of parameter values are adjusted to improve the classifier’s

performance. However, as Hand (1997, p. 41) points out ‘one may ask what is the

difference between ‘‘learning’’ and the less glamorous sounding ‘‘recursive

parameter estimation’’ ’. The answer is, of course, none!

Unsupervised learning

In unsupervised learning there is no teacher and the classifier is left

to find its own classes (also known as groups or clusters). The assumption is that

there are ‘natural’ classes that the classifier will identify, albeit with some

post-classification processing by the user. A typical example would be finding

habitat classes in a satellite image or patterns in gene expression levels that

may represent a particular cell state. The biggest gains from an unsupervised

classification are likely in knowledge-poor environments, particularly when

there are large amounts of unlabelled data. In these situations unsupervised

learning can be used as a type of exploratory data analysis (Chapter 2) which

may provide some evidence about the underlying structures in the data. As such

it should be viewed as a means of generating, rather than testing, hypotheses.

Machine learning

Machine learning (ML) is a subset of artificial intelligence (AI) and

incorporates a large number of statistical ideas and methods and uses algo-

rithms that ‘learn’ from data. Learning is based around finding the relationship

between a set of features and class labels in a set of training examples (supervised

learning).

Induction and deduction are two types of reasoning. Induction, the leap

from the particular to the general (‘seeing the woods through the trees’), can be

used to generate classification rules from examples by establishing ‘cause�effect’

relationships between existing facts (Giraud-Carrier and Martinez, 1995). For

example, an inductive system may be able to recognise patterns in chess games

without having any knowledge of the rules (Quinlan, 1983). Perhaps a similar

system could recognise patterns in gene expression without understanding the

rules that control them. Deduction is concerned with reasoning using existing

knowledge. Thus, in the chess example it would be necessary to know the rules

of chess before reasoning about the patterns. The requirement for previously

acquired knowledge is one of the main differences between deduction and

induction. Because deduction can be used to predict the consequences of events

or to determine the prerequisite conditions for an observed event (Giraud-Carrier

and Martinez, 1995) it is at the heart of most expert systems.

Although most ML systems are based on induction there are potential

problems with this approach to learning. The first is that learning by induction
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requires many examples (a large sample size), although this may be outweighed

by the necessity for little background knowledge (Dutton and Conroy, 1996).

In a knowledge-poor discipline, such as ecology, this can be a major advantage.

Another problem with inductive learning systems is that they are not guaran-

teed to be ‘future-proof ’, they only make use of what happened in the ‘past’.

Consequently noisy or contradictory data may create problems. These difficulties

are not restricted to ML programs; for example, it is well known that relation-

ships modelled by a regression analysis should not be extrapolated beyond

the limits of the original data. Noise does not have consistent effects on ML

algorithms; for example, artificial neural networks, genetic algorithms and

instance-based methods all use ‘distributed’ representations of the data while

others, such as decision trees and logic, do not (Quinlan, 1993). This is important

because distributed representations should be less susceptible to small alter-

ations (noise); hence they have the potential to be more robust classifiers (Dutton

and Conroy, 1996).

Carbonell (1990) placed ML techniques into four major paradigms: inductive

learning; analytical learning; connectionist methods; and genetic methods.

The first uses inductive techniques to derive a general class description from

a database of labelled cases (the training or learning set). The analytical

paradigm, including methods such as case-based reasoning, uses deduction

and induction to learn from exemplars (which may be a single case). The last

two are rather loosely based on biological concepts. The connectionist para-

digm is an approximation of a real biological neural network while the

final paradigm uses simulated selection and evolution to converge towards

a solution.

1.6.5 Maximum likelihood estimation

The aim of maximum likelihood estimation is to find the values for

parameters that maximise the probability of obtaining a particular set of data.

If the parameters of, for example, a probability distribution are known it is

a relatively simple task to determine the probability of obtaining a sample with

particular characteristics. However, it is common to have a sample of values

obtained from a population whose parameters are unknown. The sample could

have come from many different probability distributions: maximum likelihood

methods find the parameters that maximise the probability of drawing that

sample.

The frequent references to log-likelihoods in connection with maximum

likelihood estimation are a computational short-cut, rather than a theoretical

necessity. This is because maximum likelihood estimates involve the multi-

plication of many small probabilities which, because of rounding errors, may
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get truncated to zero. If logarithms are used the multiplications become addi-

tions and the truncation problem is reduced. Because probabilities are less than

one they have negative logarithms which become larger as the probability

declines.

1.6.6 Microarray

A microarray, or microchip, is an important bioinformatics tool that

generates large amounts of data that can be subsequently processed by clustering

and classification methods. Typically a microarray will have several thousand,

very small DNA spots arranged in a grid on glass or other solid material. Each

spot has a fragment of a DNA or RNA molecule which corresponds to part of a

known gene. Messenger RNA is extracted from biological samples and reverse-

transcribed into cDNA, which is then amplified by a PCR. During the PCR

amplification radioactive or fluorescent nucleotides are incorporated which are

later used to detect the amount of hybridisation with the DNA fragments on the

chip. It is assumed that the amount of cDNA for a particular gene reflects

its activity (expression level) within the biological sample. After measurement

and post-processing a table of expression values is obtained for each gene within

each biological sample. These are the data that are subjected to the subsequent

clustering and classification procedures to identify patterns that may provide

biological insights. Quackenbush’s (2001) review of computational analysis

methods for microarray data is a good starting point to link clustering and

classification algorithms to microarray data.

1.6.7 Multicollinearity

This is an important topic in regression-type analyses. Multicollinearity

occurs when predictor variables are highly correlated, or one predictor is

a function of two or more of the other predictors, for example x1 ¼ x2 þ x3.

Multicollinearity is a problem because it may prevent calculations from being

completed or it can lead to instability in the regression coefficients. The

instability is often manifested in coefficients having the ‘wrong’ sign. Thus,

although we may expect y to increase as x increases (b4 0), multicollinearity can

lead to a zero or negative value for b. This obviously makes interpretation very

difficult.

1.6.8 Occam’s razor

Put simply Occam’s razor is a philosophy that says if a choice must

be made between a number of options the simplest is the best. In the context

of clustering and, particularly, classification analyses this tends to relate to the

number of variables or other design decisions such as the number of weights

in the neural network. In general simpler models should be preferred to more
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complex ones. However, Domingos (1999) discusses the role of Occam’s razor

in classification models and argues that choosing the simplest model may not

always be desirable.

1.6.9 Ordination

Ordination is a term that is normally applied to a particular class

of multivariate techniques when they are applied to ecological data. Generally

they are geometrical projection methods that attempt to present multivariate

data in fewer dimensions. Palmer’s ‘Ordination Methods for Ecologists’ website

has more details (http://ordination.okstate.edu/).

1.7 Recommended reading and other resources

1.7.1 Books

There are many good books that include the topics covered in this book.

However, most of them have a restricted coverage, although this is usually

combined with a greater depth. I have avoided the temptation to recommend

subject-specific texts because the terminology and examples often obscure their

explanations for readers from other disciplines. For example, Legendre and

Legendre (1998) is an excellent, comprehensive book but non-ecologists may

find some of the detail unhelpful. Dudoit and Fridlyand (2003) surveyed the use

of microarray data in classification problems. The book by Davis (1986), which

is aimed at geologists, has the clearest description of eigen values and eigen

vectors that I have ever read. Unsurprisingly there are many books which fall

within the machine learning and data mining spheres that may be useful. Most

of these are listed in the relevant chapters but there are three that are partic-

ularly useful. First is the excellent book by Duda et al. (2001) which has very clear

explanations for much of the theoretical background. Anyone interested

in applying clustering and classification methods to their data will benefit from

spending time reading this book. Second is Hand’s (1997) excellent book

on classification rules, which is particularly strong on assessing the performance

of classifiers. The final book is Michie et al. (1994) which draws together the

results from a series of comparative analyses. It has the added advantage of

being available in a free download format.

1.7.2 Software

Therearemanycommercialpackagesbutoftenpeoplewouldliketotryout

analyses using free software. Fortunately there are several free, but professional,

packages available. The two packages listed below are general purpose, and there

are many other packages that are restricted to a small number of analyses
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or disciplines. For example, Eisen (http://rana.lbl.gov/EisenSoftware.htm) has pro-

duced a range of clustering software for use with microarray experiments, in

particular Cluster and TreeView is an integrated pair of programs for analysing

and visualising the results. For example, Cluster performs a number of cluster

analyses including hierarchical clustering (Chapter 3), self-organising maps

(Chapter 6), k-means clustering (Chapter 3) and PCA (Chapter 2).

R (http://www.r-project.org/) is a programming and analysis environment that

provides a wide variety of statistical and graphical techniques, including linear

and nonlinear modelling, classical statistical tests, classification and clustering

methods. The list of available packages is regularly updated and there are few

statistical methods, including those only just developed, that are not available

for R. There are also specialist installations aimed at particular disciplines. For

example, Bioconductor (Gentleman et al., 2004 and http://www.bioconductor.org/)

is a set of analyses tailored to bioinformatics.

Weka (Witten and Frank, 2005) is not a single program. It is a large

collection of machine learning algorithms for data mining tasks written in Java

code (http://www.cs.waikato.ac.nz/ml/weka/). There is also a repository of datasets

which are provided in a format readable by Weka programs.

PAST (Hammer et al., 2001) is a compact, free multivariate analysis program

which can be downloaded (for Windows) from http://folk.uio.no/ohammer/past/.

Despite its primary focus as a tool for palaeontological data analysis it is

very useful for other disciplines and includes routines for partitioning and

hierarchical cluster analyses, Principal Components and Coordinates Analysis,

Non-metric Multidimensional Scaling, Detrended Correspondence Analysis,

Canonical Correspondence Analysis plus many other more specialised routines.

It is a very good starting point to explore a range of methods, particularly if large

data sets are avoided.
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2

Exploratory data analysis

2.1 Background

It is important to understand and, if necessary, process the data before

beginning any cluster or classification analysis exercises. The aim of these

preliminary analyses is to check the integrity of the data and to learn something

about their distributional qualities. The methods used to achieve these aims

come under the general heading of exploratory data analysis or EDA. One of the

greatest pioneers of EDA methods was J. W. Tukey. He defined EDA as an attitude

and flexibility (Tukey, 1986). It is well worth reading Brillinger’s (2002) short

biography of Tukey to get a better understanding of why he held these views so

strongly. If one wants to find out more about EDA methods a good,

comprehensive, starting point is the online NIST Engineering Statistics handbook

(NIST/SEMATECH). Do not be put off by the title, this is an excellent resource for

biologists. According to the NIST handbook EDA is an approach or philosophy

that employs a variety of techniques (mostly graphical) to:

. maximise insight into a data set;

. uncover underlying structure;

. extract important variables;

. detect outliers and anomalies;

. test underlying assumptions;

. develop parsimonious models; and

. determine optimal factor settings.

The first step in any EDA is to generate simple numerical or, even better,

graphical summaries of the data. In addition to univariate analyses (histograms,

box plots, etc.) it is generally worthwhile considering multivariate analyses.
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At the simplest these will be bivariate scatter plots, possibly with different

symbols indicating group membership (e.g. sex). More complex analyses use

techniques that reduce the data dimensionality through linear and non-linear

mapping procedures (Sections 2.6 and 2.7). Although many of these analyses are

possible using standard statistical software a wider range of techniques is

available in dedicated EDA software such as the public domain, multi-platform

DATAPLOT (Filliben and Heckert, 2002) used in the NIST handbook. The GAP

(generalised association plots) software produced by Chen (2002) and Wu and

Chen (2006) is primarily aimed at bioinformatic data, but works well with

other data. This software can produce some interesting graphical summaries

(see Section 2.4.1).

Jeffers (1996) is an excellent example of how a range of statistical, and

machine learning, methods can be used to explore a data set. Jeffers used a set

of reference leaf measurements obtained from trees in the Ulmus (elm) genus.

Wren et al. (2005) emphasise the increasing need for EDA within the broad

context of genomic research. They present a case for exploring data through the

increasing number of online databases. They suggest that such exploratory

analyses, or data mining as it is known in the commercial world, is based on

a premise that there are answers to questions that we have not thought of yet.

Consequently the data drive the generation of hypotheses, rather than the

reverse. They also suggest that data mining of these databases can be achieved

using EDA methods to explore the possibility of relationships when there is no

a priori expectation as to their nature. These explorations become more

important because the rate of growth, and volumes of data, mean that more

open-ended ‘data-driven’ questions can be asked. It is, however, important

to recognise that some people view approaches such as data mining with

considerable scepticism (see Section 2.9). Bo (2000) is a nice, downloadable review

of knowledge discovery methods that also includes material covered in some

of the later chapters.

2.2 Dimensionality

The dimensionality of a data set is the number of cases from which the

data were recorded (n) and the number of parameters measured or recorded (p).

For example, if 5 variables are recorded from 100 cases the dimensions of the

data are 100 by 5.

In all clustering and classification algorithms it is desirable to have n � p.

This is a particular problem for many microarray experiments in which there are

likely to be a very large number of genes (p) relative to the number of samples

(such as tumour samples). Consequently, an important role for EDA is reducing
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the dimensionality, particularly for p. This reduction is desirable for many

reasons. For example, graphical summaries are important in EDA but it becomes

very difficult to visualise data with more than three dimensions unless

techniques such as principal components analysis (PCA) are used to reduce the

dimensions to something more manageable. It may also be desirable because

it enables recognition of variables that are unrelated to the problem. These

variables may make the clustering and classification less successful because they

add noise to the patterns, making them harder to detect.

The main aim of any dimension reduction algorithm is to map the original

data onto a lower dimensional space, but with a minimum loss of information.

This topic is considered in more detail in the sections dealing with variance- and

distance-based projection methods (Sections 2.5 and 2.6) and cluster analysis

(Chapter 3). In addition, reducing the dimensionality also reduces subsequent

computational time, by a factor that depends on the algorithm.

Some methods, for example PCA, can also remove potential problems arising

from correlated variables. The problem of correlated predictors is known as

multicollinearity and it is a particular concern when stepwise variable selection

routines are used to optimise a model. The sign, magnitude and significance

of model coefficients can all be affected by inter-predictor correlations.

Fodor (2002) is a comprehensive survey of dimension reduction techniques

that was written for the American Department of Energy.

2.3 Goodness of fit testing

Because statistical model-based analyses typically make strong assump-

tions about the distributional characteristics of data it is important to verify that

the data are suitable. One way of verifying data is via a goodness of fit test. These

are concerned with determining how well empirical data (i.e. experimental or

observational data) match the characteristics expected from some theoretical

probability distribution. There are three stages to goodness of fit testing.

1. Select some theoretical distribution(s) to which you expect the empirical

data to conform. Usually this is based on prior knowledge and the

data type. For example, if the data are counts of rare events it is possible

that the data were obtained from a Poisson distribution.

2. Decide on the parameter values that characterise a particular version of

the general theoretical distribution. For example, what values of n and p

should be used for a candidate binomial distribution, what mean and

standard deviation characterise a normal distribution? Several methods

are available, including ordinary least squares (OLS) and weighted least
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squares (WLS) and maximum likelihood techniques. Each has their own

advantages and disadvantages.

3. Compare the empirical data with the expected (theoretical) values using

a statistical test and/or a graphical method. In general goodness of fit is

measured by subtracting observed values from expected values (those

predicted by the model with fitted parameter values). Thus, a residual is

calculated, which will be close to zero if the fit is good. In some

circumstances entire probability distributions must be compared using

methods that compare the empirical distribution functions (EDFs) of the

test data to the cumulative distribution function (CDF) of a specified

candidate parametric probability distribution.

More detailed treatment of these approaches can be found in two down-

loadable resources. Chapter 2 of the online USGS Statistical Methods in Water

Resources (Helsel and Hirsch, 2005) or Chapter 1 of the Options for Development of

Parametric Probability Distributions for Exposure Factors online book from the US

Environmental Protection Agency (Myers et al., 2000).

2.4 Graphical methods

2.4.1 Background

There are two important pioneers in the use of graphics to understand

data. The first was Tukey who inventedmethods such as the box and whisker plot.

It is important to understand that he viewed these graphical summaries as

important guides that should be used in an iterative process to assist in the

development and refinement of hypotheses which would be tested later.

The second, and perhaps less well known, pioneer was Jacques Bertin. He

developed theories that he called the semiology of graphics which are set out in

his book that predates all computer graphics (Bertin, 1967). Bertin was concerned

with combining design and science to create graphics that treat data so that they

convey information. Central to many of Bertin’s ideas is the concept of the

orderable matrix in which data are reduced to a series of row and column

summaries that can then be reordered to highlight important data structures

and exceptions (see Table 1.1). Good examples of this approach, although with

different names, are the bi-directional cluster plots that are used to visual gene

expression profiles (e.g. Chen’s (2002) generalised association plots), while

Friendly (2002) described a graphical summary method for depicting the patterns

of correlations among variables that uses various renderings to depict the signs

and magnitudes of correlation coefficients in a table that has had its rows and

columns reordered. Similarly, archaeologists use amethod called seriation which
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reorders a table so that presence values are concentrated along the table’s

diagonal. The earlier work of Tukey and Bertin has been greatly extended by

the opportunities afforded by high-speed computers and enhanced graphical

capabilities (e.g. Tufte, 1997).

2.5 Variance-based data projections

2.5.1 Background

When multivariate interval data are collected it is common to find some

correlated variables. One implication of these correlations is that there will be

redundancy in the information provided by the variables. In the extreme case of

two perfectly correlated variables (x and y) one is redundant. Knowing the value

of x leaves y with no freedom and vice versa. PCA and the closely related factor

analysis exploit the redundancy in multivariate data by picking out patterns

(relationships) in the variables and reducing the dimensionality of a data set

without a significant loss of information.

PCA differs from distance-based dimension reduction techniques such as

multidimensional scaling because PCA attempts to maximise the variance

retained by new variables while they attempt to maintain the distances between

cases.

Note that the method is principal (‘first in rank or importance’, Concise

Oxford Dictionary) not principle (‘a fundamental truth or law as the basis of

reasoning or action’, Concise Oxford Dictionary) components analysis.

2.5.2 PCA

Outline

PCA is a technique that transforms an original set of variables (strictly

continuous variables) into derived variables that are orthogonal (uncorrelated)

and account for decreasing amounts of the total variance in the original set.

These derived variables, or components, are linear combinations of the original

variables. Each variable makes a contribution to a component that is determined

by the magnitude of its loading. The pattern of the loadings can be used to

interpret the ‘meaning’ of the components. The first component usually conveys

information about the relative ‘sizes’ of the cases and more interesting

information is likely to be held in the subsequent components. In many analyses

most of the information from the original variables will be retained in the first

few components. Because these have a lower dimension it is usually possible to

examine graphical summaries that may reveal some of the structures within

the data. Because interpretation of the components is based on patterns in the
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loadings it is sometimes useful to rotate the new components in such a way that

the loadings change into a more interpretable pattern.

Many statistical texts explain that multivariate normality is an important

assumption for a valid PCA. However, since the analysis is not used to test

statistical hypotheses any violations of the assumptions will only impact on the

usefulness of the analysis as a guide to the identification of structure. Although

there is an assumption that the original variables are continuous, it is generally

acceptable to include some discrete variables while categorical variables can be

recoded as a series of binary variables. Ultimately the success of the analysis,

which is mainly exploratory, should be judged by the usefulness of its

interpretation.

PCA has a data pre-processing role because it can create uncorrelated

predictors that are important for techniques such as multiple regression.

Ben-Hur and Guyon (2003) also recommended PCA prior to clustering because

they suggest that the directions with most variance are the most relevant to the

clustering. Thus, PCA could be used to filter out data that had low variance

resulting from similar values across all cases. However, they also suggest that the

PCA should use the covariance matrix rather than the standardised correlation

matrix (see below).

Matrix methods (a very brief review)

It is difficult to fully understand most multivariate methods without at

least a rudimentary knowledge of matrix algebra methods. The following section

very briefly outlines a number of important features that differentiate matrix

methods from normal arithmetic. The reader is advised to consult other texts to

obtain the necessary detail for these methods.

Matrix or linear algebra methods make use of data stored as vectors or

matrices. A vector is either a row or a column of numbers, e.g. the vector

[12, 34, 24] contains three numbers, these could be the x, y, z coordinates for

a point in three-dimensional space. A matrix is a table of numbers or vectors

(see below). For example, the matrix below is a square, symmetrical five by five

matrix of the correlation coefficients for the five variables in the next analysis.

It is square because it has the same number of rows and columns and it is

symmetrical because the upper right triangle of values is a mirror image of those

in the lower left triangle. Matrices do not have to be square or symmetrical.

1:000 0:631 0:553 �0:030 �0:399
0:631 1:000 0:895 0:246 0:032
0:553 0:895 1:000 0:167 �0:046

�0:030 0:246 0:167 1:000 0:534
�0:399 0:032 �0:046 0:534 1:000
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Most normal arithmetic operations are possible on vectors and matrices, e.g.

addition, subtraction, multiplication, etc. A different set of rules are applied to

some of these operations compared with normal arithmetic, although addition

and subtraction are easy.

For example, let matrices A and B be

4 3
2 1

and
5 2
4 8

Then if C ¼ A þ B, the contents of C are

9 5
6 9

Subtraction works in a similar way. Note that matrices must have an identical

structure (same number of rows and columns) for this to be possible.

Multiplication is slightly more complicated; details are not given here except

to say that multiplication can only occur when the number of rows in one matrix

matches the number of columns in the other, and vice versa.

The following example demonstrates the power of the matrix algebra

methods to deal with potentially difficult problems. Consider the following

pair of simultaneous equations:

3xþ 4y ¼ 18

2xþ 3y ¼ 13

How can we find the values for the two unknowns? The first step is to rewrite

the equation in matrix format as matrix A and two column vectors v and h.

A

3 4

2 3

�������

�������

v

x

y

�������

�������

h

18

13

�������

�������

The equation can now be written as Av ¼ h, where v is a vector of the unknown

values.

In the same way that any number multiplied by its inverse is one, any matrix

multiplied by its inverse results in thematrix equivalent of one, the unit matrix, I

(all zeros except the diagonal which are all ones).

Multiply both sides of the equation by the inverse of A (A�1):

A�1Av ¼ A�1:h

but A�1A ¼ I, therefore Iv ¼ A�1 h. The unit matrix can be ignored since it is the

equivalent to multiplying by one:

v ¼ A�1h

18 Exploratory data analysis



Therefore, if A�1 can be found the equation can be solved to obtain the vector v,

and hence the values of x and y (v is the product of A�1 and h). There are standard

computational methods for finding the inverse of a matrix; however these

generally require the use of a computer. For completeness, x ¼ 2 and y ¼ 3.

There is one matrix method that has no counterpart in the mathematics that

most biologists encounter as undergraduates but it is essential for many

multivariate techniques. Eigen values (also known as latent roots) and their

associated eigen vectors provide a summary of the data structure represented by

a symmetrical matrix (such as would be obtained from correlations, covariances

or distances). The eigen value provides information about the magnitude of

a dimension, while its eigen vector fixes the dimension’s orientation in space.

There are as many eigen values as there are dimensions in the matrix and each

eigen vector will have as many values as there are dimensions in the matrix.

The following examples attempt to explain the importance, and role, of eigen

values and eigen vectors using a mainly graphical description. Imagine what

a three-dimensional scatter plot of three uncorrelated variables (x, y and z) would

look like. If the three variables share the same measurement scale the points

would form a circular cloud (the shape of a tennis ball). The cloud of points

(Figure 2.1) has three dimensions that are all the same length (the diameter of

the cloud). A correlation matrix for these three variables would be a unit matrix

with three rows and columns (each variable is perfectly correlated, r ¼ 1.0, with

Figure 2.1 Three-dimensional scatter plot of three uncorrelated variables.
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itself and has zero correlation with the other two). This matrix has a rather dull

set of eigen values and eigen vectors (Table 2.1).

The relationship between the correlation matrix and its eigen values and

vectors may become clearer if a second data set is considered. Imagine three

variables that share a common correlation of 0.5 with each other. What will

a scatter plot look like in three-dimensional space? It is easier to start in two

dimensions. If two variables, with a sharedmeasurement scale, are correlated the

data points will be arranged along a diagonal axis with a spread that is related to

the degree of correlation. If they are perfectly correlated the points will form

a perfect line. As the correlation reduces there will be an increased scatter away

from the diagonal, approximating to an ellipse that has two dimensions, a length

and a breadth (Figure 2.2).

In the three-dimensional plot the scatter plot will be ellipsoid. One analogy

is a rugby ball or American football. Like the previous tennis ball this also has

three dimensions (length, width and depth) but this time they are not equal,

although two (width and depth) should be very similar, unless the ball is

beginning to deflate. This correlation matrix (Table 2.2 and Figure 2.3) has the

eigen values of 2.0 (‘length’), 0.5 (‘width’) and 0.5 (‘depth’). There are several things

to note about these values. Firstly, they sum to three, the dimensionality of the

data; secondly, they describe the dimensions of the ellipsoid. The eigen vectors

are coordinates in x, y, z space that define the orientation of each of its axes. There

are no unique eigen vectors since any point along the appropriate axis would

allow it to be positioned correctly. One of the common conventions that is used to

determine the values in an eigen vector is that the sum of their squared values

should be one. For example, the sum of the squared eigen vectors for the first

eigen value is �0.5772 þ �0.5772 þ �0.5772 ¼ 1.00. This means that the longest

axis of the ellipsoid has a length of 2.0 and passes through the origin (0,0,0) and

a point with coordinates �0.577, �0.577, �0.577. The second axis, which is

perpendicular to the first, has a length of 0.5 and passes through the origin and

a point with the coordinates 0.085, �0.746, 0.660.

Table 2.1. Correlation matrix for three variables and its eigen values and eigen vectors

Correlation matrix

x y z Eigen values Eigen vector 1 Eigen vector 2 Eigen vector 3

x 1.0 0.0 0.0 1.0 0.000 0.000 1.000

y 0.0 1.0 0.0 1.0 0.000 1.000 0.000

z 0.0 0.0 1.0 1.0 1.000 0.000 0.000
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The final example has a more complex correlation structure (Table 2.3).

Variables x and y are almost perfectly correlated (r ¼ 0.9), z has different levels of

correlation with x (r ¼ 0.3) and y (r ¼ 0.6). Think for a moment about what this

means for the effective dimensionality of the data. If all three were perfectly

correlated the eigen values would be 3.0, 0.0 and 0.0 and the three-dimensional

scatter plot would be a line with only a length (3.0) and no width and depth.

In other words, it would only have one effective dimension. In this example,

the large correlation between x and y, combined with the correlations with z,

mean that the effective dimensions of these data are less than three. The eigen

values are 2.23, 0.73 and 0.04. The final dimension is very small, suggesting that

we could visualise the ellipsoid as a wide, but flat, two-dimensional ellipse that

was almost three times longer than it was wide. In other words, the effective

dimensions for these data are closer to two than three. PCA, which is based on an

Figure 2.2 Matrix of bivariate scatter plots of five variables with decreasing

correlations. Correlation coefficients are given in the upper right diagonal.

Table 2.2. Correlation matrix for three variables and its eigen values and eigen vectors

Correlation matrix

x y z Eigen values Eigen vector 1 Eigen vector 2 Eigen vector 3

x 1.0 0.5 0.5 2.0 �0.577 0.085 �0.812

y 0.5 1.0 0.5 0.5 �0.577 �0.746 0.332

z 0.5 0.5 1.0 0.5 �0.577 0.660 0.480

Variance-based data projections 21



eigen analysis of the correlation or covariance matrix, exploits this redundancy

in data to reduce its dimensions. If any of the components has an eigen value

close to zero it usually indicates that one or more variables is a linear function

of the other variables and can, therefore, be constructed from their values.

When this happens it means that the effective dimensionality of a data set must

be less than the number of variables.

Example analysis 1

This analysis of an artificial data set (Appendix A), with a known

structure (see discussion above), was carried out using Minitab (Version 14). There

are 30 cases and 5 variables labelled v1 to v5. The program output is

Eigenvalue 2.4490 1.6497 0.5140 0.3028 0.0845

Proportion 0.490 0.330 0.103 0.061 0.017

Cumulative 0.490 0.820 0.923 0.983 1.000

. The first row has the eigen values of the correlation matrix.

. The second row has the proportion of variation associated with each

component, e.g. for PC1 2.449/5.000 ¼ 0.490 or 49%.

Figure 2.3 Three-dimensional scatter plot of three correlated variables (r ¼ 0.5

for each pair).
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. The third row is the cumulative variation retained by the components,

e.g. 0.820 is 0.490 þ 0.330.

. Most of the information (82%) is contained within the first two

components.

The eigen values (2.449, 1.6497, 0.514, 0.3028 and 0.0845) sum to 5.000, the

number of variables. Indeed, if the correlation matrix is analysed, their sum is

always the number of variables. This is because each of the variables

is standardised to a mean of zero and a variance of one. Thus, the total variance

to be partitioned between the components is equal to the number of variables.

Because the fifth eigen value is close to zero it indicates that at least one of

the variables is a linear function of the others and the effective dimensions for

these data are less than five.

Since the role of PCA is to reduce dimensionality it would be pointless

to work with five components rather than the original five variables. Therefore

a decision is needed on the appropriate number of components to retain.

There are two guidelines in general use. The first is a scree plot of eigen

values against the number of components. The appropriate number of

components is indicated when the plot levels off. The second method was

proposed by Kaiser and relates to standardised variables. When variables are

standardised they have a variance of 1.0. This means that any component or

factor, whose eigen value is less than one, retains less variance than one of

the original variables. Consequently such components may be thought to

convey less ‘information’ than the original variables and should therefore be

ignored as noise. There are two aspects to this guideline that one should

continually bear in mind.

1. It is only a guideline and the analysis details should be inspected to

see if it should be overridden. For example, a component whose eigen

value was 0.999 would not be extracted using the rule. This is clearly

nonsense.

Table 2.3. Correlation matrix for three variables and its eigen values and eigen vectors

Correlation matrix

x y z Eigen values Eigen vector 1 Eigen vector 2 Eigen vector 3

x 1.0 0.9 0.3 2.23 0.593 �0.525 0.611

y 0.9 1.0 0.6 0.73 0.658 �0.121 �0.743

z 0.3 0.6 1.0 0.04 0.464 0.842 0.273
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2. The rule only applies when the analysis is based on standardised

variables. If the analysis is carried out on the covariance matrix

of unstandardised data (whose variance may be far in excess of 1.0)

then the rule should not be applied.

Tests using simulated data suggest that both methods perform quite well and

generally produce similar answers. However, it is also important to use

judgement, such that an interpretable solution is produced (see the stickleback

analysis).

The next table has the eigen vectors, or component loadings, of the five

components. Normally, because their eigen values are larger than 1.0 (the Kaiser

criterion), the interpretation would be restricted to the first two components.

The component loadings are used to calculate the component scores.

Component Loadings

Variable PC1 PC2 PC3 PC4 PC5

v1 �0.514 �0.260 0.477 0.631 �0.205

v2 �0.605 �0.134 �0.228 �0.022 0.751

v3 �0.587 �0.078 �0.381 �0.357 �0.613

v4 �0.120 �0.652 0.667 �0.340 �0.020

v5 0.102 �0.695 �0.361 0.598 �0.134

The calculation of component scores assumes that the variables have

standardised scores (mean ¼ 0, standard deviation ¼ 1.0). The loadings,

or weights, of each variable control the contributions that they make to the

component scores. Because the variables share the same scale it is easy to

interpret their relative importance. For example, v4 and v5 make only minor

contributions to the first component, and more major contributions to the

second component. The variables making the most important contribution to

each component have their loading shown in bold. A ‘rule of thumb’ was used

such that loadings 40.3 are considered important. In a real example the next

stage would be an attempt to assign some name to the combination of variables

associated with a component. Because component scores have a mean of zero,

a negative score indicates a case with a below average score on that component,

whilst a positive score indicates a case with an above average score. Obviously

a case with a zero score is average.

In summary, the interpretation of these data, using PCA, is that

. The data can be represented adequately in just two dimensions.

. The first of these is associated with variables v1, v2 and v3.

. The second is associated with variables v4 and v5.
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If the same data are subjected to a factor analysis the following results are

obtained using Minitab (V14)

Unrotated Factor Loadings and Communalities

Variable Factor1 Factor2 Factor3 Factor4 Factor5 Communality

V1 �0.803 0.337 0.342 0.347 �0.061 1.000

V2 �0.947 �0.170 �0.164 �0.009 0.219 1.000

V3 �0.919 �0.099 �0.274 �0.198 �0.178 1.000

V4 �0.192 �0.837 0.476 �0.189 �0.005 1.000

V5 0.159 �0.894 �0.255 0.331 �0.040 1.000

Variance 2.4480 1.6518 0.5110 0.3044 0.0848 5.000

% Var 0.490 0.330 0.102 0.061 0.017 1.000

Factor Score Coefficients

Variable Factor1 Factor2 Factor3 Factor4 Factor5

V1 �0.328 0.204 0.670 1.139 �0.716

V2 �0.387 �0.103 �0.321 �0.028 2.578

V3 �0.375 �0.060 �0.536 �0.650 �2.100

V4 �0.078 0.507 0.932 �0.619 �0.059

V5 0.065 �0.541 �0.500 1.087 �0.473

The factor analysis output differs from the PCA because it has tables of

factor loadings and factor score coefficients. As with the PCA eigen vectors,

the factor loadings provide information about the contribution that each

variable makes to a factor. The most important variables, for each factor,

are again highlighted in bold. Note that the pattern is very similar to that

observed in the Minitab PCA of the same data. The factor loadings are obtained

from the eigen vectors by a process of ‘normalisation’ that involves multiply-

ing each eigen vector by the square root (the singular value) of its eigen

value. For example, for v1 component one, the PCA eigen vector is �0.513,

and the square root of its eigen value (2.449) is 1.565: �0.513 � 1.565 ¼ �0.803.

If a ‘pure’ PCA is required the eigen vectors can be obtained from the

loadings by dividing each loading by the square root of the eigen value.

For example, �0.803/1.565 ¼ �0.513. Most usefully the loadings are simple

correlation coefficients between the original variables and the newly derived

factors.

Example analysis 2

These data (Appendix B) relate to an experiment investigating the

behaviour of male stickleback. The responses of male fish during an observation
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period were recorded, which included the response to a ‘model’ male fish.

The first analysis is a simple PCA.

Eigenvalue 2.2881 1.4542 0.9791 0.8861 0.7532 0.4048 0.2344

Proportion 0.327 0.208 0.140 0.127 0.108 0.058 0.033

Cumulative 0.327 0.535 0.674 0.801 0.909 0.967 1.000

Two components have eigen values above one. Applying the Kaiser criterion

would mean that only 53.5% of the variability would be retained in two

components. The third component has an eigen value close to one (0.98).

Retaining three components, which is supported by a scree plot, would mean

that 67.4% of the variation was retained. There is also a problemwith the loadings

for the components (see below).

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7

LUNGES 0.470 �0.310 �0.482 �0.076 0.181 0.055 0.639

BITES 0.459 �0.507 �0.130 0.050 0.084 0.080 �0.706

ZIGZAGS �0.248 �0.379 0.244 �0.783 0.022 0.346 0.053

NEST �0.435 �0.400 �0.327 �0.095 �0.114 �0.721 �0.037

SPINES 0.164 �0.465 0.622 0.324 �0.412 �0.116 0.287

DNEST �0.422 �0.224 �0.399 0.361 �0.391 0.574 0.005

BOUT 0.335 0.275 �0.197 �0.367 �0.790 �0.089 �0.073

None of the loadings of the seven variables on the three main components

are small or large, most are in the range 0.3�0.6 and hence they do little to

explain the data structure. Looking at the loadings for PC1�PC3 it is not easy

to say which variables are particularly associated with each component.

There is also an argument that the analysis should consider four components.

The fourth component has an eigen value of 0.89, and retaining it would mean

that 80% of the variation could be retained in four dimensions. Therefore,

the PCA was repeated but with an option to extract four components. However,

because the loadings do not change (not shown) the interpretation remains

difficult.

In order to improve the interpretability the four extracted components can

be subjected to a rotation. Imagine holding a novel object in your hands; in an

attempt to understand it you would almost certainly turn it over and twist

it around. In other words you would subject it to a rotation whose effect would be

to change your view of the object, without ever changing the object itself.

Rotation of a PCA solution does exactly the same thing. The aim of the rotation is

to improve the interpretability of the analysis by removing, as far as possible,
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mid-value loadings. If loadings are either high or low the interpretation is

simplified. The most widely accepted method is Varimax rotation. This is an

iterative method which rotates the axes into a position such that the sum of the

variances of the loadings is the maximum possible. This will occur when

loadings, within each factor, are dissimilar, i.e. a mixture of high and low values.

It is important to understand that Varimax rotation does not distort the original

data. The rotation changes its projection onto the lower dimensions that we use

to interpret the structure.

Rotated Factor Loadings and Communalities Varimax Rotation

Variable Factor1 Factor2 Factor3 Factor4

LUNGES 0.921 �0.118 0.096 �0.082

BITES 0.868 �0.107 �0.331 0.000

ZIGZAGS �0.066 0.100 �0.064 0.965

NEST �0.011 0.784 0.092 0.395

SPINES 0.167 �0.069 �0.901 0.049

DNEST �0.110 0.854 0.072 �0.074

BOUT 0.270 �0.535 0.406 �0.038

Variance 1.7199 1.6698 1.1137 1.1043

% Var 0.246 0.239 0.159 0.158

The initial (not shown) component loading matrix is identical to the four-

component PCA. The important rotated loadings have been highlighted in bold.

The structure is now much simpler with a more clearly delineated pattern

of loadings.

1. Lunges, Bites and Bouts: may be interpreted as ‘Aggression’

2. Nest, Dnest and Bouts (negative): may be interpreted as ‘Nest Activity’

3. Bites, Spines and Bouts (negative): a different type of ‘Aggression’

4. Zigzags and Nest: female-centred display

This is a much more successful analysis, in which the dimensionality has been

reduced from seven to four and the extracted factors can be interpreted to

produce a biologically reasonable interpretation.

Figure 2.4 shows the scores for the cases on the first two of the new

components: ‘Aggression’ and ‘Nest Activity’. The plot has been split into four

regions, using boundaries set at zero on both axes.

1. Region A: below average on the first factor and above average on the

second. Thus, these individuals did not show much aggression but spent

an above average time on nest building activities.
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2. Region B: above average on both factors. Thus, they combine above

average aggression with a lot of nest building activities. Note the lack

of points along the diagonal, why? (Think about what the fish would have

to do to get on the diagonal.)

3. Region C: above average on the first factor and below average on the

second. These individuals did not spend much time on nest building but

were above average with respect to aggression.

4. Region D: below average on both factors. These individuals did not do

much!

2.5.3 Factor analysis

The similarities and differences between PCA and factor analysis (FA)

create considerable confusion. This is not helped when in some software,

for example SPSS, PCA is accessed via the FA menu. Both methods achieve similar

aims of dimension reduction but there are important differences in the

underlying models and FA can be used in an exploratory and a confirmatory

role. Whereas PCA is a variance-orientated technique FA is concerned solely with

correlations between variables. FA assumes that observed correlations are caused

by some underlying pattern in the data resulting from the presence of a number

of predetermined factors. Strictly, on the basis of some subject-specific theory,

the number of factors should be known in advance. The contribution of

any variable can then be split into a common component, i.e. that part which

contributes to the factors, and a unique component which can be thought

Figure 2.4 Scatter plot of factor scores for the first two principal components.
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of as noise. The sum of the common components is called the communality.

Communality values are between zero and one. A communality of zero would

arise if a variable was uncorrelated with all other variables and had no shared

information. The subsequent FA methodology is very similar to PCA except

that the variability to be partitioned between the factors is that held in

common, unique variability is excluded from the analysis. This makes sense

since any unique variance cannot be contributing to a shared factor, so should

be excluded.

Forcing the analysis to use as many factors as there are variables partially

overcomes the differences between PCA and FA. This is demonstrated by

the fact that the communalities are all 1.000, and thus all of the var-

iability is assumed to be common and all of it will be used in the analysis

(as in a PCA).

There is an argument that FA is preferable to PCA for pre-processing prior

to developing a classifier or clustering. In a FA the unique variability (‘noise’)

associated with each predictor is explicitly excluded. Consequently the data are

‘smoothed’, which may remove nuisance values that create complex decision

boundaries.

2.6 Distance-based data projections

2.6.1 Background

In ecology the niche of a species is represented by a large number

of variables (p). If the mean for each variable is used the niche becomes a single

point in p-dimensional space. Similarly, the state of the genome can

be represented by a single point that represents the expression values for each

of p genes. A complete description of either requires that all p variables are

recorded. However, once p exceeds the trivial value of three it is difficult

to represent this state unless it can be mapped onto fewer dimensions. It would

certainly be very difficult to compare two niches or two gene expression states

visually in their original p-dimensional space. Multidimensional scaling (MDS)

methods aim to provide a visual representation of the pattern of the distances

between cases, but in a reduced number of dimensions. The output is a map with

similar cases plotted near to each other. In this respect they are similar to PCA but

there are important differences between the assumptions. In general the MDS

methods have much weaker assumptions and only require a matrix of distances

or similarities.

The starting point is an n� n distance matrix, Dm, which records the distance

between each pair of cases measured across all p variables. This is identical to the
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starting point in a standard hierarchical cluster analysis (Section 3.4). Because the

distance between A and B is the same as that between B and A, Dm is a symmetric

matrix. A classic everyday example is the between-city distance matrix found in

most road atlases. One of the main aims of these analyses is to discover if there

is some underlying structure to the data, perhaps represented by clusters of

cases. They also offer the opportunity to identify relationships between cases that

possibly represent recognisable temporal patterns such as those found

in developmental pathways or species changes following changes to ecological

management practices.

Starting from the distance matrix these methods attempt to recreate the

original spread of points (e.g. cities), but in reduced dimensions (typically two or

three). This is achieved by finding a configuration of points, in Euclidean space,

such that the distancematrix (Dc) of this new configuration is a reasonablematch

to Dm. Because there is no obvious solution the algorithm is iterative, using

a pattern of perturbations to the trial configuration of points such that each

perturbation reduces the mismatch between Dm and Dc. Note that it will rarely

be possible to obtain an exact match between Dm and Dc so that some stopping

criterion, such as stress, is used to identify when future improvements are too

small to continue.

There are two general classes of methods that come under the general heading

of metric scaling. Metric scaling methods, such as principal coordinate analysis

(classic metric scaling), attempt to produce mappings such that the distances in

Dc match those in Dm, albeit at a different scale. The more general non-metric

scaling methods only attempt to create a mapping that retains the relative

distances between cases, i.e. distances are in the correct rank order. In the same

way that non-parametric statistical tests, such as the Mann Whitney U test,

calculate test statistics from ranks the non-metric scaling methods use the ranks

of the distances in Dm. Starting from a trial configuration an iterative algorithm

is used to improve the match of the ordering of the distances.

The match between the original and trial configurations is measured using

a stress or loss function. Chen and Chen (2000) developed a graphical exploratory

tool to investigate how well individual cases or pairs are represented in the

projected space. This is not possible using global-fitness measures such as stress.

In effect their method provides tools similar to the diagnostic tools used to judge

the fit of regression models.

Azuaje et al. (2005) describe how non-linear mapping techniques can be used as

an exploratory tool in functional genomics. However, they do not use a standard

method. Instead they tested a method devised by Chang and Lee (1973) which

works with a single pair of points at each iteration, rather than adjusting the

complete data set.
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2.6.2 MDS or principal coordinate analysis

Classic MDS, which is also known as principal coordinates analysis,

is a more general form of PCA. The main difference is that while PCA uses

a correlation or covariance matrix, MDS can use any distance matrix. A second

important difference is that, because MDS uses a distance matrix, the analysis

focuses on the cases and no information is provided about the contribution of

individual variables to the data structures. However, this does mean that MDS is

useful when p4n. If a Euclidean distance matrix is used MDS and PCA produce

identical projections, albeit with some possible reversal of signs, i.e. the

projections may be reflections or translations. There are several example analyses

in Chapter 5.

2.6.3 Sammon mapping

Sammon (1969) also devised a mapping algorithm which is used in

biology less often than MDS or non-metric MDS. He said that his non-linear

mapping algorithm aimed to ‘detect and identify ‘‘structure’’ which may be

present in a list of N L-dimensional vectors’. It is an iterative procedure that

begins with an n by n distance matrix, which contains the Euclidean distances

between all pairs of cases measured across all p variables. There is a second

distance matrix which begins with distances calculated from random coordi-

nates allocated to each case on a reduced number of variables (axes). A mapping

error, E, is calculated by comparing the original and reduced-space distance

matrices. The gradient which will minimise E is also calculated. Cases are now

moved in the lower dimensional space according to the direction given by the

gradient. The second distance matrix and E are recalculated. This process

is continued until E drops below a specified limit. The final result is a set of

coordinates for each case on the reduced number of axes, typically two or three.

Sammonmapping is said to produce mappings which spread the points out more

evenly than MDS or PCA, possibly because the stress function emphasises the

smaller distances.

Apostol and Szpankowski (1999) used Sammon mapping to explore the

relationship between protein structure and their amino acid compositions.

Distances were obtained from differences in the proportions of 19 amino acids

and the resulting two-dimensional projection showed that proteins belonging to

the same structural classes formed distinct clusters, albeit with significant

overlapping of clusters. They suggest that this overlap may explain the limited

success of previous protein folding predictions based solely on amino acid

composition.
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2.6.4 Non-metric multidimensional scaling (NMDS)

The starting point is the lower triangle of a distance matrix, which need

not be Euclidean. As with MDS, the aim is to transform these distances into a set

of Euclidean distances in low-dimensional space. However, in NMDS the rank

order of the original distances is assumed to contain the necessary information.

The aim is to reproduce, as closely as possible, the rank order of the distances

from the original distance matrix in the final Euclidean distance matrix. NMDS

is an iterative algorithm which uses monotone regression to calculate pseudo-

distances. The difference between a real and corresponding pseudo-distance is an

index of how far the distance between two cases departs from the value required

to preserve the original distance rank. The overall measure of how badly the

distances in the current configuration fit the original data is called the stress. The

raw stress score is usually normalised to range from 0 (perfect fit) to 1 (worst fit).

The normalisation makes the stress score independent of the size or scale of the

configuration and allows the appropriate solution dimensionality to be

identified. For example, a scree plot of the stress value against different numbers

of dimensions can be used to look for a break in the slope. It is also possible to use

ease of interpretation as a guide to final dimensionality. For example, if there

is no pattern in the projected data points it may be worth altering the number

of dimensions and re-examining the plots for structure. Of course it is always

possible that there is no obvious structure. If this is the case there will be no

obvious break in the scree plot and plots of the data points will resemble random

noise.

It is normal to have stress values greater than zero and it is important

to realise that this only occurs when the solution has insufficient dimensions.

Increasing the number of dimensions may reduce the stress, it can never increase

it. However, since the aim is to reduce the dimensionality it is normal to accept

some distortion (a stress value greater than zero). It is likely that the greatest

distortions (at least proportionally) are in the smallest distances. This is

because the goodness of fit measures place greater emphasis on larger

dissimilarities.

2.7 Other projection methods

2.7.1 Correspondence analysis

A method such as PCA assumes that there are linear relationships

between the derived components and the original variables. This is apparent

from the role of the covariance or correlation matrix. If the relationships are non-

linear a Pearson correlation coefficient, which measures the strength of linear

relationships, would underestimate the strength of the non-linear relationship.
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Because such non-linear relationships are quite common in biology an

alternative method is frequently needed. For example, species abundance will

peak at a certain temperature, while enzyme activity will show similar non-

linearity with respect to pH. In fact correspondence analysis can be viewed

as a weighted PCA in which Euclidean distances are replaced by chi-squared

distances that are more appropriate for count data.

Correspondence analysis (or reciprocal averaging as it is also known)

is a method that is quite often used in ecological analyses where non-linear

relationships are common. It is less commonly used in other biological dis-

ciplines, although there are several examples where it has been used with

molecular data. For example, Castresana et al. (2004) revealed that significant

variations in evolutionary rates exist among genomic regions of human

and mouse genomes, while Perrière and Thioulouse (2002) raised some concerns

about the use of correspondence analysis with non-count data in codon usage

studies. As with PCA, derived variables are created from the original variables

but this time they maximise the correspondence between row and column

counts.

There are two main algorithms used to find the solution to a correspondence

analysis. The first is an iterative algorithm that gives the method its alternative

name of reciprocal averaging. The iterative procedure uses the row scores to

adjust the column scores which are then used to adjust the row scores and so on

until the change in scores is below some preset minimum criterion. The result is

a set of row and column scores that have the maximum possible correlation.

This must then be repeated for all other axes but with a constraint that between-

axis scores must be uncorrelated. The ‘quality’ of the solution can be judged

from the eigen values of the axes, which can be viewed as the correlation

coefficient between the row and column scores. Therefore, large eigen values

indicate significant correlation that allows the axis to be used for interpretative

purposes. This can be seen if the rows and columns are re-sequenced using the row

and column totals. If the scores are correlated the table will develop some

structure. For example, using the data from Table 1.1, Figure 2.5 shows a plot of

the cases on the first two axes from a correspondence analysis. The same

‘horseshoe’ effect from Figure 1.1 is apparent. The row (case) and column

(variable) scores, from the first axis, can be used to re-sequence the rows and

columns in the table, which then reveals the structure (Table 2.4). The eigen value

for the first axis is 0.54, suggesting amoderate correlation. The eigen value for the

second axis is only 0.11, suggesting the presence of only very minor correlation.

The second, and preferred, algorithm for correspondence analysis uses an

eigen analysis of the data matrix plus other derived matrices. Full details are

given in Jongman et al. (1995).
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Correspondence analysis has a well-known problem, which is shared with PCA,

called the arch or horseshoe effect (see Figure 2.5). This problem arises when there

is a single, long gradient which results in the data points being arranged in an

arched pattern along the first two axes. Detrended correspondence analysis (Hill

and Gauch, 1980) overcomes this problem with a rather crude algorithm. Scores

on the first axis are split into segments and the scores on the second axis are

adjusted so that the mean score of the points within each segment is the same in

all segments. The usual metaphor to describe the process is using a hammer

to beat out the distortions in a sheet of metal.

A detailed annotated analysis of ecological applications can be found on

Palmer’s ordination web pages (http://ordination.okstate.edu/CA.htm).

2.7.2 Canonical correspondence analysis

When techniques such as correspondence analysis are used in ecology

they are used as indirect gradient analysis methods. This means that identifiable

trends in the data, such as species abundance, have to be compared to other

environmental data, which were not included in the analysis, to discover the

possible causes for the trends in species data. However, canonical correspondence

analysis (ter Braak, 1986, 1987) is a multivariate direct gradient analysis method

that has become very widely used in ecology. Direct gradient analysis methods

incorporate explanatory variables, such as pH, with the species abundance data.

The method is based on correspondence analysis but with a modification that

Figure 2.5 Scatter plot of axis 1 and axis 2 scores for cases from a correspondence

analysis of the data in Table 2.4.
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Table 2.4. Structure in an artificial data set identified using correspondence analysis.

The first table is the original data with row and column scores from a correspondence

analysis. The second table has rows and columns sorted using the scores from the first axis.

The third table has rows and columns sorted using the second axis scores. The zeros have

been blanked in the second and third tables to highlight the structures (if present)

Case a b c d e f g h i Axis 1 Axis 2

1 2 0 1 4 0 5 3 0 0 �1.552 1.814

2 2 4 3 0 5 0 1 4 3 0.792 �0.544

3 1 3 2 0 4 0 0 5 4 1.141 0.266

4 0 1 0 0 2 0 0 3 4 1.606 1.931

5 4 4 5 2 3 1 3 2 1 �0.100 �1.012

6 3 5 4 1 4 0 2 3 2 0.378 �1.014

7 5 3 4 3 2 2 4 1 0 �0.573 �0.810

8 3 1 2 5 0 4 4 0 0 �1.298 0.777

9 4 2 3 4 1 3 5 0 0 �0.970 �0.165

10 0 2 1 0 3 0 0 4 5 1.421 1.223

Axis 1 �0.429 0.303 �0.090 �0.954 0.629 �1.141 �0.716 0.897 1.112

Axis 2 �0.278 �0.324 �0.374 0.264 �0.125 0.603 �0.051 0.180 0.538

Case f d g a c b e h i Axis 1 Axis 2

1 5 4 3 2 1 �1.552 1.814

8 4 5 4 3 2 1 �1.298 0.777

9 3 4 5 4 3 2 1 �0.970 �0.165

7 2 3 4 5 4 3 2 1 �0.573 �0.810

5 1 2 3 4 5 4 3 2 1 �0.100 �1.012

6 1 2 3 4 5 4 3 2 0.378 �1.014

2 1 2 3 4 5 4 3 0.792 �0.544

3 1 2 3 4 5 4 1.141 0.266

10 1 2 3 4 5 1.421 1.223

4 1 2 3 4 1.606 1.931

Axis 1 �1.141 �0.954 �0.716 �0.429 �0.090 0.303 0.629 0.897 1.112

Axis 2 0.603 0.264 �0.051 �0.278 �0.374 �0.324 �0.125 0.180 0.538

Case c b a e g h d i f Axis 1 Axis 2

1 1 2 0 3 4 1.606 1.931

4 1 2 3 4 5 �1.552 1.814

10 1 2 3 0 4 5 1.421 1.223

8 2 1 3 4 5 4 �1.298 0.777

3 2 3 1 4 5 0 4 1.141 0.266

9 3 2 4 1 5 0 4 0 3 �0.970 �0.165

2 3 4 2 5 1 4 0 3 0.792 �0.544

7 4 3 5 2 4 1 3 2 �0.573 �0.810

6 5 4 4 3 3 2 2 1 1 �0.100 �1.012

5 4 5 3 4 2 3 1 2 0.378 �1.014

Axis 1 �0.008 0.027 �0.037 0.055 �0.059 0.074 �0.074 0.086 �0.078

Axis 2 �0.014 �0.012 �0.010 �0.005 �0.002 0.006 0.009 0.017 0.017



allows environmental data to be incorporated. Canonical correspondence

analysis programs normally use the iterative, reciprocal averaging algorithm

but with the addition of a multiple regression at each iteration. Sample scores

are regressed on the environmental variables and the predicted scores are used

to estimate the new site scores. The final projection has axes that are linear

combinations of the environmental variables and the species data. This

combination allows the changes in species abundance to be directly interpreted

as responses to the environmental variables.

2.8 Other methods

2.8.1 Mantel tests

The Mantel test (Mantel, 1967) is a very useful, if somewhat obscure,

test which is not widely used in biology. This is a pity because it can be used to

investigate some sophisticated questions. Basically it is used to test if two

distance matrices are correlated. For example, suppose that one has two distance

matrices:

1. a matrix of genetic distances between populations (i.e. a measure of their

genetic similarity)

2. a matrix of geographical distances (i.e. a measure of how spatially

separate the populations are).

It is reasonable to ask if genetic distances are correlated with the geo-

graphical distances, i.e. do individuals become increasingly different the further

apart they live? A simple correlation coefficient cannot be used because the cases

are not independent (e.g. the distance between cases one and three is not

independent of the distance between cases one and four because case one is

involved in both).

A correlation coefficient, R0, is calculated for the original matrices. Next the

rows and columns within one of the distance matrices are permutated prior to

recalculating the correlation. This is repeated hundreds, or preferably thousands,

of times. If the original matrices had been correlated the disruption caused by the

permutations should reduce the correlation coefficient. The significancemeasure

is the number of times that the original correlation coefficient (R0) was exceeded

by the permutated values. For example, if there were 999 permutations (plus the

original) and only one of the permutated coefficients exceeded R0 this would be

a p value of 0.001. Conversely, if the matrices were uncorrelated there is no

reason to assume that the permutations would decrease the correlation

coefficient; they may indeed increase it.
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Legendre and Lapointe (2004) explain how a modified Mantel test can be used

to compare distance matrices, derived from different variable types, to determine

if they can be used together in a subsequent analysis. They use an example from

an earlier paper (Lapointe and Legendre, 1994) which examines the character-

istics of Scottish malt whiskies.

Some recent examples of the use of Mantel tests in biology include Stefanescu

et al. (2005) who identified a relationship between habitat types and but-

terfly species, Spinks and Shaffer (2005) examined geographical and genetic

variation in mitochondrial and nuclear DNA sequences while Davis (2005)

found a relationship between climate and phylogenetic distance matrices in

marmots.

Mantel tests are absent from most statistical packages but one is available

in Hood’s (2005) Poptools, a free Excel add-in. Bonnet and Van de Peer (2002)

describe the test and their free zt software (http://www.psb.rug.ac.be/�erbon/

mantel/). Clarke et al. (2002) have developed a program (DISTMAT) to extend the

Mantel test to a regression-type analysis in which one distance matrix, e.g. a

matrix of genetic distances, can be regressed on a predictor matrix, such as

a matrix of geographical distances. Their program provides several methods that

provide valid standard errors for the regression parameters and valid confidence

limits for the regression relationship.

2.8.2 Procrustes rotation

The name derives from a story in Greek mythology. Procrustes was an

innkeeper who liked to make sure that visitors fitted into their beds.

Unfortunately he tended to do this by stretching people if they were too short

or removing limbs if they were too tall. Consequently the name became attached

to a procedure that distorts objects to make them fit.

Procrustes rotation is typically used to compare the results from

different data projections. For example, two projections, possibly from multi-

dimensional scaling analyses, may be very similar but on different projections.

For example, one could be a rotation and translation of the other. In the spirit

of Procrustes, the method rotates and expands or contracts axes as needed to

maximise the similarity. Imagine two dice, one with a six on the top surface

and the other with a one on top. If one of the dice is rotated both can have the

six on top. The Procrustes rotation attempts to do something similar with

matrices whose columns are the coordinates of the cases (rows). The analysis

rotates one matrix, containing the coordinates from one projection, to achieve

a maximum similarity with a second matrix of coordinates, measured as the

sum of squared differences between the two solutions. This allows different
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projections to be compared after removing any rotation or translation

differences.

2.9 Data dredging

It is important to note that some view EDA with suspicion and view it as

‘data dredging’, an uncomplimentary term which describes the hope that the

EDA will generate some ideas. Instead these critics favour an information

theoretic model comparison (ITMC) approach which is predicated on a priori

hypotheses (of which there may be many competing forms). However, others,

such asWren et al. (2005), support Tukey’s view that ‘Finding the question is often

more important than finding the answer’ (from Brillinger, 2002). These opposing

views are actually part of a wider debate on the relative merits of null hypothesis

testing and ITMC. Stephens et al. (2005) debate their relative merits in an

ecological context, although their arguments are much more general. They

consider that it is difficult to construct the multiparameter models needed for an

ITMC approach when the research is exploring a knowledge-poor problem. In

these circumstances the Tukey quotation becomes relevant. As Stephens et al.

(2005) note, ‘exploration of the data using a range of graphical and statistical

approaches may reveal unexpected patterns that lead to new hypotheses’.

Although the ITMC approach will find the best (according to a restricted set

of criteria) model from a list of candidate models this is not always the most

useful at the start of the analysis cycle (see Chatfield, 1995 and Altman and

Royston, 2000).

2.10 Example EDA analysis

This example uses a very well-known data set, first published by Fisher in

1936, to illustrate how exploratory methods can be used to help identify and

understand patterns in data. The data set has four flower measurements (petal

length and width, sepal length and width) for three species of Iris (setosa, versicolor

and virginica). The data are available frommany web sources and an online search

will soon identify a suitable source.

The individual value plots in Figure 2.6 show individual values by moving

points sideways if they overlap with other cases. It is apparent from this plot that

there are few outliers and the three species have different means for all four

variables. In general the amount of variation, within a variable, appears similar

with the exception of the I. setosa petal measurements. The greatest separation

between the species is shown with the petal measurements. However, I. versicolor
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and I. virginica cannot be completely separated by any of the variables. Table 2.5

provides more information as a range of summary statistics

Apart from the means, the most obvious differences between the

species in Table 2.5 are the large values for the coefficient of variation and

skewness for I. setosa. The apparent reduction in variability in petal measure-

ments shown by I. setosa in Figure 2.6 is largely an artefact of the different means.

Proportionally, I. setosa exhibits the greatest variability. Three of the nine

species�variable normality tests have p values less than 0.05, suggesting

a significant deviation from normality. However, the probability plots,

see Figure 2.7 for an example, do not indicate that the deviations from

normality will be too problematic. The Anderson�Darling test used as a goodness

of fit test emphasises deviations in the tails of the distribution and, since there

are few data points involved, it is unlikely that a transformation will improve

the fit.

The matrix of bivariate scatter plots (Figure 2.8) clearly separates I. setosa

from the other two species on its individual petal measurements. Although the

individual sepal measurements do separate I. setosa from the other two species

on their own, there is some evidence for a clearer separation when used in

conjunction. However, I. versicolor and I. virginica show considerable overlap on all

of the plots, suggesting that they cannot be separated by single, or pairs of,

variables. Note that I. setosa has very little variation in petal length or width

relative to the other two species, which means that their relationships with the

Figure 2.6 Individual value plots for the four variables from three Iris species.
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sepal characteristics is less clear. In both I. versicolor and I. virginica the four floral

characters are significantly correlated with each other but in I. setosa neither

of the petal characters is correlated with a sepal character, although lengths and

widths are correlated within sepals and petals.

Because the four floral measurements have some significant correlations it

may be possible to reduce the dimensionality of these data using a PCA or MDS

method. A PCA of the four variables supports this assumption with almost 96% of

the variation being retained in the first two components.

Eigenanalysis of the Iris floral dimensions correlation matrix

Eigenvalue 2.9185 0.9140 0.1468 0.0207

Proportion 0.730 0.229 0.037 0.005

Cumulative 0.730 0.958 0.995 1.000

Table 2.5. Summary statistics for each variable broken down by species. CV is the coefficient

of variation. Skewness measures the presence of any skew in the data with values close

to zero indicating symmetry while positive values suggest a positive or right skew.

The Anderson�Darling test was used to test if the data conform to a normal distribution:

if the p value is less than 0.05 this indicates a significant deviation from normality

Species Sepal length Sepal width Petal length Petal width

I. setosa Means 5.01 3.43 1.46 0.25

I. versicolor 5.94 2.77 4.26 1.33

I. virginica 6.59 2.97 5.55 2.03

I. setosa Standard error 0.05 0.05 0.02 0.01

I. versicolor 0.07 0.04 0.07 0.03

I. virginica 0.09 0.05 0.08 0.04

I. setosa CV 7.04 11.06 11.88 42.84

I. versicolor 8.70 11.33 11.03 14.91

I. virginica 9.65 10.84 9.94 13.56

I. setosa Minimum 4.30 2.30 1.00 0.10

I. versicolor 4.90 2.00 3.00 1.00

I. virginica 4.90 2.20 4.50 1.40

I. setosa Maximum 5.80 4.40 1.90 0.60

I. versicolor 7.00 3.40 5.10 1.80

I. virginica 7.90 3.80 6.90 2.50

I. setosa Skewness 0.12 0.04 0.11 1.25

I. versicolor 0.11 �0.36 �0.61 �0.03

I. virginica 0.12 0.37 0.55 �0.13

I. setosa Normality (p) 0.33 0.21 0.01 0.01

I. versicolor 0.43 0.14 0.14 0.01

I. virginica 0.15 0.10 0.11 0.06
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Variable PC1 PC2 PC3 PC4

Sepal length 0.521 �0.377 �0.720 0.261

Sepal width �0.269 �0.923 0.244 �0.124

Petal length 0.580 �0.024 0.142 �0.801

Petal width 0.565 �0.067 0.634 0.524

Figure 2.7 Probability plot for I. setosa petal length. AD is the Anderson�Darling

statistic.

Figure 2.8 Matrix of bivariate scatter plots. I. setosa, filled circle; I. versicolor, open

circle; I. virginica, cross.
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Note that if Kaiser’s rule, of only retaining components with an eigen value

greater than one, was used only one component that retained 75% of the

variation would be extracted. However, the second component has an eigen value

(0.91) close to one and it retains almost a quarter (22.9%) of the variation. It makes

sense, therefore, to extract two components.

The first component is associated with all but one of the variables. Sepal width

has a relatively small loading on PC1 but is the only one with large loading on the

second. Consequently, these data appear to have two effective dimensions. The

first is associated with three of the floral measurements and probably reflects size

differences between the flowers, while the second, which is mainly sepal width,

reflects a change in the shape of the flowers.

If case scores on these new components are examined (Figure 2.9) it is very

apparent that the first axis shows the biggest separation between the species

reflecting the different sizes of the flowers. However, as with the individual

variables, only I. setosa is clearly separated from the others. The second

component shows that I. versicolor is slightly different from the other two species.

The remaining two component scores are also shown in Figure 2.9. However, they

would not normally be considered further because they explain so little of the

original variation. These scores also show very little variation and no separation

between the species.

Figure 2.10 is a scatter plot of the first two component scores. Clearly, this plot

separates out the I. setosa individuals. However, it also highlights another

important difference. The relationship between the component scores is

insignificant in I. setosa, while the relationships in I. versicolor and I. virginica are

both highly significant and negative.

Although it is not needed for this exploratory analysis, the data were also

subjected to an NMDS analysis using a Euclidean distance measure. The results

are shown in Figure 2.11. There is an obvious similarity between this plot and that

in Figure 2.10. The only differences are translational (a reflection and an

inversion). This could be verified using a Procrustes analysis. While the NMDS

analysis clearly highlights the overlap between I. versicolor and I. virginica, and

their separation from I. setosa, it is less informative because it does not provide

any information about how the four variables contributed to the reduction in

dimensions.

The final part of this EDA uses the GAP software (Wu and Chen, 2006) to

highlight the similarities and differences between the three species using

a technique that shares a lot in common with Bertin’s re-orderable matrix

(Section 2.4.1). Euclidean distances (Section 3.2.1) are calculated for each pair of

cases. Small Euclidean distances indicate cases that have similar values for all

four of the floral characters. If the Euclidean distance is large the pair of cases
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Figure 2.9 Individual value plots for the principal component scores from three

Iris species.

Figure 2.10 Scatter plot of the first two principal component scores from

three Iris species. Trend lines are also shown. Symbols as in Figure 2.8.
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Figure 2.11 Scatter plot of the first two scores from an NMDS analysis of the floral

characteristics from three Iris species. Symbols as in Figure 2.8.

Figure 2.12 GAP plot (Wu and Chen, 2006) showing the Euclidean distance between

each pair of cases. Cases are in their original order. The grey scale goes from white

(identical) to black (maximum dissimilarity). The vertical bar on the left side of the

plot identifies the species: I. setosa (white), I. versicolor (grey) and I. virginica (black).
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is dissimilar with respect to one or more of the characters. The first plot

(Figure 2.12) represents the data table with cases in their original order, which

includes a separation into species. The greyscale goes from white (identical)

to black (maximum dissimilarity). The second plot (Figure 2.13) shows the same

data but with the rows and columns reordered to highlight any structure in the

data. As with all of the previous analyses the separation of I. setosa from the other

species is confirmed, as is the overlap between the other two species.

Figure 2.13 GAP plot (Wu and Chen, 2006) showing the Euclidean distance between

each pair of cases. Cases are sorted using an ellipse sort. The grey scale is the same

as Figure 2.12.
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3

Cluster analysis

3.1 Background

Cluster analysis is an approach that finds structure in data by identifying

natural groupings (clusters) in the data. Unfortunately ‘natural groupings’ is

not as well defined as we might hope. Indeed, it is usual to have more than one

natural grouping for any collection of data. As we will see, there is no definitive

cluster analysis technique, instead the term relates to a rather loose collection

of algorithms that group similar objects into categories (clusters). Although

some clustering algorithms have been present in ‘standard’ statistical software

packages for many years, they are rarely used for formal significance testing.

Instead they should be viewed as EDA tools because they are generally used

to generate, rather than test, hypotheses about data structures.

A cluster is simply a collection of cases that are more ‘similar’ to each other

than they are to cases in other clusters. This intentionally vague definition

is common; for example, Sneath and Sokal (1973) noted that vagueness was

inevitable given the multiplicity of different definitions while Kaufman and

Rousseeuw (1990) referred to cluster analysis as the ‘art of finding groups’.

If an analysis produces obvious clusters it may be possible to name them

and summarise the cluster characteristics. Consequently, the biggest gains

are likely in knowledge-poor environments, particularly when there are large

amounts of unlabelled data. Indeed clustering techniques can be viewed as a way

of generating taxonomies for the classification of objects. However, as with

the well-established biological taxonomies, there will still be room for debate

and disagreement about the validity of a particular taxonomy. This is rein-

forced by the lack of any test of accuracy. Instead, as is appropriate for an

EDA method (Chapter 2), the results should be judged by their usefulness.
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Obviously usefulness is in the ‘eye of the beholder’, a fact that should not be

forgotten when promoting a particular classification over other possibilities.

Take a shuffled deck of cards as an example (shuffled at least seven times to

ensure a random order). Present this to a colleague and ask them turn over the

cards one by one and place them into groups (clusters). The obvious outcome is

that they will be placed into the four suits (hearts, clubs, diamonds and spades),

but is that the only natural grouping? Others are apparent:

. Face and number cards (two groups)

. Red and black cards (two groups)

. Card value (thirteen groups)

. Odd, even and face cards (three groups)

Arguments can be made in favour of all five of these, and other, groupings.

None of them is wrong, they are just different. The solution found by an

automated procedure will depend upon the criteria used in the clustering. This is

important � the choice of criteria will direct the clustering along a particular

path and prevent other solutions from being found. Indeed, before beginning any

unsupervised clustering of unlabelled cases it is worth remembering that the

algorithms will place cases into clusters, even when real clusters do not exist.

This is because, in general, they do not ‘give up’ if there is no obvious structure.

The rules continue to be applied until all cases are in clusters. Secondly,

combined with the absence of a single valid solution, there is no default, best

method. It is, therefore, unwise to attach too much value to the results from

a single clustering exercise.

The types of clusters formed in these five playing card examples are disjoint

in that a single partitioning splits the cards into two or more final clusters.

There is another approach which allows for clusters to be further subdivided.

An obvious example would be to initially split the cards into red and black

clusters. Each of these could then be split into their suits (four clusters) and

then into face and non-face cards (eight clusters). This is known as hierar-

chical clustering and the method creates a taxonomy of cluster relatedness.

The partitioning and hierarchical methods are two general classes of

clustering methods. In fact there is a wide range of algorithms. In addition to

the partitioning and hierarchical methods there are also model-, density- and

grid-based methods. Grabmeier and Rudolph (2002) described one of many

possible taxonomies of clustering algorithms (Figure 3.1).

In Figure 3.1 the first split separates partitioning from hierarchical

approaches. The first class of methods, which use iterative approaches to

partition the cases, are sub-divided on the methods by which the number

of partitions is specified. In the user-defined method the number of clusters
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is specified by the analyst while other methods derive this from the data

themselves. There are two major classes of hierarchical methods. Divisive

methods begin with all of the cases in one cluster which is broken down into

sub-clusters until all cases are separated (e.g. DIANA; Kaufman and Rousseeuw,

2005). However, the divisive approach is rarely used because of computational

difficulties, although decision trees (Chapter 6) use a divisive approach to

complete a supervised classification. The agglomerative approach works in the

opposite direction as single-member clusters are increasingly fused (joined) until

all cases are in one cluster. Chipman and Tibshirani (2005) have proposed

a hybrid scheme that combines hierarchical and divisive solutions. The split of

divisive methods into mono- and polythetic relates to the number of variables

employed. Monothetic methods use only one variable to allocate cases to clusters

while polythetic approaches use two or more.

3.2 Distance and similarity measures

3.2.1 Distance measures

In the playing card example clusters were formed by placing similar

cards into the same cluster. All clustering algorithms begin by measuring the

similarity between the cases to be clustered. Cases that are similar will be placed

into the same cluster. It is also possible to view similarity by its inverse, the

distance between cases, with distance declining as similarity increases. This leads

to a general conclusion that objects in the same cluster will be closer to each

other (more similar) than they are to objects in other clusters. It also means that

there must some means of measuring distance.

Figure 3.1 Taxonomy of clustering algorithms (simplified version of Figure 6 in

Grabmeier and Rudolph, 2002). Each group has a final box listing one representative

algorithm.
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There are a surprisingly large number of methods (metrics) by which distance

can be measured. Some are restricted to particular data types but all share the

property that distance declines with increasing similarity. However, they do not

share a common distance between the same two cases, i.e. distance changes with

the similarity measure � leading to the potential alternative arrangements for

a deck of playing cards.

Selecting the appropriate distance metric is important because different

metrics will result in different cluster memberships and a consequential change

to the biological interpretation. The most obvious distances are Euclidean

(straight lines that can be measured with a ‘ruler’) while others, often based on

similarity, are non-Euclidean. For example, ‘as the crow flies’ (a Euclidean

distance) the city of York is closer to Manchester than it is to Canterbury.

However, if distance (similarity) is measured in terms of city characteristics,

York is closer to Canterbury.

Three general classes of distance measures are defined below and then

measures that are appropriate for different datatypes are described.

Euclidean metrics

These metrics measure true straight-line distances in Euclidean space.

In a univariate example the Euclidean distance between two values is the

arithmetic difference, i.e. value1 � value2. In a bivariate case the minimum

distance between two points is the hypotenuse of a triangle formed from

the points (Figure 3.2, Pythagoras theorem). For three variables the hypotenuse

extends through three-dimensional space. Although difficult to visualise, an

extension of Pythagoras theorem gives the distance between two points

in n-dimensional space: distance (a,b) ¼ (
P

(ai � bi)
2)½.

Non-Euclidean metrics

These are distances that are not straight lines, but which obey four rules.

The first three are simple, the fourth is more complex. Let dij be the distance

between two cases, i and j.

dij must be 0 or positive (objects are identical, dij ¼ 0, or they are

different, dij 4 0).

dij ¼ dji (the distance from A to B is the same as that from B to A).

djj ¼ 0 (an object is identical to itself!).

dik � dij þ djk (when considering three objects the distance between any

two of them cannot exceed the sum of the distances between the

other two pairs. In other words the distances can be constructed
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as a triangle. For example, if dik ¼ 10 and dij ¼ 3 and djk ¼ 4 it is

impossible to construct a triangle, hence the distance measure

would not be a non-Euclidean metric).

The Manhattan or City Block metric (Section 3.2.2) is an example of this type.

Semi-metrics

These distance measures obey the first three rules but may not obey

the ‘triangle’ rule. The cosine measure (Section 3.2.2) is an example of this type.

3.2.2 Importance of data types

It is important to take account of the type of data since each has its own

set of distance measures. In general there are three broad classes: interval, count

and binary. It is not easy, or generally advisable, to mix data types in a cluster

analysis. However, Gower’s (1971) general coefficient of similarity can incorpo-

rate mixed variable types to estimate the general distance (sij) between two cases:

sij ¼ �wijksijk
� �

=wijk

where wijk is a user-defined weight for each variable and sijk is the distance

between the two cases on the kth variable. Each variable has a similarity between

0 and 1 and these are summed to give the overall measure.

Figure 3.2 Calculating Euclidean distance in three-dimensional space. The distance

between the two points is the square root of (a2 þ b2 þ c2).
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Distances for interval variables

Several distance measures for interval variables are available in most

statistical packages. The following are the most common.

Euclidean: this is the normal Pythagoras theorem extended to the appropriate

number of dimensions.

Squared Euclidean distance: the sum of the squared differences between

scores for two cases on all variables, i.e. the squared length of the hypotenuse.

This measure magnifies distances between cases that are further apart.

Chebychev: the absolute maximum difference, on one variable, between two

cases: distance (a,b) ¼ maximum |ai � bi|. This measure examines distances

across all of the variables but only uses the maximum distance. This one

dimensional difference need not be constant across cases. For example, age could

be used for one pair but height for another.

City Block or Manhattan distance: a distance that follows a route along the

non-hypotenuse sides of a triangle. The name refers to the grid-like layout of most

American cities whichmakes it impossible to go directly between two points. This

metric is less affected by outliers than the Euclidean and squared Euclidean

metrics:

Distance a, bð Þ ¼ � ai � bij j

Mahalanobis distance: a generalised version of a Euclidean distance which

weights variables using the sample variance�covariance matrix. Because the

covariance matrix is used this also means that correlations between variables are

taken into account:

Distance a, bð Þ ¼ ½ðai � biÞtS�1ðai � biÞ�1=2

where S�1 is the inverse covariance matrix.

Cosine: the cosine of vectors of variables. This is a non-Euclidean, pattern

similarity metric. The cosine of the angle between two vectors is identical to their

correlation coefficient. However, unlike a normal correlation calculation the

pairs of values are drawn from different variables for two cases rather than two

variables from different cases. It also important to standardise the values across

the two rows representing the cases. This is a local, not global, standardisation

across, rather than within, variables. The standardisation is needed because

a single variable, withmuch larger values, could produce outliers that would lead

to a spurious value for the coefficient. The correlation can also be viewed as the

Euclidean distance between the cases after normalising them to have a mean

of zero and a standard deviation of one. Because correlation coefficients measure

association and not agreement they fail to distinguish between a pair of cases

which share the same values across the variables and another pair in which one
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set of values is a multiple of the other. For example, consider three cases A, B

and C which have the values [1,2,3,4], [1,2,3,4] and [2,4,6,8] for four variables.

All three are perfectly correlated with each other, but case C is widely separated

from the other two in Euclidean space. The Euclidean distances are 0.0 for A and B

and 5.48 for A or B against C. The consequences of these characteristics is that

cosine-type measures tend to cluster cases which have a similar ‘shape’ rather

than ‘size’. The Pearson correlation coefficient is often used when clustering gene

expression data. However, it is susceptible to the effects of outliers which can

have a disproportionate effect on its value. Therefore, a more robust, jack-knifed

version is recommended (Heyer et al., 1999) which tends to minimise the effect

of outliers.

Non-parametric measures: one problem with using parametric correlation

coefficients is that they are sensitive to outliers. One way of retaining a similar

measure, but reducing the outlier effect, is to use a non-parametric correlation.

Bickel (2003) explains how these rank correlation measures can be used for

robust clustering of microarray data.

Data transformations

One problem with distances is that they can be greatly influenced by

variables that have the largest values. Consider the pair of points (200, 0.2 and

800, 1.0). The Euclidean distance between them is the square root of (6002 þ 0.82),

which is the square root of (360 000 þ 0.64) ¼ 600.0007. Obviously this distance is

almost entirely dominated by the first variable. Similarly, the Chebychev distance

would almost certainly use only the first variable, making the second redundant.

One way around this problem is to standardise the variables. For example, if both

are forced to have a scale within the range 0�1 the two distances become 0.6 and

0.8, which are much more equitable. The value of d is then 1.0, and both variables

have contributed significantly to this distance. Gordon (1999) argues that

standardisation is part of a broader problem of variable weighting, with the

extreme being the exclusion of a variable from the analysis.

Count data

Chi-square measure: this measure is based on the chi-square test of

equality for two sets of frequencies. The chi-square distance is non-Euclidean

because each squared distance is weighted by the inverse of the frequency

corresponding to each term. This weighting compensates for the discrepancies

in variance between high and low frequencies. Without this standardisation,

the differences between larger proportions would tend to dominate the distance

calculation. In other words differences between frequencies should be propor-

tional rather than absolute.
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Phi-square measure: this is the chi-square measure normalised by the square

root of the combined frequency.

Binary data

There is a surprisingly large number of metrics available for binary data,

for example SPSS v12.0 lists 27. It is even more confusing because many have

more than one name. All of these measures use two or more of the values

obtained from a simple two by two matrix of agreement.

Case i
þ �

Case j þ a b
� c d

Cell a is the number of cases which both share the attribute, while in d neither

have the attribute. Cells b and c are the number of cases in which only one of the

pair has the attribute. Note that a þ b þ c þ d ¼ n, the sample size.

Many of these measures differ with respect to the inclusion of double

negatives (d). Is it valid to say that the shared absence of a character is indicative

of similarity? The answer is that it depends on the context: sometimes it is and

sometimes it is not. In particular it depends on the attribute represented by

a binary variable. In some cases, e.g. presence or absence of a character, the zero

has an obvious meaning, but in others, such as gender where 0 ¼ male and

1 ¼ female, the meaning of the zero is less obvious. Grabmeier and Rudolph

(2002) differentiated between symmetric and indicative (asymmetric) binary

variables. Gender, coded as 0/1, would be symmetric because the coding could

be reversed without any effect on distance measures, i.e. it does not matter if

a male is coded as a zero or one. Indicating variables identify if two cases share

a common property, e.g. both carry a particular mutation. Reversing the coding

would confound the measure of distance for an indicating variable. Any binary

measure, such as those listed in Table 3.1, which includes d in its calculation

assumes that joint absences are important in determining similarity. If a or d

are used the index measures similarity whereas an index that uses only b and c

is a measure of dissimilarity.

3.2.3 Other distance measures

Measuring similarity between sections of text, such as amino acid

sequences, is difficult and special purpose measures are needed to cope with the

consequences of gaps within one or both sequences. One of the most common

measures uses the BLAST algorithm (Basic Local Alignment Search Tool,

http://www.ncbi.nlm.nih.gov/blast/blast_overview.shtml). BLAST is able to cope

with gaps because it uses a heuristic algorithm to look for local rather than
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global alignments. This enables it to detect relationships among sequences

that share only isolated regions of similarity. Sasson et al. (2002) examined the

performance of various clustering algorithms to compare protein sequences

using the BLAST algorithm. They found that clusters which remained consistent

across different clustering algorithms tended to comply with their InterPro

annotation, suggesting the existence of protein families that differ in their

evolutionary conservation.

Table 3.1. Nine common binary similarity and distance measures. Note that

n ¼ a þ b þ c þ d

Name Equation Comments

Euclidean distance SQRT(b þ c) Square root of the sum of discordant cases,

the minimum value is zero, and it has no

upper limit.

Squared Euclidean

distance

b þ c Sum of discordant cases, minimum value is

zero, and it has no upper limit. This will give

the same result as the Manhattan distance

(also known as Hamming distance).

Pattern difference bc/(n2) A dissimilarity measure with a range from

zero to one.

Variance (b þ c)/4n A dissimilarity measure that uses the discordant

variables. The range is zero to one.

Simple matching (a þ d)/n A similarity measure that measures the ratio

of matches to the total number of values.

Equal weight is given to matches and

non-matches.

Dice 2a/(2a þ b þ c) A similarity measure in which joint absences

(d) are excluded from consideration, and

matches (a) are weighted double. Also

known as the Czekanowski or Sorensen

measure.

Jaccard a/(a þ b þ c) A similarity measure in which joint absences

are excluded from consideration. Unlike the

dice coefficient, equal weight is given to

matches and mismatches.

Lance and Williams (b þ c)/(2a þ b þ c) Range of zero to one. (Also known as the

Bray�Curtis non-metric coefficient.)

Simpson’s a/minimum(b,c) The ratio of the number of matches and the

minimum number of presences in the

two cases. Two cases are identical if one is

a subset of the other.
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3.3 Partitioning methods

The first split in Grabmeier and Rudolph’s (2002) taxonomy separated

partitioning methods from hierarchical methods. Lingras and Huang (2005)

suggest that partitioning methods belong to a class of cluster-based methods,

unlike the object-based methods typified by hierarchical methods. The two

classes relate to the method by which cluster characteristics are determined. In

the object-based methods the assignment of cases to clusters defines the clusters’

characteristics while the cluster-based methods assign weight vectors to the

clusters.

Partitioning methods address the problem of dividing n cases, described by

p variables, into a small number (k) of discrete classes.

3.3.1 k-means

The k-means algorithm, which is one of the most frequently used, is a

remarkably simple and efficient algorithm. There are two steps that are repeated

(iterated) until a solution is found.

1. Begin with an initial partition into k clusters. The initial clusters could

be random or based on some ‘seed’ values.

2. Re-partition the cases by assigning each case to the nearest cluster

centre.

3. Recalculate the cluster centres as centroids.

4. Repeat steps two and three until an endpoint is reached. The endpoint

will be an optimum of the criterion function.

Many of these iterative, partitioning approaches, including k-means, use

a within-groups sum of squares criterion to minimise the within-cluster

variation. The problem is that a true optimum partition of cases can only be

found if all possible partitions (a very large number) have been examined.

Because this is impossible heuristic algorithms are used that should find

a good, but not necessarily the best, partition. Most partitioning methods

depend on a user-supplied value for k. The square-error criterion is then applied

so that the total squared error, across all k clusters, is minimised for that value

of k. It is quite likely that a smaller total square-error can be achieved for

a different value of k.

This algorithm tends to produce acceptable results, particularly when the

clusters are compact, well-separated, hyperspheres (spheres in three-dimensional

space). However, this does mean that it is not very good at finding sub-classes

that are nested within larger classes. Estivill-Castro and Yang (2004) provide

a detailed critique of the k-means algorithm and suggest alternatives based on
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medians rather than means. Briefly, they list the main problems of the k-means

method as: a tendency to converge on poor local optimum; sensitivity to scaling

and other transformations; sensitivity to noise and outliers; bias (converges

to the wrong parameter values). However, the main problem is determining

a suitable value for k.

Because the algorithm is not guaranteed to find the best partitioning it

is quite possible that two runs using the same data will produce different cluster

solutions. If several repeat analyses are tried the ‘best’ will be the one with

the smallest sum of the within-cluster variances. Similarly, the analysis could

be re-run with a large number of bootstrapped samples. The cluster integrity

can be tested by examining how many times cases share the same cluster.

An alternative approach, which appears to improve the performance of k-means

clustering, is to use the results from a hierarchical cluster analysis to place

the cases into initial clusters.

One big advantage of k-means clustering over other methods is that it

can be used to assign new cases to the existing clusters. This is possible because

the space occupied by the clustering variables is partitioned into Thiessen

polygons (also known as Dirichlet tessellation). This type of partitioning splits

the variable space into polygons whose boundaries are drawn perpendicular to

the mid-point between two cluster centres. Therefore, any point falling within

a Thiessen polygon should be assigned to that cluster. This is illustrated in

Figure 3.3.

Schmelzer (2000) used k-means clustering to identify biogeographic

regions whose characteristics were then correlated with monk seal Monachus

schauinlandi abundance. In order to overcome the k-mean’s shortcomings

Schmelzer truncated his standardised values to a z value of 2.25. This helped

to reduce the impact of outliers on the classification. Aronow et al. (2001)

used k-means to divide dynamically regulated genes into nine kinetic pattern

groups.

3.3.2 k-medians and PAM

Other partitioning methods use different averages such as medians.

The advantage of using medians to define cluster centres is that they are little

affected by outliers. However, it is a computationally intensive method and the

faster PAM (partition around medoids) approximation method tends to suffer

when the data are noisy. The PAM algorithm first computes k representative

objects, called medoids and each cluster centre is constrained to be one of the

observed data points. These are defined as the cases within the clusters, whose

average dissimilarity to all other cases in the cluster is minimal. PAM is said to be

more robust than k-means, because it minimises a sum of dissimilarities instead
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of squared Euclidean distances. Because the algorithm can be used with any

distance matrix it can be applied to more general data types than the k-means

algorithm.

3.3.3 Mixture models

Mixture models, usually based on the EM (expectation maximisation)

algorithm, use an alternative model-based approach, which contrasts with the

heuristic data-driven approach of k-means and hierarchical clustering algo-

rithms. Model-based approaches assume that the data are drawn from a mixture

of underlying probability distributions. This enables the use of maximum

likelihood methods to maximise the probability that a case belongs to a par-

ticular cluster, where the cluster is defined by a specified mixture of probability

distributions. Each cluster’s mixture is a multivariate probability distribution,

typically multivariate normal. A multivariate normal distribution is charac-

terised by a vector of means and a covariance matrix which, in combination,

describe the geometric features of the distribution (location and shape in

multivariate space). The main difficulty that has to be solved is estimating the

values of the coefficients of the covariance matrix. Despite the computational

difficulties the mixture-based models have the advantage that Bayesian methods

can be used to determine which value of k (within a specified range) represents

Figure 3.3 Thiessen polygons and k-means partitioning. Cases are filled circles

and cluster centres are circles with a cross. The lower Thiessen is shaded grey.

Any data point falling in this grey area would be assigned to that cluster.
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the best number of clusters for the data. Autoclass (Cheeseman and Stutz, 1996;

available from http://ic.arc.nasa.gov/ic/projects/bayes-group/autoclass/) is a public

domain mixture modelling classifier that can be used to select the most probable

classification given the data. As with many applications of Bayes methods there

is an assumption, which is almost always untrue, of independence of the

predictors within a class. If the predictors are continuous a normal distribution

is used, otherwise a general discrete distribution is used if the predictors

are discrete. The result is a fuzzy classification, with cases assigned a probability

of class membership. Riordan (1998) used Autoclass to assign correctly tiger

footprints to individuals when no information was provided about the

individuals. Although the aim was to develop a technique that could be used

in the field with unknown animals, this preliminary study used known animals

so that the performance of the classifiers could be validated. Autoclass was able

to discriminate successfully between the prints from different animals and it

correctly identified the number of animals, i.e. the appropriate value for k was

found.

3.3.4 Others

The self-organising map (SOM) algorithm devised by Kohonen (1990) is

a different type of partitioning algorithm that is usually found in the neural

network section of books. The major difference, apart from the computational

details, is that the clusters are arranged in space, typically two-dimensional, so

that neighbouring clusters are similar to each other. As with tradition elsewhere,

further details are provided in Chapter 6 that deals with artificial neural

networks. SOMs have been quite widely used in gene expression studies. For

example, Golub et al. (1999) successfully used a SOM to group 38 leukaemia

samples on the basis of 6817 gene expression levels.

3.4 Agglomerative hierarchical methods

Partitioning methods produce a flat allocation of cases to clusters which,

with the exception of a SOM, provides no additional information on the

relatedness of cases. Althoughmethods such as k-means have advantages relating

to computational efficiency and an ability to classify new cases, they suffer from

two main problems. Firstly, there is the need to pre-specify a value for k and,

secondly, because an iterative algorithm that starts with random locations

is used, the solution is not unique. The alternative hierarchical clustering

paradigm does not suffer from the need to pre-specify k and it provides a visual

representation (dendrogram) that highlights the relationships between cases at

coarse and fine scales. However, as explained below, the solution is very
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dependent on the choice of algorithm and distance measure and there is no easy

way to identify the number of ‘major’ groups that would equate to the value of k.

Nonetheless, it is a very efficient tool for organising data into groups.

For example, Kaplan et al. (2005) used hierarchical clustering to produce

a taxonomy for over one million protein sequences. As should be expected with

such a large dataset some of the clusters are biologically irrelevant. However,

using a cluster stability index, and relevance to existing database functional

annotations, 78% of the clusters could be assigned names with confidence.

They also use a reordered matrix to provide evidence for sub-groups within

a cluster.

3.4.1 Joining clusters: clustering algorithms

Hierarchical cluster analysis involves two important decisions. The first

decision, which was covered in the previous section, is the selection of an

appropriate distance measure. Once this has been selected a distance matrix,

containing all pairwise distances between cases, can be calculated as the

starting point for the second phase which begins with each case in a cluster by

itself. The second stage to the clustering process is choosing the clustering or

linkage algorithm, i.e. the rules which govern how distances are measured

between clusters and then used to fuse clusters. As with the distance measures,

there are many methods available. The criteria used to fuse clusters differ

between the algorithms and hence different classifications may be obtained

for the same data, even using the same distance measure. This is important

because it highlights the fact that, although a cluster analysis may provide an

objective method for the clustering of cases, there may be subjectivity in the

choice of the analysis details. Fortunately, it appears that most combinations

of distance measure and algorithm are compatible. Lance and Williams (1967)

investigated this question and found that only the centroid and Ward’s

algorithm had a distance measure constraint. Only Euclidean distance metrics

are recommended for both.

Although there are a large number of linkage algorithms most can be

illustrated using five algorithms. (Figure 3.4)

Average linkage clustering

The distance between clusters is calculated using average values.

However, there are many ways of calculating an average. The most common

(and recommended if there is no reason for using other methods) is UPGMA

(unweighted pair-groups method average). The average distance is calculated

from the distance between each point in a cluster and all other points in
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another cluster. The two clusters with the lowest average distance are joined

together to form the new cluster.

There are other methods based on centroid and median averages. Centroid,

or UPGMC (unweighted pair-groups method centroid), clustering uses the cluster

centroid as the average. The centroid is defined as the centre of a cloud of points

and is calculated as the weighted average point in the multidimensional space.

A problem with the centroid method is that some switching and reversal may

take place, for example as the agglomeration proceeds some cases may need

to be switched from their original clusters. This makes interpretation of the

dendrogram quite difficult.

There are weighted variations to these algorithms that use cluster size

(number of cases) as a weight and they are recommended when cluster sizes are

very heterogeneous.

Complete linkage clustering

In complete linkage clustering (also known as the maximum or furthest-

neighbour method) the distance between clusters i and j is the greatest distance

between a member of cluster i and a member of cluster j. This method tends

to produce very tight clusters of similar cases and performs well when cases

form distinct clusters. If the cases are more loosely spread the next algorithm

may be better.

Figure 3.4 Diagrammatic summary of three clustering algorithms. NN, nearest

neighbour; FN, furthest neighbour. The remaining lines illustrate how distance is

measured for the UPGMA algorithm, although only the distances for one case

are shown.
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Single linkage clustering

In complete linkage clustering (also known as the minimum or nearest-

neighbour method) the distance between clusters i and j is the minimum

distance betweenmembers of the two clusters. This method produces long chains

which form loose, straggly clusters. This method has been widely used in

numerical taxonomy.

Within-groups clustering

This is similar to UPGMA except that clusters are fused so that the

within-cluster variance is minimised. This tends to produce tighter clusters than

the UPGMA method. This approach means that distances between clusters are

not calculated.

Ward’s method

Cluster membership is assessed by calculating the total sum of squared

deviations from the mean of a cluster. The criterion for fusion is that it should

produce the smallest possible increase in the error sum of squares. This approach

means that distances between clusters are not calculated.

3.4.2 The dendrogram

The results of a hierarchical cluster analysis are best viewed in a

graphical form known as a dendrogram. A dendrogram is a tree that shows, via its

bifurcations, how clusters are related to each other across a series of scales.

Understanding how a dendrogram is constructed, and how it should be

interpreted, is one of the most important aspects of cluster analysis. The calcu-

lations, and the resultant dendrogram, depend on the distance measure and/or

clustering algorithm. The process is demonstrated by a simple example that

ignores a lot of ‘messy’ details. The data set has five cases and two variables

(v1 and v2).

case v1 v2
1 1 1
2 2 1
3 4 5
4 7 7
5 5 7

A simple Euclidean distance matrix is calculated as the starting point. For

example, the distance between cases three and four is the square root of

((4 � 7)2 þ (5 � 7)2), which is 3.6. Only the lower triangle of the distance matrix is

shown below because the distance between cases i and j is the same as that
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between cases j and i. Distances are presented with two significant figures.

Using these distances the most similar pair of cases are one and two.

1 2 3 4 5
1 0:0
2 1:0 0:0
3 5:0 4:5 0:0
4 8:5 7:8 3:6 0:0
5 7:2 6:7 2:2 2:0 0:0

These two cases are fused to form the first cluster. Distances must now be

calculated between this cluster and the other cases. There is no need to recal-

culate other distances because they will not have changed. For the purpose of this

exercise assume that distances are calculated from the means of v1 and v2, i.e.

mean v1A ¼ 1.5, mean v2A¼ 1.0. This produces a revised distance matrix in which

cases one and two are replaced by A, the first cluster.

A 3 4 5
A 0:0
3 4:7 0:0
4 8:1 3:6 0:0
5 6:9 2:2 2:0 0:0

The smallest distance in this matrix is between cases four and five

(distance ¼ 2.0). These cases are fused to form cluster B (means: v1B ¼ 6,

v2B ¼ 7) and the distances are recalculated.

A B 3
A 0:0
B 7:5 0:0
3 4:7 2:8 0:0

The new smallest distance (2.8) is between cluster B and case three. Case

three is fused with cluster B and cluster B now has three members. The

mean values are: v1C ¼ (4 þ 5 þ 7)/3 ¼ 5.3, v2C ¼ (5 þ 7 þ 7)/3 ¼ 6.3. Obviously,

there are now only two clusters and they must be the next to be fused at

a distance of 6.4.

The entire process of fusions is summarised by the dendrogram (Figure 3.5).

The vertical axis is the distance at which clusters were fused and the horizontal

lines link fused clusters. The vertical lines, joining the links, illustrate the

hierarchical nature of the fusions.

3.5 How many groups are there?

Apart from representing a possible taxonomy of relatedness between

the cases, the dendrogram may also provide some evidence to answer two
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fundamental questions that need to be answered after, and to a certain extent

before, completing a cluster analysis. The two questions are: are the clusters real

and how many clusters are there? There have been many, but no universally

accepted, suggestions for approaches to these questions. Milligan and Cooper

(1985) compared 30 methods for estimating the number of clusters using four

hierarchical clustering methods. The best criterion that they found was a pseudo

F-statistic developed by Calinski and Harabasz (1974). The Calinski�Harabasz

index measures the separation between clusters and is calculated as Sb/(k�1)/Sw/

(n�k), where Sb is the sum of squares between the clusters, Sw the sum of squares

within the clusters, k the number of clusters and n the number of observations.

The value of the index increases with the separation between groups. Therefore,

it is possible to plot a graph of the index against the number of clusters and

identify the optimum for k. However, as Pillar (1999) points out the Milligan and

Cooper (1985) tests used simulated data with well-separated clusters. Pillar (1999)

devised a computationally intensive alternative measure that uses a general

bootstrap procedure to measure the similarity between solutions.

3.5.1 Scree plots

Although the Calinski�Harabasz and Pillar indices are useful, they are

not generally available and may require significant computing. The scree plot is

a simple alternative. It appears, from the dendrogram in Figure 3.5, that the data

can be represented by two clusters: A (cases one and two) and B (cases three, four

and five). However, as the number of cases increases it may not be so obvious and

visual assessment of the dendrogram is likely to become increasingly subjective.

Figure 3.5 Dendrogram for simple dataset, identifying two major clusters.
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In a hierarchical analysis, increasingly dissimilar clusters must be merged as

the cluster fusion process continues. Consequently, the classification is likely to

become increasingly artificial. A graph of the level of similarity at fusion versus

the number of clusters may help to recognise the point at which clusters become

artificial because there will be a sudden jump in the level of similarity as

dissimilar groups are fused. Figure 3.6 is derived from the previous analysis. Note

how there is a large jump when clusters A and B are fused. This supports the

hypothesis that the data are best represented by two clusters. Tibshirani

et al. (2001) present a more formal test of the use of the scree plot as represented

by their GAP statistic, which they suggest outperforms other measures.

3.5.2 Other methods of estimating optimum number of clusters

Geometrical projection techniques such as PCA (Section 2.5.2) and MDS

(Section 2.6) can be used as a visual check. In general these methods produce

a low-dimensional (typically two or three) representation of the data such that

similar cases are close together in the lower dimensional projections. However,

unlike the clustering algorithms there are no explicit cluster assignments.

Nonetheless cases can be plotted with cluster labels to visualise the integrity of

a clustering solution. In a similar way the low-dimensional projection could

be used to guide the selection of an appropriate value for k in a partitioning

analysis.

In a PAM analysis each cluster can be represented by a silhouette plot which

identifies cases within a cluster and those that are intermediate between two

or more clusters. If all of the silhouettes are potted together the quality of the

clusters can be compared. Silhouettes are constructed by calculating s(i) (range

Figure 3.6 Scree plot based on the analysis in Figure 3.5.
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þ1 to �1) values for all i cases. These are an indication of the quality of a case’s

assignment to a cluster. If s(i) is close to þ1 then case i has a much smaller

dissimilarity with cases within its current cluster, compared to its dissimilarity

with cases in the nearest alternative. Hence it is in the correct cluster.

Alternatively, if s(i) is close to �1 then case i has a larger dissimilarity with cases

within its current cluster, compared to its dissimilarity with cases in the nearest

alternative cluster. It must therefore be in the wrong cluster. If s(i) is close to zero

the case would be equally placed in two clusters.

The silhouette plot of a cluster is organised by ranking the s(i) values in

decreasing order. Each case is drawn as a horizontal line, with a length

proportioned to s(i). The average silhouette width of the silhouette plot across

all clusters is the average of s(i) over all cases. Therefore, a wide silhouette

indicates large s(i) values and hence a pronounced cluster. Because the entire

silhouette plot shows the silhouettes of all clusters next to each other the quality

of clusters can be compared. If the PAM is run with several values of k the

resulting silhouette plots can be compared. Because larger s(i) values are

associated with ‘better’ clusters the average silhouette width can be used to

select the ‘best’ number of clusters. The maximum average s(i) value can be used

as a clustering criterion. It has been suggested that a strong structure will

produce a value above 0.7, while a value below 0.5 suggests that the structure

is weak. If the largest mean s(i), over all tested values of k, is less than 0.25 then

there is little evidence for any structure.

3.6 Divisive hierarchical methods

Divisive hierarchical methods recursively partition the data in a manner

that is reminiscent of the decision trees described in Chapter 6. However, the

divisive hierarchical methods are unsupervised meaning that there is no ‘trainer’

guiding the partitioning to ensure maximum separation of pre-defined classes.

Instead, it is hoped that the resulting divisions of the data will provide some

information about structures within the data.

Divisive hierarchical methods do not appear to be widely used in biological

applications, almost certainly because of the computational difficulties of

finding the optimum partitions. TSVQ (tree structured vector quantisation)

combines k-means clustering with a tree-like divisive method. k-means clustering

is used to split the data into two sets, which are then recursively split using

the same k-means procedure.

Two-way indicator species analysis (TWINSPAN) was developed by Hill (1979)

specifically for the hierarchical classification of community data and has quite

wide usage in vegetation ecology. The output is a table in which the rows
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(species) and columns (samples) are arranged to highlight patterns of vegeta-

tion structure. In this respect it is another example of Bertin’s reorderable

matrix (Section 2.5.1). It is a more complex analysis than the TSVQ algorithm

and begins with a correspondence analysis. The results of this are used to split

the data into two parts. The hierarchical nature of the classification is achieved

by using discriminant analyses to further sub-divide each part. The most un-

usual part of the algorithm is the concept of a pseudo-species. This is necessary

because quantitative abundance data have to be converted into presence�ab-

sence data. However, in an attempt to retain information about the relative

abundances, the data are split into pseudo-species, which means that a single

species may be represented by a number of pseudo-species. Hill and Šmilauer

(2005) have recently made a Windows version of TWINSPAN available for

download. Included with the download is a manual which provides more

background on the algorithm and the interpretation of the output.

Because divisive clustering methods are better at finding large clusters than

hierarchical methods, Chipman and Tibshirani (2005) used a hybrid method that

also used the ability of hierarchical methods to find small clusters. Before the

results from the two algorithms could be combined it was necessary to define

a concept that they called a mutual cluster, which is a group of points that

are sufficiently close enough to each other, and far enough from others, that

they should never be separated. The small mutual clusters, identified from

the hierarchical clustering, were placed into a broader context identified by

the divisive clustering using the TSVQ algorithm. They demonstrated the

approach using breast cancer data which has 85 tissue samples and 456 cDNA

expression values.

3.7 Two-way clustering and gene shaving

Microarray data generally consist of hundreds, and possibly thousands,

of gene expression levels obtained from a much smaller number of samples that

come from different cell lines or timed samples that may represent different

developmental phases. If it is assumed that the gene expression patterns provide

important information about the cell states it is clear that some method is

needed to identify the patterns. Although the clustering methods described

earlier can be very useful, it is possible to use two-way clustering as a means of

clarifying the patterns visually. Tibshirani et al. (1999) suggest that two-way

clustering can discover large-scale structures butmay not be as effective with fine

detail.

A two-way clustering carries out simultaneous clustering, which is usually

hierarchical, of the rows (gene expressions) and columns (samples) of the
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data matrix. In other words, the two dendrograms are generated in which the

data matrix is effectively transposed. The dendrograms are used to reorder the

rows and columns of the data matrix prior to using a colour scale to represent

the expression level. The example in Section 3.9.1 illustrates two-way clustering

using theWu and Chen (2006) GAP software. Bryan (2004) raises a note of concern

about gene clustering because she feels that the clusters are often a consequence

of pre-filtering processes that tend to create structures where they were

previously weak.

Tibshirani et al. (1999) and Hastie et al. (2000) describe a two-way clustering

that they call gene shaving. The motivation for this approach is that the two-

way clustering produces a single ordering of the samples, while more complex

patterns may exist that depend on the set of genes used in the clustering. Their

method begins by finding the linear combination of genes that have maximal

variation among the samples. This is the first principal component of gene

expression levels. This group of genes is called a ‘super gene’ and genes which

are uncorrelated with the first principal component are removed, or shaved,

from the data. The process is repeated, producing smaller and smaller clusters

of size k, until only one gene remains. A gap statistic (the difference between

the mean within-cluster sum of squares and the within-cluster sum of squares

for a cluster of size k) is used to determine the optimum cluster size (maximum

value for the gap statistic). Each row in the data matrix is then orthogonalised

with respect to the average gene in the kth cluster. The process is repeated

to find the second, third and mth optimal cluster, where m is pre-selected. The

end result is a sequence of blocks of genes that contain similar genes with a

large variance across the samples. Hastie et al. (2000) illustrate the use of this

approach to analyse gene expression measurements from patients with diffuse

large B-cell lymphoma and identified a small cluster of genes whose expression

is highly predictive of survival.

3.8 Recommended reading

There are a number of general texts but amongst the most useful are

Gordon (1981, 1999) and Everitt et al. (2001). The earlier book by Gordon is still

worth reading because it is wide ranging and clearly written with a minimum of

mathematical notation. The 1999 book has an additional large section on cluster

validation. Everitt et al. (2001) is also comprehensive, with a similar ‘light’

mathematical touch. Their second chapter, on visualising clusters, is particularly

useful as is their chapter eight which includes a section on comparing cluster

solutions. Kaufman and Rousseeuw (2005) describe a number of clustering

algorithms, including PAM that are implemented in the free WinIDAMS software
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that can be ordered from UNESCO (http://www.unesco.org/webworld/idams,

visited on 4 October 2005).

Lapointe and Legendre (1994) in a wonderfully informative paper describe

how a constraint, in their case spatial, can be applied to a cluster analysis.

In addition to the constrained clustering they also explain how Mantel tests

(Section 2.8.1) can be used to compare distance matrices derived from different

sets of clustering variables. The paper also has the advantage of telling us more

about the finer qualities of Scottish malt whiskies! Tibshirani et al. (1999) is a very

useful review of clustering methods for the analysis of DNA microarray data.

They also describe two-way clustering and introduce the concept of gene shaving.

Bryan (2004) is a very useful review of the use of clustering methods to group

genes, rather than cases, using expression data. She notes that the identified

clusters are often a consequence of earlier filtering methods and that genomic-

wide clusterings often fail to find discrete groups.

3.9 Example analyses

Hierarchical and partitioning clustering methods are illustrated using

some small data sets. The first analyses highlight the effect of changing the

distance and linkage measures on the structure of the dendrogram, and

subsequent biological interpretation, from a hierarchical cluster analysis. The

second set of analyses use k-means clustering to investigate the structure of

two sets of data.

3.9.1 Hierarchical clustering of bacterial strains

The data are part of a data set described by Rataj and Schindler (1991).

Data are presented for six species, most having data for more than one strain and

sixteen binary phenotypic characters (0 ¼ absent, 1 ¼ present). The species are:

Escherichia coli (ecoli), Salmonella typhi (styphi), Klebsiella pneumoniae (kpneu), Proteus

vulgaris (pvul), P. morganii (pmor) and Serratia marcescens (smar). The data are in

Appendix C. Classifications resulting from the use of two binary similarity

measures and two clustering algorithms are shown (Figures 3.7 and 3.8) to

illustrate the dependency of the solution on the choice of method. The main

difference between the simple measures is the treatment of double zeros. In the

simple matching coefficient analysis double zeros count towards the similarity

while they are not used by the Jaccard coefficient.

Despite the different methods there is some consistency in these results.

In particular the Klebsiella (kpneu) samples are consistently separated from the

others and the Proteus vulgaris (pvul) and P. morganii (pmor) samples are always

associated in one cluster. The most obvious differences are between the two
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single linkage dendrograms, with the Jaccard coefficient producing a less

clear-cut solution. Also, the Jaccard measure (Figure 3.9) splits the Escherichia coli

(ecoli) and Salmonella typhi (styphi) samples that are clustered together in the

other two analyses.

Using the GAP software (Wu and Chen, 2006) it is possible simultaneously

to cluster the taxa and the variables. Using the dendrograms the data can

Figure 3.7 Clustering results for the bacteria data using the simple matching

similarity measure and the single linkage (nearest neighbour) algorithm.

Figure 3.8 Clustering results for the bacteria data using the simple matching

similarity measure and the UPGMA algorithm.

Example analyses 69



be ordered so that structures in both analyses are highlighted. Figures 3.10

and 3.11 show the results of the two cluster analyses using the GAP software.

Both analyses use the complete linkage algorithm but with the simple matching

and Jaccard similarity measures. The intensity of the shading is a measure

of the distance between a pair of cases with black indicating identical cases.

The box in the lower left shows the pattern of positive values for the variables,

ordered according to the clustering of the variables, i.e. which variables tended

to be jointly positive. As with the previous analyses, the Klebsiella (kpneu)

samples are consistently separated from the others and the Proteus vulgaris (pvul)

and P. morganii (pmor) samples are always associated in one cluster. The shading

highlights the similarity and differences between the taxonomic groups and

shows that the separation is clearer cut in Figure 3.11. One feature of the

variables is common to both plots. Four of the variables (ORN, PHE, LIP and

H2S) appear to have different profiles from the other variables. In Figure 3.10

all four are placed in a separate cluster while in Figure 3.11, which does

not use joint absences to measure similarity, they are split into two obviously

separate groups (ORN�LIP and PHE�H2S).

3.9.2 Hierarchical clustering of the human genus

This analysis uses data from table 5 in Wood and Collard (1999).

There are twelve gnathic variables from eight taxa related to the present

day Homo sapiens. Wood and Collard conclude that Homo habilis and H. rudolfensis

Figure 3.9 Clustering results for the bacteria data using the Jaccard similarity

measure and the single linkage (nearest neighbour) algorithm.
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do not belong in the genus and that the earliest taxa to satisfy the criteria are

H. ergaster or early African H. erectus. The data are in Appendix D.

Two analyses are presented. Both use the UPGMA algorithm but with different

distance measures. The first uses squared Euclidean distance while the second

uses the cosine measure. The major difference here is that the cosine measure

clusters cases which have a similar ‘shape’ rather than ‘size’, which is favoured

by Euclidean distance.

Paranthropus boisei, which was previously in the Australopithecus genus, is an

obvious outlier in the first analysis (Figure 3.12), and is well separated from

Paranthropus robustus and Australopithecus africanus. However, in the second

analysis (Figure 3.12), which is based on shape rather than size differences, both

Parathropus taxa are close together along with the possibly related Australopithecus

africanus. The three closely related Homo species (sapiens, erectus and neandertha-

lensis) are consistently close together, suggesting a similarity in both shape

and size. Indeed there is debate about the appropriate taxonomic relationships,

for example H. neanderthalensis is sometimes considered to be a sub-species of

H. sapiens. The two taxa, H. habilis and H. rudolfensis, that Wood and Collard (1999)

think should not be in the genus, are consistently well separated from H. sapiens,

Figure 3.10 Generalised association plots for the bacterial data. A complete linkage

algorithm with the simple matching coefficient was used. The intensity of shading

indicates the similarity (white equals none and black equals identical).
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H. erectus and H. neanderthalensis. These analyses demonstrate the importance of

deciding on the appropriate distance metric. In particular, should similarity be

measured by size or shape differences?

If the predictor data are subjected to a MDS (Figure 3.13) the pattern of taxa is

broadly related to the views expressed byWood and Collard (1999), with the three

closely related Homo species being separated from the other taxa. The only

exception is the proximity of H. ergaster, which is thought by some to be the same

species as the adjacent H. erectus. The two taxa queried by Wood and Collard

(1999) are close to the Paranthropus and Australopithecus taxa.

3.9.3 Partition clustering

Bacteria data

This analysis uses the data from Section 3.9.1 in which the Klebsiella

(kpneu) samples were consistently separated from the other samples and the

Proteus vulgaris (pvul), P. morganii (pmor) samples were always associated in one

cluster. In this illustrative example k was set to six, the same as the number of

taxonomic classes, but one more than the number of genera. The results are

summarised in Tables 3.2 and 3.3.

Figure 3.11 Generalised association plots for the bacterial data. A complete linkage

algorithm with the Jaccard similarity coefficient was used. The intensity of shading

indicates the similarity (white equals none and black equals identical).

72 Cluster analysis



Figure 3.12 UPGMA clustering of the human genus data using (a) squared Euclidean

distance measure and (b) cosine distance measure.

Figure 3.13 MDS map of the human genus data.
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Samples have been clustered according to taxon, the only exception being

the first P. morganii sample which is placed by itself in cluster four. However,

the between-cluster distances (Table 3.3) show that clusters three and four are

relatively close to each other. This is reenforced if the between-cluster distances

are subjected to a MDS analysis (Figure 3.14). The results of the MDS analysis also

highlights the fact that the Klebsiella samples are separated from the others

(cluster six), while the Escherichia coli (ecoli), Salmonella typhi samples are relatively

Table 3.3. k-means (k ¼ 6) cluster results: distances between the cluster centres

Cluster 1 2 3 4 5 6

1 0 2.472 2.284 2.472 1.856 2.381

2 2.472 0 2.990 2.828 2.357 2.821

3 2.284 2.990 0 1.561 2.235 3.193

4 2.472 2.828 1.561 0 2.357 3.156

5 1.856 2.357 2.235 2.357 0 2.790

6 2.381 2.821 3.193 3.156 2.790 0

Table 3.2. k-means (k ¼ 6) cluster results. Cluster is the cluster

number assigned to each sample and distance is the distance of a

case to the cluster centre

Sample Cluster Distance

ecoli1 1 1.054

ecoli2 1 0.882

ecoli3 1 0.882

styphi1 5 0.471

styphi2 5 0.745

styphi3 5 0.745

kpneu1 6 0.872

kpneu2 6 0.872

kpneu3 6 0.400

kpneu4 6 0.872

kpneu5 6 0.872

pvul1 3 0.968

pvul2 3 0.661

pvul3 3 0.661

pmor1 4 0.000

pmor2 3 1.199

smar 2 0.000
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similar (clusters one and five). It is worth reinforcing the point that this analysis

used only the k-means distance matrix. Raw case data were not used, unlike the

analysis in Figure 3.13.

Cancer data

This analysis uses data downloaded from http://stats.math.uni-augsburg.

de/Klimt/down.html (3 January 2006). The original source is Mangasarian and

Wolberg (1990). There are nine continuous potential predictor variables plus one

class variable (benign, malignant). The predictors are: clump thickness;

uniformity of cell size; uniformity of cell shape; marginal; single epithelial cell

size; bare nuclei; bland chromatin; nucleoli; and mitoses. Cases with missing

values were not used in these analyses. The aim of these analyses was to

determine if this unsupervised classification was capable of separating the

classes using all nine of the potential predictors, but excluding the class. Three

values of k were tested: two, three and four.

In all four analyses (Tables 3.4, 3.5 and 3.6) there was good separation of the

classes, even though the class label was not used in the analyses. In general, the

clusters containing mainly malignant class have larger means for all predictors.

However, it seems from the first two analyses that the malignant class is rather

heterogeneous. While the benign cases tend to be restricted to one cluster, which

includes a small number of malignant cases, the malignant cases are relatively

Figure 3.14 Multidimensional scaling map of the between-cluster distances from

Table 3.3. Points are labelled with their cluster numbers and joined by a minimum

spanning tree.

Example analyses 75



evenly spread through the other clusters. This heterogeneity is also highlighted

if the data are subjected to a MDS (Figure 3.15). The MDS plot shows that the

malignant cases are much more widely spread out along the first (x) axis than

the benign cases, although there are a few benign outliers and a small cluster

at the upper right

This unsupervised classification has almost the same accuracy as the

supervised methods used in Chapter 5. The fact that an unsupervised method

can separate the classes, even though no class information was included in the

analysis, suggests that there is a strong structure to the data that is created by the

Table 3.4. Cluster centres and cluster class composition for k ¼ 4

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Clump 7 7 7 3

UnifCellSize 8 4 9 1

UnifCellsHhape 8 5 8 1

MargAdhesion 6 4 7 1

SECSize 6 4 7 2

Bnuclei 7 8 8 1

BChromatin 7 5 6 2

Nnucleoli 9 4 3 1

Mitoses 4 2 2 1

Benign 0 10 1 433

Malign 94 91 45 9

Table 3.5. Cluster centres and cluster class composition for k ¼ 3

1 2 3

Clump 7 7 3

UnifCellSize 8 5 1

UnifCellsHhape 8 5 1

MargAdhesion 7 5 1

SECSize 7 4 2

Bnuclei 7 9 1

BChromatin 7 5 2

Nnucleoli 8 4 1

Mitoses 3 2 1

Benign 0 10 434

Malign 123 102 14
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major differences in the class values across the variables used in the analysis. In

many analyses it is likely that class labels would not be available; if they were,

a supervised classification analysis would normally be more appropriate. In the

absence of class labels the results of the cluster analysis would have to be

subjected to some post-processing. For example, the table of mean values

(Table 3.6) from the k-means analysis of the cancer data clearly indicates the

presence of two groups that are characterised by low and high values for the

means of all of the variables.

Table 3.6. Cluster centres and cluster class composition for k ¼ 2

1 2

Clump 3 7

UnifCellSize 1 7

UnifCellsHhape 1 7

MargAdhesion 1 6

SECSize 2 5

Bnuclei 1 8

BChromatin 2 6

Nnucleoli 1 6

Mitoses 1 3

Benign 435 9

Malign 18 221

Figure 3.15 MDS map of the cancer data. Benign cases (filled), malignant cases (cross).
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4

Introduction to classification

4.1 Background

Classifying objects or, more generally, recognising patterns is not

a simple task for automated procedures, particularly when the objects are of

biological interest. For example, identifying species, predicting species distribu-

tions or finding gene expression patterns that predict the risk of developing

a particular type of tumour are generally difficult tasks. In this book the tool

responsible for the classification is called a classifier and the term encompasses

a wide range of designs, some of which are described in the next chapters.

The first attempts at biological pattern recognition tended to use statistical

methods, for example discriminant analysis and logistic regression, but more

recently a wider range of techniques has been used, including some that have

‘borrowed’ ideas from biology. Although a wide range of algorithms is covered in

these pages, it is impossible to be comprehensive. However, the techniques that

have been included should help readers to understand the logic of other

techniques.

Jain et al. (2000) recognised four distinct approaches to pattern recognition.

The first approach, and the main theme of their paper, was statistical.

These methods find decision boundaries by making use of information about

the class probability distributions. The second approach is one of the simplest

and relies on matching cases to class templates or exemplars. The third is little

used in biology and relies on decomposing patterns into sub-patterns, which may

also be broken down further. This hierarchical approach is called syntactic

because of its similarity to the structure of language. For example, a sentence can

be decomposed into words, which can then be further decomposed into the

constituent letters. The syntactic approach is not covered in more detail in
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this book. The final approach recognised by Jain et al. (2000) uses artificial neural

networks (Section 6.4). However, it is not always clear how different some neural

networks are from statistical methods.

Understanding the theory underlying statistical classifiers is not easy for

most biologists, and this is complicated by the need to consider multivariate

rather than univariate data. In the univariate case it is possible to estimate

the probability of drawing a single observation from a population of values with

a known probability distribution. For example, IQ is normally distributed with

a mean of 100 and a standard deviation of 15. The z statistic can be used to find

the proportion of the population with an IQ greater or less than a specified value.

For example, the probability of selecting, at random, a person with an IQ ¸ 130

is 2.28%. Similarly, in a multivariate classification problem, it is possible to

estimate the probability that a vector x (a series of observations from different

variables) was drawn from a particular class as long as the class-conditional

probability function, p(x|classi), is known. Under the assumption of known

class probability density functions it can be shown that the best classifier

is a Baye’s decision rule. This is a method that calculates the probability

of drawing a particular vector from a class. Indeed the error from a Baye’s rule

is the minimum possible error rate for a particular data set that cannot be

decreased by any other classifier and thereby provides a lower boundary

against which other classifiers can be judged. Although naı̈ve Baye’s classifiers

(Section 5.2) are known to work well, there are few real examples where

class-conditional probability distributions are known. Instead they have to be

estimated (learned) from the training data. This means that there will be

uncertainty about the relevant parameters (means, standard deviations, etc.)

that make it impossible to obtain the true class-conditional probability

distributions. Because the parameter values have to be estimated from the

training data their effectiveness is dependent on factors such as the size and

composition of the training data. This also makes classifiers susceptible to the

‘curse of dimensionality’.

The curse of dimensionality is a function of the ratio of training cases to

class predictor variables. If there are too many predictors the reliability of the

parameter estimates declines. In addition, providing more predictors may,

in reality, reduce the classifier’s performance. This is known asWatanabe’s (1985)

‘ugly duckling’ theorem, which states that adding sufficient irrelevant

predictors can sometimes make cases from different classes more similar and

hence degrade performance. This is also seen in the comparison between binary

similarity measures, some of which (e.g. the simple matching coefficient) include

joint absences in their measure of similarity. The lesson from these related

problems is that care should be taken to ensure that the number of potential
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predictors should be minimised and optimised. In the machine learning

community this reduction in the number of predictors is known as feature

selection, although many biologists will only be familiar with the stepwise

variable selection algorithms that are built into most commercial statistical

packages.

Using judgement, rather than automated procedures, to select predictors

should be encouraged since it demands careful consideration of the problem. For

example, although variable selection is generally based on statistical criteria,

common sense has a part to play. If two models have similar statistical validity or

predictive accuracy, but one includes variables that are expensive or time

consuming to collect, it should be rejected in favour of the less-expensive model.

Huberty (1994) suggested three variable screening techniques including logical

screening. His approach uses theoretical, reliability and practical grounds to

screen variables. Huberty suggests using subject-specific knowledge to find

variables that may have some theoretical link with the classes. He also thinks that

it is wise to take account of data reliability and the practical problems of

obtaining data; this includes cost (time or financial) factors. Statistical screening

is Huberty’s second technique. This uses statistical tests to identify variables

whose values differ significantly between groups. Huberty suggests applying

a relaxed criterion, which only rejects those variables that are most likely to be

‘noise’ (e.g. F < 1.0 or t < 1.0). In addition, inter-predictor correlations should be

examined to find those variables that are ‘highly correlated’. Redundant

variables should be removed. Hand (1997), in a very useful review of methods,

also covers approaches to variable selection when building classifiers.

Jain et al. (2000) point out the need to separate ‘feature selection’ from ‘feature

extraction’. The first refers to algorithms that select a subset of predictors from

a larger list (e.g. Huberty’s second technique and stepwise variable selection

algorithms). Unfortunately only the computationally expensive exhaustive

search methods, which try all predictor combinations, are guaranteed to find

the optimal selection of predictors. As the number of predictors increases

variable selection becomes difficult, even on modern fast computers. Instead

heuristic search strategies are used that may find a different subset of predictors

depending on, for example, the direction of the search (growing or reducing the

predictors). Feature extraction, which is the third of Huberty’s (1994) criteria,

creates a smaller set of new variables from those available. Two of the more

common feature extraction techniques are PCA (Section 2.5.2) and MDS

(Section 2.6.2). Both methods produce a smaller set of derived variables but they

differ fundamentally in the criteria used. Because amethod, such as PCA, also has

the advantage of removing any predictor collinearity it can serve a dual purpose.

Variable selection is discussed again in Section 4.6.
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4.2 Black-box classifiers

Imagine a machine that could reliably identify species of arthropod,

perhaps restricted to one group such as the Lepidoptera. This would be a very

powerful survey tool and, as long as it was accurate, we might not be too

concerned with the mechanics of the identification process and a ‘black box’

would be acceptable. Given our poor taxonomic knowledge for many arthropod

groups it would also be helpful if the machine recognised ‘new’ species, even if it

could not name them. There have been several attempts to produce automatic

species identification systems. For example, Boddy et al. (2000) and Wilkins

et al. (2001) used artificial neural networks to identify phytoplankton, while

Do et al. (1999) investigated automated systems for spider recognition. Gaston and

Neil (2004), in a review of the potential for automated species identification

systems, concluded that progress was encouraging and that such approaches had

great potential benefits.

May (1998) and Riordan (1998) are other examples where a black-box

approach to identification is acceptable. The corncrake Crex crex is globally

threatened and Britain’s migrant population has a much reduced distribution,

breeding mainly in less intensively farmed western isles such as Coll and Tiree.

It is not an easy bird to census visually but the male’s distinctive call enables

population estimates to be made. In his work May investigated if it was

possible to recognise individuals from their calls. If this is possible we may be

able to improve our understanding of corncrake ecology and ensure that

censuses are unbiased. Despite statistical evidence for significant variation,

the classifiers (artificial neural networks) were robust enough to cope with

between-night variation. May suggested that it may be possible to implement

a complete system in hardware, a real black box that could extract key

features from a call in real time and pass them to a neural network for

immediate identification. Similarly, Riordan (1998) addressed the problem of

recognising individual large carnivores from their signs, footprints in his

example. The problem addressed by Riordan was can we correctly assign

footprints to individuals when there is no information about the individuals,

or even how many individuals there are? Although the aim was to develop

a technique that can be used in the field with unknown animals, his

preliminary study used known animals so that the performance of the

classifiers could be validated. Autoclass (a Bayesian mixture-modelling

approach, Section 3.3.3) was able to discriminate successfully between the

prints from different animals and it correctly identified the number of

animals. Both of these systems, although lacking explanatory power, could be

of great biological value because of their predictive power.
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Now imagine a different classifier that can tell, from a plasma sample, which

patients are susceptible to particular types of cancer. While this prognosis may be

of immediate benefit (if only to an insurance company) it would be frustrating if

no information was provided on how the conclusion was reached. Knowing

which factors were important for each cancer could suggest research avenues

leading to the development of prophylactics or treatments. Similarly, it would be

useful if a classifier was able to pick out those species most at threat from

extinction. In the short term, given the current level of threat, it is probably

acceptable to have a classifier that predicts without explanation, but in the

medium term we would want to understand the combination of characteristics

which increase extinction proneness.

The lesson from these examples is that we need to decide if interpretability

is important when deciding which classification or prediction algorithms

are appropriate for a particular problem. Even then it should be recognised

that interpretability is a relative term. For example, decision trees produce

rules that relatively untrained users can understand while the same cannot be

said for the output from a logistic regression or an artificial neural network.

The need to be able to communicate research findings to an educated, but non-

subject-specialist audience should not be underestimated.

4.3 Nature of a classifier

Most supervised learning methods used by classifiers are inductive,

i.e. they extract general patterns from data. Usually these patterns are extracted

from a subset of cases known as the training data. It is generally advisable to test

the predictor on a new data set called the test or validation data (see Chapter 7).

If it performs well with novel data it is possible to have some confidence in the

classifier’s future use.

It is important to understand that the class separation and identification

achieved by all classifiers is constrained by the application of some algorithm to

the data. For example, many statistical methods assume that classes can be

separated by a linear function. This means that they will suffer if the boundaries

between the classes are non-linear. The linear nature of many classifiers is well

illustrated by linear discriminant analysis, which assigns class membership

following the application of some threshold to a discriminant score calculated

from Sbixi, where xi are the predictor variables and bi are the weights of each

predictor. The problem reduces to one of estimating the values of the coeffi-

cients (bi), using a maximum-likelihood procedure that depends on an assumed

probability density function. Because the values of these coefficients are

unknown, but presumed to be fixed, the emphasis is on the structure of the
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separation rule rather than the individual cases. Statistical classifiers usually

provide confidence intervals for the parameter estimates, but these are

conditional on having specified the appropriate statistical model and the

classification accuracy of a technique such as logistic regression is largely

independent of the goodness of fit (Hosmer and Lemeshow, 1989). Part of the

problem is that, for all methods, classification accuracy is sensitive to the group

sizes (prevalence), and cases are more likely to be assigned to the largest group.

As the prevalence declines it becomes increasingly difficult to find rules that

predict the minority class. Thus, the criteria by which statistical classifiers are

usually judged relate to the statistical model rather than the classification

accuracy. This represents a fundamental difference between traditional statis-

tical methods and the newer machine learning methods, where the classifier’s

accuracy is usually central to the assessment of a classifier’s value.

There is some growing support for the need to rethink our approaches to the

application of classifiers to biological problems. In particular the emphasis

should move away from statistical concerns, such as the goodness of fit, to more

pragmatic issues (Table 4.1).

Altman and Royston (2000) summarised this succinctly when they noted that

‘usefulness is determined by how well a model works in practice, not by how

many 0s there are in associated p values’. They also point out that a statistically

valid model may be clinically invalid (too weak) and vice versa. For example,

a model could be clinically valid but fail statistically because it is biased or has

a poor goodness of fit. These, plus other concerns, lead to the general conclusion

that an ideal classifier would be accurate, with utility and an ability to handle

costs. Unfortunately all of these characteristics are rather vague and open to

different interpretations.

Accuracy can be defined as ‘faithful measurement of the truth’. However,

this assumes that there is a truth against which predictions can be assessed.

Table 4.1. A comparison of statistical and pragmatic issues that should

be considered during classifier development (based on Table 1 in Hosking

et al., 1997)

Statistical issues Pragmatic issues

Model specification Model accuracy

Parameter estimation Generalisability

Diagnostic checks Model complexity

Model comparisons Cost
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The robustness of the truth or gold standard against which classifier perfor-

mance is judged is an important, and often overlooked, issue. While true classes

are unambiguous in some circumstances, e.g. forged versus valid bank notes,

there are others in which the distinction between classes is less clear. For

example, in species distribution modelling classifiers are used to predict the

distribution of species, which are almost always rare or endangered. When a

species population is below its carrying capacity there may be many locations

that are suitable but currently vacant. A simple comparison of a classifier’s

predictions against this current distribution is likely to result in a reduced

accuracy. It is almost impossible to judge the true quality of this classifier unless,

and until, the population expands and individuals occupy the locations predicted

by the classifier. It is important, in situations like this, to think carefully

about how accuracy should be measured (Fielding, 1999b, 2002; Fielding and

Bell, 1997).

Ripley (1996) suggests that a classifier should be capable of reporting three

outcomes when presented with an object whose class is unknown:

1. make a class prediction (usual outcome);

2. identify the case as not belonging to a target class (outlier);

3. inform the user that the object cannot be identified (reject).

Unfortunately most biological classifiers fail to make use of the second

and third outcomes, often compromising their performance. As Ripley (1996)

explains, if the classifier suggests that the case is too hard to classify it could be

passed to another classifier, possibly a human, for further processing.

A dictionary definition of utility is that it is a measure of the total benefit or

disadvantage to each of a set of alternative courses of action. This is a useful

definition because it suggests that the utility of a classifier could be assessed from

a list of its advantages/disadvantages. This would then allow comparisons to be

made between classifiers. But, what are the factors, apart from accuracy,

that may contribute to the advantages and disadvantages of a classifier? Four

possible criteria are: speed of computation; comprehensibility of output;

availability and complexity of software; and, importantly, acceptability (by

peers). It is also important to bear in mind what Einstein is supposed to have said

about explanations: ‘The best explanation is as simple as possible, but no

simpler.’

The advantages and disadvantages by which a classifier’s utility is judged can

be set into a cost framework. Although it is impossible to construct cost-free

classifiers, it is possible to forget that there are costs. For example, failure to

impose a misclassification cost structure implies that all misclassifications carry
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the same costs. It is often thought that costs are largely restricted to machine

learning methods but it is possible to incorporate them into standard statistical

methods by adjustments to the significance level, which will alter the probability

of type I and II errors. As Fisher stated in 1925, ‘No scientific worker has a fixed

level of significance from year to year, and in all circumstances, he rejects

hypotheses; he rather gives his mind to each particular case in the light of his

evidence and his ideas.’ Unfortunately adjustments to the significance level are

fraught with difficulties since it is a component of the power of a test. However,

there is much more to classifier costs than misclassification. Four categories

of cost apply to all classifiers. First, there are costs associated with the predictors

(data), which may be complex if some costs are shared between predictors

(Turney, 1995). These costs would be considered during the classifier’s develop-

ment (e.g. Schiffers, 1997; Turney, 1995). Second, there are computational costs,

which include the time spent pre-processing the data, learning how to use the

classifier and the computer resources that are needed to run the classifier

(a measure of the utility). Third are the costs associated with the misclassified

cases. Finally, there are costs related to the acceptability of a method to our peers.

When we write up our work it must go through the review process and we all

have conservative colleagues!

Accuracy, costs and, by implication, utility are covered in much greater detail

in Chapter 7.

4.4 No-free-lunch

Which is the best classifier? It is possible to phrase this question within

two contexts. In the first the comparison would be between classifiers with

different designs while the second compares different instances of one classifier,

for example a logistic regression with different predictor sets.

Although this is an obvious question to ask prior to developing a classifier, it is

an impossible one to answer. Wolpert and Macready’s (1995) no-free-lunch (NFL)

theorem is a proof that there is no ‘best’ algorithm over all possible classification

problems. Wolpert and Macready (1995) say that ‘all algorithms that search for an

extremum of a cost function perform exactly the same, when averaged over

all possible cost functions’. This theorem implies that although one classifier

may outperform another on problem A, it is possible that the ranking would

be reversed for problem B. Indeed the NFL theorem shows that it is impossible,

in the absence of prior domain knowledge, to choose between two algorithms

based on their previous behaviour. The original and additional papers on this

topic can be obtained from http://www.no-free-lunch.org.
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The existence of the NFL theorem means that other factors, such as size of the

training set, missing values and probability distributions, are likely to be more

important guides to the choice of classifier algorithm. It also suggests that

algorithm comparisons should be treated with caution, or at least with

a recognition that the algorithm rankings are probably only applicable to the

specific set of data tested. Approaches to the comparison of classifiers are

outlined in Section 7.9.

4.5 Bias and variance

The classifier is developed using a set of data known as the training data.

It is important to understand that the role of the training data is not to produce

a classifier that is capable of producing exact representations of themselves, but

rather to build a general model of the relationship between the classes and the

predictors. The ability to generalise is influenced by the classifier’s complexity

because, in general, classifiers with either too few, or too many, parameters may

perform poorly with new data. This means that the classifier’s complexity must

be optimised. This difficult trade-off can be informed by taking account of the

classifier’s bias and variance. A classifier that is too simple may have a large bias

while one with too much flexibility could have a high variance.

Bias is a measure of the classifier’s accuracy, i.e. the closeness of the class

predictions to the reality. Low bias implies high accuracy and is, therefore,

a desirable property. Variance is a measure of precision or repeatability. If the

variance is high, accuracy will change markedly between different training sets.

It is difficult to have confidence in the future performance of a classifier with

high variance because the current accuracy may not be repeated with different

data. Consequently, a classifier with low variance is also desirable.

Although an ideal classifier would have both low bias and low variance there is

an unfortunate trade-off such that one increases as the other declines. This is

because low bias depends on an ability to adapt to differences in training sets,

which is only possible if there are many parameters. Unfortunately a classifier

with many parameters is also likely to have a high variance. Friedman (1997)

provides a detailed background to the bias�variance trade-off and Duda et al.

(2001) have a nice example (Figure 9.4, p. 467) which uses linear and quadratic

regression to illustrate the bias�variance trade-off. This trade-off is reflected in

the different relationships between training and testing error and classifier

complexity. As the classifier complexity increases the errors within the training

data should decline until some minimum is reached. However, although testing

error will show an initial, parallel, decline with increasing classifier complexity it

will begin to increase as the classifier passes its optimum complexity. This trend
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has to be incorporated into the design of decision trees and artificial neural

networks to avoid developing classifiers that are sub-optimal for new data

(Chapter 6).

4.6 Variable (feature) selection

4.6.1 Background

It is clear that careful selection of predictors could have a significant

impact on classifier performance. A range of methods that have been used to

select the best predictors are outlined in this section.

Because one of the main difficulties involved in creating effective classifiers

is predictor or feature selection, it is worth spending time on this part of

a classifier’s design. Refining the predictors, along with their measurement,

is likely to yield bigger performance gains than making the classifier more

complex. The aim is to select a small series of predictors that produce accurate

predictions at minimum cost. This is partly related to a heuristic (rule of thumb)

that is common throughout science which states that whenever there

are competing explanations we should always choose the simplest, i.e. we should

attempt to select the most parsimonious solution. However, it is important

to remember Einstein’s alleged comment that models should be as simple as

possible but no simpler. Unfortunately choosing an optimum set of predictors to

simplify a model is not always easy.

Mac Nally (2000) listed four reasons why simple models should be sought.

Firstly, there is a need to avoid over-fitting the model, i.e. modelling the noise in

the data which will degrade the model’s performance with future data. Secondly,

future performance is generally lessened when there are too many predictors.

Thirdly, simple models are thought to provide a better insight into causality.

Finally, reducing the number of predictors reduces the economic cost of current

and future data collection. However, as Burnham and Anderson (2004) noted

there is a conflict between the need to produce a parsimonious model, that does

not model noise, and the need to develop a model that is capable of representing

the complexity within the data, i.e. there is a requirement to balance the

classifier’s bias against its variance.

It is important to realise that selection of variables always involves com-

promises but the selections should be driven primarily by domain-specific

knowledge. Unfortunately the compromises are generally the consequences of

cost and availability. As Fogarty said, in the context of genetic algorithms,

‘the way that you represent the problem space embodies knowledge about

a problem’. This means that there is a potential danger in knowledge-poor
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disciplines such as ecology, where there may be a temptation to use the same

variables as other studies, without the recognition that their previous inclusion

was almost certainly a result of pragmatism (what was available or could be easily

recorded). In addition, if a large number of irrelevant predictors are used

Watanabe’s (1985) ‘ugly duckling’ theorem will apply. The irrelevant predictors,

which carry no information about class membership, will tend to make cases

from different classes more similar and hence degrade a classifier’s performance,

whilst also increasing the variance. Therefore, prior to their inclusion in the

classifier, it is generally useful to subject potential predictors to a considerable

amount of exploratory data analysis (EDA) and some pre-processing (Chapter 2),

possibly reducing their dimensionality. However, it can be dangerous to rely on

the univariate characteristics of a predictor because its relationship with other

predictors may be more important than its independent effect.

Burnham and Anderson’s (2004) review of the use of the Akaike (AIC) and

Bayesian information criteria (BIC) in model selection is well worth reading but it

is important to understand that their views are predicated on the superiority of

the ITMC approach. The ITMC approach assumes that there is a relatively small,

a priori, set of models developed that are founded on current scientific

understanding. As such their approach should not be viewed as a ‘blind’ search

for the best model from all possible models; indeed they are critical of such

approaches.

4.6.2 Variable selection methods

Signal-to-noise ratio

One guide to the appropriate predictors is their variability within the

classes relative to the differences between the classes, i.e. their signal-to-noise

ratios. For example, consider two predictors which have means of 100 (class A),

110 (class B) and 100 (class A), 105 (class B) for two classes. The difference in the

means suggests that the first predictor should be better because the difference

between the means is twice as large. However, if the pooled standard deviations

were 20.0 and 5.0 it is likely that the second predictor would be the better

predictor. In this respect it is similar to the concept of statistical power. The

ability to find a significant difference between two or more statistical

populations is related to the effect size (the degree of difference) and the

experimental error (within-population variability). This is reflected in the usual

calculations for a test statistic such as t or F, which are essentially ratios

of between-population differences divided by the pooled within-population

variability. For example, in microarray studies there are often a large number

of gene expression ratios. Many of these ratios will have little variance

across the classes and will contribute nothing to discriminating between them.
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EDA methods can be used to identify which genes can be excluded with little

information loss.

Sequential selection methods

As the number of predictor variables rises so does the number of possible

models, especially if interactions and quadratic (squared) terms are also included.

There are a number of automated techniques available for deciding which

variables to include in a model, for example forward and backward selection.

In forward selection the first model has only one predictor (the ‘best’ as identified

by measures such as R2 values), the second model has two predictors, the third

three, etc. The process of adding variables continues until adding more variables

does not lead to a significant increase in, for example, the model R2 value.

Backward selection works in reverse since the first model includes all of the

variables. These are then removed one by one until there is a significant decrease

in the fit of the model. Unfortunately these two methods may generate different

‘best’ models.

If the number of predictor variables is small a best subsets approach can be

used which fits models using all possible combinations of the predictor variables.

The number of possible models is 2p; for example, if p¼ 8 the number of different

models is 28 ¼ 256. As an example, assume there are three predictors a, b and c;

using a best subsets approach the following eight (23) models would be fitted

(the constant term has been left out for clarity):

The first three are simple bivariate models

y ¼ a

y ¼ b

y ¼ c

The next three are bivariate models

y ¼ a þ b

y ¼ a þ c

y ¼ b þ c

y ¼ a þ b þ c

(y ¼ constant is the eighth possible model)

Using appropriate diagnostic statistics the best model could then be selected.

It is quite likely that the full model (y¼ aþ bþ c) will have the best fit (e.g. largest

R2 value), but is this R2 much larger than any of the one- or two-predictor

models? If it is not perhaps the principle of parsimony should be applied and the

best one- or two-predictor model selected.
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One of the many difficulties with stepwise predictor selection approaches

is that the current structure of the model restricts the next step of the analysis

if variables are fixed once added or removed from the model. Some analyses

allow all variables, irrespective of their current status, to be considered

at each step. This can mean that a variable added at an earlier stage of

a forward selection procedure may be removed and replaced by a different

variable at a later stage and vice versa for backward selection. Thus, it is possible

to have a model development proceeding as follows (a to e are predictor

variables):

y ¼ d

y ¼ d þ a

y ¼ d þ a þ c

y ¼ a þ c þ b þ e, etc.

Dougherty (2001), within the context of microarray data, explains how adding

variables in a stepwise fashion can reduce the prediction error but simulta-

neously increase the design error. A design error is the difference between the

minimum possible error (Baye’s error) and that from the current model. The error

from any classifier can never be less than the Baye’s error, except as

a consequence of sampling error in small samples, but the difference is expected

to decline as the sample size increases. This may not happen if there are design

errors resulting from stepwise selection algorithms.

Gene expression data

Microarray experiments typically generate data that have a very large

predictors:cases ratio. For example, it is not uncommon to find data sets with

expression data from 5000 to 10 000 genes obtained from less than 100 cases.

If these data are going to be used with classifiers it is essential that the number

of genes is reduced. Fortunately, many genes have almost constant expression

levels across the samples, enabling them to be removed with very little loss of

information. Dudoit et al. (2002) used the ratio of between-class to within-class

sums of squares and selected those genes with the largest ratios. However, even

after their removal the number of genes will still be excessive and a variable

selection, or dimension reduction, algorithm must be employed. A PCA of the

gene expression levels is often used to obtain a smaller set of orthogonal

predictors (e.g. Xiong et al., 2000). Bo and Jonassen (2002) raised the possibility

that selection algorithms, which consider only single genes, will miss sets of

genes which, in combination, would enable good class separation. Figure 5.2 is an

example where two variables provide a much better class separation than either

variable by itself. Bo and Jonassen (2002) suggested that this was the reason why
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Xiong et al. (2000) achieved better accuracy using the first seven principal

components rather than the ‘best’ 42 genes. Bo and Jonassen’s (2002) method

scores pairs of genes, using a simple discriminant function. The genes forming

the best pair are removed before searching for the next best pair. This helps to

ensure that uninformative genes are not piggy-backing on one good gene. They

also describe a computationally less intensive algorithm that ranks genes by their

t-statistics and then finds pairs whose combined t-statistics are the largest.

In many respects this is similar to the variable selection routines suggested by

Huberty (1994; Section 5.3.2), but with an extension to using pairs of variables.

Lee et al. (2005) compared the performance of many classifiers across seven

microarray datasets and one of their main conclusions was that predictor

selection was one of the most important factors that influenced the accuracy of

the classifiers. It is probably sensible to accept that there is no method which

guarantees to find the best subset of predictors. Indeed, as shown in the genetic

algorithm examples (Chapter 6), there may be a range of ‘best’ predictor subsets

that produce classifiers with the same accuracy.

4.6.3 Ranking the importance of predictors

In Section 4.2 the differences between black-box (predictive) and

explanatory models were discussed. These differences become very important

when automated variable selection is being used. The main difficulty arises from

the inter-predictor correlations. Unless all of the predictors are orthogonal

(uncorrelated), it is unlikely that any variable selection routine will select out the

correct causal predictors, even if the selection produced a simple and accurate

classifier.

Identifying the optimum suite of predictors is only possible if all possible

models are tested. Even then, procedures are needed to identify the ‘best’ of

the resulting 2p models and also estimating the independent effects of

each predictor. Measures such as the AIC and BIC are often used to identify the

best model by trading off model fit against model complexity (number of

predictors). The use of information criteria is discussed further in Section 5.6.3

and Burnham and Anderson (2004) review much of the theoretical foundations

for these methods. However, it is important to distinguish between an

efficient classifier, that has a statistically valid set of predictors, and

a classifier that includes the predictors which have a causal relationship with

the class.

While this means that variable and model selection algorithms are suitable

for the generation of parsimonious models, the resultant models should not be

interpreted as causal. If the independent contributions by the predictors are

required an alternative approach, such as hierarchical partitioning, is needed
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(e.g. Chevan and Sutherland, 1991; Mac Nally, 2000). However, it is important to

realise that this approach is not a variable selection algorithm: rather it

contributes to an explanation of the relationships between the classes and the

predictors. Hierarchical partitioning can be used with a generalised linear model

such as logistic regression and it works by examining classifiers with all possible

predictor combinations and then averaging a predictor’s influence over all

classifiers that include it. This is achieved by variance partitioning. The result is

an estimate of the total independent effect of each predictor, which allows

variables to be identified that have spurious significant associations with the

classes. Such variables would have a large association but little independent

effect, i.e. their association arises because of their relationships with other

important predictors. The explanatory power of each predictor is split into two

components: I is the independent effect and J is the joint effect (i.e. in

conjunction with other predictors). In some respects this is similar to the

communality measure in a factor analysis.

4.7 Multiple classifiers

4.7.1 Background

It is well known that if one estimated a population mean from different

random samples it is unlikely that the sample means would be identical,

although all would be unbiased estimates of the population mean. The same is

true with classifiers: the accuracy of a classifier will change if a different random

sample of training cases is used. This property can be exploited by running many

instances of the same classifier on resampled data to obtain a better estimate of

a classifier’s accuracy. It is assumed that the additional computational load will

be balanced by an improved performance. If classifier predictions can be

combined the prediction for a single case would not be derived from one

classifier; instead some method must be found for using the information from

a suite of classifiers. There is a variety of techniques that pool together the

predictions from multiple classifiers. These combinations of classifiers are also

known as ensembles and, typically, they work by using a majority vote. There are

two broad classes of classifier ensembles: single and mixed algorithm. Single

algorithm ensembles are the most common and they alter the classifier

parameters or training set characteristics by techniques such as boosting and

bagging (next section). The mixed algorithm ensembles combine the predictions

from a range of algorithms and thereby exploit any differences in the algorithmic

biases.
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4.7.2 Boosting and bagging

Boosting and bagging are two methods for voting classification

algorithms that differ in the rules used to obtain the multiple samples. In

both cases the same classifier is used over a large number of training sets

which are obtained by resampling the training data. The bagging algorithms

do not use previous results to refine the training sets, while boosting algorithms

refine the training set using information from earlier classifiers. Bagging,

or bootstrap aggregation, uses normal bootstrap methods to obtain a large

number of samples that are used to train the classifier. A final classifier uses a

simple majority vote, over all of the classifiers, to estimate the classes for the

cases.

Friedman et al. (2000) define boosting as ‘a way of combining the performance

of many ‘‘weak’’ classifiers to produce a ‘‘powerful committee’’ ’. One form of

boosting, AdaBoost (adaptive boosting), is said to be one of the best classifiers,

partly because it seems to be resistant to over-fitting and it is capable of

simultaneously reducing both bias and variance (Friedman et al., 2000). Boosting

was developed originally by Schapire (1990) as a way of improving classifier

performance. In its original form a weak learner (a classifier that outperforms

chance) was improved by creating two extra training sets. These new training

sets were not random samples. Half of the cases in the first of these additional

sets would have been misclassified by the original classifier. The second of the

additional training sets contains cases on which the first two classifiers

disagreed. The final class prediction for each case is a majority vote over the

three classifiers. This approach was extended to create the AdaBoost algorithm

(Freund and Schapire, 1996). The AdaBoost algorithm changes case weights based

on the results of earlier classifiers so that the weight of misclassified cases is half

of the original training set weights while correctly classified cases make up the

other half. The aim of this approach is to ‘boost’ the importance of incorrectly

classified cases so that future classifiers will attempt to correct the errors. Bauer

and Kohavi (1999) compared a range of boosting and bagging algorithms and

concluded that, although boosting algorithms were generally better, there were

some problems with boosting algorithms such as inappropriate weighting of

noise and outliers. There have been a range of subsequent modifications

including Dettling’s (2004) hybrid boosting and bagging algorithm, called

Bagboosting. Although no mathematical proof is available, simulation studies,

using gene array data, suggest that it combines advantages from both to produce

a prediction tool with lower bias and variance. The combination uses the

aggregated output from several base classifiers (which use resampled data) at

each iteration of the boosting algorithm.
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4.7.3 Combining different classifiers

The rationale behind combining predictions from different classifier

algorithms is that the combinations may dilute the different biases of the

classifiers. There are three main approaches to combining classifiers, depending

on the measurement level of the outputs. If only predicted class labels are

available the combination usually uses a majority vote. For example, if there are

five classifiers a case will be labelled with a class that receives at least three

votes. Slightly more information is available if the rank order of the cases

is known, i.e. cases are ordered by decreasing likelihood of class membership.

In principle, the most information is provided if the actual classifier scores are

used. However, it is normally necessary to normalise the scores so that they share

a common measurement scale. Despite the general acceptance of the need for

normalisation it has been suggested that this can lead to some undesirable side-

effects (Altinçay and Demirekler, 2003).

4.8 Why do classifiers fail?

Despite one’s best efforts it should not be too surprising if the classifier

does not perform well, particularly with new data. Understanding the potential

causes of poor performance can be a useful guide to possible alterations that may

improve performance. Classifiers fail to make sufficiently accurate predictions in

a number of circumstances.

1. The form of the classifier is too complex and over-fits the data. This

tends to arise when the parameter:cases ratio exceeds some desirable

limit and the classifier begins to fit the random noise in the training

data. This will lead to poor generalisation. This is why simple models

often outperform complex models on novel data.

2. The form of the classifier is too simple or has an inappropriate structure.

For example, classes may not be linearly separable or important

predictors have been excluded (e.g. Conroy et al., 1995). This will reduce

accuracy.

3. If some of the training class labels are incorrect or ‘fuzzy’ there will be

problems. Most classifiers assume that class membership in the training

data is known without error. Obviously if class definitions are

ambiguous, it becomes more difficult to apply a classification procedure,

and any measure of accuracy is likely to be compromised. Although the

assumption of known class memberships is reasonable for discrete

classes such as gender or taxa, it is questionable in other situations,

for example when an individual is classed as cancer-prone or cancer-free.
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If cases are initially mislabelled this is likely to affect the number of

prediction errors. More importantly mislabelled cases can influence

the structure of the classifier, leading to bias or classifier degradation.

For example, a misclassified case is likely to be an outlier for some

predictors, but its influence will depend on the classifier. In a

discriminant analysis outliers may have large effects because of their

contribution to the covariance matrix. Conversely, in decision trees their

influence on the classification rules may be trivial because they are

assigned to their own branch (Bell, 1999).

4. Training cases may be unrepresentative. If they are this leads to bias and

poor performance when the classifier is applied to new cases. Careful

sampling designs should avoid this problem but such bias may be

unavoidable if there is, for example, significant unrecognised regional

and temporal variability.

5. Unequal class sizes�most classifiers will favour the most common class.

Many classifiers have options to help avoid this by adjusting the class

prior probabilities to values that do not represent the class proportions

in the training data. Alternatively, the predictions can be post-processed

by adjusting the decision threshold that is used to allocate cases to

classes (Chapter 7).

4.9 Generalisation

A general theme throughout this chapter has been that classifiers should

be judged by their future performance. This is because there is little to be gained

if a classifier’s predictive ability is restricted to the data that were used to

generate it. Classifiers need to be able to work with new data, i.e. their

performance should be general rather than tuned to the training data. Because

classifier training is effectively learning from examples the generalisation

concept can be illustrated using an educational metaphor. Most readers will

have some experience of multiple choice questions (MCQs) during their

education. If formative MCQs (used for education/training rather than formal

assessment) were used the hope of the educator was that the student would

learn some general biological principles rather than the correct answers to

each question. In a summative assessment (the marks count towards an award)

novel questions would have been used. A student who did well on the formative

questions, but poorly on the summative questions, would not have generalised

their knowledge. It is probable they attempted to learn the match between

specific questions and answers, rather than gain the more general knowledge

being tested. This is the same problem faced by classifier designers: they want
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a classifier that ‘learns’ the general features of the training (‘formative’) cases so

that it will cope well with the real test of novel (‘summative’) cases. Assessing

performance is considered in greater detail in Chapter 7.

4.10 Types of classifier

Classifier descriptions and example analyses are split across the next

two chapters. In Chapter 5 the ‘traditional’ statistical methods, and their

derivatives, are described. Most of the chapter is concerned with discriminant

analysis and logistic regression. Chapter 6 describes a diverse set of classifiers

that are based on different paradigms. However, the main focus is on decision

trees and artificial neural networks.
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5

Classification algorithms 1

5.1 Background

This chapter focuses on what might be considered the ‘traditional’

statistical approaches to class prediction, in particular general and generalised

linear models (GLMs) such as discriminant analysis and logistic regression.

It also describes a more recent, related, method called generalised additive

modelling (GAM).

The role of a statistical classifier is to identify which class is the most probable,

given the available information and certain assumptions about the model

structure and the probability distributions. The available information is derived

from the values of the predictor variables, while the assumptions depend on the

approach.

A typical statistical classifier or model aims to describe the relationship

between the class and the predictor. Usually, there will also be some unexplained

variation (prediction errors), or noise, that we hope is caused by chance factors

and not some deficiency in the model. The statistical classifier, ignoring the

noise, can be summarised as class ¼ f(wixi), where wi are weights that are

applied to the p predictors (xi) to produce a weighted sum from which the class is

derived. This format specifies a classifier that is linear with respect to its

parameters and which can be envisaged as a plane that separates the classes in

p-dimensional predictor space. The problem becomes one of identifying the

appropriate values for the weights. One way of thinking about this is in terms

of a recipe: changing the proportions (weights) of the ingredients will change

the characteristics of the finished food. It is important that the ingredients are

added in the correct proportions!
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The simplest general linear models, such as those assumed by techniques

like analysis of variance, take the form y ¼ f(L) þ e. This model specifies that the

value of y is the sum of a linear term (f(L)) plus some error (e). This implies that all

predictor variables within L have additive (independent) effects on the value

of y. In a general linear model there is an additional important assumption

that the errors are normally distributed with a constant variance for all

values of y. Because of these assumptions the model coefficients or weights can

be estimated using least squares methods. If the response is not normally

distributed, or the relationship between the class and the predictors is non-

linear, a GLM is appropriate.

GLMs are extensions of general linear models that allow for non-linearity and

non-constant variance structures in the data (Hastie and Tibshirani, 1990).

As with the general linear models there is an assumed linear relationship

between the mean of the response variable and the predictors. However, the

linear component is established, indirectly, via a link function that constrains

the predicted values to fall within the range 0�1. In addition, the GLMs can use

a response variable that comes from any distribution within the exponential

family of probability distributions, which includes the normal, binomial and

Poisson. However, if the response variable is not normally distributed the values

of the model coefficients, or weights, must be estimated using maximum like-

lihood, rather than least squares, techniques.

Although the GLM, y¼ g(L)þ e, has a superficial similarity to the general linear

model, there are important differences. The g(L) term is made up of two

components, a linear term plus a link function. The link function transforms the

underlying non-linear part of a model into a set of linear parameters and is

normally written as g(expected value)¼ L, where L is a function that combines the

predictors in a linear fashion. The form of the link function is related to the

probability distribution of the response (Table 5.1).

Statistical models are usually assessed by the ‘fit’ between the data and the

model; the ‘strength’ of the relationship (statistical significance) and the role of

the predictors in determining the value of the response variable (finding

predictors whose coefficients are not zero). There are several potential problems

Table 5.1. Generalised linear models and their link functions

Response probability distribution Link function Notes

Normal Identity f(L) ¼ g(L), i.e. no transformation

Binomial Logit Log [P(event)/P(no event)] ¼ f(L)

Poisson Log Ln(expected) ¼ f(L)
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with these three measures. Firstly, classical approaches for estimating the

coefficients, and hence the fit of the data, assume that the correct model has been

specified. In many situations the model structure will result from subjective

decisions that are at least partly driven by subject knowledge and prior

expectations. Secondly, biological and statistical significance do not always

coincide. A predictor whose coefficient has a very small p value may not be

biologically important. Finally, if stepwise methods have been used to select the

predictors it is very difficult to attach too much weight to their actual, rather

than statistical, contributions.

Irrespective of the model structure there is a common confusion between

explanatory and predictive models. In a predictive model only the model’s

accuracy is important and the structure of the model is relatively unimportant,

as long as it is robust. In general, models become more robust as the number of

predictors declines, and hence there is a greater tendency towards parsimony

in predictive models, often using variable selection algorithms (Section 4.6).

However, if a model is developed for explanatory purposes the identity and

weights of the predictors is the most important part of the model because

these are used to infer the nature of the relationship between, in the case of

a classifier, the class and the values of the predictor variables. There are methods

for dealing with these problems of identifying the unique contribution made by

each predictor, for example hierarchical partitioning (Section 4.6.3), which do

not appear to be used widely. The contribution made by the predictors is

obviously most important in an explanatory, rather than a predictive, model.

In predictive models the role of predictors is less important than the accuracy

of the prediction. Consequently, the use of variable selection routines that

produce a more parsimonious model are generally more acceptable in predictive

models.

Finally, it is important to remember that all of these methods are supervised

classification algorithms. This means that known class membership is a pre-

requisite for the generation of classification rules.

5.2 Naı̈ve Bayes

A naı̈ve Bayes classifier is a probabilistic classifier that makes use of

Bayesian theory and is the optimal supervised learning method if the predic-

tors are independent (uncorrelated), given the class. This means that, if its

assumptions are met, it is guaranteed to produce the most accurate predictions.

It does, therefore, place an upper limit on what a classifier can achieve. Despite

the obvious over-simplification of these assumptions the naı̈ve Bayes classifier

has proved be a very effective supervised learning algorithm on real data,
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where the assumptions do not apply. The naı̈ve Bayes classifier gets its name

because it uses Bayesian methods in an intentionally simplistic manner to obtain

class predictions. The naı̈vety arises from the assumptions about the indepen-

dence of the predictors, which are unlikely to be valid in real data. Unless the

predictors have forced orthogonality, such as principal component scores, it is

normal to find some dependency (correlations) between potential predictors.

In an ideal world, not only would the predictors be independent, but the param-

eters of the independent predictor variable probability distributions, such as

means and standard deviations, would also be known. However, it is usually

necessary to estimate (‘learn’) them from samples of data. Consequently, the data

in a naı̈ve Bayes classifier will come from unknown, but estimated, probability

distributions that share some interdependency. In reality it is not even neces-

sary to use Bayesian methods to produce these predictions because the initial

Bayesian model can be rewritten in a form that is computationally more feasible

using maximum likelihood techniques.

Despite these apparently important deviations from the underlying assump-

tions, the technique appears to work well. This is because the predictions will be

accurate as long as the probability of being in the correct class is greater than

that for any of the incorrect classes. In other words only an approximate solution

is required that has the correct rank order for class membership probabilities.

The Bayes rule assigns a case to a class (k) which has the largest posterior

probability given the linear combination of predictors (x): classi ¼ maxk{p(k|x)}.

It is possible to frame many classifiers in the same context. For example, logistic

regression uses a regression method to estimate p(k|x). Other techniques, such as

discriminant analysis, estimate separate class conditional probabilities (p(x) ¼
p(x|class ¼ k)). Bayesian methods are then used to estimate p(k|x), so that a class

identity can be assigned.

5.3 Discriminant analysis

5.3.1 Introduction

This is one of the simplest and most widely used classification methods.

Despite its early widespread use in biology a number of authors, particularly

during the early 1990s, questioned its validity for most analyses and suggested

that logistic regression (next section) was a better alternative. However, in

empirical tests discriminant analysis often emerges as one of the better

classifiers.

If there is information about individuals (cases), obtained from a number of

predictors, it is reasonable to ask if they can be used to define groups and/or

predict the group to which an individual belongs. Discriminant analysis works
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by creating a new variable that is a combination of the original predictors. This

is done in such a way that the differences between the predefined groups, with

respect to the new variable, are maximised. Themost comprehensive text dealing

with all aspects of discriminant analysis is Huberty’s (1994) book. If you are

planning to use discriminant analysis you are strongly advised to consult it. The

following section is a brief overview of discriminant analysis, which should be

read in conjunction with Chapter 7.

Consider a simple two-class example. The aim is to combine (weight) the

predictor scores in some way so that a single new composite variable, the

discriminant score, is produced. It is possible to view this as an extreme data

dimension reduction technique that compresses the p-dimensional predictors

into a one-dimensional line. At the end of the process it is hoped that each class

will have a normal distribution of discriminant scores but with the largest

possible difference in mean scores for the classes. Indeed, the degree of overlap

between the discriminant score distributions can be used as a measure of the

success of the technique (Figure 5.1).

Discriminant scores are calculated by a discriminant function which has the

form:

D ¼ w1Z1 þ w2Z2 þ w3Z3 þ . . .wpZp

Figure 5.1 Example discriminant score distributions for two discriminant functions.

In the upper example there is good discrimination with little overlap between the

frequency distributions of discriminant scores for the two classes. The lower example

exhibits poor discrimination and a large overlap in the frequency distributions.
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where

. D ¼ discriminant score;

. wp ¼ weighting (coefficient) for variable p;

. Zp ¼ standardised score for variable p.

Consequently a discriminant score is a weighted linear combination (sum) of

the predictors. The weights are estimated to maximise the differences between

class mean discriminant scores. In general, those predictors that have large

differences between class means will have larger weights, whilst weights will be

small when class means are similar. There are two factors that complicate the

interpretation of weights. Firstly, weights will be affected by scale differences

between predictors and, secondly, correlations between predictors will reduce

the size of some weights. Standardising the predictors (mean of 0 and a standard

deviation of 1) ensures that scale differences between predictors are eliminated.

This means that absolute weights (ignore the sign) can be used to rank variables

in terms of their contribution to the discriminant score, the largest weight being

associated with the most powerful discriminating variable. The earlier recipe

metaphor can be stretched a little more to illustrate the interpretation of

weights. The quality of a finished meal is very dependent on getting the

proportions of the ingredients correct. However, absolute (unstandardised)

quantities are not a good guide to their contribution to the overall taste of

a meal since the ingredients may have different inherent strengths (e.g. compare

garlic and onion). The problems caused by correlated predictors can be overcome

by using a different measure to investigate how predictors relate to the

discrimination between the groups (see Section 5.3.2).

As with most other multivariate methods it is possible to use a graphical

explanation problem for a simplified problem. The following example uses a

simple data set, two groups and two variables. These are sepal lengths and widths

for two species of Iris. These are the same data that were used in the EDA example

in Section 2.10. If scatter graphs are plotted for scores against the two predictors

Figure 5.2 is obtained.

Clearly the two species can be separated by these two variables, but there

is a large amount of overlap on each axis which prevents their separation by

a single variable. It is possible to construct a new axis (Figure 5.3) which passes

through the two group centroids (‘means’), such that the groups have little

overlap on the new axis. This axis represents a new variable which is a linear

combination of the predictors, i.e. a discriminant score. Because there is little

overlap between the two species on this new axis a discriminant score could

be used to obtain a reliable prediction of a sample’s correct species.
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If there is more than one class it is possible to calculate more than one

discriminant function, although they may not all be effective at separating the

classes. The maximum number of discriminant functions is the smaller of the

number of classes minus one, or the number of predictors. This means that in

a two-class problem there can only be one discriminant function.

The examples below explore the simplest form of discriminant analysis. There

are many other ‘flavours’ in use that differ with respect to the assumptions and

the nature of the decision plane. Extensions to the base algorithm are briefly

described in Section 5.3.3.

5.3.2 Example analyses

Three analyses are used to illustrate some of the important features of

a discriminant analysis. The first two use artificial data (Appendix E) while the

third is a multi-class discrimination using real data. Data set A has four

predictors (a1 to a4) and two classes with 75 cases per class. The predictors are

uncorrelated with each other (p < 0.05 for all pairwise correlations) and class

means differ significantly for all predictors. This implies that all four predictors

should be useful to identify the class of a case. Data set B is very similar to

Figure 5.2 Scatter plot of two predictors with individual box plots for I. setosa (circles)

and I. versicolor (triangles).

Discriminant analysis 103



A (Table 5.2) except that variables b3 and b4 are highly correlated (r ¼ 0.7);

all other correlation coefficients are insignificant. If effect sizes (difference in

the means divided by the standard deviation) are calculated it is possible to

estimate the expected rank order for the standardised weights. In data set A the

order should be a1, a3, a2, and a4, while in data set B the expected order is

(b1 ¼ b3), b2 and b4.

The third data set was used as part of study that investigated if it was possible

to discriminate between the core areas of golden eagle Aquila chrysaetos home

ranges from three regions of Scotland (Fielding and Haworth, 1995). The data

consist of eight habitat variables, whose values are the amounts of each habitat

Figure 5.3 Discriminant axis and class frequency distributions for the data

in Figure 5.2.

Table 5.2. Class means and effect sizes for four predictors from two data sets.

The standard deviations are common between the two data sets

Class a1 a2 a3 a4

1 9.8 15.2 20.7 25.1

2 11.8 17.9 24.2 29.1

Effect size 1.00 0.82 0.88 0.80

b1 b2 b3 b4

1 9.8 15.0 20.4 25.4

2 11.8 18.1 24.4 29.1

Effect size 1.00 0.94 1.00 0.74

Common standard deviation 2.0 3.3 4.0 5.0
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variable, measured as the number of four hectare blocks within a region defined

as a ‘core area’. The data set is described in Appendix F. This analysis is used

to illustrate multi-class discrimination and a variety of predictor selection

algorithms.

Discriminant analysis of two artificial data sets

Because there are two classes the maximum number of discriminant

functions is one and each has an associated eigen value (l). In these analyses

the two values were 0.804 (Data set A) and 0.792 (Data set B). Larger eigen values

are associated with greater class separations and they can also be used to

measure the relative importance of discriminant functions in multi-class

analyses. Eigen values can be converted into Wilk’s lambda, a multivariate

test statistic whose value ranges between zero and one. Values close to zero

indicate that class means are different while values close to one indicate that the

class means are not different. Wilk’s lambda will be one when the means are

identical. Wilk’s lambda is equal to 1/(1 þ l) for a two-class problem and can be

converted into a chi-square statistic so that a significance test can be applied.

In these analyses the values were 0.554 (A) and 0.558 (B). The null hypothesis to

be tested is that ‘there is no discriminating power remaining in the variables’.

If p is less than 0.05 there is evidence that predictors have some ability to

discriminate between the groups. In these analyses the chi-square values

(with four degrees of freedom) are 86.1 and 85.2, respectively. Since p < 0.001

for both analyses there is strong evidence for some discriminating power in

both data sets.

Wilk’s lambda can be converted into a canonical correlation coefficient from

the square root of 1 � Wilk’s lambda. The canonical correlation is the square

root of the ratio of the between-groups sum of squares to the total sum of

squares. Squared, it is the proportion of the total variability explained by

differences between classes. Thus, if all of the variability in the predictors was

a consequence of the group differences the canonical correlation would be

one, while if none of the variability was due to group differences the

canonical correlation would be zero. In these analyses the values were 0.668 (A)

and 0.665 (B).

An assumption of a discriminant analysis is that there is no evidence of

a difference between the covariance matrices of the classes. There are formal

significance tests for this assumption (e.g. Box’s M) but they are not very robust.

In particular they are generally thought to be too powerful, i.e. the null

hypothesis is rejected even when there are minor differences, and Box’s M is

also susceptible to deviations frommultivariate normality (another assumption).

If Box’s test is applied to these data we would conclude that the covariance
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matrices are unequal for data set A (M ¼ 30.9, p ¼ 0.001) but equal for data set

B (M ¼ 18.7, p ¼ 0.052). The inequality of the covariance matrices is more likely

to be a problem when class proportions are different. Under such circumstances

the pooled covariance matrix will be dominated by the larger class.

Each discriminant function can be summarised by three sets of coefficients:

(1) standardised canonical discriminant function coefficients (weights); (2) corre-

lations between discriminating variables and the standardised canonical

discriminant function; and (3) unstandardised canonical discriminant function

coefficients (weights). These are shown for both data sets in Table 5.3.

It is only in Table 5.3 that differences between the two data sets become

apparent. All of the previous diagnostic statistics, such as Wilk’s lambda, have

been very similar, reflecting the similarity in the class means for the predictors.

The standardised coefficients show the contribution made by each predictor to

the discriminant function, after removing scale differences. As expected, for

uncorrelated predictors, the weights are very similar. The slight disparity in

weights reflects the differences in effect sizes combined with some minor,

but insignificant, correlations between the predictors. The standardised weights

for data set A are, as expected, in the same rank order as the effect sizes

(Table 5.2). However, the unstandardised weights for data set B are obviously

unequal, particularly for predictor b4. Using the effect sizes from Table 5.2

we should expect b1 and b3 to have the largest and similar weights. However,

the b3 weight is considerably larger than that for b1. This is partly because

the correlation between b3 and b4 means that b3 has some predictive power

related to b4. The weight for b4 is, as expected, the smallest unstandardised

weight.

Weights reflect the contribution made by a predictor, after accounting for the

discrimination achieved using other predictors. Consider an extreme example

Table 5.3. Standardised canonical discriminant function coefficients (ws); correlations

between discriminating variables and the standardised canonical discriminant function

(rdf); and unstandardised canonical discriminant function coefficients (wu) for the

discriminant analyses of data sets A and B

Predictor ws rdf wu Predictor ws rdf wu

a1 0.598 0.486 0.260 b1 0.604 0.524 0.281

a2 0.568 0.457 0.170 b2 0.630 0.520 0.190

a3 0.596 0.479 0.144 b3 0.817 0.534 0.193

a4 0.435 0.377 0.073 b4 �0.295 0.274 �0.039

Constant �10.85 Constant �9.48
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of two perfectly correlated predictors x and y. If x has already been used to

discriminate between the classes y cannot provide any extra discrimination

(even though on its own it is just as good as variable x). Recall that predictor b4

is highly correlated with b3 (r ¼ 0.7). Because b4 is correlated with b3 it

provides little additional information about the class differences, once b3 has

been taken into account. This is reflected in its low weight. Because it is

common to have some interdependency between predictors, such as that

between b3 and b4, it is important to bear this in mind when interpreting

the discriminant function. The low weight for b4 does not mean that its values

do not differ between the classes, rather it reflects the small quantity of

additional class separation information when combined with b3.

Amore robust interpretation on the class differences can be obtained from the

correlations between the predictors and the standardised canonical discriminant

function (rdf). These correlations, or structure coefficients, are simple Pearson

correlations between the discriminant scores and the original predictor values.

Hence, some of the weight reductions cased by inter-predictor correlations, are

less apparent. In this respect it is very similar to interpreting the contribution

made by each variable to a principal component (Chapter 2).

The main problem with standardised coefficients is that predictor scores

must be standardised before the function can be applied to new data. One

solution is to obtain unstandardised coefficients, but note that it is not easy to

rank these unstandardised coefficients since their magnitudes are related to

the scale of their associated predictor. For example, the unstandardised dis-

criminant function for data set A is class ¼ �10.85 þ 0.260.a1 þ 0.170.a2 þ
0.144.a3 þ 0.073.a4. Note how the unstandardised coefficients decrease in size

as the predictor means become larger.

The discriminant function means are �0.891 for class 1 and 0.891 for class 2.

Because class sizes and prior class probabilities are equal in this data set,

the boundary between the classes is a score of zero. If the discriminant score is

negative the predicted class is one, and two if the score is positive. Normally,

classes are assigned using the maximum P(Class|Score), the probability of the

class given the discriminant score. The probability cut-off is very strict.

If, in a two-class problem, P(class 1|score) ¼ 0.501 and P(class 2|score) ¼ 0.499

the individual would be placed into class one. It is important to bear this in

mind when judging the predictive accuracy of a discriminant function. More

information about the robustness of class allocations is provided by the

Mahalanobis distance. This is a measure of how far a case’s values differ from

the average of all cases in the class. For a single predictor, it is simply the

square of its z value. A large Mahalanobis distance identifies a case as having

extreme values on one or more of the predictors. Thus, it measures how far
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a case is from the ‘mean’ of its group. Note that as this increases the probability

of belonging to a group decreases.

When there are many cases it is impractical to examine individuals;

instead an overall summary is required. This summary is usually pre-

sented as a confusion matrix which cross-tabulates actual and predicted class

membership. For the two examples summarised in Table 5.4 data are presented

for re-substituted and cross-tabulated predictions. The re-substituted values

are obtained by applying the discriminant function to all 150 cases and

this method generally provides an optimistic assessment of the classifier’s

accuracy. The cross-tabulated results partly overcome this by producing

a prediction for each case when it has been excluded from the generation of

the discriminant function. In both cases re-substituted and cross-tabulated

accuracy measures are similar and there is little to choose between the two

classifiers. Aspects of classifier accuracy assessment are covered in much more

detail in Chapter 7.

Discriminant analysis of golden eagle data (multi-class analysis)

Three analyses are presented which illustrate, initially, the features

of a multi-class discriminant analysis and, secondly, how predictor selection

algorithms can be used to produce a more robust classifier. The data were

used as part of project that had the ambitious aim of predicting the effect

of habitat changes on golden eagle range occupancy. The initial work was

Table 5.4. Classification statistics for classifiers A and B. The percentage of cases correctly

classified is derived from the number of class one cases predicted to be class one plus the

number of class two cases predicted to be class two

Re-substituted Cross-validated

predicted class predicted class

Classifier Actual class 1 2 1 2

A 1 63 12 63 12

2 18 57 18 57

Percentage cases correctly classified 82.0% 82.0%

B 1 62 13 61 14

2 14 61 15 60

Percentage cases correctly classified 82.0% 80.7%
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concerned with understanding how, and if, habitat differed across regions.

The data are available in Appendix F.

Because there are three classes (different regions of Scotland) it may be

possible to construct more than one discriminant function. The maximum

number of discriminant functions that can be obtained is the lesser of the

number of classes minus one or the number of predictors. In this example

there are three classes and eight predictors so the maximum number of

discriminant functions is two (Table 5.5).

The function one eigen value is almost twice as large as that for function

two, suggesting greater separation between the classes. The percentage of

variance for the functions indicates their relative importance and is calculated

from lt/Sl. Recall that Wilk’s lambda is a measure of the discriminating power

remaining in the variables, and that values close to zero indicate high

discriminating power. Wilk’s lambda (�(1/(1þlt)) for the first function is very

close to zero, suggesting the presence of significant discriminating power.

The second value (1/(1þl)) relates to the second function and is measured

after removing the discriminating power associated with the first function.

The chi-squared values indicate that both functions are capable of some sig-

nificant discrimination. Because there are two functions there are two sets of

coefficients (Table 5.6).

The predictors are quite highly correlated with each other so the interpre-

tation of the functions uses the structure coefficients. Function one is mainly

associated with the areas of wet heath, bog and steep ground. Thus, cases with

a positive score on function one tend to have more wet heath and steep ground

and less bog (negative correlation). Function two is mainly associated with the

area of land below 200 m, between 400 and 600 m and steep slopes. The area

of wet heath is also important. Thus, cases with a positive score on function

two tend to have more land below 200 m, but less steep land and land between

400 and 600 m. When there are two functions the classes are separated in

two-dimensional space by Thiessen polygons centred on the class centroids

(Table 5.7, Figure 5.4).

Table 5.5. Summary of discriminant functions for golden eagle data

Function

Eigen

value (l)

Percentage

of variance

Wilk’s

lambda Chi-square df p

Canonical

correlation

1 4.513 67.2 0.057 96.134 16 0.000 0.905

2 2.198 32.8 0.313 38.945 7 0.000 0.829
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The group centroids in Table 5.7 show that discriminant function one

separates region 1 from region 2, with region 3 in between them, while function

two separates region 3 from the other two. This is best seen in a territorial

map (Figure 5.4).

The territorial map (Figure 5.4) highlights how the functions separate the

groups. Class membership is determined by the combination of function one

and two scores. For example, a case with a score of þ4.0 and �4.0 would be

placed in region 2. However, before cases can be assigned to regions the bound-

aries must be set using class prior probabilities. In this analysis they are set

to be equal, thus all are 0.333. An alternative weighting would have been to

Table 5.6. Standardised canonical discriminant function coefficients and structure

coefficients (correlations between discriminating variables and standardised canonical

discriminant functions) for both discriminant functions. The largest absolute correlation

between each predictor and any discriminant function is marked with an asterisk

Standardised canonical

discriminant function coefficients Structure coefficients

Predictor 1 2 1 2

POST 0.058 0.516 �0.077 0.194�

PRE �0.134 0.027 �0.197� �0.010

BOG �0.201 0.849 �0.467� 0.053

CALL 0.338 0.103 0.075 0.242�

WET 0.866 �0.063 0.631� �0.428

STEEP 0.537 0.546 0.326 �0.555�

LT200 0.668 1.535 0.198 0.784�

L4_600 �0.138 0.221 �0.037 �0.443�

Table 5.7. Class centroids (‘mean’ discriminant score) for

each function

Function

Region 1 2

1 �3.726 �1.680

2 2.049 �1.003

3 �0.394 1.636
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set them to class sizes. For example, this would have given region 1 a prior

probability of 0.175 (7/40).

The regions are very accurately predicted using the re-substitution (original

data) method, only two region 2 cases are misclassified (Table 5.8). Even when

using the cross-validated method, the accuracy remains good, although five

region 2 cases are now misclassified. The results are shown graphically in

Figure 5.5.

Figure 5.4 Territorial map showing centroids (filled circles) for the three areas on

two discriminant functions.

Table 5.8. Classification statistics for golden eagle range predictions

Predicted class

Classifier Actual class 1 2 3

Re-substituted 1 7 0 0

2 0 14 2

3 0 0 17

Percentage cases correctly classified 95.0%

Cross-validated 1 6 0 1

2 1 11 4

3 0 1 16

Percentage cases correctly classified 82.5%
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In summary, these eight habitat variables can be used to discriminate

between the core area habitats of golden eagles living in three Scottish regions.

Two gradients were detected and described from the function structure

coefficients. However, rather a large number of predictors (eight) were used

with a relatively small number of cases (40). Such ratios tend to give very good

separation. Various minimum cases:predictor ratios have been suggested in

the literature, ranging between 3:1 and 5:1. The smallest class size in this

analysis was seven suggesting that no more than two predictors should be

used. The next analysis uses a stepwise analysis in an attempt to reduce the

predictor dimensionality. This is possibly justified if the aim is a predictive

classifier but if, as in this example, the aim is to understand the differences it

may not be appropriate (see Section 4.6 for a critique of variable selection

algorithms).

There are various stepwise options available; in this analysis a forward

selection algorithm was used that selects, at each step, the predictor that

minimises the overall Wilk’s lambda. Details are not shown, but only three

variables were selected: WET, LT200 and STEEP, giving two significant discrim-

inant functions. Although the ideal number of predictors was two (cases to

predictor ratio), three is much better than eight.

The eigen values (Table 5.9) are slightly smaller, suggesting less separation

of the classes and the contribution made by the second function has declined.

However, both functions retain some significant discriminatory power.

Figure 5.5 Map of class predictions; labels are the actual class. Axes are the two

discriminant functions and the coordinates are the case scores on the discriminant

functions.
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Although only three predictors have weights in the discriminant function all of

the potential predictors have structure coefficients (Table 5.10). This is because

the structure coefficients are simple correlation coefficients between the

discriminant scores and the potential predictor values. Hence they can still be

used to interpret differences between the regions.

Using the structure matrix for an interpretation of the differences between

regions it appears that large positive scores on function one are mainly

associated with large areas of wet heath and small areas of bog (negative

correlation) while large positive scores on function two are mainly associated

with large areas of land below 200 m and small areas of steep land, land

between 400 and 600 m and wet heath. These are effectively the same axes

that were obtained using all eight predictors. Since the axes are similar it is

Table 5.9. Summary of discriminant functions for golden eagle data using forward

selection

Function

Eigen

value (l)

Percentage

of variance

Wilk’s

lambda Chi-square df p

Canonical

correlation

1 3.816 73.3 0.087 87.998 6 0.000 0.890

2 1.393 26.7 0.418 31.409 2 0.000 0.763

Table 5.10. Standardised canonical discriminant function coefficients (only for selected

predictors) and structure coefficients (correlations between discriminating variables and

standardised canonical discriminant functions) for both discriminant functions. The largest

absolute correlation between each predictor and any discriminant function is marked with

an asterisk

Standardised canonical discriminant

function coefficients

Structure

coefficients

Predictor 1 2 1 2

POST �0.072� �0.037

PRE 0.046 0.088�

BOG �0.481� �0.269

CALL �0.250 0.290�

WET 0.084 �0.199 0.674� �0.577

STEEP 0.062 �0.159 0.339 �0.717�

LT200 0.095 0.794 0.236 0.972�

L4_600 0.049 �0.568�
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perhaps not too surprising that the separation is similar to the previous analysis

(not shown here).

However, one may be surprised that the cross-validated classification accuracy

is better using fewer predictors (Table 5.11). This is not as surprising as it

sounds. Watanabe’s (1985) ‘ugly duckling’ theorem states that adding sufficient

irrelevant predictors can make cases from different classes more similar and

hence degrade performance.

Although this stepwise analysis has produced some promising results, it

can be criticised because it involved the rather unthinking application of a

stepwise selection procedure. In the next example the predictors are selected

via a more defensible process.

We are allowed to use some judgement in the selection of predictors.

Indeed we should be encouraged to do so since it means that we are thinking

more deeply about the problem. Huberty (1994) suggested three variable screen-

ing techniques that could be used with a discriminant analysis:

. Logical screening uses theoretical, reliability and practical grounds to

screen variables.

. Statistical screening uses statistical tests to identify variables whose

values differ significantly between groups. Huberty suggests applying

a relaxed criterion, in that only predictors that are most likely to be

‘noise’ (e.g. F < 1.0 or t < 1.0) are rejected. In addition, the inter-predictor

correlations should be examined to find those that are ‘highly

correlated’. Redundant predictors should be removed.

Table 5.11. Classification statistics for golden eagle range predictions

using stepwise selection of predictors

Predicted class

Classifier Actual class 1 2 3

Re-substituted 1 7 0 0

2 0 14 2

3 0 0 17

Percentage cases correctly classified 95.0%

Cross-validated 1 6 0 1

2 0 14 2

3 0 0 17

Percentage cases correctly classified 95.0%

114 Classification algorithms 1



. Dimension reduction uses a method such as PCA (Section 2.5.2) to reduce

the predictor dimensionality. This has the additional advantage of

removing any predictor collinearity.

This example analysis concentrates on statistical screening and applies

rather stricter criteria than Huberty suggests. This is because of the need to

drastically prune the number of variables. The first step is to carry out a single-

factor analysis of variance to find out which variables discriminate between

the regions. The F statistics are used to rank the potential predictors. Two

potential predictors, POST and CAL, have p values 40.05, and, if a Bonferroni

correction for multiple testing is applied, the p value for PRE becomes

insignificant. Consequently, these three are excluded. The rank order of retained

predictors, based on F statistics is: WET (F ¼ 40.7); LT200 (F ¼ 28.3); STEEP

(F ¼ 21.4); BOG (F ¼ 18.4); and L4_600 (F ¼ 8.1).

The next stage is to examine the correlations between these five predictors.

Not surprisingly, LT200 and L4_600 are highly correlated (r ¼ �0.700). Since

LT200 has the larger F statistic L4_600 is excluded. Similarly WET and STEEP

are highly correlated (r ¼ 0.690). For similar reasons STEEP is excluded. This

leaves three predictors: WET, LT200 and BOG. BOG is reasonably correlated with

the other two (�0.543 with WET and �0.314 with LT200), while WET and

LT200 have an insignificant correlation (r ¼ �0.203, p ¼ 0.209). Therefore, BOG

is excluded, leaving only WET and LT200. The desired two predictors (to fulfil

the minimum cases:predictors ratio) are now used in a discriminant analysis.

Note that these two predictors were the most important in the previous

two analyses. As in the previous analyses two discriminant functions can be

extracted (Table 5.12).

The first eigen value has decreased but the second is very similar to

the previous analysis. However, both functions still retain some significant

discriminatory power. The structure matrix (Table 5.13) suggests that the first

function is mainly associated with wet heath (WET). Cases with a high positive

score have more wet heath. The second function comprises both WET and LT200.

Table 5.12. Summary of discriminant functions for golden eagle data using predictor

screening

Function

Eigen

value (l)

Percentage

of variance

Wilk’s

lambda Chi-square df p

Canonical

correlation

1 2.930 68.3 0.108 81.286 4 0.000 0.863

2 1.359 31.7 0.424 31.327 1 0.000 0.759
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Larger positive scores are associated with land that has less wet heath and more

land below 200 m. As in the other analyses, function one separates regions 1

and 2, while function two separates region 3 from the rest.

This analysis, based on only two predictors, produces a better cross-validated

discrimination (Table 5.14) than the first one using all eight. It is only marginally

worse than the stepwise analysis with three predictors. Overall, this final analysis

is more robust and involved a significant amount of preliminary exploratory

analyses. This reinforces the point that there is usually little lost, and much to be

gained, by spending time investigating the data before embarking on a final

analysis.

5.3.3 Modified algorithms

Since the technique was developed by Fisher a variety of extensions to

the basic algorithm have appeared. For example, flexible, mixture, penalised and

Table 5.13. Standardised canonical discriminant function coefficients (only for selected

predictors) and structure coefficients (correlations between discriminating variables and

standardised canonical discriminant functions) for both discriminant functions

Standardised canonical

discriminant function coefficients Structure coefficients

Predictor 1 2 1 2

WET 1.033 �0.359 0.731 �0.682

LT200 0.746 0.800 0.328 0.945

Table 5.14. Classification statistics for golden eagle range predictions

using predictor screening

Predicted class

Classifier Actual class 1 2 3

Re-substituted 1 7 0 0

2 1 12 3

3 0 0 17

Percentage cases correctly classified 90.0%

Cross-validated

1 7 0 0

2 1 12 3

3 0 0 17

Percentage cases correctly classified 90.0%
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quadratic discriminant analyses are all based on similar principles and all four

are available as functions within the R analysis environment. Flexible discrimi-

nant analysis (Hastie et al., 1994) is a generalisation that uses a non-parametric

regression that creates non-linear decision boundaries. Mixture discriminant

analysis (Hastie and Tibshirani, 1996) creates a classifier by fitting a Gaussian

mixture model to each class. The reason for using a mixture model is that

heterogeneous classes are poorly represented by the single ‘prototypes’ that

characterise linear discriminant analysis; the mixture model allows multiple

prototypes. A penalised discriminant analysis (Hastie et al., 1995) attempts to

overcome the collinearity problems created when many predictors are correlated

by using a penalised regression. In a linear discriminant analysis the boundaries

between the classes are flat. Quadratic discriminant analysis allows them to

become curved quadratic surfaces. In a quadratic discriminant analysis there is

no assumption that the covariance matrices are equal. While this can be an

advantage it comes at a cost of an increase in the number of parameters, possibly

leading to a greater chance of over-fitting the training data. Because of these

risks, and the relatively robust nature of linear discriminant analysis (Gilbert,

1969), quadratic discrimination is only recommended when differences between

the class covariance matrices are large (Marks and Dunn, 1974).

5.4 Logistic regression

5.4.1 Introduction

In a classification problem, where the dependent variable has only two

possible values (e.g. zero and one) methods such as multiple regression become

invalid because predicted values of y would not be constrained to lie between

zero and one. Although discriminant analysis can be used in such circumstances

it will only produce optimal solutions if its assumptions are supported by the

data, which could be tested using an EDA. An alternative approach is logistic

regression.

In logistic regression the dependent variable is the probability that an event

will occur, and hence y is constrained between zero and one. It has the additional

advantage that the predictors can be binary, a mixture of categorical and

continuous or just continuous. Although categorical predictors can be used they

are recoded as a series of dummy binary predictors. The number of dummy

variables is always one less than the number of categories, otherwise there would

be serious collinearity problems. This is the reason why a binary categorical

variable such as gender is coded by a single 0/1 variable rather than separate

0/1 male and female variables. However, lack of independence (collinearity)
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between continuous predictors can still lead to biased estimates and inflated

standard errors for the coefficients.

The logistic model, which is a GLM, is written as

PðeventÞ ¼ 1=ð1� e�zÞ

where z is b0 þ b1x1 þ b2x2 þ . . . bpxp and P(event) is the probability that a case

belongs to a particular class, which is assumed to be the class with the value one.

In this format, the relationship between P(event) and its predictors is non-linear.

However, the logistic equation can be rearranged into a linear form by using

a link function to convert the probability into a log odds or logit, where

logit[P(event)] ¼ log[P(event)/P(no event)]. There is a non-linear relationship

between p and its logit. In the mid range of P(event) the relationship is linear, but

as P(event) approaches the zero or one extremes the relationship becomes

non-linear with increasingly larger changes in logit for the same change in p

(Figure 5.6). Note that this transformation can also be written in a linear format:

logit(P(event)) ¼ logP(event) �logP(no event).

The rearranged equation produces a linear relationship between the class and

the predictors similar to that in multiple regression, logitP(event)¼ b0 þ b1x1 þ
b2x2 þ . . . bpxp. However, in this form each one-unit change in a predictor is

associated with a change in log odds rather than the response directly. Many

biologists find it difficult to interpret the coefficients from a logistic regression.

This is not too surprising given that they relate to changes in logit(p), rather than

p itself. Because the logit transformation is non-linear the change in p, brought

about by a one-unit change in the value of predictor, changes with the value

Figure 5.6 Logit transformation of P(event).
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of the predictor. Consequently, it is worth examining the interpretation of log

odds since they are so important to the method and yet simultaneously

meaningless to many biologists!

Suppose that a logistic regression predicts presence (1) or absence (0) of

some outcome using a set of three binary predictors (A, B and C), for example

gender, smoking and colour blindness, where one indicates presence and

zero absence of that predictor. The following equation was obtained: log

odds ¼ �2.7 þ 2.5 A � 3.7 B þ 1.8 C. The coefficient of 2.5 for predictor A is the

estimated change in the logarithm of P(presence)/P(absence), when B and C are

held constant.

If A, B and C are present (i.e. have the value 1) the log odds are: log

odds ¼ �2.7 þ 2.5 � 3.7 þ 1.8 ¼ �2.1, giving odds of 0.1225 (e�2.1). The ‘risk’

(probability of event 1) is defined as the odds ratio (odds/(1 þ odds)). Odds ratios

less than one correspond to decreases in the odds as the predictor increases

in value while odds ratios greater than one correspond to increases in the odds.

If the odds ratio is approximately one, changes in the predictor do not alter

the probability of the event. Note that a coefficient of zero is the same as an

odds ratio of one (because e�0 is 1.0), both imply the predictor has no effect of

the response. In this example the odds, when all predictors have a value of one,

are equal to 0.1225/1.1225 or 0.1091 (10.91%). If A, B and C are absent, and have

the value zero, then the log odds equal the constant. In this example the

constant is �2.7 giving log odds of �2.7 and odds of 0.067 (e�2.7). This means

that ‘risk’ of event 1 is 0.067/1.067 or 0.063 (6.3%). Therefore, absence of the

three predictors almost halves the chance of the event. However, if predictors A

and C are present, while B is absent, the log odds are �2.7 þ 2.5 þ 1.8 ¼ 1.6,

giving odds of 4.953 (e1.6) and a risk of 4.953/5.953 ¼ 0.832 or 83.2%. It appears

that the absence of predictor B vastly increases the probability of event 1.

Similar calculations can be performed for continuous predictors. The relevant

predictor values are ‘plugged’ into the equation and multiplied by their weights

to give the log odds. This means that each one-unit increase in a predictor

(e.g. a change from 78 kg to 79 kg) will change the log odds by the value of the

coefficient. It is for this reason that statistical software often report exp(b) values

(eb) in addition to the coefficient.

The logistic equation can be used to estimate the probability of an event for

each case. These probabilities can then be used to assign each case to a class by

the application of some threshold to its probability. This means that the

continuously valued probabilities are discretised into a binary class variable. The

default threshold is 0.5, so cases will be assigned to the ‘event’ class if their

probability of being in that class is estimated to be 40.5. While this may seem

reasonable there are problems, some of which relate to the tendency of
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techniques, such as logistic regression, to assign preferentially cases to the

largest class. This is discussed inmuchmore detail in Chapter 7. Nonetheless, it is

usual to present a summary table, similar to that used with discriminant

analysis, of class allocations against actual class.

Dettling and Bühlmann (2004) describe a penalised extension to normal

logistic regression that they apply to microarray data, specifically to deal with the

excess of predictors that is common in such classification problems. Their

method combines variable selection and extraction with class allocation.

It is undoubtedly true that one has to think more carefully about what the

results from a logistic mean, but that is no bad thing. Hosmer and Lemeshow

(1994) is the standard text on logistic regression and should be consulted if

one intends using this method in research.

5.4.2 Example analyses

Artificial data

This analysis uses the second data set (B) from Section 5.3.2 (see Appendix

E) and will, therefore, enable a direct comparison with the discriminant analyses

of the same data. The analysis was completed using SPSSTM version 12.0. No

stepwise predictor selection methods were used and all of the predictors are

continuous variables. Recall that, individually, all four predictors are good

predictors of the class but that b4 is highly correlated with b3, while all other

between-predictor correlations are insignificant.

The results begin with a summary of the final model which includes log-

likelihood (�2 LL), a measure of the goodness of fit, and pseudo-R2 statistics which

measure the variability in the dependent variable (the class) that is explained by

the predictors. Because the usual least squares R2 statistic cannot be calculated a

range of pseudo-R2 statistics have been designed to provide similar information.

SPSS reports two, the first being the Cox and Snell statistic (1989, pp. 208�9)

which tends not to have the desired 0�1 range because its maximum is usually

less than one. Nagelkerke’s R2 (1991) is derived from the previous one, but with a

guarantee of a 0�1 range. Consequently it tends to have larger values. Values

close to zero are associated with models that do not provide much information

about the probability of class memberships. In this analysis they are quite large

(0.439 and 0.585) suggesting that over half of the variation in classes can be

explained by the current predictors.

The log-likelihood (LL) is a measure of the variation in the response variable

that is unexplained by the model. LLs are the logarithms of probabilities and,

since probabilities are never greater than one, the logarithm will be negative.

If the LL is multiplied by �2 (�2LL) the resulting measure, which is often

called the deviance, approximates to a chi-square statistic and can be used
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to test hypotheses. At the start of the logistic modelling process the simplest

model, the null model, has one term, the intercept or constant. Large values for

the deviance measure indicate a poor fit because there is a large amount of

unexplained variation. As the model is developed, i.e. predictors are added, it is

expected that deviance will decline. At the start of this model the deviance was

207.9, suggesting a very poor fit. The final model has a deviance of 121.3. This

means that the change in the deviance has been 207.9 � 121.3 ¼ 86.6. SPSS calls

this the model chi-square and it is used to test a hypothesis that the predictors

have improved the model by reducing the amount of unexplained variation.

Since p � 0.05 there is strong evidence that the model, which includes the four

predictors, has significantly reduced the unexplained variation.

The Hosmer�Lemeshow statistic is often used to estimate the goodness-of-fit

of the model. The number of cases in ten groups, ordered by their probabilities

(observed values), are compared with the numbers in each group predicted by the

logistic regression model (predicted values). Since this is a comparison of

observed and expected frequencies, the test statistic is a chi-square statistic with

eight degrees of freedom. If the differences are not significant it indicates that

the model prediction does not differ significantly from the observed. This is the

desired outcome. In this analysis the value of chi-square is 2.495, giving a p value

of 40.9, which provides further strong evidence for a good fit.

The structure of a model is determined by the coefficients and their

significance (Table 5.15). The Wald statistic also has an approximate chi-square

distribution and is used to determine if the coefficients are significantly different

from zero. In a least squares regression the significance of the coefficients is

usually tested with a t-statistic, which is the coefficient divided by its standard

error. In Table 5.20 a similar test is used to derive a z-value for the coefficients.

Wald’s statistic is obtained by a similar calculation but, because it is a chi-squared

measure the ratio is squared. For example, the Wald statistic for b1 is 19.351,

Table 5.15. Regression coefficients. The Wald statistic has one degree of freedom. The upper

and lower confidence limits refer to Exp(B)

Predictor b s.e. Wald P Exp(B)

95%

LCL

95%

UCL

b1 0.511 0.116 19.351 0.000 1.667 1.328 2.094

b2 0.355 0.080 19.675 0.000 1.427 1.219 1.669

b3 0.349 0.084 17.191 0.000 1.418 1.202 1.672

b4 �0.062 0.043 2.108 0.147 0.940 0.864 1.022

Constant �17.49 2.856 37.483 0.000 0.000
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which is (0.51123/0.11622)2. Unfortunately, the Wald statistic can be unreliable

because larger coefficients tend to have inflated standard errors, meaning that

the chi-square statistic is reduced leading to a larger p value (Hauck and Donner,

1977). The significance of the coefficients can also be judged from the confidence

limits for exp(b). Recall that a predictor which has no effect on the response will

have odds (exp(b)) of 1.0. Therefore, if the confidence limits include one, see b4

in Table 5.15, there is no evidence for a relationship between the predictor and

the event. In this example it should be remembered that the lack of significance

for b4 is related to its correlation with b3. Indeed, when used as a single predictor

its coefficient is significantly different from zero and the confidence limits for

exp(b) do not include 1.

The classification results (Table 5.16) are almost identical to the discriminant

analysis predictions (Table 5.3). Indeed there is little difference between the two

analyses, with the three significant predictors having similar proportional values

for their coefficients.

Mixed data type analysis

The previous data set could have been analysed using discriminant

analysis because all of the predictors were continuous. However, it becomes more

difficult to use discriminant analysis when predictors are categorical. The second

logistic regression analysis uses data collected from 87 people (Appendix G). The

response variable is whether or not a person smokes (66 non-smokers and 21

smokers) and the five predictors consist of two categorical (gender and ABO blood

type) and three continuous (age (years); body mass index, bmi (kg m�2); white

blood cell count, wbc (� 109 l�1)) predictors. Because gender has two values it is

coded as a single binary predictor (0 ¼ male, 1 ¼ female). Blood group has four

categories that must be coded as three dummy predictors. The coding is arbitrary

and is shown in Table 5.17. Blood group AB has an implicit coding of zero for

each of the three dummy blood group predictors.

Table 5.16. Classification table (using a 0.5 threshold)

Predicted class

Actual class 1 2 Percentage correct

1 61 14 81.3

2 14 61 81.3

Overall percentage 81.3
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The null model has only the intercept, whose initial value is loge(P(smoke)/

P(non-smoke)). The deviance for the null model is 96.164, which reduces to 75.8

when all of the predictors are added. The reduction in the deviance (20.371) is

significant (p ¼ 0.005) suggesting that the predictors significantly reduce the

unexplained variation. This is further supported by the pseudo-R2 values,

although values around 0.3 indicate that a large amount of variation remains

unexplained by these predictors.

As may be expected, both age and blood group are not good predictors

of smoking habits (Table 5.18). It is less obvious, a priori, if gender should be

a predictor. In these data gender does not predict smoking. The only two

significant predictors are bmi and wbc. The probability of smoking appears to

decline as bmi increases, suggesting that given two people of the same height,

but different weights, the lighter person is more likely to smoke. The coefficient

for wbc is positive, suggesting that the probability that a person smokes is

greater if their white blood cell count is larger. Indeed there is a well-known

Table 5.17. ABO blood group categorical codings into three binary predictors

Parameter coding

ABO type Frequency (1) (2) (3)

O 21 1 0 0

A 24 0 1 0

B 22 0 0 1

AB 20 0 0 0

Table 5.18. Regression coefficients. The Wald statistic has one degree of freedom. The upper

and lower confidence limits refer to Exp(B)

Predictor b s.e. Wald p Exp(B) 95% LCL 95% UCL

bmi �0.214 0.096 4.942 0.026 0.807 0.669 0.975

wbc 0.632 0.214 8.705 0.003 1.882 0.958 0.669

age 0.031 0.038 0.682 0.409 1.032 1.236 2.864

sex(1) �0.188 0.615 0.094 0.760 0.829 0.248 2.764

abo 3.685 0.298

abo(1) �1.290 0.885 2.124 0.145 0.275 0.049 1.560

abo(2) �0.430 0.762 0.319 0.572 0.651 0.146 2.895

abo(3) �1.335 0.814 2.688 0.101 0.263 0.053 1.298

Constant �0.034 2.775 0.000 0.990 0.967
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relationship for white blood cell counts to be higher in smokers

(e.g. Kannel et al., 1992).

The classification results (Table 5.19) suggest that, despite the significance

of the predictors, the model tends to predict smokers incorrectly, a problem

which is at least partly related to the large difference in the proportions of

smokers and non-smokers. If the class allocation threshold is adjusted (from 0.50

to 0.28) to match the class proportions in the sample data the overall accuracy

declines to 73.6% but the number of smokers correctly predicted rises from 9/21

to 14/21. The decline in overall accuracy is a consequence of more false

identifications of non-smokers as smokers. Possible solutions to the problems

created by unequal class proportions are covered in more detail in Chapter 7.

Table 5.19. Classification table (using a 0.5 threshold) for predicting the smoking habitats of

people from a sample of 87 cases

Predicted class

Actual class N Y Percentage correct

N 62 4 93.9

Y 12 9 42.9

Overall percentage 81.6

Figure 5.7 Individual value plots for the nine predictors (clump thickness, Clump;

uniformity of cell size, UnifCellSize; uniformity of cell shape, UnifCellShape;

marginal adhesion, MargAdhesion; single epithelial cell size, SECSize; bare nuclei,

BNuclei; bland chromatin, BChromatin; nucleoli, NNucleoli; and Mitoses).
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5.4.3 Cancer data set

Background

The final analysis uses the same data set as that used in Section 3.9.3. It is

also used as an example in the next section which deals with generalised additive

models. There are nine continuous potential predictor variables plus one class

variable (benign, malignant). The predictors are: clump thickness; uniformity of

cell size; uniformity of cell shape; marginal adhesion; single epithelial cell size;

bare nuclei; bland chromatin; nucleoli; and mitoses. Figure 5.7 shows how the

classes are separated by the predictors. By way of comparison with the previous

analysis this one used the glm function within R.

Analysis

The deviance of the null model is 884.3, which reduces to 102.9 for the

full model. This reduction is highly significant. The model coefficients and their

significance levels (Table 5.20) suggest that four of the predictors have coefficients

that differ significantly from zero: bland chromatin; bare nuclei; clump

thickness; and marginal adhesion.

Figure 5.8 illustrates a graphical way of visualising the relationships between

the cancer class and the predictors. These effect plots show, with confidence

limits, the estimated relationship between the probability of belonging to the

malignant class and the value of a potential predictor. Note that some of the

insignificant predictors, for example mitoses, have quite large coefficients but

they are combined with wide confidence limits.

Table 5.20. Model coefficients and 95% confidence limits

Predictor

Coefficient

(b) s.e. LCL UCL

z

value Pr(4|z|) Exp(b)

(Intercept) �10.1039 1.17488 �12.7584 �8.08641 �8.600 <0.0001

Bland chromatin 0.4472 0.17138 0.1232 0.79993 2.609 0.0091 1.564

Bare nuclei 0.3830 0.09384 0.2069 0.57875 4.082 <0.0001 1.467

Clump thickness 0.5350 0.14202 0.2742 0.83781 3.767 0.0002 1.707

Marginal adhesion 0.3306 0.12345 0.0930 0.58702 2.678 0.0074 1.392

Mitoses 0.5348 0.32877 �0.0042 1.10624 1.627 0.1038 1.707

Nucleoli 0.2130 0.11287 �0.0018 0.44563 1.887 0.0591 1.237

Single epithelial cell size 0.0966 0.15659 �0.2169 0.40490 0.617 0.5372 1.101

Uniformity of cell shape 0.3227 0.23060 �0.1483 0.76840 1.399 0.1617 1.381

Uniformity of cell size �0.0063 0.20908 �0.3948 0.43803 �0.030 0.9760 0.994
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The logistic regression appears to be quite accurate, correctly predicting the

class of most cases (Table 5.21). It would be worth examining the small number of

misclassified cases to determine, if possible, what other characters have kept

them out of their predicted class.

Figure 5.8 Effect plots for the cancer data, showing 95% confidence limits for the

best fit lines (Clump.Th, clump thickness; uniformity of cell size, Unif.Cell.Size;

uniformity of cell shape, Unif.Cell.Shape; marginal adhesion, Marg.Adhesion; single

epithelial cell size, SEC.Size; bare nuclei, B.Nuclei; bland chromatin, B.Chromatin;

N.Nucleoli, nucleoli; and mitoses).

Table 5.21. Classification table (using a 0.5 threshold) for predicting the type of cancer

from a large sample of cases

Predicted class Percentage

correctActual class Benign Malignant

Benign 434 11 97.5

Malignant 10 228 95.8

Overall percentage 96.9
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Residuals and influence statistics

In any regression analysis, including a logistic regression, it is important

to check that there are no problems created by one or more of the cases that may

invalidate themodel. For example, if a case is substantially different from the rest

it could have a large effect on the structure of the regression model. It is

important to be aware of this so that it can be investigated further. In the

simplest situation it could be that a value has been entered incorrectly, which,

when corrected, removes its influence. Usually such investigations depend on

calculating various diagnostic statistics such as residuals and influence statistics.

Hosmer and Lemeshow (1989) suggest that these diagnostic statistics should be

interpreted jointly to understand any potential problems with the model. The

aim is to identify cases that are either outliers or have a large leverage. An outlier

is an observation with a response value that is unusual, given the values for its

predictor variables. This will result in it having a large residual, the difference

between its actual and predicted value. Conversely a case could have an

unusually small or large value for one of the predictors, which may cause it to

have a disproportionate effect on the regression coefficient estimates. The size of

this effect is measured as the leverage of a case, a measure of how far its value for

a predictor deviates from the predictor’s mean. The combination of leverage and

outlying values can produce cases that have a large influence. These cases can be

recognised because their removal results in large changes to the values of the

regression coefficients. However, it also important to recognise that a case with

a large leverage need not have a large residual. Hence the need to consider

both together.

There are a surprisingly large number of diagnostic statistics, including many

types of residual. For example, unstandardised residuals are the simple differ-

ences between the observed and predicted values of the response while

standardised residuals (also known as Pearson or chi residuals) are the stan-

dardised residuals divided by an estimate of their standard deviation (actual

value minus its predicted probability, divided by the binomial standard deviation

of the predicted probability). Using the standard deviation as a devisor changes

their probability distribution so that they have a standard deviation of one.

There are other residuals such as the logit residual which measures the differ-

ence between actual and predicted values on the logit scale and the studentised

residual which is the change in the model deviance if a case is excluded.

Because the standardised and studentised residuals, at least for large samples,

should approximate to a normal distribution with a mean of zero and a stan-

dard deviation of one, no more than 5% of the residuals should exceed |1.96| or

approximately two. Similarly, less than 1% of the residuals should exceed |3.0|.
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There are threemain statistics that assess the influence that an individual case

has on the model. The first is the leverage (h) of a case, which varies from zero

(no influence) to one (completely determines the model). The second statistic,

Cook’s distance (D), also measures the influence of an observation by estimating

how much all the other residuals would change if the case was removed. Its

value is a function of the case’s leverage and of the magnitude of its stan-

dardised residual. Normally, D 4 1.0 identifies cases that might be influential.

Dfbeta, or dbeta, is Cook’s distance, standardised and it measures the change

in the logit coefficients when a case is removed. As with D, an arbitrary threshold

criterion for cases with poor fit is dfbeta 4 1.0.

In this analysis the histogram of standardised residuals (Figure 5.9) does not

suggest too many problems. Six cases (Table 5.22) have large standardised

residuals, but this is within the expected number of large residuals.

A plot of Cook’s D highlights several cases with large values, but only two

cases (191 and 245) have values greater than one (Figure 5.10). Both of these

cases are also highlighted in Table 5.22 as having large standardised residuals.

These cases have large values for all predictors, suggesting that their true

classification should be malignant and not benign. In practice, it would be worth

spending time investigating these cases and verifying, at a minimum, that the

predictor and class details were correct.

5.5 Discriminant analysis or logistic regression?

There have been many studies comparing logistic regression and discri-

minant analysis. Unfortunately the results of the comparisons are inconclusive.

Figure 5.9 Frequency distribution of standardised residuals with an overlaid normal

distribution.
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The only universal criterion for selecting logistic regression over discriminant

analysis relates to the data type limitations of discriminant analysis. Because

both methods construct linear boundaries between the classes they have a

similar functional form (a sum of weighted predictors). However, they differ in

their assumptions about probability distributions and the methods used to

estimate the predictor weights. Logistic regression does not make the same

restrictive assumptions about predictor probability distributions, while discrim-

inant analysis has a formal assumption of normally distributed predictors.

Logistic regression uses a maximum likelihood method while discriminant

analysis uses a least squares technique. One consequence of the different

assumptions is that discriminant analysis should outperform logistic regression,

when its assumptions are valid, while, in other circumstances, logistic regression

should be the better option. However, empirical tests of the assumptions do not

Figure 5.10 Cook’s D statistic plotted against case number.

Table 5.22. Cases with a standardised residual greater than two

Case Class Predicted value Predicted class Residual Standardised residual

2 Benign 0.909 Malignant �0.909 �2.25

100 Malignant 0.137 Benign 0.863 2.06

191 Benign 0.998 Malignant �0.998 �3.49

217 Malignant 0.047 Benign 0.953 2.49

245 Benign 0.979 Malignant �0.979 �2.81

420 Benign 0.963 Malignant �0.963 �2.60
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always support these conclusions. As long as the predictors are not categorical

there appears to be little difference between the performance of the two

methods when sample sizes are reasonable (450). If there are outliers it is likely

that logistic regression will be better because the outliers could distort the

variance�covariance matrix used in the estimation of predictor weights by

discriminant analysis.

5.6 Generalised additive models

5.6.1 Introduction

Generalized additive models (GAMs) are also extensions of the general

linear model but, unlike generalised linear models, they are semi-parametric

rather than fully parametric. This is because the link function is a non-

parametric ‘smoothed’ function and the form of the smoothing function is

determined by the data rather than some pre-defined theoretical relationship.

This is why a GAM is known as a data-driven, rather than a model-driven,

algorithm. Despite this flexibility, they are semi-parametric rather than non-

parametric, because the probability distribution of the response variable (the

class in a classifier) must still be specified. In a GAM the simple coefficients

(weights) are replaced by non-parametric relationships that are typically

modelled using smoothing functions (Section 5.6.2). This produces models in

which g(L) ¼ Ssi(xi), where the si(xi) terms are the smoothed functions. The GAM

is therefore a more general form of the generalised linear model. Although

they have some advantages over simple polynomial regressions, they are more

complicated to fit, and require a greater user judgement in their design. Also,

although they may produce better predictions, they may be difficult to interpret.

The main advantage of GAMs is that they can deal with highly non-linear and

non-monotonic relationships between the class and the predictors. General

linear and linearised models can sometimes be improved, to deal with the non-

linearity, by applying transformations, or including polynomial terms of the

predictors. These transformations are generally not needed in a GAM because the

smoothing function effectively carries out the transformation automatically.

In this respect the smoothing functions are similar to the hidden layer in an

artificial neural network (Chapter 6).

5.6.2 Loess and spline smoothing functions

Smoothing functions are central to the GAM approach because they

produce a line, which need not be straight or even monotonic, to describe the

general relationship between a pair of variables. Two of the most common

methods, loess and the related lowess, derive their names from the term ‘LOcally

130 Classification algorithms 1



WEighted Scatter plot Smooth’. They are locally weighted linear regression

analyses that find arbitrarily complex (non-parametric) relationships between

two variables. In effect they ‘smooth’ the relationship. They differ from normal

regression methods because they do not look for a global relationship but build

up a series of neighbourhoods defined by a span or neighbourhood size. Loess and

lowess differ in the order of the local regression with loess using a quadratic, or

second degree, polynomial and lowess a linear polynomial.

The fit between the two variables, y and x, at point x is estimated using

points within a span or neighbourhood of s. These points are weighted by their

distance from x. Normally, the span is specified as a percentage of the number

of data points. For example, a span of 0.25 uses a quarter of the data points.

Typically case weights become smaller as data points become more distant

from x. The central data point within the span, x, has the largest weight and the

most influence on the fit, while cases outside the span have zero weight and

hence no effect on the local fit. The size of the span affects the complexity of

the smoothed relationship, with larger spans giving smoother fits (see

Figure 5.11). If the span is too small the ‘smoothing’ will model the random

error in the data, while spans that are too large may miss important local

trends. These are the same over-fitting problems that may arise in artificial

Figure 5.11 Example use of a smoother function with three levels of smoothing.

Data are from Gregory (2005) and relate to mammalian genome size. CV, haploid

C-value (in pg); CN, diploid chromosome number (2n).
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neural networks and decision trees (Chapter 6). Useful values of the smoothing

parameter typically lie in the range 0.25 to 0.75.

There are other smoothing algorithms such the B-spline smoother (Hastie,

1992) used as the default by the gam function in R. The fit of the line to the data

points is measured as the sum of square deviations between actual and fitted

values of the response, where the fitted values are obtained from local curve-

fitting routines. For example, the spline smoother fits a series of piecewise

polynomials. However, unless some constraint is applied the resulting curve

could be too ‘wiggly’. A curve that is too complex is almost certainly capturing

noise from the data rather than the overall trend. Conversely, a line that is too

simple, for example a straight line, would fail to capture any non-linearity in the

relationship. Therefore, a compromise is required that balances the minimisa-

tion of the squared deviations with the need to avoid an over-complex line. This is

achieved by incorporating a penalty term. In the R implementation the degree of

smoothness is controlled by specifying the effective degrees of freedom, which is

then used to adjust the penalty term. If four degrees of freedom are specified this

is equivalent to a third-degree polynomial, while one degree of freedom would fit

the smoother as a simple straight line. The rationale behind choosing the

appropriate degrees of freedom for smoothers is discussed in detail by Hastie and

Tibshirani (1990). It is important that an appropriate degree of smoothing is

selected because over-complex smoothers will generate false optimism about the

classifier’s future performance. This is discussed further in Chapter 7.

5.6.3 Example analysis

These analyses were carried out using the gam function from R. Because

the degree of smoothing is one of the most important parameters in the GAM

analysis three analyses are described. The first two use the default B-spline

smoother with four and seven degrees of freedom. A relatively large value of

seven was chosen because it is likely to produce a function that over-fits the data

and begins to model noise in the relationships between the cancer class and the

predictors. The third uses a loess smoother with a span of 0.75. Figure 5.12

illustrates how an adjustment to the degree of smoothing can alter the

interpretation of the model. As the fitted curve becomes more complex the

predictor changes from having an insignificant to a significant effect.

The secondmodel, with themore complex smoothed curves, has amuch lower

residual deviance than the other two models (Table 5.23). Each model has the

same number of predictors but the degree of smoothing differs. As the smoothed

curves become more complex they use up degrees of freedom, hence the least

complex smoother has an additional 27 degrees of freedom. The loess smoothed

model has the largest number of residual degrees of freedom. These differences
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become apparent if the AIC (Akaike’s information criterion) is examined. The AIC

is defined as �2 log(L(y|data)) þ 2k (or �2(LL) þ 2k), where L(y|data) is the

likelihood of the parameters given the data and k is the number of parameters

that are estimated during the model’s development. In a simple model this could

be the number of predictor coefficients plus the intercept. The log-likelihood is

a measure of a model’s fit. The AIC is useful because it penalises models for the

Figure 5.12 Partial effect plots for the uniform cell size predictor using two, four

and seven as the smoothing parameter for the spline smoother. Note the different

scales on the y-axes. Chi-square (and p) values for each function were 1.55 (0.21),

4.20 (0.24) and 12.84 (0.04).

Table 5.23. Model deviance statistics for three GAM models with different

smoothing factors. Also shown are the results from the previous logistic regression.

The null deviance is 884.4, with 682 degrees of freedom, for all four models

Model Residual deviance (df) AIC

B-spline smoother ¼ 4 54.86 (646) 128.9

B-spline smoother ¼ 7 4.5 (618.9) 132.5

Loess smoother (span ¼ 0.75) 73.79 (657.9) 123.8

Logistic regression 102.9 (673) 122.9

Generalised additive models 133



addition of extra parameters which, in the case of GAM, will include the extra

terms needed to provide the smoothed fit. The AIC is used to select, between

models, the one which has a good fit but with the minimum number of

parameters. It is often used in stepwise methods and information theoretic

model comparison (ITMC) approaches. Because these analyses used the same data

it is possible to rank them. However, it is important to understand that the AIC

only provides information about the rank order of the tested models; it does not

identify models that are the best of all possible (and untried) models. There is

little to choose between the logistic regression and loess smoothed GAM.

However, the two spline-smoothed GAMs seem to be considerably worse. Delta

AICs (AIC � minimum AIC) are preferred to raw AIC values because they force

the best, of the tested models, to have a Delta AIC of zero and thereby allow

meaningful comparisons without the scaling issues that affect the AIC (Burnham

and Anderson, 2004). It is also important not to compare the Delta AIC values

to the raw AIC values because the raw values contain large scaling constants

that are eliminated in the Delta AIC values (Burnham and Anderson, 2004).

The Delta AIC values for these two models are 6.0 and 9.6, respectively. Burnham

and Anderson (2002) suggest that Delta AIC values between three and seven

indicate that the model has little support, and larger values reduce the support

even further. Consequently, the best of these four models is the logistic one,

although there is little difference from the loess smoothed GAM. Further

information on the use of the AIC, and the related BIC (Bayesian information

criterion), can be obtained from a Burnham and Anderson (2004) online

conference paper.

Table 5.24. Chi-square values for non-parametric effects from two GAM analyses using

two smoothing levels (4 and 7)

B-spline smoother

¼ 4 (df ¼ 3)

B-spline smoother

¼ 7 (df ¼ 6)

Loess smoother

(span ¼ 0.75) df ¼
Predictor Chi-square P(chi) Chi-square P(chi) Chi-square P(chi)

Clump thickness 4.80 0.19 8.87 0.18 8.88 0.18

Uniformity of cell size 4.20 0.24 12.84 0.06 12.39 0.06

Uniformity of cell shape 3.10 0.38 9.03 0.17 9.18 0.16

Marginal adhesion 9.16 0.03 24.96 0.00 25.40 0.00

Single epithelial cell size 10.70 0.01 20.99 0.00 20.41 0.00

Bare nuclei 5.21 0.16 17.31 0.01 17.17 0.01

Bland chromatin 3.75 0.29 8.66 0.19 8.93 0.18

Nucleoli 7.48 0.06 8.60 0.20 8.63 0.19

Mitoses 1.14 0.77 0.02 1.00 0.07 1.00
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Table 5.24 gives the results, for each smoothing effect in the model, from

a chi-square test that compares the deviance between the full model and the

model without the variable. The results suggest that the effects of marginal

adhesion and single epithelial cell size are significant in all three analyses,

while the number of bare nuclei is also significant when the spline smoother

is allowed to become more complex or the loess smoother is used. Marginal

adhesion and bare nuclei were also significant predictors in the logistic

regression model. The other two significant predictors from the logistic model,

bland chromatin and clump thickness, were not close to being significant in

any of the three GAM models.

The partial predictions for each predictor, from the third model with the loess

smoother, are plotted in Figure 5.13. If a predictor is insignificant the confidence

limits cover the line in which y ¼ 0. The partial predictions also highlight the

potentially non-linear nature of some of the relationships. This information

Figure 5.13 Partial effect plots, with standard errors, for the nine predictors using

a loess smoother with a span of 0.75.
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could be used to refine a generalised linear model by, for example, including

quadratic terms for some of the predictors in a logistic regression. Bland

chromatin and clump thickness, which are both significant in the logistic

regression model, appear to have approximately linear relationships with the

class, but the wider confidence intervals include zero and stop them from being

significant.

The logistic regression model incorrectly predicted 21 cases. Two of the three

GAM models performed slightly better with 12 (spline with a smoothing

parameter of four) and 17 (loess smoother) incorrect. The other model correctly

classified all cases. However, the errors do not relate to the same cases. For

example, the first GAM model produced different predictions for eight cases

compared with the logistic regression. There is little difference between these

results and those using a discriminant analysis which incorrectly classifies 25

cases using re-substituted data and 26 cases from the cross-validated data. The

100% accuracy of the second GAM model should be treated with caution because

of its large AIC and Delta AIC plus the factors explored in Chapter 7.

Although the GAM models are more accurate than the equivalent logistic

regressionmodel, the relationships are harder to interpret and it is more difficult

to make predictions (although there is an option within the R gam function).

For example, the significant, non-linear, non-monotonic relationship between

the class and the amount of marginal adhesion shown in Figure 5.13 is difficult

to explain.

5.7 Summary

Most of this chapter has focused on three statistical approaches that

belong to the general class of linear models. Two of the methods, logistic

regression and discriminant analysis, are ‘old’ methods, with the GAM approach

being much more recent. There was little to choose between them with the

cancer data, but this could just reflect the rather simple structure of these data. It

is noted in Chapter 3 that even an unsupervised method performed well on these

data. In the next chapter a range of methods, of more recent origin, is described.

When comparing old and new methods it is important to be aware of the range

of criteria on which they can be judged (see Section 7.9).
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6

Other classification methods

6.1 Background

Despite their differences the classifiers in the previous chapter share

a common ancestry � the general linear model. Consequently, they have similar

relationships between the class and the predictors, albeit mediated via a link

function that is determined by a defined class probability distribution. The

estimated values of the predictor coefficients are found using maximum

likelihood methods and tests are available to determine if they differ

significantly from zero. In this chapter the methods share little in common

with each other or the previous methods. Two methods are biologically inspired

while a third has much in common with species identification keys. The other

methods appear to work well but are less used in biology at the moment. The

most important shared benefit, and potential problem, for the methods

described in this chapter is that they are data-driven rather than model-driven.

This can be an advantage in a knowledge-poor environment but it may come with

the disadvantage that their structure is difficult to interpret. Many of these

algorithms have features that reduce their susceptibility to noise and missing

values, making them potentially valuable when dealing with ‘real’ data.

6.2 Decision trees

6.2.1 Background

Anyone who has used a species identification key should be familiar with

the concept of a decision tree. Class labels are assigned to cases by following

a path through a series of simple rules or questions, the answers to which

determine the next direction through the pathway. The various decision tree
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algorithms create the rules from the information contained within the

predictors. Superficially there is some similarity with a hierarchical, divisive,

cluster analysis but there is an important and fundamental difference. Cluster

analyses are unsupervised methods that take no account of pre-assigned class

labels. A decision tree is a supervised learning algorithm which must be provided

with a training set that contains cases with class labels.

The basic classification or decision tree algorithm is relatively simple. It begins

with all of the cases in one group or node, known as the root node. All of the

predictor variables are examined to find a decision, or split, that best separates

out the classes. In a binary tree each split produces a left and a right node. Each of

these nodes is then examined to determine if it should be split again. If it is to be

split all of the predictors, including those used in earlier decisions, are examined

again to find the best split. If the node is not split it becomes a terminal, or leaf,

node and all of the cases in the node are labelled as belonging to the same class.

Figure 6.1 illustrates this process using the Iris data described in Section 2.10.

The root node (0), which contains all of the training cases, is split using

a petal length of 2.09 cm. Any flower with a smaller value goes into the left

terminal node (1). This node is terminal because it contains only I. setosa

individuals and there is no need to split it again. Individuals from the other

two species are placed in the node to the right (2). This is split using a petal

width criterion of 1.64 cm. The left node (3, flower width < 1.64) contains

48 I. versicolor and 4 I. virginica cases. The right node (4, flower width 4 1.64)

contains 2 I. versicolor and 46 I. virginica cases. Although neither of these nodes

contains just one species, the algorithm stops so all cases in the left node are

labelled as I. versicolor and all in the right node are labelled as I. virginica.

This means that six out of 150 cases are incorrectly labelled. Once constructed,

the decision tree can also be written as one or more rules. For example, the tree

in Figure 6.1 can be described by the following rule:

If (petal length < 2.09 cm) then species = Iris setosa

Else

If (petal width < 1.64 cm) then species = Iris versicolor

Else

species = Iris virginica.

Because only two predictors are used in this tree it can be represented

graphically with lines making the splits (Figure 6.2). Because the splits are usually

univariate the decision boundaries in most decision trees are constrained to

be axis-parallel. For example, the horizontal line in Figure 6.2 is the first split

(petal length < 2.09). The univariate splits are an important difference from
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the classifiers described in the previous chapter. Their decision boundaries,

although flat, were not constrained to be axis-parallel. There are decision trees

(see Section 6.2.4) that overcome this restriction by using multivariate decision

rules. It is also important to realise that the lines which partition the predictor

space are localised. For example, the second split in Figure 6.2 only applies to

flowers with a petal length greater than 2.09 cm.

The simple outline described above avoids a lot of detail, much of which

characterises the different ‘flavours’ of decision trees. It also explains why the

method has the alternative name of recursive partitioning. At each decision

point, or node, the data are partitioned. Each of these partitions is then

partitioned independently of all other partitions, until some ending criterion is

reached, in which case the node becomes a terminal, or leaf, node.

The two most important stages in the algorithm are identifying the best splits

and determining when a node is terminal. In an ideal tree all terminal nodes

Figure 6.1 Decision tree for predicting the species of Iris from four floral

characteristics. The tree was produced using SPSSTM AnswerTree Version 3.0. The bars

represent the relative frequency of each species within a node (white bar; I. setosa;

grey bar; I. versicolor; black bar; I. virginica).

Decision trees 139



would be ‘pure’, meaning that all of the cases in a terminal node came from the

same class. Two of the three terminal nodes in Figure 6.1 are impure, only node

one is pure. It is generally possible, although not always desirable, to generate

a tree in which most or all of the terminal nodes are pure. A tree such as that,

which achieves 100% accuracy with the training data, is likely to have a complex

structure which reflects the particular characteristics of the training data, rather

than the general differences between the classes. For example, the I. versicolor

node (3) can be split using another petal length criterion (< 5.24 cm) to produce

two new terminal nodes: one pure node with 2 I. virginica cases and one impure

node with 48 I. versicolor and 4 I. virginica cases. The need to retain some generality

is the reason why accuracy must be balanced against complexity when deciding

if impure nodes should be split further.

In certain circumstances decision trees have an advantage over more common

supervised learning methods such as discriminant analysis. In particular, they do

not have to conform to the same probability distribution restrictions. There is

also no assumption of a linear model and they are particularly useful when the

predictors may be associated in some non-linear fashion. One of the most

fundamental differences between a decision tree and the linear model-type

classifiers is the way in which splits are determined. Most classifiers involve the

construction of predictor weights that often have a biological interpretation

forced on to them. In effect they are interpreted as regression-type coefficients

Figure 6.2 Simple decision tree presented as axis-parallel splits.
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that describe the expected change in a response value, class in a classifier, as

the predictor’s value changes. The decision tree is different because the decisions

involve thresholds rather than gradients. While this can be an advantage

there are circumstances when it is not. If there is an obvious linear function

the tree will require many nodes to build a stepped approximation to the

function. This is illustrated in Figure 6.7.

Another important difference, for most decision trees, relates to the reuse

of predictors. Predictors are never removed from consideration. This has several

consequences. Firstly, there is no restriction on the number of linear splits as

there is in a discriminant analysis, where themaximum number is the number of

predictors or one less than the number of classes. Secondly, because a predictor

can be reused in different nodes with different threshold values, it is possible for

a predictor to have a context-dependent role in class determination.

The advantages of the decision tree approach can be summarised in nine

points:

1. They learn by induction (generalising from examples) so there is no

requirement for a pre-specified model. However, induction does not

guarantee to find the correct tree.

2. Unlike the classifiers that use maximum likelihood methods to estimate

parameter values, no single dominant data structure (e.g. normality) is

assumed or required.

3. They are non-parametric because they do not require specification of

a functional form for the relationship or the variable probability

distributions (e.g. a general linear model).

4. Predictor selection algorithms are not needed because a robust stepwise

selection method is used that never removes any variables.

5. The predictors do not require transforming to satisfy probability

distribution constraints. The decision tree is invariant to monotonic

predictor transformations (any transformation that retains the rank

order of the cases), for example a logarithmic transformation will result

in the same splits as the untransformed predictor.

6. Variables can be reused in different parts of a tree. This means that

any context dependency of the predictors is automatically recognised.

For example, the amount of soil phosphorus could be an important

predictor, but only if the amount of soil nitrogen is above a certain

threshold.

7. They are robust to the effects of outliers because the outliers can be

isolated in their own nodes, which means that they have no effect on

other cases.
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8. A mix of predictor data types can be used in some trees.

9. Missing values may be handled by using surrogate variables.

The details behind the algorithms are described in the following sections.

These sections explain how node purity is measured, how the best splits are

identified, how tree complexity is determined and how missing values can be

handled. For more detailed information Murthy (1998) is a useful survey of the

algorithms used in decision trees.

Node purity

Decision trees attempt to divide the predictor space into homogeneous

regions or terminal nodes, which contain examples from only one class. If it is

impossible to produce an absolute separation of the classes, because either the

predictors or the stopping rules prevent it, the goal changes to one of minimising

the impurity of the nodes. Several algorithms are used to quantify this impurity.

Somemeasure goodness instead of impurity, the difference being that a goodness

value is maximised by the tree while impurity is minimised. Two of the most

common measures are the Twoing Rule (a goodness measure) and the Gini Index

(an impurity measure). The Twoing Rule (Breiman et al., 1984) is defined as:

Value ¼ ðNL=nÞ:ðNR=nÞ:ð�j Li=NL � Ri=NRjÞ2

where NL and NR are the number of cases on the left and right sides of a split

at node N, n is the number of cases at node N, and Li and Ri are the number of cases

in class i on the left and right of the split.

The Gini Index, which was originally a measure of the probability of

misclassification, was proposed for decision trees by Breiman et al. (1984). It has

a value of zero when a node is pure, i.e. only contains cases from one class. It is

defined as:

Value ¼ 1� ðclass1=nÞ2 � ðclass2=nÞ2

where class1 is the number of class 1 cases in the left node, class2 is the number

of class 2 cases in the right node and n is the number of cases in the node.

Identifying splits

This is a computationally intensive activity. The most commonly

used approach is an exhaustive search in which all possible splits, across all

of the predictors, must be examined (Hand, 1997). For example, in the case of

a continuous predictor the candidate splits are any values lying between actual

predictor values. Apart from the computational overheads another disadvantage
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of this approach is that it tends to favour the predictors which have more

potential splits. A computationally more efficient method, which also has less

bias, uses a quadratic discriminant analysis to find the best split. This algorithm

is at the centre of the QUEST decision tree (Loh and Shih, 1997). Irrespective of the

algorithm used to find the splits the candidate splits have to be ranked with

respect to their ‘quality’ so that the best can be selected. Different quality

indicators are used, including the purity and goodness criteria described in the

previous section. In addition other indices such as F values from an analysis

of variance or variance reduction measures are used. Once the best split has

been identified the data are partitioned according to the criterion and each

partition must be examined to find its best split. Although this process could

continue until each node was pure, it is not generally desirable. Instead the

tree must be restricted by either halting its growth or pruning back from its

maximum extent.

If a predictor variable is categorical, for example gender, a split based on each

of the categories must be tried. This is relatively simple for a binary tree but can

become very time consuming if the class has more than two categories.

Tree complexity

The structure of a decision tree reflects the characteristics of the training

data, and any anomalies in the training data, due to noise or outliers, are likely to

increase its complexity while reducing its future performance. In order to

overcome these difficulties tree pruning methods are used to avoid trees with

unreliable branches. This has the twin consequences of producing a tree that

generates classifications more quickly and, more importantly, is better able to

classify correctly independent test data. There are two approaches to pruning

which depend on the timing. If pre-pruning, or a stopping rule, is used the tree is

‘pruned’ by halting its construction when some rule is triggered. At its simplest

this could be a rule such that nodes can only be split if they have at least

100 cases. The obvious danger with this approach is that it stops too soon.

Post-pruning is generally thought to be the best approach. The tree is allowed to

grow to its maximum possible size and then branches are removed (pruned) until

some criterion, such as acceptable classification accuracy, is reached.

The most common pruning technique makes use of cross-validation (Efron

and Tibshirani, 1993), although a similar method can make use of a single

separate test set of data. The cross-validation method begins by growing a large

reference tree (no pruning) using all of the available data. This tree will have the

maximum possible accuracy with the training data. However, the results from

the cross-validated trees will be used to prune back this reference tree at the end

of the exercise. Normally the data are split into ten folds for the cross-validation.
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Each fold is withheld, in turn, from the data used to generate a decision tree. The

unpruned decision trees generated from the remaining nine folds are tested on

the withheld fold. This allows a comparison to be made between tree complexity

and prediction accuracy with the withheld data. The classification error rates for

the cross-validated trees, as a function of tree size, are averaged. Normally the

relationship between cross-validated accuracy and tree size (number of nodes)

will show that large trees have relatively poorer performance and that the best

performance is found using smaller trees. The results of the cross-validation can

be used to find the optimum tree size which is created by pruning back the

original reference tree. The pruning of the reference tree is done iteratively,

removing the least important nodes during each pruning cycle. The structures

of the cross-validated trees, which will almost certainly differ from each other

and the reference tree, are not considered; the only function for these trees is

to find the optimum size for the reference tree.

Assigning classes to terminal nodes

When all of the cases in a terminal node share the same class the

allocation of a class to the node is trivial. However, it is common to have terminal

nodes with mixed classes. In such cases a rule is needed that decides on a class

identity. The simplest rule is a majority vote in which the assigned class is the

one with the most cases, albeit with some additional rule to deal with ties.

The allocation of class labels becomes a little more complex if prior probabilities

or costs are taken into account. Misclassification costs are described in more

detail in the next chapter but they make allowances for the inequality of

mislabelled classes. For example, labelling a malignant sample as benign is

amore expensive mistake than the reverse. Once costs are included the aim of the

classifier becomes one of minimising costs rather than errors. This can affect

the structure of the tree by altering threshold values to favour the most expen-

sive class and it can affect the allocation of class labels by effectively weighting

the cases. This means that cases in the terminal node may be assigned to

a minority class because this is the least expensive outcome. If an algorithm does

not explicitly incorporate costs it is sometimes possible to alter the class prior

probabilities so that the decision tree favours class allocations to the most

expensive class.

Missing values

If a predictor value is missing, for example a sample recording failed,

it may be impossible to apply a rule to the case. Most decision tree programs deal

with this problem by using a sophisticated technique involving surrogate

variables. This method uses the values from non-missing variables to estimate
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the missing value. For example, if two predictors, such as height and weight, are

highly correlated it may be possible to obtain a reasonable estimate of a missing

weight value from the height of a case. The implementation of surrogate

variables is more sophisticated than a simple correlation and does not assume

that surrogates are global, instead they are adjusted depending on the identity of

the cases in the node. Usually, the selected surrogate variable is the one which

generates a split of the current node that is the most similar to that achieved

using the original variable.

6.2.2 Example analysis

This example analyses the cancer data from Section 5.4.3 using the

classification and regression trees algorithm (Breiman et al., 1984) from SPSS

AnswerTree 3.0. This method generates binary decision trees by splitting data

subsets, using all predictor variables, to create two child nodes. The best predictor

was chosen using the Gini impurity measure to produce data partitions which

were as homogeneous as possible with respect to the cancer class. Ten-fold cross-

validation was used to obtain the appropriately sized tree. Two analyses are

described that differ only in the misclassification costs. In the first analysis equal

misclassification costs were applied. This means that classifying a malignant

sample as benign is assumed to carry the same cost as classifying a benign sample

as malignant. In the second analysis classifying a malignant sample as benign

was assumed to be five times more costly than classifying a benign sample as

malignant.

The tree with misclassification costs is a subset of the equal cost tree.

Figure 6.3 shows the tree for unequal misclassification costs and Figure 6.4 shows

the additional nodes added to the previous tree when costs were equal. Only four

of the predictors were used, some more than once. The initial split is a very

simple and powerful filter that uses the uniformity of cell size at a threshold

of 2.5. If this is combined with a test on the bare nuclei only 5 out 239 (2.1%)

malignant samples are misclassified. This is further reduced to 2 (0.7%) if clump

thickness is also included.

Misclassification costs surprisingly come into play on the right-hand side of

the tree. It is surprising because the first node on this side of the tree (node 2)

contains mainly malignant samples. If there were no more splits below node 2

there would be no misclassified malignant cases on this side of the tree but 38

false positives (8.6% of all benign samples). What happens to this side of the tree

depends on the misclassification costs. If they are equal a more complex tree is

produced with additional splits below node 6 (Figure 6.4). This results in five false

negatives (malignant samples identified as benign) and ten false negatives. If false

positives are given a cost that is five times larger than the false negatives the tree
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halts at node 6 with one false negative and twenty false positives. This is because

the false positives are sacrificed to ‘protect’ the more expensive misidentification.

This means that, overall, the cost-sensitive tree makes more mistakes but at

a reduced cost.

6.2.3 Random forests

As with all other classifiers, decision trees have their problems. In

particular, they can be less accurate than methods such as support vector

machines and the structure of the trees can be unstable (Breiman, 1996). The

instability is often seen when small changes to the training data produce

significant changes to the tree, either in the identity of the split variables or the

value for the split. Despite these changes to the structure the accuracy may be

affected much less. Breiman and Cutler (2004a) noted that if you ‘change the

data a little you get a different picture. So the interpretation of what goes on

is built on shifting sands’. Breiman (2001a,b) developed an algorithm, called

Figure 6.3 Decision tree for the identification of samples as malignant or benign.

This tree uses unequal misclassification costs for the two classes. Predictors are:

UNIFCELL, uniformity of cell size; CLUMP, clump thickness; UNIFCE_A, uniformity

of cell shape; BNUCLEI, bare nuclei.
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RandomForests (a trademark of Salford Systems), that is said to overcome many

of these shortcomings while retaining, and possibly enhancing, their interpret-

ability. RandomForest classifiers performed well in the comparisons made by Lee

et al. (2005), in which they consistently outperformed other decision trees and

many other methods. Breiman and Cutler (2004b) listed some of the important

features of RandomForests:

. They have an accuracy that equals or exceeds many current classifiers

and they cannot overfit.

. They are efficient (fast) on large databases and can handle thousands

of predictors without selection routines.

. They estimate the importance of each predictor.

. They generate an unbiased estimate of the generalisation error.

. They have robust algorithms to deal with missing data and for balancing

the error if class proportions are markedly different.

. They compute the proximities between pairs of cases that can be used

in clustering and identifying outliers.

Figure 6.4 Decision tree (partial) for the identification of samples as malignant or

benign. This tree uses equal misclassification costs for the two classes. This tree is

identical to that of Figure 6.3 except for the additional splits below node 6.
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. There is an experimental method for detecting variable interactions.

. Generated forests can be saved for future use on other data.

The algorithm generates many trees, the forest, and each tree in the forest

differs with respect to the makeup of its training cases and the predictors used at

each node. Each training set is a bootstrapped sample, with n equal to the

original sample size, from the original data. The number of predictors for each

node in a tree (m) is set to be much less than the total available. A set of m

predictors is drawn, at random, from those available for each node in the tree.

This means that the predictors considered for the splits are unlikely to be the

same for any node in the tree. The value of m, which is the only adjustable

parameter to which random forests are sensitive (Breiman and Cutler, 2004a), is

the same for all trees in the forest. No pruning is used, instead each tree is grown

to the largest extent possible. Growing trees to their maximum extent helps to

keep the bias low.

Breiman (2001a) showed that the forest error rate depends on two things. First,

and unsurprisingly, increasing the strength (accuracy) of the individual trees

decreases the forest error rate. Second, and less obviously, there may be

a correlation between pairs of trees. As pairs of trees become more correlated

the forest error rate increases. Reducing m, the number of predictors, reduces

both the correlation and the strength. It is therefore important to find the

optimum value for m so that the correlation is reduced but without too much

effect on the strength of the trees. Fortunately it seems that the optimal range

for m is usually quite wide and an out-of-bag error rate can be used to find an

appropriate value.

Each tree is built from a bootstrapped sample that typically contains about

two-thirds of the cases. The remaining third, the out-of-bag sample, is run

through the finished tree. Some trees will correctly predict the class of these

cases others will not. The proportion of times that a case is misclassified,

averaged over all cases, is the out-of-bag error rate. The out-of-bag error rate is

also part of the recommended way of deciding on an appropriate value for m

(Breiman and Cutler, 2004a). They suggest starting with a value for m that is the

square root of the total number of predictors. About 25 trees should be run

with increasing and decreasing values of m until the minimum out-of-bag

error is obtained.

RandomForests have other advantages apart from increased prediction

accuracy. They can also be used to estimate the importance of each variable

and the associations between cases. In order to estimate the importance of

predictor p its values in the ith tree are permutated randomly among all of the

out-of-bag cases. This is a similar approach to that used in the Mantel test. The raw
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importance score for predictor p is the difference in accuracy between the tree

with the unaltered, and the permutated values, of p. If this is repeated for all

predictors across all trees it is possible to obtain a z-score for each predictor from

its mean raw importance score divided the standard error of the raw importance

scores. The z-scores can then be used to rank the predictors, with the most

important predictors having the largest z-scores. A different measure, which

appears to yield similar results, is the sum of the Gini Index which decreases

each time that a predictor is used to split a node.

The association, or proximity, between cases can be found from the number of

times that they occur together in the same terminal node. These counts are

normalised by dividing by the number of trees, producing a proximity matrix

that can be analysed using a metric scaling method (Section 2.6). Apart from

showing the proximity of cases these distance matrices and their metrically

scaled projections can be used to replace missing values, locate outliers and

investigate how the predictors separate the classes by locating ‘prototypes’.

A prototype definition for class i begins by finding the case which has largest

number of class i cases among its k nearest neighbours. Themedians of the values

for these cases, across all predictors, are the medians for the class i prototype.

The upper and lower quartiles for these neighbours also provide evidence for the

stability of the prototype medians. The procedure can be repeated to find

additional class prototypes, but with a constraint such that the cases in the

previous neighbourhood are not considered.

Liaw and Wiener (2006) have written an R function that is based on the

original Fortran program written by Breiman and Cutler. In addition to the usual

R manual pages it is worth consulting Breiman’s (2002) notes on running the

original program. The following simple example is taken from themanual for the

R randomForest function (Version 4.5-16) and uses Fisher’s Iris data (Section 2.10).

Five hundred random trees were grown with two predictors tested at each split.

The out-of-bag error rate was 5.33% (eight cases), made up of three versicolor

mislabelled as virginica and five virginica mislabelled as versicolor. While this is

about the best that any classifier can achieve with these data the analysis

provides the extra information about variable importance (Table 6.1). It is clear

that the two petal measurements are much more important than the sepal

measurements, with the same rank order across all measures: petal width 4

petal length 4 sepal length 4 sepal width.

The MDS plot (Figure 6.5) echoes all of the previous analyses with I. setosa

clearly separated from the other two species. It is important to remember that

this plot uses distances based on case proximities in terminal nodes rather than

actual floral measurements. The class prototypes, based on these 150 observa-

tions, are shown in Figure 6.6 and Table 6.2.
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Despite its many advantages RandomForests do not appear to have been

widely used in biological applications, possibly because it is such a recent

technique. Lee et al. (2005) used the method in a series of comparative tests on

various microarray data sets and it performed well. Cummings and Myers (2004)

found that RandomForests had the greatest accuracy in predicting C-to-U edited

sites while Segal et al. (2004) included RandomForests as one method used to

relate HIV-1 sequence variation to replication capacity. Prasad et al. (2006)

recommended RandomForests, and other bagging and boosting methods, as

a suitable approach for predictive mapping.

Table 6.1. Importance statistics for the four predictors

Predictor I. setosa I. versicolor I. virginica

Mean

decrease in

accuracy

Mean

decrease in

the Gini

index

Sepal length 1.15 1.99 1.69 1.36 8.12

Sepal width 0.97 �0.14 0.86 0.51 2.49

Petal length 3.73 4.44 4.23 2.51 42.68

Petal width 3.75 4.47 4.35 2.51 46.00

Figure 6.5 Multidimensional scaling plot of the between-cases proximities from

500 trees. I. setosa; filled circles; I. versicolor; open squares; I. virginica; filled triangles.
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6.2.4 Other ‘flavours’

There are many other ‘flavours’ of decision tree that differ largely in the

rules used to generate the splits and the allowable data types. Four of the more

common algorithms are described briefly in this section.

ID3, C4.5 and C5

The ID3 (iterative dichotomising 3rd algorithm) was published by

Quinlan in 1979 and evolved into the C4.5 and C5 algorithms. All three

algorithms feature prominently in artificial intelligence and machine learning

studies but are rarely encountered in biological research. These algorithms use

information gain criteria to select predictors for the splits. Information gain is

not explained in detail here but it is related to the diversity indices with which

most ecologists will be familiar. For example, the entropy of a predictor is given

Figure 6.6 Prototype centres (circle with cross) overlaid on a plot of sepal length

against petal width. Symbols are the same as in Figure 6.5.

Table 6.2. Class prototype values for the three Iris species

Species Sepal length Sepal width Petal length Petal width

I. setosa 5.00 3.4 1.5 0.2

I. versicolor 5.85 2.8 4.3 1.3

I. virginica 6.50 3.0 5.6 2.0
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by E ¼ S(�p�pi.log2 pi), where pi is the proportion of cases in class i. For example,

if there are 40 cases made up of 18 males and 22 females the entropy for gender

would be �(18/40).log2(18/40) þ (22/40).log2(22/40) or 0.993. This value is close 1.0

which would indicate that the predictor contains little information. A value

of zero arises when all the cases are in one class. If the frequencies had been 5

and 35 the entropy value would be 0.543.

Suppose that 8 of the 18 males and 20 of the 22 females are from class one,

meaning that 10males and 2 females are in class two. If gender was used as a split

the resulting nodes would have 8 class one and 2 class two cases in the male node

and 20 class one and 10 class two cases in the female node. The information gain,

which is the difference in entropy before and after considering gender as

a splitting variable, would be:

Gainðclass, genderÞ ¼ EðgenderÞ � ð10=18: Eðgender ¼ maleÞÞ
� ð20=22: Eðgender ¼ femaleÞÞ

Gainðclass, genderÞ ¼ 0:993� ð0:555:0:991Þ � ð0:909:0:439Þ
Gainðclass, genderÞ ¼ 0:048

Once the gain has been calculated for each predictor the one with the largest

value is chosen to split the node. Unlike most other decision trees a predictor can

only be used once. If gender was selected to split the first node it could not be

used further down the tree.

Because of some of the limitations of the ID3 algorithm Quinlan developed the

C4.5 and C5 algorithms. C4.5 uses continuously valued predictors by employing

a local discretisation algorithm that adjusts the categories for each node. The

other important improvements were the addition of tree pruning algorithms to

improve its performance with novel data and the incorporation of misclassifica-

tion costs. Quinlan’s web page, and the source for the commercial implementa-

tion of the C5 algorithm, is http://www.rulequest.com/.

CHAID

The CHAID (chi-square automatic interaction detection) algorithm is

another of the older decision tree algorithms and was devised by Kass (1980) as

a more robust form of the earlier AID algorithm. It is restricted to categorical

predictors, although continuous predictors can be used by first converting them

into a small number of ordinal, discrete categories. Splits are based on the

magnitude of a chi-square statistic from a cross tabulation of class against

predictor categories. The CHAID algorithm reduces the number of predictor

categories by merging categories when there is no significant difference between
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themwith respect to the class. When nomore classes can bemerged the predictor

can be considered as a candidate for a split at the node. The original CHAID

algorithm is not guaranteed to find the best (most significant) split of all of those

examined because it uses the last split tested. The Exhaustive CHAID algorithm

attempts to overcome this problem by continuing to merge categories,

irrespective of significance levels, until only two categories remain for each

predictor. It then uses the split with the largest significance value rather than the

last one tried.

The CHAID algorithm treats missing values as another predictor class, for

example gender could have three classes: male, female and unknown. It is

possible that a split at a node could be based on a missing value.

QUEST

The QUEST algorithm (quick, unbiased, efficient, statistical tree) has

been shown to be one of the best classifiers in comparison with others

(Lim et al., 2000) and it has been incorporated into a number of commercial

packages, including SPSS AnswerTree (see Figure 6.3). Details of the algorithm

are given in Loh and Shih (1997) and the program can be downloaded from

http://www.stat.wisc.edu/�loh. QUEST has been shown to be very fast: in one test

Loh and Shih (1997) report that QUEST completed one analysis in 1 CPU

second compared with 30.5 hours for an alternative algorithm. It also has

negligible variable selection bias, which is achieved by using a variety of

significance tests such as F- and chi-squared tests to select the predictor and then

employing cluster and quadratic discriminant analyses on the selected variable

to find a split point.

OC1

Decision trees that work with single variables produce splits (hyper-

planes) that are parallel to one of the predictor axes (Figure 6.2). If the splits are

linear combinations of one or more predictors the hyperplanes can be both

oblique and parallel. Figure 6.7 is an example where a tree built using univariate

splits is complex and non-intuitive, essentially building a stepped function along

the diagonal, while a multivariate split could be achieved with a single node

(if (x�y) ¸ 0 then class¼ 1 else class¼ 2). Although the use of a multivariate linear

combination significantly reduces the tree complexity it usually comes with the

disadvantage that ease of interpretation has been sacrificed. OC1 (oblique

classifier 1; Murthy et al., 1994) is a decision tree that is capable of producing

oblique hyperplanes from numeric (continuous) predictor values. Although the

splits aremultivariate rather than univariate Murthy et al. (1994) prefer to refer to

the splits as oblique rather than multivariate because the latter term includes
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non-linear combinations of predictors that would produce curved surfaces. OC1

was recently used as part of a system to predict gene models (Allen et al., 2004).

OC1 can be obtained from http://www.cs.jhu.edu/�salzberg/announce-oc1.html.

6.3 Support vector machines

Support vector machines (SVMs) are one of the most recently developed

classifiers and build on developments in computational learning theory.

They are attracting attention, particularly in bioinformatic applications, because

of their accuracy and their ability to deal with a large number of predictors,

indeed they appear to be relatively immune to the ‘curse of dimensionality’.

Unfortunately, descriptions and explanations of SVMs are heavily mathematical

and the following explanation is a considerable over-simplification. More detail

is provided by Burges (1998). This is an excellent tutorial which uses the

VC dimension as a starting point and presents proofs of most of the main

theorems. There is a less mathematical description of SVMs in Burbidge et al.

(2001) who show that a SVM outperforms a neural network and decision tree

Figure 6.7 An example in which univariate splits produce a complex tree but a single

multivariate split (x� y ¸ 0, diagonal line) will produce complete separation. The splits

were created by the classification and regression tree from SPSS AnswerTree 3.0

algorithm (not all splits are shown). The shaded area highlights the regions separated

by the first split.
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in a structure�activity problem related to drug design. DTREG is a commercial

classification and regression tree program and its website a very clear graphical

explanation of the SVM algorithm (http://www.dtreg.com/svm.htm).

Most of the previous classifiers separate classes using hyperplanes that split

the classes, using a flat plane, within the predictor space. Unfortunately, in many

non-trivial problems, a perfect linear separator does not exist. SVMs extend the

concept of hyperplane separation to data that cannot be separated linearly, by

mapping the predictors onto a new, higher-dimensional space (called the feature

space) in which they can be separated linearly (Figure 6.8). Although it is possible

to separate the classes in any training set, given a sufficiently large feature

space, this incurs computational and mathematical costs, while simultaneously

running the risk of finding trivial solutions that over-fit the data. Consequently,

the SVM algorithm includes methods that aim to avoid this over-fitting. This is

achieved by using an iterative optimisation algorithm which seeks to minimise

an error function. The error function is not a simple count of the incorrectly

classified cases, instead it incorporates a user-defined constant that penalises the

amount of error in class allocations. In general, these misclassifications should

only arise if the wrong kernel function has been selected or there are cases in

different classes (possibly mislabelled) which have the same predictor vectors.

If the constant is set to a high value it could result in a classifier that performs

well with training data but poorly with new data.

The method’s name derives from the support vectors, which are lists of the

predictor values obtained from cases that lie closest to the decision boundary

separating the classes and are, therefore, potentially the most difficult to classify.

It is reasonable to assume that these cases have the greatest impact on the

location of the decision boundary. Indeed, if they were removed they could have

large effects on its location. Computationally, finding the best location for the

decision plane is an optimisation problem thatmakes uses of a kernel function to

Figure 6.8 Diagrammatic representation of the hypothetical decision boundaries

for two classes in the original (left) predictor space and transformed (right)

feature space.
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construct linear boundaries through non-linear transformations, or mappings,

of the predictors. The ‘clever’ part of the algorithm is that it finds a hyperplane in

the predictor space which is stated in terms of the input vectors and dot products

in the feature space. A dot product is the cosine of the angle between two vectors

(lists of predictor values) that have normalised lengths. The dot product can then

be used to find the distances between the vectors in this higher dimensional

space. A SVM locates the hyperplane that separates the support vectors without

ever representing the space explicitly. Instead a kernel function is used that plays

the role of the dot product in the feature space.

Figure 6.8 is a diagrammatic simplification of the process. The two classes can

only be separated completely by a complex curve in the original space of the

predictor. The best linear separator cannot completely separate the two classes.

However, if the original predictor values can be projected into a more suitable

‘feature space’ it is possible to separate completely the classes with a linear

decision boundary. Consequently, the problem becomes one of finding the

appropriate transformation.

The kernel function, which is central to the SVM approach, is also one of the

biggest problems, particularly with respect to the selection of its parameter

values. It is also necessary to select the magnitude of the penalty for violating the

soft margin between the classes. Thismeans that successful construction of a SVM

requires some decisions that should be informed by the data to be classified.

Finally, they can also be relatively slow because of their algorithmic complexity.

Despite these problems the SVM approach has shown great promise and there are

quite a large number of examples of their use to classify sample types using

microarray data. For example, Brown et al. (2000) tested SVMswithmicroarray data

and used one to predict functional roles for uncharacterised yeast ORFs based

on their expression data and Furey et al. (2000) used one to identify a mislabelled

case before completely separating two classes. Rogers et al. (2005) is a survey

of class prediction methods using microarray data and uses a SVM in an example

analysis.

6.4 Artificial neural networks

6.4.1 Introduction

When the field of artificial intelligence (AI) was founded in 1956 it was

generally believed that machines could be made to simulate intelligent

behaviour, and by the 1960s there were two main AI branches personified by

two of the early pioneers. Minsky, at MIT, was concerned with a symbolic

approach to AI. This symbolic, rule-based, approach is closely linked to expert
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systems and programming languages such as LISP and Prolog. Rosenblatt, whose

origins were in psychology, used a connectionist approach to AI that was based

on a simplified biological neural network. The early promise of the connectionist

approach was almost fatally damaged by a highly critical evaluation of its

limitations (Minsky and Papert, 1969). However, the connectionist approach was

rejuvenated in the 1980s, particularly following the publication of McClelland

and Rumelhart’s (1986) influential book Parallel Distributed Processing.

Artificial neural networks belong to a class of methods variously known as

parallel distributed processing or connectionist techniques. They are an attempt

to simulate a real neural network, which is composed of a large number of

interconnected, but independent, neurons. However, most artificial neural

networks are simulated since they are implemented in software on a single

CPU, rather than one CPU per neuron.

It is generally considered that neural networks do well when data structures

are not well understood. This is because they are able to combine and transform

raw data without any user input (Hand and Henley, 1997). Thus they are of

particular value when, as is the case for many ecological examples, the problem is

poorly understood. If there is considerable background knowledge, including

knowledge of probability density distributions, it is usually better to use methods

that incorporate this information (Hand and Henley, 1997).

It is probably safe to say that these methods have not delivered all that

was originally expected of them. This failure to deliver fully is possibly a conse-

quence of too much expectation combined with their frequent inappropriate use

(see Schwarzer et al. (2000) for detailed examples). Many artificial neural networks

replicate standard statistical methods, but with the added complication of a lack

of transparency. In general, they perform well when the main requirement is for

a ‘black box’ classifier rather than a classifier that provides insight into the

nature of class differences.

Only a brief outline of the details is given below. There are many sources

which provide detailed accounts of the algorithms or how neural networks relate

to statistical techniques, such as generalised linear models. Six particular sources

are recommended. Undoubtedly the most important book is Ripley’s (1996)

Pattern Recognition and Neural Networks. Boddy and Morris (1999) describe, amongst

others, the background to multilayer perceptrons and radial bias function

networks, set within the context of automated species identification. Cheng

and Titterington (1994) and Sarle (1994) review the links between neural

networks and statistical methods. Goodman and Harrell (2001a,b) provide very

useful descriptions of multilayer perceptrons and their links to generalised

linear modelling. The background to multilayer perceptrons is set in the con-

text of their very powerful and free NEVPROP neural network software
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(Goodman, 1996) that is used elsewhere in this section. Finally, there are the

neural network FAQs at ftp://ftp.sas.com/pub/neural/FAQ.html. These FAQs were

last updated in 2002.

6.4.2 Back-propagation networks

An artificial neural network is composed of a number of relatively simple

processing elements called nodes or neurons. A node converts a weighted sum of

inputs to a bounded (0�1) output value. The conversion of the weighted sum to

the output is carried out by a transfer function that is typically sigmoidal, for

example the logistic function in which the output is 1/(1 þ e�input), where the

input is Swi.pi þ constant. In neural network terminology the constant is known

as the bias. The structure of a single node is summarised in Figure 6.9. Although

there is only one processing node in Figure 6.9 the resulting network is

equivalent to the logistic generalised linear model (GLM) described in the

previous chapter.

The power, and problems, of neural networks comes from having a network

with more than one node, possibly arranged in interconnected layers.

The number of inputs will be fixed by the number of predictors and the

number of outputs is fixed by the number of classes. Only one output is required

for two classes. However, there is great potential for flexibility between the

input and output layers. A typical neural network, although there are many

other architectures, would have three layers: input; hidden (middle); and output.

The example shown in Figure 6.10 also has a skip-layer connection for one of the

inputs. This type of network is known as a multi-layer perceptron. The network

Figure 6.9 Structure of a stylised neural network node. wi are the weights connecting

the predictor (pi) values to the node which uses a logistic transfer function (shown

at the lower right).
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in Figure 6.10 has 25 weights: four from each of the five input nodes to the hidden

layer; four from the hidden layer to the output node; and one on the skip-layer

connection. Because of this complexity it is probable that the network would be

reasonably tolerant of missing values. It also means that the network’s model of

the relationship between the predictors and the class (the output) is dispersed, or

distributed, through its weights. Unfortunately, the distribution of the learned

relationship, amongst the weights, makes them difficult to interpret.

The problem that must be solved is finding appropriate values for these

weights to maximise the accuracy of the predictions given a set of training data.

This is achieved via a series of iterative adjustments to the weights during a

training phase. One of the most common algorithms used to implement this

training is known as back-propagation although there are others such as the

Levenberg�Marquardt algorithm and conjugate gradient descent.

The network begins with randomised values for the weights. At this point

there is no reason to believe that the network will perform any better than

chance. The first case is presented to the network and its inputs pass through the

25 weights and five transfer functions to produce a real-valued output within the

range 0�1. In a simple two-class problem the two classes would have the values

0 and 1. If a simple threshold is applied the case will have a predicted class of

0 if the output is less than 0.5 and class 1 if the output is greater than 0.5.

Figure 6.10 Generalised artificial neural network with three layers. The input

layer (open boxes) has five nodes that are fully interconnected to four nodes (filled

circles) in a hidden layer that are, in turn, connected to a single output (triangle)

node. In addition, the first input node has a direct, skip-layer, connection to the

output node.
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Any difference between the actual class and the output is a measure of network’s

current inaccuracy which is due to inappropriate weights. The error can be

corrected if the weights are adjusted. The problem is deciding which weights to

adjust since they may differ in their contributions to the prediction error. It is

also reasonable to assume that the magnitude of the adjustment should take

account of the size of the error. If the error is small only small weight adjust-

ments are required. The back-propagation weight correction algorithmmeasures

how the error is propagated back through the network’s weights. After the

weights have been adjusted the next case is applied to the network and the

weight adjustment procedure is repeated. Once all of the cases in the training set

have passed through the network one epoch has been completed. The entire

training cycle may require hundreds of epochs, the end point being determined

by some pre-specified termination criterion such as a minimum error rate.

The rule by which individual weights are adjusted takes account of the size of

the output error and the magnitudes of the outputs from the nodes feeding

directly, or indirectly, into the output node. If it is assumed that nodes with the

largest outputs make the largest contribution to the output error then their

weights should experience the largest changes. The mathematical details and

proofs are widely available and are not given here. However, a simplified version

is that the change in weight for a node is equal to its error multiplied by its

output. The weight changes are moderated by a learning rate that alters the rate

of change. This is needed to avoid a situation in which weights oscillate either

side of their optimum values. In order to minimise training times, whilst also

avoiding the trap of becoming stuck in a local minimum, a momentum term is

also applied. The momentum takes account of the magnitude of the previous

weight change and adjusts the current weight change to take account of this by

reinforcing changes that are in the same direction. Essentially, this accelerates

the rate of change when it is appropriate.

Deciding when to stop training is important because if a network is over-

trained its future performance will be compromised. Usually, a decision to halt

training is based on the size of the training error that is measured as the sum

of squared errors. In a statistical model there are well-defined rules that

guarantee to find the parameter values that minimise the error. However,

because network training is heuristic the rules do not exist and judgement

has to be employed instead. In order to avoid over-fitting, part of the data is

reserved for testing. If the network becomes over-trained the test error will

begin to rise, even though the training error may still be declining. An increase in

the testing error is an indication that training should stop. Ideally the network

should experience a final test using a third set of data that played no part in

the training.
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6.4.3 Modelling general and generalised linear models with neural networks

Despite their biological inspiration many neural networks are really

re-badged statistical techniques. Indeed Goodman (1996) refers to his NevProp

neural network software as a multivariate non-linear regression program.

As shown below many of the statistical classifiers can be duplicated by an

appropriate network design. Goodman and Harrell (2001a,b) have proposed a

formalised method for deciding if a neural network should be used in preference

to a GLM. The only circumstances that they recommend a neural network over

a GLM are when the relationships between the class and predictors involve both

non-linear relationships and between-predictor interactions. In such circum-

stances it is probably more efficient to use a neural network. However, Goodman

and Harrell (2001a,b) emphasise an important difference between the two

approaches that extends across all of the classifiers described in this book. The

statistical approach to classifiers tends to concentrate on the parameter values

and their significance levels as a guide to the adequacy of the model. The wider

machine learning approach, which certainly applies to neural networks, is less

concerned with predictor values and more concerned with the classifier’s

accuracy when presented with novel data.

A number of network designs are described in this section and associated

with specific statistical models. Most of these designs are then used, and

compared, in Section 6.4.6. As shown in Figure 6.11, a simple network with one

processing node is effectively a GLM. Each predictor is linked by a single weight,

or coefficient, to the output node where a logistic transfer is applied to convert

the weighted sum to an output within the range 0 to 1. When statistical models

are built it is usual to investigate if various predictor transformations can

improve the fit.

Figure 6.11 A ‘transforming’ neural network in which each predictor input has its

own hidden layer of three nodes.
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If a single hidden layer neural network is constructed, with fully connected

links between the input nodes and the hidden nodes, the network can model,

simultaneously, predictor transformations and interactions. The complexity of

these transformations and interactions is controlled by the size of the hidden

layer. Goodman and Harrell (2001a,b) suggest two parallel analyses, following on

from suitable exploratory analyses, which compare the results from a generalised

model with those of a neural network with a single hidden layer. The GLM should

not include any interactions or predictor transformations. The comparisons

between the two classifiers should include the AUC of a ROC plot (Section 7.7) and

Nagelkerke’s R2. If the predictive accuracy of this network is not significantly

better than the GLM there are two conclusions. Firstly, there is no point using

a neural network and, secondly, there is no need to consider incorporating

interactions or predictor transformations into another iteration of the GLM.

If there had been important interactions or required transformations the

network’s accuracy would have been superior.

If the network’s accuracy was significantly better there must have been

interactions and/or transformations missing from the GLM. The next step

recommended by Goodman and Harrell (2001a,b) depends on the data types

of the predictors. If all of the predictors were binary the network’s improvement

was due to interactions and it is probably worth continuing to use the network

or spend time trying to identify the important interactions for inclusion in the

GLM. However, if the predictors are non-binary it is necessary to isolate inter-

action improvements from those created by transformations. This can be

achieved by creating a neural network that cannot model interactions but can

transform the predictors automatically. A transforming network has a hidden

layer in which groups of hidden nodes are connected to only one of the inputs

(Figure 6.11). This hidden layer, made up of node clusters, performs the necessary

transformations, without a need to specify a functional form. As the size of the

transforming layer is increased the transformations can become arbitrarily

complex and serve a similar function to the smoothing function in a generalised

additive model (GAM) (Section 5.6). If this transforming network performs as

well as the original network the improvement was due to transformations

rather than interactions. It is probably worthwhile finding suitable transforma-

tions to include in a GLM. However, if the transforming network is not

as accurate as the original network it is worth considering using a neural

network.

A GAM can be fully simulated by adding a second hidden layer. For example,

using the network in Figure 6.11, each set of transforming nodes would

be connected to only one of five nodes in the second layer. These are
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then connected to the output. In this way each predictor is subjected to

a smoothing function before feeding in a GLM (the second hidden layer plus

the output).

Although these comparisons may sound like a very time-consuming process,

Goodman and Harrell (2001a,b) point out that using neural networks in this

exploratory role avoids the need to spend time trying to refine a GLM when it is

not needed or possibly too complex. It also provides a solid case for the use of

a neural network when it is justified.

6.4.4 Interpreting weights

One of the most important disadvantages that is often cited for neural

networks is that they are black boxes. Even if they are accurate it is difficult to

understand the relationship between the predictors and the class. The problem is

that a predictor’s contribution can be spread across several nodes and layers. The

interpretation is further complicated by the non-uniqueness of a particular

weight matrix. For example, changing the order in which cases are presented to

the network, or the values for the initial weights, will probably alter the final

weight distribution, even if it has no effect on the accuracy. Consequently, there

are no simple rules for directly interpreting the weights.

Intrator and Intrator (2001) and Goodman (1996) both describe methods that

allow some interpretation of the contribution made by each predictor to the

outcome. Bothmethods make use of the fact that, in a back-propagation network,

a predictor’s generalised weights have the same interpretation as the weights

in a logistic regression (Section 5.4), i.e. their contribution to the log odds.

If a predictor could have a positive effect for some cases, and a negative effect for

others, it could lead to a mean effect of zero, but with a large variance. A small

variance in the generalised weights would arise when a predictor’s effect was

consistent suggesting a linear relationship (Intrator and Intrator, 2001), while

a large variance is suggestive of a non-linear effect. Details of the algorithms are

not given here but both use repeated simulations to explore the variability

in weights. Intrator and Intrator (2001) stress that weight interpretation, using

their method, is only possible if a skip-layer architecture is used. This means that,

in addition to any hidden layer connections, there is a direct connection between

the predictor inputs and the output layer. Goodman and Harrell (2001a) also

recommend these skip-layer connections because they represent direct linear

effects of the predictors and they tend to add stability to the network whilst

also decreasing the time needed to train the network. Goodman’s NevProp

software also includes an option to apply a Bayesian method called auto-

matic relevance detection to rank the predictors by their importance to the

network.
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Geverey et al. (2003) and Olden et al. (2004) are empirical tests of a range of

weight interpretation algorithms. Geverey et al. (2003) used a ‘real’ data set while

Olden et al. (2004) applied the methods to an artificial data set whose structure

was known. Olden et al. (2004) compared the ranked predictor importance across

the weight interpretation algorithms and their correspondence to the real

structure of the data. They concluded that one of the simplest methods, the

connection weight approach, was the best. This approach is illustrated in the

worked example (Section 6.4.6) and compared with the automatic relevance

detection rankings from NevProp.

6.4.5 Radial bias function networks

Although it may not be immediately apparent a multilayer perceptron

neural network constructs hyperplanes to divide up the predictor space between

the classes. It is also possible to divide up space using spheres, or hyperspheres as

they are known when there are more than three dimensions. At its simplest

a hypersphere is described by its centre and radius. However, it is more useful

if the hypersphere takes account of the position of cases within the sphere, in

particular their distance from the centre. This is possible if the sphere, or kernel

as it is more generally known, is described by function such as the Gaussian

(normal distribution). A network constructed to use hyperspheres instead of

hyperplanes is known as a radial basis function (RBF) network. RBF networks have

a number of advantages over multilayer perceptrons and they have proven to be

very successful at species identification tasks (see Boddy and Morris (1999) for

examples). Their first advantage is that some of the design decisions are removed

because they can model any non-linear function using a single hidden layer.

However, there are other important decisions, described below, that will affect

the network’s performance. Their second advantage is that they do not require

the same amount of training because standard linear modelling techniques can

be employed. In addition to being much faster the linear modelling methods are

not heuristic and so they do not suffer from the local minima problems which

can be a problem for multilayer perceptrons.

The data are generalised by kernels, or basis functions and the trick is to find

the appropriate number, parameters and locations for them. The number of

kernels is equal to the number of hidden layer nodes. The kernel centres are

initially placed at random locations before their positions are adjusted using

a variety of methods. For example, randomly selected cases from the training

data could be used but sampling error may create problems if the hidden layer is

small (only a small sample of points would be used). Alternatively, a method such

as k-means clustering could be used to find the kernel centres and to place each
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case into a cluster. A Gaussian kernel is characterised by its location and its

spread. The spread, or smoothing factor, must also be determined. If the spread is

small the Gaussian kernels are very spiky and the network will interpolate

poorly, resulting in poor generalisation. Alternatively, if the spread is too wide

the detail may be lost. As a guideline the spread is usually selected so that each

kernel overlaps a few centres of neighbouring kernels. Although the spread of

a kernel can be user-defined they are usually determined by the data during one

of the training passes. Generally, the kernels will not all have the same spread

since smaller kernels are appropriate if there is a high density of points in one

region.

The network is trained by only two passes through the training data. During

these passes the kernel spreads and output layer weights are set. The output

weights connect the hidden radial units to an output layer which is made up

of standard nodes with linear transfer functions. The output from each kernel,

for a particular case, is a function of the distance between the case and the

kernel’s centre. These outputs are processed by the output layer’s weights and

transfer functions to produce an output which determines the predicted class for

a case.

Despite their undoubted advantage they have disadvantages. For example, RBF

networks may not extrapolate well with novel data that is at, or beyond, the

periphery of the training data. This is because this region of predictor space will

be poorly represented by the kernels.

6.4.6 Example analysis

The cancer data set (Section 5.4.3) is analysed using Goodman’s (1996)

NevProp software. Apart from being freely available, NevProp also provides great

flexibility in the design of the networks and comprehensive summary informa-

tion about the analyses. Three network designs are tested and the results are

compared with the logistic regression and GAM results from the previous

chapter. The three designs are:

1. No hidden layer � a GLM equivalent to logistic regression.

2. A single, fully interconnected, hidden layer � a GLM that includes

automatic detection of interactions and the application of suitable

transformations.

3. A single, clustered, transforming hidden layer (Figure 6.11) � a GLM

equivalent to logistic regression but with automatic predictor

transformation and no interactions.
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The data were split into a training component (two-thirds or 454 cases) and

a testing component (one-third, 228 cases). The testing component was withheld

for final testing once the networks had been trained, i.e. these data played no part

in the training of the networks. The networks were trained in two phases. In the

first phase, five cross-validated splits of the training data were used to build

networks in which the performance was assessed on the withheld segment of the

training data. Five splits were used to reduce the variance in the error that always

arises during cross-validated training. The cross-validated splits used 70% of the

training data to estimate the weights while the accuracy was tested on the

withheld 30% of the training data. In the second training phase the entire

training set (484 cases) was used to fit a model. However, training halted when it

reached the criteria established during the first training phase. Once the final

network had been trained it was tested using the separate test set.

One of the difficulties in designing a neural network is ensuring that the

network does not become too complex, i.e. too many weights, for the problem.

NevProp has a non-linear extension of ridge regression, plus a hyper-parameter,

that adjusts a penalty for groups of units, according to the number of well-

determined parameters. All of the networks appeared to have approximately

the correct number of weights since in the first (GLM) network the number

of well-determined parameters was 9.0, or 90%, of ten weights (one each from

the nine predictors plus the bias); the second (hidden layer) network had

60.3 well-determined parameters (90%) of the 67 weights; the transforming had

73.8 well-determined parameters (90%) of 82 weights. If the number of well-

determined parameters is much less than the number of weights it suggests that

the network design should be simplified.

There was very little to choose between the networks, with respect to training

times, so the only criterion on which they can be compared and judged is their

ability to correctly classify cases, plus any benefit that they may offer over a GLM.

Accuracy was assessed, separately, for both the training and testing data using

four criteria: the numbers of false positive (benign cases misidentified as

malignant) and negative (malignant cases misidentified as benign) cases;

Nagelkerke’s R2; and what NevProp calls a c-index. The c-index is related to the

area under a ROC curve (AUC, Section 7.7). A value of 1 indicates that classes are

separated perfectly while a value of 0.5 indicates that the classifier is performing

no better than guessing. The results are given in Table 6.3. The ‘rules’ by which

the network identified the two classes were investigated using NevProp’s ARD

(automatic relevance detection) statistics and the raw input-hidden and hidden-

output weights that Olden et al. (2004) identified as the best methodology for

quantifying variable importance. These results, plus some information from the

earlier logistic regression analysis, are given in Table 6.4.
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Table 6.3 shows that there is very little to choose between the three neural

networks, with respect to accuracy. Encouragingly, the performance with the test

data was as good, or better, than the training data. This suggests that the

networks are not over-trained. There is some suggestion that including

transformations helps to improve the test-set accuracy, but the improvements

could only ever be marginal given the accuracy of the ‘glm’ network. On the

evidence from these analyses there is little to be gained from using a neural

Table 6.3. Accuracy statistics for three neural networks (‘glm’, ‘hidden’ and ‘transform’)

predicting the cancer class from nine predictors. Statistics are given for the training

and testing data

False-positives False-negatives c-index Nagelkerke’s R2

Network training testing training testing training testing training testing

glm 8 6 8 2 0.996 0.997 0.934 0.934

hidden 7 2 7 2 0.996 0.997 0.951 0.930

transform 7 3 8 2 0.994 0.997 0.945 0.924

Table 6.4. Variable importance measures for three neural networks (‘glm’, ‘hidden’ and

‘transform’) and a logistic regression (Section 5.4.3)

Connection weights ARD statistics Logistic regression

Predictor glm hidden transform glm hidden transform z value Exp(b) Coefficient (b)

Clump

thickness

�0.593 �2.456 �2.089 30.29 25.00 16.82 3.767 1.707 0.535

Uniformity

of cell size

0.052 �0.924 �1.017 0.27 4.04 12.64 �0.03 0.994 �0.006

Uniformity

of cell shape

�0.148 �1.147 �1.190 1.98 5.77 14.01 1.399 1.381 0.323

Marginal

adhesion

�0.270 �1.093 �0.412 6.28 5.11 3.96 2.678 1.392 0.331

Single

epithelial

cell size

0.015 �0.318 �0.325 0.01 0.26 2.57 0.617 1.101 0.097

Bare nuclei �0.457 �2.221 �2.033 29.03 32.87 24.43 4.082 1.467 0.383

Bland

chromatin

�0.415 �1.723 �1.737 10.34 8.76 14.96 2.609 1.564 0.447

Nucleoli �0.311 �1.339 �0.969 9.48 8.43 10.43 1.887 1.237 0.213

Mitoses �0.635 �2.564 �0.027 12.31 9.76 0.17 1.627 1.707 0.535
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network with these data. If the variable importance measures are compared

(Table 6.4) there is considerable agreement between the two neural network

measures and the logistic regression coefficients, albeit with opposite signs.

Indeed the correlation between the connection weights and the logistic

regression coefficients is �0.932. With the exception of the transforming

neural network and the GAM (Section 5.6), mitoses was one of the three most

important predictors. In the transforming neural network and the GAM, mitoses

was the least important predictor. Clump thickness was either the first or second

most important predictor across all analyses except for the GAM where it was the

fifth. This was also one of the four predictors selected by the decision tree

(Section 6.2.2). Uniformity of cell size and shape were consistently ranked

towards the bottom of the list of importance. This is an interesting comparison to

the decision tree in which uniformity of cell size was the first predictor used and

uniformity of cell shape was one of the four selected.

The fact that the hidden and transforming networks only had marginal

impacts on the accuracy of the predictors suggests that there is little need to

consider including either transformations or interactions in the logistic

regression. The correlation between the logistic regression coefficients and the

connection weights in the ‘hidden’ network is also large (0.852), again suggesting

that little was gained from the extra versatility provided by the hidden layer.

There is less agreement between the ‘glm’ or ‘hidden’ ARD statistics and the

logistic regression coefficients, perhaps supporting the view of Olden et al. (2004)

that the connection weight measure is the best summary of the relative

importance of the variables. The most significant change in importance, when

the transforming layer was used, relates to the mitoses predictor. Neither the

GAM, nor the decision tree, identified this as an important predictor yet it was

the first or second most important in the linear analyses.

These analyses followed the outline suggested by Goodman and Harrell

(2001a,b) and the general conclusion is that a standard generalised linear

regression is sufficient, although it may be worth exploring a transformation for

the mitoses predictor. They also illustrate the important fact that neural

networks are not necessarily black-box predictors and that there are methods

available that appear to provide reliable evidence for the relative importance

of the predictors.

6.4.7 Self-organising maps

Outline

The Self-organising map (SOM) algorithm was developed by Kohonen

(1988, 1990) during the 1980s as an approach to the problem of automated speech

recognition. It is an unsupervised learning method and is therefore similar to the
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methods described in Chapter 3. However, the algorithm is generally considered

to be an artificial neural network, although it can also be viewed as a general

iterative approach. One of the important differences from most unsupervised

clustering methods is that it represents the clusters on a grid, with similar

clusters in close proximity to each other. In some respects it is intermediate

between hierarchical and k-means approaches because the number of clusters is

not fixed in advance but it is constrained not to exceed the number of cells in the

grid. SOM networks are being quite widely used in the interpretation of gene

expression profiles.

A SOM can be viewed as two-layered network, with the first being an input

layer consisting of one node per variable. Each node in the input layer is

connected to every node in the second, Kohonen, layer. The size, and shape, of

this layer is set by the analyst and will be a rectangular or hexagonal grid.

The input nodes connect to the Kohonen layer via weights that are adjusted

during the training phase. The values from each case are known as input vectors

and, because each input node is connected to each Kohonen node, the input

vectors are delivered in parallel to the second layer. The algorithm calculates how

far, as a Euclidean distance, each Kohonen node’s weights are from the input

vector. The node with the smallest distance, i.e. its weights are the closest match

to the input vector, is identified as the winner in a competitive learning situation

and its weights are updated to increase the chance that the winning node will

win again given the same input vector. An important difference from other

neural network algorithms is that the weights of the winner’s neighbours

are also updated. The shape of the neighbourhood is determined by the analyst

but is usually Gaussian. The weights are updated according to a rule that

incorporates the distance from the winning node. In other words the adjustment

will tend to be larger when distances are small. The actual adjustment also

depends on the current magnitude of the learning rate. The learning rate at the

beginning of the training is large to allow for coarse modifications to the

network. However, the learning rate gradually decreases during the training

phase to ensure that the network stabilises and maps local patterns. The size of

the update region, i.e. the identity of the updated neighbouring nodes, is also

important because if it is too large small clusters may not be found and if it is

too small large-scale patterns may not be captured. As with the learning rate

the solution is to begin with a large update region which is gradually reduced

during training.

Although the SOM algorithm does not suffer from the same problems as

the hierarchical clustering algorithms there are still problems with identifying

class boundaries. It would be unwise to treat each grid in the Kohonen layer

as a separate cluster. Almost certainly clusters will be spread across several
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adjacent nodes. The difficulty is deciding which nodes should be grouped

together to form clusters. The mechanisms that have been suggested to identify

the class boundaries all involve some post-processing of the clustering results.

Example analysis

This example uses the som function (version 0.3�4) from the R package to

analyse Fisher’s Iris data (Section 2.10). The commands used to produce the

analysis are outlined below. The data file is available from the R dataset library.

The fifth column of the Iris data set contains the species names which can be

removed by creating a subset of the original data set.

iris.data <- iris[-c(5)]

The four predictors are next normalized to have amean of zero and a standard

deviation of one.

iris.data.n <- normalize(iris.data, byrow=F)

The SOM is now completed using a four by three grid with a rectangular

topology and a Gaussian neighbourhood.

iris.som <- som(iris.data.n, xdim = 4, ydim =3, topol="rect",

neigh="gaussian")

The results are summarised by a plot (plot(iris.som)) which shows how the

cases are spread between the 12 nodes in the Kohonen layer. More detailed

information about individual cases and the network structure, which are not

shown here, can be obtained using the print command (print(iris.som)).

Figure 6.12 is an edited version of the plot produced by R.

Nodes one, five and nine contain the 50 I. setosa cases which are, as in all other

analyses, separated from the other two species which overlap in the right-hand

clusters. Nodes two, six and ten are empty.

6.5 Genetic algorithms

6.5.1 Introduction

Suppose that we have a difficult problem and we do not know how to

begin finding a reasonable solution. One unlikely approach would be to begin

with a collection (population) of random solutions. As long as the performance of

each of these solutions (their fitness) can be measured it is possible to rank them.

If these candidate solutions could be coded as a series of discrete entities (genes)

then ‘better’ solutions may be found by breeding a next generation of solutions.
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Hopefully, some of these offspring will produce even better solutions. If this is

continued long enough a large space of potential solutions will have been

searched which could lead to the identification of an optimal solution. If some

biologically inspired processes, such as cross-overs and mutations, are included

this will introduce the necessary variability to the solutions, whilst simulta-

neously avoiding becoming stuck at local maxima. This approach to developing

classifiers is known as a genetic algorithm (GA).

There are some important terms that reflect their biologically inspired

background. As in biology the population is a group of individuals (classifiers in

these examples) that have the potential to exchange genetic information through

mating. The most accurate classifiers produce the most offspring for the next

generation. Each classifier, or individual, has a fitness level, which would be the

accuracy of its predictions. The difficult part of a genetic algorithm is coding

the classifier’s structure as a set of ‘genes’. Depending on the implementation

the genes may be binary bit-strings or an array of numbers. Each gene repre-

sents a discrete part of the classifier which could be, for example, the value

of a coefficient or logical operator. The system is allowed to evolve over a large

Figure 6.12 Plot of the distribution of cases across the Kohonen network. Nodes

are numbered from the lower left. The y-axis scale has standard normal deviate units

and shows the mean values for the four variables: sepal length and width and petal

length and width. (Additional information on the number of cases from each species

has been added to the plot.)
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number of discrete generations; in reality this is an iterative algorithm with

each generation being one iteration. The population is evaluated at the end

of each generation and the next generation of candidate solutions is formed

from offspring that are based on that evaluation. The important difference

between a GA and other iterative search algorithms is that the structure of

the classifier is allowed to change during mating. Normally iterative search

algorithms adjust the values of parameters by a direction and amount that is

determined by the current lack of fit. The changes in the individual classifiers,

within a GA, are not constrained in a similar way. Indeed some changes

will produce offspring classifiers that have much lower accuracy than their

parents.

Classifiers are modified via the usual genetic recombination operators:

mutation and crossover. Mutations are random changes to the value of a gene.

For example, a coefficient could increase in size while an arithmetic operator

could switch from addition to subtraction. The crossover operator swaps infor-

mation between classifiers. This could mean, for example, that an offspring

classification rule would contain the left part of one parent’s classifier function

combined with the right part of the other parent’s classifier. Because the

classifiers are graded during each generation, and the better ones have an

increased probability of producing offspring, it is expected that, over time, one

or more good classifiers will evolve. However, one of the biggest difficulties

with most GA implementations is finding a suitable way of coding the classifier

as a series of discrete ‘genes’. Although they are a little dated, the genetic

algorithm FAQs (AI Repository, 1997) are still a good source of background

information.

6.5.2 Genetic algorithms as classifiers

Stockwell (1992, 1993, 1999), Stockwell and Noble (1992) and Stockwell

and Peters (1999) were some of the first to use GA as biological classifiers.

The GARP (genetic algorithm for rule-set production) method (Stockwell and

Noble, 1992) produces a variety of rule types to predict the distribution of a

species. GARP has now evolved and is available for species distribution modelling

from http://www.lifemapper.org/desktopgarp/, while Stockwell has expanded

his ideas into his ambitious WhyWhere species mapping program (http://biodi.

sdsc.edu/ww_home.html).

BEAGLE (biological evolutionary algorithm generating logical expressions) is

an early genetic algorithm developed by Forsyth (1981) that has been used several

times as a classifier in a biological context. For example, Fox et al. (1994) used

BEAGLE to generate a set of rules that could be used to predict the presence/

absence of pochard Aythya ferina on gravel pit lakes in southern Britain.
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Fielding and Haworth (1995) investigated the generality of predictive models

(logistic regression and discriminant analysis) for predicting the distribution of

golden eagle Aquila chrysaetos nest sites. They identified several problems,

including a lack of generality and a failure to achieve reciprocal accuracy

between different regions of Scotland. One of their suggestions was that other

machine learning methods may be more capable of achieving the desired

generality. Fielding (1999a) used BEAGLE to generate rules for a rule-based expert

system (Filho et al., 1994) that could be used to predict the presence of eagle nests

from the same data set. The following four rules that BEAGLE identified did have

better cross-region predictive accuracy.

1. (Calluna AND ((Rugged terrain 4 5.8) OR (Wet heath 4= 5.0)))

2. ((Improved grassland <4 semi-improved grassland)<(((Post

canopy forest - Steep terrain) 4 6.9 4 Post canopy forest))

3. (((Rocky outcrops = 0) OR (Bog <= 2.0)) < (Land below 200m <= 12.5))

4. (Flat terrain < 7.1) AND (Pre-canopy forest + Sea) < 7.9))

It seems that some of this increased generality resulted from the incorpora-

tion of OR operators into the rules which makes allowances for regional

differences in habitat availability and choice. It is also possible to rank the

classifiers in terms of their ease of interpretation. It is usually relatively simple

to translate statistical models into ecological models; neural network models are

more difficult. In some cases the BEAGLE rules can be converted to simple

ecological relationships, for example the first golden eagle rule, others are more

obscure.

Jeffers (1996, 1999) describes the use of BEAGLE and GAFFER (South, 1994) as

classifiers. GAFFER (genetic algorithm for finding existing relationships) is

similar to BEAGLE in that it generates rule sets; however, unlike BEAGLE,

it can be applied directly to multi-class and regression-type problems. Jeffers

(1996) describes BEAGLE as an alternative to statistical methods for predicting

the class of leaves from the elm genus. Jeffers (1999) extends the examples and

includes an illustration of using GAFFER to predict the species of Iris from the

floral measurements (Section 2.10). As shown in the previous analyses it is easy to

separate I. setosa from the other two species and both BEAGLE and GAFFER

identified one rule: petal length < sepal width. If this rule is true the species is

I. setosa. BEAGLE can only be used for binary splits and it found two rules that

were successful at separating I. versicolor from I. virginica. The first rule ((petal

length � sepal width) < 1.64) or ((petal length þ petal width) < 7.36), has a 98%

success rate across the whole data set while the second rule (petal width < 1.62)

and (petal length < 4.96), has an overall accuracy of 97%.
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There are several points to note from these rules that were also apparent in

the earlier golden eagle rules. Firstly, they incorporate logical operators. They

also combine variables in a variety of ways. Finally, they use thresholds, which

mean that a rule has preconditions that determine when it can be applied.

If these conditions are not met, the rule is not used. This is similar to a decision

tree but represents an important difference from the usual general linear model.

Finally, the fact that two very different rules, with almost equal accuracy, were

produced emphasises that there are often several possible classifiers with almost

the same accuracy, but different interpretations.

Jeffer’s (1999) use of GAFFER with the Iris data reinforced the point about

alternative classifiers. Because GAFFER can discriminate betweenmultiple classes

it produced alternative rule sets that included all three species. The first rule,

which has very simple conditions had an error rate of about 5%.

If (petal length < sepal width) then Iris setosa

else, if (petal length < 4.81) then Iris versicolor

else, Iris virginica.

Two other rule sets had similar accuracy but the second one is more complex.

If (petal length =4 sepal width) then

if (petal width =4 1.65) Iris virginica

else, Iris versicolor

else, Iris setosa.

If (petal length =4 sepal width), then

if (petal width 4 sqrt(sepal width)) Iris virginica

else, Iris versicolor

else, Iris setosa.

Jeffers (1999) commented on these alternative rule sets by noting that users

were often disconcerted by the ability of the algorithms to find more than one

rule set which had a similar accuracy. However, he suggested that this is an

advantage of a rule-based approach which conforms to the logic of the scientific

method and affirms that there may well be many possible hypotheses between

which we are unable to distinguish with the available data. He also warns that it

is a salutatory lesson that many users of statistical methods should bear in

mind when interpreting their statistical models, which will be constrained

by their algorithm to always find the same rule given a set of data. Li et al. (2003)

made use of a similar property of multiple rule sets for cancer diagnosis.

However, their rules were not derived from a genetic algorithm, instead they used

multiple instances of a decision tree that used differently ranked predictors in

the root node.
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6.5.3 Feature selection using a GA

Although algorithms such as BEAGLE and GARP have been used to

generate classifiers, one of the most common roles for GA is in classifier

refinement, for example setting parameters such as the size of the hidden layer in

a neural network and selecting the ‘best’ predictors to be used with the final

classifier. Inevitably this creates a significant computational load, but this is

likely to become less significant as computing power continues to increase. It is

also important to recognise the balance between the resources, including time,

needed to collect the data and the resources needed to analyse them. An extra few

days analysing data that took months to collect, should not be viewed as a major

disadvantage.

Four examples that attempt to optimise the selection of genes as predictors in

cancer classifications are listed below. Liu et al. (2005) used a GA to select genes for

a SVM that was used in a cancer multi-class recognition problem. Using

this feature selection procedure reduced the number of predictor genes from

16 063 to 40 and yet still allowed accurate multi-class tumour identifications.

However, they also note that the random nature of the GA resulted in the

production of different independent sets of predictive genes. The existence of

multiple sets of predictor genes is analogous to the multiple rule sets reported by

Jeffers (1999), and it raises questions about their explanatory value even though

they have predictive power. Jirapech-Umpai and Aitken (2005) used a GA to select

sets of genes for a k-NN classifier. They used two approaches: the first allowed

genes to be added or deleted while the second changed the weighting for

individual genes between zero (do not use) and one (use). Deb and Reddy (2003),

in a detailed description of their approach, used a GA to optimise the predictors

for the classification of two classes of cancer. Their GA simultaneously optimised

three objectives: minimising the number of predictors; minimising the number

of incorrectly classified cases in the training data; and minimising the number

of misclassified cases in the test data. Karzynski et al. (2003) combined a GA with

a SOM to obtain a reduced number of gene expression values for their classifier

and highlighted the superiority of the GA approach for predictor selection

because of its ability to select genes that were individually bad predictors but

which become good predictors when combined with others.

6.6 Others

6.6.1 Case-based reasoning

Case-based reasoning (CBR) is a methodology that is often linked with

expert systems and aims to model human reasoning and thinking. Two of its

biggest advantages are said to be its ability to improve with time, as more
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cases are added, and its ability to adapt to changes in its data environment.

CBR algorithms are based around the principle of recognising similarities

with problems or cases that have been solved or identified in the past. This is

achieved by matching possible ‘solutions’ to a database of earlier examples.

If a match or partial match is found an answer can be provided; alternatively

the database can be adapted (revised) to take account of ‘new’ information.

One very important part of a CBR algorithm is the measurement of similarity.

This is usually achieved by calculating a bounded similarity measure that has

a range from zero (very different) to one (very similar). Because there is no

constraint on datatypes these similarities do not necessarily make use of quan-

titative concepts such as Euclidean distances. In addition, account must be taken

of the relative ‘importance’ of each variable. This is achieved by calculating

an overall similarity measure that is a weighted average of all of the individual

similarities. Watson and Marir (1994) is a comprehensive, although rather

old, review of CBR methods and applications from the ai-cbr website. The ai-cbr

site is no longer updated but does still contain some useful resources for

CBR methods.

Although CBR has been shown to be successful in commercial applications

there do not appear to be many biological applications. However, Remm (2004)

showed how CBR could be used for species and habitat mapping while Armengol

and Plaza (2003) described a new similarity measure and tested it with an applica-

tion to assess the carcinogenic activity of chemicals from a toxicology database.

6.6.2 Nearest neighbour

These are conceptually simple, and one of the oldest, classifiers. They

belong to a class of instance-based learning methods which differ from other

classificationmethods because they do not build a classifier until a new unknown

case needs to be classified. The class of a case is the majority class (vote) of its

nearest neighbours. However, this definition raises three questions. Firstly, how

is distance measured to find the nearest neighbours; secondly, how many

neighbours should be examined; and finally, are all neighbours equal?

Surprisingly, using only one neighbour appears to be quite successful. If many

neighbours are used the number of neighbours in each class is a measure of the

local class posterior probabilities.

One objective method of determining the number of neighbours (k) is by

cross-validation. A range of values for k is used and each case is classified by the

majority vote of its k nearest neighbours. The classification accuracy is checked

and the best k value is the one with the lowest cross-validated accuracy.

The distance function, and the predictors, will have a large effect on the

classifier’s performance. As with many classifiers, the inclusion of uninformative
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predictors (noise) can degrade its performance which means that predictor

selection algorithms, along with all of their problems, must be employed.

Neighbours do not need to make the same contribution to the final vote.

Unequal class proportions create difficulties because the majority vote rule

will tend to favour the larger class. One way of dealing with this is to weight

neighbours by their class prior probabilities. Voting contributions can also be

adjusted according to misclassification costs. Finally, it seems reasonable to

weight the votes by their nearness. Close neighbours have a larger weight than

more distant ones.

As with all of the other classifiers described there are many extensions

including some that combine the nearest neighbour classifier with decision trees.

Hall and Samworth (2005) demonstrated that their performance (accuracy) could

be improved by bagging (Section 4.7). However, the resample size had to be less

than 69% of the original sample if the resampling used a with-replacement

method, and less than 50% for without-replacement.

Yeang et al. (2001) is an example where a k-NN method was used, in

conjunction with others, to investigate the potential for classifying multiple

tumour types from molecular data and Jirapech-Umpai and Aitken (2005) used

a GA to select sets of genes for their k-NN classifier which predicted the class

from microarray data.

6.6.3 Combined classifiers

Different classifiers can have quite different characteristics. This means

that, for a given set of training data, their predictions may not match. This is not

necessarily a problem since it enables their predictions to be combined which

may produce a better overall performance. Although there are other techniques,

the main method of combining classifiers runs them in parallel and then passes

their predictions on to a ‘combiner’. A combiner is an algorithm which pools

together the predictions to arrive at a consensus classification for each case. The

simplest combiner uses votes to determine the prediction, while other more

complex algorithms may weight a classifier’s predictions depending on the

composition of the training data (training data may vary if they were derived

using resampling or boosting methods).

6.7 Where next?

In view of the differences between the classifiers described in this and

the previous chapter it is reasonable to ask which is the best and are some more

appropriate for particular types of problem than others. Although it is difficult to

compare classifiers (see Section 7.9), comparative studies rarely find major
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performance benefits, at least as measured by their overall accuracy. This means

that other criteria have to be used to decide between them. An ideal classifier

(Fielding, 2002) would be accurate, with utility and an ability to handle costs

(Section 7.8). Since most classifiers have approximately the same accuracy and

can incorporate costs, either implicitly or explicitly, the choice appears to rest

with their utility.

Two important utility criteria are scalability and transparency. Scalability is

measured by the performance degradation, as measured in the time taken to

arrive at an answer, as the dataset increases in size. Generally, performance will

only be an important criterion when real-time class identification is required.

The second measure, transparency, relates to the acceptance of the findings by

one’s peers. There is some evidence, at least within ecology (Fielding, unpub-

lished results), that the choice of a classifier is affected by the author’s location,

the habitat and the taxonomic group. For example, artificial neural networks

appear to be widely used in freshwater biology studies and not very often in avian

ecology, while decision trees appear most often in papers authored by people

working in North America. This suggests that the selection of a classifier may not

be based on objective criteria, rather it reflects what is acceptable by workers in

that area. There is sometimes a tendency to equate scientific acceptability with

complexity. I particularly like this quote from H. J. S. Smith: ‘It is the peculiar

beauty of this method gentlemen, and one which endears it to the really

scientific mind, that under no circumstances can it be of the smallest possible

utility.’ Although this almost certainly overstates the case, it has a germ of truth.

If a classifier, and its predictions, is to be accepted by an informed, but non-

specialist, audience transparency is essential. Three of the methods (artificial

neural networks, SVM and genetic algorithms) described in this chapter are likely

to fail this test while decision trees and CBR have simple relationships that are

easy to understand. However, most of the methods, including decision trees and

CBR, require many design decisions that often go undocumented and unjustified.

These design decisions have significant impacts on the classifier’s performance

and their subsequent generality (see Chapter 7). However, the design decisions

may not be independent of the designer’s preconceptions about the problem

leading to a potential invisible bias. Section 7.9 discusses the various approaches

that have been used to compare classifiers.
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7

Classification accuracy

7.1 Background

Probably the most important aim for any classifier is that it should

make accurate predictions. However, it is surprisingly difficult to arrive at an

adequate definition and measurement of accuracy (see Fielding and Bell, 1997;

Fielding, 1999b, 2002). Also, it may be better to think in terms of costs rather than

accuracy and use a minimum cost criterion to evaluate the effectiveness of

a classifier. Unfortunately costs have rarely been used (explicitly) in biological

studies and it is reasonable to expect some opposition to their future use.

However, in Section 7.8 it is shown that all classifiers apply costs that may have

gone unrecognised.

Ultimately the only test of any classifier is its future performance, i.e. its

ability to classify correctly novel cases. This is known as generalisation and it is

linked to both classifier design and testing. In general, complex classifiers are fine

tuned to re-classify the cases used in developmental testing. As such they are

likely to incorporate too much of the ‘noise’ from the original cases, leading to

a decline in accuracy when presented with novel cases. It is sometimes necessary

to accept reduced accuracy on the training data if it leads to increased accuracy

with novel cases. This was illustrated in the decision tree and artificial neural

network sections in Chapter 6. Focusing on the generalisation of a classifier

differs from traditional statistical approaches which are usually judged by the

coefficient p-values or some overall goodness of fit such as R2. The statistical focus

relates to the goodness of fit of the data to some pre-defined model and does not

explicitly test performance on future data, generally because of the assumptions

made about the parameters estimated by the statistics. Instead it may be better

to follow Altman and Royston’s (2000) suggestion that ‘Usefulness is determined
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by how well a model works in practice, not by how many zeros there are in the

associated P-values’.

7.2 Appropriate metrics

Accuracy is measured by some metric, the most obvious being the

percentage of cases correctly classified (CCR). However, imagine that one wants

to develop a classifier that can detect abnormal cells in a tissue sample.

These abnormal cells are present in approximately 1% of the population. It is

possible to get an impressive percentage correct with very little effort. Indeed,

the classifier’s performance will get even better as the percentage of affected

people declines. The trivial classification rule is that all samples are normal,

giving 99% accuracy with a 1% abnormality prevalence. If the prevalence is 1

in 1000 the rule has an even better 99.9% accuracy. The rule is, of course,

useless. The classifier is very accurate but has no utility. However, it is difficult to

imagine a useful classifier that could approach this level of accuracy. As long

as the prevalence is below 0.5 a CCR of 450% is guaranteed by the simple

majority rule.

Imagine another pair of classifiers that do not use trivial rules. The aim of

these classifiers is to identify species as ‘safe’ or ‘extinction prone’. The test data

consist of 100 species which are evenly split between the two classes, i.e. 50 ‘safe’

and 50 ‘at risk’. This time a trivial rule would only be expected to get 50% of the

predictions correct. Both classifiers are 75% accurate. Which is the best? Of

course, this question cannot be answered without additional information.

Classifier A got 40% of the ‘at risk’ predictions wrong while B got the same

percentage of the ‘safe’ predictions wrong and 10% of the ‘at risk’ predictions

wrong. Even though their overall performance was identical, most people would

argue that B was better because it had fewer of the most costly mistakes. As in the

previous example the two prediction errors do not carry the same cost.

These examples demonstrate that there is a context to predictions whichmust

be included in any metric. The next section identifies some of the more common

accuracy metrics and identifies some limitations.

7.3 Binary accuracy measures

The simplest classifiers make binary predictions (yes/no, malignant/

benign, present/absence, etc.). There are two possible prediction errors in a two-

class problem: false positives and false negatives and the performance of a binary

classifier is normally summarised in a confusion or error matrix (Figure 7.1)

that cross-tabulates the observed and predicted presence/absence patterns as
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four numbers: a, b, c and d. Although data in the confusion matrix are sometimes

presented as percentages, all of the derived measures in Table 7.1 are based on

counts.

The simplest measure of prediction accuracy from the confusion matrix is the

proportion of cases that are classified correctly, the CCR: (a þ d)/(a þ b þ c þ d).

However, it is possible to derive many other measures from the four cell counts

(Table 7.1).

The measures in Table 7.1 have different characteristics. For example,

sensitivity, which measures the proportion of correctly classified positive cases,

takes no account of the false positives. Conversely specificity measures the false

positive errors (see Altman and Bland, 1994). The odds ratio, which is the ratio

of presence to absence, has some interesting properties that make it useful

in other situations (see Bland and Altman, 2000). However, it can be tricky to

interpret.

Some of the measures in Table 7.1 are sensitive to the prevalence (p) of positive

cases and some can be used to measure the improvement over chance. For

example, with high prevalence it is possible to achieve a high CCR by the simple

expedient of assigning all cases to the most common group. Kappa (K), which is

the proportion of specific agreement, is often used to assess improvement over

chance. Landis and Koch (1977) suggested that K < 0.4 indicates poor agreement,

whilst a value above 0.4 is indicative of good agreement. However, K is sensitive

to the sample size and it is unreliable if one class dominates. The tau coefficient

(Ma and Redmond, 1995) is a related measure but it depends on a priori

knowledge of the prevalence rather the a posteriori estimate used by K. Although

the related NMI measure does not suffer from these problems it shows non-

monotonic behaviour under conditions of excessive errors (Forbes, 1995).

Figure 7.1 A generic confusion matrix.
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It is also important to use measures that quantify agreement and not

association. For example, a classifier that got all cases wrong would show perfect

association but no agreement. Calculating a chi-squared statistic for the

following two confusion matrices yields the same value (chi-squared ¼ 162)

even though the relationships are inverted:

5 95
95 5

95 5
5 95

Huberty (1994, p. 105) described a one-tailed test that can be used to test if a

classifier’s performance is better than could be obtained by chance by

determining if the observed (O) and expected (E) correct classification rates

differ significantly:

O ¼ aþ d

E ¼ pðaþ cÞ þ ð1� pÞðbþ dÞ

where p is the prevalence of positive cases. From these values a z score can be

obtained from z ¼ (O� E)
p
(E(N� E)/N). If p is low the calculation of E can

be adjusted to (1� p)N. This enables a test of improvement over the rate

achieved using the trivial rule of assigning all cases to the negative group.

Table7.1. Confusionmatrix-derivedaccuracymeasures.N is thenumberof cases (aþbþcþd)

Measure Calculation

Correct classification rate (a þ d)/N

Misclassification rate (b þ c)/N

Overall diagnostic power (b þ d)/N

Sensitivity a/(a þ c)

Positive predictive power a/(a þ b)

Specificity d/(b þ d)

Negative predictive power d/(c þ d)

False-positive rate b/(b þ d)

False-negative rate c/(a þ c)

Odds ratio (ad)/(cb)

Kappa statistic
ðaþ dÞ � f½ðaþ cÞðaþ bÞ þ ðbþ dÞðc þ dÞ�=Ng

N � f½ðaþ cÞðaþ bÞ þ ðbþ dÞðc þ dÞ�=Ng

NMI 1�
a: lnðaÞ � b: lnðbÞ � c: lnðcÞ � d: lnðdÞ
þðaþ bÞ: lnðaþ bÞ þ ðc þ dÞ: lnðc þ dÞ

n o

N: lnN � ½ðaþ cÞ: lnðaþ cÞ þ ðbþ dÞ: lnðbþ dÞ�
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7.4 Appropriate testing data

Although there are legitimate concerns about which of the previous

measures should be used to assess the predictive accuracy of a classifier there are

even greater concerns about which data should be used for its calculation.

A classifier has little merit if its predictions cannot be, or are not, assessed for

their accuracy using independent data. In other words it is important to have

some idea about how well the classifier will perform with new data. This is

important because the accuracy achieved with the original data is often much

greater than that achieved with new data (Henery, 1994). Consequently, it is

generally accepted that robust measures of a classifier’s accuracy must make use

of independent data, i.e. data not used to develop the classifier. The two data sets

needed to develop and test predictions are known by a variety of synonyms.

The terms ‘training’ and ‘testing’ data are used here. The problem now becomes

one of finding appropriate training and testing data. A more robust test uses

three data sets: training, validation and testing. The training and validation sets

are equivalent to the training and testing sets in the two-set example. When there

are three data sets the test set is not used until the final classifier has been

developed. In this way it is not used to tune the performance of the classifier

and therefore provides a more independent test of performance.

7.4.1 Re-substitution

The simplest, and least satisfactory, way of testing the performance of

a classifier is to apply it to the data that were used to develop it. This method

is called re-substitution. The problem is that re-substitution provides a biased

over-assessment of the classifier’s future performance. One explanation for this is

that the form of the classifier may have been determined by some model-

selection method (equivalent to stepwise selection of predictor variables in

a multiple regression). An inevitable consequence of the model selection process

is that the final model tends to ‘over-fit’ the training data because the classifier

has been optimised to deal with the nuances in the training data. This bias may

still apply if the same set of ‘independent’ testing data has been used to verify the

model selection (Chatfield, 1995). Lin and Pourhmadi (1998) suggested that

extensive ‘data mining’ for the appropriate model produces small prediction

errors for the training data but at the cost of a significant loss of generality.

Consequently, the best assessment of a classifier’s future value is to test it with

some truly independent data; ideally a sample that was collected indepen-

dently of the training data (this is usually termed ‘prospective sampling’).

However, a common practice in machine learning studies is to apply some

technique that splits or partitions the available data to provide the training and
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the ‘independent’ testing data. Unfortunately, arbitrarily partitioning the

existing data is not as effective as collecting new data.

7.4.2 Hold-out

At its simplest, partitioning involves the splitting of data into two

unequally sized groups. The largest partition is used for training while the

second, or hold-out, sample is used for testing. In reality, this type of data

splitting is just a special case of a broader class of more computationally

intensive approaches that split the data into two or more groups.

Huberty (1994) provided a rule of thumb for determining the ratio of training

to testing cases that is based on the work of Schaafsma and van Vark (1979).

This heuristic, which is restricted to presence/absence models, suggests a ratio

of [1 þ (p � 1)½]�1, where p is the number of predictors. For example, if p ¼ 10

the testing set should be 1/[1 þ p
9], or 0.25, of the complete data set. An increase

in the number of predictors is matched by an increase in the proportion of cases

needed for training, thus if there are 17 predictors 80% of cases are required

for training.

7.4.3 Cross-validation

When the performance of a classifier is assessed we do not obtain its

actual error rate, rather it is estimated from an apparent confusion matrix that

was obtained, ideally, from a randomly selected member of the possible testing

set(s) (Blayo et al., 1995). Both the re-substitution and hold-out methods suffer

because they are single estimates of the classifier’s accuracy with no indication

of its precision. Estimates of precision are only possible when there is more than

one data point. However, because the number of available test sets is frequently

small the error rate estimates are likely to be imprecise with wide confidence

intervals. It can also be shown that a classifier which uses all of the available data

will, on average, perform better than a classifier based on a subset. Consequently,

because partitioning inevitably reduces the size of training set there will usually

be a corresponding decrease in the classifier’s accuracy. Conversely larger test

sets reduce the variance of the error estimates if more than one test set

is available. There is, therefore, a trade-off between having large test sets that give

a good assessment of the classifier’s performance and small training sets which

are likely to result in a poor classifier. Rencher (1995) suggested that while

partitioning should be used for model validation, all available data should

be used to develop the eventual classification rule. These guidelines relate to the

need to develop a classifier that has low bias and low variance.

One way of obtaining multiple test sets is to split the available data into three

or more partitions. The first of these methods, k-fold partitioning, splits the data
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into k equal-sized partitions or folds. One fold is used as a test set whilst the

remainder form the training set. This is repeated so that each fold forms

a separate test set, yielding k measures of performance. The overall performance

is then based on an average over these k test sets. The extreme value for k is

obtained using the leave-one-out (L-O-O), and the related jack-knife, procedure.

These give the best compromise betweenmaximising the size of the training data

set and providing a robust test of the classifier. In both methods each case is used

sequentially as a single test sample, while the remaining n�1 cases form the

training set. However, the L-O-O method can produce unreliable estimates

because of the large variance.

Kohavi (1995) investigated the performance of various partitioning methods

with six data sets and showed that k-fold partitioning was pessimistically biased

for low values of k, but when k ¼ 10 the estimates were reasonable and almost

unbiased for k ¼ 20. His recommendation, based on a method which combined

reasonable values for the bias and variance, was that 10-fold partitioning

produced the best results, as long as the folds were stratified. The folds are

stratified when the class proportions are approximately the same as those in the

complete data set. This approach works because stratifying the folds tends

to reduce the variance of the estimates.

7.4.4 Bootstrapping methods

The hold-out and L-O-O methods are two extremes of a continuum which

have different variance and bias problems. One way of overcoming these

problems is to replace both with a large number of bootstrapped samples

(random sampling with replacement; Efron and Tibshirani, 1997). In this

approach the classifier is run many times using a large number of training

samples that are drawn at random, with replacement, from the single real

training set. Because replacement sampling is used it is normal to have some

cases represented several times in a bootstrap sample, while others are not used.

It is possible to show that the probability that an individual case will not be

included as a training example is (1�1/n)n, where n is the number of bootstrapped

training samples. Because (1�1/n)n is approximately equal to e�1 (0.368), it can

also be shown that a particular case should be included in training cases 0.632n

times. Using this information a less biased estimate can be found from 0.368eb þ
0.632ex, where eb is the error from the training sets and ex is the error for cases

not included in the training set. While Jain et al. (1987) and others have

demonstrated, experimentally, that bootstrap sampling is better than other

cross-validation methods, Kohavi (1995) cautions that its low variance could be

combined with a large bias for some, but not all, datasets. Wehrens et al. (2000)

have a detailed description of bootstrapped error rates.
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7.4.5 Out-of-bag estimates

Bootstrap aggregation, or bagging, are bootstrapping methods that give

reasonable and unbiased accuracy estimates, particularly for unstable classifiers

such as decision trees. Bootstrapped samples are generated such that a ‘reason-

able’ proportion of cases are withheld from the training data. Typically about

a third of the cases are withheld. Once the classifier has been built, using

the bootstrapped sample data, it can be tested on the withheld fraction (the

out-of-bag sample). If this is repeated many times each case will have a set of

predictions from test samples. The final class prediction is the majority class for

the out-of-bag predictions.

7.4.6 Reject rates

Jain et al. (2000) discuss a useful measure of classifier performance called

the reject rate. This is the proportion of cases that the classifier’s predictions fail

to reach a ‘certainty’ threshold. If such a system is not applied some cases will be

assigned to classes with very marginal probabilities of belonging to the class.

There are many circumstances in which failure to reach a conclusion is better

than a weakly supported conclusion. A general consequence of employing

a reject rule is that overall accuracy, for the retained cases, increases.

7.5 Decision thresholds

Although many of the measures in Table 7.1 are much better than the

simplistic CCR, they fail to make use of all of the available information. Often,

the assignment of a case to a class depends on the application of a threshold to

some score, for example the output from an artificial neuron. Inevitably this

dichotomisation of the raw score results in the loss of information; in particular

we do not know howmarginal the assignments were. Thus, using a 0�1 raw score

scale and a 0.5 threshold, cases with scores of 0.499 and 0.001 would be assigned

to the same group, while cases with scores of 0.499 and 0.501 would be placed in

different groups. Consequently, if we are not going to work with the raw scores

or some other continuous variable, there are several reasons why the threshold

value should be examined. For example, because unequal group sizes can

influence the scores for many of the classifier methods it may be necessary

to adjust the threshold to compensate for this bias. Similarly, if false negative

errors are more serious than false positive errors the threshold can be adjusted

to decrease the false negative rate at the expense of an increased false positive

error rate. Other thresholds could be justified that are dependent on the intended

application of the classifier, for example a ‘minimum acceptable error’ or false

negative criterion. However, adjusting the threshold (cut-point) does not have
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consistent effects on the measures in Table 7.1. For example, lowering the

threshold increases sensitivity but decreases specificity. Consequently adjust-

ments to the threshold must be made within the context for which the classi-

fier is to be used. For example, in a conservation study, more false-positive

predictions could be tolerated for a particularly endangered species, but if the

role of the classifier was to identify sites where we could be certain of finding

a species in a field survey, the threshold would need to be adjusted to minimise

the false-positive error rates.

7.6 Example

The following example is used to illustrate most of the issues raised in

the previous sections. The data are a subset of those used by Fielding and Haworth

(1995). The aim was to construct a classifier (discriminant analysis) capable of

predicting the location of golden eagle Aquila chrysaetos nest sites (current,

alternative and historical (since 1960), n ¼ 60) on the island of Mull. The results

from a range of analyses are summarised in Table 7.2. Using these data there is

very little difference between the results obtained using re-substitution (equal

prior probabilities) and cross validation. Unfortunately we have to be cautious

about both analyses because the large number of false positives has resulted in

low PPP values. There is only a 12% chance that a predicted square actually

contains a real nest. The kappa statistic is quite low, again suggesting that the

classifier is not performing well. If the prior probabilities are changed to reflect

the class sizes, i.e. 60/1117 and 1057/1117, the CCR rises to an impressive 94.4%.

Unfortunately, the classifier can no longer correctly predict any real nest sites.

In the remainder of the analyses three partitioning schemes were used.

The first applied Schaafsma and van Vark’s (1979) rule, which uses the number of

predictors to determine the proportion of cases needed for testing. Seventy-five

percent of the cases were selected randomly for training. As might be expected

the classifier performed better with the training data. The second scheme was

a five-fold partitioning. No attempt was made to retain an equal number of nests

within each partition. Although themean values are quite similar to the previous

results, it is interesting to note the range of values obtained for these five sets.

When the second partition was used for testing the predictions were better

than those obtained with the training data! When the fifth partition was used

for testing there was a large discrepancy between the training and testing

sensitivity values. These results illustrate clearly that the performance of

a classifier is dependent on the composition of the training and testing sets.

The final partitioning scheme attempted to simulate prospective sampling.

The island is split into three geographical regions that have quite distinct
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Table 7.2. Results obtained from various permutations of training and testing data

sets for the Mull eagle data. (n ¼ number of cases, tp ¼ true positive, fn ¼ false negative,

fp ¼ false positive, sensitivity ¼ sensitivity (true positive fraction), PPP ¼ positive

predictive power, K ¼ kappa, CCR ¼ correct classification rate, EP ¼ equal prior

probabilities, CP ¼ class size prior probabilities, cross-validated ¼ leave-one-out testing.

Approximately 75% of the data were selected randomly to form the training set, the

remainder formed the test set; these proportions were determined using the rule suggested

by Schaafsma and van Vark (1979).)

n tp fn Sensitivity fp PPP K NMI CCR (%)

Re-substitutionEP 1117 44 16 0.73 317 0.12 0.13 0.10 70.2

Cross-validated 1117 42 18 0.70 320 0.12 0.12 0.08 69.7

Re-substitutionCP 1117 0 60 0.00 3 0.00 0.00 94.4

75% training 855 33 11 0.75 244 0.12 0.13 0.10 70.2

25% testing 262 11 5 0.69 81 0.12 0.11 0.07 67.2

k-fold results, k ¼ 5

Train k ¼ 2, 3, 4, 5 874 34 13 0.72 231 0.13 0.14 0.10 72.1

Test k ¼ 1 243 9 4 0.69 79 0.10 0.09 0.06 65.8

Train k ¼ 1, 3, 4, 5 895 33 16 0.67 246 0.12 0.12 0.08 70.7

Test k ¼ 2 222 9 2 0.82 51 0.15 0.19 0.17 76.1

Train k ¼ 1, 2, 4, 5 897 33 13 0.72 240 0.12 0.13 0.10 71.8

Test k ¼ 3 220 8 6 0.57 45 0.15 0.15 0.07 76.8

Train k ¼ 1, 2, 3, 5 892 36 13 0.73 255 0.12 0.13 0.10 70.0

Test k ¼ 4 225 8 3 0.73 73 0.10 0.10 0.07 66.2

Train k ¼ 1, 2, 3, 4 910 38 11 0.78 248 0.13 0.15 0.12 71.5

Test k ¼ 5 207 6 5 0.54 63 0.09 0.06 0.03 67.1

Training data mean 0.72 244 0.12 0.13 0.10 71.2

Training data standard error 0.017 4.04 0.003 0.005 0.008 0.384

Testing data mean 0.67 14 0.12 0.12 0.08 70.4

Testing data standard error 0.050 6.410 0.014 0.022 0.025 2.480

Cross-region predictions

Ben More 583 26 13 0.67 162 0.14 0.13 0.07 70.0

Test set 534 14 7 0.67 96 0.13 0.16 0.12 80.7

Ross of Mull 175 4 1 0.80 27 0.13 0.18 0.21 84.0

Test set 942 28 27 0.51 178 0.14 0.13 0.06 78.2

North Mull 359 11 5 0.69 68 0.14 0.17 0.13 79.7

Test set 758 41 3 0.93 312 0.12 0.12 0.14 58.4
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features arising from different geological conditions. The data from each region

were used for training and the classifier was tested on the other two regions.

These results illustrate some important points about accuracy assessment.

For example, if the CCR is used as an index it is apparent that the North Mull

classifier does not translate well to other regions. However, if sensitivity is used

it is an excellent classifier. This discrepancy arises because almost half of

the cases are labelled as false positives. Although it is not possible to illustrate

this here (to protect the nest site locations) the false positives are clustered

around the real nest sites. If a spatial correction is applied (Fielding and Bell,

1997) the CCR rises to 67%. When the Ross of Mull training data were used for

training a high CCR, combined with good sensitivity, was obtained. However, the

classifier performed poorly with the eagle nest site test data. Fielding and

Haworth (1995) demonstrated that the cross-region predictive success for a range

of raptors on the island of Mull, and the adjacent Argyllshire mainland, was

dependent upon the particular combination of species, training and testing sets.

There was no guarantee of reciprocity. Similar patterns of between-region

predictive failure were also found for parrots on Wallacean islands (Marsden and

Fielding, 1999).

In a final series of tests the effect of the allocation threshold was investigated.

These tests used the classifier trained on 75% of the data. The results are summa-

rised in Table 7.3. As expected changing the threshold alters the classification

accuracy. Note that the value of the kappa statistic rises as the number of false

positives declines. Unfortunately this is at the expense of true positives and

is a consequence of the low prevalence of positive locations. Selecting the

appropriate threshold for these data is dependent on the intended application.

Table 7.3. Accuracy assessment after applying different thresholds to a discriminant

score. tp¼ true positive, fn¼ false negative, fp¼ false positive, K¼ kappa (figures in italics

have p 4 0.05). See Table 7.2 for sample sizes. 0.46 is the default threshold.

Training, AUC ¼ 0.798 Testing, AUC ¼ 0.762

Threshold tp fn fp K PPP tp fn fp K PPP

�0.92 44 0 662 0.023 0.06 15 1 200 0.018 0.07

�0.46 43 1 516 0.052 0.08 15 1 171 0.041 0.08

0.00 40 4 353 0.100 0.11 13 3 120 0.073 0.10

0.46 33 11 237 0.134 0.12 11 5 80 0.114 0.12

0.92 38 6 135 0.141 0.22 9 7 41 0.199 0.18

1.38 26 16 49 0.180 0.35 6 10 20 0.227 0.23

1.84 14 30 28 0.161 0.33 4 12 10 0.222 0.29
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For example, to be reasonably certain of including 75% of nest sites in future

samples the default threshold of 0.46 or below should be applied. Conversely, if

resources were limited, the chances of finding a nest site in an unsurveyed area

(large PPP) would be maximised by applying a threshold of 1.84 or above.

7.7 ROC plots

7.7.1 Background

An alternative solution to threshold adjustments is to make use of all

the information contained within the original raw score and calculate measures

that are threshold-independent. The receiver operating characteristic (ROC) plot

is a threshold-independent measure that was developed as a signal-processing

technique. The term refers to the performance (the operating characteristic) of a

human or mechanical observer (the ‘receiver’) engaged in assigning cases into

dichotomous classes (Deleo, 1993; Deleo and Campbell, 1990). ROC plots are

described in the next section.

ROC plots have a long and extensive history in the analysis of medical

diagnostic systems, as evidenced by Zou’s (2002) comprehensive online bibli-

ography. They have also been widely used, particularly recently, in machine

learning studies. More recently, they have become one of the main methods used

to assess the accuracy of ecological presence/absence models, following the

recommendations by Fielding and Bell (1997). One of the main reasons for their

adoption by these disciplines is their ability to deal with unequal class

distributions and misclassification error costs. Fawcett (2003) has written an

excellent guide to the use of ROC plots. Although it deals mainly with their use

in comparing classifiers, it also provides a lot of useful practical and theoretical

background.

A ROC plot shows the trade-offs between the ability to identify correctly true

positives and the costs associated with misclassifying negative cases as positives

(false positives). They have great versatility and can be used to investigate, for

example:

. the effect of varying a decision threshold, i.e. the score used to split

positive and negative cases;

. the variation in performance of a single classifier over a range of

datasets;

. the relative performance of different classifiers on the same data set.

ROC plots have the great advantage of being insensitive to changes in

prevalence. For example, if the proportion of positive cases changes the ROC plot
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does not change. Fawcett’s (2003) description of how the space within a ROC plot

can be interpreted is summarised in Figure 7.2.

. The lower left point A (0, 0) is a classifier that never identifies any case as

positive. While this would mean that there were no false-positive errors,

all positive cases would be false-negative errors.

. The opposite corner, point C (1, 1), is the converse. All cases are labelled

as positives and there are now no false-negative errors

. Point B (0, 1) is the ideal classifier with perfect classification.

. Point D (1, 0) would be a strange classifier which labelled every

case incorrectly. Inverting the predictions would create a perfect

classifier.

. The diagonal line running from A to C represents chance performance;

the classifier would perform with the accuracy expected from tossing

a coin. Any classifier in the grey area below this line is performing worse

than chance.

. Any classifier whose performance in the upper left triangle is doing

better than chance. Better classifiers are towards the point of the arrow.

. Classifiers that lie close to the A�C line can be tested to determine

if their performance is significantly better than chance (see Forman,

2002).

. Classifiers to the left of the arrow are ‘conservative’, i.e. they make

positive classifications only with strong evidence. While this means that

there are few false-positive errors, they will also tend to misclassify many

Figure 7.2 Interpretation of ROC space (based on Fawcett, 2003).
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of the positive cases as negative. This means that we can be reasonably

certain about positive predictions but must be cautious with negative

predictions.

. Classifiers to the right of the arrow are ‘liberal’, i.e. they make positive

classifications with weak evidence. This means that they tend to get

positive cases correct but at the expense of a high false-positive rate.

7.7.2 ROC curves

Not all classifiers provide the continuous values needed for a ROC

plot. Consequently there is no opportunity to vary the thresholds and only

a single confusion matrix is possible, producing a ROC plot with a single point

(Figure 7.2). However, if raw scores are available they can be used to allocate cases

to classes over a range of thresholds. This series of points, one per threshold,

is then used to a produce a ROC curve.

A ROC curve is obtained by plotting all sensitivity values (true positive

fraction), on the y axis, against their equivalent (1 � specificity) values (false-

positive fraction) for all available thresholds, on the x axis (Figure 7.3). The

quality of the approximation to a curve depends on the number of thresholds

tested. If a small number are tested the ‘curve’ will resemble a staircase. ROC

curves should be convex but real ROC curves may have concave sections often

resulting from small test sets.

The area under the ROC curve (AUC) is usually taken as the index of

performance because it provides a single measure of overall accuracy that

Figure 7.3 Example ROC curves (figures in parentheses are the AUC values).
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is independent of any particular threshold (Deleo, 1993). The value of the

AUC is between 0.5 and 1.0. If the value is 0.5 the scores for two groups do not

differ, while a score of 1.0 indicates no overlap in the distributions of the group

scores (Figure 7.3). A value of 0.8 for the AUC indicates that, for 80% of the time,

a random selection from the positive group will have a classifier score greater

than a random selection from the negative class (Deleo, 1993). A value of 0.5 for

the AUC is equivalent to selecting classes using a random event such as the result

of a coin toss.

Despite its advantages, the ROC plot does not provide a rule for the

classification of cases. However, there are strategies that can be used to develop

decision rules from the ROC plot (Deleo, 1993; Zweig and Campbell, 1993).

Finding the appropriate threshold from a ROC plot depends on having values for

the relative costs of false-positive and false-negative errors. Assigning values to

these costs is complex, potentially subjective and dependent upon the context

within which the classification rule will be used (Section 7.8). As a guideline

Zweig and Campbell (1993) suggest that if the false-positive costs (FPCs) exceed

the false-negative costs (FNCs) the threshold should favour specificity, while

sensitivity should be favoured if FPCs are greater than the FNCs. Combining these

costs with the prevalence (p) of positive cases allows the calculation of a slope

(Zweig and Campbell, 1993):

m ¼ ðFPC=FNCÞ � ðð1� PÞ=PÞ

where m describes the slope of a tangent to the ROC plot if it is a smooth and

parametric curve. The point at which this tangent touches the curve identifies

the particular sensitivity/specificity pair that should be used to select the

threshold. If the ROC plot is a stepped non-parametric curve the equivalent

sensitivity/specificity pair is found by moving a line, with slope m, from the top

left of the ROC plot. The sensitivity/specificity pair is located where the line and

the curve first touch (Zweig and Campbell, 1993). If costs are equal FNC/FPC ¼ 1,

so m becomes the ratio of negative to positive cases with a slope of 1 for equal

proportions. As the prevalence declines, m becomes increasingly steep.

7.7.3 Comparing classifiers using AUC values

ROC plots can be used to compare classifiers. If the classifiers have ROC

curves, rather than single points, the area under the ROC curve (AUC) is a useful

index. This is because the AUC is equal to the probability that the classifier will

rank a randomly chosen positive instance higher than a randomly chosen

negative instance. The AUC is also closely related to the Gini index, which is

twice the area between the diagonal and the ROC curve, and the Wilcoxon test.
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Because there is no reason why a ROC curve for one classifier should be

consistently above or below that of another classifier over all thresholds it is

possible that relative performance will change with the threshold. This is a

further complication when it comes to comparing classifier performance.

It is important to remember that the classifier’s performance will have been

estimated using a sample of training cases. As such the AUC for one particular

training set is only an estimate of the classifier’s performance over all possible

data. This is potentially a problem when classifiers are compared. It is not

possible to compare single AUC estimates if there is no information about the

expected variability over a range of different training samples. Fawcett (2003)

presents details of averaging techniques that can be used to combine the results

from different test sets to obtain confidence intervals for performance.

7.8 Incorporating costs

7.8.1 Costs are universal

In all binary classifiers there are two potential mistakes. If thesemistakes

are assumed to be equivalent the optimal rule is to assign a case to the class that

has highest posterior probability, given the predictors. Typically, this will be the

largest class. If the mistakes are not equivalent it is necessary to weight them

(attach costs). Attaching costs to classification mistakes can be emotive, with

some surprising antagonism against apparently arbitrary evaluations of relative

costs. However, there are many situations in which there is an obvious inequality

in relative costs. For example, in a cancer screening programme the cost of a false-

negative error far exceeds that of a false-positive error. It is less clear what the

relative costs should be: 1:2, 1:5, 1:10, 1:100? The only certainty is that it should

not be 1:1.

In any literature review it is clear that few biological studies explicitly include

costs in the classifier design and evaluation. However, all studies implicitly apply

costs, even if the authors have not recognised it! This surprising statement

reflects the fact that a failure to explicitly allocate costs results in the default,

and least desirable, equal cost model. Unfortunately, it is impossible to provide

advice on specific values for misclassification costs because these will always

involve subject-specific judgements. In many respects this echoes Fisher’s later

view about significance levels: ‘No scientific worker has a fixed level of

significance from year to year, and in all circumstances, he rejects hypothesis;

he rather gives his mind to each particular case in the light of his evidence and

ideas’ (cited in Upton, 1992, p. 397). Interestingly, Fisher originally advocated

fixed significance levels unlike Pearson who advocated a significance level that

provided a balance between type I and type II errors.
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7.8.2 Types of cost

Turney (2000) recognised nine levels of cost in classifier design and use.

The first is the most obvious category concerning the misclassification of cases.

However, he breaks this down into five sub-categories: the most commonly used

constant cost (a global cost for each class) model; a case-specific cost that varies

between cases (for example if a class was ‘extinction prone’ the cost could take

account of the population size for each species); a case-specific cost that depends

on a value for a predictor rather than the class; a time-sensitive cost that is con-

ditional on the time of the misclassification; and a final cost that is conditional

on other errors. The other costs relate to the development of the classifier and

include costs related to obtaining the data and the computational complexity.

Hollmén et al. (2000) argue that unequal, but fixed, misclassification costs are

too coarse and that costs should be calculated separately for each case.

7.8.3 Using misclassification costs

A misclassification cost is a function of the relationship between

the predicted and actual class. These costs are relatively easily represented in

a two-class predictor but it becomes more difficult with multi-class classifiers (see

Lynn et al., 1995). If costs are applied, the aim changes from one of minimising the

number of errors (maximising accuracy) to one which minimises the cost of the

errors. Consequently, the imposition of costs complicates how the classifier’s

performance should be assessed. For example, we now need to take account of the

costs that could be incurred from the imposition of the trivial rule of assigning

cases to the least costly class. There are different methods by which costs can

be applied. Firstly, the allocation threshold can be varied (Section 7.5) so that

misclassification costs are optimised. Andrews and Metton (1987) described in

detail how this can be used with logistic regression. A second method uses case

weights or over-sampling to make the most cost-sensitive class the majority class.

In general, classifiers are more accurate with the majority class. However,

the most common method, and the one that is used in most machine learning

applications, is a cost matrix that weights errors prior to the calculation of model

accuracy. For example, in a conservation-based model we may be able to assign

weights by taking into account perceived threats to the species. However, in the

absence of clear economic gains and losses, the allocation of such weights must

be subjective. The cost associated with an error depends upon the relationship

between the actual and allocated classes. Misclassification costs need not be

reciprocal; for example classifying A as B may be more costly than classifying B

as A. Lynn et al. (1995) used a matrix of misclassification costs to evaluate the

performance of a decision-tree model for the prediction of landscape levels of

potential forest vegetation. Their cost structure was based on the amount
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of compositional similarity between pairs of groups. It is worth noting that in the

Lynn et al. (1995) example the classes are not discrete. This is an example of amore

general, but frequently ignored, problem. It is generally assumed that classes are

discrete, for example gender, and that class membership is known without error.

There are many situations where this assumption is unjustified and it becomes

necessary, but difficult, to incorporate this additional error into the supervised

classification procedure. Obviously if classes are not defined unambiguously,

it becomes more difficult to apply a classification procedure, and any measure of

accuracy is likely to be compromised. This is a problem that applies equally to

statistical procedures such as logistic regression (Magder and Hughes, 1997).

Provost and Fawcett (1997) suggested using a ROC analysis to deal with the

imprecision in class proportions and misclassification costs. Their method is

similar to that suggested by Zweig and Campbell (1993) but uses a convex hull

derived from two or more ROC curves, derived from classifiers that have different

class or cost structures, to identify potentially optimum classifiers. Provost and

Fawcett (1997) showed that the convex hull of the classifier ROC curve is the

locus of optimum performance for that set of classifiers.

Remaley et al. (1999) described an extension to ROC plots that produces a three-

dimensional, or contour, plot which combines unit cost ratios and prevalence to

identify appropriate thresholds and compare classifiers. They were particularly

concerned with ensuring that comparisons were made over a clinically realistic

range of cost and prevalence values.

7.9 Comparing classifiers

Superficially it seems that comparing classifier performance should

be simple; indeed there are many papers that compare performance within

a relatively narrow biological discipline (e.g. Brosse and Lek, 2000; Dudoit et al.,

2002; Lee et al., 2005; Manel et al., 1999a,b). While these comparisons probably

serve a useful purpose in the raising of awareness they sometimes oversim-

plify the process and generalise toomuch about their findings. Unfortunately it is

not easy to demonstrate superiority of performance, if only because there is no

single measure that should always be employed (Hand, 1997). Judging between

classifiers depends on having sensible criteria and techniques for ranking their

performance. Almost all classifier comparisons use overall accuracy as their

metric but, as shown above, this can be unreliable. Even the more robust AUC

measure can be a problem, for example when the comparison is between

a stepped and a continuous ROC function.

Before beginning any comparison it is worth remembering what Wolpert

and Macready (1995) said in their ‘no-free-lunch’ (NFL) theorem. This is a proof
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that there is no ‘best’ algorithm over all possible classification problems and

they showed that, although one classifier may outperform another on problem A,

it is possible that the ranking would be reversed for problem B. Indeed the NFL

theorem shows that it is impossible, in the absence of prior domain knowledge,

to choose between two algorithms based on their previous behaviour.

The original and additional papers on this topic can be obtained from http://

www.no-free-lunch.org.

Comparison of classifiers is an active area of research, and some controversy,

within the machine learning community (e.g. Duin, 1996; Lim et al., 2000; Mitchie

et al., 1994; Salzberg, 1997). The most comprehensive comparative study of

a range of methods is in the book by Mitchie et al. (1994). This book is based on

the EC (ESPRIT) project StatLog which compared and evaluated 23 classifi-

cation techniques over 22 real-world data sets, including an assessment of their

merits, disadvantages and application. Although it is now out of print, the

authors have made it freely available in Acrobat pdf format and it is certainly

worth reading if one intends to use a classifier. The main conclusion from the

study was, as predicted by the NFL theorem, that there was no best classifier

over the tested data sets, although the nearest-neighbour classifier and feed-

forward neural networks tended to have a good performance over a range of

data sets. A less intensive, but equally wide-ranging, series of comparisons

was undertaken by Lim et al. (2000). They investigated the performance of

22 decision trees, 9 statistical and 2 neural networks over 32 data sets. They

showed that there were no significant differences in accuracy across most of

the algorithms and any differences were so small that they had no practical

significance. Their conclusion was that the choice of classifier must be driven

by factors other than accuracy. This is reasonable since the existence of the

NFL theorem means that other factors, such as size of the training set,

missing values and probability distributions, are likely to be more important

guides to the choice of classifier algorithm. It also suggests that algorithm

comparisons should be treated with caution, or at least with a recognition that

the algorithm rankings are probably only applicable to the specific set of

data tested.

One of the difficulties with classifier comparisons is the range of comparisons

and the occasional lack of clarity in the reason for the comparison. For example,

it is possible to phrase a classifier comparison within the context of different

instances of one classifier, for example a logistic regression with different

predictor sets or different classifiers with the same data set, or the effect of class

proportions on performance, etc. The ways in which classifiers can be compared

is at least partly dependent on the rationale for the comparison, while the non-

independence of data sets creates statistical difficulties. In an attempt to
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overcome his critique of earlier comparisons Salzberg (1997) sets out a rigorous

procedure that is outlined below. Salzberg’s concerns arise from previous reviews

of classifier comparisons. In particular he cites the extensive reviews undertaken

by Prechelt (1997) and Flexer (1996) as evidence of a lack of rigour. One common

problem is the lack of independence between studies that should be reflected in

a correction to the value of alpha used when looking for evidence of significant

differences in accuracy. He also cites the common practice of classifier ‘tuning’

which goes undocumented and one of his recommendations deals with the

problems created by this practice. The importance of user-tuning, at least for

neural networks, is also highlighted by Duin (1996). Indeed he wonders if some

comparisons are more to do with the experts rather than the algorithms.

Salzberg also notes that a simple comparison of overall accuracy is inadequate.

Instead he suggests that the comparison should use four numbers that examine

how two classifiers differ with respect to individual cases. For example, both

could correctly (a) or incorrectly predict (d) the class of a case; alternatively one

or other could make an incorrect prediction (b and c). The last pair of numbers

can be used in a simple binomial test. Huberty (1994) describes how a test must

compare if (a þ b)/(a þ b þ c þ d ) is significantly different from (a þ c)/(a þ b þ c

þ d). Huberty (1994) suggests using McNemar’s test to calculate (b � c )2/(b þ c),

which has an approximate chi-squared value with one degree of freedom when

b þ c is ‘large’. Multiple comparisons can be carried out using Cochran’s Q test.

Huberty (1994) has additional details.

Salzberg’s suggested approach begins with the choice of a test data set. Ideally,

this should be capable of illustrating the new classifier’s strengths, for example

the ability to handle a large number of predictors. This should then be split into

k segments (normally k¼ 10). Each segment is withheld, in turn, while the

remaining data are split into a tuning and training segment. The tuning segment

is used to set the classifier’s parameters (e.g. size of the hidden layer in a neural

network) while the training segment is used to derive the classifier (e.g. setting

the weights in a neural network). The trained network is then tested on the

withheld kth segment. This is repeated for each withheld segment and the

classifier’s mean accuracy and variance is derived from the k accuracy measures.

Classifiers can also be compared using the binomial test or McNemar’s test

of agreement.

Duin (1996) also makes an important point about the role of a designer that

needs to be considered when comparing classifiers. Some require extensive

tuning by an expert, a feature that can be seen as both an advantage and

a disadvantage. Other classifiers require very little tuning and are essentially

automatic. Again this can be viewed as an advantage or disadvantage. He suggests

that it is difficult to compare these two groups in an objective way.
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7.10 Recommended reading

It should now be obvious that measuring accuracy, and comparing

classifiers, is not as simple as we might hope. Fortunately there are some good

resources that provide general or subject-specific advice on appropriate methods.

Undoubtedly the ROC plot is identified by most as the ‘best’ method, although it

is also important to recognise the role that bias and variance play in assessing the

quality of an accuracy estimate. Fawcett’s (2002) review of ROC plots is one of

the best, and most accessible, accounts of the theory and practice of using the

method to assess accuracy. In addition, Swets et al. (2000) wrote a popular review

of decision making that emphasised the value of ROC plots. Hand’s (1997) book

is a well-written and authoritative account that links the design of classifiers

to their assessment. Altman and Royston’s (2000) thoughtful review of model

validation, in a clinical context, raises some important issues that will benefit the

wider biological community. Finally, Baldi et al. (2000) and Fielding and Bell

(1997) wrote review articles that discuss approaches to accuracy assessment in

protein secondary structure prediction and ecological presence/absence model-

ling. Fielding (1999b, 2002) also extended his ideas with respect to ecological

models.
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Appendix A

PCA data set 1

A.1 Outline

This is an artificial data set that was created with a known correlation

structure. There are 5 variables and 30 cases. The variables fall into two related

(correlated groups), hence the effective dimensions of these data are 30 by 2.

A.2 The data

A.2.1 Descriptive statistics and relationships between variables

There are two obvious points to draw from these simple summary

statistics. Firstly, V2 has a much larger mean than any of the other variables.

Secondly, although V4 has a relatively large mean, its standard deviation is small,

since most of the other variables have standard deviations that are about 50%

of the mean.

There are two major groups of correlated predictors in Figure A.1 and

Table A.3. The first three variables, V1�V3, are quite highly inter-correlated,

particularly V2 and V3. V4 and V5 are also correlated. The only other significant

relationship is the weak, negative correlation between V1 and V5.
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Figure A.1 Scatter plot matrix, with loess smoother lines, of the five variables V1�V5.

Table A.1. The individual values

V1 V2 V3 V4 V5

1.53 114.01 0.75 12.65 1.96

0.18 79.53 0.67 13.30 5.28

1.90 105.63 0.85 12.62 1.71

0.91 45.62 0.11 13.14 6.24

1.27 79.48 0.50 12.95 3.61

1.52 52.08 0.36 12.57 4.10

1.32 83.87 0.58 12.77 2.53

1.04 33.94 0.29 12.85 0.04

0.70 72.94 0.59 12.61 4.94

1.54 34.22 0.30 12.99 3.66

0.75 50.39 0.46 12.68 6.45

1.22 35.04 0.21 12.88 2.42

1.31 65.25 0.70 12.76 3.98

0.64 0.00 0.16 12.77 3.96

0.00 39.65 0.30 12.75 4.12

1.93 74.27 0.71 12.65 0.00

2.70 96.93 0.77 12.87 1.32

1.78 65.29 0.39 12.40 1.25

1.71 70.57 0.52 12.46 1.36
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Table A.1. (cont.)

V1 V2 V3 V4 V5

0.44 75.09 0.62 12.91 4.63

2.49 124.00 0.78 13.14 3.71

1.61 101.89 0.66 12.92 3.57

0.75 15.26 0.25 12.46 0.31

0.17 5.05 0.00 12.47 1.74

1.13 33.39 0.36 12.75 0.46

1.38 81.35 0.55 13.10 4.49

0.44 34.97 0.23 12.80 4.52

0.47 17.89 0.11 12.71 3.53

1.40 60.57 0.48 12.30 0.92

0.71 56.68 0.68 12.89 3.79

Table A.2. Descriptive statistics for the five variables V1�V5

Variable Range Minimum Maximum Mean Standard deviation

V1 2.70 0.00 2.70 1.166 0.660

V2 124.00 0.00 124.00 60.160 31.758

V3 0.85 0.00 0.85 0.464 0.232

V4 1.00 12.30 13.30 12.771 0.235

V5 6.45 0.00 6.45 3.020 1.806

Table A.3. Correlation coefficients between the five variables V1�V5. Figures below the

correlation coefficients are two-tailed p values. For example, the correlation between V2

and V3 is 0.895 with a p value of 0.000 and the correlation between V1 and V4 is �0.030

with a p value of 0.877

V1 V2 V3 V4

V2 0.631

0.000

V3 0.555 0.895

0.001 0.000

V4 �0.030 0.244 0.163

0.877 0.193 0.390

V5 �0.399 0.032 �0.045 0.533

0.029 0.867 0.812 0.002
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Appendix B

Stickleback behaviour

B.1 Outline

The source of these data is unknown. I would be very happy to

acknowledge the source once it is known. There are 7 variables and 54 cases.

These data (Tables B.1 and B.2) relate to an experiment investigating the behav-

iour of male stickleback. The responses of male fish during an observation period

were recorded, these included the response to a ‘model’ male fish.

B.2 The data

B.2.1 Descriptive statistics and relationships between variables

The large standard deviations, relative to the means (Table B.3), suggest

that some of these variables do not have symmetrical frequency distributions.

Apart from bites and lunges few of the variables have large correlations

(Table B.4) and some of the relationships (Figure B.1) do not look monotonic.

It is possible that some of the significant correlations are artefacts or possibly

spurious.
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Table B.1. Variable descriptions

Variable Notes

LUNGES The number of lunges towards the model male.

BITES The number of times that the male model was bitten.

ZIGZAGS The ‘zig-zag’ display is part of display behaviour, designed to attract females.

NEST The number of nest building behaviours.

SPINES The number of times the fish raised the ‘spines’ on its back.

DNEST The duration of nest building activities.

BOUT The number of ‘bout-facing’ behaviours (male�male interaction).

Table B.2. Individual values for the seven variables

LUNGES BITES ZIGZAGS NEST SPINES DNEST BOUT

79 25 0 0 15 0 45

136 58 6 0 15 0 148

115 30 2 1 9 5 29

129 139 16 0 22 0 69

120 58 15 15 14 82 9

217 78 13 1 28 3 57

173 175 3 0 46 0 73

119 65 25 1 5 3 10

174 115 4 0 14 0 304

67 34 8 2 14 117 23

87 50 6 1 28 8 21

121 67 26 1 5 0 23

177 115 4 0 14 0 305

147 25 5 0 14 0 16

67 35 21 5 24 108 9

85 35 4 0 16 0 30

81 17 0 0 16 0 43

118 30 2 1 11 1 28

277 157 2 1 12 23 47

140 134 0 0 17 0 147

71 31 9 2 14 114 25

143 54 1 0 6 0 7

143 139 16 0 22 0 72

169 169 3 0 46 0 73

143 133 0 1 16 64 133

60 5 10 0 19 0 306

157 74 5 0 18 0 302

121 76 17 0 25 0 101
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Table B.2. (cont.)

LUNGES BITES ZIGZAGS NEST SPINES DNEST BOUT

116 61 2 0 26 0 45

159 82 4 0 17 0 298

120 85 7 3 31 122 23

67 34 21 5 25 102 28

208 59 4 1 18 133 297

156 25 4 1 13 76 6

165 102 3 0 16 0 77

137 55 2 3 7 199 8

277 152 3 1 11 19 49

147 70 7 0 11 0 153

130 69 11 0 27 0 31

142 73 7 0 12 0 158

211 80 14 1 28 2 42

132 55 6 0 14 0 152

42 4 1 2 10 136 33

108 59 1 0 28 0 41

83 30 3 4 15 177 49

125 67 11 0 23 0 36

64 11 10 0 20 0 306

117 94 7 3 31 125 20

117 54 15 15 14 85 12

124 72 17 4 25 146 78

160 108 1 0 15 0 87

204 57 4 0 17 0 303

41 3 0 0 9 0 30

96 45 5 2 27 0 6

Table B.3. Descriptive statistics for the seven variables

Variable Minimum Maximum Mean Standard deviation

LUNGES 41 277 131.19 50.77

BITES 3 175 69.06 43.43

ZIGZAGS 0 26 7.28 6.69

NEST 0 15 1.43 3.00

SPINES 5 46 18.43 8.71

DNEST 0 199 34.26 56.49

BOUT 6 306 89.31 98.68
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Table B.4. Correlation coefficients between the seven variables. Figures below the

correlation coefficients are two-tailed p values. For example, the correlation between

LUNGES and ZIGZAGS is �0.139 with a p value of 0.315

LUNGES BITES ZIGZAGS NEST SPINES DNEST

BITES 0.688

0.000

ZIGZAGS �0.139 �0.043

0.315 0.759

NEST �0.164 �0.149 0.352

0.236 0.283 0.009

SPINES 0.056 0.373 0.068 �0.053

0.690 0.005 0.626 0.706

DNEST �0.229 �0.218 0.091 0.514 �0.051

0.096 0.114 0.511 0.000 0.714

BOUT 0.233 0.117 �0.161 �0.306 �0.041 �0.242

0.090 0.398 0.246 0.024 0.766 0.078

Figure B.1 Scatter plot matrix, with loess smoother lines, of the seven variables.
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Appendix C

Bacterial data

C.1 Outline

The data (Table C.1) are part of a data set described by Rataj and

Schindler (1991). Data are presented for 6 species, most having data for more than

1 strain and 16 phenotypic characters (0 ¼ absent, 1 ¼ present). The species are:

Escherichia coli (ecoli), Salmonella typhi (styphi), Klebsiella pneumoniae (kpneu), Proteus

vulgaris (pvul), P. morganii (pmor) and Serratia marcescens (smar).

Table C.1. Presence (1) or absence (0) of 16 phenotypic traits in samples of bacteria

Taxon H2S MAN LYS IND ORN CIT URE ONP VPT INO LIP PHE MAL ADO ARA RHA

ecoli1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1

ecoli2 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0

ecoli3 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1

styphi1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0

styphi2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

styphi3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0

kpneu1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1

kpneu2 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1

kpneu3 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1

kpneu4 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1

kpneu5 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1

pvul1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0

pvul2 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

pvul3 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0

pmor1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0

pmor2 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

smar 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0
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Appendix D

The human genus

D.1 Outline

This analysis uses data (Table D.1) extracted from Table 5 in Wood and

Collard (1999). There are 12 gnathic variables from 8 taxa related to the present

day Homo sapiens. Wood and Collard conclude that H. habilis and H. rudolfensis do

not belong in the genus and that the earliest taxa to satisfy the criteria are

H. ergaster or early African H. erectus. The other genera are Paranthropus and

Australopithecus.

D.2 The data

D.2.1 Descriptive statistics and relationships between variables

It is very clear from Figure D.1 that most of the variables are highly

correlated and contribute little independent information. If the data are

subjected to a principal components analysis 89% of the variance is retained in

the first component, whose eigen value is 9.76. The second component, with an

eigen value of 0.87, retains a further 7.9% of the variance giving a total of 96.6%

for the first two components.
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Table D.1. Hominin species means for 11 gnathic variables. The variables are

(1) symphyseal height, (2) symphyseal breadth, (3) corpus height at M1, (4) corpus width

at M1, (5) P4 mesiodistal diameter, (6) P4 buccolingual diameter, (7) M1 mesiodistal

diameter, (8) M1 buccolingual diameter, (9) M2 mesiodistal diameter, (10) M2 buccolingual

diameter, and (11) M3 area. Data from Table 5 in Wood and Collard (1999)

Taxon 1 2 3 4 5 6 7 8 9 10 11

A. africanus 41 20 33 23 9.3 11.0 13.2 12.9 14.9 14.1 218

P. boisei 51 29 42 29 14.2 15.5 16.7 15.7 20.4 18.5 327

P. robustus 50 28 39 27 11.7 14.0 15.1 14.1 16.6 15.7 254

H. erectus 37 19 36 22 8.9 11.3 12.4 12.0 13.3 12.7 145

H. ergaster 33 20 31 19 8.7 11.0 13.1 11.6 13.8 12.3 170

H. habilis 27 19 29 21 9.8 10.5 13.9 12.3 14.9 12.6 201

H. neanderthalensis 42 15 34 18 7.1 8.7 10.6 10.7 11.1 10.7 131

H. rudolfensis 36 23 36 23 10.5 12.0 14.0 13.2 16.4 13.7 250

H. sapiens 34 14 29 13 7.1 8.4 11.2 10.5 10.8 10.5 113

Figure D.1 Scatter plot matrix, with loess smoother lines, of the 11 gnathic variables.

Axis values are not shown.
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Appendix E

Artificial data set with two
correlation patterns

E.1 Outline

There are two data sets (Table E.1) that differ in the amount of

correlation. Each data set has four predictors, a1�a4 and b1�b4, and there is

a class variable that is common to both. The predictors a1�a4 are uncorrelated

with each other while there are some correlations within data set B.

E.2 The data

E.2.1 Descriptive statistics and relationships between variables

Both data sets show a trend of increasing means across both classes

that is matched by a similar increase in the standard errors (Table E.2). Table E.3

and Figure E.1 clearly show the different correlation structures within the two

data sets. There are no significant between-predictor correlations in data set A.

However, in data set B b3 and b4 are highly correlated, although all other

between-predictor correlations are insignificant.
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Table E.1. Two groups of potential predictors (a1�a4 and b1�b4) plus a shared class

variable

Class a1 a2 a3 a4 b1 b2 b3 b4

0 8.20 20.10 18.06 15.46 10.65 16.92 19.79 20.63

0 10.80 14.10 22.78 30.58 6.07 11.00 15.31 12.46

0 10.96 18.30 20.80 23.91 11.05 8.11 22.63 28.73

0 11.62 14.82 22.69 26.90 9.60 20.60 23.42 24.16

0 10.00 15.05 24.80 29.90 10.23 15.77 15.70 27.72

0 10.55 20.06 21.63 30.13 14.40 13.98 19.74 19.80

0 9.69 14.96 21.49 26.35 8.70 14.76 25.74 32.14

0 11.62 13.99 21.02 30.00 10.14 14.91 18.58 20.34

0 8.48 13.89 25.40 25.26 6.90 16.27 22.88 19.60

0 9.35 13.32 24.20 22.58 10.57 16.05 16.77 23.60

0 11.33 15.50 19.19 31.06 10.57 20.70 17.83 23.75

0 14.06 11.40 17.92 5.90 8.80 24.10 19.51 17.89

0 11.42 16.36 18.33 19.31 11.90 17.81 17.50 30.76

0 12.12 16.92 19.21 29.27 15.70 13.33 19.24 22.01

0 10.80 8.08 20.96 26.64 9.84 14.25 20.50 19.09

0 8.57 16.64 23.62 26.72 8.20 18.66 18.70 26.03

0 11.81 16.30 17.67 27.52 9.28 15.69 22.93 19.59

0 9.73 16.51 17.22 29.55 10.50 17.11 21.98 21.31

0 6.19 17.20 15.60 29.80 6.54 13.14 22.29 25.18

0 11.64 13.69 25.15 8.70 9.49 11.18 18.84 23.58

0 11.55 9.21 17.77 29.92 9.09 25.80 23.32 30.87

0 10.19 16.35 18.76 33.66 9.30 16.95 21.82 27.21

0 7.48 12.51 21.51 32.70 9.88 14.47 20.88 30.06

0 10.86 9.50 23.84 19.68 7.90 11.55 24.22 25.22

0 10.31 15.60 22.24 23.96 8.80 13.86 24.49 30.45

0 11.00 15.73 17.45 19.80 6.31 17.87 15.36 23.02

0 13.01 17.02 22.14 23.25 11.95 12.16 18.66 24.97

0 8.67 12.67 21.60 26.66 5.88 18.36 21.38 30.34

0 8.43 13.67 17.44 31.70 11.40 7.33 22.04 29.74

0 9.35 14.27 16.90 25.90 11.58 16.69 15.92 22.09

0 10.77 14.92 16.30 22.15 8.48 13.56 15.90 27.50

0 11.35 14.03 19.99 27.00 10.35 16.62 14.86 10.07

0 11.64 17.85 22.86 23.90 8.72 18.89 22.10 30.25

0 11.67 17.43 26.01 22.55 9.49 19.18 24.73 31.22

0 11.20 21.95 25.02 25.80 9.50 10.81 22.18 39.26

0 12.29 16.91 19.98 25.90 11.24 15.06 21.00 23.95

0 8.80 16.40 19.46 22.00 9.50 8.98 22.29 21.49

0 12.09 15.59 17.20 28.50 9.50 17.44 18.50 25.16

0 8.12 16.42 30.05 24.01 10.89 16.41 19.49 29.07

0 10.53 12.50 22.56 21.75 15.70 8.50 20.03 24.14
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Table E.1. (cont.)

Class a1 a2 a3 a4 b1 b2 b3 b4

0 10.04 18.16 18.29 24.33 10.32 16.25 11.98 15.32

0 9.63 13.06 23.67 19.40 8.67 16.57 18.54 27.33

0 10.84 14.49 23.01 23.51 10.05 18.01 20.58 29.28

0 9.21 11.65 27.61 28.42 11.93 17.43 23.26 24.51

0 12.68 11.20 16.86 21.78 11.05 14.20 18.22 12.82

0 11.02 14.07 18.10 28.92 9.81 17.48 24.27 36.78

0 6.55 14.69 13.79 37.70 8.30 14.61 15.52 22.67

0 7.78 12.36 22.06 25.64 11.10 16.07 19.00 21.94

0 8.56 17.10 22.52 21.99 9.57 13.77 24.20 30.60

0 9.92 16.31 24.48 24.67 13.70 12.90 24.20 35.19

0 11.21 14.30 20.30 30.29 9.82 14.31 18.38 29.62

0 10.43 14.20 16.60 27.95 9.93 18.40 20.57 26.98

0 9.48 12.93 20.40 24.03 9.65 12.62 17.49 29.94

0 12.40 15.61 21.40 27.49 7.50 14.40 16.37 12.70

0 12.28 16.60 22.31 34.60 10.27 17.53 16.68 22.66

0 9.99 13.55 16.49 20.73 10.44 11.73 25.21 38.86

0 10.50 15.80 18.36 19.39 10.20 12.05 16.75 27.34

0 9.67 13.31 21.20 21.49 10.40 11.00 26.44 26.55

0 4.87 15.15 21.80 26.82 6.74 14.21 14.51 8.47

0 4.58 12.16 15.50 27.70 13.60 16.70 24.50 39.11

0 6.41 20.56 16.12 24.70 9.04 15.59 27.39 29.34

0 5.71 14.69 24.89 21.55 9.76 10.67 21.66 36.74

0 9.60 10.97 22.10 25.64 7.80 19.47 20.42 17.29

0 9.79 16.36 23.66 26.50 7.83 15.01 25.44 25.56

0 9.36 18.70 18.52 17.17 10.11 16.11 20.97 23.87

0 10.16 18.31 16.60 30.05 11.20 16.55 20.25 23.05

0 9.04 21.54 20.46 29.75 10.15 15.20 26.96 36.91

0 10.65 14.84 21.01 18.47 11.46 11.83 27.44 27.96

0 9.37 15.12 25.10 27.44 8.83 10.58 19.79 26.45

0 3.48 15.27 17.99 26.40 9.09 15.40 19.47 22.32

0 7.72 14.98 16.49 24.24 10.22 13.36 20.38 29.13

0 9.02 10.97 20.48 17.59 6.74 13.30 20.30 28.68

0 9.93 14.77 27.36 22.84 8.67 15.22 14.61 14.74

0 6.80 18.58 17.97 19.90 9.06 14.45 20.90 23.63

0 9.39 20.51 21.30 23.73 9.05 9.80 22.03 27.10

1 14.62 22.40 28.81 32.91 9.85 15.10 29.57 44.62

1 7.85 20.61 25.40 29.48 14.02 14.63 30.00 32.66

1 13.57 18.65 23.71 32.48 15.23 19.06 20.03 35.93

1 8.41 12.06 27.10 28.93 12.19 12.37 32.06 37.21

1 10.60 15.75 25.51 24.56 13.09 23.57 31.36 35.74

1 12.58 19.95 16.84 33.79 9.90 13.74 26.34 28.96
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Table E.1. (cont.)

Class a1 a2 a3 a4 b1 b2 b3 b4

1 11.66 16.78 28.50 25.90 10.37 16.65 26.25 31.21

1 11.86 17.07 19.75 20.57 9.27 19.47 19.92 26.46

1 12.55 19.22 27.75 37.00 8.90 19.00 24.73 29.82

1 9.71 20.70 20.33 21.91 11.60 23.39 22.54 19.74

1 8.59 23.92 23.10 25.21 10.51 8.58 25.63 22.71

1 10.80 16.54 27.14 24.07 14.20 19.26 16.20 19.94

1 7.61 18.86 23.03 30.17 9.80 24.87 17.04 21.08

1 12.40 17.40 27.90 39.57 15.30 19.19 29.55 52.70

1 12.52 14.56 23.76 28.59 12.68 11.90 20.90 21.42

1 8.55 14.09 24.66 22.88 9.80 15.40 24.00 18.30

1 8.27 18.34 20.73 26.67 10.10 17.01 21.24 18.73

1 11.50 15.89 25.86 27.63 12.48 26.92 26.00 33.49

1 11.31 19.85 26.44 34.74 15.14 15.72 16.16 10.37

1 11.47 18.15 29.29 33.63 17.92 20.45 16.04 23.98

1 14.50 14.05 22.98 26.01 9.57 20.52 23.76 22.05

1 14.50 18.06 22.60 27.10 8.68 19.42 25.21 31.51

1 14.08 21.02 26.67 40.70 14.85 20.87 22.84 28.80

1 14.74 26.55 23.10 30.42 13.33 19.34 32.53 34.37

1 13.74 17.76 26.90 34.51 14.34 20.97 26.41 36.11

1 7.00 18.61 26.20 30.60 13.71 20.09 26.38 34.40

1 11.86 15.32 21.97 26.43 12.70 17.62 26.66 18.86

1 11.52 12.92 27.51 20.36 9.58 21.05 27.68 24.50

1 9.70 21.73 22.60 33.57 14.70 17.50 24.48 28.76

1 13.84 21.85 30.00 22.71 7.84 18.29 27.86 36.89

1 10.10 15.77 22.77 22.82 12.26 25.76 27.98 38.45

1 7.87 20.08 25.61 22.69 12.38 19.47 22.94 24.22

1 11.10 17.57 25.85 37.40 10.14 18.51 17.10 22.23

1 12.45 17.74 19.26 30.89 13.42 13.96 20.48 16.90

1 9.79 20.79 25.88 23.90 9.09 14.56 19.09 20.54

1 8.74 15.51 25.51 38.90 12.31 17.25 27.92 43.46

1 11.55 12.84 26.35 28.11 8.90 16.96 24.23 33.59

1 7.91 16.60 32.49 31.37 12.60 12.46 30.94 33.53

1 10.46 26.14 19.97 27.12 13.20 16.19 23.61 24.99

1 12.42 17.54 26.00 35.57 7.71 20.97 21.91 20.77

1 12.81 9.57 20.21 36.26 8.81 17.63 13.35 10.90

1 9.67 17.99 26.00 23.02 14.30 15.83 30.66 34.90

1 13.28 22.66 23.10 6.60 11.31 19.33 24.69 44.91

1 14.15 11.43 23.50 20.70 9.23 15.73 27.63 27.52

1 6.41 18.11 25.03 22.76 12.31 20.78 29.10 38.20

1 12.97 15.59 18.62 28.39 13.39 23.62 28.50 37.50

1 9.80 19.05 24.15 28.34 12.22 17.31 14.47 27.31
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Table E.1. (cont.)

Class a1 a2 a3 a4 b1 b2 b3 b4

1 9.86 21.68 16.80 31.70 14.16 18.37 20.20 24.42

1 15.12 16.99 8.20 29.47 11.99 24.56 17.91 21.29

1 16.49 20.20 24.23 33.31 12.35 17.22 23.71 31.98

1 12.33 21.19 32.21 26.50 12.43 20.97 15.62 11.83

1 7.58 26.30 32.66 23.61 10.32 17.42 21.89 28.98

1 15.17 16.40 9.20 31.61 16.15 15.22 22.66 30.46

1 14.39 21.85 26.51 6.80 9.66 15.61 25.17 35.10

1 11.43 13.02 27.32 26.77 12.94 16.57 25.15 35.94

1 12.03 26.55 18.44 42.97 13.50 19.09 21.86 24.30

1 14.82 16.80 27.08 23.10 13.70 19.91 24.21 28.40

1 12.63 17.54 23.69 30.30 12.46 14.44 27.40 27.82

1 16.26 11.70 26.80 31.27 13.65 16.70 31.62 42.53

1 6.96 15.68 24.39 27.55 12.40 16.87 14.54 22.72

1 13.65 21.78 17.52 26.64 11.56 19.93 27.21 35.20

1 12.99 15.32 29.73 31.34 6.63 21.68 28.73 31.91

1 15.14 10.80 27.40 37.64 14.02 15.70 24.84 24.02

1 14.73 22.50 23.37 38.24 9.90 18.04 23.53 32.06

1 9.85 19.19 27.53 35.65 7.00 16.59 25.09 32.56

1 15.88 13.40 31.15 33.34 13.29 14.67 20.24 24.11

1 10.49 18.30 16.20 39.45 15.18 18.99 27.85 22.74

1 13.16 14.66 24.29 21.10 9.38 14.90 29.91 43.07

1 12.23 18.28 26.17 30.95 12.78 19.60 18.90 21.98

1 8.89 18.58 27.52 37.20 7.64 18.53 27.17 31.94

1 12.17 20.90 22.02 28.73 10.51 16.37 31.32 38.63

1 11.88 19.53 22.89 28.25 9.00 19.57 31.78 37.16

1 16.20 7.90 26.89 24.92 13.84 18.64 18.41 10.24

1 14.21 16.25 8.80 38.61 12.59 14.90 30.72 32.93

1 15.65 17.12 30.55 25.32 11.61 16.87 31.56 38.41
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Table E.3. Correlation matrices for data sets A and B. The upper figure for each

combination is the correlation coefficient, the lower figure is the two-tailed p value

a1 a2 a3 b1 b2 b3

a2 0.034 b2 0.127

p 0.676 p 0.122

a3 0.116 0.093 b3 0.156 0.099

p 0.157 0.260 p 0.056 0.227

a4 0.119 0.147 0.026 b4 0.145 0.074 0.700

p 0.146 0.073 0.756 p 0.076 0.366 0.000

Table E.2. Means (first two rows) and standard errors (lower two rows) for eight predictors

and two classes. n ¼ 75 for both classes

Class a1 a2 a3 a4 b1 b2 b3 b4

0 9.82 15.21 20.69 25.06 9.82 15.03 20.45 25.41

1 11.81 17.92 24.21 29.07 11.81 18.08 24.44 29.12

0 0.23 0.32 0.38 0.60 0.22 0.39 0.39 0.75

1 0.30 0.44 0.56 0.77 0.27 0.38 0.57 1.00
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Figure E.1 Scatter plot matrix of the two data sets with classes labelled as open and

filled points.
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Appendix F

Regional characteristics of golden
eagle ranges

F.1 Outline

These data (Table F.1) are part of a larger data set used by Fielding and

Haworth (1995) to investigate the performance of bird-habitat models. They relate

to the core area, the region close to the nest, of golden eagle Aquila chrysaetos,

in three regions of western Scotland. Eight habitat variables were measured for

each range. The values are the numbers of four-hectare grid cells covered by the

habitat.

F.2 The data

F.2.1 Descriptive statistics

The box plots in Figure F.1 indicate that most of the variables, within

the regions, have reasonably symmetric frequency distributions, although region

two in particular has a number of unusual values (outliers). There are obvious

differences between the regions for all eight variables.
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Table F.1. Habitat means for eight habitat variables. The variables are POST (mature

planted conifer forest in which the tree canopy has closed); PRE (pre-canopy closure planted

conifer forest); BOG (flat waterlogged land); CALL (Calluna (heather) heathland); WET

(wet heath, mainly purple moor grass); STEEP (steeply sloping land); LT200 (land below

200 m); and L4_600 (land between 200 and 400 m)

Region POST PRE BOG CALL WET STEEP LT200 L4_600

1 0.3 2.7 18.0 2.0 0.0 3.2 0.0 4.2

1 0.8 2.2 11.1 1.3 0.0 6.3 8.3 0.3

1 3.3 4.1 14.1 0.2 0.0 4.7 1.3 4.0

1 2.7 5.6 10.6 1.3 0.0 6.1 6.6 0.3

1 0.3 1.3 14.2 0.0 0.0 3.6 4.7 14.5

1 0.8 4.0 11.0 0.4 0.0 3.8 10.1 1.5

1 3.9 6.1 13.1 0.2 0.0 2.8 0.2 8.0

2 0.0 0.0 8.4 1.9 9.9 9.1 9.1 2.0

2 0.0 7.5 5.5 0.0 9.7 8.4 16.7 0.8

2 0.0 0.0 8.8 2.7 3.8 7.8 14.0 0.9

2 8.9 0.0 8.4 2.3 5.9 7.7 9.6 3.5

2 0.0 0.0 3.7 1.0 9.2 4.7 14.2 0.6

2 0.0 0.0 1.1 0.0 11.6 20.0 1.6 10.0

2 0.3 0.0 1.0 3.0 6.6 9.9 15.8 3.4

2 0.1 1.1 6.9 0.7 6.3 5.5 16.1 0.3

2 0.0 0.0 2.3 0.6 8.3 17.4 6.4 8.3

2 0.3 4.5 0.3 0.1 3.1 15.9 7.8 7.9

2 4.9 0.3 3.4 0.5 9.4 7.1 10.5 4.8

2 0.3 0.0 3.4 0.5 4.7 0.6 23.4 0.0

2 0.0 0.0 5.5 7.1 4.7 6.0 15.3 0.0

2 0.0 0.0 6.2 8.0 1.6 5.9 15.0 0.0

2 0.0 0.0 2.1 1.5 10.3 10.8 15.9 2.5

2 0.1 0.1 5.3 2.2 12.9 12.1 6.7 5.8

3 0.0 0.0 7.9 4.6 0.0 1.2 25.0 0.0

3 0.1 0.0 8.4 7.7 0.0 2.2 25.0 0.0

3 2.9 3.3 4.8 3.4 0.0 1.4 22.9 0.0

3 0.0 10.7 7.9 1.0 0.2 1.9 22.1 0.0

3 1.1 1.8 9.6 3.0 1.4 3.2 18.1 0.0

3 1.2 1.8 15.6 1.1 1.9 2.9 12.7 0.0

3 0.0 0.0 3.7 6.8 1.6 1.8 23.0 0.0

3 0.4 0.1 13.5 3.5 2.0 2.6 11.9 0.1

3 4.9 8.1 4.0 0.2 1.0 0.9 21.6 0.0

3 0.0 0.0 12.9 3.2 1.7 1.7 21.7 0.0

3 1.4 0.0 9.8 3.8 1.1 1.9 19.2 0.0

3 0.7 0.0 13.4 3.5 3.3 2.5 11.9 0.0

3 5.6 0.8 10.3 1.3 3.0 3.0 18.9 0.0
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Table F.1. (cont.)

Region POST PRE BOG CALL WET STEEP LT200 L4_600

3 7.5 1.6 8.1 0.4 2.6 1.7 17.8 0.1

3 6.6 2.3 9.5 2.8 1.6 1.4 18.6 0.0

3 6.7 0.4 1.8 0.8 1.0 0.3 24.0 0.0

3 7.2 2.8 6.3 3.0 3.2 1.4 23.5 0.0

Figure F.1 Box and whisker plot of the eight habitat variables broken down by region.

Outliers are mark by asterisks.
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Appendix G

Characteristics of a sample of smokers
and non-smokers

G.1 Outline

These data (Table G.1) are part of a data set collected by Jenkins (1991).

They are simple measures and attributes recorded from a sample of 87 adults.

They are used in this book to discover if a person’s smoking habits can be

predicted from three continuous, and two categorical, predictors. The contin-

uous predictors are white blood cell count (wbc; � 109 l�1), body mass index

(bmi; kg m�2) and age (years). The two categorical predictors are gender and ABO

blood type. The class variable is a binary indicator of a person’s smoking habits

(Y or N). The quantity of tobacco products used by each person was not recorded.

G.2 The data

G.2.1 Descriptive statistics and relationships between variables

None of the continuous predictors are correlated with each other, either

overall or within the smoking groups. Neither of the categorical predictors is

significantly associated with a person’s smoking habits (chi-square analysis).

In addition, there is no significant association between gender and blood group.

White blood cell count and body mass index both differ significantly between

the two smoking classes. The white blood cell count is higher in the non-smokers

but the bodymass index is lower. However, if a correction is applied to the p value

for multiple testing the difference in body mass indices becomes insignificant.

The mean ages are very similar in the two groups.
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Table G.1. Individual values for three continuous and two categorical variables for the

prediction of smoking habits

Smoke wbc bmi Age Sex Blood group

N 5.6 28.6 43 F AB

N 8.1 27.5 42 F A

N 6.8 27.2 25 M AB

N 7.3 26.6 48 F A

N 9.0 27.2 33 F A

N 6.4 26.4 37 F A

Y 5.6 23.8 43 F A

N 6.2 33.2 40 F A

N 7.3 24.9 21 F A

N 4.1 25.7 51 F B

N 5.6 31.9 29 F B

N 8.4 33.8 37 F B

Y 5.2 26.4 44 F B

Y 7.1 22.3 30 F B

N 5.4 38.9 36 F B

N 4.5 28.0 19 F B

N 6.9 21.9 24 F O

N 9.0 25.5 27 F O

N 4.0 25.7 35 F O

N 5.5 36.3 30 F O

N 6.3 20.0 31 F O

N 5.1 21.9 26 F O

N 5.1 21.6 30 F O

Y 8.4 29.0 30 F O

N 6.0 23.1 41 F O

N 5.6 31.4 41 F AB

N 8.4 26.4 35 F AB

N 5.5 24.3 20 F AB

N 9.1 24.8 33 F AB

N 7.1 23.2 28 F AB

Y 8.8 28.6 33 F AB

N 7.0 26.8 22 F AB

Y 9.9 31.6 28 F AB

N 7.8 25.8 37 F AB

N 6.3 27.4 35 M A

N 4.8 33.2 25 M A

N 6.5 27.1 36 M A

Y 7.4 25.6 43 M A

N 4.6 25.9 38 M A

N 4.7 27.7 40 M A
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Table G.1. (cont.)

Smoke wbc bmi Age Sex Blood group

N 4.1 26.4 43 M A

Y 4.9 29.5 34 M A

N 2.2 26.4 21 M A

N 5.9 32.1 34 M A

N 5.8 28.7 28 M A

N 6.9 27.0 33 M A

N 4.9 25.4 33 M A

Y 4.7 24.6 32 M A

N 6.0 28.7 38 M B

Y 7.4 21.9 22 M B

N 5.4 18.5 � M B

Y 7.4 20.8 42 M B

N 5.2 27.9 56 M B

Y 7.3 24.7 35 M B

N 7.3 23.1 44 M O

N 8.8 28.5 39 M O

N 8.0 27.9 32 M O

Y 5.3 25.5 37 M O

N 5.2 26.0 22 M O

N 5.1 22.4 24 M O

N 5.4 24.6 31 M O

N 6.5 28.7 36 M O

N 6.0 28.5 43 M O

N 6.6 28.7 47 M O

Y 7.8 24.4 45 M O

N 4.5 21.5 24 M O

N 6.0 24.5 25 M AB

Y 5.7 25.2 40 M AB

N 4.6 23.0 23 M AB

N 4.9 25.6 42 M AB

N 5.9 27.3 20 M AB

N 7.1 28.0 23 M AB

N 5.9 31.7 24 M AB

N 6.3 33.8 49 M AB

N 6.3 27.6 27 M AB

N 3.4 22.5 43 M AB

N 4.7 25.2 36 M B

N 8.7 28.8 30 F B

N 5.2 25.7 43 F B

N 6.8 26.3 47 M B

Y 7.4 31.2 28 F B
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Table G.1. (cont.)

Smoke wbc bmi Age Sex Blood group

Y 6.8 20.9 32 F O

Y 10.6 28.0 42 F B

Y 8.3 22.6 29 F A

N 4.4 26.5 24 F A

Y 9.6 21.1 21 M B

Y 6.9 20.2 40 F A

Table G.2. Descriptive statistics for the three continuous predictors (wbc; white blood

cell count; bmi, body mass index; age). The means are given with the standard errors in

parentheses. Also shown are the results of unpaired t-tests, whose p-values have not

been corrected for multiple testing

n wbc bmi Age

Smoke 66 6.06 (0.18) 26.93 (0.46) 33.52 (1.09)

Non-smoke 21 7.26 (0.36) 25.14 (0.76) 34.76 (1.57)

t �2.99 2.03 �0.65

p 0.01 0.05 0.52
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Blayo, F., Chevenal, Y., Guérin-Dugué, A., Chentouf, R., Aviles-Cruz, C., Madrenas, J.,

Moreno, M. and Voz, J. L. (1995). Enhanced Learning for Evolutive Neural Architecture.

Deliverable R3-B4-P Task B4: Benchmarks. ESPIRIT Basic Research Project Number 6891.

Bo, H. Y. (2000). Knowledge discovery and data mining techniques and practice.

Available at http://www.netnam.vn/unescocourse/knowlegde/knowlegd.htm and

also in Word format from the same page (accessed 10 January 2006).

Bo, T. and Jonassen, I. (2002). New feature subset selection procedures for

classification of expression profiles. Genome Biology, 3, research0017.1�0017.11.

Available online at http://genomebiology.com/2002/3/4/research/0017 (accessed

8 January 2006).

Boddy, L. and Morris, C.W. (1999). Artificial neural networks for pattern recognition.

In A. H. Fielding, ed., Ecological Applications of Machine Learning Methods. Boston,

MA: Kluwer Academic, pp. 37�69.

Boddy, L., Morris, C.W., Wilkins, M. F., Al-Haddad, L., Tarran, G. A., Jonker, R. R. and

Burkill, P. H. (2000). Identification of 72 phytoplankton species by radial basis

function neural network analysis of flow cytometric data. Marine Ecology-Progress

Series, 195, 47�59.

Bonnet, E. and Van de Peer, Y. (2002). zt: a software tool for simple and partial

Mantel tests. Journal of Statistical Software, 7(10), 1�12. Available online at

http://www.jstatsoft.org/index.php?vol¼7 (accessed 4 November 2005).

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123�40.

Breiman, L. (2001a). Random forests. Machine Learning, 45, 5�32.

Breiman, L. (2001b). Statistical modelling: the two cultures. Statistical Science, 16,

199�215.

Breiman, L. (2002). Manual on setting up, using, and understanding Random

Forests V3.1. Available at http://oz.berkeley.edu/users/breiman/

Using_random_forests_V3.1.pdf (accessed 2 February 2006).

References 225



Breiman, L. and Cutler, A. (2004a). Interface Workshop: April 2004. Available at http://

stat-www.berkeley.edu/users/breiman/RandomForests/interface04.pdf

(accessed 1 February 2006).

Breiman, L. and Cutler, A. (2004b). Random Forests. Available at

http://stat-www.berkeley.edu/users/breiman/RandomForests/cc_home.htm

(accessed 1 February 2006).

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and

Regression Trees. Monterey, CA: Wadsworth and Brooks.

Brillinger, D. R. (2002). John W. Tukey: his life and professional contributions.

The Annals of Statistics, 30(6), 1535�75.

Brosse, S. and Lek, S. (2000). Modelling roach (Rutilus rutilus) microhabitat using linear

and nonlinear techniques. Freshwater Biology, 44, 441�52.

Brown, M. P. S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T. S.,

Ares, Jr., M. and Haussler, D. (2000). Knowledge-based analysis of microarray

gene expression data by using support vector machines. Proceedings of the

National Academy of Sciences, 97(1), 262�67. Available as a pdf file at

http://www.pnas.org/cgi/reprint/97/1/262 (accessed 11 January 2006).

Bryan, J. (2004). Problems in gene clustering based on gene expression data. Journal of

Multivariate Analysis, 90, 44�60.

Burbidge, R., Trotter, M., Buxton, B. and Holden, S. (1998). Drug design by machine

learning: support vector machines for pharmaceutical data analysis. Computers

and Chemistry, 26, 5�14.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2), 1�47.

Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference:

A Practical Information-Theoretic Approach, 2nd edn. New York: Springer-Verlag.

Burnham, K. P. and Anderson, D. R. (2004). Multimodel inference: understanding

AIC and BIC in model selection. Amsterdam Workshop on Model Selection.

Available online at http://www2.fmg.uva.nl/modelselection/presentations/

AWMS2004-Burnham-paper.pdf (accessed 8 January 2006).

Calinski, R. B. and Harabasz, J. (1974). A dendrite method for cluster analysis.

Communication in Statistics, 3, 1�27.

Carbonell, J. G. (1990). Introduction: paradigms for machine learning.

In J. G. Carbonell, ed., Machine Learning: Paradigms and Methods. Cambridge,

MA: MIT/Elsevier, pp. 1�10.

Castresana, J., Guigo, R. and Alba, M.M. (2004). Clustering of genes coding for DNA

binding proteins in a region of atypical evolution of the human genome.

Journal of Molecular Evolution, 59(1), 72�9.

Chang, C. L. and Lee, R. C. T. (1973). A heuristic relaxation method for nonlinear

mapping in cluster analysis. IEEE Transactions on Systems, Man, and Cybernetics,

3, 197�200.

Chatfield, C. (1995). Model uncertainty, data mining and statistical

inference. Journal of the Royal Statistical Society Series A, Statistics in Society, 158,

419�66.

226 References



Cheeseman, P. and Stutz, J. (1996). Bayesian classification (AutoClass): theory and

results. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds.,

Advances in Knowledge Discovery and Data Mining. AAAI Press/MIT Press, pp. 61�83.

Available as a postscript file at http://ic.arc.nasa.gov/ic/projects/bayes-group/

images/kdd-95.ps.

Chen, C.H. (2002). Generalized association plots: information visualization via

iteratively generated correlation matrices. Statistica Sinica, 12, 7�29. Available

online at http://gap.stat.sinica.edu.tw/Papers/GAP_2002.pdf (accessed 8 October

2005).

Chen, C.H. and Chen, J. A. (2000). Interactive diagnostic plots for multidimensional

scaling with applications in psychosis disorder data analysis. Statistica Sinica,

10, 665�91.

Cheng, B. and Titterington, D.M. (1994). Neural networks: a review from a statistical

perspective. Statistical Science, 9, 2�54.

Chevan, A. and Sutherland, M. (1991). Hierarchical partitioning. American Statistician,

45(2), 90�6.

Chipman, H. and Tibshirani, R. (2005). Hybrid hierarchical clustering with

applications to microarray data. Biostatistics, online publication

doi:10.1093/biostatistics/kxj007. Also available as a technical report in pdf format

at http://www-stat.stanford.edu/�tibs/ftp/chipman-tibshirani-2003-modified.pdf

(accessed 15 January 2006).

Clarke, R. T., Rothery, P. and Raybould, A. F. (2002). Confidence limits for regression

relationships between distance matrices: estimating gene flow with distance.

Journal of Agricultural, Biological and Environmental Statistics, 7, 361�72. DISTMAT

can be downloaded from http://www.ceh.ac.uk/products/software/CEHSoftware-

Genetics-DISTMAT.html (accessed 12 October 2005).

Conroy, M. J., Cohen, Y., James, F. C., Matsinos, Y. G. and Maurer, B. A. (1995). Parameter

estimation, reliability, and model improvement for spatially explicit models of

animal populations. Ecological Applications, 5, 17�9.

Cox, D. R. and Snell, E. J. (1989). The Analysis of Binary Data, 2nd edn. London: Chapman

and Hall.

Cummings, M. P. and Myers, D. S. (2004). Simple statistical models predict C-to-U

edited sites in plant mitochondria RNA. BMC Bioinformatics, 5, 132.

Available at http://www.biomedcentral.com/1471-2105/5/132 (accessed

2 February 2006).

Davis, E. B. (2005). Comparison of climate space and phylogeny of Marmota

(Mammalia: Rodentia) indicates a connection between evolutionary history and

climate preference. Proceedings of the Royal Society B: Biological Sciences, 272(1562),

519�26.

Davis, J. C. (1986). Statistics and Data Analysis in Geology. London: John Wiley & Sons.

Deb, K. and Reddy, A. R. (2003). Reliable classification of two-class cancer data using

evolutionary algorithms. Biosystems, 72, 111�29.

Deleo, J.M. (1993). Receiver operating characteristic laboratory (ROCLAB): software for

developing decision strategies that account for uncertainty. In Proceedings of the

References 227



Second International Symposium on Uncertainty Modelling and Analysis. College Park,

MD: IEEE, Computer Society Press, pp. 318�25.

Deleo, J.M. and Campbell, G. (1990). The fuzzy receiver operating characteristic

function and medical decisions with uncertainty. In Proceedings of the First

International Symposium on Uncertainty Modelling and Analysis. College Park,

MD: IEEE, Computer Society Press.

Dettling, M. (2004). BagBoosting for tumour classification with gene expression data.

Bioinformatics, 20(18), 3583�93. Available online at http://bioinformatics.

oxfordjournals.org/cgi/screenpdf/20/18/3583.pdf (accessed 10 January 2006).
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Karzynski, M., Mateos, Á., Herrero, J. and Dopazo, J. (2003). Using a genetic algorithm

and a perceptron for feature selection and supervised class learning in DNA

microarray studies. Artificial Intelligence Review, 20, 39�51.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of

categorical data. Applied Statistics, 29, 119�27.

Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster

Analysis. Wiley.

Kaufman, L. and Rousseeuw, P. J. (2005). Finding Groups in Data. An Introduction to Cluster

Analysis. New Jersey: Wiley-Interscience.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation

and model selection. In C. S. Mellish, ed., Proceedings of the 14th International

Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann,

pp. 1137�43. Available at http://robotics.stanford.edu/�ronnyk

(accessed 24 October 2005).

Kohonen, T. (1988). An introduction to neural computing. Neural Networks, 1, 3�16.

Kohonen, T. (1990). The self-organising map. Proceedings of IEEE, 78, 1464�80.

Lance, G. N. and Williams, W. T. (1967). A general theory of classificatory sorting

strategies. Computer Journal, 9, 373�80.

Landis, J. R. and Koch, G. C. (1977). The measurement of observer agreement for

categorical data. Biometrics, 33, 159�74.

Lapointe, F. J. and Legendre, P. (1994). A classification of pure malt Scotch

whiskies. Applied Statistics, 43(1), 237�57. Also available in a modified form

at http://www.dcs.ed.ac.uk/home/jhb/whisky/lapointe/text.html

(accessed 2 October 2005).

Lee, J.W., Lee, J. B., Park, M. and Songa, S. H. (2005). An extensive comparison of recent

classification tools applied to microarray data. Computational Statistics and Data

Analysis, 48, 869�85.

Legendre, P. and Lapointe, F.-J. (2004). Assessing congruence among distance matrices:

single-malt Scotch whiskies revisited. Australian and New Zealand Journal of

Statistics, 46(4), 615�29.

Legendre, P. and Legendre, L. (1998). Numerical Ecology, 2nd English edn. Amsterdam:

Elsevier.

Li, J., Liu, H., Ng, S.-K. and Wong, L. (2003). Discovery of significant rules for classifying

cancer diagnosis data. Bioinformatics, 19 (Suppl. 2), i93�i102.

References 233



Liaw, A. and Wiener, A. (2006). The randomForest package. Available at http://

cran.r-project.org/doc/packages/randomForest.pdf (accessed 3 February 2006).

Lim, T.-S., Loh, W.-H. and Shih, Y.-S. (2000). A comparison of prediction accuracy,

complexity, and training time of thirty three old and new classification

algorithms. Machine Learning, 40, 203�29.

Lin, T. C. and Pourhmadi, M. (1998). Nonparametric and non-linear models and data

mining in time series: a case study on the Canadian lynx data. Applied Statistics,

47, 187�201.

Lingras, P. and Huang, X. (2005). Statistical, evolutionary and neurocomputing

clustering techniques: cluster-based vs object-based approaches. Artificial

Intelligence Review, 23, 3�29.

Liu, J. J., Cutler, G., Li, W., Pan, Z., Peng, S., Hoey, T., Chen, L. and Ling, X. B. (2005).

Multiclass cancer classification and biomarker discovery using GA-based

algorithms. Bioinformatics, 21, 2691�7.

Liu, X. H. (1996). Intelligent data analysis: issues and concepts. Knowledge Engineering

Review, 11, 365�7.

Loh, W. Y. and Shih, Y. S. (1997). Split selection methods for Classification trees.

Statistica Sinica, 7, 815�40.

Lynn, H., Mohler, C. L., DeGloria, S. D. and McCulloch, C. E. (1995). Error assessment

in decision-tree models applied to vegetation analysis. Landscape Ecology, 10,

323�35.

Ma, Z. and Redmond, R. L. (1995). Tau coefficients for accuracy assessment of

classifications of remote sensing data. Photogrammetric Engineering and Remote

Sensing, 61, 435�9.

Mac Nally, R. (2000). Regression and model-building in conservation biology,

biogeography and ecology: the distinction between � and reconciliation

of � ‘predictive’ and ‘explanatory’ models. Biodiversity and Conservation,

9, 655�71.

Madger, L. S. and Hughes, J. P. (1997). Logistic regression when the outcome is

measured with uncertainty. American Journal of Epidemiology, 146, 195�203.

Manel, S., Dias, J.-M. and Omerod, S. J. (1999a). Comparing discriminant analysis,

neural networks and logistic regression for predicting species distributions:

a case study with a Himalayan river bird. Ecological Modelling, 120, 337�47.

Manel, S., Dias, J.-M., Buckton, S. and Omerod, S. J. (1999b). Alternative methods for

predicting species distributions: an illustration with Himalayan river birds.

Journal of Applied Ecology, 36, 734�47.

Mangasarian, O. L. and Wolberg, W.H. (1990). Cancer diagnosis via linear

programming. SIAM News, 23(5), 1�18.

Mantel, N. (1967). The detection of disease clustering and a generalised regression

approach. Cancer Research, 27, 209�20.

Marks, S. and Dunn, O. J. (1974). Discriminant functions when covariance matrices are

unequal. Journal of the American Statistical Association, 69, 555�9.

Marsden, S. and Fielding, A. H. (1999). Habitat associations of parrots on the islands of

Buru, Seram and Sumba. Journal of Biogeography, 26, 439�46.

234 References



May, L. (1998). Individually distinctive corncrake Crex crex calls: a further study.

Bioacoustics, 9, 135�48.

McClelland, J. L., Rumelhart, D. E. and the PDP Research Group (eds.) (1986). Parallel

Distributed Processing. Cambridge, MA: MIT Press.

Michie, D., Spiegelhalter, D. J. and Taylor, C. C. (eds.) (1994). Machine Learning,

Neural and Statistical Classification. New York: Ellis Horwood. Also available in

a free, pdf format at http://www.maths.leeds.ac.uk/%7Echarles/statlog/

(accessed 6 October 2005).

Milligan, G.W. and Cooper, M. C. (1985). An examination of procedures

for determining the number of clusters in a data set. Psychometrika, 50,

159�79.

Minsky, M. and Papert, S. (1969). Perceptrons: An Introduction to Computational Geometry.

Cambridge, MA: MIT Press.

Murthy, S. K. (1998). Automatic construction of decision trees from data:

a multi-disciplinary survey. Data Mining and Knowledge Discovery, 2(4), 345�89.

Murthy, S. K., Kasif, S. and Salzberg, S. (1994). A system for induction of oblique

decision trees. Journal of Artificial Intelligence Research, 2, 1�32. Available as a pdf

file at http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume2/murthy94a.pdf

(accessed 18 January 2006).

Myers, L., Riggs, M., Lashley, J. and Whitmore, R. (2000). Options for Development of

Parametric Probability Distributions for Exposure Factors. Washington, DC:

National Center for Environmental Assessment, Washington Office, Office of

Research and Development, US Environmental Protection Agency. Available

online at http://www.epa.gov/ncea/pdfs/paramprob4ef/finalTOC.pdf

(accessed 8 October 2005).

Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of

determination. Biometrika, 78(3), 691�2.

NIST/SEMATECH e-Handbook of Statistical Methods, Available at http://

www.itl.nist.gov/div898/handbook/ (accessed 8 October 2005).

Olden, J. D., Joy, M. K. and Death, R. G. (2004). An accurate comparison of methods for

quantifying variable importance in artificial neural networks using simulated

data. Ecological Modelling, 178, 389�97.

Perrière, G. and Thioulouse, J. (2002). Use and misuse of correspondence analysis in

codon usage studies. Nucleic Acids Research, 30(20), 4548�55.

Pillar, V. D. (1999). How sharp are classifications? Ecology, 80, 2508�16.

Prasad, A.M., Iverson, L. R. and Liaw, A. (in press). Newer classification and regression

tree techniques: bagging and Random Forests for ecological prediction.

Ecosystems, 9, 181�99.

Prechelt, L. (1997). A quantitative study of experimental evaluations of neural

network algorithms: current research practice. Neural Networks, 9, 317�27.

Proches, S. (2005). The world’s biogeographic regions: cluster analysis based on bat

distributions. Journal of Biogeography, 32, 607�14.

Provost, F. and Fawcett, T. (1997). Analysis and visualisation of classifier performance:

comparison under imprecise class and cost distributions. In Proceedings of the Third

References 235



International Conference on Knowledge Discovery and Data Mining. Menlo Park, CA:

AAAI Press, pp. 43�8.

Quackenbush, J. (2001). Computational analysis of microarray data. Nature Reviews

Genetics, 2(6), 418�27.

Quinlan, J. (1983). Learning efficient classification procedures and their applications

to chess end games. In R. Michalski, R. Carbonell and T. Mitchell, eds., Machine

Learning: An Artificial Intelligence Approach, Vol. 1. San Francisco, CA:

Morgan Kaufmann, pp. 463�82.

Quinlan, R. J. (1979). Discovering rules from large collections of examples: a case

study. In D. Michie, ed., Expert Systems in the Micro-electronic Age. Edinburgh:

Edinburgh University Press, pp. 168�201.

Rataj, T. and Schlinder, J. (1991). Identification of bacteria by a multilayer neural

network. Binary, 3, 159�64.

Remaley, A. T., Sampson, M. L., DeLeo, J.M., Remaley, N. A., Farsi, B. D. and

Zweig, M. H. (1999). Prevalence-value-accuracy plots: a new method for

comparing diagnostic tests based on misclassification costs. Clinical Chemistry,

45(7), 934�41. Available for download at http://www.clinchem.org/cgi/reprint/45/

7/934.

Remm, K. (2004). Case-based predictions for species and habitat mapping. Ecological

Modelling, 177, 259�81.

Rencher, A. C. (1995). Methods of Multivariate Analysis. New York: Wiley.

Riordan, P. (1998). Unsupervised recognition of individual tigers and snow leopards

from their footprints. Animal Conservation, 1, 253�62.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge: Cambridge

University Press.

Rogers, S., Williams, R. D. and Campbell, C. (2005). Class prediction with microarray

datasets. In U. Seiffert, L. C. Jain and P. Schweizer, eds., Bioinformatics using

Computational Intelligence Paradigms. Springer, pp. 119�41.

Salzberg, S. L. (1997). On comparing classifiers: pitfalls to avoid and a recommended

approach. Data Mining and Knowledge Discovery, 1, 317�27.

Sammon, J.W. (1969). A nonlinear mapping for data structure analysis. IEEE

Transactions on Computers, C-18(5), 401�9.

Sarle, W. S. (1994). Neural networks and statistical models. In Proceedings of the

Nineteenth Annual SAS Users Group International Conference, Cary, NC: SAS Institute,

pp. 1538�50. Available in postscript format from ftp://ftp.sas.com/pub/neural/

neural1.ps.

Sasson, O., Linial, N. and Linial, M. (2002). The metric space of proteins: comparative

study of clustering algorithms. Bioinformatics, 18(Suppl. 1), S14�S21.

Schaafsma, W. and van Vark, G. N. (1979). Classification and discrimination problems

with applications. Part IIa. Statistica Neerlandica, 33, 91�126.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2),

197�227.

Schiffers, J. (1997). A classification approach incorporating misclassification costs.

Intelligent Data Analysis, 1, 59�68.

236 References



Schmelzer, I. (2000). Seals and seascapes: covariation in Hawaiian monk seal

subpopulations and the oceanic landscape of the Hawaiian Archipelago. Journal of

Biogeography, 27, 901�14.

Schwarzer, G., Vach, W. and Schumacher, M. (2000). On the misuses of artificial neural

networks for prognostic and diagnostic classification in oncology. Statistics in

Medicine, 19, 541�61.

Segal, M. R., Barbour, J. D. and Grant, R.M. (2004). Relating HIV-1 sequence variation to

replication capacity via trees and forests. Statistical Application in Genetics and

Molecular Biology, 3(1), article 2. Available at http://www.bepress.com/sagmb/vol3/

iss1/art2/ (accessed 3 February 2006).

Slonin, D. K. (2002). From patterns to pathways: gene expression data analysis

comes of age. Nature Genetics Supplement, 32, 502�8.

Sneath, P. H. and Sokal, R. R. (1973). Numerical Taxonomy: The Principles and Practice of

Numerical Classification. San Francisco: Freeman.

South, M. C. (1994). The application of genetic algorithms to rule finding in data

analysis. Unpublished Ph.D. thesis, University of Newcastle upon Tyne.

Spinks, P. Q. and Shaffer, H. B. (2005). Range-wide molecular analysis of

the western pond turtle (Emys marmorata): cryptic variation, isolation

by distance, and their conservation implications. Molecular Ecology, 14(7),

2047�64.

Stafanescu, C., Penuelas, J. and Filella, I. (2005). Butterflies highlight the conservation

value of hay meadows highly threatened by land-use changes in a protected

Mediterranean area. Biological Conservation, 126(2), 234�46.

Stephens, P. A., Buskirk, S.W., Hayward, G. D. and Martı́nez del Rio, C. (2005).

Information theory and hypothesis testing: a call for pluralism. Journal of Applied

Ecology, 42, 4�12.

Stevens-Wood, B. (1999). Real learning. In A. H. Fielding, ed., Ecological Applications of

Machine Learning Methods. Boston, MA: Kluwer Academic, pp. 225�46.

Stockwell, D. R. B. (1992). Machine learning and the problem of prediction and

explanation in ecological modelling. Unpublished Ph.D. thesis, Australian

National University.

Stockwell, D. R. B. (1993). LBS: Bayesian learning system for rapid expert system

development. Expert Systems with Applications, 6, 137�48.

Stockwell, D. R. B. (1999). Genetic algorithms II. In A. Fielding, ed., Ecological

Applications of Machine Learning Methods. Boston, MA: Kluwer Academic,

pp. 123�37.

Stockwell, D. R. B. and Noble, I. R. (1992). Induction of sets of rules from animal

distribution data: a robust and informative method of data analysis. Mathematics

and Computers in Simulation, 32, 249�54.

Stockwell, D. R. B. and Peters, D. P. (1999). The GARP modelling system: problems and

solutions to automated spatial prediction. International Journal of Geographic

Information Systems, 13, 143�58.

Swets, J. A., Dawes, R. and Monahan, J. (2000). Better decisions through science.

Scientific American, October, 70�5.

References 237



ter Braak, C. J. F. (1986). Canonical correspondence analysis: a new eigenvector

technique for multivariate direct gradient analysis. Ecology, 67, 1167�79.

ter Braak, C. J. F. (1987). The analysis of vegetation�environment relationships

by canonical correspondence analysis. Vegetatio, 69, 69�77.

Tibshirani, R., Hastie, T., Eisen, M., Ross, D., Botstein, D. and Brown, P. (1999).

Clustering Methods for the Analysis of DNA Microarray Data. Technical report,

Department of Statistics, Stanford University. Available as a postscript file at

http://www-stat.stanford.edu/�tibs/ftp/sjcgs.ps (accessed 17 January 2006).

Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number of clusters in

a dataset via the Gap statistic. Journal of the Royal Statistical Society, Series B, 63,

411�23. Also available as technical report from the Department of Statistics,

Stanford University (pdf format) at http://www-stat.stanford.edu/�tibs/ftp/gap.pdf

(accessed 10 January 2006).

Tufte, E. R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative.

Reading, MA: Addison-Wesley.

Tukey, J.W. (1969). Analyzing data: sanctification or detective work? American

Psychologist, 24, 83�91.

Tukey, J.W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.

Tukey, J.W. (1986). Sunset salvo. American Statistician, 40, 72�6.

Turney, P. D. (1995). Cost-sensitive classification: empirical evaluation of a hybrid

genetic decision tree induction algorithm. Journal of Artificial Intelligence Research,

2, 369�409.

Turney, P. D. (2000). Types of cost in inductive concept learning. Proceedings of the

Cost-Sensitive Learning Workshop at the 17th ICML-2000 Conference, Stanford, CA.

Available online at http://www.cs.bilkent.edu.tr/�guvenir/courses/cs550/Seminar/

NRC-43671.pdf (accessed 24 October 2005).

Upton, G. (1992). Fisher’s exact test. Journal of the Royal Statistical Society. Series A

(Statistics in Society), 155, 395�402.

Watanabe, S. (1985). Pattern Recognition: Human and Mechanical. New York:

John Wiley & Sons.

Watson, I. and Marir, F. (1994). Case-based reasoning: A review. Available at

http://www.ai-cbr.org/classroom/cbr-review.html (accessed 20 January 2006).

Wehrens, R., Putter, H. and Buydens, L.M. C. (2000). The bootstrap: a tutorial.

Chemometrics and Intelligent Laboratory Systems, 54, 35�52.

Wikipedia (2005). http://en.wikipedia.org/wiki/Pattern_recognition (accessed

20 September 2005).

Wilkins, M. F., Hardy, S. A., Boddy, L. and Morris, C.W. (2001). Comparison of five

clustering algorithms to classify phytoplankton from flow cytometry data.

Cytometry, 44(3), 210�7.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and

Techniques, 2nd edn. San Francisco, CA: Morgan Kaufmann.

Wolpert, D. H. and Macready, W. G. (1995). No Free Lunch Theorems for Search,

technical report SFI-TR-95-02-010, Santa Fe Institute. Available online at

http://www.no-free-lunch.org/WoMa95.pdf (accessed 6 October 2005).

238 References



Wood, B. and Collard, M. (1999). The human genus. Science, 284, 6571.

Wren, J. D., Johnson, D. and Gruenwald, L. (2005). Automating genomic data mining

via a sequence-based matrix format and associative set. BMC Bioinformatics,

6(Suppl. 2), S2 doi: 10.1186/147-2105-6-S2-S2. Available online at

http://www.biomedcentral.com/1471-2105/6/s2/s2 (accessed 12 January 2006).

Wu, H.M. and Chen, C.H. (2006). GAP: a graphical environment for matrix

visualization and information mining. To be submitted. Software

homepage: http://gap.stat.sinica.edu.tw/Software/GAP (accessed

17 January 2006).

Xiong, M., Jin, L., Li, W. and Beerwinkle, E. (2000). Computational methods for gene

expression-based tumour classification. Biotechniques, 29, 1264�70.

Yeang, C. H., Ramaswamy, S., Tamayo, P., Mukherjee, S., Rifkin, R.M., Angelo, M.,

Reich, M., Lander, E., Mesirov, J. and Golub, T. (2001). Molecular classification of

multiple tumour types. Bioinformatics, 17(Suppl. 1), S316�S322.

Zou, K. H. (2002). Receiver operating characteristic (ROC) literature research.

Available online at http://splweb.bwh.harvard.edu:8000/pages/ppl/zou/roc.html

(accessed 25 October 2005).

Zweig, M.H. and Campbell, G. (1993). Receiver-operating characteristic (ROC)

plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry,

39, 561�77.

References 239





Index

accuracy, 46, 80, 83, 86, 108,

140, 147, 161, 166, 171,

179–99

AdaBoost, 93

AIC, 88, 91, 133

algorithm, 6

allocation threshold, 124, 195

artificial intelligence, 7, 151,

156

artificial neural network(s),

58, 79, 81, 87, 154,

156–70, 178, 179, 197

(asymmetric) binary variables,

53

AUC, 162, 166, 192, 196

Autoclass, 58, 81

automatic relevance

detection, 163, 166

automatic species

identification, 81

average linkage clustering, 59

back-propagation, 158–60, 163

backward selection, 89

bagboosting, 93

bagging, 93, 177, 186

basis functions, 164

Baye’s decision rule, 79

Baye’s error, 90

Bayesian method(s), 57, 163

BEAGLE, 172, 175

Bertin, 15

best subsets, 89

bias, 6, 86–7, 93, 95

BIC, 88, 91, 134

binary accuracy measures,

180–2

binary classifiers, 194

binary predictions, 180

biological pattern

recognition, 78

bit-strings, 171

black-box classifiers, 81–2, 91,

157, 163, 168

BLAST, 53

boosting, 93

bootstrap aggregation, 93, 186

bootstrapped sample(s), 148,

185

bootstrapping, 186

Box’s, 105

Bray�Curtis non-metric

coefficient, 54

B-spline smoother, 132, 133

C4.5, 151

C5, 151

Calinski�Harabasz, 63

canonical correlation

coefficient, 105

Canonical Correspondence

Analysis, 11, 34

case-based reasoning, 175–6,

178

cases correctly classified

(CCR), 180

case-specific cost, 195

CBR, See case-based reasoning

CCR, See correct classification

rate

CHAID, 152

Chebychev distance, 51, 52

chi-square, 120

chi-square measure, 52

chi-square statistic, 152

c-index, 166

city Block metric, 50, 51

class prior probabilities, 95

class proportions, 177

class prototypes, 149

class templates, 78

classic metric scaling, 30, 31

classification, 2

classification error, 144

classifier, 3, 78

classifier ‘tuning’, 198

classifier performance, 87

241



cluster, 46–77, 138

cluster-based methods, 55

clustering algorithms, 59–61

Cochran’s Q test, 198

collinearity, 80, 115, 117

combined classifiers, 177

communality, 29, 92

comparing classifiers, 193,

196–8

competitive learning, 169

complete linkage clustering,

60, 61, 70

component loadings, 24

component scores, 24

computational costs, 85

confusionmatrix,181,182,184

conjugate gradient descent,

159

connectionist approach, 157

connectionist techniques, 157

consensus classification, 177

context-dependent, 141

convex hull, 196

Cook’s distance, 128

correct classification rate, 181,

182, 186, 187, 189

correlation matrix, 17

correspondence Analysis, 11,

32–4

cosine measure, 50, 71

cost, 84–5, 87

cost in classifier design, 195

cost matrix, 195

costs, 83, 179, 193

covariance matrix, 17, 95, 130

Cox and Snell statistic, 120

crossover(s), 171, 172

cross-validation, 111, 143, 145,

166, 176, 184, 185, 187

curse of dimensionality, 79,

154

cut-point, 186

Czekanowski or Sorensen

measure, 54

data dredging, 38

data mining, 13, 183

data projections, 37

data transformations, 52

decisionboundary,78,138,155

decision threshold(s), 186–7,

190

decision tree(s), 48, 87, 95,

137–54, 168, 174, 177–9,

186, 195, 197

deduction, 7

Delta AICs, 134

dendrogram(s), 58, 61–2, 67, 69

detrended correspondence

analysis, 34

deviance, 6, 120, 121, 132

diagnostic statistics, 127

Dice, 54

dimension reduction, 14, 115

dimensionality, 13–14

direct gradient analysis, 34

Dirichlet tessellation, 56

discriminant analysis, 78, 82,

95, 97, 100–17, 128, 136,

140

discriminant function, 101

discriminant score, 101

distance function, 176

distance measures, 48–53

distance-based data

projections, 29–32

DISTMAT, 37

divisive hierarchical methods,

65–6

divisive methods, 48

dummy variables, 117

EDA, 12, 46, 88, 117

eigen value(s), 19–22, 105, 112,

115

eigen vectors, 19

EM (expectation

maximisation), 57

ensembles, 92

entropy, 152

epoch, 160

equal cost, 145

error function, 155

error matrix, 180

ESPRIT, 197

Euclidean distance(s), 49, 51,

52, 54, 60, 61, 71, 169, 176

exemplars, 78

exhaustive search, 142

expert systems, 156, 175

exploratory data analysis,

12–13

factor analysis, 25, 28–9, 92

factor loadings, 25

factor score coefficients, 25

false negative(s), 145, 180, 193

false positive(s), 146, 166, 180,

187, 193

false-negative rate, 182

false-positive rate, 182

feature extraction, 80

feature selection, 80

feed-forward neural networks,

197

Fisher, 194

fitness, 170

flexible discriminant analysis,

117

forward selection, 89

freshwater biology, 178

future performance, 95

GAFFER, 173

GAM, See generalized additive

models

gam function, 132

GAP software, 42, 69

GAP statistic, 64

GARP, 172, 175

Gaussian kernel, 165

gene expression, 2, 7, 15, 29,

52, 58, 66, 78, 88, 169, 175

242 Index



gene shaving, 66

general linear model(s), 98,

130, 137

generalisation, 94, 95, 179

generalised additive

modelling, 97, 162

generalised linear model(s),

92, 97–8, 118, 130, 136,

157, 158, 161, 162, 165

generalised weights, 163

generality, 178

generalized additive models,

130–6

genetic algorithms, 87, 170–5,

178

genetic recombination, 172

Gini Index, 142, 145, 149, 193

GLM, See general linear

models

glm function, 125

global cost, 195

gold standard, 84

golden eagle, 108, 173, 187

goodness of fit, 14–15, 83, 120,

179

Gower’s distance measure, 50

Hamming distance, 54

hidden layer, 159, 164

hierarchical, 99

hierarchical clustering, 11, 47,

58–64, 68–72, 169

hierarchical partitioning, 91

hold-out, 184, 185

horseshoe effect, 33

Hosmer�Lemeshow statistic,

121

hyperplane separation, 155

hyperspheres, 164

ID3, 151

ideal classifier, 86, 178

identity, 98

importance score, 148

impurity, 140

incorporating costs, 194–6

independent data, 183

indirect gradient analysis, 34

individual value plots, 38

induction, 7, 141

influence statistics, 127–8

information gain, 151

information theoretic model

comparison (ITMC), 134

input node, 169

instance-based learning, 176

interactions, 162, 165, 168

interpreting weights, 163–4

invisible bias, 178

Iris, 38, 173

iterative search, 172

ITMC, See information

theoretic model

comparison

Jaccard coefficient, 54, 68

jack-knife, 185

Kaiser criterion, 24, 26

Kappa statistic (K), 181, 182,

187, 189

kernel, 164

kernel function, 155, 156

k-fold partitioning, 184

k-means, 55–6, 58, 65, 74, 77,

164, 169

k-medians, 56

k-NN classifier, 175

Kohonen, 58, 168

Kohonen layer, 169

Lance and Williams, 54

latent roots, 19

leaf, node, 138

learning rate, 169

least squares methods, 98, 129

leave-one-out (L-O-O), 185

Levenberg�Marquardt, 159

leverage, 127, 128

linear function, 82

linear model, 140

linear regression, 3

link function(s), 98, 118, 130,

137

loading, 16

loess smoother, 130, 132, 133

log odds, 118, 119, 163

logical operators, 174

logical screening, 80, 114

logistic function, 158

logistic model, 118

logistic regression, 78, 83, 85,

92, 100, 117–30, 133, 136,

163, 165, 168, 195

logit, 98, 118

logit residual, 127

log-likelihood, 120, 133

L-O-O, See leave-one-out

lowess, 130

machine learning, 7, 85, 151,

161, 183, 190, 197

Mahalanobis distance, 51, 107

majority, 92

majority class, 195

majority rule, 180

majority vote, 144

Manhattan distance, 50, 51, 54

Mantel test(s), 36–7, 148

mating, 171

matrix, 17

matrix algebra, 17–22

maximum likelihood, 8, 129,

137, 141

maximum or furthest-

neighbour method, 60

McNemar’s test, 198

MDS, See Multidimensional

scaling

metric scaling, 30

microarray, 9, 52, 66, 68, 88,

90, 150, 156, 177

minimum cost criterion, 179

Index 243



minimum or nearest-

neighbour method, 61

misclassification cost(s), 84,

144, 145

misclassifications, 95, 155,

175, 182, 195

mislabelled cases, 95

missing values, 86, 144, 197

mixture discriminant

analysis, 117

mixture model(s), 57, 117

model chi-square, 121

momentum, 160

monothetic, 48

multicollinearity, 9, 14

multidimensional scaling

(MDS), 29, 31, 40, 64, 76,

80, 149

multilayer perceptron(s), 158,

164

multiple classifiers, 92–4

multivariate non-linear

regression, 161

multivariate normality, 17

mutations, 171, 172

Nagelkerke’s R2, 120, 162, 166

naı̈ve Baye’s classifier(s), 79,

99–100

Nearest neighbour, 176–7

nearest-neighbour classifier,

197

Negative predictive power

(NPP), 182

neighbourhood, 169

neural network(s),

See artificial neural

network

neurons, 158

NevProp, 161, 163, 165

NMDS, See non-metric

multidimensional scaling

NMI, 181, 182

node, 138

node purity, 142

No-Free-Lunch, 85–6, 196

non-Euclidean metrics, 49

non-metric multidimensional

scaling, 30, 32, 42

non-monotonic relationships,

130

null model, 121

object-based methods, 55

OC1, 153

Occam’s razor, 9

odds ratio, 119, 181, 182

orderable matrix, 15, 42

ordination, 10, 34

outlier(s), 127, 130

out-of-bag sample, 148, 186

overall diagnostic power

(ODP), 182

over-fitting,87,93,117,155,160

over-sampling, 195

PAM, See partition around

medoids

parallel distributed

processing, 157

partition around medoids, 56,

64

partition clustering, 72–7

partitioning methods, 55–7

partitioning splits, 47

PAST, 11

pattern difference, 54

pattern recognition, 2, 78

PCA, See principal components

analysis

penalised discriminant

analysis, 117

Phi-square measure, 53

polythetic, 48

poor performance, 94

Poptools, 37

population, 171

positive predictive power

(PPP), 182, 187, 190

posterior probability, 194

post-pruning, 143

PPP, See positive predictive

power

predictive model, 99

predictor transformations,

141, 162

pre-pruning, 143

presence/absence modelling,

199

prevalence, 83, 180, 181, 189,

190, 193

principal components

analysis, 4, 16–28, 31, 40,

64, 80, 90, 115

principal coordinate analysis,

30, 31

Procrustes rotation, 37, 42

prospective sampling, 183,

187

prototype, 149

pseudo-R2 values, 120, 123

Pythagoras, 49

quadratic discriminant

analysis, 117

QUEST, 143, 153

R, 11, 132

R dataset, 170

R function, 149

R2, 89, 179

radial bias function networks,

164–5

random forests, 146–50

receiver operating

characteristic (ROC), 166,

190, 196, 199

reciprocal averaging, 33

recursive partitioning, 139

reference tree, 143

reject rates, 186

relative costs, 194

reorderable matrix, 66

resample size, 177

resampling, 93

244 Index



residual(s), 15, 127–8

re-substitution, 183, 187

ROC, See receiver operating

characteristic plot

ROC curves, 192

ROC plot(s), 162, 190–4

root node, 138

rotation, 26

rule-based expert system,

173

Sammon mapping, 31

scalability, 178

scree plot, 23, 63

self-organising map (SOM), 58,

168–70, 175

semi-metrics, 50

sensitivity, 181, 182, 187, 189,

192

sequential selection methods,

89

signal-processing, 190

signal-to-noise ratio, 88

significance level, 85

silhouette plot, 64

similarity, 176

simple matching coefficient,

54, 68

single hidden layer, 162

skip-layer, 158

smoothing function(s), 130–2

SOM, See self-organising map

span, 131

species distribution, 84

specificity, 181, 182, 187, 192

speech recognition, 168

speed, 84

split, 138

SPSS AnswerTree, 145, 153

squared Euclidean distance,

51, 54, 71

standardised canonical

discriminant function

coefficients, 106

standardised residual(s), 127,

129

statistical classifier(s), 79, 83,

97, 161

statistical screening, 114

stepwise methods, 99

stepwise variable selection,

14, 80, 141

stickleback, 25

stopping rule(s), 142, 143

structure coefficients, 107,

110, 113

structure matrix, 115

supervised classification, 48,

99

supervised learning, 3, 6, 82,

99, 138

support vector machines, 146,

154–6, 175, 178

support vectors, 155

surrogate variables, 144

SVM, See support vector

machine

symmetric binary variable, 53

tau coefficient, 181

termination criterion, 160

territorial map, 110

testing, 166

testing data, 183–6

testing error, 160

Thiessen polygons, 56, 109

threshold(s), 159, 174, 189, 192

threshold-independent, 190

training, 166

trainingcases,Seetrainingdata

training cycle, 160

training data, 79, 82, 86, 92,

138, 140, 165, 175, 179,

183, 187, 194, 197

training phase, 159

training set, 86, 138, 197

training times, 166

transfer function, 158

transformations, 168

transforming hidden layer,

165

transforming network, 162

transparency, 178

tree complexity, 143–4

tree pruning, 143

tree size, 144

TSVQ tree structured vector

quantisation,194,

Tukey, 12, 15, 38

Twoing Rule, 142

two-way clustering, 66

two-way indicator species

analysis TWINSPAN, 65–6

types of cost, 195

ugly duckling theorem, 79, 88,

114

unequal class sizes, 95

unstandardised canonical

discriminant function

coefficients, 106

unstandardised residuals, 127

unsupervised classification, 7,

75

unsupervised learning, 7, 168

unsupervised methods, 138

update region, 169

UPGMA unweighted

pair-groups method

average, 59, 61, 71

UPGMC unweighted

pair-groups method

centroid, 60

utility, 84, 180

validation data, 82

variable (feature) selection,

87–91

variable importance

measures, 168

variable screening, 80, 114

variable selection, 80, 120

Index 245



variance, 54, 86–7, 93

variance partitioning, 92

Varimax rotation, 27

VC dimension, 154

vector, 17

voting, 177

Wald’s statistic, 121

Ward’s algorithm, 59

Ward’s method, 61

weak learner, 93

Weka, 11

Wilk’s lambda, 105, 106, 109,

112

within-groups clustering, 61

246 Index


	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	1 Introduction
	1.1 Background
	1.2 Book structure
	1.3 Classification
	1.4 Clustering
	1.5 Structures in data
	1.5.1 Structure in tables
	1.5.2 Graphical identification of structure

	1.6 Glossary
	1.6.1 Algorithm
	1.6.2 Bias
	1.6.3 Deviance
	1.6.4 Learning
	Supervised learning
	Unsupervised learning
	Machine learning

	1.6.5 Maximum likelihood estimation
	1.6.6 Microarray
	1.6.7 Multicollinearity
	1.6.8 Occam’s razor
	1.6.9 Ordination

	1.7 Recommended reading and other resources
	1.7.1 Books
	1.7.2 Software


	2 Exploratory data analysis
	2.1 Background
	2.2 Dimensionality
	2.3 Goodness of fit testing
	2.4 Graphical methods
	2.4.1 Background

	2.5 Variance-based data projections
	2.5.1 Background
	2.5.2 PCA
	Outline
	Matrix methods (a very brief review)
	Example analysis 1
	Example analysis 2

	2.5.3 Factor analysis

	2.6 Distance-based data projections
	2.6.1 Background
	2.6.2 MDS or principal coordinate analysis
	2.6.3 Sammon mapping
	2.6.4 Non-metric multidimensional scaling (NMDS)

	2.7 Other projection methods
	2.7.1 Correspondence analysis
	2.7.2 Canonical correspondence analysis

	2.8 Other methods
	2.8.1 Mantel tests
	2.8.2 Procrustes rotation

	2.9 Data dredging
	2.10 Example EDA analysis

	3 Cluster analysis
	3.1 Background
	3.2 Distance and similarity measures
	3.2.1 Distance measures
	Euclidean metrics
	Non-Euclidean metrics
	Semi-metrics

	3.2.2 Importance of data types
	Distances for interval variables
	Data transformations
	Count data
	Binary data

	3.2.3 Other distance measures

	3.3 Partitioning methods
	3.3.1 k-means
	3.3.2 k-medians and PAM
	3.3.3 Mixture models
	3.3.4 Others

	3.4 Agglomerative hierarchical methods
	3.4.1 Joining clusters: clustering algorithms
	Average linkage clustering
	Complete linkage clustering
	Single linkage clustering
	Within-groups clustering
	Ward’s method

	3.4.2 The dendrogram

	3.5 How many groups are there?
	3.5.1 Scree plots
	3.5.2 Other methods of estimating optimum number of clusters

	3.6 Divisive hierarchical methods
	3.7 Two-way clustering and gene shaving
	3.8 Recommended reading
	3.9 Example analyses
	3.9.1 Hierarchical clustering of bacterial strains
	3.9.2 Hierarchical clustering of the human genus
	3.9.3 Partition clustering
	Bacteria data
	Cancer data



	4 Introduction to classification
	4.1 Background
	4.2 Black-box classifiers
	4.3 Nature of a classifier
	4.4 No-free-lunch
	4.5 Bias and variance
	4.6 Variable (feature) selection
	4.6.1 Background
	4.6.2 Variable selection methods
	Signal-to-noise ratio
	Sequential selection methods
	Gene expression data

	4.6.3 Ranking the importance of predictors

	4.7 Multiple classifiers
	4.7.1 Background
	4.7.2 Boosting and bagging
	4.7.3 Combining different classifiers

	4.8 Why do classifiers fail?
	4.9 Generalisation
	4.10 Types of classifier

	5 Classification algorithms 1
	5.1 Background
	5.2 Naïve Bayes
	5.3 Discriminant analysis
	5.3.1 Introduction
	5.3.2 Example analyses
	Discriminant analysis of two artificial data sets
	Discriminant analysis of golden eagle data (multi-class analysis)

	5.3.3 Modified algorithms

	5.4 Logistic regression
	5.4.1 Introduction
	5.4.2 Example analyses
	Artificial data
	Mixed data type analysis

	5.4.3 Cancer data set
	Background
	Analysis
	Residuals and influence statistics


	5.5 Discriminant analysis or logistic regression?
	5.6 Generalised additive models
	5.6.1 Introduction
	5.6.2 Loess and spline smoothing functions
	5.6.3 Example analysis

	5.7 Summary

	6 Other classification methods
	6.1 Background
	6.2 Decision trees
	6.2.1 Background
	Node purity
	Identifying splits
	Tree complexity
	Assigning classes to terminal nodes
	Missing values

	6.2.2 Example analysis
	6.2.3 Random forests
	6.2.4 Other ‘flavours’
	ID3, C4.5 and C5
	CHAID
	QUEST
	OC1


	6.3 Support vector machines
	6.4 Artificial neural networks
	6.4.1 Introduction
	6.4.2 Back-propagation networks
	6.4.3 Modelling general and generalised linear models with neural networks
	6.4.4 Interpreting weights
	6.4.5 Radial bias function networks
	6.4.6 Example analysis
	6.4.7 Self-organising maps
	Outline
	Example analysis


	6.5 Genetic algorithms
	6.5.1 Introduction
	6.5.2 Genetic algorithms as classifiers
	6.5.3 Feature selection using a GA

	6.6 Others
	6.6.1 Case-based reasoning
	6.6.2 Nearest neighbour
	6.6.3 Combined classifiers

	6.7 Where next?

	7 Classification accuracy
	7.1 Background
	7.2 Appropriate metrics
	7.3 Binary accuracy measures
	7.4 Appropriate testing data
	7.4.1 Re-substitution
	7.4.2 Hold-out
	7.4.3 Cross-validation
	7.4.4 Bootstrapping methods
	7.4.5 Out-of-bag estimates
	7.4.6 Reject rates

	7.5 Decision thresholds
	7.6 Example
	7.7 ROC plots
	7.7.1 Background
	7.7.2 ROC curves
	7.7.3 Comparing classifiers using AUC values

	7.8 Incorporating costs
	7.8.1 Costs are universal
	7.8.2 Types of cost
	7.8.3 Using misclassification costs

	7.9 Comparing classifiers
	7.10 Recommended reading

	Appendix A PCA data set 1
	A.1 Outline
	A.2 The data
	A.2.1 Descriptive statistics and relationships between variables


	Appendix B Stickleback behaviour
	B.1 Outline
	B.2 The data
	B.2.1 Descriptive statistics and relationships between variables


	Appendix C Bacterial data
	C.1 Outline

	Appendix D The human genus
	D.1 Outline
	D.2 The data
	D.2.1 Descriptive statistics and relationships between variables


	Appendix E Artificial data set with two correlation patterns
	E.1 Outline
	E.2 The data
	E.2.1 Descriptive statistics and relationships between variables


	Appendix F Regional characteristics of golden eagle ranges
	F.1 Outline
	F.2 The data
	F.2.1 Descriptive statistics


	Appendix G Characteristics of a sample of smokers and non-smokers
	G.1 Outline
	G.2 The data
	G.2.1 Descriptive statistics and relationships between variables


	References
	Index

