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Preface

Computational biology is an interdisciplinary field that applies mathematical, statistical, 
and computer science methods to answer biological questions. The importance of compu-
tational biology has increased with the introduction of high-throughput techniques such 
as automatic DNA sequencing, comprehensive expression analysis with microarrays, and 
proteome analysis with modern mass spectrometry. Computational methods are not only 
critical for the effective analysis of the large amount of data from these experiments but 
also important to fully utilize this wealth of information to provide more realistic models 
of biological systems. The ultimate goal of modeling complex systems like an entire cell 
might be far in the future, but computational methods are essential in building the foun-
dation that will allow this goal to be reached. The primary purpose of this book is to pres-
ent a broad survey of computational biology methods by focusing on their applications, 
including primary sequence analysis, protein structure elucidation, transcriptomics and 
proteomics data analysis, and exploration of protein interaction networks.

New York, NY David Fenyö 
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Chapter 1

Sequencing and Genome Assembly Using  
Next-Generation Technologies

Niranjan Nagarajan and Mihai Pop 

Abstract

Several sequencing technologies have been introduced in recent years that dramatically outperform the 
traditional Sanger technology in terms of throughput and cost. The data generated by these technologies 
are characterized by generally shorter read lengths (as low as 35 bp) and different error characteristics 
than Sanger data. Existing software tools for assembly and analysis of sequencing data are, therefore,  
ill-suited to handle the new types of data generated. This paper surveys the recent software packages 
aimed specifically at analyzing new generation sequencing data.

Key words: Next-generation sequencing, Genome assembly, Sequence analysis

Recent advances in sequencing technologies have resulted in a 
dramatic reduction of sequencing costs and a corresponding 
increase in throughput. As data produced by these technologies is 
rapidly becoming available, it is increasingly clear that software 
tools developed for the assembly and analysis of Sanger data are 
ill-suited to handle the specific characteristics of new generation 
sequencing data. In particular, these technologies generate much 
shorter read lengths (as low as 35 bp), complicating repeat resolu-
tion during both de novo assembly and while mapping the reads 
to a reference genome. Furthermore, the sheer size of the data 
produced by the new sequencing machines poses performance 
problems not previously encountered in Sanger data. This is fur-
ther exacerbated by the fact that the new technologies make it 
possible for individual labs (rather than large sequencing centers) 
to perform high-throughput sequencing experiments, and these 
labs do not have the computational infrastructure commonly 

1.  Introduction
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available at large sequencing facilities. In this paper we survey 
software packages recently developed to specifically handle new 
generation sequencing data. We briefly overview the main charac-
teristics of the new sequencing technologies and the computa-
tional challenges encountered in the assembly of such data; 
however, a full survey of these topics is beyond the scope of our 
paper. For more information, we refer the reader to other surveys 
on sequencing and assembly (1–3).

We hope the information provided here will provide a starting 
point for any researcher interested in applying the new technolo-
gies to either de novo sequencing applications or to resequencing 
projects. Due to the rapid pace of technological and software devel-
opments in this field we try to focus on more general concepts and 
urge the reader to follow the links provided in order to obtain  
up-to-date information about the software packages described.

Before discussing the software tools available for analyzing the 
new generation sequencing data we briefly summarize the specific 
characteristics of these technologies. For a more in-depth sum-
mary, the reader is referred to a recent review by Mardis (1).

The first, and arguably most mature, of the new generation 
sequencing technologies is the pyrosequencing approach from 
Roche/454 Life Sciences. Current sequencing instruments (GS 
FLX Titanium) can generate in a single run ~500 Mbp of DNA 
in sequencing reads that are ~400 bp in length (approximately 
1.2 million reads per run), while the previous generation instru-
ments (GS FLX) generate ~100 Mbp of DNA in reads that are 
~250 bp in length (approximately 400,000 reads per run). Initial 
versions of mate-pair protocols are also available that generate 
paired reads spaced by approximately 3 kbp.

The main challenge in analyzing 454 data is the high error-
rate in homopolymer regions – sections of DNA comprised of a 
single repeated base. The 454 sequencing approach is based on a 
technique called pyrosequencing (4) wherein double-stranded 
DNA is synthesized from single-strand templates (DNA fragments 
being sequenced) through the iterative addition of individual 
nucleotides, and the incorporation of a nucleotide is detected by 
the emission of light. When encountering a run of multiple identi-
cal nucleotides in the template DNA, the amount of light emitted 
should be proportional to the length of this homopolymer run. 
This correspondence, however, is nonlinear due to limitations of 
the optical device used to detect the signal. As a result, the length 

2. Sequencing 
Technologies

2.1. Roche/454 
Pyrosequencing
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of homopolymer runs is frequently misestimated by the 454 
instrument, in particular for long homopolymer runs.

A 454 sequencing instrument can output copious informa-
tion, including raw images obtained during the sequencing pro-
cess. For most purposes, however, it is sufficient to retain the 454 
equivalent of sequence traces, information stored in .SFF files. 
These files contain information about the sequence of nucleotide 
additions during the sequencing experiment, the corresponding 
intensities (normalized) for every sequence produced by the 
instrument and the results of the base-calling algorithm for these 
sequences. Each called base is also associated with a phred-style 
quality value (log-probability of error at that base), providing the 
same information as available from the traditional Sanger sequenc-
ing instruments. Note, however, that homopolymer artifacts also 
affect the accuracy of the quality values – Huse et al. (5) show 
that the quality values decrease within a homopolymer run irre-
spective of the actual confidence in the base-calls.

Due to the long reads and availability of mate-pair protocols, 
the 454 technology can be viewed as a direct competitor to tradi-
tional Sanger sequencing and has been successfully applied in 
similar contexts such as de novo bacterial and eukaryotic sequenc-
ing (6, 7) and transcriptome sequencing (8).

The Solexa/Illumina sequencing technology achieves much 
higher throughput than 454 sequencing (~1.5 Gbp/run) at the 
cost, however, of significantly smaller read lengths (currently 
~35 bp). Initial mate-pair protocols are available for this technology 
that generate paired reads separated by ~200 bp and approaches 
to generate longer libraries are currently being introduced. While 
the reads are relatively short, the quality of the sequence gener-
ated is quite high, with error rates of less than 1%. The sequenc-
ing approach used by Solexa relies on reversible terminator 
chemistry and is, therefore, not affected by homopolymer runs to 
the same extent as the 454 technology. Note that homopolymers, 
especially long ones, cause problems in all sequencing technolo-
gies, including Sanger sequencing.

The analysis of Solexa/Illumina data poses several challenges. 
First of all, a single run of the machine produces hundreds of 
gigabytes of image files that must be transferred to a separate 
computer for processing. In addition to the sheer size of the data 
generated, a single Solexa run results in ~50 million reads leading 
to difficulties in analyzing the data, even after the images have 
been processed. Finally, the short length of the reads generated 
complicates de novo assembly of the data due to the inability to 
span repeats. The short reads also complicate alignment to a ref-
erence genome in resequencing applications, both in terms of 
efficiency and due to the increased number of spurious matches 
caused by short repeats.

2.2. Solexa/Illumina 
Sequencing
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Analogous to 454 sequencing, the output from an Illumina 
sequencing instrument contains a wealth of information, includ-
ing raw image data that could be reprocessed to take advantage of 
new base-calling algorithms. In practice, however, these data are 
rarely retained due to the large memory requirements. For most 
applications it is sufficient to use the sequence trace information 
encoded in an SRF file – a newly developed format for encoding 
new generation sequencing data. When just the sequence and 
quality information are needed, these data are usually stored in a 
FASTQ file (an extension of the FASTA format that combines 
sequence and quality data) and represents quality values in a com-
pressed (one character per base) format.

The ABI/SOLiD technology generates data with characteristics 
similar to that generated by Solexa/Illumina instruments, albeit 
at higher throughput (~3 Gbp/run). Challenges in image stor-
age and processing that are present with Solexa technology are 
therefore also there for the ABI/SOLiD instrument. The latter, 
however, integrates computer hardware with the sequencing 
machine, eliminating the need to transfer large image files for 
analysis purposes.

A major challenge in analyzing SOLiD data stems from 
the sequencing-by-ligation approach used in this technology. 
Specifically, the sequencing of a DNA template is performed by 
iteratively interrogating pairs of positions in the template with 
semi-degenerate oligomers of the form NNNACNNN, where N 
indicates a degenerate base. Each oligomer is tagged with one of 
four colors, allowing the instrument to “read” the sequence of 
the template. Note, however, that each color is associated with 
four distinct pairs of nucleotides, complicating the determination 
of the actual DNA sequence. In fact, the sequence of colors 
observed by the instrument during the sequencing process is not 
sufficient to decode the DNA sequence – rather it is necessary to 
also know the first base in the sequence (the last base within the 
sequencing adapter). The lack of a direct correspondence between 
the sequencing signal and the DNA sequence complicates the 
analysis of SOLiD data in the presence of errors. A single sequenc-
ing error (missing or incorrect color) can result in a “frame-shift” 
that affects the remainder of the DNA sequence decoded by the 
instrument. Note that this phenomenon is similar to that encoun-
tered during gene translation from three-letter codons. Due to 
this property of SOLiD data, most software tools attempt to 
operate in “color space” in order to avoid having to consider all 
possible frame-shift events during data analysis. This also makes it 
difficult to apply SOLiD data in de novo assembly applications.

File formats for representing SOLiD data are still being devel-
oped and a SOLiD-specific extension to the SRF format is 
expected in the near future.

2.3. ABI/SOLiD 
Sequencing
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We presented in more detail the three technologies outlined 
above because they are the only technologies currently deployed 
on a large scale within the community. It is important to note, 
however, that new sequencing technologies are being actively 
developed and several will become available in the near future. 
For example, Helicos Biosciences have recently reported the sale 
of the first instruments of a high-throughput, single-molecule 
(requiring no amplification) sequencing technology (9). Also, 
recently, Pacific Biosciences have described a new technology 
characterized by substantially longer read lengths and higher 
throughputs than the technologies currently available (10). These 
advances underscore the dynamic nature of research on DNA 
sequencing technologies, and highlight the fact that the informa-
tion we provide in this article is necessarily limited to the present 
and might become partly obsolete in the near future.

The large volumes of data generated by the new technologies as 
well as the rapidly evolving technological landscape are posing 
significant challenges to disseminating and storing this data. To 
address these challenges and provide a central repository for new 
generation data, the NCBI has established the Short Read Archive, 
an effort paralleling the successful Trace Archive – a repository 
of raw Sanger sequence information. The Short Read Archive 
(http://ncbi.nlm.nih.gov/Traces/sra) already contains a wealth 
of data generated through the 454 and Illumina technologies, 
including data from the 1,000 Genomes project – an effort to 
sequence the genomes of 1,000 human individuals. In addition 
to being a data repository, the Short Read Archive is actively 
involved in efforts to standardize data formats used to represent 
new generation data, efforts that resulted in the creation of the .
SFF format (454) and the .SRF format meant to become a uni-
versal format for representing sequence information.

The assembly of sequences from a shotgun-sequencing project is 
typically a challenging computational task akin to solving a very 
large one-dimensional puzzle. Several assembly programs have 
been described in the literature (such as Celera Assembler (11), 
ARACHNE (12, 13), and PHRAP (14)) and have been success-
fully used to assemble the genomes of a variety of organisms – 
from viruses to humans. These programs were designed when 
Sanger sequencing was the only technology available and were 
therefore tailored to the characteristics of the data. With the 
advent of new technologies there has been a flurry of efforts to 

2.4.  Others

2.5. NCBI Short  
Read Archive

3. Assembly 
Programs

http://ncbi.nlm.nih.gov/Traces/sra
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cope with the characteristics of the new datasets. An important 
consideration is the reduced read length and the limited form of 
mated read libraries. These make the assembly problem even 
more difficult as we discuss in Subheading 3.2. What the new 
technologies do offer is the ability to sequence genomes to high 
redundancy (every base in the genome is represented in many 
reads) and in a relatively unbiased manner. Managing the corre-
sponding flood of information effectively is an important chal-
lenge facing new computational tools.

In many sequencing projects, an assembled genome of a related 
organism is available and this can dramatically simplify the assem-
bly task. The task of assembly is then often translated to one of 
matching sequences to the reference genome and de novo assem-
bly of just the polymorphic regions from the unmatched reads. 
This strategy has been widely used for resequencing projects (15). 
It has also been used to assemble closely related bacterial strains 
(16). The strategy of sequencing and mapping to a reference 
genome has also been used in a variety of other applications – 
from discovering novel noncoding RNA elements (17) to profil-
ing methylation patterns (18) (see Subheading 4 for more 
examples). The general pipeline for these applications is outlined 
in Fig. 1 with mapping of reads to a reference being an important 
common component.

In recent years, several programs have been developed to handle 
the challenge of mapping a large collection of reads onto a reference 
genome while accounting for sequencing errors and polymor-
phisms. These programs often trade-off flexibility in matching 
policy – how many mismatches and indels they can handle – in 

3.1. Mapping  
and Comparative 
Assembly

Fig. 1. Read mapping and its applications. Mapping programs are widely used to align reads to a reference while allowing 
some flexibility in terms of mismatches and indels and a policy for handling ambiguous matches. The matches are then 
processed in different ways depending on the application of interest.

Reference Sequence

Reads

Mapping

SNP Discovery

TTAGGACCAT−GA

GTTAGGACCTTC

ACGTTACGACCTTCGATC

Gene 2Gene 1 Gene 3

Expression Profiling Small RNA Discovery
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order to improve computational efficiency and the size of their 
memory footprints. For the longer reads from Sanger and 454 
sequencing, programs such as MUMmer (19) and BLAT (20) 
provide the right trade-off between efficiency and flexibility in 
matching policy; they allow many mismatches and indels and are 
correspondingly slower.

The large volume of reads from Illumina and SOLiD 
sequencing has spurred the development of a new set of tools. 
In order to efficiently handle large amounts of short-read data, 
these programs attempt to find the right balance between align-
ment sensitivity and performance. Performance is generally 
achieved by constructing efficient indexes of either the refer-
ence genome or the set of reads, allowing the rapid identifica-
tion of putative matches which are then refined through more 
time-intensive algorithms. Further improvements in perfor-
mance arise from the handling of reads that map within repeat 
regions – most programs only report a few (or even just one) 
of the possible mappings. Finally, these programs allow only a 
few differences between a read and the reference genome and 
frequently do not allow indels. The choice of alignment pro-
gram and corresponding parameters ultimately depends on the 
specific application: for example, in SNP discovery it is impor-
tant to allow for differences between the reads and the reference 
beyond those expected due to sequencing errors, while in 
CHIP-seq experiments (21), exact or almost-exact alignments 
are probably sufficient. We review some of the popular mapping 
programs below.

MAQ (22) (it stands for Mapping and Assembly with Quality) 
is designed to map millions of very short reads accurately to a 
reference genome by taking into account the quality values asso-
ciated with bases. In addition, MAQ also assigns to every mapped 
read, an assessment of the quality of the mapping itself. This 
information allows MAQ to perform well in SNP-calling applica-
tions. MAQ constructs an index of the reads, therefore its mem-
ory footprint is proportional to the size of the input and the 
authors recommend performing the alignment in chunks of two 
million sequences. MAQ only allows for mismatches in the align-
ment (no indels) and randomly assigns a read to one of several 
equally good locations when multiple alignments are possible 
(though this behavior can be modified through command-line 
parameters). Furthermore, MAQ can utilize mate-pair informa-
tion in order to disambiguate repetitive matches. MAQ was origi-
nally developed for Illumina data, though it can also handle SOLiD 
sequencing using a transformation of the reference sequence into 
color space.

The inputs to MAQ are provided in FASTA (reference) and 
FASTQ (reads) formats and the output consists of a list of matches 
with associated qualities. MAQ also includes modules for SNP 
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calling, as well as a viewer Maqview that provides a graphical 
representation of the alignments.

The source code is available for download at http://maq.
sourceforge.net under the GNU Public License.

SOAP (23) which stands for Short Oligonucleotide Alignment 
Program indexes the reference instead of the reads and therefore 
its memory footprint should be constant irrespective of the num-
ber of reads processed. Its alignment strategy allows alignments 
with one short indel (1–3 bp) in addition to mismatches between 
the read and the reference. Its treatment of reads with multiple 
alignments can be tuned through command-line parameters. Like 
MAQ, SOAP also provides support for mate-pairs, and includes a 
module for SNP calling. In addition, SOAP provides an iterative 
trimming procedure aimed at removing low quality regions at the 
ends of reads, as well as specialized modules for small RNA dis-
covery and for profiling of mRNA tags.

SOAP is available for download at http://soap.genomics.org.
cn as a Linux executable.

SHRiMP (unpubl.) is one of the first alignment programs 
specifically targeted at SOLiD data, though Illumina data can also 
be processed. This program uses a spaced-seed index followed by 
Smith–Waterman alignment to provide full alignment accuracy 
and flexibility. Since SHRiMP uses a full dynamic programming 
approach for alignment instead of heuristics, it is considerably 
slower than MAQ or SOAP, even though the implementation of 
the Smith–Waterman algorithm is parallelized through vectored 
operations supported by Intel and AMD processors. In addition 
to SOLiD data, SHRiMP now also supports data generated by 
the Helicos technology.

SHRiMP is available from http://compbio.cs.toronto.edu/
shrimp as both source code and precompiled binaries.

Bowtie (24) is the first of a new-breed of fast and memory-
efficient short-read aligners based on the compact Burrows–
Wheeler index (both MAQ and SOAP now offer BWT-based 
indices), used to index the reference sequence. While following 
the same alignment policies as MAQ and SOAP, Bowtie is typi-
cally more than an order of magnitude faster, aligning more than 
20 million reads per hour to the human genome on a typical 
workstation. Unlike other aligners, Bowtie allows the index for 
a genome to be precomputed, reducing the overall alignment 
time and making it easier to parallelize the alignment process. 
Furthermore, the indexing structure used is space-efficient, 
requiring just over 1 GB for the entire human genome.

Bowtie is available at http://bowtie-bio.sourceforge.net as an 
open-source package together with an associated program called 
TopHat to map splice junctions from RNA-seq experiments.

Other programs. Several other programs are available for the 
alignment of short reads and more will likely become available in 

http://maq.sourceforge.net
http://maq.sourceforge.net
http://soap.genomics.org.cn
http://soap.genomics.org.cn
http://compbio.cs.toronto.edu/shrimp
http://compbio.cs.toronto.edu/shrimp
http://bowtie-bio.sourceforge.net
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the near future. Among the most widely used is Eland, the aligner 
provided by Illumina with their sequencing instruments. This 
program is proprietary and unpublished and we cannot provide 
any additional information on its performance. Another commer-
cial offering is SX-OligoSearch from Synamatix, a program that is 
provided together with the specialized hardware necessary to run 
it. Finally, SeqMap (25), RMAP (http://rulai.cshl.edu/rmap), 
and ZOOM (26) are other aligners that have been recently 
reported in the literature. The latter is based on a spaced-seed 
index and appears to be very efficient; however, the code can cur-
rently only be obtained by direct request from the authors.

Postalignment analysis. Several of the alignment programs 
described above provide additional modules for postprocessing 
the set of alignments in order to identify SNPs, discover small 
RNAs or analyze transcriptome profiling data or splicing patterns. 
The resulting alignments can also be provided as input to a com-
parative assembler such as AMOScmp (27) to construct local 
assemblies of the set of reads in a “template-guided” fashion. In a 
recent work, Salzberg et al. (16) demonstrated the use of this tool 
with Solexa data in bacterial sequencing, and have also proposed 
an approach to leverage similarity at the amino acid level to con-
struct gene-centric assemblies of the data.

In the absence of a reference genome, researchers typically rely on 
de novo assembly programs to reconstruct the sequences repre-
sented in the shotgun sequencing reads. An overview of the 
assembly process is presented in Fig. 2. The de novo assembly of 
a genome relies on the assumption that two reads that overlap 
significantly in their sequence are likely to represent neighboring 
segments of a genome. This assumption is, however, violated 
when the overlapping sequence is part of a repetitive region in the 
genome and recognizing such regions is an important part of 

3.2.  De Novo Assembly

Fig. 2. Overview of de novo assembly. De novo assembly programs typically use the overlap between reads to construct 
a graph structure. After some simplifications of the graph, unambiguous paths in the graph are used to reconstruct 
contiguous sequences (contigs). Information such as the presence of mate-pair links between contigs may also allow the 
construction of gapped sequences (scaffolds).

Overlaps &
Graph Construction

Paths &
Repeat Detection

Reads Assembly Graph

Contig

Mate−Pair

Genomic Sequence

ACGTTACGACCTTCGATCNNNNNNNNCTGGATTCCC

http://rulai.cshl.edu/rmap
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genome assembly. The short read lengths of the new sequencing 
technologies entail that even short genomic repeats (that tend to 
be more frequent as well) can introduce ambiguities into the 
assembly process. As a result, the output from the assemblers is 
often a highly fragmented picture of the genome. Despite these 
limitations, several sequencing projects have successfully used 
short-read technologies.

Due to its longer read lengths 454 sequencing is a popular 
approach for de novo sequencing of bacterial genomes and 
increasingly for larger eukaryotic genomes as well. The Newbler 
assembler (http://www.roche-applied-science.com) that is dis-
tributed with 454 instruments has been used to assemble 454 
data in several sequencing projects. The Newbler assembler sup-
ports mate-pairs and can do comparative as well as hybrid assem-
bly (see Subheading 3.2.2). With sufficient read coverage (>20×) 
it generally produces accurate and conservative assemblies con-
taining few misassemblies due to repeats. The consensus sequence 
of the resulting contigs is of high quality despite the relatively 
common sequencing errors in homopolymer regions within 454 
sequence data.

The Celera Assembler (http://wgs-assembler.sourceforge.
net) (11), originally developed for the assembly of large mamma-
lian genomes from Sanger data, has recently been extended to 
allow assembly of 454 data as well as of mixtures of 454 and Sanger 
data. Both Celera Assembler and Newbler directly accept 454 data 
as input in .SFF format and produce outputs in both FASTA for-
mat and in several more detailed assembly formats, including the 
popular ACE format used by the phred-phrap-consed suite of 
programs.

For assembling the even shorter reads from Illumina and 
SOLiD, several assembly programs have recently been developed. 
In order to deal with the large volume of reads, early programs 
such as SSAKE (28), VCAKE (29), and SHARCGS (30) relied 
on a simple greedy approach to assembly. However, two new pro-
grams (Edena and Velvet) that are based on a graph-theoretic 
approach to assembly were shown to produce more accurate and 
larger assemblies and we describe them in more detail here. Note 
that even the best assemblers generate highly fragmented assem-
blies from short-read data (~35 bp), leading to contigs in the 
range of just a few to tens of thousands of basepairs instead of 
hundreds to millions of bases common in 454 and Sanger assem-
blies. These programs are, thus, better suited for the assembly of 
targeted regions, such as individual genes, or data generated in 
CHIP-seq experiments.

Edena (31), which stands for Exact DE Novo Assembler, was 
designed for assembling Illumina sequences based on a classic 
overlap-layout-consensus assembly framework. To avoid spurious 

http://www.roche-applied-science.com
http://wgs-assembler.sourceforge.net
http://wgs-assembler.sourceforge.net
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overlaps, Edena restricts itself to exact matches and this also allows 
it to compute overlaps efficiently. In addition, Edena incorporates 
some heuristic approaches to simplify the overlap graph and only 
linear sections of the graph are assembled into sequences. In addi-
tion to this conservative approach, Edena also allows for a non-
strict mode which can create longer sequences but with an 
increased chance of incorrect assembly. Experiments with ~35 bp 
Illumina reads for a few bacterial genomes have shown that Edena 
can very accurately assemble them into sequences that are on 
average a few kilobases long. These assemblies were performed 
on a desktop computer with 4 GB of memory and in less than 
20 min. The Edena program is available for download at http://
www.genomic.ch/edena as a linux executable (an experimental 
windows executable is also available). The program takes a FASTA 
or FASTQ file of reads as input and produces a FASTA file of 
assembled sequences as output. It also allows the user flexibility in 
choosing an overlap size, trimming of reads and filtering of short 
assemblies. The current implementation of Edena does not han-
dle mated reads.

Velvet (32) is an open-source program that uses a de Bruijn 
graph-based approach to assembly (33). Correspondingly, while 
the graph construction step is simplified, the program relies on 
several error-correction heuristics to improve the structure of the 
graph. The program also has a module to use mated reads to dis-
ambiguate some repeat structures and join contigs. Using simu-
lated mated reads, this approach was shown to produce much 
longer contigs in prokaryotic genomes. Velvet is available for 
download at http://www.ebi.ac.uk/~zerbino/velvet and has been 
tested on Linux, MacOS, and Windows systems with Cygwin. 
It accepts reads in FASTA as well as FASTQ format and its 
output is a set of assembled sequences in a FASTA file as well as 
an AMOS compatible assembly file. Velvet also allows the user to 
choose the overlap size and can filter sequences that have a low 
read coverage.

ABySS (34) is a new parallelized sequence assembly program 
based on the de Bruijn graph approach that can efficiently do 
de novo assembly of relatively large datasets (billions of reads). It 
also allows for the use of paired-end information to produce lon-
ger contigs. ABySS can take in reads in FASTA format and pro-
duce contigs in FASTA format and is available as an open-source 
package at http://www.bcgsc.ca/platform/bioinfo/software/
abyss.

Other software. The Minimus assembler (35) which is part of 
the AMOS package of open-source assembly tools (http://amos.
sourceforge.net), like Edena, is based on an overlap-layout-consen-
sus framework for assembly. Due to its modular structure, Minimus 
can easily be adapted for various sequencing technologies and a 

http://www.genomic.ch/edena
http://www.genomic.ch/edena
http://www.ebi.ac.uk/~zerbino/velvet
http://www.bcgsc.ca/platform/bioinfo/software/abyss
http://www.bcgsc.ca/platform/bioinfo/software/abyss
http://amos.sourceforge.net
http://amos.sourceforge.net
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version for Illumina sequences (http://amos.sourceforge.net/
docs/pipeline/minimus.html) is also available. The ALLPATHS 
program (36) is a new short-read assembler, based on the Eulerian 
assembly strategy, that aims to explicitly present assembly ambigu-
ity to the user in the form of a graph. The authors plan to release 
a production version of the program soon.

While programs such as Edena and Minimus do not directly 
handle information about mated reads, a scaffolding program 
such as Bambus (37) can use this information to stitch together 
contigs into larger sections of the genome (aka scaffolds). Bambus 
is available at http://amos.sourceforge.net/docs/bambus. Note 
that Newbler, Celera Assembler, Velvet, and ALLPATHS can use 
mate-pair information directly to guide the assembly process and 
generate larger contigs and scaffolds (where some of the inter-
vening regions can be ambiguous).

Another promising new approach to scaffold short-read 
sequences is based on Optical Mapping technology (38) (http://
www.opgen.com). Optical Maps are a form of restriction maps 
where genomic DNA is fragmented using a restriction enzyme 
and the fragment sizes are measured. In optical mapping, both 
fragment sizes and the order in which they occur within the 
genome can be determined. This genome-wide map provides an 
ideal reference to determine the order of the sequences assembled 
from a shotgun sequencing project. For a typical prokarytoic 
sequencing project more than 90% of the genome can be scaf-
folded using these maps into a single genome-wide scaffold (39). 
The open-source SOMA package is specifically designed to map 
short-read assemblies onto one or more optical maps and scaffold 
them, and is available for download and as a webservice at http://
www.cbcb.umd.edu/soma.

As discussed in Subheading 2 the various sequencing technolo-
gies have different advantages and disadvantages, some of which 
are complementary. Correspondingly there is an interest in con-
structing hybrid assemblies that, for example, can combine mated 
reads from one technology with high coverage reads from another. 
In recent work, Goldberg et al. (40) showed that high-quality 
assemblies of microbial genomes can be obtained in a cost-effective 
manner using a Sanger-454 hybrid approach. In order to assemble 
the data, they relied on an ad-hoc approach where sequences assem-
bled from 454 reads using Newbler were shredded in-silico before 
assembly with other Sanger reads using the Celera Assembler. 
Recently, more carefully tuned versions of the Celera Assembler (41) 
and Newbler have been released that can perform true Sanger-454 
hybrid assemblies. Assemblers that are fine-tuned to incorporate 
various other mixtures of sequence data are still an active area of 
research.

3.2.1.  Scaffolding

3.2.2.  Hybrid Assembly

http://amos.sourceforge.net/docs/pipeline/minimus.html
http://amos.sourceforge.net/docs/pipeline/minimus.html
http://amos.sourceforge.net/docs/bambus
http://www.opgen.com
http://www.opgen.com
http://www.cbcb.umd.edu/soma
http://www.cbcb.umd.edu/soma
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The dramatic reduction in the cost of sequencing using next-
generation technologies has led to widespread adoption of 
sequencing as a routine research technique. On the one hand, the 
traditional use of sequencing, i.e., to reconstruct the genomes of 
a range of model organisms and pathogenic microbes has received 
a boost. Researchers are now looking to sequence several indi-
viduals and strains of the same species to understand within spe-
cies variation. While in some cases these related genomes can be 
assembled based on the reference, in others, de novo assembly 
programs are required. The other popular use for sequencing has 
been as a substitute for common array based techniques for study-
ing mRNA expression, transcription-factor-binding sites and 
methylation patterns, among others. These applications rely on 
read mapping programs followed by application-specific analysis 
as shown in Fig. 1. Here we highlight a few of the diverse collec-
tion of problems that are being impacted by the availability of 
new sequencing platforms and the computational tools to ana-
lyze the data.

High-throughput sequencing has enabled researchers to study 
the extent of variability in our genomes both in terms of single 
base mutations as well as larger structural changes that are much 
more common than we once believed. The current approach for 
these studies is to map reads to a reference genome to detect 
changes from the reference and is aided by the array of mapping 
programs available as detailed in Subheading 3.1. In addition to 
general-mapping programs such as MAQ that are well-suited for 
SNP calling and have a built-in procedure to do so, there are 
other programs that are specifically designed for SNP calling. The 
PyroBayes program is one such tool that was developed to spe-
cifically take into account the characteristics of 454 reads, given a 
set of read mappings (available at http:// bioinformatics.bc.edu/
marthlab/PyroBayes). The ssahaSNP program is another (http://
www.sanger.ac.uk/Software/analysis/ssahaSNP), that performs 
both the mapping and SNP calling for Illumina sequences and 
also includes a module for indel discovery. Tools to detect larger 
structural variations based on mated reads are an active area of 
current research (42).

Metagenomics studies where a collection of organisms are 
sequenced together are, in principle, the prime application for 
new sequencing technologies that enable cheap and relatively bias-
free sequencing. The crucial impediment however is the ability to 
assemble and annotate the short reads from these technologies.  

4.  Applications

4.1.  Variant Discovery

4.2.  Metagenomics

http://bioinformatics.bc.edu/marthlab/PyroBayes
http://bioinformatics.bc.edu/marthlab/PyroBayes
http://www.sanger.ac.uk/Software/analysis/ssahaSNP
http://www.sanger.ac.uk/Software/analysis/ssahaSNP
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In recent years, several programs have been designed for classifica-
tion and gene-finding in 454 reads. Programs such as MEGAN 
(43) and CARMA (44), in particular, have had some success using 
translated BLAST searches to classify and annotate 454 reads. 
Ideally, annotation and gene-finding of metagenomic sequences 
would be preceded or done in tandem with assembly of the short 
reads. Assembly algorithms tuned for metagenomics datasets, 
especially those based on short reads are, however, still being 
developed (45), and there is much work to be done in this direc-
tion. As read lengths for Illumina and SOLiD sequencing increase, 
metagenomics studies are likely to more widely use these tech-
nologies in the future.

Sequencing in combination with computational filters provides 
an ideal approach to discover various noncoding small RNAs 
whose regulatory importance is increasingly being apparent. The 
dramatic decrease in the cost of sequencing has enabled researchers 
to detect even rarely transcribed elements and fortunately the 
length of these elements is small enough for them to be profiled 
with short reads. Analyzing reads from such a project involves 
mapping them to a reference genome and using annotations on 
the genome and RNA structure prediction programs to filter out 
uninteresting loci. The analysis pipeline typically needs to be tai-
lored to the sequencing platform used and the kinds of small 
RNA that the researchers are interested in. The miRDeep pack-
age (17), for example, was specifically designed to analyze 
sequences for microRNAs and more such packages are likely to be 
made available in the near future. In another recent work, Moxon 
et al. (46) describe a set of webservices to analyze large datasets of 
plant small RNA sequences to find various plant-specific RNA 
elements.

In this chapter, we provided an overview of the tools available for 
assembling and analyzing the new generation sequencing tech-
nologies that have emerged in recent years. As these technologies 
have only recently become available and research on new tech-
nologies is ongoing, the associated software tools are also con-
tinuously being adapted. Therefore, the information provided 
here is just a starting point, rather than a complete survey of the 
field. We hope this information provides the necessary background 
and we urge the reader to follow the links provided within the text 
in order to obtain up-to-date information about the software 
tools described here.

4.3. Small RNA 
Discovery

5.  Conclusion
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Chapter 2

RNA Structure Prediction

István Miklós 

Abstract

We give an overview of RNA structure predictions in this chapter. We discuss here the main approaches 
to RNA structure prediction: combinatorial approaches, comparative approaches, and kinetic approaches. 
The main algorithms and mathematical concepts such as transformational grammars will be briefly 
introduced.

Key words: RNA secondary structure, Pseudoknot, Stochastic context-free grammars, Dynamic 
programming, Comparative methods, Folding kinetics

RNA sequences are single-stranded biopolymers that can fold 
themselves. For a long time, only three types of RNA sequences 
were known, tRNAs, mRNAs, and rRNAs. Although Woese, 
Crick, and Orgel already in 1967 and 1968 suggested that RNA 
could act as a catalyst (1–3), the first ribozyme (enzymatic RNA) 
has been found by Cech and his colleagues only in the 1980s (4). 
The first algorithm to predict RNA secondary structure was pub-
lished in 1980 (5), and today, several different approaches have 
been published for RNA structure prediction.

We will start with some formal definitions, and then briefly 
overview the different approaches for RNA structure prediction.

By a formal definition, an RNA secondary structure is a set of 
pairs of positions, ( ){ }= …· , 1,2,k ki j k n . Each position of the RNA 
string can participate in, at most, one pair. We will assume that 
ik < jk for all ks. The pairs show which nucleic acids of the RNA 
sequence form base pairs.

1. Introduction

1.1. RNA Secondary 
Structure

David Fenyö (ed.), Computational Biology, Methods in Molecular Biology, vol. 673,
DOI 10.1007/978-1-60761-842-3_2, © Springer Science+Business Media, LLC 2010
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We say that a secondary structure is pseudoknot-free if for 
any two base pairs i⋅j and i¢⋅j ¢, i < i¢ either j < i¢ or j ¢ < j. Namely, 
the two base pairs are separated or nested, see Fig. 1. Two base 
pairs in order i < i¢ < j < j ¢ form a pseudoknot. The simplest pseudo-
knot is shown in Fig. 2.

We say that a nucleic acid in position k separates the base pair 
i ·j if i < k < j. A base pair i¢·j ¢ is nested into i ·j, if i < i¢ < j ¢ < j.

A helix is a set of consecutive base pairs, namely, a set of pairs 
of positions ( ){ }= …· , 1,2,k ki j k n  in which for each k, ++ = 11k ki i  
and + + =1 1k kj j .

If we denote the RNA sequence with a line and each base pair 
with an arc above the line, a pseudoknot-free secondary structure 
can be drawn without any crossing arcs. Some of the pseudoknotted 
structures can be drawn without crossing arcs if it is allowed to 

Fig. 1. Pseudoknot-free secondary structure. Each arc represents a base pair. Base 
pairs connecting regions b and c are nested into base pairs connecting regions a and f. 
Base pairs connecting regions b and c are separated from base pairs connecting regions 
d and e.

Fig. 2. Secondary structure with a planar pseudoknot. Base pairs connecting regions a 
and e are pseudoknotted with base pairs connecting regions d and f; however, the arcs 
can be drawn without crossing each other if both sides of the string representing the 
RNA sequence can be used.
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use both sides of the line. These structures are called planar 
pseudoknotted secondary structures. There are pseudoknotted 
structures that are not planar. Such secondary structures appear 
in real life, too; for example, the E. coli alpha-operon ribosome 
possesses the simplest nonplanar pseudoknotted secondary struc-
ture. The topology of that structure is shown in Fig. 3: it contains 
three helices such that any two helices form a pseudoknot.

It is important to distinguish between pseudoknot-free, pla-
nar, and nonplanar pseudoknotted secondary structures from a 
computational point of view. Indeed, finding the best pseudo-
knot-free secondary structure is computationally easy. There are 
several ways to define what the “best” structure is, but in all cases, 
the running time of the algorithms that find the “best” structure 
takes O(L3) time, where L is the length of the RNA sequence. 
Though predicting planar pseudoknotted structures is still a the-
oretically easy computational problem, the running time of the 
optimization algorithm goes up to O(L6). Finding the best sec-
ondary structure when there are no limitations on the pseudo-
knotted structures is an NP-hard optimization problem even in 
very simple models.

Just like in other parts of bioinformatics, it is also true for RNA 
sequences that measuring the structure in lab is significantly more 
costly and time-consuming than obtaining the sequence itself. 
Therefore, a central task in structural RNA bioinformatics is to 
predict (secondary) structures from RNA sequences. There are 
several concepts how to choose a secondary structure as the pre-
diction for the structure of an RNA sequence.

Combinatorial approaches define a score function for each possible 
RNA secondary structure and try to find the structure that mini-
mizes or maximizes this function. They use combinatorial opti-
mization techniques, typically dynamic programming approaches 
that can find the optimal solution without investigating each 
particular solution.

The simplest approach associates a weight for each possible 
base pair and tries to maximize the sum of the weights of the base 
pairs in the secondary structure. The reason for this is that each 

1.2. Concepts  
of Predicting RNA 
Structures

1.2.1. Combinatorial 
Approaches

Fig. 3. A nonplanar pseudoknot. The three sets of arcs cannot be drawn without crossing 
each other even when using both sides of the string.
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nucleic acid pair makes hydrogen bonds, which deepens the free 
energy.

Tinoco and his colleagues introduced an energy model (6, 7). 
They decomposed pseudoknot-free RNA structures into loops. 
They defined the following loops (see Fig. 4):

 1. Null loop. This is the loop that is not a real loop. If we con-
nect the 5¢ end of an RNA sequence with its 3¢ end, then we 
would get a loop, and this would correlate with the null loop. 
As per a precise mathematical definition, a null loop contains 
those single-stranded nucleic acids that do not separate any 
base pair and the nucleic acids which are base-paired but are 
not nested into other base pairs.

 2. Stacking loop. This loop is formed by the hydrogen bonds of 
two consecutive base pairs in a helix and the sugar–phosphate 
backbone between the nucleic acids of the two pairs. The 
name of the loop is after the fact that there are stacking forces 
between two neighbor base pairs that stabilizes the secondary 
structure.

 3. Internal loop. An internal loop is a loop inside a helix. A spe-
cial internal loop is a bulge. A bulge contains single-stranded 
nucleotides only on one of the RNA strands.

 4. Multiloop. A multiloop is a loop where a helix branches into 
several (at least two) helices.

 5. Hairpin loop. A hairpin loop closes a helix.

The free energy of an RNA secondary structure is the sum of the 
free energies of the loops. The individual loop energies can be 
measured in lab. Zucker and Sankoff (8) gave the first polyno-
mial running time algorithm that finds the pseudoknot-free 
secondary structure in O(L3) time, where L is the length of the 
RNA sequence.

Fig. 4. Any pseudoknot-free RNA structure can be decomposed into cycles. See text for 
more details.
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Comparative methods assume that the structure is more 
conserved than the sequence itself, and homologous sequences 
have the same structure. To maintain the structure, base pairs 
coevolve hence keeping the secondary structure. This coevolu-
tionary pattern provides the base of the comparative methods, 
which try to find a structure that all the sequences can take. Some 
of the methods need a multiple alignment as input, while other 
methods try to align and estimate the secondary structure in a 
common framework.

There are evidences that the folding of an RNA sequence starts 
with its transcription. The secondary structure that an RNA 
sequence possesses might not necessarily be the minimum free 
energy (mfe). Indeed, as in silico, searching algorithms might 
not be able to find the mfe structure, since RNA sequences 
might not fold into the mfe structure in vivo. Therefore, it is a 
reasonable approach to try to simulate in silico the folding 
kinetics of RNA sequences and thereby predict their secondary 
structures.

In this section, we give an overview of combinatorial approaches.

We start with the simplest method that maximizes the number of 
base pairs in pseudoknot-free secondary structures. Below, we will 
talk about pseudoknot-free secondary structures, and until men-
tioned otherwise, secondary structure will mean pseudoknot-free 
secondary structure. The input of the Nussinov algorithm (5) is an 
RNA sequence A and a weight function Σ × Σ →:w R, where 

{ }Σ = , , ,A C G U , and for any two characters a and b, w(a,b) defines 
the weight for making a base pair between a and b. The output 
of the algorithm is secondary structure ( ){ }= …· , 1,2,k ki j k n  that 
maximizes

( )
=

∑
1

,
n

ik jk
k

w a a

where ai is the character in the ith position. The algorithm is a 
dynamic programming algorithm. The dynamic programming 
algorithms try to find the solution for a problem using solutions 
of subproblems. The Nussinov algorithm finds the weight of the 
maximum weight secondary structure of each substring …i ja a . 
The dynamic programming idea is that whatever the maximum 

1.2.2. Comparative 
Methods

1.2.3. Folding Kinetics

2. Combinatorial 
Optimization

2.1. Nussinov 
Algorithm
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weight the secondary is for substring …i ja a , at least one of the 
following holds:

 1. ai is not base-paired.
 2. aj is not base-paired.
 3. ai is base-paired with aj.
 4. Both ai and aj are base-paired, but not with each other.

Let n(i,j) denote the weight of the maximum weight secondary 
structure that the substring …i ja a  can possess. If case 1 holds for 
this structure, then

= +( , ) ( 1, )n i j n i j

Indeed, if ai is not base-paired, then all base pairs in …i ja a  are 
also in the substring + …1i ja a . Similarly, if aj is not base-paired in 
the maximum weight secondary structure of substring …i ja a , 
then all base pairs in …i ja a  will be base pairs in the substring  

+… 1i ja a . If ai is base-paired with aj, then the maximum weight 
secondary structure of …i ja a  will contain one more base pair 
than the maximum weight secondary structure of + −…1 1i ja a . 
Finally, if ai is base-paired with some ak, ≠k j , then there is no 
base pair l⋅l¢ for which i < l < k < l¢, since it would be a pseudoknot. 
Therefore, the substring can be cut into two parts between the 
nucleotides in position k and k + 1 without cutting any base pair.

Since we do not know which one from the above mentioned 
four cases holds for a substring …i ja a , and for which k, ai is base-
paired with ak if only case 4 holds in the above list, we have to 
consider all cases. Therefore, the recursion of the Nussinov algo-
rithm is the following:

The scores n(i, j) must be calculated for each ≤ < ≤1 i j L, 
starting with short substrings and then longer ones. Once n(1,L) 
is calculated, the maximum scoring secondary structure can be 
drawn by tracebacking the recursion.

The main problem with maximizing the score of base pairings is 
that the stacking energies between base pairs contribute signifi-
cantly to the stabilization of the secondary structure. Moreover, 
the entropy of different loops also significantly contribute to the 
free energy of the secondary structure. Tinoco et al. introduced 
an energy model in which the free energy of a secondary structure 
is the sum of free energies of different loops, see Subheading 1.2.1. 

( 1, );

( , 1);
( , ) max ( 1, 1) ( , );

max{ ( , ) ( 1, )}
i k j

n i j

n i j
n i j n i j w i j

n i k n k j
< <

+
 −=  + − +

+ +

2.2. Zuker–Sankoff 
Algorithm
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Zuker and Sankoff (8) gave the first algorithm that finds the mfe 
secondary structure in the Tinoco energy model (6, 7).

Here, we give a simplified description of the Zuker–Sankoff 
algorithm, the readers are referred to refs. 9–11 for further 
details. The basic concept of the algorithm is that for each j long 
prefix, the free energy of the mfe secondary structure is calcu-
lated. The free energy of the null loop is simply the sum of the 
so-called dangling energies of base pairs in the null loop. The 
dangling energies are the free energies due to the interaction 
between the base pairs and the neighbor nucleic acids. If aj is not 
base-paired, then the free energy of the mfe structure of the j 
long prefix is the free energy of the j − 1 long prefix (neglecting 
dangling energies). If aj is base-paired, then the prefix can be cut 
into two parts, a shorter prefix and a substring. Therefore, the 
recursion is:

where C(i, j) tells the free energy of the mfe secondary structure 
of the …i ja a  substring in which ai is base-paired with aj. This 
base pair might close a

 1. A hairpin
 2. An internal loop
 3. A multiloop
 4. A helix

There is only one possible structure in which the base pair closes 
a hairpin-loop. The Zuker lab keeps refining the free energies 
associated to different hairpin-loops (12). The recent software 
packages (10, 13) implementing the Zuker algorithm score hair-
pin-loops according to the most up-to-date published values.

When i ·j closes an internal loop, the dynamic programming 
recursion has to consider all i < p < q < j, for which p·q closes the 
other end of the loop. Since there are O(L2) possible i ·j base pairs 
and for each i ·j there are O(L2) possible p ·q pairs, this part of the 
dynamic programming recursion would need O(L4) running time 
on its own. For the current scoring of internal loops, a speed-up 
to O(L3) is possible (14).

Since there is no theoretical upper bound on the number of 
helices appearing in a multiloop, dynamic programming is not 
possible for multiloops and arbitrary energy scores of multiloops. 
A simplified, linear model is applied for multiloops for which the 
free energy of a multiloop is defined as

where # s is the number of single-stranded nucleotides, and # d is 
the number of base pairs in the multiloop. The constants a, b, and 

{ }{ }1
( ) max ( 1),max ( 1) ( , ) dangling

k j
F j F j F k C k j

< <
= − − + +

+ + +# # danglinga b s c d
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c are estimated with regression based on measured free-energies 
of different RNA sequences with known secondary structures.

The details of the dynamic programming for calculating C(i, j) 
is quite involved and will not be introduced here. The readers are 
referred to the work of Wuchty et al. (9) and the references in it. 
The running time of the algorithm is O(L3).

The RNA sequences can dynamically change their secondary 
structures. The secondary structures of an ensemble of RNA 
sequences are in a Boltzmann distribution in which the probabil-
ity of a particular structure S is

where ∆ ( )G S  is the free energy of the structure, R is the universal 
gas constant, and Z is the partition function:

where the sum is over all the possible structures that the RNA 
sequence might have. McCaskill (15) gave the first algorithm that 
calculated this partition function. The algorithm uses similar 
dynamic programming ideas than the Zuker–Sankoff algorithm, 
but it uses additions and multiplications instead of maximization. 
The idea is that if we already calculated

where the sum is over all the possible secondary structures of a 
substring …i ka a , and

where the sum is over all the possible secondary structures of a 
substring + …1k ja a , then

is the partial partition function of substring … .i ja a  that consider 
such secondary structures of …i ja a  that can be cut between posi-
tion k and k + 1.

The dynamic programming algorithm must be implemented 
carefully, since it is possible to cut a secondary structure into two 
parts at several positions without cutting any base pair. Hence, a 
noncareful implementation might consider the same secondary 
structure many times, which would yield an overcounting of the 
partition function. Fortunately, it is possible to decompose each 

2.3. The McCaskill 
Algorithm

−∆= ( )/1
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possible secondary structure into smaller components in a unique 
way, and this unequivocal decomposition is the base of the 
McCaskill algorithm. For details, see also refs.(9) and (11).

Rivas and Eddy published a dynamic programming algorithm for 
predicting any planar pseudoknotted structure (16, 17). The idea 
is that they calculate the best possible secondary structure for any 
pair of substrings. A planar pseudoknotted secondary structure 
can always be decomposed into two smaller parts such that the 
smaller parts also contain planar pseudoknotted structures, see 
Fig. 5. The two substrings can be described by the beginnings 
and ends of the two substrings, i, j, k, and l; therefore, it needs an 
O(L4) memory usage. For each pair of substrings, two cutting 
points, r and s, are needed to split the structure into two parts. 
Hence, the overall running time of the algorithm is O(L6).

There are special algorithms that run in only O(L5) running 
time; however, these algorithms can predict only some special 
pseudoknots and cannot consider all possible planar pseudoknot-
ted secondary structures (18–20). The partition function can also 
be calculated for several pseudoknot model (21). Interested read-
ers are referred to a review paper by Reeder and Giegerich (22).

The general pseudoknot prediction problem is NP-hard. The first 
proof for NP-hardness was given by Lyngsoe and Pedersen in 
(19, 20). Lyngsoe (23) considered three very simple models. In 
these models, the best structure is that maximizes:

 1. The number of base pairs
 2. The number of base pair stackings
 3. The number of stacking base pairs

The difference between the two later models is that the score of 
an m long helix is m − 1 when counting the number of base pair 
stackings, while the score is m when counting the number of 
stacking base pairs, m > 1.

The first approach that maximizes the number of base pairs 
is equivalent to the Maximum Weighted Matching problem. 

2.4. Predicting 
Pseudoknots

2.5. The General 
Pseudoknot Problem

Fig. 5. The schematic representation of the Rivas–Eddy dynamic programming  
algorithm that can predict arbitrary planar pseudoknots. The algorithm obtains the best 
secondary structure for each pair of substrings. Due to limited space, the case when 
both r and s are in the interval [l,k] is not indicated
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Lyngsoe showed that it is NP-hard to determine if an RNA 
sequence can accommodate a secondary structure that contains a 
given number of base pair stackings. Finding the structure that 
maximizes the number of stacking base pairs is also NP-hard if the 
size of the alphabet is not limited. For a four-letter alphabet, the 
best algorithm he could give was an O(L81) algorithm, which is 
obviously practically intractable, though theoretically it is a poly-
nomial running time algorithm.

Comparative methods assume that the structure is more con-
served than the sequences themselves. Hence, they aim at pre-
dicting the joint secondary structure of a set of sequences.

Although this is not the historical order of works, we start this 
section with the Knudsen–Hein grammar (24, 25) for didactic 
reasons. The Knudsen–Hein grammar is a Stochastic Context-
Free Grammar (SCFG) that describes the joint secondary struc-
ture of a set of aligned RNA structures. Context-Free grammars 
(CFGs) are special transformational grammars (26). A transfor-
mational grammar is a tuple {N, T, S, R}, where N is a finite set 
of nonterminal symbols, T is a finite set of terminal symbols, S, 
the starting nonterminal is an element of N, and R is a finite set 
of rewriting rules. The general form of a rewriting rule is

where a is a substring of terminal and nonterminal symbols and 
contains at least one nonterminal character, and b is an arbitrary 
substring of terminal and nonterminal symbols; it might contain 
no nonterminal symbols. A generation of a transformational 
grammar starts with rewriting the starting non-terminal, S to 
some substring, and then continues with rewriting any substring 
of the so-generated intermediate string. The generation stops 
when the string contains only terminal symbols. In a CFG, all 
rewriting rule is in the form

where W is a single nonterminal symbol, and b is an arbitrary 
substring of terminal and non-terminal symbols; it might contain 
only terminal symbols. It is called context-free because rewriting 
the nonterminal W does not depend on its content. When the 
same nonterminal can be rewritten into several substrings, we 
write

3. Comparative 
Methods

3.1. The Knudsen–Hein 
Grammar

a b→

b→W

b b b→ …1 2 kW
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which means that W can be rewritten into b1 or b2…bk. A CFG 
becomes stochastic if for each W, there is a probability distribu-
tion over the possible substrings that can replace W.

Knudsen and Hein introduced a SCFG that can generate 
all possible pseudoknot-free secondary structure. The rewriting 
rules are:

where s is a single-stranded nucleic acid, and ds are double-
stranded nucleic acids. An example generation is shown on 
Fig. 6.

Knudsen and Hein used this grammar to estimate the com-
mon secondary structure of aligned RNA sequences. First, they 
estimated the rewriting probabilities training the grammar on 
known secondary structures. They also estimated parameters for 
a continuous-time Markov model describing the evolution of 
nucleotide substitutions. They also estimated parameters for a 
continuous-time Markov model describing the dinucleotide sub-
stitutions in helices. In both the cases, they estimated the param-
eters from a priori data. This dataset contained aligned RNA 
sequences with known secondary structures, hence it was known 
which nucleic acids are single-stranded and which are double-
stranded. The authors mixed the SCFG with these substitution 
models. The final model needs an evolutionary tree as input 
and in this joint model, the SCFG generates alignment col-
umns instead of a single s character, and a pair of alignment 
columns replacing the two ds in the dFd substring. The probability 
of rewriting the nonterminal L symbol into a particular alignment 
column is the product of the L → s rewriting probability multi-
plied with the likelihood of the alignment column, given an 
evolutionary tree. This likelihood can be efficiently calculated 
using the Felsenstein’s algorithm (27). Generating correlated 
alignment columns replacing the two ds in the dFd substring can 
be done in a similar way.

S LS S

L s dFd

F dFd S

→

→

→

Fig. 6. An example generation of an RNA secondary structure in the Knudsen–Hein 
grammar.
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The authors used numerical approaches to find the tree topol-
ogy and edge lengths that maximize the probability of generating 
the multiple alignment. Once the Maximum Likelihood tree has 
been found, the most likely generation by the SCFG was calcu-
lated using the CYK algorithm. The CYK algorithm is also a 
dynamic programming algorithm that finds for each substring 
and nonterminal the most likely generation of the substring, start-
ing with the nonterminal. The running time of the CYK algo-
rithm is O(L3M3), where L is the length of the RNA string and  
M is the number of nonterminal symbols. Since the number of 
nonterminal symbols is fixed, this algorithm – just like the 
Nussinov algorithm and the Zuker–Sankoff algorithm – runs in 
cubic time with the sequence length.

As also can be seen in Fig. 6, any generation of the Knudsen–
Hein grammar defines a secondary structure in an unequivocal 
way, and this secondary structure is the prediction for the com-
mon secondary structure. It is also possible to calculate posterior 
probabilities that a nucleic acid is single stranded or base-paired 
with a particular partner nucleic acid. The posterior probability 
for being single stranded means the conditional probability that 
the character (or alignment column) was generated by the L → s 
rewriting rule, with the condition that the SCFG generated the 
sequence (or alignment). Similarly, the posterior probability that 
the nucleic acids in positions i and j are base-paired is the condi-
tional probability that the nonterminal symbol F generated the 
substring + −…1 1i ja a , with the condition that the SCFG generated 
the sequence. Indeed, whenever an F appears on the right hand 
side of the rewriting rules, it comes together with two ds, which 
go to positions i and j if F generates the substring + −…1 1i ja a  
Knudsen and Hein showed that this posterior probability corre-
lates with the probability that the secondary structure prediction 
is correct for that particular position (25).

The Knudsen–Hein grammar is very simple. Though it can 
generate any pseudoknot-free secondary structure, the distribu-
tion of the structures it generates is far from the distribution that 
we can find in biological databases. Indeed, the grammar can 
generate a run of single-stranded nucleic acids with a geometric 
distribution, disregarding where these single-stranded nucleotides 
are, in a hairpin, an internal loop, a bulge, or multiloop. A better 
distribution can be achieved by increasing the number of non-
terminals. The different nonterminals are used for generating dif-
ferent structural elements such as hairpin loops, internal loops, 
bulges, and multiloops. Nebel introduced such an extended 
grammar and showed that such an extended grammar indeed 
improves the goodness of predictions (28).

Covarion Models can be considered as the CFG equivalent of 
profile Hidden Markov Models (29–31). While profile-HMMs 

3.2. Covarion Models
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describe the profile of a multiple sequence alignment of protein 
sequences, Covarion Models describe the profile of a multiple 
sequence alignment of RNA sequences that belong to a fold fam-
ily. They cannot generate arbitrary secondary structures, and they 
are specific to the common structure of the RNA sequences in the 
multiple alignment. The most likely generations (also called most 
likely parsings) align the RNA sequences together via their 
Covarion Model: if two characters in two RNA sequences are 
generated by the same nonterminal, then they are also aligned 
together in the multiple alignment. Similarly, if two pairs of nucle-
otides are generated by the same nonterminal, the two pairs are 
predicted to form base pairs, and both the left hand sides and the 
right hand sides are aligned together.

Since Covarion Models are specific to an RNA family, they 
are used to decide if a sequence belongs to a fold family. The dif-
ference between the energies of mfe secondary structures of a 
randomly drawn RNA sequence and a functional RNA sequence 
is not statistically sufficient to find novel RNA genes in genomic 
sequences (32, 33). On the other hand, Covarion Models are 
very successful in finding specific RNA genes. One of the most 
successful applications is the tRNAScan-SE (34), which can detect 
~99% of eukaryotic nuclear or prokaryotic tRNA genes, with a 
false positive rate of less than one per 15 Gb, and with a search 
speed of about 30 kb/s. This high-throughput method first 
quickly select a small part of the genome that contains basically all 
tRNA genes using a simple Hidden Markov Model. Then, this 
smaller part is analyzed further with a Covarion Model specific for 
tRNA sequences.

The main drawback of the Knudsen–Hein method is that it needs 
an accurate alignment to predict the common secondary struc-
ture of RNA sequences. Indeed, structure prediction for mis-
aligned parts is very hard, and it is impossible if base-paired 
homologous nucleic acids are not aligned together. Covarion 
Models give both an alignment and a predicted structure for each 
sequence, however, they need a large set of homologous sequences 
for an accurate prediction.

The Knudsen–Hein grammar and the Covarion Models can 
predict only pseudoknot-free structures. Witwer introduced a 
method that can predict planar pseudoknotted structures for 
aligned RNA sequences (35). Her method is based on the 
Maximum Weighted Matching (MWM) algorithm (36). The 
MWM algorithm finds the set of base pairings that maximizes 
the sum of the weights of base pairings, without any constraint. 
Although it can predict arbitrary pseudoknots, the outcome 
might also contain a subset of base pairings that clearly cannot be 
formed due to steric constraints, see Fig. 7. Witwer suggested to 
start with an MWM algorithm, and then remove base pairs to get 

3.3. Joint Prediction  
of Alignments  
and Secondary 
Structures
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a planar pseudoknot or pseudoknot-free structure; In a final step, 
the helices are extended, if possible. This algorithm also needs a 
good initial alignment.

When the number of homologous sequences is small and the 
sequences are hard to align without knowing their secondary 
structure, no good initial alignment is available. An ideal approach 
would coestimate the alignment and the secondary structure. 
Sankoff suggested the problem to align and estimate the com-
mon structure of two RNA sequences, and he gave an algorithm 
that runs in O(L6) running time, where L is the geometric mean 
of the sequence lengths (37). Unfortunately, this algorithm is too 
slow to be used in practice. Holmes and Rubin introduced the 
SCFG approach for pairwise RNA structure comparison (38), 
and Holmes introduced an evolutionary model for evolving RNA 
structures (39). Although this latter method has been accelerated 
(40), the acceleration is just a constant factor, and no theoretical 
breakthrough has been achieved.

Meyer and Miklós introduced a Markov chain Monte Carlo 
approach for the joint estimation of multiple alignments, evolu-
tionary trees, and RNA secondary structures including pseudo-
knots (41). The drawback of the approach is that the convergence 
of the Markov chain might be quite slow, and it might take a lot 
of computational time to draw a sufficient number of samples 

Fig. 7. A nonsense secondary structure that might be easily the outcome of a MWM 
algorithm. The MWM algorithm maximizes the sum of weights of base pairs, disregard-
ing whether or not all base pairs can be formed. Clearly, the showed structure cannot 
exist in real life due to steric constraints.
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from the Markov chain. The authors also provide software for the 
analysis of the samples from the Markov chain. It is possible to 
highlight the consensus structure of the sampled structures and 
to give posterior probabilities for each base pair.

Finally, we mention the CARNAC method (42, 43) that tries 
to find a set of conserved helices in a family of homologous RNA 
sequences. The set of conserved helices are not allowed to form a 
pseudoknot. The approach is based on the k-clique problem, 
which is known to be NP-hard. CARNAC has an implementation 
that is reasonably fast on small datasets, and hence it provides a 
practical approach.

There are both experimental (44–46) and statistical evidences 
(47) that RNA sequences start folding during their translation. 
Gultyaev published the first work on simulating RNA folding 
pathways (48, 49). Isambert and his colleagues implemented a 
software package called KineFold that also simulates RNA folding 
(50, 51). They also considered the possibility of cotranscriptional 
folding, namely, the RNA sequence is being folded during its 
transcription in the computer simulation. The authors also pro-
vide a graphical interface for visualizing the folding dynamics. 
KineFold is also available on a webserver. Pseudoknotted struc-
tures are allowed in Kinefold.

So far, all implemented methods simulate the folding of a 
single RNA sequence. Comparative approaches do not consider 
directly the folding dynamics, but they try to find common local 
structures, for example, in mRNA sequences (52, 53).

In this paper, we have given an overview of approaches and 
techniques for predicting RNA secondary structures. There are 
three main approaches for predicting RNA secondary structures: 
combinatorial optimization methods, comparative methods, and 
folding simulations. The speed of algorithms based on combi-
natorial optimization depends on whether or not pseudoknots 
are allowed, and if so, what kind of pseudoknots might be con-
sidered. Although pseudoknots are common in biological RNA 
sequences (54], the general pseudoknot prediction problem is 
hard. Planar pseudoknots can be predicted in polynomial time; 
however, the O(L5) or O(L6) running time makes these algorithms 
impractical.

4. Folding Kinetics

5. Discussion
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Comparative approaches are also common, and if there are 
more than one sequence within the same secondary structure, 
there is at least a hope that the common structure can be pre-
dicted with a better accuracy due to the increased amount of 
information represented in the set of homologous sequences.

Kinetic approaches try to simulate the folding dynamics of 
RNA sequences. Although these simulations are very impressive, 
so far, no large-scale analysis has been published about the accu-
racy of such methods. Nevertheless, the kinetic approach has not 
yet been combined with comparative approaches. We even do not 
know how well the folding dynamics is conserved during 
evolution.
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Chapter 3

Normalization of Gene-Expression Microarray Data

Stefano Calza and Yudi Pawitan 

Abstract

Expression microarrays are designed to quantify the amount of mRNA in a specific sample. However, this 
can only be done indirectly through quantifying the color intensities returned by labeled mRNA mole-
cules bound to the array surface. Translating pixel intensities into transcript expression requires a series 
of computations, generically known as preprocessing and normalization steps. In this chapter, we intro-
duce the basic concepts and methods, and illustrate them using data from three commonly used com-
mercial platforms.

Key words: Affymetrix, Agilent, Illumina, mRNA expression, Oligonucleotide arrays

Along with the intrinsic biological variability, microarray data will 
show nonbiological or technical variability due to many potential 
sources: slide fabrication, biological material extraction, quanti-
ties of mRNA hybridized, sample labeling, dye affinity, scanner 
settings, image acquisition conditions, spatial anomalies, etc. The 
normalization step is the process that attempts to remove or 
reduce these systematic technical biases among the samples. This 
is a crucial step that can substantially affect the results of down-
stream statistical analyses.

In this chapter, we introduce some basic concepts, followed 
by several normalization methods. The list is not exhaustive, but 
rather represents a description of the most commonly-used 
procedures. For practical illustrations, we use real data from a 
comparison study (1) that employed the three currently most 
commonly-used commercial platforms, namely, Affymetrix (2), 
Agilent (3), and Illumina (4). Multiple use of technology plat-
forms on the same samples is ideal for illustration, since each has 

1.  Introduction
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its own unique probe design and issues in the normalization step. 
The usage of software packages available under the R statistical 
environment (5) and the Bioconductor framework (6) will be 
demonstrated.

The single slide or chip is first read by a scanner, typically followed 
by some image-analysis steps: gridding, segmentation, and inten-
sity extraction. Gridding is the process of assigning coordinates to 
each of the probes/spots; segmentation classifies the pixels as 
foreground (belonging to a specific probe) or as background 
(outside the probe); during extraction, foreground and back-
ground intensities are summarized for each probe. There could 
be other image-analysis steps specific to each technology; we refer 
to the manufacturer’s manual for details.

Background noise may derive from many sources such as target 
binding to slide substrate, processing effects, and cross-hybridiza-
tion or nonspecific binding. Automated hybridization reduces 
background noise, thanks to tighter control of temperature and 
chemical conditions, as well as robot intervention. Nevertheless, 
a certain amount of baseline noise is inevitable, and it must be 
accounted for in the preprocessing.

When both background and foreground values are available 
(e.g., in Agilent arrays), background correction can be performed 
via subtraction of the background from the foreground values, 
based on a simplistic assumption of an additive background effect. 
As an undesired side effect, this method might generate a lot of 
negative values that are problematic since most downstream anal-
yses are done in log scale. According to a recent comparison paper 
(7), the best method is the so-called normexp, which is a modifi-
cation of the Affymetrix background correction implemented in 
the RMA method below.

Because of the tight probe arrangement on the chip, the 
Affymetrix oligonucleotide array cannot use the pixels surround-
ing the probe/spot to estimate background levels. Therefore, 
probe intensities have to be used to estimate both foreground 
and background signals. Several procedures are available, though 
there are two that are most commonly used. The first one is 
implemented in the so-called MAS5 algorithm (8). It works at 
single-array basis and uses both perfect-match (PM) and mis-
match (MM) probe intensities. Two corrections are applied: (1) a 
location-specific background adjustment, aimed at removing 
overall background noise, (2) PM correction based on the MM 

2.  Preprocessing

2.1.  Image Processing

2.2. Background 
Correction
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value. For (1), each array is divided in 16 equally sized regions 
arranged in 4-by-4 grids. Within region k, a background value bk 
is estimated using the mean of the lowest 2% of probe values, and 
a noise level nk based on their standard deviation. Each probe 
intensity P(x, y) is then adjusted using a weighted average for the 
background values B(x, y), as well as for the noise values N(x, y), 
as follows

(1)

where a is a tuning parameter (defaults to 0.5), and 
( ) ( )= ∑, ,k kB x y w x y b , and the weight wk is a function of the 

Euclidean distance of the probe location (x, y) and the centroid of 
grid k.

Perfect-match correction based on MM value was originally 
designed by a simple subtraction of MM from the PM intensities. 
This turned out to be problematic as around 30% of MM values 
are bigger than the corresponding PM values (9), thus causing 
negative values. The remedy proposed by Affymetrix is based on 
the computation of the ideal mismatch, a quantity that is smaller 
than PM (10). It should be noted that the estimate of both the 
foreground intensity and its local background will inevitably be 
affected by measurement errors, so that subtracting one noisy 
estimate from another is going to increase the overall variability 
of the signal.

The second procedure is that used by the Robust Multichip 
Analysis (RMA) algorithm (11, 12). It is based on the assumption 
that the observed PM intensity X is the sum of a Gaussian com-
ponent for the real probe signal S and an exponential component 
for the background B. In contrast to the MAS5 algorithm, the 
MM intensities are not used. First, the mode of the distribution 
of PM values is estimated. Then, points above the mode are used 
to estimate the parameters of the exponential, while a half-Gaussian 
is fitted to those below the mode to estimate the Gaussian param-
eters. The final background-corrected intensities are computed as 
the conditional mean E(S|X ), which is the best predicted value of 
the signal S given the observed data X.

Most normalization procedures rely on rather strong assumptions: 
(1) the great majority of genes are unaltered between arrays, 
and (2) genes are expected to be roughly symmetrically distrib-
uted among the upregulated and the downregulated. These 
assumptions seem reasonable in many lab studies, where an 
intervention is not expected to have extensive changes in global 

= −( , ) max{ ( , ) ( , ); ( , )}.P x y P x y B x y N x ya

3. Different 
Methods of 
Normalization



40 Calza and Pawitan

gene expression. However, they are questionable in many clinical 
studies, such as those with heterogeneous samples or custom-
made chips (e.g., human cancer chips). When these assumptions 
are not met, most normalization methods would fail in removing 
the unwanted technical variation, and still worse, they might 
introduce some unpredictable biases that would lead to higher 
false discovery rates.

In addition to performing normalization, it is often useful to view 
the transcript intensities as they might immediately reveal various 
biases. For two-color arrays, a common practice is to plot the rela-
tionship between the red and green intensities within each array. 
(For single-color arrays, the plot can be constructed for a pair of 
arrays.) Yang et al. (13) proposed to plot the log-intensity ratio

against the average log intensity

Assuming that the great majority of genes have similar intensities 
under the two conditions corresponding to the colors, the cloud 
of points in the resulting MA-plot should be concentrated along 
the x-axis; see Fig. 1. Deviations from this ideal indicate, for 
example, dye and intensity-dependent biases.

The simplest method for equalizing the global intensity of differ-
ent arrays is the global (mean or median) normalization. Several 
versions have been proposed in the literature both for two-color 
(13–16) and one-color arrays, and the method is applied in the 
Affymetrix MAS5 algorithm (8). The method is applied array by 
array separately. The basic idea is to adjust the array intensities to 

3.1.  Plots

= −log logr gM X X

= +
1

(log log )
2 r gA X X

3.2. Global 
Normalization

Fig. 1. MA-plot of a mouse microarray data from Agilent. (a) No background subtraction; (b) With background subtraction. 
Note the increased variability after background subtraction.
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have mean (or median) equal to some arbitrary target value (e.g., 
500 in MAS5). If we call yig the probe intensity for gene g in the 
array i, then the normalized value *

igy  will be computed as

where 
iy  is the mean intensity of array i and T the target value.

This approach has the advantage of being easy to understand 
and simple to compute. The main drawback is that the assump-
tion that intensity variation among arrays can be captured by 
multiplicative shift might be too simplistic. From graphical inspec-
tion (see Fig. 2), an intensity-dependent variation is often visible. 
This might be partially due to the fact that, during scanning, 
intensity values are constrained between 0 and 2k − 1, where k is 
the image resolution in bit (usually 16 bit). At the boundaries, 
the variation might not follow a linear trend. Similarly, a spatial 
trend might exist, especially for cDNA slides. All these effects 
would still persist after global normalization.

=* ig

ig
i

y
y T

y

Fig. 2. Lowess normalization of Agilent array. (a) Scatter plot of Cy5 versus Cy3 for raw data (no background correction). 
(b) MA-plot for raw data. (c) Scatter plot after lowess normalization. (d) MA plot after lowess normalization.
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For two-color arrays, Yang et al. (17) proposed an intensity-
dependent normalization procedure based on lowess smoothing of 
the MA-plot. Lowess smoothing, also known as locally weighted 
regression (18), is a technique for smoothing scatterplots, where 
a nonlinear function of a predictor variable is fitted to a continu-
ous outcome variable using robust weighted least squares. Let 

ˆ
gM  be the smoothed value from the MA-plot; then the normal-

ized log ratio value is − ˆ
g gM M .

For single-color platforms, the lowess normalization deals with 
pairs of arrays that are normalized relative to each other. The pro-
cedure cycles through all pairwise combinations of arrays until con-
vergence. The main drawback is that it is computationally intensive, 
especially for a large number of arrays, so it is rarely used.

The idea behind the global normalization is that arrays measur-
ing the same (large collection of ) genes should deliver similar 
averages. It is clear, however, that simply equalizing the center 
of distribution of measured intensities, and likewise possibly the 
scale, might not be sufficient as the whole distribution may vary; 
see Fig. 3. Several authors (19, 20) suggested the quantile  

3.3. Lowess 
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3.4. Quantile 
Normalization
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Fig. 3. (a) Boxplots of unnormalized PM intensities. (b) Boxplots of PM intensities normalized using quantile normalization 
(no background correction), (c) Within-array probe intensity densities for unnormalized data (gray lines) and after normal-
ization (bold black line). (d) Within-array probeset intensity densities after background correction, normalization and 
summarization with RMA.
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normalization, whose goal is to impose to each array the same 
empirical distribution of intensities. The distribution of within-
gene averages is usually used as the target or the reference.

Mathematically, the procedure applies a transformation  
F -1(Gi(y)), where Gi is the cumulative distribution of intensities in 
the array i, and F is the reference distribution. The algorithm 
itself is very simple; intensities in each array are first ranked in 
increasing order. Each quantile value in then substituted by the 
corresponding quantile in the reference distribution. Finally, val-
ues are brought back to the original order. Using only the obser-
vation ranks, the algorithm is able to deal with a nonlinear trend, 
and runs quite fast. Where several replicates of the same gene 
intensities are available (e.g., Illumina and Affymetrix), the algo-
rithm is usually run before summarization, thus exploiting more 
information and possibly with a better estimation of the real 
underlying distribution of gene intensities.

Most commonly-used normalization procedures use the whole 
set of genes, under the assumption that the great majority of 
genes are fairly invariant across arrays. Nevertheless, this assump-
tion is often questionable, especially in experiments where a large 
variation in expression profiles is expected. To overcome this 
problem, the housekeeping-gene approach borrows the idea from 
standard laboratory procedures (e.g., Northern blot or quantita-
tive RT-PCR), where an internal control is used for data normal-
ization. It assumes that some (not all) genes are similarly expressed 
across arrays, so that they can be used as a reference for the rela-
tive expression levels of other genes. For example, Affymetrix 
platforms include a set of control probes of housekeeping genes 
(e.g., b-Actin, GAPDH and others).

However, there is a serious concern about the assumption of 
invariant expression of the so-called housekeeping genes as they are 
often affected by various factors that are not controlled in the 
experiment. Also, those genes are usually highly expressed, thus 
not representing genes of low intensities. Furthermore, they are 
usually a very small subset of the whole array chip, so fluctuations 
in their intensities are highly affected by random or systematic 
errors. Any normalization based on such a limited number of inter-
nal references would be unreliable. Therefore, normalization based 
on housekeeping genes selected a priori is not recommended.

A possible variation of the same framework is to use spiked-in 
control spots with genetic material from unrelated species. Again 
several problems arise with such an approach. First, spike-ins are 
added into the sample at a different stage of cDNA preparation, 
so that intensity levels of spike-ins are subject to less experimental 
variation than the naturally expressed transcripts of comparable 
abundance. Second, nonspecific hybridization cannot be excluded, 
though might be reduced with careful probe design. Finally, a 

3.5. Housekeeping-
Gene Normalization



44 Calza and Pawitan

relatively large number of control spots, with a broad spectrum of 
abundance, would be needed, making the whole process highly 
elaborate.

To overcome the drawbacks of a prespecified set of housekeeping 
genes as a reference for normalization, a data-driven procedure to 
select invariant genes has been proposed (21). Probes related to 
genes that are not differentially expressed among two or more 
biological conditions are expected to have similar intensity ranks. 
An iterative procedure is used to select the so-called invariant set 
of probes. First, the algorithm selects a reference array, for exam-
ple, a mean or median array, or a pseudomean array (i.e., an array 
whose probe expressions are computed as the gene-wise aver-
ages). Then, each probe intensity is ranked within each array and 
compared with the corresponding value in the reference array. 
If the rank difference, divided by the total number of probes on 
the array, is smaller than a threshold, then the probe is selected for 
the invariant set and excluded from the whole list. The ranking 
and selection are then repeated on the reduced list. The iteration 
stops when the number of invariant probes in the reduced list is 
small enough. The resulting invariant set of genes is then used for 
an intensity-dependent normalization based on a lowess or 
smoothing spline.

One advantage of the rank-invariant method is that it does 
not require a symmetry in number of up- and downregulated 
genes. However, since the number of the rank-invariant genes 
selected by the algorithm is usually quite small (of the order of a 
few hundred to one thousand), they may not cover the entire 
range of intensity values of all genes on the array. This might lead 
to some instability in the normalization procedure (22).

A data-driven procedure for identifying a set of genes that are the 
least variant across samples, and therefore might be a good refer-
ence set for normalization, is the basis of an algorithm proposed 
by Calza et al. (23). At present, the algorithm is implemented for 
Affymetrix arrays only. The LVS (least variant set) algorithm fol-
lows the same idea of the invariant-set procedure, but instead of 
using pairwise comparison between arrays, it exploits the total 
information from all the arrays. The information is extracted from 
the probe-level data by partitioning the observed variability of 
probes intensities into array-to-array variation, within-probeset 
variation, and residual variation. Probesets whose array-to-array 
variability is below a given threshold provide the reference set for 
normalization.

The identification of the reference genes works via fitting the 
following linear model for the unnormalized PM values:

3.6. Invariant Set 
Normalization

3.7.  LVS Normalization

m a b e= + + +2log P( M ) .ij i j ij
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The model is fitted by a robust estimation method (24). The 
array-to-array variability is captured by the 2c  test statistic given by

where â  is the vector of estimated ai's, and V is its estimated 
covariance matrix. A quantile regression (25) is then fitted to 2c  
values as a function of the residual standard deviation. A param-
eter has to be chosen, namely the proportion of genes to be 
considered as reference (a good compromise in a general experi-
mental setting is 40%). Genes below the values fitted by the quan-
tile regression model are considered as the LVS genes.

Once the LVS genes are identified, the normalization algo-
rithm works on the individual arrays by fitting a spline smoother 
between the arrays and an arbitrary reference array. The latter is, 
for example, a pseudomedian array or any user-specified array. 
The curve fitted through the least variant genes is then used to 
map intensities of all the genes in each array to be normalized.

For the purpose of illustration, we use three datasets recently pro-
duced on three different platforms (Agilent, Affymetrix, and 
Illumina), using the same biological material (1). The biological 
samples come from the hippocampus of five wild-type mice and 
five transgenic mice overexpressing DCLK short. These data are 
available from Genome Expression Omnibus (GEO) with series 
number GSE8349 and have been bundled in the R package iNorm 
(http://www.biostatistics.it/software/iNorm_1.0.0.tar.gz).

All the examples described in the following sections are imple-
mented using the R and Bioconductor platforms.

 1. For Agilent data, as more generally for two-colors platforms, 
both marray and limma packages provide the basic func-
tions for data processing. In this tutorial, we show how to use 
limma functions.

 2. Affymetrix data preprocessing is covered in the affy pack-
age, while LVS normalization routines are provided by the 
FLUSH.LVS.bundle library.

 3. Illumina BeadChip data can be processed using the set of 
functions provided by the beadarray package.

 4. The general package Biobase as well as some more packages 
might be needed for dependencies issues (a complete list is 
available in the directory doc of the iNorm package).

−χ = ′2 1ˆ ˆVa a

4.  Data Examples

4.1.  Software
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All packages are free to download from the Bioconductor 
website (http://www.bioconductor.org). All the R commands 
we give below will run after you install all these packages, includ-
ing the iNorm package for the data.

Agilent is a two-color platform, so usually two samples are hybrid-
ized to the same array on the red and green channels. (Sometimes 
the platform is used on a single-channel basis, and samples are 
hybridized to the red channel only.) The data presented here come 
from the Whole Mouse Genome G4122A chip (1), which con-
tains 41,534 60-mer oligonucleotide probes representing over 
41,000 mouse genes and transcripts. Every transgenic mouse was 
cohybridized with a wild-type one, based on a dye-swap design.

As for other platforms, Agilent chip preprocessing works 
through background correction and normalization steps; see 
Subheading 2.2. Figure 1 shows an MA-plot for the example data 
before and after the ordinary background subtraction. Note the 
increased variability after correction; this will lead to increased 
false-positive and false-negative rates in the detection of differen-
tial expression. Therefore, some authors and Agilent itself suggest 
avoiding any background correction (26).

Normalization in two-color platforms is usually performed 
array by array, aimed at removing any intensity-dependent dye 
and spatial effect within each array. Lowess normalization is the 
most commonly used, based on smoothing of M values as a func-
tion of the A values. In Fig. 2a, b, we can see that dyes have dif-
ferent efficiencies, where we expect on average the log ratio Red/
Green to be zero (in the MA-plot).

Currently, the Agilent Feature Extraction software uses low-
ess and a custom error model to extract measurements. No real 
advantage seems to be derived from the complex error model 
though, as it probably captures mostly the variation introduced 
by the preprocessing steps rather than any real component of 
probe variability (26).

To perform normalization for two-color Agilent arrays, the 
functions provided in the R library limma can be used. First we 
load the library, and then read the data using the following R 
commands:

4.2.  Agilent Platform

> library(limma)

> file.target <-system.file("data","Agilent_Targets.txt",

package="iNorm")

> file.dir <- system.file("data","Agilent",package="iNorm")

> targets <- readTargets(file.target,row.names="Name")

> pedotti.AGL <- read.maimages(targets,

source="agilent",path=file.dir).
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The first two commands simply retrieve the position of the 
target file and the directory where the Agilent files are located. To 
import the data, we use the function read.maimages. This 
function requires, as first argument, either a character vector list-
ing all file names or a matrix (target) with column “FileName”, 
specifying the names of files to be read. This usually also contains 
two column names “Cy3” and “Cy5” with information on sam-
ples hybridization, and possibly any other clinical information of 
interest. This file is read into R with the readTargets function. 
Finally, the source argument specifies that we are importing 
Agilent output file located in the file.dir directory in the system. 
For more details, see the help files by typing ?readTargets and 
?read.maimages.

Then, we normalize within-array using "loess" (a more recent 
version of "lowess") method with no background correction:

Figure 2c, d show a sample array after normalization.

Affymetrix data were produced based on GeneChip Mouse 
Genome 430 2.0 Array, allowing for the measurement of 45,101 
features. Procedures for reading and processing Affymetrix data 
are implemented in the affy package. The first step is to read CEL 
files from the scanner into R using the function ReadAffy. The 
easiest way is to simply supply the path to the directory contain-
ing the CEL files. The necessary R commands are

The first command after library() defines the directory where 
the example CEL files are located, while the second line per-
forms the actual reading. The result is an object with a specific 
S4 class (AffyBatch). Simply typing the object name will output 
some summary information on it.

Preprocessing and normalizing data according to the 
Affymetrix MAS5.0 algorithm can be done in a single step using 
the following code (note that the output data will not be log-
transformed):

One of the most commonly used procedures is the RMA, which 
performs background correction (Subheading 2.2), quantile nor-
malization at probe level, and a robust multiarray summarization. 

4.3. Affymetrix 
Platform

> pedotti.nobg.loess <- normalizeWithinArrays

(pedotti.AGL,method="loess",

bc.method="none").

> library(affy)

> path2files <- system.file("data","CEL",package="iNorm")

> pedotti.AffyBatch <- ReadAffy(celfile.path=path2files).

> pedotti.mas5 <- mas5(pedotti.AffyBatch)
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It works exclusively on the PM data and completely ignores the 
MM probes. The following command will return data prepro-
cessed with the RMA algorithm (already in log2 scale):

Figure 3a–c show probe-intensity boxplots and density plots 
before and after quantile normalization, while Fig. 3d shows the 
densities for background corrected, normalized, and summarized 
(with RMA) data.

When a large number of arrays needs to be processed, there 
might be some memory issues. In this case, to reduce memory 
requirements, we might consider using the special function jus-
tRMA that performs RMA normalization while reading data:

The LVS algorithm (Subheading 7) is based on fitting a quantile 
regression on a scatter plot of the between-array variation versus 
the residual standard deviation from a probe-level robust linear 
model (Fig. 4). Points below a given threshold (gray points in the 
figure) are used as the reference for normalization. The current 
implementation of LVS allows one to normalize data after sum-
marization, giving the user the choice of background correction 
and summarization procedures. For example, to perform LVS 
normalization using MAS5 preprocessing steps, the following 
commands are used:

> pedotti.rma <- justRMA(celfile.path=path2files)

> library(FLUSH.LVS.bundle)

> pedotti.lvs <- lvs(pedotti.AffyBatch, 

bgcorrect.method = "mas",

pmcorrect.method = "mas", 

summary.method = "mas"),

> pedotti.rma <- rma(pedotti.AffyBatch)

Fig. 4. Scatter plot of the between-array variation vs. the residual standard deviation 
from a probe-level robust linear model. The gray points are used for LVS normalization.
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while to use RMA background correction and summarization, 
we use:

The Illumina chip used in the experiment was the Sentrix Mouse-6 
Expression BeadChip, containing 46,120 probes. The main pack-
age for processing the data is beadarray, which has functions 
for reading, normalizing, and plotting. Data from Illumina 
BeadChip are available in two different formats. The raw TIFF 
images and text files output by the BeadScan software are referred 
to as bead-level data. The second format is the output from 
Illumina’s BeadStudio software, which performs a first set of pre-
processing, like sharpening and summarization. This output is 
usually defined as bead-summary data. The example here will deal 
only with the summary data. The necessary commands are:

In this example, the dataset, which is a summary data output 
from BeadStudio, is provided in a single text file. The function 
readBeadSummaryData requires, as arguments, the path to 
the data file (here provided by path2file) and target column names 
(but usually default ones are fine). The object holding the inten-
sity values has a specific S4 class (ExpressionSetIllumina), 
which is an extension of that used to store Affymetrix expres-
sion data. This object class allows one to use many already avail-
able functions.

Boxplots of intensity levels are a good tool for quality assess-
ment. Given the random nature of the number of beads probing 
each transcript on each array, we can produce a boxplot for the 
distribution of beads counts. In a normal situation, we expect 

4.4.  Illumina Platform

> pedotti.lvs2 <- lvs(pedotti.AffyBatch,

bgcorrect.method = "rma",

pmcorrect.method = "pmonly", 

summary.method = "medianpolish")

> library(beadarray)

> path2file <- system.file("data","Illumina",

"illumina_raw_data.csv",

               package="iNorm")

> pedotti.eset <- readBeadSummaryData(path2file,

ProbeID="TargetID", sep=",", 

columns = list(exprs = "AVG_Signal",

 se.exprs="BEAD_STDEV", 

NoBeads = "Avg_NBEADS",

   Detection="Detection"))



50 Calza and Pawitan

fairly similar distribution center approximately around 40. The R 
commands to produce the boxplots (Fig. 5) are:

The commonly suggested normalization procedure for Illumina 
data is the quantile normalization. The MA-plot of a sample pair of 
arrays before and after normalization is given in Fig. 6. To perform 
the normalization, we use the following command:

> par(mfrow = c(1, 2))

> boxplot(as.data.frame(log2(exprs(pedotti.eset))),

cex=.3,pch=16,las = 2, ylab = "log2(intensity)")

> 

boxplot(as.data.frame(NoBeads(pedotti.eset)),cex=.3,pch=16,

las = 2, ylab = "number of beads")

> pedotti.ilm <- normaliseIllumina(pedotti.eset, 

method="quantile",

                 transform="log2")
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Fig. 5. (a) Boxplots of log2 intensities. As expected in BeadChip data there is a limited inter-array variation. (b) Boxplots of 
beads counts within each array. As expected counts have fairly similar distribution centered approximately around 40.

Fig. 6. MA-plot of two arrays (1510547074 A and 1510547074 F). (a) Raw data. (b) After quantile normalization.
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Measured gene expressions from microarrays contain various 
technical noises that need to be removed before we can perform 
meaningful analyses of the data. We summarize here general rec-
ommendations that apply to all platforms:

Since different normalization procedures can lead to different ●●

final results, it is important to know which procedure has 
been used to produce the analyzable dataset. This is not 
always easy to do, since different platforms need different 
methodology, but at least, there should be some indication 
that the normalization method used has been investigated 
carefully for the specific platform.
All normalization procedures rely on rather strong assump-●●

tions, e.g., the great majority of genes are unaltered among 
arrays. Users need to assess whether these assumptions are 
sensible in their specific application. For example, microRNA 
or custom-made arrays, such as human cancer chips, are likely 
to violate these assumptions, so they require extra 
investigation.
Simple-minded background corrections often introduce more ●●

noise and negative values, so it is not generally recommended. 
Sometimes, no background correction is preferable.
Housekeeping-gene normalization based on an a priori set of ●●

small number of genes (e.g., 100) can produce poor normal-
ization and is not recommended.
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Chapter 4

Prediction of Transmembrane Topology and Signal Peptide 
Given a Protein’s Amino Acid Sequence

Lukas Käll 

Abstract

Here, we describe transmembrane topology and signal peptide predictors and highlight their advantages 
and shortcomings. We also discuss the relation between these two types of prediction.

Key words: Membrane protein, signal peptide, transmembrane topology, prediction, bioinformatics

Transmembrane (TM) proteins make up about a fifth of all protein 
sequences known, yet there are less than 200 structures of mem-
brane protein available, making up only a small fraction of all crys-
tal structures available. This discrepancy is due to TM proteins 
being hard to over express and crystallize, and therefore difficult to 
examine with X-ray diffraction or NMR. Even though significant 
progress has been made in the last couple of years, our overall 
knowledge of membrane proteins lags far behind our knowledge of 
soluble proteins. This is despite a commercial interest in membrane 
proteins as they are appealing drug targets.

Here, we discuss different available methods to predict 
properties of membrane proteins and signal peptides, given their 
amino acid sequence (Table 1).

Instead of determining full structural information, one may instead 
determine the TM topology. That is localizing all TM segments 

1.  Introduction

2. TM Topology 
Prediction

David Fenyö (ed.), Computational Biology, Methods in Molecular Biology, vol. 673,
DOI 10.1007/978-1-60761-842-3_4, © Springer Science+Business Media, LLC 2010
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as well as determining as to which subcellular compartment the 
loops between the TM segments are exposed. We can determine 
TM topology by experimental means, using fused-reporter 
genes (1–3), glycosylation sites (4), or mass spectrometry (5). 
Significantly easier, and maybe as accurate (6), is to predict TM 
topology in silico from a protein’s amino acid sequence.

TM topology prediction is one of the “classical” domains of 
bioinformatics, ranging back as far as to the eighties. The first 
TM helix prediction methods were based on theoretically or 
experimentally determined hydrophobicity indexes. Each amino 
acid was given a score based on its preference to water or lipids. 
For the examined protein, a hydrophobicity plot was calculated 
by summing the hydrophobicity indexes over a window of a 
fixed length. A heuristically determined cutoff value was then 
used to indicate possible TM segments (7, 8). An important 
improvement to this strategy came from the observation that 
positively charged amino acids (arginine and lysine) are over-
represented near the TM helices, on the originating side loops 
of TM proteins (the positive inside rule) (9). This gives an indi-
cation about the orientation of the helices and leads to the 
development of the first automated full TM topology prediction 
method TOPPRED (10).

TOPPRED first scans a query sequence for certain and puta-
tive TM segments and then selects the putative segments that 
maximize the difference in charged amino acids in loops, summed 
over each side separately. Instead of only using a hydrophobicity 
index, some methods use a combination of this and indexes 
for amino acids known to be frequent near the end of membrane 
helix ends, e.g., SOSUI (11). Other methods are letting an 
artificial neural network (ANN), e.g., PHDHTM (12) or a 
support vector machine, e.g., SVMTOP (13), to detect potential 
TM segments.

Table 1 
Some publicly available transmembrane topology and signal peptide predictors 
and their URLs

Name TM SP Homologs URLs

MEMSAT3 (26) X X X http://  bioinf.cs.ucl.ac.uk/psipred/psiform.html

SPOCTOPUS (46) X X X http://octopus.cbr.su.se

PHOBIUS (20) X X X http://phobius.cbr.su.se

PHILIUS (21) X X – http:// www.yeastrc.org/philius

HMMTOP (16) X – X http:// www.enzim.hu/hmmtop/

SIGNALP (40) – X – http:// www.cbs.dtu.dk/services/SignalP

http://bioinf.cs.ucl.ac.uk/psipred/psiform.html
http://octopus.cbr.su.se
http://phobius.cbr.su.se
http://www.yeastrc.org/philius
http://www.enzim.hu/hmmtop/
http://www.cbs.dtu.dk/services/SignalP
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A more integrated approach could be taken to the problem. 
Instead of first scanning the sequence for TM segments and 
sorting out the topology as a second step, the search for TM 
segments can be integrated with the evaluation of possible topo-
logies in one step. The amino acid distribution of the investigated 
sequence is compared with precalculated amino acid distributions 
in each type of topologically distinct region (TM helices, originating 
side loops, and translocated side loops) of training sets of TM 
proteins. Given correlation measurements between the amino acid 
distributions of the examined protein and the expected amino 
acid distributions in different topological regions, the most likely 
topology can be predicted. A nice feature of this approach is the 
ability to model all parts of the protein so that all topogenic signals 
are properly weighted, which is preferable to giving priority to the 
hydrophobic signal. This was first done by a dynamic programing 
algorithm in the method MEMSAT (14). The parameters of 
MEMSAT were estimated by expectation maximization (15), so 
the method is highly related to subsequent statistical models.

Pure statistical approaches to the problem have ensued 
MEMSAT. Some popular Hidden Markov model-based predic-
tors are HMMTOP (16, 17) and TMHMM (18, 19) and its 
sequel PHOBIUS (20). Recently, a method PHILIUS (21) made 
use of dynamic Bayesian networks (DBNs), an extension of HMMs 
enabling the inclusion of more complex relationships within the 
topology model. Much grace to the DBN, PHILIUS also outputs 
easily interpreted reliability figures to its predictions.

A recent and quite important step toward understanding the 
mechanism governing the insertion of membrane proteins was 
the development of the Hessa scale (22). The authors developed 
a model system making it possible to measure the propensity for 
the insertion of different systematically engineered hydrophobic 
amino acid stretches into the membrane. They managed to show 
that the probability of a potential membrane segments to insert is 
proportional to the difference in free energy between being and 
not being inserted. Furthermore, they demonstrated that if we 
ignore addition term stemming from helix amphipathicity and 
helix length terms, the free energy roughly is a linear combination 
of the free energy contribution of the different amino acids, given 
their depth in the membrane. This hypothesis gives support for 
statistical predictors such as HMM- or DBN-based predictors 
(21). However, the Hessa scales triggered the development of 
SCAMPI (23) that makes use of the scales determined by the 
Hessa et al. experiments, rather than properties of the training 
sets as for statistical methods.

A common way to improve the performance of a predictor is to 
not only look at the examined sequence, but instead find homologs 
using homolog retrieval tools like BLAST (24), and then predic ting 

2.1. Predictions 
Supported  
by Homologs
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the topology of all the sequences simultaneously. A general 
performance increase is observed with this approach, as that 
topology is likely to be conserved within a family, and one can get 
a clearer view of the topology of a protein by integrating the 
topogenic features of the different family members. There are 
several available methods making use of this observation. We can 
divide the methods using information from homologs into three 
different groups.

First, we have profile-based predictors that take a sequence 
profile from BLAST and match the obtained amino acid distribu-
tion of each position against the expected amino acid distribution 
of the model using the positional information from the query 
protein. Examples of such predictors are TMAP (25), PHDHTM 
(12), MEMSAT3 (26), and OCTOPUS (27).

A second way to incorporate information from homologs is 
implemented in HMMTOP (16) that implements an adaptive 
training procedure to retrain its HMM on all the homologs, 
before finally decoding the query sequence.

A third way is to align the homologs with a multiple sequence 
alignment method, score each sequence separately, and then 
superimpose the scores for each position of the alignment. 
The advantage of this strategy is that we can make use of the posi-
tional information of all the examined sequence rather than just 
the positional information of the query protein. POLYPHOBIUS 
(28) is an example of this kind of prediction method.

Lately, an interesting type of bioinformatics and experimental 
hybrid technique has been used to determine the topology of 
large sets of Escherichia coli TM proteins (29). By fusing a  
set of inner membrane proteins with LacZ and GFP, their 
C-terminus can be located as cytoplasmic or periplasmic. This 
piece of topogenic signal was used as an input to a constrained 
prediction by TMHMM (30). Full topological models of 601 
E. coli (31) and 546 Saccharomyces cerevisiae (32) TM proteins 
were proposed.

Recently elucidated 3D structures suggest that irregularities, such 
as reentrant membrane segments (membrane segments beginning 
and ending on the same side of the membrane), coiled TM 
segments, broken a-helices, and membrane segments displaced 
from their hydrophobic core, are not unexpected oddities but 
rather commonly occurring features. There is also support for 
structure irregularities being more frequent in membrane pro-
teins carrying out more complex tasks such as transporters (33). 
However, currently very few methods are capable of predicting 
such anomalies.

One recently published method, OCTOPUS (27), models 
reentrant loops, with at least partial success. Information can also 

2.2. Constrained 
Prediction

2.3. Prediction  
of Irregular Structures
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be gained by using the ZPRED predictor (34, 35) that predicts 
the Z-coordinate, i.e., the coordinate orthogonal to the membrane 
layer. The authors demonstrated a capability to detect reentrant 
loops and broken a-helices.

In many bacteria and in the mitochondria, we do not only 
have a-helical membrane proteins but also have the so-called 
b-barrel TM proteins. This class of proteins is hard to predict with 
classical TM prediction methods, since their TM segments gener-
ally are shorter and with a different amino acid composition than 
a-helical TM segments. There are dedicated predictors available 
for these kinds of proteins, B2TMR-HMM (36) and BBF (37).

When trying to determine the function of a protein, an important 
question to answer is where in the cell it is located. The location 
of a protein governs what other types of proteins or other mole-
cules it will be able to interact with. A first step in this process is 
to determine if it has a signal peptide (SP) or not, since that will 
tell us if it is a cytosolic protein or not. An SP is a short N-terminal 
peptide, cleaved off during the export of the protein. It is also 
valuable to know where the mature protein starts, so there is an 
interest in localizing the cleavage site of an SP. About 15% of the 
proteins in the human proteome have an SP (20). As signal peptides 
and TM segments are imported by the same mechanism – the 
translocon – it is not surprising that they resemble each other a lot 
(See Fig. 1).

2.4. Prediction  
of Signal Peptides

Fig. 1. A comparison of a transmembrane (TM) segment with N-terminus in the cytosol (above) 
and a signal peptide (below ). Similar to the TM segment, one of the strongest indications of a 
signal peptide is a hydrophobic a-helical region (the h-region). However, the hydrophobic 
region is generally shorter for a signal peptide (approximately 7–15 residues) than for a TM 
helix. The h-region is near the N-terminal of the protein but it is preceded by a slightly 
positively charged n-region with high variability in length (approximately 1–12 amino acids). 
Between the h-region and the cleavage site, a somewhat polar and uncharged 3–8 amino 
acid long c-region is situated. Another clear motif of the SP is the presence of small, neutral 
residues at the –3 and –1 relative to the cleavage site (48, 49). We often see helix-breaking 
amino acids, i.e., proline, serine, or glycine, in between the h- and c-regions (48, 49).
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Most available SP prediction methods use weight matrices 
(38), ANNs (e.g., SIGNALP-NN (39, 40)), HMMs, e.g., 
SIGNALP-HMM (41), or support vector machines (42–44). 
SIGNALP-NN has trained one ANN for the detection of 
cleavage site motifs (the C-score), and one ANN to detect the 
existence of an SP (the S-score). The prediction scores are 
calculated for each position in the sequence sequentially. Finally, 
cleavage sites are predicted by regarding a Y-score, a geometrical 
mean between the C-score of the position and the difference in 
S-score before and after the position. Existence of an SP is 
predicted by the value of the average S-score from the start of 
the sequence till the maximal Y-score (39). An additional criteria 
is introduced in SIGNALP-NN 3.0 where the average S-score is 
replaced by a D-score, that is defined as the average of the average 
S-score and the maximal Y-score (40). The HMMs have, thanks 
to their ability to model length distributions, the advantage of 
easily modeling all regions of an SP in a single model. Hence, 
the prediction of cleavage site is predicted at the same time as 
the existence of an SP, and we will get one single answer, as to 
whether an SP is present or not (20, 41).

N-terminal TM helices and SPs tend to confuse predictors. 
Because they have similar composition, TM topology predictors 
often classify SPs as TM helices, and SP predictors often classify 
N-terminal TM helices as SPs, so called cross prediction. This 
occurs frequently. Applying TMHMM and SignalP to a pro-
teomes results in overlaps between 30–65% of all predicted signal 
peptides and 25–35% of all the predicted TM topologies first TM 
segment (45). This impairs predictions of 5–10% of the proteome; 
hence, this is an important issue in protein annotation.

There are a couple of predictors trying to address this situa-
tion. First out was PHOBIUS (20), which in essence combines 
the hidden Markov models of TMHMM and SIGNALP-HMM. 
The authors demonstrated a drastic reduction in the frequency 
of cross predictions. Lately, we note three interesting successors: 
PHILIUS (21), SPOCTOPUS (46), and MEMSAT3 (26), 
all demonstrating higher accuracy than PHOBIUS in their 
publications.

Specially for the prediction of presence or absence of signal 
peptides, it is our recommendation to use any of these methods 
over methods such as SIGNALP that are not using membrane 
proteins in their negative training set. These methods have a 
much higher accuracy on a full proteome scale.

3. Discriminating 
TM Helices  
and Signal 
Peptides
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So, what method do we recommend you to use for predicting the 
TM topology or the existence of signal peptides? There is cur-
rently a lack of well-conducted benchmarks to guide you in your 
selection. Most modern methods are dependent on training data. 
Testing performance on training data will lead to inflated perfor-
mance figures. Due to a lack of fresh topologies, benchmarked 
performance is often more indicative of the overlap between the 
selected benchmarking set and the tested method’s training set, 
than of the actual performance of the benchmarked method.

Not so surprising, modern topology predictors are better 
than older ones. It is also safe to say that predictions supported by 
homologs hold higher quality than single-sequence predictions 
(6, 47). As long as we do not explicitly know that a sequence does 
not contain a signal peptide, the topology prediction accuracy is 
also greatly increased, when selecting a combined signal peptide 
and TM topology predictor (45). Hence, use POLYPHOBIUS 
(28), SPOCTOPUS (46), or MEMSAT3 (26).

As for the prediction of presence of a signal peptide – select a 
method that uses membrane proteins in its negative training  
set, i.e., PHOBIUS (20), PHILIUS (21), or SPOCTOPUS (46). 
If you are interested in localizing the cleavage site of a sequence 
already known to have a signal peptide – use SIGNALP 3.0 (40) 
as it is benchmarked to be accurate on this task.

For all the tasks mentioned above, it frequently pays off to 
compare predictions from different methods.

Finally, we would like to take the opportunity to speculate about 
interesting future directions and ideas concerning membrane 
topology predictors.

None of the TM predictors that we listed above make any 
assumptions about the lipid composition of the surrounding 
membrane. That is probably not a limitation as long as we are 
only interested in predicting the topology of membrane proteins 
inserted in the endoplasmic reticulum by the Sec machinery. 
However, there are other mechanisms governing the insertion of 
membrane proteins in other organelles. There is currently no pre-
dictors that we are aware of that are dedicated for predicting the 
topology of membrane proteins in specific organelles. Specially, a 
predictor of mitochondrial membrane proteins topology would 
be valuable, as most predictors get their topology wrong. It would 

4. Recommenda tion

5. Future Directions
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also be useful to be able to predict a membrane protein preference 
for lipid environment. If we could predict which membrane proteins 
that have a preference to, i.e., a cholesterol-rich environment, we 
would get important clues about the function of the protein.
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Chapter 5

Protein Structure Modeling

Lars Malmström and David R. Goodlett 

Abstract

The tertiary structure of proteins can reveal information that is hard to detect in a linear sequence. 
Knowing the tertiary structure is valuable when generating hypothesis and interpreting data. Unfortunately, 
the gap between the number of known protein sequences and their associated structures is widening. 
One way to bridge this gap is to use computer-generated structure models of proteins. Here we present 
concepts and online resources that can be used to identify structural domains in proteins and to create 
structure models of those domains.

Key words:  Tertiary structure, Protein structure modeling, Protein folding

Knowing the 3D, or tertiary, structure of a protein provides a 
wealth of information that provides a valuable resource for 
hypothesis generation and analysis of various types of biochemical 
and biological data [1] (see Note 1). For example, knowledge of 
amino acids spatial juxtaposition, separated in primary sequence 
space that are close in higher-order space to create an active site, 
may be obtained by structure predictions where it is possible 
to discriminate amino acids that are conserved for structural 
reasons from those conserved for biochemical reasons or for 
protein–protein interactions. Structures are traditionally deter-
mined through experimental means where X-ray crystallography 
and nuclear magnetic resonance (NMR) dominate (2). Common 
between the two is that they require highly trained personnel, 
expensive equipment, long analysis times, and relatively large 
amounts of protein. The gap between the number of known pro-
tein sequences and the number of protein structures is constantly 
widening as DNA sequencing technologies develop faster than 

1.  Introduction
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high-throughput structure determination approaches. To bridge 
this gap, computational scientists have spent the better part of 
four decades coming up with ways to determine the structure of 
a protein in silico. This is referred to protein structure modeling 
or protein structure prediction.

Given space constraints within this chapter, it is not possible 
to write a comprehensive guide covering all modeling approaches. 
Instead, we will focus on a limited number of techniques and 
demonstrate them with a specific example that hopefully will shed 
some light on this powerful technique. Notably, we will omit dis-
cussion of high-resolution approaches in favor for low-resolution 
technologies where the primer goal is to roughly estimate how 
the amino acids relate to each other in space.

Modeling a protein is equivalent to finding an energy mini-
mum (which is context dependent) and can be divided up to two 
separate problems: (1) an accurate energy function and (2) a 
strategy to sample conformational space [3]. A conformation is 
generated by moving one of many parts of the protein structure 
(such as atoms) and then estimating the energy using an energy 
function. This is then repeated until the lowest energy-conformation 
is found. It might seem simple at first but, when considering the 
enormous number of possible conformations that exceed the total 
number of atoms in the universe even for small proteins in con-
junction with an incomplete understanding of what governs the 
energy of a protein chain, the problem is daunting. In addition, 
the energy difference between the folded and unfolded states is 
quite small, which for biological reasons allows organisms to more 
easily regulate and degrade proteins, but complicates locating the 
native energy minimum of a protein.

Since we cannot explore the entire conformational space even 
for small proteins, nor can we distinguish correct from incorrect 
with absolute precision, the problem must be constrained as much 
as possible, thereby reducing the search space. Reducing the search 
space leads to a more manageable problem and it also minimizes 
the number of possible low-energy conformations. However, the 
types of constraints available are highly dependent on the protein 
one wishes to model. The best type of constraint often comes from 
a close sequence homolog for which an experimental structure is 
known. This works because we know that in general structure is a 
highly conserved component across species allowing us to con-
strain the protein of unknown structure with the structure of the 
homolog. This approach provides a reasonably confident template 
of the most-likely correct topology where most amino acids are 
close to their correct positions for related biological function to be 
carried out. This type of modeling goes under the designation 
homology modeling. We will briefly discuss Modeller (http://salilab.
org/modweb) [4] in this tutorial, but we want to make clear that 

http://salilab.org/modweb
http://salilab.org/modweb
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we are not making any claims that this choice reflects a more 
accurate outcome in all cases. Modeller is, however, one of the 
more popular algorithms and it is free for academics. In addition, 
the originator, Andrej Sali and his colleagues have modeled mil-
lions of proteins and made them available to the public through 
ModBase [5], which we will also discuss.

If no homolog for which the structure is known can be 
detected, one has to resort to different types of constraints and 
simplifications. This template-less approach is sometimes referred 
to as de novo modeling and again, there are numerous approaches 
to this problem. Here, we have chosen to cover use of the soft-
ware Rosetta [6]. Rosetta is one of the more successful approaches 
judging from repeated success in the double-blind assessment of 
protein structure prediction technologies organized by the pro-
tein folding community every other year [7]. Rosetta constrains 
the search space by assuming that each segment of three amino 
acids and nine amino acids has a limited number of likely confor-
mations; possible conformations are extracted from the protein 
data bank, PDB [2] and hence are determined by experimental 
means. These local conformations are then assembled by a Monte 
Carlo approach until an energy minimum is reached. This type of 
approach is sometimes referred to as fragment insertion method 
since the local conformations extracted from the PDB are called 
fragments. Rosetta starts with a highly simplified model where 
amino acids are represented as a single point, or centroid, and the 
energy function considers only radius of gyration and centroids 
overlapping. As the simulation proceeds, the energy function gets 
more complex adding more terms such as environment and beta-
strand pairing. Later, the centroids are replaced with a full atom 
representation and the energy function includes terms such as 
hydrogen-bond energy. The further the simulation proceeds, the 
more realistic the model and the more unlikely it is that large 
conformational changes will be accepted. The result of this out-
come is that many simulations end in a local energy minima fail-
ing to find the native topology. To circumvent this problem, 
Rosetta is run thousands of times and the resulting models are 
clustered based on structural similarity [8]. This works because 
the native energy basin is normally large compared to the local 
minima basins. The larger the basin, the more models end up in 
that minima and hence large clusters are more likely to be correct. 
In general, more than one model is reported from a Rosetta sim-
ulation. There is a large web-based resource that provides pre-
modeled proteins found under the address http://yeastrc.org/pdr 
[9] in which structural domains (see below) have been predicted 
using Ginzu [10] and domains lacking homologs of known 
structure have been modeled using Rosetta with the top five 
predictions selected using MCM [11].

http://yeastrc.org/pdr
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It is quite common that the protein of interest lacks close 
homologs of known structure, in which case more distant 
homologs of known structure can often be detected [12]. These 
cases are sometimes modeled by hybrid approaches where parts of 
the protein chain that can be aligned to one or more templates 
are modeled by the homology approach whereas the rest are 
modeled by de novo approaches. This category of modeling is 
called fold recognition modeling, FR for short and both Modeller 
and Rosetta [13] and numerous other approaches can be used in 
this approach.

There is an additional layer of complexity that needs to be 
considered when modeling proteins, and that is structural domains 
[14]. The above-mentioned technologies are all optimized for a 
single structural domain analysis. A structural domain is loosely 
defined as an autonomously folding unit located in the primary 
protein sequence. From a simplified point of view, domains are 
modules that perform a specific biological task that species tend 
to reuse in different contexts. Sometimes, these domains are 
expressed as single peptide chains, but more often they are part 
of a bigger peptide chain, which contains more than one structural 
domain.

This tutorial covers the basic types of modeling where a personal 
computer with a modern Internet browser such as Firefox, Opera, 
Safari, or Internet Explorer is the only requirements (see Note 2). 
We will be demonstrating these techniques using the human pro-
tein “Protein kinase-like protein SgK071,” SwissProt AC 
Q8NE28, see Fig. 1. Please note that the “results” presented here 
have not been verified and cannot be trusted. This information is 
presented simply as an example.

 1. Search for the protein of interest in Expasy (http://www.
expasy.org) (15), one of the many online resources that col-
lect information about proteins. In this case, since we know 
the SwissProt AC (Q8NE28), we’ll simply type it into the 
search box.

 2. At the bottom of the page, the primary sequence (see Fig. 1) 
is displayed.

2.  Materials

3.  Methods

3.1. Find the Protein  
of Interest in a 
Sequence Database

http://www.expasy.org
http://www.expasy.org
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 3. Under the section cross-reference, subsection 3D structure 
databases, there might be links to the Protein DataBank 
(PDB). If these links exist, the native structure of this protein 
is experimentally determined making the modeling unneces-
sary. Only a small fraction of proteins are of known structure 
(51,757 as of July 2008) and it is likely that the protein will 
not be found in the RCSB database.

 1. Identifying structural domains is non-trivial and is mostly 
based on methods that either find similarities to proteins 
where the domain boundaries are known through experimen-
tal means or by identifying conserved stretches of amino acids 
that are present in many different proteins (see Note 3).

 2. Check to see if the protein is present in InterPro (http://
www.ebi.ac.uk/interpro) [16]. InterPro has run several 
domain prediction algorithms for most proteins in SwissProt 
and the InterPro entries are linked from the Expasy page 
under section Cross-references.

 3. In this case, two domains are identified; the first domain, a 
protein kinase-like domain is detected by three different 
methods, Pfam [17], Prosite [18], and Superfamily [19]. 
Superfamily also detects the second domain, and ARM-repeat 

3.2. Identify Structural 
Domains

>sp|Q8NE28|SGK71_HUMAN Protein kinase-like protein  SgK071 OS=Homo

sapiens GN=SGK071 PE=2 SV=4 

MLGPGSNRRRPTQGERGPGSPGEPMEKYQVLYQLNPGALGVNLVVEEMETKVKHVIKQVE

CMDDHYASQALEELMPLLKLRHAHISVYQELFITWNGEISSLYLCLVMEFNELSFQEVIE

DKRKAKKIIDSEWMQNVLGQVLDALEYLHHLDIIHRNLKPSNIILISSDHCKLQDLSSNV

LMTDKAKWNIRAEEDPFRKSWMAPEALNFSFSQKSDIWSLGCIILDMTSCSFMDGTEAMH

LRKSLRQSPGSLKAVLKTMEEKQIPDVETFRNLLPLMLQIDPSDRITIKDVVHITFLRGS

FKSSCVSLTLHRQMVPASITDMLLEGNVASILEVMQKFSGWPEVQLRAMKRLLKMPADQL

GLPWPPELVEVVVTTMELHDRVLDVQLCACSLLLHLLGQALVHHPEAKAPCNQAITSTLL

SALQSHPEEEPLLVMVYSLLAITTTQESESLSEELQNAGLLEHILEHLNSSLKSRDVCAS

GLGLLWALLLDGIIVNKAPLEKVPDLISQVLATYPADGEMAEASCGVFWLLSLLGCIKEQ

QFEQVVALLLQSIRLCQDRALLVNNAYRGLASLVKVSELAAFKVVVQEEGGSGLSLIKET

YQLHRDDPEVVENVGMLLVHLASYEEILPELVSSSMKALLQEIKERFTSSLVSDSSAFSK

PGLPPGGSPQLGCTTSGGLE 

Fig. 1. The primary sequence of Protein kinase-like protein SgK071.

http://www.ebi.ac.uk/interpro
http://www.ebi.ac.uk/interpro
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domain, see Fig. 2. The two domains are roughly equal in 
size.

 4. If the protein is not present in InterPro, it is of course pos-
sible to run these tools on their respective websites and 
infer domains and domain boundaries from the results (see 
Note 4).

 1. ModBase (http://modbase.compbio.ucsf.edu) is an online 
resource published by Andrej Sali and his colleagues at 
University of San Francisco (see Note 5). ModBase is an 
attempt to make homology models of every protein using 
Modeller. Structures of 1.34 million proteins are available 
through the web interface making this a valuable resource.

 2. ModBase is linked by Expasy from the section cross-references, 
subsection 3D structure databases, but can also be searched 
in various ways, including BLAST which only requires the 
primary sequence.

 3. In our example, we find that two models exist for our protein, 
both covering the first domain, the kinase-like domain. The 
first model covers amino acids 9–342 and was created using 
the protein structure 1ywrA (PDB AC 1ywr, polypeptide 
chain A), with a sequence identity of 20%. The second model 
is covering amino acids 9–382, created using 2ozaA as tem-
plate, with a sequence identify of 17%. Both these models are 
statistically significant and either one can be used.

 4. The models can be downloaded and viewed in any protein 
structure viewer, such as rasmol (free download from http://
www.openrasmol.org) [20]. Visual inspection of the two 
models reveals that the second model has two segments that 
seem to be sticking out of the domain, the first segment is a 
loop between amino acid 184 and 207, and the second seg-
ment is the C-terminal part from 359. This observation, 
together with the higher sequence identity for model 1, makes 
model 1 more preferable, see Fig. 3a.

 5. If the protein of interest is missing from ModBase, it’s pos-
sible to make models with Modeller using ModWeb, 

3.3. Homology Model 
Database, ModBase

Fig. 2. Sequence-based domain predictions, from the InterPro database (original URL: http://www.ebi.ac.uk/interpro/
ISpy?mode=single&ac=Q8NE28). InterPro integrates a number of domain prediction tools. In this image, only the inte-
grated tools are displayed. This protein is a two domain protein where the first part is a kinase-like domain and the 
second domain is an ARM-repeat domain.

http://modbase.compbio.ucsf.edu
http://www.openrasmol.org
http://www.openrasmol.org
http://www.ebi.ac.uk/interpro/ISpy?mode=single&ac=Q8NE28
http://www.ebi.ac.uk/interpro/ISpy?mode=single&ac=Q8NE28
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(http://www.salilab.org/modweb/) which lets you enter a 
protein sequence of interest.

 1. In this example, we have a putative structure for the first 
domain but for the second domain we have no structure. The 
Yeast Resource Center (YRC) at the University of Washington 
has a public database, the public data repository (http://
www.yeastrc.org/pdr) which contains de novo protein struc-
ture modeling from large-scale protein structure modeling 
projects (see Note 5). It also contains domain predictions 
from the domain prediction tool Ginzu [10].

 2. Searching the database with the accession number returns a 
single protein and at the bottom of the protein overview page 
is the structure prediction information. Ginzu predicts five 
types of domains, PSI-BLAST, FFAS03, Pfam, MSA, and 
deduced. The first type of domain is for domains which have 
a homolog of known structure detected using blast or psi-
blast. A FFAS03 domain indicates that a homolog of known 
structure can be detected using FFAS03, a fold recognition 
technology. The three remaining domains are domains that 
indicate that no homolog of known structure can be detected. 
Only the last three will have de novo models and only in the 
case where the domains are less than 150 amino acids. If de novo 
models are present, they are presented with a possible 
Structural Classification of Proteins (SCOP) classification. 

3.4. De Novo Model 
Database: The YRC 
Public Data Repository

Fig. 3. Cartoon representation of domain 1 (a) from ModBase and domain 2 (b) generated 
from an alignment from the Meta server using Modeller.

http://www.salilab.org/modweb/
http://www.yeastrc.org/pdr
http://www.yeastrc.org/pdr
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The models can be downloaded by following the link to the 
domain.

 3. In this case, the two domains of our protein are identified, the 
first as a PSI-BLAST domain and the second a FFAS03 
domain. The FFAS03 domains are not selected for modeling 
and hence, we will use the Meta server (http://www.bioinfo.
pl/meta) to detect a template and to generate models.

 4. The Meta server uses multiple other algorithms to detect a 
potential template and to create an optimal alignment and 
then combines information from all the algorithms using a 
neural net (12). To submit a sequence to the Meta server is 
quite self-explanatory. The Meta server returns numerous 
templates and displays the alignment ranked by the J-score. 
J-scores over 50 are considered significant. The second 
domain returned with a J-score of 215 for template 2z6hA, 
which belongs to the ARM Superfamily (SCOP AC a.118.1). 
It is possible to create a model from this alignment by click-
ing the [model] link to the right of the alignment. This ser-
vice is free to academic users who must register. The resulting 
model is displayed in Fig. 3b.

 5. If no significant result was returned by the Meta server, 
Rosetta is available online at http://robetta.bakerlab.org 
(21) (see Note 6). While this portal will run a domain predic-
tion software and then predict the structure of each individual 
domain with a template based method where a template is 
available and a de novo method (fragment insertion) where 
no template is available, it is quite resource intensive and the 
turn-around time is long.

 1. For an example of the application of these techniques, please 
see ref. 1.

 2. Most of these tools are available online. There are advantages 
to this, but there are also disadvantages. One obvious disad-
vantage is that it is quite difficult to “scale” the modeling 
effort to large number of proteins and that the turn-around 
time is sometimes long. Also possible is that most of the tools 
are available as a download for local use. This requires more 
computer skills than running them online, and hence we do 
not cover that here as it will be self-explanatory to the skilled 
computer specialist exploring the use of protein modeling.

 3. The average length of structural a domain is less than 200 
(based on the SCOP definition of domains) and it is closer to 

4.  Notes

http://www.bioinfo.pl/meta
http://www.bioinfo.pl/meta
http://robetta.bakerlab.org
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400 for SwissProt and hence, it is expected that the average 
protein will have two structural domains that must be 
examined.

 4. If no domains can be detected, one can resort to identifying 
“block structures” in a multiple sequence alignment. The 
multiple sequence alignment can be generated using blast or 
PSI-BLAST from NCBI webpage, http://blast.ncbi.nlm.nih.
gov/Blast.cgi. Viewing the alignment of longer proteins 
sometimes has a “blocky” appearance where one part of the 
sequence has numerous homologs that do not cover the other 
parts. These blocks are indicative of domains and thus putative 
domains can be identified by the block boundaries.

 5. The online databases are quite comprehensive, but newly 
sequenced proteins are, for obvious reasons, not present. 
However, because all the tools presented here are available via 
web services, it is possible to model these proteins too.

 6. There are also proteins that belong to protein families that 
are less studied for which most of these techniques fail. Note 
that the tools presented herein are dependent on knowing 
something about homologs to the protein of interest.
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Chapter 6

Template-Based Protein Structure Modeling

Andras Fiser 

Abstract

Functional characterization of a protein is often facilitated by its 3D structure. However, the fraction of 
experimentally known 3D models is currently less than 1% due to the inherently time-consuming and 
complicated nature of structure determination techniques. Computational approaches are employed to 
bridge the gap between the number of known sequences and that of 3D models. Template-based protein 
structure modeling techniques rely on the study of principles that dictate the 3D structure of natural 
proteins from the theory of evolution viewpoint. Strategies for template-based structure modeling will be 
discussed with a focus on comparative modeling, by reviewing techniques available for all the major steps 
involved in the comparative modeling pipeline.

Key words: Homology modeling, Comparative protein structure modeling, Template-based mod-
eling, Loop modeling, Side chain modeling, Sequence-to-structure alignment

The class of methods referred to as template-based modeling 
includes both the threading techniques that return a full 3D 
description for the target and comparative modeling (1). This 
class of protein structure modeling relies on detectable similarity 
spanning most of the modeled sequence and at least one known 
structure. Comparative modeling refers to those template-based 
modeling cases where not only the fold is determined from a pos-
sible set of available templates, but a full atom model is also built 
(2). In practice, it means that if the structure of at least one pro-
tein in the family has been determined by experimentation, the 
other members of the family can be modeled based on their align-
ment to the known structure. It is possible because a small change 
in the protein sequence usually results in a small change in its 3D 
structure (3). It is also facilitated by the fact that 3D structure of 

1. Introduction
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proteins from the same family is more conserved than their 
amino-acid sequences (4). Therefore, if similarity between two 
proteins is detectable at the sequence level, then structural simi-
larity can usually be assumed. The increasing applicability of tem-
plate-based modeling is owing to the observation that the number 
of different folds that proteins adopt is rather limited and because 
worldwide Structural Genomics projects are aggressively map-
ping out the universe of possible folds (5–7).

Template-based approaches to structure prediction have their 
advantages and limitations. Comparative protein structure mod-
eling usually provides high-quality models that are comparable 
with low-resolution X-ray crystallography or medium-resolution 
NMR solution structures. However, the applicability of these 
approaches is limited to those sequences that can be confidently 
mapped to known structures. Currently, the probability of find-
ing related proteins of known structure for a sequence picked 
randomly from a genome ranges approximately from 30 to 80%, 
depending on the genome. Approximately 70% of all known 
sequences have at least one domain that is detectably related to at 
least one protein of known structure (8). This fraction is more 
than an order of magnitude larger than the number of experimen-
tally determined protein structures deposited in the Protein Data 
Bank (PDB) (9). As we will see, in practice, template-based mod-
eling always includes information that is independent from the 
template, in the form of various force restraints from general sta-
tistical observations or molecular mechanical force fields. As a 
consequence of improving force fields and search algorithms, the 
most successful approaches often explore more and more 
template-independent conformational space (10, 11).

All current comparative modeling methods consist of five sequen-
tial steps: (1) to search for proteins with known 3D structures 
that are related to the target sequence, (2) to pick those struc-
tures that will be used as templates, (3) to align their sequences 
with the target sequence, (4) to build the model for the target 
sequence given its alignment with the template structures, and 
(5) to evaluate the model, using a variety of criteria.

There are several computer programs and web servers that 
automate the comparative modeling process (Table 1). While the 
web servers are convenient and useful (10, 12–14), the best 
results are still obtained by nonautomated, expert use of the vari-
ous modeling tools (15). Complex decisions for selecting the 
structurally and biologically most relevant templates, optimally 

2. Methods
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Table 1 
Names and www addresses of some online tools useful for various aspects  
of comparative modeling

Template search and alignments

BLAST/PSI-BLAST http://www.ncbi.nlm.nih.gov/BLAST/

FastA/SSEARCH http://www.ebi.ac.uk/fasta33

FASS03 http://www.ffas.ljcrf.edu/ffas-cgi/cgi/ffas.pl

PSIPRED http://www.bioinf.cs.ucl.ac.uk/psipred/

123D http://www.123d.ncifcrf.gov

UCLA-DOE http://www.doe-mbi.ucla.edu/Services/FOLD/

PHYRE/3D-PSSM http://www.sbg.bio.ic.ac.uk/~3dpssm

FUGUE http://www.cryst.bioc.cam.ac.uk/~fugue

LOOPP http://www.cbsuapps.tc.cornell.edu/

MUSTER http://www.zhang.bioinformatics.ku.edu/MUSTER/

SAM-T06 http://www.soe.ucsc.edu/research/compbio/SAM_T06/T06-query.html

Prospect http://www.compbio.ornl.gov/structure/prospect

Smith–Waterman http://www.jaligner.sourceforge.net/

ClustalW http://www.ebi.ac.uk/clustalw/

MUSCLE http://www.drive5.com/lobster/

T-COFFEE http://www.tcoffee.vital-it.ch/

PROMALS http://www.prodata.swmed.edu/promals/promals.php

PROBCONS http://www.probcons.stanford.edu

Homology modeling, loop and side-chain modeling

MMM http://www.fiserlab.org/servers/MMM

M4T http://www.fiserlab.org/servers/M4T

MODELLER http://www.salilab.org/modeller/modeller.html

MODWEB http://www.modbase.compbio.ucsf.edu/ModWeb20-html/modweb.html

I-TASSER http://www.zhang.bioinformatics.ku.edu/I-TASSER/

HHPRED http://www.toolkit.tuebingen.mpg.de/hhpred

3D-JIGSAW http://www.bmm.icnet.uk/servers/3djigsaw/

CPH-MODELS http://www.cbs.dtu.dk/services/CPHmodels/

COMPOSER http://www.cryst.bioc.cam.ac.uk

SWISSMODEL http://swissmodel.expasy.org/workspace/

FAMS http://www.pharm.kitasato-u.ac.jp/fams/

(continued)
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http://www.ebi.ac.uk/clustalw/
http://www.drive5.com/lobster/
http://www.tcoffee.vital-it.ch/
http://www.prodata.swmed.edu/promals/promals.php
http://www.probcons.stanford.edu
http://www.fiserlab.org/servers/MMM
http://www.fiserlab.org/servers/M4T
http://www.salilab.org/modeller/modeller.html
http://www.modbase.compbio.ucsf.edu/ModWeb20-html/modweb.html
http://www.zhang.bioinformatics.ku.edu/I-TASSER/
http://www.toolkit.tuebingen.mpg.de/hhpred
http://www.bmm.icnet.uk/servers/3djigsaw/
http://www.cbs.dtu.dk/services/CPHmodels/
http://www.cryst.bioc.cam.ac.uk
http://swissmodel.expasy.org/workspace/
http://www.pharm.kitasato-u.ac.jp/fams/
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combining multiple template information, refining alignments in 
nontrivial cases, selecting segments for loop modeling, including 
cofactors and ligands in the model, or specifying external restraints 
require an expert knowledge that is difficult to fully automate 
(16), although more and more efforts on automation point to 
this direction (17, 18).

Comparative modeling usually starts by searching the PDB (9) 
for known protein structures using the target sequence as the 
query. This search is generally done by comparing the target 
sequence with the sequence of each of the structures in the 
database.

There are two main classes of protein comparison methods 
that are useful in fold identification. The first class compares the 
sequences of the target with each of the database templates by 
using pairwise sequence–sequence comparisons (such as FASTA 

2.1. Searching  
for Structures Related 
to the Target Sequence

Table 1  
(continued)

WHATIF http://www.cmbi.kun.nl/whatif/

PUDGE http://www.wiki.c2b2.columbia.edu/honiglab_public/index.php/Software

3D-JURY http://www.meta.bioinfo.pl

RAPPER http://www.mordred.bioc.cam.ac.uk/~rapper

ESYPRED3D http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/

CONSENSUS http://www.structure.bu.edu/cgi-bin/consensus/consensus.cgi

PCONS http://www.pcons.net

SCWRL http://www.dunbrack.fccc.edu/SCWRL3.php

WLOOP http://www.bioserv.rpbs.jussieu.fr/cgi-bin/WLoop

ARCHPRED http://www.fiserlab.org/servers/archpred

MODLOOP http://www.salilab.org/modloop

Model evaluation

PROCHECK http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html

WHATCHECK http://www.swift.cmbi.ru.nl/gv/whatcheck/

Prosa-web http://www.prosa.services.came.sbg.ac.at/prosa.php

VERIFY3D http://www.nihserver.mbi.ucla.edu/Verify_3D

ANOLEA http://www.protein.bio.puc.cl/cardex/servers/anolea/

AQUA http://www.urchin.bmrb.wisc.edu/~jurgen/Aqua/server/

PROQ http://www.sbc.su.se/~bjornw/ProQ/ProQ.cgi

http://www.cmbi.kun.nl/whatif/
http://www.wiki.c2b2.columbia.edu/honiglab_public/index.php/Software
http://www.meta.bioinfo.pl
http://www.mordred.bioc.cam.ac.uk/~rapper
http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/
http://www.structure.bu.edu/cgi-bin/consensus/consensus.cgi
http://www.pcons.net
http://www.dunbrack.fccc.edu/SCWRL3.php
http://www.bioserv.rpbs.jussieu.fr/cgi-bin/WLoop
http://www.fiserlab.org/servers/archpred
http://www.salilab.org/modloop
http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html
http://www.swift.cmbi.ru.nl/gv/whatcheck/
http://www.prosa.services.came.sbg.ac.at/prosa.php
http://www.nihserver.mbi.ucla.edu/Verify_3D
http://www.protein.bio.puc.cl/cardex/servers/anolea/
http://www.urchin.bmrb.wisc.edu/~jurgen/Aqua/server/
http://www.sbc.su.se/~bjornw/ProQ/ProQ.cgi
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and BLAST (19)) (20–22) and fold assignments (23). To improve 
the sensitivity of the sequence-based searches, evolutionary infor-
mation can be incorporated in the form of multiple sequence 
alignment (24–28). These approaches begin by finding all 
sequences in a sequence database that are clearly related to the 
target and easily aligned with it (29, 30). The multiple alignment 
of these sequences is the target sequence profile, which implicitly 
carries additional information about the location and pattern of 
evolutionarily conserved positions of the protein. The most well-
known program in this class is PSI-BLAST (27), which imple-
ments a heuristic search algorithm for short motifs. A further step 
to increase the sensitivity of this approach is to precalculate 
sequence profiles for all the known structures and then use pair-
wise dynamic programming algorithm to compare the two pro-
files. This has been implemented, among other programs, in 
COACH (31) and FFAS03 (32, 33). The construction of profile-
based Hidden Markov Models (HMM) is another sensitive way 
to locate universally conserved motifs among sequences (34).  
A substantial improvement in HMM approaches was achieved by 
incorporating information about predicted secondary structural 
elements (35, 36). Another development in this group of meth-
ods is the phylogenetic tree-driven HMM, which selects a differ-
ent subset of sequences for profile HMM analysis at each node in 
the evolutionary tree (37). Locating sequence intermediates that 
are homologous to both sequences may also enhance the tem-
plate searches (22, 38). These more sensitive fold identification 
techniques are especially useful for finding significant structural 
relationships when sequence identity between the target and the 
template drops below 25%. More accurate sequence profiles and 
structural alignments can be constructed with consistency-based 
approaches such as T-Coffee (39), PROMAL (and PROMAL3D 
for structures) (40, 41), and ProbCons (42).

The second class of methods relies on pairwise comparison of 
a protein sequence and a protein structure; the target sequence is 
matched against a library of 3D profiles or threaded through a 
library of 3D folds. These methods are also called fold assign-
ment, threading, or 3D template matching (32, 43–47). These 
methods are especially useful when sequence profiles are not pos-
sible to construct because there are not enough known sequences 
that are clearly related to the target or potential templates.

Template search methods “outperform” the needs of com-
parative modeling in the sense that they are able to locate 
sequences that are so remotely related as to render construction 
of a reliable comparative model impossible. The reason for this is 
that sequence relationships are often established on short con-
served segments, while a successful comparative modeling exer-
cise requires an overall correct alignment for the entire modeled 
part of the protein.
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Once a list of potential templates is obtained using searching 
methods, it is necessary to select one or more templates that are 
appropriate for the particular modeling problem. Several factors 
need to be taken into account when selecting a template.

The simplest template selection rule is to select the structure with 
the highest sequence similarity to the modeled sequence. The 
construction of a multiple alignment and a phylogenetic tree (48) 
can help in selecting the template from the subfamily that is clos-
est to the target sequence. The similarity between the “environ-
ment” of the template and the environment in which the target 
needs to be modeled should also be considered. The term “envi-
ronment” is used here in a broad sense, including everything that 
is not the protein itself (e.g., solvent, pH, ligands, quaternary 
interactions). If possible, a template bound to the same or similar 
ligands as the modeled sequence should generally be used. The 
quality of the experimentally determined structure is another 
important factor in template selection. Resolution and R-factor of 
a crystal structure and the number of restraints per residue for an 
NMR structure are indicative of their accuracy. The criteria for 
selecting templates also depend on the purpose of a comparative 
model. For example, if a protein–ligand model is to be con-
structed, the choice of the template that contains a similar ligand 
is probably more important than the resolution of the template.

It is not necessary to select only one template. In fact, the optimal 
use of several templates increases the model accuracy (13, 17, 49, 
50); however, not all modeling programs are designed to accept 
more than one template. The benefit of combining multiple tem-
plate structures can be twofold. First, multiple template struc-
tures may be aligned with different domains of the target, with 
little overlap between them, in which case, the modeling proce-
dure can construct a homology-based model of the whole target 
sequence. Second, the template structures may be aligned with 
the same part of the target and build the model on the locally best 
template.

An elaborate way to select suitable templates is to generate 
and evaluate models for each candidate template structure and/
or their combinations. The optimized all-atom models can then 
be evaluated by an energy or scoring function, such as the Z-score 
of PROSA (46) or VERIFY3D (51). These scoring methods are 
often sufficiently accurate to allow selection of the most accurate 
of the generated models (52). This trial-and-error approach can 
be viewed as limited threading (i.e., the target sequence is threaded 
through similar template structures). However, these approaches 
are good only at selecting various templates on a global level.

A recently developed method M4T (Multiple Mapping 
Method with Multiple Templates) selects and combines multiple 
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template structures through an iterative clustering approach that 
takes into account the “unique” contribution of each template, 
their sequence similarity among themselves and to the target 
sequence, and their experimental resolution (13, 17). The result-
ing models systematically outperformed models that were based 
on the single best template.

Another important observation from the same study was that 
below 40% sequence identity, models built using multiple tem-
plates are more accurate than those built using a single template 
only, and this trend is accentuated as one moves into more remote 
target–template pair cases. Meanwhile, the advantage of using 
multiple templates gradually disappears above 40% target–template 
sequence identity cases. This suggests that in this range, the average 
differences between the template and target structures are smaller 
than the average differences among alternative template structures 
that are all highly similar to the target (17).

To build a model, all comparative modeling programs depend on 
a list of assumed structural equivalences between the target and 
template residues. This list is defined by the alignment of the tar-
get and template sequences. Many template search methods will 
produce such an alignment, and these sometimes can directly be 
used as the input for modeling. Often, however, especially in the 
difficult cases, this initial alignment is not the optimal target–template 
alignment. This is because search methods may be tuned for 
detection of remote relationships, which is often realized on a 
local motif and not on a full-length, optimal alignment. Therefore, 
once the templates are selected, an alignment method should be 
used to align them with the target sequence. When the target–
template sequence identity is lower than 40%, the alignment 
accuracy becomes the most important factor affecting the quality 
of the resulting model. A misalignment by only one residue posi-
tion will result in an error of approximately 4 Å in the model.

Alignments in comparative modeling represent a unique class 
because on one side of the alignment there is always a 3D structure, 
the template. Therefore, alignments can be improved by includ-
ing structural information from the template. For example, gaps 
should be avoided in secondary structure elements, in buried 
regions, or between two residues that are far in space. Some align-
ment methods take such criteria into account (47, 53, 54).

When multiple template structures are available, a good 
strategy is to superpose them with each other first, to obtain 
a multiple structure-based alignment highlighting structurally 
conserved residues (55–57). In the next step, the target sequence 
is aligned with this multiple structure-based alignment. The 
benefits of using multiple structures and multiple sequences are 
that they provide evolutionary and structural information 

2.3. Sequence-to-
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about the templates, as well as evolutionary information about 
the target sequence, and they often produce a better alignment 
for modeling than the pairwise sequence alignment methods 
(22, 58).

Multiple Mapping Method (MMM) directly relies on infor-
mation from the 3D structure (14, 59). MMM minimizes align-
ment errors by selecting and optimally splicing differently aligned 
fragments from a set of alternative input alignments. This selection 
is guided by a scoring function that determines the preference of 
each alternatively aligned fragment of the target sequence in the 
structural environment of the template. The scoring function has 
four terms, which are used to assess the compatibility of alternative 
variable segments in the protein environment:(a) environment 
specific substitution matrices from FUGUE (47), (b) residue sub-
stitution matrix, Blosum (60), (c) A 3D–1D substitution matrix, 
H3P2, that scores the matches of predicted secondary structure of 
the target sequence to the observed secondary structures and 
accessibility types of the template residues (61), and (d) a statisti-
cally derived residue–residue contact energy term (62). MMM 
essentially performs a limited and inverse threading of short frag-
ments: in this exercise the actual question is not the identification 
of a right fold, but identification of the correct alignment map-
ping, among many alternatives, for sequence segments that are 
threaded on the same fold. These local mappings are evaluated in 
the context of the rest of the model, where alignments provide a 
consistent solution and framework for the evaluation.

When discussing the model building step within comparative 
protein structure modeling, it is useful to distinguish two parts: 
template-dependent and template-independent modeling. This dis-
tinction is necessary because certain parts of the target must be 
built without the aid of any template. These parts correspond to 
gaps in the template sequence within the target–template align-
ment. Modeling of these regions is commonly referred to as loop 
modeling problem. It is evident that these loops are responsible 
for the most characteristic differences between the template and 
target, and therefore are chiefly responsible for structural and 
consequently functional differences. In contrast to these loops, 
the rest of the target, and in particular the conserved core of the 
fold of the target, is built using information from the template 
structure.

A comparative model can be assembled from a framework of small 
number of rigid bodies obtained from the aligned template pro-
tein structures (63–65). The approach is based on the natural 
dissection of the protein structure into conserved core regions, 
variable loops that connect them, and side chains that decorate 
the backbone (66). A widely used program in this class is 
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COMPOSER (67). The accuracy of a model can be somewhat 
increased when more than one template structure is used to con-
struct the framework (68).

Comparative models can be constructed by using a subset of 
atomic positions from template structures as “guiding” positions, 
such as the Ca atoms, and by identifying and assembling short, 
all-atom segments that fit these guiding positions. The all-atom 
segments that fit the guiding positions can be obtained either by 
scanning all the known protein structures (69, 70) or by a confor-
mational search restrained by an energy function (71, 72) or by  
a general method for modeling by segment matching (SEGMOD) 
(73). Even some side-chain modeling methods (74) and the class 
of loop construction methods based on finding suitable fragments 
in the database of known structures (75) can be seen as segment 
matching or coordinate reconstruction methods.

The methods in this class begin by generating many constraints 
or restraints on the structure of the target sequence, using its 
alignment to related protein structures as a guide in a procedure 
that is conceptually similar to that used in determination of pro-
tein structures from NMR-derived restraints. The restraints are 
generally obtained by assuming that the corresponding distances 
between aligned residues in the template and the target structures 
are similar. These homology-derived restraints are usually supple-
mented by stereochemical restraints on bond lengths, bond angles, 
dihedral angles, and nonbonded atom–atom contacts that are 
obtained from a molecular mechanics force field (76). The model 
is then derived by minimizing the violations of all the restraints. 
Comparative modeling by satisfaction of spatial restraints is 
implemented in the computer program MODELLER (16, 77), 
currently the most popular comparative protein modeling program. 
In MODELLER, the various spatial relationships of distances, 
angles are expressed as conditional probability density functions 
(pdfs) and can be used directly as spatial restraints. For example, 
probabilities for different values of the main chain dihedral angles 
are calculated from the type of residue considered, from the main 
chain conformation of an equivalent template residue, and from 
sequence similarity between the two proteins. An important feature 
of the method is that the forms of spatial restraints were obtained 
empirically, from a database of protein structure alignments, 
without any user imposed subjective assumption. Finally, the model 
is obtained by optimizing the objective function in Cartesian space 
by the use of the variable target function method (78), employing 
methods of conjugate gradients and molecular dynamics with 
simulated annealing (79).

A similar comprehensive package is NEST that can build a 
homology model based on single sequence–template alignment 
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or from multiple templates. It can also consider different 
structures for different parts of the target (55).

It is frequently difficult to select the best templates or calculate a 
good alignment. One way of improving a comparative model in 
such cases is to proceed with an iteration of template selection, 
alignment, and model building, guided by model assessment, 
until no improvement in the model is detected (80, 81). Some of 
these approaches are automated (55, 82). In one example, this 
task was achieved by a genetic algorithm protocol that starts with 
a set of initial alignments and then iterates through realignment, 
model building, and model assessment to optimize a model 
assessment score. Comparative models corresponding to various 
evolving alignments are built and assessed by a variety of criteria, 
partly depending on an atomic statistical potential. In another 
approach, a genetic algorithm was applied to automatically com-
bine templates and alignments. A relatively simple structure-
dependent scoring function was used to evaluate the sampled 
combinations (18).

Other attempts to optimize target–template alignments include 
the Robetta server, where alignments are generated by dynamic 
programming using a scoring function that combines information 
on many protein features, including a novel measure of how 
obligate a sequence region is to the protein fold. By systematically 
varying the weights on the different features that contribute to 
the alignment score, very large ensembles of diverse alignments 
are generated. A variety of approaches to select the best models 
from the ensemble, including consensus of the alignments, a 
hydrophobic burial measure, low- and high-resolution energy 
functions, and combinations of these evaluation methods were 
explored (83).

Those metaserver approaches that do not simply score and 
rank alternative models obtained from a variety of methods but 
further combine them could also be perceived as approaches that 
explore the alignment and conformational space for a given target 
sequence (84).

Another alternative for combined servers is provided by M4T. 
The M4T program automatically identifies the best templates and 
explores and optimally splices alternative alignments according to 
its internal scoring function that focuses on the features of the 
structural environment of each template (17).

Metaserver approaches have been developed to take advantage 
of the variety of other existing programs. Metaservers collect 
models from alternative methods and either use them for inputs 
to make new models or look for consensus solutions within them. 
For instance, FAMS-ACE (85) takes inputs from other servers as 
starting points for refinement and remodeling after which Verify3D 
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(51) is used to select the most accurate solution. Other consensus 
approaches include PCONS, a neural network approach that 
identifies a consensus model by combining information on reli-
ability scores and structural similarity of models obtained from 
other techniques (86). 3D-JURY operates along the same idea; 
its selection is mainly based on the consensus of model structure 
similarity (87).

In comparative modeling, target sequences often have inserted 
residues relative to the template structures or have regions that 
are structurally different from the corresponding regions in the 
templates. Therefore, no structural information about these 
inserted segments can be extracted from the template structures. 
These regions frequently correspond to surface loops. Loops 
often play an important role in defining the functional specificity 
of a given protein framework, forming the functional, ligand-
binding active sites. The accuracy of loop modeling is a major 
factor determining the usefulness of comparative models in appli-
cations such as ligand docking or functional annotation. Loops 
are generally too short to provide sufficient information about 
their local fold, and the environment of each loop is uniquely 
defined by the solvent and the protein that cradles it. In a few rare 
cases, it was shown that even identical decapeptides in different 
proteins do not always have the same conformation (88, 89).

There are two main classes of loop modeling methods: (1) 
the database search approaches and (2) the conformational search 
approaches (90–92). There are also methods that combine these 
two approaches (93–95).

Earlier, it was predicted that it is unlikely that structure databanks 
will ever reach a point when fragment-based approaches become 
efficient to model loops (96), which resulted in a boost in the 
development of conformational search approaches from around 
2000. However, many details of the fold universe have been 
explored during the last decade due to the large number of new 
folds solved experimentally, which had a profound effect on the 
extent of known structural fragments. Recent analyses showed 
that loop fragments are not only well represented in current struc-
ture databanks, but shorter segments are also possibly completely 
explored already (97). It was reported that sequence segments 
up to 10–12 residues had a related (i.e. at least 50% identical) 
segment in PDB with a known conformation, and despite the 
six-fold increase in the sequence databank size and the doubling 
of PDB since 2002, there was not a single unique loop confor-
mation or sequence segment entered in the PDB ever since. 
Consequently, more recent efforts have been taken to classify loop 
conformations into more general categories, thus extending the 
applicability of the database search approach for more cases 
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(98, 99). A recent work described the advantage of using HMM 
sequence profiles in classifying and predicting loops (100). An 
another recently published loop prediction approach first predicts 
conformation for a query loop sequence and then structurally 
aligns the predicted structural fragments to a set of nonredundant 
loop structural templates. These sequence–template loop align-
ments are then quantitatively evaluated with an artificial neural 
network model trained on a set of predictions with known out-
comes (101).

ArchPred (98, 102), currently perhaps the most accurate 
database loop modeling approach, exploits a hierarchical and 
multidimensional database that has been set up to classify about 
300,000 loop fragments and loop flanking secondary structures. 
Besides the length of the loops and types of bracing secondary 
structures, the database is organized along four internal coordi-
nates, a distance and three types of angles characterizing the 
geometry of stem regions (103). Candidate fragments are selected 
from this library by matching the length, the types of bracing 
secondary structures of the query and by satisfying the geometri-
cal restraints of the stems and subsequently inserted in the query 
protein framework where their fit is assessed by the root mean 
squared deviation (RMSD) of stem regions and by the number of 
rigid body clashes with the environment. In the final step, remain-
ing candidate loops are ranked by a Z-score that combines infor-
mation on sequence similarity and fit of predicted and observed 
f/y main chain dihedral angle propensities. Confidence Z-score 
cutoffs are determined for each loop length. A web server imple-
ments the method. Predicted segments are returned, or option-
ally, these can be completed with side-chain reconstruction and 
subsequently annealed in the environment of the query protein 
by conjugate gradient minimization.

In summary, the recent reports about the more favorable cov-
erage of loop conformations in the PDB suggest that database 
approaches are now rather limited by their ability to recognize 
suitable fragments, and not by the lack of these segments (i.e., 
sampling), as thought earlier .

To overcome the limitations of the database search methods, con-
formational search methods were developed. There are many 
such methods, exploiting different protein representations, objec-
tive function terms, and optimization or enumeration algorithms. 
The search strategies include the minimum perturbation method 
(104), molecular dynamics simulations (92), genetic algorithms 
(105), Monte Carlo and simulated annealing (106, 107), multiple-
copy simultaneous search (108), self-consistent field optimization 
(109), and an enumeration based on the graph theory (110). 
Loop prediction by optimization is applicable to both simultaneous 
modeling of several loops and those loops interacting with ligands, 
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neither of which is straightforward for the database search 
approaches, where fragments are collected from unrelated struc-
tures with different environments.

The MODLOOP module in MODELLER implements the 
optimization-based approach (111, 112). Loop optimization in 
MODLOOP relies on conjugate gradients and molecular dynam-
ics with simulated annealing. The pseudoenergy function is a sum 
of many terms, including some terms from the CHARMM-22 
molecular mechanics force field (76) and spatial restraints based 
on distributions of distances (113, 114) and dihedral angles in 
known protein structures. The performance of the approach later 
was further improved by using CHARMM molecular mechanic 
force field with Generalized Born (GB) solvation potential to 
rank final conformations (115). Incorporation of solvation terms 
in the scoring function was a central theme in several other sub-
sequent studies (95, 116–118). Improved loop prediction accu-
racy resulted from the incorporation of an entropy like term to 
the scoring function, the “colony energy,” derived from geomet-
rical comparisons and clustering of sampled loop conformations 
(119, 120). The continuous improvement of scoring functions 
delivers improved loop modeling methods. Two recent loop mod-
eling procedures have been introduced that are utilizing the effec-
tive statistical pair potential that is encoded in DFIRE (121–123). 
Another method is developed to predict very long loops using the 
Rosetta approach, essentially performing a mini folding exercise 
for the loop segments (124). In the Prime program, large num-
bers of loops are generated by using a dihedral angle-based build-
ing procedure followed by iterative cycles of clustering, side-chain 
optimization, and complete energy minimization of selected loop 
structures using a full-atom molecular mechanic force field 
(OPLS) with implicit solvation model (125).

After a model is built, it is important to check it for possible errors 
(see Note 1). The quality of a model can be approximately pre-
dicted from the sequence similarity between the target and the 
template and by performing internal and external evaluations.

Sequence identity above 30% is a relatively good predictor of 
the expected accuracy of a model. If the target–template sequence 
identity falls below 30%, the sequence identity becomes signifi-
cantly less reliable as a measure of the expected accuracy of a sin-
gle model (see Note 2). It is in such cases that model evaluation 
methods are most informative.

“Internal” evaluation of self-consistency checks whether or 
not a model satisfies the restraints used to calculate it, including 
restraints that originate from the template structure or obtained 
from statistical observations. Assessment of the stereochemistry 
of a model (e.g., bonds, bond angles, dihedral angles, and nonbonded 
atom–atom distances) with programs such as PROCHECK (126) 

2.5. Model Evaluation
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and WHATCHECK (127) is an example of internal evaluation. 
Although errors in stereochemistry are rare and less informative 
than errors detected by methods for external evaluation, a 
cluster of stereochemical errors may indicate that the corre-
sponding region also contains other larger errors (e.g., 
alignment errors).

“External” evaluation relies on information that was not used 
in the calculation of the model and as a minimum test whether or 
not a correct template was used. A wrong template can be detected 
relatively easily with the currently available scoring functions.  
A more challenging task for the scoring functions is the predic-
tion of unreliable regions in the model. One way to approach this 
problem is to calculate a “pseudoenergy” profile of a model, such 
as that produced by PROSA (128) or Verify3D (51). The profile 
reports the energy for each position in the model. Peaks in the 
profile frequently correspond to errors in the model. Other recent 
approaches usually combine a variety of inputs to assess the mod-
els, either wholly (129) or locally (130). In benchmarks, the best 
quality assessor techniques use a simple consensus approach, 
where reliability of a model is assessed by the agreement among 
alternative models that are sometimes obtained from a variety of 
methods (131, 132).

An informative way to test protein structure modeling methods, 
including comparative modeling, is provided by the biannual 
meetings on Critical Assessment of Techniques for Protein 
Structure Prediction (CASP) (133). Protein modelers are chal-
lenged to model sequences with unknown 3D structure and to 
submit their models to the organizers before the meeting. At the 
same time, the 3D structures of the prediction targets are being 
determined by X-ray crystallography or NMR methods. They 
only become available after the models are calculated and submit-
ted. Thus, a bona fide evaluation of protein structure modeling 
methods is possible, although in these exercises it is not trivial to 
separate the contributions from programs and human expert 
knowledge. Alternatively a large-scale, continuous, and auto-
mated prediction benchmarking experiment is implemented in 
the program EVA – EValuation of Automatic protein structure 
prediction (134). Every week EVA submits prereleased PDB 
sequences to participating modeling servers, collects the results, 
and provides detailed statistics on secondary structure prediction, 
fold recognition, comparative modeling, and prediction on 3D 
contacts. The LiveBench program has implemented its evaluations 
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Modeling Methods 
and Typical Errors 
in Template Based 
Models

3.1. Accuracy of 
Methods
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in a similar spirit (135). After many years of operations, these 
benchmark platforms are not kept up to date lately, although their 
service would be essential to keep the user community well 
informed about latest developments and the best-performing 
techniques available. A rigorous statistical evaluation (136) of a 
blind prediction experiment illustrated that the accuracies of the 
various model-building methods, using segment matching, rigid 
body assembly, satisfaction of spatial restraints, or any combina-
tions of these are relatively similar when used optimally (137, 
138). This also reflects on the fact that such major factors as tem-
plate selection and alignment accuracy have a large impact on the 
overall model accuracy, and that the core of protein structures is 
highly conserved.

The overall accuracy of comparative models spans a wide range. At 
the low end of the spectrum are the low resolution models whose 
only essentially correct feature is their fold. At the high end of the 
spectrum are the models with an accuracy comparable to medium-
resolution crystallographic structures (139). Even low-resolution 
models are often useful to address biological questions because 
function can many times be predicted from only coarse structural 
features of a model. The errors in comparative models can be 
divided into five categories: (1) Errors in side-chain packing, 
(2) Distortions or shifts of a region that is aligned correctly with 
the template structures, (3) Distortions or shifts of a region that 
does not have an equivalent segment in any of the template struc-
tures, (4) Distortions or shifts of a region that is aligned incor-
rectly with the template structures, and (5) A misfolded structure 
resulting from using an incorrect template. Approximately 90% of 
the main-chain atoms are likely to be modeled with an RMS error 
of about 1 Å when the overall sequence identity is above 40% 
(140). When sequence identity is between 30 and 40%, the struc-
tural differences become larger, and the gaps in the alignment are 
more frequent and longer; misalignments and insertions in the 
target sequence become the major problems. As a result, the main-
chain RMS error rises to about 1.5 Å for about 80% of residues. 
When sequence identity drops below 30%, the main problem 
becomes the identification of related templates and their align-
ment with the sequence to be modeled. In general, it can be 
expected that about 20% of residues will be misaligned and conse-
quently incorrectly modeled with an error larger than 3 Å, at this 
level of sequence similarity. To put the errors in comparative mod-
els into perspective, we list the differences among structures of the 
same protein that have been determined experimentally. A 1 Å 
accuracy of main-chain atom positions corresponds to X-ray struc-
tures defined at a low resolution of about 2.5 Å and with an 
R-factor of about 25% (141), as well as to medium-resolution 
NMR structures determined from ten interproton distance 

3.2. Errors in 
Comparative Models
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restraints per residue. Similarly, differences between the highly 
refined X-ray and NMR structures of the same protein also tend to 
be about 1 Å (142). Changes in the environment (e.g., oligomeric 
state, crystal packing, solvent, ligands) can also have a significant 
effect on the structure (143). The performance of comparative 
modeling may sometimes appear overstated because what is usu-
ally discussed in the literature are the mean values of backbone 
deviations. However, individual errors in certain residues essential 
for the protein function, even in the context of an overall back-
bone RMSD of less than 1 Å, can still be large enough to prevent 
reliable conclusions to be drawn regarding mechanism, protein 
function, or drug design.
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Chapter 7

Automated Protein NMR Structure Determination  
in Solution

Wolfram Gronwald and Hans Robert Kalbitzer 

Abstract

The main drawback of protein NMR spectroscopy today is still the extensive amount of time required for 
solving a single structure. The main bottleneck in this respect is the manual evaluation of the experimental 
spectra. A clear solution to this challenge is the development of automated methods for this purpose. At the 
current stage of development, this goal has been almost or in a few cases fully reached for favorable cases 
such as well-behaved, stably folding smaller proteins below the 25 kDa range. For larger and/or more 
difficult molecules, the input of a human expert is still required. However, even here, automated routines 
will substantially speed up the structure determination process. In this report, we will summarize recent 
developments in this field and especially emphasize practical aspects important for a successful automated 
protein structure determination in solution. An important aspect closely related to structure determination 
is structure validation. Therefore, we devote a section to automated approaches for this topic.

Key words: NMR, Automated structure determination, Resonance assignment, Computational

During the last few years, rapid progress has been made in 
obtaining genomic information with the decoding of the human 
genome being the most prominent example. However, to fully 
use the decoded DNA and hence protein sequence information, 
it is necessary to know the spatial structures of the encoded 
proteins. Detailed structural information allows understanding of 
biological processes on an atomic level, to establish previously 
unknown evolutionary relationships between large protein 
sequence families, and to investigate intermolecular interactions 
such as protein–protein and protein–ligand complexes on an 
atomic scale. This last point is of particular importance to phar-
maceutical research. In contrast to the large amount of available 

1.  Introduction
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sequence information, considerably fewer protein structures have 
been solved so far. Currently, about 61,000 protein structures are 
deposited in the protein data bank (1) (date 13.7.2010). However, 
a significant number of these structures stem from identical or 
highly homologous proteins.

The two main methods for structure determination of 
biological macromolecules are X-ray crystallography and NMR 
spectroscopy. The major advantage of X-ray crystallography is 
that virtually no size limit exists for the investigated molecular 
systems. Examples include the structures of complete ribosomes or 
virus particles. On the downside, only well crystallizable systems 
can be analyzed preventing the investigation of, for example, 
transient complexes. NMR spectroscopy has the benefit that 
analysis can be performed in solution under nearly physiological 
conditions and dynamic properties can be studied in detail. As long 
as the computational methods are not sufficiently well developed 
to predict an unknown structure for a particular protein sequence 
with high accuracy and reliability at atomic resolution, experi-
mental methods for structure determination will play a dominant 
role in structural biology. These methods need to be optimized 
for higher efficiency to keep pace with the rapid increase of genetic 
information available. The only practical solution to this problem 
is a complete or almost complete automation of the experi-
mental structure determination processes (for recent reviews see, 
e.g., Gronwald and Kalbitzer (2); Huang et al. (3); Güntert (4); 
Williamson and Craven (5)). In the following section, we focus 
on new developments related to automated protein NMR struc-
ture determination in solution. A detailed stepwise description of 
the mandatory steps to reach this goal will be given. It should be 
noted that currently several different avenues related to NMR 
structure determination are discussed in the literature, and it will 
not be possible to consider all of them in detail. Therefore, in this 
chapter, we will mainly concentrate on one possible solution. In 
this context, we will also discuss more specifically the project 
AUREMOL (2) developed at the University of Regensburg in 
cooperation with a major manufacturer of NMR instruments 
which is aimed to solve the problem of automated NMR structure 
determination of biological macromolecules.

A truly automated NMR structure determination would start 
with the sample preparation; all other steps including the intro-
duction of the sample into the spectrometer, the recording and 
processing of spectra, the data evaluation, and the structure 
calculation would proceed without human interference. Such 
automation is still far out of reach in NMR spectroscopy. However, 
a semiautomated NMR structural determination of small well-
behaved proteins (well soluble, globular, and uniquely folded) is 
nowadays, in most cases, a manageable scientific problem which 

1.1. Automated 
Structure 
Determination by 
Solution NMR 
Spectroscopy
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leads at the end to a safe solution. Data collection is easy to be 
automated for NMR, and the total recording time of a minimal 
NMR dataset probably can be further reduced by new develop-
ments such as projection-reconstruction techniques (6, 7). Data 
evaluation is the true bottleneck in NMR spectroscopy, and there-
fore, automation procedures should mainly concentrate on this 
task. Structure calculation is, in general, automatically performed. 
The last step is structure validation. A difficulty in NMR spectros-
copy, in this respect, is that the spectra cannot be satisfactorily 
simulated from the structure alone, which complicates the com-
parison of simulated and experimental data for structure valida-
tion purposes.

A critical point determining the success of a structure determina-
tion project is suitable target selection. Usually, the first step in 
this regard is to screen possible candidates for properties allowing 
a reliable automated structure elucidation such as good solubility 
(preferably >1 mM but with cold probes at very high fields 200 mM 
can be sufficient for structure determination), sufficient stability 
under conditions typically used for NMR spectroscopy (at least 1 
week at 298 K), negligible unspecific aggregation, a well-defined 
stable fold, low to moderate flexibility, and limited size (<~25 kDa). 
This screening also includes the definition of optimal domain 
boundaries in the case of large proteins. These procedures still 
need to be done mainly experimentally, since safe prediction of 
these properties is often not yet possible. One reliable avenue to 
screen for foldness and optimal domain boundaries of a certain 
protein is based on the easy-to-perform visual inspection of 2D 
1H–15N HSQC spectra. For the investigation of a certain class of 
proteins independent of the species they originate from, a screen 
of selected proteins from several different species increased the 
output from typical ~50% soluble proteins to more than 90% for 
nonmembrane proteins (8). In summary, in the field of target 
selection, it can be expected that additional experimental and 
bioinformatic methods will be developed in the future. It is 
advised that this step should be performed as accurately as possible. 
For example, missing resonances caused by insufficient signal to 
noise ratios due to low solubility of the target cannot be regained 
in subsequent steps and will lead to poor structures.

Establishing the automated production of proteins is mainly 
necessary for two different reasons: (1) experimental optimization 
of protein properties such as solubility, foldness, domain bound-
aries, and minimum aggregation tendency require the simple and 

2.  Materials
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fast production of small amounts of different protein varieties. 
(2) Automated NMR structure determination methods are depen-
dent on mass production of proteins in mg quantities. Additionally, 
the proteins usually have to be 15N, 13C, and, for larger proteins, 
2H-enriched. A recent review is published by Gräslund et al. (9). 
As a consequence, the protein of interest in most cases will not be 
purified from the organism it stems from but will be obtained by 
other means such as by overexpression in Escherichia coli cells. 
Automated production of expression constructs for genes without 
introns should be straightforward, while for expression constructs 
of intron-containing genes, full-length cDNA clones are required. 
Libraries of full-length cDNA clones have been currently developed, 
and also, tools are available for finding a suitable cDNA library 
for a specific task, for example, (http://cgap.nci.nih.gov/Tissues/
Tissues/LibraryFinder). For automation purposes, in most cases, 
it will be necessary to attach an affinity tag to the protein and to 
isotopically enrich by growing the bacteria in isotope-enriched 
minimal media or special commercial full media. Proteins with 
disulfide bonds or proteins that require glycosylation or other 
posttranslational modifications often cannot be obtained from 
expression in E. coli. In these cases, yeast expression systems such 
as Pichia pastoris (10) may be used. Another avenue for protein 
production is the use of cell-free expression systems (11) for 
in vitro translation. They have the principal advantage that inter-
ference of a toxic target protein with the cell metabolism cannot 
occur and that the environment during the protein expression can 
easily be manipulated by addition of molecular components such 
as protease inhibitors or chaperons (12). When isotope labeling is 
required, in vitro translation is extremely efficient since virtually 
all labeled compounds are introduced in the target protein. Also, 
site-specific labeling, that is often necessary for larger proteins, is 
possible (13). Here also, the so-called SAIL method should be 
mentioned where the amount of NMR active atoms is reduced to 
the absolute minimum by using stereospecific amino acid labeling. 
This method is especially interesting for larger proteins in and 
above the 25 kDa range (14) (see also Notes 1–3).

A complete automation of NMR structure determination is much 
easier when a minimal set of NMR experiments (and possibly the 
detailed experimental setup) is predefined by the program used. 
However, actually it is not known which set of experiments is 
optimally suited for which method, and since methodological 
development still continues, it may change with time.

A good overview of pulse sequences commonly used for the 
structure determination of biological macromolecules in solution 
is given by Sattler et al. and Cavanagh et al. (15, 16). When defi-
ning a minimal set of NMR experiments, it is obvious that the 
experiments that contain the necessary structural information are 

2.3. Optimized 
Strategies  
for Automated  
Spectra Recording
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indispensable. That is actually at least one experiment relying on 
dipolar couplings (NOEs or residual dipolar couplings), although 
in the long term, chemical shift information together with mole-
cular modeling techniques may be sufficient (17). An additional 
important parameter is the complexity of the problem which 
mainly depends on the size of the protein under consideration 
and the spectral dispersion it gives rise to. Both experiments and 
programs have to be selected simultaneously with respect to the 
problem encountered. As an example, isotope enrichment with 
2H seems not to be necessary for small proteins but is often 
required for larger proteins.

Higher dimensional experiments are, in principle, useful for 
automated data evaluation since the main problem in automation 
is ambiguity that can be resolved in higher dimensions. However, 
going to higher dimensions substantially increases the minimal 
spectrometer time required. Here, projection-reconstruction 
experiments and sparse sampling methods may be useful. In these 
experiments of up to seven dimensions, the multidimensional infor-
mation is reconstructed from a set of suitable 2D projections, which 
allows a significant reduction in measurement time (18–20).

Another avenue to resolve ambiguities in the assignment process 
is based on the use of amino-acid type selective experiments. A set 
of two-dimensional triple resonance 1H–15N correlation experi-
ments is presented to achieve this goal (21–23). They are based on 
MUSIC pulse sequence elements that, in principle, accomplish an 
in-phase magnetization transfer for either XH2 or XH3 groups, 
while for other multiplicities this transfer is suppressed (X can be 
either 13C or 15N) (24) (see also Note 4).

In the next section, we will concentrate on automated NMR data 
evaluation. This is a very diverse topic, and during the last years, 
many different strategies have been described in the literature 
that are summarized in several recent publications (2, 25, 26). 
For this book chapter, we will focus on the approach we have 
chosen for the program AUREMOL (2).

Bearing in mind that in many applications of multidimen-
sional NMR-spectroscopy, the main aim is not a completely correct 
spectral assignment but a correct three-dimensional structure 
we have to ask for an optimal strategy to obtain this goal with a 
minimum of experiments in an automated fashion. It is apparent 
that we have to mainly concentrate on experiments that contain 
strong structural information since these are indispensable. At the 
most extreme (and with the rapid evolution of structure prediction 
in bioinformatics not unlikely) case, one could reduce the role of 

3. Automated 
Top-Down  
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NMR spectroscopy to the validation of a predicted structure 
without using NMR directly for structure determination. However, 
with the present state of the art, this seems only to be possible 
when structures of close homologues are readily available.

The validation of structures has two important aspects: the 
proof that (1) the obtained structure represents a solution consis-
tent with all experimental data and (2) that the experimental data 
are sufficient to define the obtained structure as a unique solution 
within the limits of a predefined accuracy. For the first condition, 
a number of methods have already been reported, the most 
important one (but still far from optimal) is probably the calcula-
tion of quantities such as NMR R-factors. For practical purposes, 
the required quality of a structure is dependent on the specific 
problem to be solved. The amount of time and resources needed 
usually increases rapidly with the demand on quality (resolution). 
In addition, one would demand that the structures obtained from 
automated procedures should be at least as accurate as those 
obtained from manual data evaluation. In the so-called top-down 
approach that is described here, one starts from a trial structure 
and uses the structure information contained in the spectra to 
obtain iteratively improved structures and resonance assignments 
(Fig. 1). The trial structure may consist in the two extreme cases 
either of an arbitrary random structure or of the well-defined 
structure of a close homologue.

In the following section, we will use the AUREMOL example 
shown in Fig. 1 to describe the necessary steps of automated 
structure determination in more detail. Note that many of the 
details given below are also applicable to other programs for auto-
mated protein NMR structure determination.

All relevant information about the considered biomolecule, for 
example, protein should be collected in a molecule-specific local 
database such as primary sequence information, composition of 
the used buffer, and physical parameters, for example, pH and 
temperature. A general local database provides additional infor-
mation. It contains data such as the chemical structure of the 
amino acids, chemical shifts and their distributions, J-couplings, 
Karplus parameters, and temperature-dependent viscosities. 
Structures and sequences of homologous proteins can be loaded 
from nonlocal databases. Based on this information, a trial assign-
ment and a trial structure are generated. It should be noted that 
for the basic algorithm one has to allow that these starting values 
can be far removed from the final results. For example, it must be 
possible to start with an extended strand as a starting structure.

Although it is possible to start with an extended strand structure, 
it is clear that it is advantageous to use the best structural model 
available (Fig. 1). In case that homologous structural information 
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is available, homology modeling approaches can be successfully 
applied for obtaining a starting model. AUREMOL contains for 
this purpose the PERMOL module. PERMOL (27, 28) is a 
restraint-based program for homology modeling of peptides and 
proteins. Restraints are generated from the information contained 
in structures of homologous template proteins. Employing the 
restraints generated by PERMOL, three-dimensional structures 
are obtained using MD programs such as CYANA (29), CNS 
(30), or XPLOR-NIH (31). AUREMOL provides a direct inter-
face to these programs. In contrast to other programs, PERMOL 
is mainly based on the use of dihedral angle and hydrogen bond 
information which is optimally suited to preserve the local sec-
ondary structure, and on long-range distance restraints for the 
representation of the general fold.

The following tasks concerning the spectra database are mostly 
performed outside of AUREMOL. Besides the optimization of 
the protein production, automated NMR data evaluation has the 
highest potential for substantially reducing the total time needed 
in automated NMR structure determination. Independent of the 
specific strategy used in the automated NMR structure determi-
nation, the analysis of the multidimensional NMR data comprises 
the following steps: (1) data processing including improvement 

3.3.  Spectra Database

Molecule definition
General and 
molecule-specific 
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Spectra
database

Automated pre-
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Spectra 
simulation
(RELAX)

Fig. 1. Overview of the general top-down strategy used within the program AUREMOL. The most central modules are 
highlighted in grey.
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of spectra quality and signal enhancement, (2) pattern recognition 
and classification of objects, and (3) interpretation of objects and 
classes of objects. After recording a set of multidimensional spec-
tra, the proper processing of the data is the first critical step, since 
information lost in this step cannot be regained in subsequent 
steps. Optimal processing of the data is especially important in 
automated data analysis since computer algorithms are usually 
not as good as human experts in distinguishing artifacts from true 
signals. Appropriate time domain filtering of the data is one of the 
most important steps performed prior to Fourier transformation. 
The key assumption used in these filtering methods is that reso-
nance signals, noise, and artifacts have different time constants so 
that their contribution to the total detection signal varies during 
the acquisition period. Accordingly, a reduction in the intensity of 
the initial part of the time-domain signal decreases contributions 
from component signals, which slowly vary in the frequency 
domain, such as baseline rolls and tails of resonance signals. 
A reduction in the intensity of the final segments of time-domain 
signal decreases the intensity of rapidly varying components such 
as instrumental noise and as a consequence enhances not only the 
signal-to-noise ratio but also increases the line width (line broad-
ening). In typical spectra used for automated protein structure 
determination such as 3D triple resonance and 3D NOESY spectra, 
a maximum signal-to-noise ratio is usually required to detect even 
weak signals, so in general, it is recommended to adjust the window 
(filter) functions for an optimal signal-to-noise ratio and to accept 
a slight increase in line width. We recommend using the 90° 
shifted squared sine bell or Lorentzian-to-Gaussian transformations 
for such applications (see also Notes 5–7 and 9).

A flat base plane is not only important for the correct integration 
of multidimensional NMR spectra, where base plane variation can 
dominate the integral, but also for peak recognition, where a 
threshold must be defined to sort resonance peaks from noise 
spikes. The fundamental assumption is that the base plane is flat 
in the absence of signals and that the slopes of resonance peaks 
are greater than those of base plane artifacts. Those regions which 
contain no cross peaks can either be defined by the user (32–34) 
or identified automatically by the program (35–37). However, the 
methods that are more convenient for the user are those which 
automatically identify base plane points. At least for spectra with 
similar signal-to-noise ratios, line widths, and spectral resolution, 
these automated routines work well and can be recommended. 
The simplest base plane correction method fits the baseline of each 
row to a cubic Lagrange polynomial where only three reference 
columns, which contain no signals, are defined (33). After correction 
of all the rows, the same method is applied to the correspon-
ding columns. A similar method is implemented in the program 

3.3.1. Base Plane 
Correction in the 
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TOPSPIN, where the baseline points are automatically identified 
and the baseline is fitted to a polynomial of up to sixth order. 
Better results are obtained using the spline method (32), where 
an arbitrary number of cross-peak free rows and columns can be 
defined. The spline function then approximates the base plane 
between two neighboring points using a cubic polynomial func-
tion (see also Notes 8–10).

The signal of the physiological solvent, H2O, is by far the most 
intense feature in 1H NMR spectroscopy of biological macromole-
cules and causes spectral artifacts even when strongly attenuated 
by presaturation or selective excitation. Independent component 
analysis (ICA) or singular spectrum analysis (SSA) appear to be 
promising new approaches in this regard since no spectrum-
dependent parameters have to be adjusted (38, 39).

The next critical step in any manual or automated structure 
determination project concerns the proper preprocessing of the 
various spectra for the optimal extraction of information.

Since, in general, a set of spectra is used in any automated structure 
determination process, it is important that all spectra have been 
referenced properly; this is usually achieved by using an internal 
standard such as DSS or TSP. For heteronuclei, it is advisable to 
use an indirect referencing scheme (40–42). The first and most 
important step in the automated spectra analysis is the recognition 
of resonance peaks which must be separated from the background. 
In principle, this step called peak picking is a straightforward 
procedure in multidimensional spectra since a relative maximum 
(or minimum) is defined by the property that all adjacent data 
points have a lower (or higher) intensity. However, since reso-
nance peaks must be distinguished from the large number of noise 
and artifact signals, additional criteria must be defined. Approaches 
to automated peak picking can usually be divided into three types: 
(1) threshold-based methods, (2) peak shape-based methods, and 
(3) Bayesian approaches. (1) The simplest and most widely used 
criterion is the intensity threshold criterion, that is, only peaks with 
absolute intensities above a specific threshold are recognized as 
true resonance peaks (43–48). In many cases, a global threshold 
is not applicable for the whole spectrum; therefore, programs 
such as AUTOPSY (49) and AUREMOL allow the automatic 
calculation of local thresholds. Since the reliability of automatic 
assignment procedures critically depends on a high ratio of true 
peaks versus noise and artifact signals, optimal reduction of the 
number of noise and artifact contributions is mandatory. However, 
true signals lost in this filtering step can never be regained in 
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subsequent stages. A simple method for significantly reducing the 
number of noise and artifact peaks is the exclusion of areas from 
the peak search where no meaningful resonances can be expected. 
Such spectral areas include regions outside the spectral range of 
the molecule under investigation and spectral regions where reso-
nance peaks cannot be separated from artifact peaks (e.g., near 
the water t1-ridge). In programs such as AURELIA (50) and 
AUREMOL, these spectral regions can be defined interactively by 
the user. (2) Additional information can be derived from the line 
shape itself. With a segmentation procedure, the n-dimensional 
line widths can be determined and peaks with very small line 
widths (i.e., noise spikes) or very large line widths (ridges and 
baseline rolls) can be automatically removed (51). (3) A Bayesian 
approach coupled to a multivariate linear discriminant analysis of 
the data (52) can be used as a generally applicable method for the 
automated classification of multidimensional NMR peaks. The 
analysis relies on the assumption that different signal classes have 
different distributions of specific properties such as line shapes, 
line widths, and intensities. In addition, a nonlocal feature is 
included that takes into account the similarities of peak shapes in 
symmetry-related positions. The calculated probabilities for the 
different signal class memberships are realistic and reliable with a 
high efficiency of discriminating between peaks that are true signals 
and those that are not (53) (see also Notes 11–13).

The basis for macromolecular structure determination in solution 
is still given by distance information from multidimensional NOE 
data. As a consequence, automated routines for NOE integration 
are required. Accurate integration of spectral cross-peaks demands 
a reliable definition of the cross-peak area. However, such a 
definition is always a compromise between requirements that the 
integration area be as large as possible so that a complete integra-
tion is obtained, and also, as small as possible to reduce the 
influence from artifacts associated with baseline rolls and tails of 
other peaks. A similar approach defines the peak integration area 
using an iterative “region-growing” algorithm (44, 51, 54), which 
recognizes all data points that are part of a given cross-peak; the 
integration can be performed based on a user-defined threshold 
level. In AUREMOL, this threshold is defined relative to the 
maximum value of the peak to ensure that the relative volumes are 
directly proportional to the strength of interaction. This automatic 
integration procedure works surprisingly well even for overlapping 
peaks as long as the peak maxima are separately visible and there-
fore recognizable by the peak picking procedure. In a different 
approach, peaks are fitted by a set of reference peaks defined by the 
user (48, 55). This approach is probably best suited in cases where 
peaks strongly overlap; however, it demands a careful selection of 
the reference peaks by the user and is therefore not applicable for 
fully automated applications (see also Notes 14–16).

3.4.2.  Signal Integration
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Very different approaches have been published in the literature 
for this stage of the automated structure determination process. 
In this section, we will summarize the methods in use for spin 
system recognition and sequential resonance assignments that are 
necessary steps in most schemes proposed for automated structure 
determination in solution. For the methods described in this section, 
usually four separate steps are necessary, which can vary in the 
order they are applied and sometimes several steps are performed 
simultaneously (2). These steps are (a) grouping of resonances 
from one or more spectra to spin systems, (b) association of spin 
systems with amino acid types, (c) linking of spin systems to 
smaller or longer fragments, and (d) mapping of fragments 
obtained from step (c) to the primary sequence. The routine 
implemented in AUREMOL calculates sequential assignments 
based on information obtained from triple resonance spectra such 
as HNCA and CBCANH spectra. As input, a list of so called 
pseudo residues is used where signals from the various spectra are 
grouped into spin systems. Here, the user should check that the 
number of obtained spin systems corresponds to the number of 
residues in the primary sequence. A too high number indicates 
the presence of extensive noise and/or artifacts, whereas a too 
low number hints either poor spectra quality and/or insufficient 
preprocessing of the spectra. Next, individual spin systems are 
simultaneously connected to longer fragments and mapped to the 
primary sequence. For this purpose, a simulated annealing like 
algorithm that minimizes a pseudo energy is used. The used 
energy function contains a term that describes the matching of 
the individual fragments to each other and a term that facilitates 
the mapping to the primary sequence based on the comparison of 
expected and observed chemical shifts (also see Note 17).

The other steps in the AUREMOL structure determination 
process are performed in an iterative fashion.

The basic idea for the assignment of side-chain resonances is the 
iterative comparison of simulated and experimental NOESY spectra 
to drive the assignment process. Using the preliminary structural 
model, NOESY spectra are simulated. Each signal is simu lated with 
its proper line shape and volume. The shifts for the simulated signals 
are randomly assigned to positions where signals are present in the 
corresponding experimental spectra. In case that a start assignment 
is provided as input, the shifts are assigned accor ding to the start 
assignment. As partial start assignment the resonance line assign-
ment of the backbone atoms obtained in the previous step may be 
used. In the next step, the resulting simulated spectrum is compared 
with the experimental one with respect to line shapes and signal 
volumes. The degree of accordance is expressed as a probability. 
In the following section, a quenching protocol is applied to the 
simulation procedure to improve the agreement of the spectra. 

3.5. Automated 
Backbone Assignment 
of Resonance Lines

3.6. Side Chain 
Assignment (GSA)



106 Gronwald and Kalbitzer

A random perturbation swaps the shifts of two simulated signals 
and the probability of accordance is recalculated. If the new 
signal assignment leads to an improved agreement with the 
experimental data, it is accepted, otherwise declined. This method 
is repeated until the agreement between experiment and simu-
lation does not improve any further. As a result, a sequential 
chemical shift assignment is obtained that can explain the experi-
mental spectra with the final probability of accordance. Note that 
the output is a list of chemical shifts contai ning in an ideal case the 
complete side- and main-chain resonance line assignment, but it 
is not a fully assigned NOESY spectrum. Other well-established 
methods for side-chain assignments are based, for example, on 
the use of 3D 1H–13C HCCH-TOCSY spectra. However, while 
main-chain assignments can be obtained in a fully automated 
fashion in many cases, for side-chain assignments often manual 
intervention is still required (56). These difficulties stem on 
one hand from missing peaks due to incomplete TOCSY transfer 
and on the other hand from overlapping signals. To our knowledge, 
the FLYA package (25) is currently the only published software 
suite that has successfully fully automated this step by combining 
side-chain assignments, NOE-assignment, and structure calcula-
tions (also see Notes 18 and 19).

In the previous two steps, the resonance line assignment of the 
backbone and side-chain resonances has been obtained. The next 
step is the complete NOE assignment including all structurally 
relevant long-range signals. For this purpose, several strategies have 
been published in the literature, of which two widely used methods 
are the r−6 averaging of ambiguous restraints in ARIA (57) and the 
network anchoring algorithm (58) implemented in CYANA (29). 
We will discuss here the probabilistic method KNOWNOE (59) 
implemented in AUREMOL. It is applicable when the sequential 
resonance line assignment has been fully or almost completely 
achieved. Structural information, when available is helpful in the 
assignment process especially for larger systems, but it is not 
required. KNOWNOE contains as a central part a knowledge driven 
Bayesian algorithm for solving ambiguities in the NOE assignments. 
These ambiguities arise mainly from chemical shift degenerancies, 
which allow multiple assignments of cross peaks. Statistical tables in 
the form of atom-pairwise volume probability distributions (VPDs) 
were derived from a set of 1,000 protein NMR structures. VPDs for 
all assignment possibilities relevant to the assignments of inter proton 
NOEs were calculated. Two examples are shown in Fig. 2. They 
basically contain expected volume distributions for a given assign-
ment possibility. It is evident that, for example, for an intraresidual 
assignment another volume distribution is expected than for a long-
range assignment. Therefore, they can be used together with the 
known cross-peak volume to solve ambiguous NOE assignments.

3.7. NOE Assignment 
(KNOWNOE)
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Fig. 2. Examples of volume probability distributions derived from 1,000 non homologous protein structures.

With these data for a given cross peak, with N possible 
assignments Ai (i = 1,…, N), the conditional probabilities  
P(Ai, a|V0) that the assignment Ai determines essentially all 
(a-times) of the experimental cross-peak volume V0 can be calcu-
lated. An assignment Ak with a probability P(Ak, a|V0) higher than, 
for example, 0.95 is transiently considered as unambiguously 
assigned. Note that usually not all of the signals are unambigu-
ously assigned in the first round. With the list of unambiguously 
assigned peaks, a set of structures is calculated. These structures 
are used as input for the next cycle of iteration where a distance 
threshold Dmax is dynamically reduced. Starting with a trial  
structure (e.g., an extended strand), all assignments of a cross 
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peak possible within the dimension specific chemical shift limits 
are considered where the corresponding atoms are separated in 
the trial structure by a distance rij < Dmax. The aim of the distance 
threshold Dmax is to reduce the number of assignment possibilities 
for the individual cross peaks, which in turn leads to a higher 
number of signals that could be unambiguously assigned. Again 
assignment probabilities are calculated, and a new round of 
structure calculations is performed. This procedure is iterated until 
Dmax reaches its lower limit. The lower limit of Dmax is usually set 
to 0.75 nm, in general, the maximum detection range of a NOESY 
spectrum plus a margin to allow for only partially fixed side-chain 
positions. Note that in each iteration the original unassigned peak 
list is used, and all previous assignments are discarded. This is 
done to ensure that the structure determination process does not 
get trapped in preliminary conformations.

In addition, KNOWNOE considers mutual information 
in a similar way as introduced by Herrmann et al. (2002) (58). 
That means putative NOE assignments that are supported by a 
network of neighboring assignments are treated as more probable 
than assignments that are isolated. Within KNOWNOE, the use 
of mutual information also termed network-anchoring is espe-
cially important during the first few cycles of NOE assignments 
and structure calculations. When no additional 3D structural 
information is available as it is often the case in the beginning of 
the structure determination process usually many NOE signals 
possess a high number of possible assignments within the ranges 
of the sequential chemical shift assignment. Using mutual infor-
mation a prescreening step is performed for each ambiguous 
assignment and only assignment possibilities that are supported by 
a network of neighboring assignments are passed to the next step 
of KNOWNOE. Only from these preselected assignment possi-
bilities the most probable assignment is calculated as described 
above. Compared with the original KNOWNOE method (59), 
this combination of methods usually allows for a considerably 
higher number of reliably assigned NOEs.

In the following, we will give an example for the iterative 
structure determination of the Ras-binding domain of RalGDS a 
small protein of 88 residues in size (60, 61). As input, the reso-
nance line assignment for the main- and side-chain atoms was used 
together with a 2D 1H and a 3D 15N edited NOESY spectrum. 
In total, six iterations of assignments and structure calculations 
were performed, of which the first two and the last are shown 
below (also see Notes 20 and 21).

See Fig. 3 and Table 1.

See Fig. 4 and Table 2.

3.7.1  Iteration 1

3.7.2  Iteration 2
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Table 1 
Iteration 1: Parameters used within AUREMOL/KNOWNOE (see Notes 22 and 23)

Parameter Value Description

Mixing time 2D 0.08 s NOESY mixing time

Relaxation delay 1.56 s D1 plus acquisition time

Used structure Extended  
strand

Determines used 3D structure

Assign limit F1 (2D) 0.02 ppm Allowed divergence between assignment and 
actual spectrum

Assign limit F2 (2D) 0.02 ppm Allowed divergence between assignment and 
actual spectrum

Lower probability limit 0.95 Minimal accepted assignment probability

Distance limit 100 nm Allowed atom separation for possible assignments 
in current structure

Mutual information  
prob limit

0.2 Minimal accepted mutual information probability

Use mutual information Yes Switches use of mutual information on/off

Fig. 3. Bundle of five selected structures of RalGDS after iteration 1.

(continued)
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Table 1 
(continued)

Parameter Value Description

Assign all peaks No Switches additional assignment of signals on  
where “mutual information probability  
limit” and “lower probability limit” values  
are below thresholds

Assignments to master list Yes Transfers assignments to spectrum

Specify error bounds Yes Manual definition of error bounds

Upper bound (see Note 25) dist2/8 Calculation of upper bounds in CNS restraint file

Lower bound (see Note 25) dist-0.165 nm Calculation of lower bounds in CNS restraint file

Additional information used for the MD-calculation

Parameter Value Description

Dihedral angle restraints 104 Number of backbone dihedral angle restraints  
from TALOS

h-bond restraints 52 Number of h-bond restraints (2 for each h-bond)

Results

Parameter Value Description

Assigned signals (2D) 483 of 1,614 Number of signals assigned by KNOWNOE

RMSD 0.22 nm Average RMSD of selected structures to mean 
structure (CA)

Fig. 4. Bundle of five selected structures of RalGDS after iteration 2.
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Table 2 
Iteration 2: Parameters used within AUREMOL/KNOWNOE (see Notes 22 and 23)

Parameter Value Description

Mixing time 2D 0.08 s NOESY mixing time

Relaxation delay 1.56 s D1 plus acquisition time

Used structure Best of previous iteration Determines used 3D structure

Assign limit F1 (2D) 0.01 ppm Allowed divergence between assignment 
and actual spectrum

Assign limit F2 (2D) 0.01 ppm Allowed divergence between assignment 
and actual spectrum

Lower probability limit 0.95 Minimal accepted assignment probability

Distance limit 1.5 nm Allowed atom separation for possible 
assignments in current structure

Mutual information prob 
limit

0.1 Minimal accepted mutual information 
probability

Use mutual information Yes Switches use of mutual information  
on/off

Assign all peaks No Switches additional assignment of signals  
on where “mutual information prob 
limit” and “lower probability limit” values 
are below thresholds

Assignments to master list Yes Transfers assignments to spectrum

Specify error bounds Yes Manual definition of error bounds

Upper bound dist2/8 Calculation of upper bounds in CNS 
restraint file

Lower bound dist-0.165 nm Calculation of lower bounds in CNS 
restraint file

Additional information used for the MD-calculation

As before

Results

Parameter Value Description

Assigned signals (2D) 964 of 1,614 Number of signals assigned by KNOWNOE

RMSD 0.12 nm Average RMSD of selected structures to 
mean structure (CA)

See Table 3.

See Fig. 5 and Table 4.

3.7.3.  Iterations 3–5

3.7.4.  Iteration 6



112 Gronwald and Kalbitzer

A detailed description of the various parameters is given in 
the AUREMOL manual (see also Notes 22–26).

As can be seen in Fig. 1, the simulation of spectra is a central part 
of AUREMOL that is used in many of its various functions such 
as side-chain resonance line assignment, restraint generation, and 
structure validation. For this purpose, the module RELAX was 
incorporated in AUREMOL. RELAX (62–64), a program for the 
back-calculation of NOESY spectra is based on the complete 
relaxation matrix formalism. It differs from similar programs (65–71) 
in features such as the availability of a large number of motional 
models that, in principle, can be applied individually for all pairs 

3.8. NOESY Spectra 
Simulation Using the 
Full Relaxation Matrix 
Algorithm

Table 3 
Iterations 3 to 5: Parameters used within AUREMOL/
KNOWNOE (see Notes 22 and 23)

Same parameters as before but upper distance limits of 1.25, 1.00, and 
0.75 nm were used, respectively.

Additional information used for the MD-calculation

As before

Fig. 5. Bundle of five selected structures of RalGDS after iteration 6.
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Table 4 
Iteration 6: Parameters used within AUREMOL/KNOWNOE (see Notes 22 and 23)

Parameter Value Description

Mixing time 2D 0.08 s NOESY mixing time

Relaxation  
delay

1.56 s D1 plus acquisition time

Used structure Best five of previous 
iteration

Determines used 3D structure

Assign limit F1 (2D) 0.015 ppm Allowed divergence between assignment and 
actual spectrum

Assign limit F2 (2D) 0.015 ppm Allowed divergence between assignment and 
actual spectrum

Assign limit F1 (3D) 0.10 ppm Allowed divergence between assignment and 
actual spectrum

Assign limit F2 (3D) 0.50 ppm Allowed divergence between assignment and 
actual spectrum

Assign limit F3 (3D) 0.02 ppm Allowed divergence between assignment and 
actual spectrum

Lower probability  
limit

0.95 Minimal accepted assignment probability

Distance limit 0.75 nm Allowed atom separation for possible assignments 
in current structure

Mutual information  
prob limit

0.01 Minimal accepted mutual information  
probability

Use mutual  
information

Yes Switches use of mutual information on/off

Assign all peaks Yes Switches additional assignment of signals on 
where “mutual information prob limit”  
and “lower probability limit” values are 
below thresholds

Assignments to  
master list

Yes Transfers assignments to spectrum

Specify error  
bounds

Yes Manual definition of error bounds

Upper bound Minimal  
error + 0.05 nm

Calculation of upper bounds in CNS  
restraint file

Lower bound Minimal  
error + 0.05 nm

Calculation of lower bounds in CNS  
restraint file

(continued)
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Parameter Value Description

Additional information used for the MD-calculation

As before

Results

Parameter Value Description

Assigned signals (2D) 1,442 of 1,614 Number of signals assigned by KNOWNOE

Assigned signals (3D 
15N edited)

392 of 607 Number of signals assigned by KNOWNOE

RMSD 0.06 nm Average RMSD of selected structures to mean 
structure (CA)

Table 4 
(continued)

of spins, and that it also includes relaxation by chemical shift 
anisotropy, calculates individual T2 values, and it allows the inclu-
sion of J-coupling patterns in the simulation. It facilitates the 
simulation of 1H 2D NOESY and 15N or 13C-edited 3D NOESY-
HSQC spectra. The 3D NOESY–HSQC experiment is basically a 
concatenation of a homonuclear 1H-NOESY and a heteronuclear 
HSQC-experiment. In a NOESY experiment, the evolution of the 
deviation of longitudinal magnetization from thermal equilibrium 
DMz is described by the generalized Solomon equation

 ∆ = − ∆z z

d
( ) ( )

d
M t M t

t
D  (1)

The dynamics matrix D that governs the time evolution of 
the cross-peak intensities in a 2D-NOESY experiment is given by

 = +D R K  (2)

K is the kinetic matrix that describes chemical and/or confor-
mational exchange (72), while R is the relaxation matrix (73–75). 
In the current version of RELAX, the effects of chemical exchange 
are neglected and the solution of Eq. 3 simplifies to

 ∆ = ∆ −z z( ) (0)exp( · )M t M t R  (3)

wherein DMz(0) is the deviation of the longitudinal magnetization 
from thermal equilibrium at time zero, i.e., directly after the last 
pulse of the NOESY experiment. For dipolar homo- or hetero-
nuclear relaxation and spin I = 1/2, the rates of autorelaxation Rii 
and the cross-relaxation Rij between two spins i and j are given by

 
≠

 = − + + + ∑ 0 1 2( ) 3 ( ) 6 ( )ii ij ij i j ij i ij i j
j i

R q J J Jw w w w w  (4)
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Fig. 6. Example for a simulated 2D 1H NOESY spectrum of the medium-sized protein HPr.

and

  = + − − 
2 06 ( ) ( )ij ij ij i j ij i jR q J Jw w w w  (5)

respectively. With n
ijJ  (n = 0, 1, 2) being the spectral densities for 

n-quantum transitions characterizing the motion of a vector 
connecting spin i and j relative to the B0-field, the dipolar coupling 
constants qij are given by

 = 2 2 2 2
0(1 /10) ( / 4 )ij i jq hg g m p  (6)

where gi and gj are the gyromagnetic ratios of spin i and j, respec-
tively. Within RELAX, different motional models can be used to 
describe internal and external motions of the molecule. Examples 
include a slow jump model to describe slow aromatic ring flips, a 
fast jump model to describe fast rotating methyl groups, a rigid 
model in cases where isotropic overall tumbling is assumed, and 
the Lipari model free approach for internal motions not easily 
described by a simple motional model.

Besides dipolar interactions RELAX also takes contributions 
from chemical shift anisotropy in the relaxation matrix into account. 
In addition to the calculation of accurate volumes/intensities 
also individual line shapes and line widths are calculated for 
each signal. For the calculation of line shapes, appropriate coupling 
constants are estimated from the trial structure. Figure 6 shows 
an example for a simulated 2D NOESY spectrum.
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Simulation was performed with proper calculation of line-
widths and line-shapes.

The application of RELAX requires the following settings 
(see also Note 26):

 1. Define the pdb-file for a three-dimensional structure or a set 
of three-dimensional structures.

 2. Define the type of spectrum, that is, 2D-NOESY or 3D- 
NOESY-HSQC spectrum.

 3. Define the spectral parameters, that is, frequencies, spectral 
ranges, digital resolution, repetition time, mixing time.

 4. Define the relaxation parameters, that is, the global rotational 
correlation time tc, local correlation times te, type of interac-
tion (chemical shift anisotropy on/off), motional models, 
order parameters S2. The rotational correlation time can also 
be predicted by AUREMOL from the structure.

 5. Define the spectrum simulation parameters, mainly J-couplings 
(on/off) and additional line broadening.

One important task in the structure determination process is the 
conversion of the NOE volume information into distance 
restraints with appropriate error bounds. In the simplest case, one 
can classify the NOEs into distance classes such as short, medium, 
and long. A bit more realistic is the use of the so-called two spin 
approximation with 1/6·r Va −=  where a is a user-defined scaling 
factor to take varying instrumental and experimental factors into 
account. Here, often a fixed percentage of the distance is given as 
lower and upper error bound. More precise is the full relaxation 
matrix analysis for this purpose (67, 76) as it is, for example, 
implemented in the AUREMOL module RELAX/REFINE (to 
be published). Here also, spin diffusion effects are taken into 
account. Based on the input structure and motional models, the 
relaxation matrix is set up for the molecule of interest. In the next 
step, the relaxation matrix is iteratively refined. The rates sij of step 
n + 1 are calculated from the rates of the previous one, sij (n) by

 + =
ln (exp)

( 1) ( )
ln ( ,sim)

ij

ij ij
ij

cA
n n

A n
s s  (7)

with an arbitrary scaling factor c to take into account unknown 
experimental and instrumental factors, the experimental cross-peak 
volumes Aij(exp), and the corresponding simulated volumes Aij(n, 
sim) of step n. After the autorelaxation rates have been adjusted, 
new NOEs are calculated from the refined relaxation matrix and 
the next iteration step is performed. After convergence, accurate 
distances are obtained from the refined relaxation matrix. Minimal 
error bounds are obtained from an analysis of the experimental 
volume error that was determined in the peak integration step.

3.9. Calculation  
of Distance Restraints 
and Distance Errors 
with the Full 
Relaxation Matrix 
Formalism
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For using the routine REFINE the following parameters have 
to be set:

 1. Set parameters as for RELAX.
 2. Set parameters for the error calculation. Here, one can choose 

whether minimal error bounds plus an optional user error 
should be selected (recommended for final cycles of automated 
structure calculation, or fully user defined error bounds, such as 
a certain percentage of the restraint distance, should be used).

AUREMOL provides an interface for performing structure calcu-
lations. Necessary input files are automatically created by 
AUREMOL. The structure calculations itself are done by exter-
nal programs such as CYANA or CNS, whereas the analysis of the 
resulting structures is again performed within AUREMOL.

One of the most important steps in any structure determination 
project is the validation of the final and/or intermediate struc-
tures. Often the quality of an NMR structure is mainly judged by 
factors such as RMSD values or the quality of the Ramachandran 
plot. However, these methods do not provide a direct measure of 
how well the calculated structures fit the experimental data. 
Therefore, we have implemented the program RFAC (61, 77) in 
AUREMOL, which automatically calculates R-factors for protein 
NMR structures to provide such a measure. The automated R-factor 
analysis envisaged here consists, in principle, of two separate 
parts: (1) a comparison of the experimental NOESY spectrum 
with the NOESY spectrum back-calculated from a given struc-
ture, and (2) the calculation of the R-factor(s) from the data. In 
the first part, the NOESY spectrum has to be calculated from the 
trial structure or a bundle of trial structures using the resonance 
line assignments of the side- and main-chain atoms. For the algo-
rithm to work properly, these assignments have to be complete or 
almost complete. In our implementation, we use the full relax-
ation matrix approach of the AUREMOL module RELAX to 
obtain accurate simulated peaks defined by their positions, inten-
sities, and line shapes. The corresponding experimental NOESY 
spectrum is as described above automatically peak picked and 
integrated in the preprocessing stage of AUREMOL. In addition, 
the probabilities pi of the peaks i to be true NMR signals and not 
noise or artifact peaks are also calculated according to Bayes’ the-
orem and are used as weighting factors during the calculation of 
the R-factors. For the purpose of R-factor calculation, the experi-
mental data are automatically assigned based on the correspond-
ing simulated spectrum and the sequential resonance line 
assignment. Note that in difference to KNOWNOE only assign-
ments are made that could be expected from the trial structure. 
The AUREMOL routine SHIFTOPT (78) is used in this process 

3.10. Structure 
Calculation

3.11. Structure 
Validation by NMR- 
R-Factor Calculations
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to optimally adapt the chemical shift values obtained from the 
general sequential resonance assignment to the actual experimen-
tal data. The assigned experimental and simulated spectra are fed 
into the programs RFAC or in the case of 3D spectra RFAC-3D. 
The presence of noise and artifact signals in the experi mental 
spectrum can be further reduced by applying a lattice algorithm. 
In this algorithm, only peaks are taken into account where at least 
one back-calculated peak in each dimension can be found within 
user-defined search radii, for example, 0.01 ppm for 2D spectra. 
For resonances that are not stereospecifically assigned, the solu-
tion that fits best (gives the smallest R-factor) is selected. In this 
context, one should note that for each atom at least the diagonal 
peak is back calculated. Where more than one back- 
calculated peak is assigned to a single experimental peak, the mean 
volume of the corresponding back-calculated peaks is esti-
mated before the comparison is done, while the volume of the 
experimental peak is divided by the number of corresponding 
back-calculated peaks. For the calculation of R-factors, several 
equations have been developed. RFAC and RFAC-3D use mainly 
the one shown below.

 

∈ ∈

∈ ∈

− + −
=

+ −

∑ ∑
∑ ∑

2 2 2 2
exp, calc, exp, exp, noise exp,

PWAUR 2 2 2 2 2
exp, exp, exp, noise exp,

( ) ( )
( )

( )

i i i i i
i A i u

i i i i
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R
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a a

a a a
a a

a
 

(8)

The PWAUR R-factor (probability weighted assigned and 
unassigned resonances based R-factor) takes both the assigned 
(A-list) and unassigned (U-list) experimental signals into account. 
Here, sfa is a global scaling factor to facilitate the proper scaling 
between experimental and simulated spectra. V a

noise is a standard 
noise volume to substitute for missing simulated signals, 
which are not available for the unassigned experimental signals. 
As mentioned above, the pi values describe the probability that an 
experimental peak is a true signal. The parameter a is usually set 
to −1/6 to ensure that the R-factor is not dominated by the 
largest signals. For an ideal structure and a perfect spectrum, the 
R-factor approaches a value of zero, while for erroneous struc-
tures increased values are expected.

The following steps have to be performed:

 1. Carefully prepare the peak list. Be sure that the peak picking 
threshold is low enough to retain the weak long-range peaks. 
Set the probability cutoff at a value that the number of peaks is 
smaller than twice the number of expected cross peaks. 
Exclude areas where severe overlap of resonances can be 
expected, that is, in homonuclear 2D-NOESY spectra usually 
the upfield range between 0.3 and 4 ppm.
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 2. Before starting the calculation be sure that the chemical shift 
table corresponds closely to the conditions used for the record-
ing of the NOESY spectrum. Apply the chemical shift opti-
mization routine AUREMOL-SHIFTOPT (78) that adapts 
the shift table to the actual spectrum.

 3. Set the parameters of the NOESY-back calculation routine 
correctly. Especially give the correct mixing time, repetition 
time, and 1H-frequency. Improved results are obtained when 
the correct motional models and motional parameters like 
external (global) and internal correlation times, order param-
eters etc., are specified. Since usually experimentally derived 
order parameters are not available for side-chain atoms, RELAX 
provides for these average values obtained from the literature.

 4. Select an NMR R-factor most suitable for your actual 
problem.

 5. In case that several different experimental NOESY spectra are 
available, it is advised to calculate an average R-factor (61).

The following notes summarize important points that should be 
considered in the automated structure determination process. 
The sections where a detailed description of these subjects can be 
found are given in parentheses.

 1. Carefully optimize your protein sample and the experimental 
conditions (also see Subheading 2.2).

 2. Do not start acquisition of multidimensional spectra and data 
evaluation before the system is really optimized. Experience 
shows that after a necessary improvement of the sample 
conditions, the results obtained earlier are discarded (also see 
Subheading 2.2).

 3. For automated procedures, >90% of all expected resonances 
should be visible (also see Subheading 2.2).

 4. When automated methods are to be used, perform the set 
of experiments required by the specific software (also see 
Subheading 2.3).

 5. For the processing of the experimental spectra, the use of 
an appropriate filter is important; as a rule of thumb, a filter 
that induces an additional line broadening of approximately 
30% gives a clear improvement of the signal-to-noise ratio 
without significantly deteriorating the resolution (also see 
Subheading 3.3).

 6. Be aware when filtering FIDs in the processing step that the 
filter characteristics of the used filter depend often on the digital 
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resolution (number of data points). This is the case with the 
cosine filter as well as the Lorentzian-to-Gaussian filter (here 
as an artifact resulting from the definitions provided by 
TOPSPIN) (also see Subheading 3.3).

 7. Application of an unshifted sine filter removes the volume 
information (the volume of all cross peaks is zero) (also see 
Subheading 3.3).

 8. Do a careful baseline correction of all spectra before starting 
with the data evaluation (also see Subheading 3.3.1).

 9. Apply the different processing methods that your software 
provides sequentially, e. g., a back prediction of the first data 
points in the time domain, followed by appropriate filtering 
and Fourier transform of the time domain data and a poly-
nomial baseline correction in the frequency domain (also see 
Subheadings 3.3 and 3.3.1).

 10. Be careful that some of the different processing func tions do 
not work properly with oversampled data that have a different 
time domain data structure (also see Subheadings 3.3 
and 3.3.1).

 11. Most carefully prepare your peak list since the quality  
of the peak list is the most important single factor influen-
cing the outcome of any automated procedure (also see 
Subheadings 3.3.2, 3.4, and 3.4.1).

 12. Do not remove significant weak peaks by a too high peak 
picking threshold (in AUREMOL the threshold is set auto-
matically) (also see Subheadings 3.4 and 3.4.1).

 13. Bayesian methods are rather powerful to discriminate between 
true signals and noise and artifacts, but they can only decide 
on the basis of the information available. Important 
information is the number of expected cross peaks that 
depends on the pulse sequence and the sample composition. 
Choose the final probability cutoff such that the number of 
experimental cross-peaks corresponds to the expectation.  
A factor of two is still acceptable by many routines (also see 
Subheadings 3.4 and 3.4.1).

 14. Try to understand the principles of the integration software 
used (also see Subheading 3.4.2).

 15. The iterative segmentation software that facilitates the 
signal integration of AUREMOL requires the definition of a 
maximum integration area. This has to be defined large 
enough, otherwise the integrals will be erroneous (also see 
Subheading 3.4.2).

 16. For an efficient computing such a parameter is also (inherently) 
present in many other routines (read the manual!) (also see 
Subheading 3.4.2).
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 17. For all sequential assignment methods, the obtained result 
strongly depends on the quality of the peak lists (see above), 
since artifact peaks and missing peaks lead to wrong or 
ambiguous connectivities. In most cases, connectivity infor-
mation solely based on Ca’s is not sufficient for obtaining 
unambiguous assignments. Therefore, it is highly recom-
mended to additionally provide information for the Cb ’s as 
well. In case that a nonexhaustive routine like simulated 
annealing is used, it is generally recommended to perform the 
routines several times and to analyze the results for discrepan-
cies between the different runs (also see Subheading 3.5).

 18. The method that has been implemented in AUREMOL for 
side-chain assignment works directly on the NOESY spectra; 
therefore, the preparation of peak lists is not critical (also see 
Subheading 3.6).

 19. Since for the side-chain assignments the backbone assign-
ments are a strong source of information (when available), be 
careful that the chemical shifts given fit optimally to the 
NOESY spectra used. A typical effect that should be corrected 
for is the shift introduced by using TROSY methods (also see 
Subheading 3.6).

 20. For automated NOE assignment, carefully prepare the 
peak list. Be sure that the peak picking threshold is low 
enough to retain the weak long range peaks. Set the proba-
bility cutoff at a value that the number of peaks is smaller 
than twice the number of expected cross peaks (also see 
Subheading 3.7).

 21. Before starting the automated NOE assignment, be sure that 
the chemical shift table corresponds closely to the conditions 
used for the recording of the NOESY-spectrum. Apply the 
chemical shift optimization routine AUREMOL-SHIFTOPT 
(78) that adapts the shift table to the actual spectrum (also 
see Subheading 3.7).

 22. Adapt the other parameters (especially the search distance 
range) to the iteration cycle (see also Subheadings  
3.7.1–3.7.4).

 23. For many of the parameters, default values are recommended 
by the program. For an additional detailed description of the 
various parameters, please refer to the AUREMOL manual 
(see also Subheadings 3.7.1–3.7.4).

 24. Note that upper and lower bounds are added to and subtracted 
from the distance dist that was obtained from the individual 
cross-peak volume. Relatively large upper bounds were selected 
for the first cycles of structure calculations to ensure that 
the influence of erroneous assignments is limited. Upper 
bound definition was taken from Linge et al., 2001 (79). 
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Lower bounds were selected in a way that the minimal distance 
between two protons corresponds to the sum of their van der 
Waals radii (see also Subheadings 3.7.1–3.7.4).

 25. Please note that for the last iteration (iteration 6) the option 
“assign all peaks” has been switched on, which leads to an 
increased number of NOE assignments (should only be done 
in the last iteration), since still ambiguous NOEs are assigned 
to the solution that correspond to the smallest distance in the 
trial structure, since this contribution will explain most of the 
crosspeak volume. It is clear that for truly overlapping signals 
the minor signal component will be neglected, which, in turn, 
will lead to an underestimation of the resulting restraint 
distance of the major component. However, in most cases, 
this deviation is rather small and within the measurement 
error. For the relaxation matrix-based restraint generation 
(see below), the error bounds were now calculated based 
on the local noise levels plus an additional error of 0.05 nm. 
This additional error was obtained by analyzing the 
obtained distance variations due to an assumed uncertainty 
0.15 in the main and side-chain order parameters. The 
obtained structures were further refined in explicit solvent 
following the protocol by Linge et al., 2003 (80) (see also 
Subheadings 3.7.1–3.7.4).

 26. For the simulation of NOESY spectra, make sure that the 
corresponding parameters are set correctly. Especially give 
the correct mixing time, repetition time and 1H-frequency 
(see also Subheading 3.8).

In the last sections, we have seen that automated protein structure 
determination in solution at least for smaller well-behaved 
proteins is a feasible task. As a consequence, computer-automated 
determination of these structures will continue to grow in impor-
tance. However, for difficult test cases such as large biopolymers, 
aid from human experts is still required. Typically, in macromo-
lecular NMR, the information content of the NMR spectra alone 
is often not sufficient for a complete three-dimensional structure 
determination. Signal-to-noise ratios are necessarily limited 
due to the limited solubility of most biopolymers. Furthermore, 
superpositions of resonance lines often lead to interpretational 
ambiguities. Therefore, it is still of importance that any computer 
program used for automated structure determination permits 
intervention at any step in the analysis to allow the inclusion of 
structural and spectroscopic information from other sources and 
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to supervise various aspects of the validation process. Especially 
for the structure improvement by the inclusion of data from 
other sources, we have recently developed the AUREMOL-ISIC 
(81) algorithm that allows the reliable combination of NMR and 
X-ray data.

In addition, the constant development of new experimental 
multidimensional NMR techniques requires that new strategies 
for automated analysis need to be implemented in existing com-
puter programs. Within this chapter, we have summarized some 
of the main points required for automated protein structure 
determination in solution. It is clear, however, that due to space 
limitations not all possible strategies could be discussed.
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Chapter 8

Computational Tools in Protein Crystallography

Deepti Jain and Valerie Lamour 

Abstract

Protein crystallography emerged in the early 1970s and is, to this day, one of the most powerful techniques 
for the analysis of enzyme mechanisms and macromolecular interactions at the atomic level. It is also an 
extremely powerful tool for drug design. This field has evolved together with developments in computer 
science and molecular biology, allowing faster three-dimensional structure determination of complex bio-
logical assemblies. In recent times, structural genomics initiatives have pushed the development of meth-
ods to further speed up this process. The algorithms initially defined in the last decade for structure 
determination are now more and more elaborate, but the computational tools have evolved toward simpler 
and more user-friendly packages and web interfaces. We present here a modest overview of the popular 
software packages that have been developed for solving protein structures, and give a few guidelines and 
examples for structure determination using the two most popular methods, molecular replacement and 
multiple anomalous dispersion.

Key words: X-ray crystallography, Protein structure determination, Crystallography software, 
Molecular replacement, Multi-wavelength anomalous dispersion

The correct three-dimensional (3D) arrangement of constituent 
atoms is central to the proper functioning of a majority of biologi-
cal molecules. This fact is especially true of proteins, and hence, it 
is important to determine the structures of macromolecules and 
their assemblies to understand their function in great detail. X-ray 
crystallography is an experimental science that has benefited tre-
mendously from all the software and hardware developments dur-
ing the past three decades. Structure determination through X-ray 
crystallography is becoming more and more automated through 
the development of user-friendly interfaces and new crystallogra-
phy packages. These developments have made the method more 
accessible to the biochemist with little theoretical background in 

1.  Introduction
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crystallography. Often behind every structure lies months or more 
commonly years of bench work to clone, express, and purify mil-
ligram quantities of protein required to produce diffracting crystals, 
a prerequisite for any structural work using X-ray crystallography. 
Useful information regarding this aspect of the method can be 
found in numerous reviews that summarize decades of research in 
structural biology, spanning simple proteins to high-molecular 
weight biological macromolecular assemblies (1–3). The present 
chapter will focus on the major methods and tools available to 
determine the 3D structure of a macromolecule once diffracting 
crystals have been prepared. It provides a concise reference to a 
beginner in protein crystallography.

Computational tools in the form of program packages are con-
stantly evolving to feed the need for faster and more convenient 
structure determination, especially driven by structural genomics 
initiatives. We provide here a brief overview of the most common 
and most widely used crystallographic packages (see Fig. 1) and 
guidelines for structure determination using the favored phasing 

Data collection

Data processing and scaling HKL2000, Mosflm , XDS, d*trek

Refinement

Integrated
packages :

CNS
CCP4
Phenix

MRBump
AutoRickshaw

HKL3000

Density modification

Model building

Phasing

Model validation
PDB submission

O, Coot

LIGPLOT, CNS, Grasp

MAD, SAD, MIRMR

Structure analysis

Dino, Rasmol, Pymol

Procheck, Sfcheck, WHAT_CHECK, Molprobity

Figures

Strategy, BEST

SnB, SHELX, SOLVE
Amore, Molrep, Phaser, EPMR

SHARP, MLPHARE,
SOLVE

DM, SOLOMON, RESOLVE

ARP/wARP, SOLVE/RESOLVEAutomated

Manual

Heavy atom search

Refinement & Phasing

Fig. 1. General scheme representing the different steps to solve a crystallographic structure. A selection of programs is 
reported next to each step of X-ray structure determination. Program packages or pipelines (dash line box) cover several 
steps of structure determination. HKL3000 also includes data processing in the pipeline.
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methods: molecular replacement (MR) and multi-wavelength 
anomalous dispersion (MAD). The programs involved in structure  
determination were first developed for Unix platforms. These 
programs have been redeveloped to run on Linux, and most of 
them can now run on Windows and Mac OSX platforms. There 
are different program packages available for different stages of 
structure determination: data collection and processing, structure 
solution, crystallographic refinement, structure validation, and 
documentation.

The diffraction data collected from exposure of crystals to X-rays 
provide the amplitudes of structure factors. The phases cannot be 
recorded by diffraction experiment, and hence, it is not possible 
to generate an electron density map, which requires both ampli-
tudes and phases. Any strategy to determine the structure of a 
molecule has to find a solution for this “phase problem.” Once 
protein crystals and X-ray diffraction data are obtained, several 
methods can be used to address the phase problem (4).

The direct methods are mathematical tools which use the 
probability theory and the assumption of approximate equal, 
resolved atoms to estimate phases from the measured intensities 
(5). Direct methods have been used to solve structures of small 
molecules (typically a few hundred atoms). It is also possible to 
solve structures of small proteins (250–1,000 non-H-atoms) 
using these methods; however, it requires the resolution of X-ray 
diffraction data to be better than 1.2 Å.

The experimental phasing of macromolecular structures is 
achieved by the multiple (or single) isomorphous replacement 
(MIR or SIR) method, which involves introducing heavy atoms 
(like platinum, samarium, mercury) into the macromolecular 
crystal. Heavy-atom derivatives are prepared by soaking the native 
crystals in a buffer containing heavy-atom compound or by 
cocrystallization. The requirement for this technique to work is 
that the crystals of the native protein and that of the heavy-atom 
derivative should be isomorphous, i.e., they should have the same 
space group and cell dimensions. The heavy atom substructure is 
then determined by difference Patterson, which is used to calcu-
late the phases. At least, two isomorphous derivatives are neces-
sary to unambiguously determine the phases. When one derivative 
dataset is combined with the native protein dataset, the phasing 
process is referred to as SIR. MIR is sometimes combined with 
anomalous scattering of some of the heavy atoms, and the tech-
nique is then referred to as multiple isomorphous replacement 
with anomalous scattering (MIRAS) or single isomorphous 
replacement with anomalous scattering (SIRAS).

Another experimental phasing method is MAD (6, 7), which 
uses anomalous scattering information from the datasets col-
lected at different wavelengths near the absorption edges of 

1.1.  Phasing Methods
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heavy metals. The protein structure to be determined should 
contain anomalous scatterers like selenomethionine or metallic 
centers. Different datasets on the same crystal are collected at 
wavelengths where both the anomalous and the dispersive signals 
are maximized. Also, this method requires tunable wavelength 
available at synchrotron source. In some cases, a single dataset 
collected at the single wavelength is sufficient for structure solu-
tion by single wavelength anomalous dispersion (SAD) (8, 9). 
SAD is attempted in cases where there is significant radiation 
damage preventing collection of several datasets on the same 
crystal. Some elements such as Fe give significant anomalous sig-
nal around CuKa wavelength; hence, a SAD dataset for a protein 
containing Fe can also be collected on a rotating anode X-ray 
generator. Most of the programs that work for MAD can also be 
used with a SAD dataset.

Radiation damage induced by high-energy X-rays is usually 
perceived as detrimental to the quality of diffraction data and 
structure determination. Techniques are being developed to min-
imize this effect during data collection (10). However, a tech-
nique called radiation-induced phasing (RIP) is emerging which 
takes advantage of site-specific radiation damage and the chemical 
changes they induce in the protein structure (11) for phasing pur-
poses (12).

Molecular replacement (MR) uses the structural information 
from a similar known structure. The calculated phases from the 
available structure can be used as initial estimates for the target 
dataset. This process is facilitated by thousands of crystal structures 
deposited in the Protein Data Bank (www.rcsb.org), a number that 
has seen a significant rise in recent times owing to structural genom-
ics consortiums depositing coordinates of many proteins.

Currently, MR and MAD represent the two most com - 
mon methods to determine the 3D structure of biological 
macromolecules.

X-ray data can be collected on home sources on a rotating anode 
or using the X-ray beam generated by a synchrotron radiation. 
The quality of the data collected on synchrotron beam lines is 
much superior to that collected on a traditional home source due 
to the high flux, better polarization, and tunable X-ray optics of 
the beam resulting in a substantial increase in the signal-over-
noise ratio. However, the flux available from home-source gen-
erators has also improved significantly over the years allowing 
routine crystal structure determination from good diffracting 
crystals. Several generations of synchrotrons have been built in 
the past decades around the world, and information on synchro-
tron X-ray sources can be found in the following link: http://
biosync.rcsb.org. Currently, the entire data processing can usually 
be done at the beam line during or immediately after data collection. 

1.2. Data Collection 
and Processing 
Packages

http://www.rcsb.org
http://biosync.rcsb.org/index.html
http://biosync.rcsb.org/index.html
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There are a number of software packages available for X-ray data 
processing. These programs usually attempt to index a few initial 
frames and provide the correct Bravais lattice and cell constants of 
the crystal. Once the data collection is complete, they can merge, 
reduce, and scale the data to provide a set of unique indices, their 
measured intensities, and corresponding standard deviations. The 
HKL suite is the most popular of them, and it consists of three 
modules: XdisplayF for visualization of the diffraction pattern, 
Denzo for data reduction and integration, and Scalepack for 
merging and scaling of the intensities obtained by Denzo or other 
programs (13). In the current package HKL2000, all these three 
modules have been integrated into a single window. The program 
provides graphs of mosaicity, B factors, completeness, and other 
statistics during data processing to assess the quality of the 
dataset.

MOSFLM (14) (also available in GUI format called iMosflm) 
is also a data processing program that is part of the CCP4 suite 
(15). It is coupled with the scaling program SCALA and can pro-
cess data from a wide range of detectors and writes out the merged 
and scaled data in the CCP4 binary format – with the extension 
.mtz and can be directly read by other modules of the CCP4 suite 
for further analysis and structure determination. Mosflm/iMos-
flm is available free of charge whereas HKL2000 is a commercial 
package.

The program XDS, X-ray detector software (16), is available 
free of charge and contains the following components: XDS for 
processing single datasets, XSCALE for scaling datasets, 
XDSCONV that converts the output file into desirable formats, 
and VIEW for visualizing. d*TREK (available with Rigaku 
detectors) is another software suite for data collection and 
processing (17). It contains three components: dtcollect to set 
up parameters for data collection, dtdisplay to display X-ray 
diffraction images, and dtprocess, an interface for integration 
and processing of images.

The starting point and the total range of data collection 
depend on the orientation of the crystal and its symmetry. Several 
programs can be used to determine the best oscillation range to 
get a complete dataset using information about the crystal param-
eters (Bravais lattice, cell constant) and the geometrical relation-
ships between the crystal and the detector. For this purpose, one 
can use the program Strategy included in HKL and Mosflm after 
collecting and indexing one or a couple of sequential images. The 
program BEST takes into account the diffraction anisotropy and 
evaluates the optimal oscillation width to avoid overlapping reflec-
tions after collecting one or two images with a 90° angle (18, 19). 
Most synchrotron beam lines offer some useful tips and guidelines 
for data collection (example: CHESS synchrotron website: http://
www.macchess.cornell.edu/MacCHESS/collect_strategy.html).

http://www.macchess.cornell.edu/MacCHESS-2006/collect_strategy.html
http://www.macchess.cornell.edu/MacCHESS-2006/collect_strategy.html
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The number of molecules in the asymmetric unit (AU) is usually 
estimated through the calculation of the Matthews coefficient, 
which calculates the solvent content of protein crystals using the 
molecular weight of protein as a parameter. It has been observed 
that the value of the Matthews coefficient usually lies within the 
range 1.6–4.5, and this value can be used to calculate the num-
ber of molecules in the AU (20, 21). Several websites offer an 
online calculation (see Table 1). The Matthews coefficient can 
also be calculated directly in the MR module of CCP4 (cell con-
tent analysis) or CNS (matthews_coef input file).

1.3. Estimation  
of the Cell Contents

Table 1 
List of crystallography programs and related websites cited in this chapter

Program name Link

3dSS http://cluster.physics.iisc.ernet.in/3dss/

ARP/wARP http://www.arp-warp.org

Auto-RIckshaw http://www.embl-hamburg.de/Auto-Rickshaw/

BALBES http://www.ysbl.york.ac.uk/~fei/balbes/

BEST http://www.embl-hamburg.de/BEST/

CASTp http://sts-fw.bioengr.uic.edu/castp/

CATH http://www.cathdb.info/

CCP4i http://www.ccp4.ac.uk

CNS http://cns.csb.yale.edu

Coot http://www.biop.ox.ac.uk/coot/

CRYSTAL http://crystal.uvm.edu/ (Updated link to crystallographic softwares)

d*TREK http://www.rigaku.com/software/dtrek_news.html

DALI http://ekhidna.biocenter.helsinki.fi/dali_server/

Dino http://www.dino3d.orghttp://bioserv.rpbs.jussieu.fr/cgi-bin/PPG

EPMR http://www.epmr.info/

HIC-Up http://xray.bmc.uu.se/hicup/

HKL suite http://www.hkl-xray.com/

HKL2MAP http://schneider.group.ifom-ieo-campus.it/hkl2map/index.html

JCSG validation suite http://www.jcsg.org/scripts/prod/validation/sv_final.cgi

LIGPLOT http://www.biochem.ucl.ac.uk/bsm/ligplot/ligplot.html

(continued)

http://cluster.physics.iisc.ernet.in/3dss/
http://www.arp-warp.org
http://www.embl-hamburg.de/Auto-Rickshaw/
http://www.ysbl.york.ac.uk/~fei/balbes/
http://www.embl-hamburg.de/BEST/
http://sts-fw.bioengr.uic.edu/castp/
http://www.cathdb.info/
http://www.ccp4.ac.uk
http://cns.csb.yale.edu
http://www.ysbl.york.ac.uk/~emsley/coot/
http://crystal.uvm.edu/
http://www.rigaku.com/software/dtrek_news.html
http://ekhidna.biocenter.helsinki.fi/dali_server/
http://www.dino3d.org
http://bioserv.rpbs.jussieu.fr/cgi-bin/PPG
http://www.epmr.info/
http://xray.bmc.uu.se/hicup/
http://www.hkl-xray.com/
http://schneider.group.ifom-ieo-campus.it/hkl2map/index.html
http://www.jcsg.org/scripts/prod/validation/sv_final.cgi
http://www.biochem.ucl.ac.uk/bsm/ligplot/ligplot.html
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Table 1 
(continued)

Program name Link

Matthews constant http://www.ruppweb.org/Mattprob/http://pldserver1.biochem.
queensu.ca/~rlc/pfd/links/calcs/vm_calc.shtml

http://csb.wfu.edu/tools/vmcalc/vm.html

Modeler http://salilab.org/modeller

Molprobity http://molprobity.biochem.duke.edu/

MolScript http://www.avatar.se/molscript/doc/index.html

MOSFLM and iMosflm http://www.mrc-lmb.cam.ac.uk/harry/imosflm/

MrBUMP http://www.ccp4.ac.uk/MrBUMP/

MSMS http://mgltools.scripps.edu/packages/MSMS/

O http://xray.bmc.uu.se/alwyn/A-Z_of_O/A-Z_frameset.html

PDB data deposit AUDIT http://deposit.rcsb.org/

PHENIX http://www.phenix-online.org

POVRAY http://www.povray.org/

PredictProtein http://www.predictprotein.org/

PRODRG http://davapc1.bioch.dundee.ac.uk/prodrg/

PyMOL http://www.pymol.org/http://www.pymolwiki.org/index.php/
Main_Page

RAPIDO http://webapps.embl-hamburg.de/rapido/

RASMOL http://www.bernstein-plus-sons.com/software/rasmol/

REFMAC http://www.ccp4.ac.uk/dist/html/refmac5.html

RIBBONS http://www.cbse.uab.edu/carson/papers/index.html#Ribbons

SHARP/autoSHARP http://www.globalphasing.com/sharp/

SHELX http://shelx.uni-ac.gwdg.de/SHELX/

SnB http://www.hwi.buffalo.edu/SnB/

SOLVE http://solve.lanl.gov/

Strategy http://www.crystal.chem.uu.nl/distr/strategy.html

Superpose http://wishart.biology.ualberta.ca/SuperPose/

WHATIF http://swift.cmbi.kun.nl/whatif/

XDS http://xds.mpimf-heidelberg.mpg.de/html_doc/downloading.html

http://www.ruppweb.org/Mattprob/
http://pldserver1.biochem.queensu.ca/~rlc/pfd/links/calcs/vm_calc.shtml
http://pldserver1.biochem.queensu.ca/~rlc/pfd/links/calcs/vm_calc.shtml
http://csb.wfu.edu/tools/vmcalc/vm.html
http://salilab.org/modeller
http://molprobity.biochem.duke.edu/
http://www.avatar.se/molscript/doc/index.html
http://www.mrc-lmb.cam.ac.uk/harry/imosflm/
http://www.ccp4.ac.uk/MrBUMP/
http://www.scripps.edu/sanner/html/msms_home.html
http://xray.bmc.uu.se/alwyn/A-Z_of_O/A-Z_frameset.html
http://deposit.rcsb.org/
http://www.phenix-online.org
http://www.povray.org/
http://www.predictprotein.org/
http://davapc1.bioch.dundee.ac.uk/prodrg/
http://www.pymol.org/
http://www.pymolwiki.org/index.php/Main_Page
http://www.pymolwiki.org/index.php/Main_Page
http://webapps.embl-hamburg.de/rapido/
http://www.bernstein-plus-sons.com/software/rasmol/
http://www.ccp4.ac.uk/dist/html/refmac5.html
http://www.cbse.uab.edu/carson/papers/index.html#Ribbons
http://www.globalphasing.com/sharp/
http://shelx.uni-ac.gwdg.de/SHELX/
http://www.hwi.buffalo.edu/SnB/
http://solve.lanl.gov/
http://www.crystal.chem.uu.nl/distr/strategy.html
http://wishart.biology.ualberta.ca/SuperPose/
http://swift.cmbi.kun.nl/whatif/
http://xds.mpimf-heidelberg.mpg.de/html_doc/downloading.html
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The correct choice of the search model is the main criterion to 
ensure success in solving a structure using MR. The structural 
homology of the search model with the target protein (i.e., the 
root mean square deviation between the expected structure and 
the known structure) and the primary sequence homology are two 
of the main parameters considered for defining the right search 
model. Generally, the initial choice is based on sequence homol-
ogy, and the closer the target primary sequence is to the search 
model (i.e., >25%), the higher the chance of finding a MR solu-
tion. When the protein sequence is divergent from the model and 
it is known that the fold of the model and target protein is similar, 
then the coordinate file can be transformed into a polyalanine chain 
to reduce the errors introduced by side chains. Most MR modules 
in crystallographic program packages offer this option. The poly-
alanine backbone can also be generated using programs such as 
Moleman which can manipulate coordinate files (G.J. Kleywegt – 
Uppsala Software Factory: http://xray.bmc.uu.se/usf/moleman_
man.html). To reduce the model bias, it is also advisable to set the 
temperature factors (B factor) to the average value determined 
from the Wilson plot (22) from the experimental data. Water mol-
ecules and other small ligands should be removed from the search 
model.

If the structural homology of candidate search models is not 
obvious, secondary structure prediction programs can be used to 
predict the structure of the target protein to make a more informed 
decision regarding the choice of the model. The PHD secondary 
structure prediction program (23) uses evolutionary information 
from multiple sequence alignments and is now available through 
the PredictProtein website (24).

In addition, modeling the target structure using structures of 
homologous proteins can be done to generate a search model. 
One of the most popular program for this purpose is Modeler (25). 
Large conformational changes in a structure might be an obstacle 
for solving the structure by MR. Flexible and/or disordered loops 
and small regions that could adopt a different conformation in the 
target structure can be removed from the initial model before run-
ning a MR program. One must keep in mind that it will decrease 
the completeness of the search model and might be detrimental to 
MR, but every effort must be made to bring the structure of the 
search model as close as possible to that of the target protein.

Most crystallographic packages offer one or several MR pro-
grams. Traditional programs are based on the Patterson func-
tion. An MR search is typically divided into the rotation and the 

2. Molecular 
Replacement

2.1. Choice  
and Preparation  
of the Search Model

2.2. Choice  
of the Molecular 
Replacement Program

http://xray.bmc.uu.se/usf/moleman_man.html
http://xray.bmc.uu.se/usf/moleman_man.html
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translation functions, which are correlation functions between 
observed and calculated model Pattersons. The self-rotation 
function can be used to determine the orientation and nature of 
noncrystallographic symmetry elements without the need of a 
search model (26).

The CCP4 package includes a MR module with four different 
programs: Phaser, BEAST, MOLREP, and AMoRe. BEAST (27) 
and the improved version of Phaser (28) use a maximum-likelihood 
objective function. AMoRe (29) carries out translation and rota-
tion search using the fast rotation function as well as a rigid body. 
In case of a protein–protein or protein–DNA complex, traditional 
MR programs such as AMoRe only allow searching for one mol-
ecule at a time. Once the first one is found, the second molecule 
of a complex can be searched. MOLREP (30) is an all-automated 
program that takes into account the level of completeness and 
identity of the search model. When looking for an oligomer, for 
example, a dimer, either the monomer or the entire dimer can be 
tried as a search model. Phaser allows the user to search for several 
different molecules or protein domains in the AU at the same 
time. The REPLACE suite of programs written by Liang Tong 
also provides tools for MR: a rotation program GLRF and a trans-
lation program TF (31). Unlike the traditional MR programs, 
EPMR is a program that does not separate the translation and 
 rotation steps but uses an evolutionary search algorithm simultane-
ously optimizing the orientation and position of a search model 
(32). It is also referred to as a 6D MR. This program can be suc-
cessful for rather incomplete search models but requires more 
 computing time.

MR “pipelines” now provide an all-automated tool for faster 
and user-friendly procedures integrating all steps, including the 
choice of the search model. One such package, PHENIX, can 
run Phaser using the AutoMR module and provides tools for 
automated model building (RESOLVE). MrBUMP includes a 
FASTA search using the target primary sequence to look for a 
homologous structure (33). It is available through the CCP4i 
interface and can run MR with Phaser or MOLREP. BALBES 
also requires little to no user intervention during the entire MR 
procedure (34) and can also be run through a CCP4i window.  
A web interface has been developed for CaspR also starting from 
a primary sequence and generating a homology model for the 
MR search (35).

One has to remember that more than using a particular pro-
gram, a key step for MR is the choice of the search model, along 
with careful selection of the resolution range for the search as the 
quality of the data will greatly influence the outcome. The correct 
estimation of the number of molecules in the AU is helpful, since 
that allows the MR programs to know how many molecules of 
the search model to look for in the AU.
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The MR solutions output from the search can be evaluated 
with the help of three parameters: the R-factor, the correlation 
coefficient (CC), and the resulting packing in the target unit cell. 
The possible solutions in the form of transformation matrices or 
transformed coordinates and their corresponding R-factor and 
correlation coefficients are listed in the MR output files. The pres-
ence of a solution with significantly higher correlation coefficient 
than the rest is an indication that the MR search has succeeded.  
A few issues of Acta Crystallographica have been dedicated to MR 
and give a more detailed review about all aspects of this method 
(36, 37). A special chapter in Methods in Molecular Biology Series 
also describes different strategies and programs for MR (38).

Modeler or other current modeling programs can be used 
after running MR to substitute the correct primary sequence in 
the MR model. Automated building programs such as ARP/
wARP (see Subheading 5) can be used for model building. When 
only a few residues are different between the search model and 
the query, amino acid substitution can be done directly in most 
model-building programs (see Subheading 5). After a MR solu-
tion is obtained, electron-density maps can be calculated, and the 
structure has to go through several rounds of model building and 
refinement to reduce the bias introduced by the starting model. 
The procedures for crystallographic structure refinement are basi-
cally the same for different phasing methods and are detailed in 
Subheading 5 of this chapter. We provide in Table 2 an example 
of structure determined by MR with the list of programs used at 
each step.

The MAD method exploits the observation that when the heavy 
atoms absorb X-rays, there is a violation of Friedels law and the 
Bijovet pairs (h,k,l) and (-h-k-l) will have different intensities. 
The difference in intensities is referred to as anomalous difference 
(41). For most atoms, anomalous dispersion is negligible, only 
select elements (Se, Hg, Au, Pt, Zn, W, Os, Br, lanthanides, etc.) 
have their X-ray absorption edges in the energy range that are 
accessible by synchrotron radiation. In addition, the presence of 
natural metal centers containing iron, copper, and zinc can be 
exploited to conduct a MAD experiment. Nucleic acids with bro-
mouracil residues can be used for determining their structures 
and that of their complexes with proteins. Bound phosphate ions 
have been replaced by tungstate (42, 43), which can provide good 
anomalous signal. More recently covalent modification of nucleic 
acids has been done by solid-phase synthesis using selenium for 
crystallographic phasing (44). In proteins, sulfur atoms show 

3. Multi-
wavelength 
Anomalous 
Dispersion
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Table 2 
Steps leading to structure determination of Tth Gyrase ATPase domain/novobiocin 
complex by molecular replacement

Programs and  
packages used

Steps for solving 
the structure Result

HKL2000 Data processing 
and scaling

Data collected on a synchrotron beamline (ID14, ESRF)
P21 space group with a = 44.9 Å, b = 125.5 Å, c = 79.8 Å, 

and g = 96.4°
Data scaled between 15 and 2.3 Å, Rsym = 6.4%
Solvent content (Matthews coefficient) 51.5%  

indicating two molecules/AU

AMoRe CCP4
Moleman

Molecular 
replacement

Translation and 
rotation search

Scalepack output file transformed into CCP4 format  
for molecular replacement (MR) using AMoRe

Search Model: one monomer from the structure  
of Escherichia coli 43 kDa ATPase domain  
(PDB ID 1EI1); PDB transformed into a  
polyalanine chain with Moleman due to low primary 
sequence homology with the target protein; water 
molecules, and ligand removed for the search (search 
using the whole dimer failed)

Result: Two peaks corresponding to the two molecules 
in the asymmetric unit; correlation factor 21.1

DM CCP4 Density 
modification

DM density modification with non-crystallographic 
symmetry (NCS) averaging  
(self-rotation function gave position of dimer twofold 
axis)

CNS Reflection file 
formatting for 
refinement

Mtz reflection file transformed into CNS format (CCP4)
7.5% reflections put aside for free R  

calculation for refinement in CNS

O Model building Major conformational change between the two domains 
of each monomer had to be adjusted manually and  
the active site ATP lid had to be rebuilt

CNS minimization 
and simulated 
annealing

Refinement, R 
and Rfree values 
monitoring

Iterative steps of model building and CNS refinement
Map calculation after each major building step and 

refinement (2Fobs − Fcalc, Fobs − Fcalc)
B factors included after most of the model was  

corrected
Novobiocin ligand fit last and included in  

refinement
Addition of water molecules and final round  

of minimization

CNS Ramachandran 
Plot and PDB 
submission 
formatting

Model validation
PDB submission

Manual adjustment of residues in disallowed regions  
for final PDB submission followed by a few cycles  
of minimization

Final R = 20%; Rfree = 26%

An example of molecular replacement: Tth Gyrase 43 kDa ATPase domain in complex with the antibiotic novobiocin 
(PDB ID 1KIJ)
Source: Lamour et al. (39, 40)
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weak anomalous signal, and more and more structures are being 
determined using this property (45). Some other choices of heavy 
atoms for structure solution have been described in Boggon and 
Shapiro (46).

However, the most preferred method for MAD is the use of 
Selenomethionine-substituted protein. SeMet protein is pre-
pared by standard protocols involving suppression of methion-
ine biosynthesis (47) or through the use of an Escherichia coli 
strain that is auxotrophic for methionine. Most often, the crys-
tals of the derivatized protein grow from conditions nearly simi-
lar to the native crystals. In case there are problems getting 
crystals of the SeMet-substituted protein, microseeding using 
seeds from native crystals can be attempted. Amino acid or mass 
spectrometry analysis can be done to confirm the presence as 
well as to determine the percentage of incorporation of SeMet in 
the protein.

MAD relies on good-quality X-ray diffraction data collected at 
three different wavelengths preferably from a single crystal. 
Initially, a fluorescence scan of the SeMet crystal is done to verify 
the presence and location of the absorption edge for the crystal. 
The fluorescence scan can be analyzed with a program called 
Chooch (48) to give the recommended wavelengths and esti-
mates of f ′ and f ″. Usually the peak wavelength is the maximum 
in the fluorescent scan. High energy remote is usually 150–
250 eV higher than the peak. The inflection value is halfway 
down the f ′ absorption edge, usually about 3 eV less than the 
peak. It is advisable to collect the peak data first so that the data-
set can be used to attempt SAD in case excessive radiation dam-
age does not permit data collection at other wavelengths.  
A good MAD dataset should be highly redundant and complete 
to accurately determine the anomalous differences. It is advis-
able to collect a low-resolution (~3 Å), high-redundant dataset 
initially to solve the structure as compared to higher resolution 
dataset that is not redundant. Data are usually collected in 
wedges of 10–30° at two values of phi, which are 180° away 
from each other (inverse beam method). This minimizes the 
effect of radiation damage on the intensities of (h,k,l) and (-h,-
k,-l) by collecting them close in time. Since this method takes 
twice as long to collect the data, for higher symmetry space 
groups, data collection by the inverse beam method can be avoided. 
While the data are being collected and processed, scale factors 
and B factors should be monitored in the log file. These values 
should change very gradually during entire data collection 
reflecting how much the crystal is affected by radiation. Data for 
each of the three wavelengths should be integrated and scaled 
separately. Any of the packages mentioned above can be used for 
data reduction and scaling.

3.1. MAD Data 
Collection
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As stated earlier, the major problem encountered in determining 
structures using crystallography is the phase problem. Locating 
the positions of the heavy atoms, i.e., determining the substruc-
ture of heavy atoms (MIR) or anomalous scatterers (MAD) is 
central to the success of the experimental methods. Currently, 
the crystallographic programs available for this purpose are 
based either on the direct methods or on the Patterson-based 
methods.

Crystallographic programs that use direct methods to locate 
heavy atom sites are Shake and Bake (SnB) (49) and SHELX  
(5, 50). These programs have been routinely used to solve struc-
tures with a large number of heavy-atom sites. SnB performs 
reciprocal space refinement of the heavy-atom sites combined 
with real space refinement using constraints in an alternate fash-
ion. SnB finds the sites and outputs a figure of merit, which allows 
the user to judge the presence of probable solution. SnB is also 
part of the protein structure determination package BnP (The 
Buffalo and Pittsburgh Interface). This package combines SnB 
with the PHASES suite which can read intensity data and output 
protein electron density map (51).

The SHELXD module of SHELX is also widely used for 
locating the heavy-atom sites. The main difference between SnB 
and SHELXD is the use of Patterson function in SHELXD to 
provide better starting phases and figure of merit, whereas SnB 
locates the sites starting from a set of random coordinates. The 
SHELXE module of SHELX reads in the heavy-atom sites and 
can estimate the phases and weights and performs crude form of 
density modification (52). The SHELXC module of SHELX pre-
pares the files necessary for running SHELXD and SHELXE for 
determination of heavy-atom structure factors and phase calcula-
tion. It also suggests the resolution cutoff that should be used to 
truncate the data for heavy atom search. These modules can be 
used independently and also through a graphical user interface 
(HKL2MAP) (53).

The other program which is used for locating the heavy-atom 
sites is SOLVE (54). It is an automated crystallographic structure 
solution program that can carry out all the steps of macromolecular 
structure determination from scaling the data to locating the heavy 
atom sites and determining the phases. It is a Patterson-based 
method; however, it interprets Patterson function automatically 
and combines it with repeated analysis of isomorphous and differ-
ence Fourier techniques.

Besides these, there are two major software packages used 
in crystallography: the crystallography and NMR system (CNS) 
(55) and CCP4, which can also locate heavy-atom sites (more 
information about these packages in the refinement section). 
CCP4 includes programs that employ both direct methods and 
Patterson-based methods for determination of heavy-atom 

3.2. Heavy Atom 
Search and Phase 
Calculation
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positions, RANTAN (56), and ACORN (57). CNS employs a 
combination of Patterson searches and difference Fourier to 
locate the heavy-atom sites or anomalous scatterers. It can also 
perform heavy-atom refinement, phase determination, density 
modification, and map calculations.

Once the sites have been located, their positions can be 
used to phase the MAD dataset using programs that refine the 
positions and occupancies of the heavy-atom sites. These 
include MLPHARE, CNS, SHARP, and SOLVE. These pro-
grams use maximum-likelihood approaches for refinement of 
sites and phase calculation. MLPHARE (58), which is part of 
the CCP4 suite, and CNS require the user to assign one of the 
datasets as a reference (usually the peak), and all the other data-
sets are treated as the derivatives. Statistical heavy-atom refine-
ment and phasing (SHARP) program (59), refines coordinates, 
occupancies, and temperature factors for the heavy-atom sites 
together with scaling parameters and the nonisomorphism 
parameters for each dataset. SHARP operates on reduced, 
merged, and scaled data. The newer version of SHARP called 
autoSHARP includes a fully automated structure solution system 
from merged data to automatic model building. It also provides 
the interface to ARP/wARP for model building. The current 
version of SHARP/autoSHARP requires that the CCP4 suite 
be installed on the computer since SHARP uses a subset of its 
programs. An example of structure determination using MAD 
method is described in Table 3 along with the programs used at 
each steps.

The initial phase estimates obtained from experimental techniques 
are improved through density modification. One of the meth-
ods for density modification is through solvent flattening. If the 
phases are good, it is possible to make a mask around the mol-
ecule, and the rest of the density outside the mask is set to a low 
constant value. The new structure factors are then calculated 
and combined with the starting phases to yield improved phases. 
This process is done iteratively and results in improved electron-
density map. The other methods of density modification are 
through solvent flipping, noncrystallographic symmetry averag-
ing (NCS), histogram matching, skeletonization, Sayre’s equa-
tion, and multiresolution modification (which combines solvent 
flattening and histogram matching over different resolution 
ranges) (61).

4. Density 
Modification
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Table 3 
Steps leading to structure determination of cII/DNA complex by MAD

Programs and 
packages used

Steps for solving the 
structure by MAD Result

HKL2000  
Scalepack

Data processing and 
scaling

Data collected at three different wavelengths. 
Peak (0.97903 Å), inflection ( 0.97922 Å), and 
remote (0.96384 Å) for SeMEt crystals and at 
0.984 Å for native crystals at National 
Synchrotron Light Source beamline X9A 
(Brookhaven National Laboratory). P21 space 
group with a = 44.77 Å, b = 97.13 Å, c = 59.87 Å, 
and b = 105.36°

Data scaled between 50 and 1.7 Å for native 
crystals and between 20 and 2.25 Å for SeMet 
crystals at three wavelengths

SnB Locating the heavy 
atom sites

Using anomalous signal from data collected at 
peak, 10 of the possible 12 selenium sites were 
located using SnB

MLPHARE Phase calculation Heavy atom sites were refined and phases were 
calculated using peak wavelength data as 
reference. Figure of merit = 0.35. Anomalous 
signal from the three wavelengths resulted in 
the map at 2.3 Å

DM (CCP4) Density modification Density modification was done using both hands 
of the Se sites to identify the correct hand. 
Phases were extended up to 1.7 Å

Arp/Warp Automatic model 
building

Built the protein backbone into the map

CNS Reflection file 
formatting for 
refinement

Mtz reflection file transformed into CNS  
format

5% random reflections put aside for free R 
calculation for refinement in CNS

O Model building Side chains were built manually, DNA was also 
added using O

CNS Refinement, R and 
Rfree values 
monitoring

Maps were improved through iterative cycles of 
refinement against native amplitudes

CNS Ramachandran 
Plot and PDB 
submission 
formatting

Model validation-
PDB submission

Manual adjustment of residues in disallowed 
regions for final PDB submission followed  
by a few cycles of minimization

Final R = 20.9%; Rfree = 22.8%

An example of structure solution by multi-wavelength anomalous dispersion (MAD): Crystal structure of bacterio-
phage lambda cII and its DNA complex (PDB ID 1ZS4)
Source: Jain et al. (60)
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SOLOMON (62) and DM (63), which are part of the CCP4 
suite, are popular programs used for density modification. 
SOLOMON performs solvent flattening/flipping, whereas DM 
performs solvent flattening, NCS averaging, histogram matching, 
and phase extension to improve the electron-density maps. DM 
also applies real-space constraints to the experimental map to 
improve the phases. SQUASH (64) is another density modifica-
tion program that incorporates Sayre’s equation, solvent flatten-
ing, and histogram matching simultaneously to improve the maps. 
More recently, a statistical approach to density modification has 
been implemented in the program called RESOLVE (65). Density 
modification protocols generally include a provision to extend the 
phases to native data resolution and thus provide experimental 
electron-density maps of high quality.

With high-resolution data and good phases, one can also use 
automated model building procedures such as SOLVE/
RESOLVE or ARP/wARP (66, 67). Initially, ARP/wARP could 
only be used for model building of structure where the data were 
available to high resolution. However, subsequent improvements 
in the algorithm have allowed it to be used in cases where the 
resolution extends up to 2.8 Å. The program can build the model 
starting from either experimental phases or from existing model. 
The protocol warpNtrace puts free atoms in positive peaks in the 
electron-density map iteratively refining the structure and recal-
culating the maps phased from the structure. If one gets enough 
atoms in correct places, the program converts these into poly-
peptide chain backbone. If the sequence is available, it docks it 
into the built backbone. It is now possible to identify ligands, 
cofactors, and solvent molecules in the difference electron-density 
maps in ARP/wARP after the protein structure is completed 
(68). The program is installed as a part of the CCP4 package 
(which implements the GUI) since it uses utilities from 
REFMAC.

RESOLVE can carry out automated model building by frag-
ment identification where it can recognize the presence of frag-
ments of structures like helices and strands. It then uses a tripeptide 
fragment library to extend these fragments in either direction. 
It then adds side chains and aligns the built model with the sequence 
provided by the user (69). The software PHENIX contains an 
Autobuild wizard that uses RESOLVE for automated model 
building (70). It also refines the built model and performs density 

5. Interpretation  
of the Map and 
Model Building
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modification. Manual building might be required to adjust the 
parts of the structure that were not built accurately by the auto-
mated procedure

If the native dataset is medium/low resolution, then the 
entire chain tracing exercise has to be done manually. The sec-
ondary structure elements are built first. Coordinates of a typical 
a-helix or a beta sheet can be downloaded from known structures 
and can be dragged and fitted into the map. For a protein, i.e., 
the primary structure, the positions of the selenium atoms (and 
therefore the methionines) are used to manually position the 
amino acids in the map. Also, large residues such as Trp, Tyr, Phe, 
and Arg have their characteristic density and that along with the 
known positions of the methionines help in placing the correct 
amino acids in the map. Building the polypeptide chain in the 
correct direction can be difficult and the fact that side chains of an 
a-helix invariably point toward its N-terminus is a useful tip 
to remember. Information about the basics of electron-density 
fitting can be found on the Protein Crystallography Course  
website http://www-structmed.cimr.cam.ac.uk/Course/Fitting/
fittingtalk.html.

O (71), crystallographic object-oriented toolkit (Coot) (72), 
and Xtalview (73) are the three most popular programs for build-
ing the model into the electron-density maps. O allows the user 
to build the structure in accordance with the known geometries. 
Alwyn’s home page provides introduction, manual, and the tuto-
rial for the program (link in Table 1). It can build models into the 
electron density maps from scratch and also provides to the user 
the ability to define macros. Coot is a recent model building tool 
and is part of the CCP4 suite. Both of these programs display 
maps and models and can also perform real-space refinement, 
manual rotation, and translation of the model, rigid body fitting, 
rotamer search, mutations, and display Ramachandran plots. They 
can also perform superimposition and can be used for model vali-
dation as well. Xfit (part of Xtalview) can also be used for fitting 
models into electron-density maps. The program has a built-in fft 
routine to calculate omit maps.

Small molecules and ligand coordinates to be included in the 
model can be retrieved from existing structures in the ligand 
database of the PDB (http://ligand-depot.rutgers.edu/). New 
compounds can be drawn using molecule editor programs such as 
ChemDraw (74, 75). Once coordinates are generated for a ligand, 
refinement programs (see next subheading) will require files 
describing its stereochemical constraints and energetic parame-
ters. These files can be generated through HIC-Up (76) or the 
PRODRG server (77). The crystallographic package PHENIX 
also contains a module called eLBOW for optimization of known 
or novel ligand parameters.

http://www-structmed.cimr.cam.ac.uk/Course/Fitting/fittingtalk.html
http://www-structmed.cimr.cam.ac.uk/Course/Fitting/fittingtalk.html
http://ligand-depot.rutgers.edu/
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During refinement, the parameters of the model are optimized to 
fit the observations using a refinement function. The classic 
parameters that are optimized during refinement are the positions 
of atoms, their occupancies, and their temperature factors. There 
are computational strategies to achieve this, but they might not 
be enough, and hence, refinement is usually performed simulta-
neously with model building. Iterative rounds of model building 
followed by refinement should ultimately yield a statistically vali-
dated model.

Several functions have been developed for crystal structure 
refinement. The function that was originally introduced for refine-
ment of macromolecules is the least-square method, a simple sta-
tistical function (78). Most programs such as REFMAC (CCP4 
suite) still use this method together with other minimization 
functions. In case of CNS, the primary idea behind structure 
refinement is that the correct model of the protein must be that 
of the lowest energy. Hence, energy minimization routines are 
used to reduce the mean difference between observed and calcu-
lated structure factors. The maximum-likelihood refinement is 
now one of the most common refinement methods. It is imple-
mented with different variants in CNS, REFMAC (79), and 
BUSTER/TNT (80, 81). The simulated annealing refinement 
(82) is a search method generating a random set of models 
through molecular dynamic simulation to find models outside of 
local energy minima. This refinement is available in CNS (83) and 
requires a large amount of computational time. More informa-
tion about models and parameters used for refinement can be 
found in the literature (84).

All the refinement steps and file formatting can be done using 
the data conversion utilities of different programs provided by 
crystallographic packages (CNS, CCP4, and PHENIX). The CNS 
website provides online command files that can be modified and 
saved. PHENIX (85), Python-based Hierarchical EnviroNment 
for Integrated Xtallography, has been designed to provide an all-
automated structure solving procedure for either MR (running 
Phaser) or heavy atom search (SOLVE) with automated building 
(RESOLVE).

Two statistical values must be followed during refinement, the R 
and the Rfree value. Briefly, the R value refers to the traditional 
crystallographic R-factor, which reflects the mean difference 
between the structure factors Fcalc calculated from the PDB coor-
dinates of the model and the measured structure factors Fobs (see 
formula below).

6. Structure 
Refinement

6.1. A Few Guidelines 
for Refinement
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As the model gets closer to the correct structure, the R value 
will drop as the Fcalc values get close to the Fobs.

(1)

The Rfree value can help monitor the progress of refinement 
and to check that the R value is not arbitrarily lowered by increas-
ing the number of model parameters. The Rfree factor was intro-
duced by Axel Brünger (86) and is calculated during refinement 
as above but with a small set of reflections that are not used in 
the refinement of the structural model. Rfree correlates with phase 
accuracy of the atomic model. Before refinement, part of the 
dataset (between 5 and 10%) is set aside as the “test set,” and the 
refinement is only done with the remaining reflections. As the 
refinement converges, the R and Rfree factors both approach sta-
ble values.

Practically, in case an experimental electron-density map is 
available, one builds as much of the model as is possible and then 
starts the refinement. In case the structure has been determined 
by MR, the search model is used to initiate refinement. Initially, a 
rigid-body refinement can be carried out where individual domains 
or different molecules in the AU are defined as separate groups. 
The NCS elements when present can be included especially at the 
early stages of the refinement as it can greatly improve the elec-
tron-density map. CNS and REFMAC calculate the position of 
NCS elements and include them in the refinement process. This 
should be removed later on since symmetry-related molecules, 
even theoretically identical, can display conformational differ-
ences in flexible secondary structure elements that have to be 
built separately. After rigid-body refinement, the individual posi-
tions of the atoms are optimized using either the least-square 
method (REFMAC) or through energy minimization (CNS). It has 
been seen that the use of simulated annealing protocols (CNS) is 
especially useful in the refinement of manually built models.

At every round, the refined structure is used to calculate a 
new electron-density map using various difference Fourier syn-
theses 2 m|Fobs − D|Fcalc|( i.e., 2Fobs − Fcalc with m  = 2 and D = 1).  
If the map shows some improvement compared with the original 
map, whether it is the initial map calculated after MR or the den-
sity map from MAD data, the model can be rebuilt in appropriate 
regions. Difference map (Fobs − Fcalc) or Omit maps can be used to 
build missing or wrongly built parts of the structure. For most 
crystallographic packages, electron-density map calculation can 
be included right after every refinement step.

The B factors or “temperature factors” for each atom may be 
introduced toward the end of the refinement when most of the 
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peptide chain is correctly fitted in the density. Water molecules 
and any other small molecule or ions that might be bound in 
protein cavities, or at catalytic sites, can then be included in the 
refinement. Together with monitoring of R and Rfree values, 
improvement of the electron-density map is a good indicator that 
the refinement is proceeding in the right direction. Refinement is 
generally carried out until the R and Rfree values converge, and 
can be followed by translation, libration, and screw (TLS) refine-
ment (REFMAC/PHENIX) to get a better estimate of the mean 
square displacements of domains within a macromolecule. The 
TLS takes into account the anisotropy of the B factors usually 
modeled as isotropic (87).

Several levels of quality control should be performed to assess the 
completion and quality of the model. The diffraction resolution 
limit and the resulting quality of the electron-density map have 
to be considered before addition of water molecules, ions, and 
small molecules in the model. At 2.0 Å, one can add to the model 
one water molecule per amino acid (88). Catalytic or structural 
ions can be located in a difference map, thanks to strong residual 
peaks that would only disappear after refinement if the correct 
ions are positioned in the model. The protein chemical environ-
ment, i.e., the coordination geometry of water molecules around 
the suspected atom, can help identify its chemical nature. One 
has to keep in mind that below 3.5 Å, the identification of ions or 
presence of water molecules is highly hypothetical and should be 
carefully checked.

Model validation on the protein polypeptide chain can be per-
formed with several programs that provide a statistical evaluation 
of the geometrical parameters of the structure. The most popular 
validation is the calculation of the Ramachandran plot or 
Ramachandran diagram displaying the values of the psi and phi 
angles of the peptide bond as well as deviations from standard 
bond lengths and bond angles for amino acids of a structure (89).

PROCHECK (90) and Sfcheck (91) are structure validation 
programs that are available through the CCP4 package as well as 
the JCSG websites. PROCHECK produces PostScript plots ana-
lyzing the stereochemical quality of a protein structure. CNS has 
a PDB submission program that calculates the Ramachandran 
plot and extracts information from the coordinate file and from 
the PDB header (refinement and data processing statistics) to for-
mat the files for PDB deposition. Formatting and validation tools 
are also available directly on the Protein Data Bank website. 

7. Model  
Validation  
and PDB 
Submission
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WHAT_CHECK part of WHAT_IF program provides a number 
of tools for structure validation and coordinate deposition (92). 
More and more packages and model building programs now 
include model validation together in a single interface allowing 
immediate visualization and correction of stereochemical errors. 
The Molprobity program belongs to the new generation of “all-
in-one” interface and allows the user to correct geometrical errors 
in a user-friendly interface (93).

X-ray crystallography is a powerful technique as it allows research-
ers to visualize molecules close to atomic level. Areas of interactions 
between protein–protein, protein–ligand, or protein–nucleic acid 
complexes can be systematically analyzed to extract any informa-
tion that can be cross-correlated with relevant biological data. We 
are providing here links to only a few of the most popular programs 
as many software packages, databases, and web servers with new 
options are constantly developed for this purpose.

Detailed amino-acid side chain interactions within a protein 
or contacts with a DNA molecule or a small ligand can be listed 
using LIGPLOT, a program for automatically plotting macromo-
lecular interactions (94). This program generates a list of interac-
tions and distances between interacting atoms as well as a schematic 
representation of the interaction network. Program CONTACT 
from CCP4 (and contact.inp in CNS) gives a list of residues in 
contact and the distance between the corresponding atoms. It can 
be used to list protein/protein interactions including oligomer 
interfaces, protein–nucleic acid interaction, and protein–ligand 
interactions.

GRASP (Grasp2 for windows) is a program that can calculate 
and visualize the surface and electrostatic potential of macromol-
ecule (95, 96). Structural pockets and cavities can be identified 
using the CASTp server and visualized with PyMOL (see next 
subheading). Similarities with other known structures can be 
found using the DALI server (97). The refined PDB or any indi-
vidual domain of the protein can be submitted through the DALI 
web interface to compare with other protein 3D structures. It can 
reveal similarities with other proteins with none or little primary 
sequence homology and provide an output of the regions of the 
proteins that superimpose with a good scoring (Z factor).

Superposition of the refined model with other 3D structures 
in the databases can reveal interesting similarities or conforma-
tional differences that may be correlated with functional data. 
Superimpositions can be done directly in some manual building 

8. Structure 
Analysis  
and Figures

8.1.  Structure Analysis
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programs such as O (lsq_exp). Equivalent and rigid regions of the 
two molecules that match have to be carefully selected to get a 
correct superposition with good RMS deviation. One can search 
for similar structures using the SCOP structural classification 
database (98) or the CATH Protein structure classification (99) 
in order to analyze whole structures or individual domains for 
structural similarities with other families or superfamilies.

Many web servers have been developed for superposition. 
SuperPose from CCP4 (100) generates sequence and structure 
alignments with RMSD statistics through a web interface (101). 
3dSS is also a web-based interactive computing server and is cou-
pled to the visualization program RASMOL (102). The algorithm 
RAPIDO (103) for 3D alignment of protein structures is acces-
sible through the Hamburg EMBL synchrotron website. Providing 
the PDB files, this program outputs in a single web interface the 
primary sequence alignment of the two proteins with the super-
posed regions highlighted, the listing of superposed residues  
in the PDB files, and displays the superposition through a Jmol 
window (104).

Several programs are available to generate figures of structures, 
and more and more user-friendly programs are being developed 
for this purpose. RASMOL is an interactive program for visualiza-
tion of 3D structures that was developed in the 1990s (105). 
In the same decade appeared RIBBONS that creates images of 
solid-shaded ribbon models of macromolecules (106). It used to 
run on Silicon Graphics workstations, and newer versions can 
now run under Windows. It can check the quality of the models 
through Ramachandran plots and generate publication quality 
images. The program MolScript, running under Unix, can also 
produce different types of protein representations (107) and out-
puts images in many image formats such as jpeg, tiff, postscript.

Dino can display 3D structures and several types of surfaces 
(molecular surfaces, electron microscopy surfaces, topography 
surfaces). Surface parameters for a crystallographic structure have 
to be calculated using MSMS (108) to be read in Dino and pro-
duce a png, tiff, or postcript image. Dino can be coupled with 
persistance of vision raytracer (POVRAY), a powerful raytracing 
package for a high-quality image rendering. Stereoviews and ani-
mations can also be generated. A simple web interface based on 
Dino has been developed where the coordinate files can be directly 
input for generating a simple image with different chosen param-
eters (colors, different types of secondary structures, and atoms’ 
representation). However, more sophisticated images have to be 
generated using command scripts with Dino running under 
X-Windows and using OpenGL. Versions for Linux and OSX are 
also available. Examples based on the crystal structure described 
in Table 2 are shown in Fig. 2.

8.2.  Figure Preparation
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PyMOL is a very popular molecular visualization program 
that runs on a variety of platforms (Windows, Mac, and Linux/
Unix) and is open source. It has a user-friendly interface with 
interactive menus. The user can operate the program in point and 
click mode (for rotating or zooming the molecule) or in com-
mand line mode for making more sophisticated images. The pro-
gram can be used for viewing and analyzing 3D structures. 
High-resolution images showing interaction details, surfaces, and 
movies can be generated for presentations and publication. 
PyMOLwiki (link in Table 1) contains many scripts that extend 
the features of the program. Figure 3 displays an image generated 
using PyMOL of the structure presented in Table 3.

At present, there are numerous programs available for every step 
of crystal structure determination and representation of 3D struc-
tures, and they are constantly evolving, making it a difficult task 
to keep up to date with all the developments in this field. A com-
prehensive list of available programs can be found on the 
CRYSTAL website (109). The latest trend in computational tools 
in protein crystallography is the development of all-integrated 
pipelines. The principle of the new pipelines goes beyond the 

9.  Conclusion

Fig. 2. Structure of Tth Gyrase 43 kDa ATPase domain in complex with the antibiotic novobiocin (39, 40). (a) Surface 
representation of the Gyr 43 kDa dimer in light gray with the novobiocin molecules positioned in the active site in black. 
The molecular surface was calculated using MSMS; this image has been written out of Dino directly in the .png format. 
(b) View of one of the two ATPase active sites with the protein helices and beta strands in the ribbon representation. The 
ATP lid closing the active site is displayed as a darker worm. The final 2F

obs − Fcalc electron-density map contoured at 2.6s 
after refinement appears as a light gray mesh around the novobiocin molecule. Figure prepared with Dino.
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simple software package by guiding the user toward the right 
chain of programs. PHENIX, SOLVE/RESOLVE, MrBUMP, 
and BALBES are examples of all-in-one packages, providing tools 
from diffraction data analysis and phasing to structure validation. 
3D structure determination platforms are now implemented on 
synchrotron beam lines such as the EMBL-Hamburg platform, 
Auto-Rickshaw (110). A new version of HKL, HKL3000, has 
been developed that includes all the steps from data collection 
processing and structure determination in a single interface with 
the traditional graphical features of HKL (111). These platforms 
can help solve structures right after data collection to help with 
decision-making for a better use of allocated beam time. Structural 
genomic initiatives with the support of synchrotron facilities and 
software developments have thus considerably accelerated the 
speed at which structures can be determined.
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Fig. 3. Crystal structure of cII transcription factor from bacteriophage lambda in complex with DNA. The cII tetramer (each 
monomer being 11 kDa) is displayed bound to 27 bp double-stranded oligonucleotide (TACCTCGTTGCGTTTGTTTGCACGAAT) 
with TT overhang. The double-stranded DNA is represented in sticks. The 3¢- and 5¢-end of the template (T) and nontemplate 
(NT) have been denoted. The alpha carbon backbone of cII tetramer is represented in ribbon with monomer A and C in 
black and monomer B and D in gray. Figure prepared with PyMOL.
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Chapter 9

3-D Structures of Macromolecules Using Single-Particle 
Analysis in EMAN

Steven J. Ludtke 

Abstract

Single-particle reconstruction is a methodology whereby transmission electron microscopy (TEM) is 
used to record images of individual monodisperse molecules or macromolecular assemblies, then sets of 
images of individual particles are computationally combined to produce a 3-D volumetric reconstruction. 
Ideally the TEM specimen will be prepared in vitreous ice (electron cryomicroscopy), but negative stain 
preparations may be used for lower resolution work. This technique has been demonstrated to produce 
structures at resolutions as high as ~4 Å, though this is not yet typical. The reconstruction process is quite 
computationally intensive, and several software packages are available for this task. EMAN is one of the 
easier to master software suites for single-particle analysis. This protocol explains how to perform an 
initial low-resolution reconstruction using EMAN.

Key words:  Cryo-EM, Transmission electron microscopy, Single-particle analysis, Image processing, 
Structural biology

Single-particle reconstruction is a structural biology technique 
for producing 3-D reconstructions of identical nano-scale objects 
without requiring crystallization (1). Typical targets are large 
proteins or macromolecular assemblies. Unlike X-ray crystallog-
raphy, in general, the larger the object, the easier it is to solve, so 
long as the individual particles are identical at the targeted resolu-
tion. Typically ~200 kDa is viewed as a lower size limit for this 
technique, but exceptions to this rule are possible if sufficient 
contrast can be obtained. Typical nonviral targets are in the 
500 kDa to 3 MDa range. Several examples of structures being 
reconstructed to ~4 Å resolution using this technique have been 
published (2–5), and subnanometer resolution can be achieved in 

1.  Introduction
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many cases, but in negative stain, or on low-end microscopes, 
resolutions may be limited to 15–30 Å.

A discussion of the image collection protocol is beyond the 
scope of this article (1, 6), but a few constraints are important to 
mention. The various available reconstruction packages have 
slightly different requirements. In general, for reconstructions 
performed using the EMAN software package, images should be 
collected over a range of defocuses typically ~1–3 mm. Unlike 
some software packages which encourage collecting particles into 
“defocus groups” of the same value, in EMAN it is advantageous 
to spread defocus values over a range. In general, the close-to-
focus limit should be as close to focus as possible while still pro-
ducing particles which can be visibly located in the resulting 
images, and defocus should be biased somewhat toward the close-
to-focus end of the spectrum. Images containing significant astig-
matism or drift (taking the resolution target into account) should 
be discarded.

While techniques do exist for studying particles with struc-
tural heterogeneity such as flexibility or varying ligation states in 
EMAN (7, 8) and elsewhere (9), that topic also is beyond the 
scope of this discussion. We assume that the particles being 
imaged exist in a homogeneous conformation in solution.

EMAN1 (10) is largely designed for UNIX-like operating 
systems such as Linux or Mac OS-X. While a few of the GUI 
programs can be used under Windows, full reconstructions are 
possible only under Linux/OS-X. In EMAN2 (11), full Windows 
support is available, but at the time of this writing, it is not yet a 
complete replacement for EMAN1. EMAN1 and EMAN2 each 
contain many programs, and may be used in a wide range of dif-
ferent protocols. The protocol described here is designed to 
complete an initial low-resolution reconstruction using single-
particle reconstruction, and serves as an introduction to EMAN1 
(see Note 1). After completing this protocol, the more detailed 
documentation provided with EMAN can be used to obtain 
higher resolutions. For a full description of how single-particle 
reconstruction works in EMAN and in other packages, the reader 
is referred to (10, 12–15).

 1. Images may be collected on CCD or on film and scanned. 
The final Å/pixel value must be known.

 2. Particles should be sufficiently visible that they can be visually 
located in the images (see Notes 2–4).

2.  Materials

2.1. Images  
of the Target 
Molecule/Assembly
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 3. Particles should be sufficiently monodisperse that a majority 
are not overlapping with other particles.

 4. Magnification should be selected such that the final image 
data is ~3× oversampled. That is, if a resolution of 9 Å is being 
targeted, the images should be ~3 Å/pix (see Note 16).

 1. For initial pre-processing, it is important to have a computer 
with a relatively large, high-resolution display (1,600 × 1,200 
or better), with sufficient RAM (minimum 1 Gb).

 2. Computational requirements are determined by the size, res-
olution, and symmetry of the particle. A low-resolution study 
of a small, moderately symmetric molecule may be completed 
on a desktop PC overnight, whereas a high-resolution struc-
ture of a large virus particle could take a million or more 
CPU-hours, requiring months on a large Linux cluster.

 1. EMAN must be installed on your computer(s). The software 
can be downloaded and installed from http://ncmi.bcm.edu. 
EMAN2 may optionally be installed as well.

 2. Different versions of EMAN are provided for individual 
workstations and Linux clusters as well as different platforms. 
Regardless of whether you have access to a cluster for running 
the large scale refinements, you will also need an appropriate 
desktop PC for the initial stages of the process.

Single-particle reconstruction can be broken down into a sequence 
of major steps: image assessment, particle picking, 2-D analysis, 
initial model generation, and final refinement. To move beyond 
~20 Å resolution, the contrast transfer function (CTF) must also 
be corrected, but that is beyond the scope of this protocol.

To begin this protocol, an empty directory should be created, 
and all of the raw micrographs or CCD frames should be copied 
into it. All images should be at the same magnification from the 
same instrument under similar conditions.

 1. Rather than a single integrated GUI (graphical user inter-
face), EMAN consists of a range of command-line programs, 
and several independent GUIs for specific purposes. The 
major GUI programs include : eman, boxer, ctfit, v2, and v4 
(see Note 5).

 2. All of the EMAN GUI programs share some common fea-
tures. When an image display window or a plot is open, clicking 

2.2. Adequate 
Computational 
Resources

2.3.  EMAN Installation

3. Methods

3.1.  Overview of EMAN

http://ncmi.bcm.edu
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the middle mouse button on the window will cause a control 
panel window to open, offering adjustments such as bright-
ness and contrast, permitting snapshots to be saved, etc. The 
right mouse button is generally used to move the image within 
the display. Mac users are encouraged to obtain a three but-
ton mouse, though use of modifier keys with the single mouse 
button can often substitute for the other buttons.

 3. There are many command-line programs in the package. As a 
general convention, typing the name of a command followed 
by “help” will produce documentation for that program.

 4. The generic programs iminfo, proc2d, and proc3d are useful 
utilities for generic image processing and format conversion 
(see Note 15). EMAN can read and write virtually all TEM 
file formats.

 5. While we attempt to fully describe the single-particle recon-
struction process here, if a more comprehensive discussion is 
desired, running eman, and clicking on the step1–4 buttons 
will produce a fairly detailed, though somewhat out of date, 
tutorial extending to full, high-resolution reconstructions. 
(see Note 6 workflow).

 1. Before beginning to select particles, it is worthwhile to first 
make a preliminary assessment of the images, and eliminate 
those which are clearly of low quality. Typically a project 
would start with a minimum of 30–50 potentially usable 
images. While low-resolution reconstructions are much more 
tolerant of astigmatism and drift than high resolution work, it 
is still best to keep only the best images to avoid possible 
artifacts.

 2. While a trained microscopist can often detect high levels of 
drift or astigmatism in the images by eye, a better assessment 
method is to examine the Fourier transform of each image. 
This can be done by running eman, and selecting “Browse 
Files/History.” The resulting file browser can be used to dis-
play each of your raw images.

 3. When displaying a large image like a CCD frame “Big View 
Required” will appear in the image display in the browser. To 
see the image, press the “Detach” button, which will open 
the image in a large window.

 4. The first step in assessment is to observe the contrast level of 
the particles in the image. A middle-click on the image will 
permit adjustment of the brightness and contrast of the image 
to optimize visibility of the particles. Particles should be fairly 
clear and largely be well separated from each other, though 
some local aggregation is inevitable in most specimens 
(Fig. 1). In addition, the images should not be so far from 

3.2. Image 
Assessment
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focus that internal detail in the particles, or the shape of the 
particles is obscured. Images with either poor contrast or 
those too far from focus should be discarded.

 5. Next, the “FFT” box in the control panel can be checked. 
This will display the power spectrum of the image. A detailed 
discussion of the interpretation of such power spectra is beyond 
this manuscript, but certain asymmetries in the power spec-
trum can indicate astigmatism or drift and indicate images, 
which should be discarded. Though not used here the program 
ctfit can also be useful in this process.

 1. The image assessment process will typically eliminate any-
where from one to three quarters of the raw micrographs. The 
next step is to locate particles within each image.

 2. In the initial steps only a few of the best micrographs are 
used, with the goal of initially picking 1,000–2,000 high con-
trast particles. At this stage it may not be entirely clear what is 
and is not a particle in the images, and anything which may 
be a particle should be selected. This will be resolved in 
Subheading 3.4, after which Subheading 3.3 is revisited for 
improved particle picking.

 3. Prior to selecting particles, the raw images should be normal-
ized. That is, the mean and standard deviation of the images 
should be adjusted, and optionally the contrast may be 
inverted. For each image : “proc2d <imagefile> <imagefile> 
edgenorm inplace [invert] ”. If the images are in .DM3 format 
(see Note 15), the second filename should be replaced with 
the “.mrc” extension, and the “image.mrc” file should be 
used in the next step. The invert option should be specified if 

3.3.  Particle Picking

Fig. 1. GroEL in vitreous ice. Both of these images exhibit good contrast, but the left image is properly monodisperse, 
whereas the image on the right exhibits much too high a concentration and would not be processed.
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your particles appear dark on a white background. If the 
particles appear white on a dark background, they do not 
require inversion. For images that are too oversampled, the 
shrink=<n> option may be used to reduce the sampling by an 
integral factor of <n>, and increase Å/pix by the same 
factor.

 4. Executing “boxer <imagefile>” will cause three windows to 
open (see Note 7). One window is the control panel with 
various input fields and a menu, the second contains the 
micrograph, and the third will initially be empty. This pro-
gram must be run once for each micrograph to be boxed.

 5. In general the box size should be about 1.5× larger than your 
particles. “Measure” in the control panel, can be used to esti-
mate the size of your particle in pixels by left-dragging in the 
image window. The longest axis of a representative particle 
should be measured, then multiplied by 1.5, and finally 
rounded down to a “good” size. “Good” box sizes are those 
with prime factors less than 11 and divisible by 8. “Good” 
sizes include the following: 40, 48, 64, 80, 96, 112, 128, 
144, 160, 192, 256. Once determined, the size should be 
entered in the boxer control panel, and the same size used 
thereafter for each micrograph.

 6. Particles must now be selected from the image. The image 
can be panned by right-dragging on the image, or using the 
panning widget in the control panel. The zoom factor can be 
adjusted in the boxer control panel. Particles may be selected 
either manually or semiautomatically at this point. For man-
ual picking, “Select” should be toggled in the control panel, 
then individual particles must be manually clicked on in the 
micrograph view. Each particle will appear in the third win-
dow as it is selected. Left-dragging can be used to properly 
center each particle. Bad particles can be deleted using the 
“Delete” mode in the boxer control panel.

 7. For semi-automatic selection, which should be followed by 
manual pruning, 3–5 particles should be selected manually, 
then “Autobox” from the “Boxes” menu in the control panel 
can be used. This will cause a window with four sliders to 
appear, and some additional particles to be automatically 
selected. At this point the magnification of the image should 
be reduced so the entire micrograph is visible in the image 
display. The automatically picked particles are confined to a 
region adjacent to the first selected reference. As the sliders 
are adjusted, it will update the automatically picked particles 
in this region. The first slider is used to decide how closely the 
potential particles must match the references. The second 
and third sliders are used to exclude potential particles whose 
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contrast is too high or too low. Once the sliders have been 
adjusted for the preview region, “OK” will trigger autoselec-
tion of the entire micrograph.

 8. This process should continue until a total of ~1,000 particles 
have been selected from the set of best micrographs. After 
each micrograph is complete “Save Boxed Particles” and 
“Save Box DB” must be selected from the “Boxes” menu. 
The default filenames are appropriate for both files. Boxer can 
then be exited and restarted for the next micrograph.

 1. To proceed with 2-D analysis the boxed-out particles from 
the individual images must be combined into a single-particle 
stack file. This is best done in a subdirectory to avoid having 
too many output files in one place. Type “mkdir r2d; cd r2d”. 
The most efficient method for producing a usable stack file is 
to type “lstcat.py all.lst ../*.hed” where “../*.hed” will refer-
ence all of the boxed-out particle files you saved in the previ-
ous step. This should be followed by “lstfast.py all.lst”. These 
operations produce a text file “all.lst” which EMAN will treat 
as an image file containing all of the particles you have 
selected.

 2. Filtering and/or further downsampling the particle data is 
recommended for this preliminary analysis. This may produce 
improved results in addition to speeding the process. The fol-
lowing command will perform a low-pass filter and down-
sample by a factor of 2: “proc2d all.lst start.hed apix=<A/pix> 
lp=20 shrink=2 edgenorm”.

 3. Next, the program refine2d.py must be applied to the particle 
stack. Execute “refine2d.py all.lst –iter=8 --ninitcls=50”. For 
those with multi-core workstations, “--proc=<ncores>” may be 
appended to the command for more speed.

 4. A number of files will be produced by this command. The file 
containing the final results is called “iter.final.img” (see 
Note 15).

 5. Display iter.final.img either with the eman browser or by 
running “v2 iter.final.img” (Fig. 2). Class-averages should 
represent a variety of different views of the particle under 
study (see Notes 8 and 9). Class-averages representing con-
tamination, or other undesirable images may also appear.

 6. Now that a better idea of what is present in the images has 
been obtained, the next step is to return to 3.3 and complete 
the particle selection process for all of the micrographs (see 
Note 10). If there are a significant number of “bad” class-
averages, it is best to also reselect the particles from the micro-
graphs already completed, being more conservative in the 
selection process. If reboxing is performed, be sure to remove 

3.4.  2-D Analysis
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existing .hed and .img files before beginning. For the 
low-resolution reconstruction outlined here, 2,000–3,000 
particles in total should be more than sufficient (perhaps as 
many as 5,000 for asymmetric objects).

 1. There are several methods for producing an initial model 
which will refine to an accurate structure. There is also con-
siderable controversy in the community over how good an 
initial model needs to be. In EMAN, we believe even abstract 
shapes or random patterns will have a strong propensity to 
refine to the correct structure. However for each particle, 
there will be a small number of “local minima,” incorrect 
structures which the refinement process may “stick” at if 
obtained. Rather than resort to difficult experimental meth-
ods such as random conical tilt, we take the approach of 
simply refining several random starting models, and assessing 
the final results of each refinement. Generally one or more of 
the refinements will lead to the correct solution (see Notes 
11 and 17).

 2. makeinitialmodel.py can be used to produce a manually speci-
fied or randomly generated initial model. Simply executing the 

3.5. Initial Model 
Determination

Fig. 2. Class-averages produced from a set of 838 GroEL particles. The number in the corner of each class-average 
indicates how many particles the average was constructed from. Note that most of the very poor images or images with 
contamination came from a small number of particles. Also note that GroEL exhibits a fairly strongly preferred orientation, 
showing many of the characteristic rectangular side views and many of the sevenfold symmetric top views, but very few 
orientations in between. While this is not optimal, the wide range of different side views is sufficient to obtain an unam-
biguous 3-D reconstruction.
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program will prompt for the necessary information. The starting 
model must use the same box size as the particle data, and in 
general should be approximately the same size as the particle. 
From the class-averages in Subheading 3.4, it may be fairly 
obvious what shape the particle has, and one reasonable start-
ing model would be something vaguely similar to this shape. 
A random model is also quite acceptable (see Note 12).

 3. If a structure has or may have symmetry, “proc3d model.mrc 
model.mrc sym=<sym spec>” will impose it. “<sym spec>” may 
be one of c<n>, d <n>, icos, tet or oct, for example, “sym=d7” 
could be used for GroEL at low resolution. (see Note 13).

 4. The resulting starting model will be written to model.mrc. 
The model can be visualized in projection using “v4 model.
mrc” or in isosurface display using UCSF Chimera (http://
www.cgl.ucsf.edu/chimera/) or in EMAN2 using “e2display.
py model.mrc”.

 5. It is best to run refinements in a subdirectory as with 2-D 
refinement: “mkdir initial1; cd initial1”. The starting model 
must be called threed.0a.mrc, but again, we would like to 
reduce the size for speed at this point so: “proc3d ../model.
mrc threed.0a.mrc meanshrink=2”.

 6. The particles must also be copied into this directory and 
reduced: “lstcat.py all.lst ../*.hed” followed by “proc2d all.lst 
start.hed shrink=2 apix=<A/pix> lp=20 edgenorm”.

 7. Now a refinement can be run: “refine 8 mask=<boxsize/4> 
hard=35 ang=7.5 pad=<see below> classkeep=1 classiter=5 
xfiles=<A/pix x2>,<mass in kDa>,99 phasecls [sym=<sym spec>] 
[proc=<maxproc>]”. “pad=” should be set to the original box 
size*3/4 rounded to the nearest “good” size. “mask=” 
should be the original box size/4. If there is no symmetry, 
“ang=” may be increased to 9 for speed. For very high sym-
metries such as icosahedral ang= may be reduced to 5. This 
process may take some time to run depending on the sym-
metry, box size, and speed of your processor.

 8. When the refinement is complete there will be a large number 
of different files in the directory. The primary files of interest 
are “threed.?a.mrc” and “classes.?.img”.

 9. As a first step in assessing the refinement results, “v4 threed.?a.
mrc” will open one window for each iteration of the recon-
struction process, which can be rotated together. The last 
window will represent threed.8a.mrc, and contains the final 
results of the refinement run. Ideally, there will be little dif-
ference between threed.7a.mrc and threed.8a.mrc. If there 
are still significant changes from one iteration to the next you 
may consider running additional iterations of refinement. 
Running the same “refine” command, but replacing “8” with 

http://www.cgl.ucsf.edu/chimera/
http://www.cgl.ucsf.edu/chimera/
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“12” will continue the refinement process through 12 
iterations (for example).

 10. The next step is to assess the self-consistency of the recon-
struction using the eman browser or v2 to look at classes.8.img 
(Fig. 3). This file contains pairs of projections of the 3-D 
model and class-averages generated from the particles. Ideally 
each adjacent pair of images should be identical, although the 
second image will inevitably be noisier, as less averaging has 
been performed. Some orientations may have few particles, 
meaning these averages will be quite noisy and may not look 
much like the corresponding projection. This is harmless, as 
such averages are excluded from the reconstruction. However, 
if there are several projections with strong averages which 
match the projection poorly, this is an indication of an incor-
rect model.

 11. Regardless of whether an apparently good starting model 
was produced, this process, starting at step 2 should be 
repeated multiple times (using a new directory, initial# for 
each try). After several tries, the results should be assessed. 
Ideally, more than one of the refinements will have produced 
basically the same, clearly accurate, structure. If no clearly 
correct result has been obtained, the process may be contin-
ued additional times. If a self-consistent result still cannot 
be obtained, there is a possibility that the data contains 
structural heterogeneity, and cannot form a single self-con-
sistent structure. In this situation other methods may be 
considered (7–9). Alternatively, contacting the EMAN 
developers may be worthwhile.

 1. Once a reliable initial model has been obtained, a full recon-
struction can be completed. This is virtually identical to the 
refinement process in Subheading 3.5, except the fully sam-
pled data is used, and thus the refinements will be more time 
consuming.

 2. A suitable empty subdirectory should, once again, be created 
“mkdir refine1; cd refine1”, and the particle data prepared: 
“lstcat.py start.lst ../*.hed; lstfast.py start.lst”. Once again, the 
data should be low-pass filtered to roughly the first zero of 
the CTF, which we will assume is at ~20 Å: “proc2d start.lst 
start.hed apix=<A/pix> lp=20”.

 3. Next, copy threed.8a.mrc from whichever directory con-
tained the best model to be the starting model for this refine-
ment, also returning it to the original box size: “proc3d ../
initial3/threed.8a.mrc threed.0a.mrc scale=2.0 clip=<boxsize>,
<boxsize>,<boxsize>”, replacing initial3 with the correct directory. 
<boxsize> is the original, unreduced box size in pixels.

3.6.  Refinement
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Fig. 3. Comparison of projections and class-averages for a correct top and an incorrect bottom reconstruction. Note 
that in the top set, there is excellent agreement between each horizontal pair of images. In the bottom set, while 
many of the pairs match well, many also do not. Due to the iterative refinement strategy, some of the projections and 
averages will always agree, but for a structure to be correct, all of the high contrast averages should agree with their 
projections.
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 4. Finally, we are ready to run the refinement: “refine  
8 mask=<boxsize/2> hard=25 ang=<ang> pad=<as above x2> 
classkeep=1 classiter=3 xfiles=<A/pix>,<mass in kDa>,99 phasecls 
[sym=<sym spec>] [proc=<maxproc>]”. This is very much like 
the refinement above, except our box size is now twice as 
large. “ang=” may also be reduced somewhat to produce finer 
angular sampling and thus more projections. Since CTF cor-
rection still is not being performed, “ang=5” is probably suf-
ficient. “classiter=” has also been reduced from 5 to 3, which 
provides less protection from model bias (16), but will pro-
duce higher resolution reconstructions. There are many other 
documented options which may be added for potentially 
improved results, such as “amask=”, “usefilt”, and “fscls”.

 5. Once the refinement is complete (this will take as much as 
~10–20× longer than the earlier refinement), in addition to 
examining the output files as above, the resolution of the 
model should be evaluated. This process is only marginally 
useful without CTF correction, but should still be completed. 
The standard resolution assessment method in single-particle 
analysis is to split the particle data into even and odd halves, 
and do a 3-D reconstruction for each half, then compare them 
with a Fourier shell correlation (FSC) function. To produce 
the two reconstructions: “eotest mask=<boxsize/2> hard=25 
pad=<as above x2> classkeep=1 classiter=3 xfiles=<A/pix>,<mass 
in kDa>,99 phasecls [sym=<sym spec>] [proc=<maxproc>]”. The 
options are a subset of the options used for refine, though this 
command will take only a short time to complete.

 6. To perform the FSC comparison, execute the eman browser 
and select “Convergence” from the “Analysis” menu. This 
will run some computations, then prompt for an Å/pixel 
value. After providing this, a plot will appear. This plot will 
contain one dark line and a number of thinner, lighter lines. 
The dark line represents the FSC resolution test.

 7. Ideally, this FSC curve will begin (low resolution) at 1.0, at 
some resolution it will begin falling toward zero, and it will 
oscillate randomly around zero until the end of the curve 
(high resolution). In some cases, the curve will fall, but will 
not reach zero, and may even move higher again. This can be 
caused by either insufficient sampling (ang=too large), aggres-
sive masking (primarily if the amask=option is used aggressively 
in refinement or if the box size is too small) or other arti-
facts. If the curve falls to zero, then the resolution can be 
estimated as the point at which the FSC falls below 0.5 (see 
Note 14).

 8. The other thinner curves in this plot are not an indication of 
resolution, but rather of convergence. These curves compare 
each iteration with the previous iteration in the refinement 
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process. As the refinement progresses, these lines should 
gradually move to higher resolution (right) and higher FSC 
scores (up). When convergence has been reached, from one 
iteration to the next, the curves will remain basically the same. 
If convergence has not been reached, additional refinement 
iterations (step 4) should be executed by increasing the 
parameter 8 immediately after the “refine” command.

 9. The final reconstruction is the highest numbered threed.?a.
mrc file.

Note that we have sidestepped the process of CTF correction 
which is required to achieve a high resolution reconstruction. 
In addition, this structure will lack CTF amplitude correction, 
meaning there will be some subtle localized distortions even at 
low resolution. However, this protocol should have at least 
produced a low-resolution structure with the correct overall shape, 
and make a suitable starting point for future CTF corrected recon-
structions. The more complicated protocols for CTF corrected 
reconstruction, running on clusters and handling large numbers 
of particles are discussed in the built-in tutorial in eman, 
the workflow interface in EMAN2 and in earlier publications 
(10, 17, 18).

 1. As of this writing, EMAN is undergoing a major transition 
from EMAN1 to EMAN2 (11). While EMAN2 will eventu-
ally obsolete EMAN1, and it contains a workflow interface 
which dramatically simplifies the reconstruction process, it is 
currently still in development. The overall reconstruction 
strategy described here for EMAN1 will largely still apply in 
EMAN2. Notes have been added where significant differ-
ences exist, or where EMAN2 may be more suitable. It is 
completely safe to install EMAN2 within the same user 
account as EMAN1. All EMAN2 programs begin with the 
prefix “e2” to avoid naming conflicts between EMAN1 and 
EMAN2.

 2. It can be difficult to optimize experimental conditions to pro-
duce the necessary monodisperse particles with good contrast. 
Many routinely used buffer components have a substantial 
negative impact on image contrast in cryo-EM experiments. 
The most important of these is glycerol. The presence of 
even a small percentage of glycerol can dramatically reduce 
imaging contrast, and should be eliminated, if at all possible. 
Detergent, added to stabilize membrane proteins, can also 

4.  Notes
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cause substantial difficulties, and while clearly it cannot be 
eliminated, reducing its concentration as much as possible 
without making your particles unstable is an important 
step. Detergent at concentrations above CMC will produce 
micelles, which may be visible in the images, and can be 
confused with the target particles in some situations. The key 
to remember is that anything present in the specimen will 
appear in the electron micrographs regardless of whether it is 
biochemically inert.

 3. One common approach for difficult specimens is to use a con-
tinuous carbon substrate, but it is important to be aware that 
this carbon will add to the noise level of the images, and fre-
quently leads to a preferred particle orientation, which in some 
cases can make a reliable 3-D reconstruction impossible.

 4. If you are experiencing problems with preferred particle ori-
entations in the absence of a continuous carbon substrate, 
one possible solution is to add a very low concentration (well 
below CMC) of detergent, which may help prevent hydro-
phobic patches on the particles from sticking to the surface of 
the buffer.

 5. In EMAN2, the main GUI programs are e2desktop.py, e2work-
flow.py, e2boxer.py, e2ctf.py, and e2display.py.

 6. In the future, the program e2workflow.py in EMAN2 will take 
you step by step through the reconstruction process includ-
ing CTF correction, but as of this writing it is not yet com-
plete, and cannot yet be run on linux clusters.

 7. The EMAN2 program e2boxer.py can perform interactive 
semiautomatic particle picking on several micrographs at 
once, and is a good an alternative to boxer. A number of excel-
lent non-EMAN particle pickers also exist (19). The proc2d 
command can be used for file format conversion even if a 
non-EMAN particle picker is used.

 8. Reference free class-averages should be closely examined for 
signs of significant dynamics in the particle. If several class-
averages seem to be in the same orientation, but one domain 
is undergoing substantial motion, this may be a sign of a 
structurally heterogeneous particle. If the motion is relatively 
small and localized, 3-D reconstruction may still be possible 
using the method presented here. For larger motions or other 
forms of heterogeneity, see (7–9).

 9. Preferred orientation can be a significant problem. If the 
class-averages seem to largely represent a single view of the 
specimen, it may be impossible to achieve an accurate 3-D 
reconstruction. While it is not necessary to have all possible 
orientations, the minimum requirement for a complete 3-D 
reconstruction is to have particles covering at least one 
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tomographic series of orientations, i.e., a series of particle 
orientations covering a 180° rotation of the object from any 
one arbitrary orientation.

 10. The “boxes” menu in boxer also has an “autobox from refer-
ences” option. Better particle picking may be achieved by 
preparing a set of references from the refine2d.py results, and 
using these to rebox the micrographs. After an initial 3-D 
refinement, projections of the model can also be used in this 
process with makeboxref.py. Note 7 should also be consid-
ered, however.

 11. It is theoretically impossible to determine absolute handed-
ness from untilted single-particle data, since the recorded 
images represent near ideal projections of the object. To deter-
mine absolute handedness experimentally, some other protocol, 
such as tomography or random conical tilt, must be followed. 
At sufficiently high resolutions, however, it may be possible 
to determine handedness by comparison of fragments to 
X-ray crystal structures or homology models. At even higher 
resolutions (~4 Å), the pitch of the alpha-helices may become 
visible, also solving the handedness problem.

 12. For particles with greater than threefold rotational symmetry, 
the program startcsym can be used to generate initial models 
from raw particle data. Prior to use, the particles should first 
be centered with cenalignint. In some cases the “fixrot=90” 
option will need to be specified to get an accurate model. 
Also note that for Dn symmetries, the symmetry must still be 
specified as Cn.

 13. Generally the class-averages produced by refine2d.py will give 
some idea of what symmetry is present, but in general, when 
dealing with objects of unknown symmetry, the best approach 
is to try refining with the suspected symmetry, assess the 
results, then relax the symmetry for a few refinement itera-
tions to see how the model changes. The process can then be 
repeated for another symmetry choice and compared.

 14. The threshold value to use for resolution assessment has been 
hotly debated over the years. Other values that have been 
used include 0.33 (20), 0.143 (21), and use of a sigma curve 
(22). It is generally agreed among reviewers, however, that 
FSC curves should be included in the supplementary data 
when publishing. This serves the dual purpose of allowing the 
reviewer to assess the shape of the FSC curve in addition to 
applying a threshold of their choice.

 15. Note that in many cases EMAN1 will use the IMAGIC file 
format by default. IMAGIC files separate images into two 
parts, a “.hed” file containing image header information, and 
a “.img” file containing the actual image data. These two files 
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exist as a pair, and one file must never be renamed, moved, or 
deleted without also removing its companion. When issuing 
EMAN commands, either of these files may be specified. 
EMAN also supports most other TEM formats such as MRC, 
SPIDER, TIFF, DM3, PIF, etc. The Gatan .DM3 format is 
supported, but is read-only.

 16. Image sampling can be quite important. Generally speaking, 
interpretable images can only be obtained up to resolutions 
~3× the pixel size. That is, a 3 Å/pixel image can at best pro-
duce a 9 Å resolution reconstruction. However, sampling too 
finely can also lead to a number of problems. In addition to 
the obvious issue of computational inefficiency, certain algo-
rithms make assumptions about the sampling level. While 
some additional oversampling, perhaps as much as 5×, should 
be fine, beyond this point reconstructions may actually 
become worse, not better.

 17. EMAN2 has a program called e2initialmodel.py, which can 
automate the entire task of initial model determination from 
class-averages, but using it will require some familiarity with 
EMAN2.
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Chapter 10

Computational Design of Chimeric Protein Libraries  
for Directed Evolution

Jonathan J. Silberg, Peter Q. Nguyen, and Taylor Stevenson 

Abstract

The best approach for creating libraries of functional proteins with large numbers of nondisruptive amino 
acid substitutions is protein recombination, in which structurally related polypeptides are swapped among 
homologous proteins. Unfortunately, as more distantly related proteins are recombined, the fraction of 
variants having a disrupted structure increases. One way to enrich the fraction of folded and potentially 
interesting chimeras in these libraries is to use computational algorithms to anticipate which structural 
elements can be swapped without disturbing the integrity of a protein’s structure. Herein, we describe 
how the algorithm Schema uses the sequences and structures of the parent proteins recombined to 
predict the structural disruption of chimeras, and we outline how dynamic programming can be used to 
find libraries with a range of amino acid substitution levels that are enriched in variants with low Schema 
disruption.

Key words: Chimera, Directed evolution, Dynamic programming, Optimization, Protein design, 
Recombination

Proteins are widely used for synthetic biology applications, 
but they often do not exhibit the functional properties desired 
for engineered biological systems. However, protein variants are 
thought to exist in protein sequence space that meet the specifi-
cations of almost any artificially engineered biological system 
imaginable. Evidence for this comes from studies using knowl-
edge-based protein design, which have identified proteins with 
structures and functions distinct from those observed in nature 
(1, 2). Unfortunately, our understanding of protein sequence-
structure–function relationships is not yet sophisticated enough 
to consistently alter protein functions rationally, especially when 
the design goal is to optimize a preexisting property. Directed 

1. Introduction
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evolution, in contrast, has repeatedly proven effective at protein 
optimization when applied alone and when used with knowledge-
based mutagenesis (3). In this approach, a selection (or screen) is 
used to sieve through libraries of artificial protein variants to find 
those rare mutations that lead to desired changes in function.

Directed evolution has several limitations that must be consid-
ered when engineering a protein. Typically, functional proteins 
cannot be fished out of libraries encoding random protein 
sequences. The frequency with which functional proteins occur in 
protein sequence space is thought to be miniscule compared with 
the maximum number of protein variants that can be evaluated in 
a given experiment (4). One way to improve your chances of dis-
covering proteins with a desired function is to increase the fraction 
of folded variants in your combinatorial library. This can be achieved 
by infusing into your library design some knowledge about the 
protein(s) used as parents for directed evolution. This information 
can draw from our understanding of protein stability (5), family 
sequences (6), structure–function relationships (7), and laboratory 
evolution experiments (8). In this chapter, we describe how one 
can use sequence, structural, and thermodynamic information to 
enrich the fraction of functional protein variants in a library created 
using protein recombination. A protocol is outlined for using the 
Schema algorithm to identify libraries with a user-defined level of 
amino acid substitutions that minimize structure disruption 
(9–11).

With Schema, the three-dimensional structural coordinates from 
one of the parent proteins being recombined are required to esti-
mate chimera disruption (see Note 1). Only those sequence posi-
tions with defined structural coordinates are considered in the 
calculation of structural disruption (see Note 2). In cases where 
there are no structural reports for the proteins being recombined, 
structural coordinates can be generated using algorithms that 
generate homology models of proteins (see Note 3), such as 
Swiss-Model (12).

The primary amino acid sequences of the proteins being recom-
bined must be aligned before performing calculations of struc-
tural disruption. If PDB coordinates are available for all of the 
proteins being recombined, the sequence alignment should be 
generated using the SwissProt or Combinatorial-Extension 
algorithms, which use structural information to guide the creation 
of a sequence alignment (13, 14). In all other cases, multiple 

2.  Materials

2.1. Protein Structural 
Coordinates

2.2. Protein Sequence 
Alignment
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sequence alignments should be created using algorithms that only 
consider sequence information, such as the BLAST (15) and 
ClustalW2 (16) algorithms.

Schema posits that the best way to conserve a protein’s structure 
upon recombination of homologous proteins is to minimize the 
number of residue–residue interactions in the parental structures 
that are altered by recombination (see Fig. 1). The physiochemi-
cal characteristics of residues incorporated in chimeras at each 
position are ignored because they have been preselected to be 
compatible with the parental structure (17). Interactions are sim-
ply defined as any pair of residues whose side chains are within a 
defined cutoff distance dc (see Note 4). The major advantages of 
Schema are its simplicity (11), proven effectiveness (10), and abil-
ity to be used with the library design algorithm Recombination 
As a Shortest-Path Problem (RASPP) (9). For any set of parent 
proteins being recombined, RASPP uses dynamic programming 
to identify the optimal tradeoff surface for mutation and struc-
tural disruption in library space. For a library of a user-defined 
size (e.g., n crossovers between two parents), RASPP identifies 
libraries with a range of average amino acid substitution levels ámñ 
that have lower than average Schema disruption áE ñ (9).

Chimeric libraries optimized using Schema and RASPP are cre-
ated using Sequence-Independent Site-Directed Chimeragenesis 
(SISDC) (8, 18, 19). With SISDC, the number of parents and 
crossover sites controls library size (see Fig. 2a). Upon creating a 
n-crossover library using p parents, the number of possible chi-
meric variants is pn+1 (see Note 5). The amino acid substitution 
level accessible in your chimeras can also be adjusted through 
your parental choice (see Note 6). The number of amino acid 
substitutions that can be incorporated into a chimera increases as 
the sequence identity among the parents used for recombination 
decreases (17). The accessible substitution level also increases as 
the number of parents recombined increases.

When recombining homologous proteins, it is thought to be best 
to recombine the most closely related proteins that will yield your 
desired level of amino acid substitution (17). Libraries created in 
this way are predicted to contain a higher fraction of folded (and 
functional) variants than libraries created using more distantly 
related parents. In addition, the thermostability of the proteins 
being recombined should be considered when using SISDC. 

3. Methods

3.1.  Library Diversity

3.2. Choosing Parental 
Proteins
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Among protein homologs, those with higher stability have been 
shown to yield libraries that are enriched in the number of unique, 
functional, and potentially interesting proteins in both random 
mutation (20) and recombination (21) experiments. Thus, when 
you have a choice of multiple proteins for SISDC, you should 
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Fig. 1. Protocol for calculating the structural disruption of a chimera. When recombining two structurally related proteins, 
you first generate a contact matrix that accounts for all pairwise residue–residue interactions in the parent structures. 
Interactions involving residues that are identical in the parents are removed from the matrix, since they cannot be broken 
by recombination. The structural disruption E is simply the number of residue–residue contacts broken by recombination 
(11). The chimera shown, which inherits residues 4–8 from parent X and all other residues from parent Y (1–3 and 9–10), 
has an E = 2.
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recombine proteins that exhibit the greatest thermostability 
available, provided that there are no other functional differences 
in the enzymes.

When creating a chimera by recombining homologous proteins, 
a matrix si is created to indicate which parent is incorporated at 
each position i in the chimeric sequence. For example, if the first 
residue in a chimera (i = 1) is inherited from the first parent, then 
s1 = 1, but if that residue is inherited from the second parent, 
then s1 = 2. In addition, the structural coordinates of one parent 
protein and a sequence alignment of all parents proteins recombined 
are read into the matrices pdb and align, respectively (see Note 7). 
These three matrices are used to calculate the disruption of each 
chimera, which is defined as

 

3.3. Calculating  
the Structural 
Disruption  
of a Single Chimera

1 1

N N

ij ij
i j i

E C D
= = +

= ∑ ∑

Residue number
1 2 3 4 5 6 7 8

Library assembly
strategy

Double-
crossover chimeras

a b

Fig. 2. Sequence-independent site-directed chimeragenesis. (a) When constructing a n-crossover library, n recombination 
sites are chosen that define the possible polypeptide inheritance in the chimeras. In the example shown, two 
crossovers between two natural proteins yield 23 sequences, two of which are the original parent proteins. (b) A simple 
way to find chimeras for calibration experiments is to calculate E for all chimeras in which a single contiguous poly-
peptide is exchanged among the parent proteins (22). By plotting the E vs. m for all such chimeras, one can rapidly 
identify chimeras with a range of amino acid substitution and disruption levels that are easy to build for calibration 
studies (see Fig. 3).
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where N specifies the number of residues in the structure used for 
calculations, Cij indicates whether residues i and j are sufficiently 
close in the parental structure to represent an important interac-
tion that should not be broken, and Dij designates whether the 
interaction between residues i and j in the chimera is present in 
either of the parents recombined. Cij is given a value of 1 when 
residues i and j are inherited from different parent proteins (si ¹ sj) 
and when these residues are interacting, i.e., within a user-defined 
cutoff distance dc in the parental structure. Cij is given a value of 
0 in all other cases (see Notes 8 and 9). Because some exchanged 
polypeptides do not effectively disrupt residue–residue interac-
tions observed in the parents, the delta function Dij uses the 
sequence alignment of the proteins recombined to determine 
which of the residue–residue interactions in a chimera are distinct 
from those present in either of the parents. In cases where an 
interaction between residues i and j in a chimera involves amino 
acids distinct from those at structurally related positions in all of 
the parent proteins, Dij is given a value of 1 to indicate that this 
new pairwise interaction is capable of disrupting the chimeras’ 
structure (otherwise Dij = 0).

Because of its simplicity, Schema cannot differentiate the 
structural disruption of chimeras that have opposite polypeptide 
inheritance (see Note 10). In addition, this algorithm does not 
account for intersubunit residue–residue contacts that are broken 
by recombination, although these could be easily considered 
(see Note 11).

Functional analysis of chimeric libraries is time consuming and 
expensive, so you should calibrate the disruption nature of E for 
the proteins that you are recombining before selecting a library to 
construct for directed evolution (22). The easiest way to do this 
is to evaluate the folding (and function) of a small number of 
chimeras created by swapping single contiguous polypeptides (see 
Fig. 2b). To do this, you first calculate E for all possible double 
crossover chimeras and their amino acid substitution level m (see 
Fig. 3). From this library, you select a handful of chimeras with a 
broad range of E and m values (e.g., 20), you build the genes 
encoding these chimeras using splicing by overlap extension in 
the laboratory (22), and you characterize which of these proteins 
exhibit parent-like structure (see Note 12). The results from these 
measurements are then used to identify a threshold level of dis-
ruption below which a majority of chimeras retain parent-like 
structure. This threshold is used to estimate the fraction of vari-
ants that are folded in chimeric libraries identified by RASPP and 
to guide the selection of a chimeric library to construct (8).

The structural disruption of individual chimeras can be rapidly 
calculated using Schema as described above (11). However, 

3.4. Calibrating  
the Disruptive Nature 
of Substitutions

3.5. Using RASPP  
for Library Design
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this approach is not practical for finding libraries that minimize 
the average disruption áE ñ of chimeras subject to constraints on the 
average amino acid substitution level ámñ, i.e., libraries with the 
best energy-diversity tradeoff (see Note 13). While no optimi-
zation protocol has been described for minimizing the áE ñ of a 
library subject to constraints on the ámñ, one approach that has 
been applied to this problem identifies libraries that minimize 
the áE ñ of a library subject to constraints on the length of the 
polypeptides recombined (8, 23). By posing this surrogate opti-
mization goal, RASPP uses dynamic programming to identify 
libraries over a range of ámñ that minimize áE ñ (9).

RASPP uses graph theory to establish the global optimization 
problem as an all-pairs shortest path problem, where libraries hav-
ing n crossovers are represented using a directed graph (see Fig. 4 
and Note 14), and optimal libraries are found by searching for 
the shortest paths representing libraries having n crossovers (see 
Fig. 5). Each path taken is represented by a set of arcs whose 
individual weights are determined and stored in two matrices. 
Arcs representing the sets of possible first crossovers (0,X1) are 
stored in a matrix designated arc_singles and given a weight that 
represents the áE ñ of the chimeras arising from exchanging the 
peptide defined by that arc. For the example shown in Fig. 4, 
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Fig. 3. Structural disruption for chimeras created by swapping a single contiguous polypeptide element. The ATPase 
domains of Escherichia coli HscA and human mitochondrial hsp70 (mtHsp70) were recombined to create all double-crossover 
chimeras that have a minimum of ten amino acids in each of the contiguous polypeptides recombined. Chimera disruption 
E is plotted relative to m, the number of chimera residues that differ from HscA. Two residues in the chaperone ATPase 
domain structure were defined as contacting if any atoms in their side chains were within 5 Å of one another.
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represents the residue after which recombination occurs, and the arcs A connecting these columns represent the 
average structural disruption áE ñ that arises from adding that crossover (bottom). The arc weight for the first crossover 
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1.  Generate a directed graph for a given set of length
constraints, e.g., Lmin = 2 and Lmax = 5.

2.  Identify shortest path from node 0 to
nodes in the last column (bold lines).

Fig. 5. Length constraints on the exchanged fragments are used to guide the connection of nodes in directed graphs. With 
RASPP, directed graphs are built for all possible sets of length constraints (Lmin and Lmax). In each of these graphs, the 
shortest paths to each node in the kth column (bold lines) are calculated to identify libraries with n crossovers that mini-
mize structural disruption (9). The ensemble of libraries identified from the shortest paths in all directed graphs is used 
to generate the optimal-tradeoff surface shown in Fig. 6.

where the first crossover occurs after residue two, the arc A(0,21) 
is given a length that represents the áE ñ of the four chimeras that 
arise from allowing that exchange of that peptide. The weight of 
all subsequent arcs A(Xk,Xk+1) are stored in a matrix designated 
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arc_doubles. Their weight is defined as the áE ñ associated with 
swapping the peptides designated by those arcs. The arc weights 
in these matrices are calculated once, and all subsequent calcula-
tions by RASPP refer back to the arc_doubles and arc_singles 
matrices.

In RASPP, the user first dictates the number of crossovers n 
and the number of residues in the parent proteins recombined N. 
These values determine the possible range of fragment constraints 
Lmin and Lmax that are used to probe all possible n-crossover 
libraries (see Note 15). Second, directed graphs are generated for 
all possible combinations of Lmin and Lmax. For every Lmin and Lmax pair, 
three arc matrices are generated from arc_doubles and arc_singles 
by eliminating those arcs that do not conform to the Lmin and Lmax 
parameters. These additional arc matrices define length-con-
strained arc paths for the first fragment (designated arc_first), 
intermediate fragments (arc_intermediate), and the last two fragments 
(arc_last). These constrained arc paths are from:

 1. Node 0 to Lmin £ X1 £ Lmax (arc_first)
 2. Node Xk to Xk+1 if Lmin £ Xk+1 − Xk £ Lmax (arc_intermediate), 

and
 3. Node Xn−1 to Xn and Xn to N if Lmin £ Xn − Xn−1 £ Lmax and 

Lmin £ XN − Xn £ Lmax (arc_last).

Third, these three matrices are then used to find the shortest path 
through the directed graph by populating a [(N−1) by n] matrix, 
designated path. In path, the first column is populated by 
arc_first, the last column by arc_last, and the middle columns by arc_
intermediate. Fourth, the cell array output is used to store all optimal 
chimeric libraries calculated by RASPP. Since there is only one 
path to each node in column 1 of the directed graph, there is no 
need to find optimal paths for single crossover libraries, and all 
crossover loci are placed in output. For two crossover libraries, the 
shortest paths going from node 0 to each node in column 2 are 
considered optimal. The two crossovers representing each of 
these optimal libraries are again stored in output. More formally, 
the shortest n path (see Fig. 5) is identified by finding the length 
of the shortest path U from node 0 to node j in column k using 
the shortest paths from node 0 to all nodes in column k−1:

Once the lowest energy libraries are identified by RASPP, the 
next step is to determine how well these libraries approximate the 
optimal energy-diversity tradeoff region. To do this, you calculate 
the average number of mutations in each library identified by 
RASPP, i.e., those libraries stored in output for which the áE ñ has 
been calculated. A plot of áE ñ as a function of ámñ is then used to 
generate a RASPP curve (see Fig. 6), which is defined as those 

1min ( ( , ))k k
j jU U A i j−= +
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libraries at each level of ámñ with the lowest áE ñ. Libraries populating 
this curve are the best to use for laboratory evolution experiments, 
since they are enriched in chimeras with low structural disruption 
(8, 10, 23) One limitation of RASPP is that it only identifies 
optimal libraries for a subset of possible ámñ values.

 1. If atomic resolution models exist for each of the proteins recom-
bined, you should use each set of structural coordinates to per-
form calculations of disruption. This allows one to assess how 
subtle structural differences affect chimera disruption (22).

 2. With many proteins, atomic coordinates are only available for 
a fraction of the residues that are used for recombination, so 
only a subset of the residues can be considered in the calculation 
of structural disruption. The quality of Schema predictions is 

4.  Notes
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Fig. 6. A RASPP curve approximates the optimal tradeoff surface for libraries. The average disruption áEñ and amino acid 
substitution level ámñ was calculated for all possible three-crossover libraries (~106) created by recombining Bacillus 
subtilis and Thermotoga neapolitana adenylate kinase (gray boxes). Libraries enriched in low disruption chimeras (black 
circles) were identified using RASPP (9), and the libraries with the lowest áEñ at each ámñ were used to generate the 
optimal disruption-diversity tradeoff surface (black line). The crystal structure of Bacillus subtilis adenylate kinase 
(PDB = 1P3J) was used for all calculations (30). Pairs of residues were defined as contacting if any atoms in their side 
chains were within 4.5 Å.
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expected to decrease as the number of residues lacking atomic 
coordinates increases, since this algorithm only considers 
those residues for which structural information is available.

 3. Protein coordinates obtained from homology models are 
only expected to be useful for Schema calculations when they 
are generated using proteins whose sequences exhibit ³25% 
amino acid identity (24).

 4. Most studies use a distance cutoff of 4.5 Å and exclude 
hydrogen, backbone nitrogen, and backbone oxygen atoms 
when calculating E (10, 11, 19). However, it remains unclear 
whether the Schema disruption values obtained using this 
distance cutoff lead to the most accurate predictions of struc-
tural disruption.

 5. Upon construction of chimeric gene libraries in the lab using 
SISDC, biases can occur in the frequency with which some 
chimeric sequences are observed (10). This bias should be 
quantified prior to screening (or selection) experiments and 
used to calculate the number of chimeras that must be sam-
pled to thoroughly search your library (25).

 6. When recombining two parents, the maximal amino acid 
substitution level possible is half the number of sequence 
differences between the parents.

 7. The matrix pdb contains the x, y, and z coordinates for each 
atom in one of the parental proteins (see Note 4), as well as 
the residue number where that atom is found. The matrix 
align indicates whether the residues listed in pdb are identical 
in the parent proteins recombined. Frequently homologous 
proteins differ in the numbering of their residues owing to 
differences in the length of their N terminus. For this reason, 
it is essential that you make sure that the numbering of struc-
turally related residues in pdb and align is identical prior to 
performing disruption calculations.

 8. The atoms in cofactors are not considered when calculating 
E, since they typically interact with highly conserved amino 
acids within the proteins being recombined (8, 22).

 9. Protein sequence alignments frequently require the insertion 
of gaps within the primary amino acid sequence of one or more 
of the proteins being aligned. These gaps are only considered 
when calculating E if they are present at a position for which 
structural information is available. Thus, gaps introduced into 
the parent used to generate Cij are simply ignored (26), and 
gaps that occur in any parent other than that used for calcu-
lating Cij are treated as nonidentical residues (26).

 10. A chimera created using the first five residues of a protein X 
and the last five residues of a protein Y (XXXXXYYYYY) will 
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have the same E as YYYYYXXXXX when calculated using 
Schema. Algorithms are available that assign different calcu-
lated disruption values to chimeras having opposite polypep-
tide inheritance ( 27, 28). However, these approaches cannot 
be used with the optimization algorithm RASPP.

 11. The quality of Schema predictions has not yet been validated 
with proteins that require oligomerization for stability. When 
recombining such proteins, the number of broken interac-
tions within a monomer is not expected to be sufficient to 
account for all broken residue–residue contacts. For this rea-
son, it is recommended that you account for intersubunit 
residue–residue interactions Einterface and consider the total  
calculated disruption for each chimera Etotal = Eintrasubunit + Einterfac

e. The equation used to calculate interfacial disruption Einterface 
for an oligomeric chimera is the same as for calculating dis-
ruption in a monomer, except that Cij designates whether 
residue i from chain A is contacting residue j from chain B.

 12. Simple assays are available that can rapidly evaluate the con-
servation of parent-like structure in chimeras, including 
screens for cofactor binding (8, 22), parent-like activity (10, 
23), and parent-like solubility (29).

 13. Full enumeration of all chimeras in all possible libraries aris-
ing from pn+1 crossover combinations is only tractable on a 
desktop computer when a handful of crossovers are allowed 
(n £3). However, it is intractable when one approaches poly-
peptide lengths representative of proteins and larger number 
of crossovers.

 14. When an n crossover library is represented using n columns 
in a directed graph, each column k is given a number of nodes 
N equal to the number of residues in the proteins recom-
bined. Arcs are used to designate each recombination site, 
and nodes X visited by an arc A(Xk, Xk+1) designate crossover 
sites and define swapped polypeptide.

 15. For n crossovers, the minimum fragment length Lmin has a range 
from 1 to N/(n + 1) and the maximum fragment length Lmax 
ranges from N/(n + 1) to N − n(Lmin). It is important to note 
that RASPP does not consider residues conserved between the 
two parent proteins as possible crossover sites. Thus, any frag-
ment length L is defined only by nonconserved residues, reduc-
ing the effective protein length to (N − conserved residues).
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Chapter 11

Mass Spectrometric Protein Identification Using the Global 
Proteome Machine

David Fenyö, Jan Eriksson, and Ronald Beavis 

Abstract

Protein identification by mass spectrometry is widely used in biological research. Here, we describe how 
the global proteome machine (GPM) can be used for protein identification and for validation of the 
results. We cover identification by searching protein sequence collections and spectral libraries as well as 
validation of the results using expectation values, rho-diagrams, and spectrum databases.

Key words: Proteomics, Mass spectrometry, Protein identification, Spectrum libraries, Validation

Mass spectrometry-based protein identification has become an 
invaluable tool for elucidating protein function, and several meth-
ods have been developed for protein identification, including 
sequence collection searching with masses of peptides or their 
fragments, spectral library searching, and de novo sequencing 
(Fig. 1).

The first step in protein identification is to find peaks in the 
mass spectra that correspond to peptides and their fragments. It 
is important to find all the relevant peaks and at the same time 
minimizing the number of background peaks. This can be 
achieved by scanning the spectra for peaks of the expected width 
and selecting peaks above a signal to noise threshold (see Note 1), 
and then picking the monoisotopic peak for each isotope cluster 
(see Note 2). After picking the peaks, spectra with low information 
content that could not produce any meaningful results can be 
removed to increase the speed of subsequent analysis (1).

1.  Introduction

David Fenyö (ed.), Computational Biology, Methods in Molecular Biology, vol. 673,
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The first method for protein identification developed was 
peptide mass fingerprinting, PMF (2), i.e., matching measured 
proteolytic peptide masses to the theoretical proteolytic peptide 
masses of proteins in a sequence collection and calculating a score 
based on the matching peptides (see Note 3 and Fig. 1a). A basis 
of peptide mass fingerprinting is that the mass measurement of a 
single proteolytic peptide matches the masses of only a few dif-
ferent proteolytic peptide sequences (3). For example, a mass 
around 2,000 Da measured with an accuracy of 1 ppm matches 
on the average 4 and 1.5 unmodified tryptic peptides in the 
entire proteome of human and yeast, respectively (Fig. 2). A sin-
gle peptide mass measurement is typically not matched uniquely 
with a single protein species and is therefore not sufficient to 
identify a protein (the probability for more than one protein 
identified = 1). But, a set of measured peptide masses from a sin-
gle digested protein is useful for identification, since the proba-
bility is <<1 of randomly matching these mass values to a protein 
sequence in the collection searched. In theory, not only single 
proteins but also a large portion of the proteins in a complex 
protein mixture can be identified by the PMF approach (4). 
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However, in practice, mass spectrometers fail to detect simulta-
neously peptides originating from different sample proteins that 
differ significantly in abundance (5). Hence, a prerequisite for 
PMF-based protein identification is that the samples analyzed are 
reasonably pure and only contain a few different proteins (6).

A more robust method for complex protein mixtures is to 
search sequence collections using the observed mass of an intact 
individual peptide ion species together with the masses of the 
fragment ions observed upon inducing fragmentation of the pep-
tide in the mass spectrometer (Fig. 1b). This method requires 
only one or a few identified peptides to identify a gene. Peptides 
are fragmented by increasing their internal energy, usually through 
collisions. When their internal energy is increased, peptides frag-
ment along their backbone, and ions characteristic of the amino 
acid sequence and the activation method are produced. The masses 
of these ions are compared with the theoretical fragment masses of 
the peptides in the sequence collection that match the mass of the 
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intact peptide, and a score is calculated based on the matching 
fragments (7, 8). This method is based on the method developed 
for identifying organic molecules from their fragment mass spec-
tra (9–11). The advantage of using a sequence collection is that it 
is not necessary to observe fragmentation next to every amino 
acid in the peptide; a few fragment ions are usually sufficient 
because the sequence collection can be used to fill in the missing 
information (see Note 4). The drawback is, however, that if the 
sequence is not in the sequence collection, it cannot be found 
using this method, but as more and more complete genome 
sequences are becoming available, this becomes less of an issue. 
The probability of fragmentation between a pair of adjacent 
amino acids is dependent on their chemical properties and to a 
lesser degree on the amino acids further away from the fragmen-
tation site; therefore, the intensity of fragment ions is highly 
sequence dependent. The information in the peak intensities can-
not fully be utilized when searching protein sequence collections 
because most implementations use the same intensity for all theo-
retical fragments owing to the difficulty in accurately predicting 
their relative intensities from the amino-acid sequence.

One way of utilizing the sequence-specific fragment ion 
intensities and thereby improving the sensitivity is to instead 
search spectrum libraries (Fig. 1c), i.e., large collections of exper-
imentally acquired fragment mass spectra that have been anno-
tated. This is currently the predominant method for identification 
of small organic molecules (12) and has during the last few years 
been applied to peptide identification (13, 14). In this method, 
the intensity information is fully utilized (see Note 5) because 
the matching is between two experimentally acquired fragment 
mass spectra, and therefore, this is the most sensitive of the iden-
tification methods. The challenge is, however, to collect large 
high-quality sets of spectra that have sufficient coverage of the 
proteome.

In cases, when the genome has not been sequenced and there 
are no spectrum libraries available, the only possibility is to use de 
novo sequencing (Fig. 1d), i.e., use only the information in the frag-
ment mass spectra and the mass of the intact peptide to obtain the 
peptide sequences (15–18). This requires much higher quality data 
because the entire space of all possible sequences is the search space 
(see Note 6). To search the entire space of potential sequences is 
impractical even for short peptides, but several algorithms have been 
developed that attempt at searching the relevant part of the search 
space in a reasonable time frame (15–18).

In all mass spectrometry-based identification methods, a score 
is calculated to quantify the match between the observed mass 
spectrum and the collection of possible sequences. These scores 
are highly dependent on the details of the algorithm used, and 
they are not always easy to interpret because the interpretation of 
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the score depends on properties of the data and the search results. 
Therefore, it is desirable to convert the score to a measure that is 
easy to interpret, such as the probability that the result is random 
and false. For this conversion, the distribution of random and false 
scores is needed (Fig. 3). Estimates of this distribution can be gen-
erated using either simulations (19, 20), collecting statistics dur-
ing the search (21–23), or direct calculations (24).

Here, we describe how the different components of the global 
proteome machine (GPM) can be used for protein and peptide 
identification and validation.

X! Tandem (25–27) is a search engine for identifying proteins by 
searching sequence collections. X! Tandem scores the match 
between an observed tandem mass spectrum and a peptide 
sequence, by calculating a score that is based on the intensities of 
the fragment ions and the number of matching b- and y-ions (see 
Note 7). This score is converted to an expectation value using the 
distribution of the scores of randomly matching peptides (Fig. 3). 
Before the search, the user needs to specify a set of parameters 
including which sequence collection to search, the mass accuracy 
of peptides and their fragments, and modifications of the peptide 
sequence (see Note 8). The search is done iteratively; only pro-
teins that have at least one peptide identified in an iteration are 
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lection match a given mass spectrum purely through random matching. Estimating expectation values <1 can be done 
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searched in subsequent iterations (25). This iterative search can 
be used to speed up and increase the sensitivity of the identifica-
tion of modifications, nonspecific enzymatic cleavage, and point 
mutations by restricting the search to unmodified tryptic peptides 
in the first iteration, and then widening the search in subsequent 
iterations. Another way to speed up the searches and make them 
more sensitive is to restrict the search to proteotypic peptides 
using X! P3 (27), which searches only peptides that have been 
previously identified and deposited in the GPM DataBase 
(GPMDB) (28).

X! Hunter (13) is a search engine for searching annotated spec-
trum libraries. X! Hunter uses the same scoring as X! Tandem, 
except for that it compares the observed mass spectrum to librar-
ies of spectra derived from experiments. Therefore, the peptide 
sequence-dependent intensity information can be fully utilized, 
and the sensitivity of the search is increased. It is, however, critical 
that the spectrum libraries are constructed carefully. The libraries 
for X! Hunter are constructed by taking the fragment mass spectra 
from GPMDB and grouping them so that one library spectrum is 
constructed for each peptide modification and charge state. The 
selection criteria are that (1) the spectrum matches to a peptide 
with an expectation value less than 0.001 and (2) at least 40% of 
the ion intensity in a spectrum is assignable as y- or b-ions or their 
corresponding neutral loss products. For the selected spectra, the 
m/z values of the matching peaks are substituted with the exact 
theoretical values. The ten spectra with lowest expectation value 
are selected for each peptide modification and charge state, and a 
composite spectrum is created and added to the library. These 
annotated spectrum libraries can also be extended to modification 
that do not affect the fragmentation pattern (e.g., some types of 
stable isotope labeling), by using the ion intensities of the frag-
mented unmodified peptide and reassigning the m/z values to 
correspond to the modified peptide.

The search results for all GPM search engines are displayed in a 
unified interface that allows the user to get an overview of the 
results as well as inspect the details of the results when needed. In 
the basic display, proteins for which there is evidence for their 
presence in the sample are listed. The strength of the evidence is 
quantified with an expectation value (see Note 9) (23), and the 
proteins are listed in the order of increasing expectation value, 
i.e., in the order of decreasing strength of the evidence. Other 
information that can be used to assess the identified proteins are 
also shown, including the sum of the intensity of the matching 
fragment ions for all peptides, the number of matching peptides, 
and the fraction of the protein sequence covered by the observed 
peptides. Details of the evidence for a protein can be displayed, 
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listing all matching peptides sequences, modifications and charge 
state together with the peptide expectation values, error in the 
mass measurement, and the sum of the intensity of the fragment 
ions matching to the peptide sequences. For an individual pep-
tide, the annotated fragment mass spectrum can be displayed 
showing the peak assignments. There are also alternative ways to 
display the list of identified protein, including their distribution 
among gene ontology categories, pathways, and protein interac-
tion networks. In these displays, a p-value is calculated to asses 
which gene ontology categories, pathways, or interactions are 
enriched or depleted in the dataset.

Comparison of identification results to the large set of search 
results collected in GPMDB is an effective way to validate the 
results. One way to use GPMDB is to visually compare the pep-
tides observed for a protein with observations in other experi-
ments in GPMDB (Fig. 4). Commonly, the same peptides are 
observed for a given protein in most proteomics experiments, 
and therefore, an observation of a peptide that has not been 
observed in other experiments should be investigated manually. 

ENSP00000253462 DNA replication complex GINS protein PSF2

−153.6
−95.4
−93.3
−81.5
−77.5
−54.9
−51.2
−42.5
−41.4
−40.2
−38.7
−36.4
−35.2
−32.4
−31.4
−30.9
−30.8
−29.8
−27.2
−27.0

Coverage-log(e)

Fig. 4. Using proteotypic peptides for validation of identification results. The peptides identified for a protein can be com-
pared with observations in other experiments in GPMDB. Commonly, the same peptides are observed for a given protein 
in proteomics experiments, and therefore, an observation of a peptide that has not been observed in other experiments 
should be investigated manually. The peptides observed for PSF2, a protein associated with the replication fork, are 
shown with black borders and regions of the protein that are difficult to observe in proteomics experiments are shown 
without borders. In a majority of the 20 experiments shown, the same 5 peptides are observed.
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Another way of validating search results is to compare the 
sequence dependent ion intensity distribution of tandem mass 
spectra with spectra in GPMDB to evaluate if the fragmentation 
pattern is similar (Fig. 5). Several frequency measures from 
GPMDB for proteins and peptides are also reported together 
with the search results. For peptides, the number of times it has 
been observed in GPMDB and the fraction of the peptide iden-
tifications that are in a specific charge state (w) are used. For 
proteins, W, a measure of peptide coverage with respect to charge 
state is used. W is a list of ratios denoting what fraction of the 
peptides in a particular charge state for a given protein was seen 
in a single protein identification. Proteins expectation values are 
also compared with other identifications of the protein in 
GPMDB, and the rank is reported, allowing the user to judge 
how their result compares with other results. All these measures 
are shown to make the validation of the results easier by allowing 
detailed comparison with the large set of experimental results 
that are available in GPMDB.

The information in GPMDB can also be used to design 
experiments. It is advisable to start planning an experiment by 
inspecting the information associated with proteins of interest to 
find out what has been observed in other proteomics experi-
ments. For example, GPMDB supports the design of experiments 
targeted to investigate a group of proteins (multiple reaction 
monitoring (MRM)). Through the MRM module, the informa-
tion in GPMDB is used to aid in the selection of peptides and 
their fragment ions that produce a strong signal and are specific 
to the protein.

The quality of the overall match between the whole dataset 
and the sequence collection can be evaluated using r-diagrams 
and r-scores (29). A r-diagram is a comparison between the dis-
tribution of peptide expectation values for a dataset and the pre-
dicted distribution for random matching (see Note 10). For a 
dataset that only has random matches to a sequence collection, 
the data points in the r-diagram will fall on the diagonal, r = log(e), 
i.e., the expectation values for the peptides are distributed as 
expected from random matching (Fig. 6a). In contrast, for data-
sets that are of high quality, typically many peptides match well 
with the sequence collection, and the data points in the r-diagram 
deviate from the diagonal and are closer to log(e) = 0 (Fig. 6b). 
The r-score corresponding to a r-diagram is defined as the area 
between the data points and the diagonal [r = log(e)] normalized 
to a value between 0 and 100, where r-score of 0 corresponds to 
purely random matching and r-score of 100 corresponds to no 
random matching. The r-score, being a measure of the quality of 
a match between an entire dataset and a sequence collection, can 
be used for optimizing search parameters, for evaluating algo-
rithms, and for controlling the quality of datasets.
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Fig. 5. Using tandem mass spectra for validation of identification results. The intensity distribution of tandem mass spec-
tra is mainly dependent on the peptide sequence. Therefore, comparing a fragment mass spectrum with spectra in 
GPMDB can be used for validation of the results. (a, c) A stronger [log(e) = −12.8] and (b, d) a weaker [log(e) = −3.6] 
spectrum matching to the sequence CINVLSEVCGQDITTK are shown [(a, b) – all peaks (c, d) – peaks matching the 
sequence]. The stronger spectrum has many peaks matching the peptide sequence and little background, while the 
weaker spectrum has fewer matching peaks and more background peaks, but the intensity profile of the matching peaks 
is similar.
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 1. Peaks in mass spectra are detected by finding local maxima in 
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points in the mass spectrum. The signal to noise ratio (the 
ratio of the root mean square deviation of the peak and of the 
background) is usually used to decide if the peak should 
be used for identification. The mass of an analyte can be deter-
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corresponding peak in the mass spectrum, where w′ is the 
width of the centroid calculation.

 2. Because peptides naturally contain heavy isotopes of atoms 
(e.g., 1.11% 13C and 0.366% 15N), they are observed as clus-
ters of peaks. The relative intensities of these isotope clusters 
are dependent on the mass of the peptide because the number 
of atoms increases with mass, and therefore, the probability of 
the peptide containing one or more heavy isotopes increases. 
The largest effect comes from 13C and a first order estimate of 
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3.  Notes
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Fig. 6. r-diagram. A r-diagram shows the quality of the match between a dataset and a proteome. (a) The data points 
are close to the line r = log(e) when the results are dominated by random matching between the data and the proteome. 
The three datasets shown were obtained by searching against a collection of reversed sequences. (b) Three datasets of 
different quality are shown (r-scores are 95, 87, 57, respectively). The highest quality dataset (filled circles) is closest to 
the line log(e) = 0 and the lowest quality dataset (open squares) is closest to the line r = log(e).
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  is the intensity of peak m in the distribution, m is the 
 number of 13C, n the total number of carbon atoms in the 
peptide, and p is the probability for 13C (i.e., 1.11%).

 3. The simplest method for peptide mass fingerprinting is to 
count the number of peptides in the mass spectrum that 
match to each protein in the sequence collection. This count 
can then be used as a score to rank the proteins. This simple 
scoring scheme works well when the data are of  high-quality, 
but with low-quality data, typically, a large protein will get 
the highest score due to random matching. This is because 
the probability for random matching increases with the size 
of the protein simply because there are more peptides to 
match. More sophisticated scoring methods have been 
developed as an attempt to compensate for this effect (24, 
30–32).

 4. The sequence collections used for protein identification are based 
on the genes predicted from the genome sequence, and are 
therefore a very small subset of all possible sequences. For exam-
ple, there are ~2.5 ´ 104 unique tryptic peptides of length 15 in 
the human proteome compared with 2015 = 3.3 ´ 1019 possible 
unmodified peptides of length 15. Because a vast majority of 
possible peptides are not used in an organism, the distance 
between real peptides in sequence space is typically large, and 
therefore, missing information can be filled in using the sequence 
collection.

 5. Typically, the normalized inner product of the two spectra is 
used to score how well their intensities match. If the spec-
tra are represented as vectors with the number of dimen-
sion equal to the number of matching peaks, n, and the 
length of the vector in each dimension equal to the inten-
sity of the corresponding ion, the dot product is given by, 
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= = =
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 where ( )= …1 2, , , nI I II  is the

   observed spectrum, and = …1 2( , , , )nL L LL  is the library spec-
trum. The range of the normalized dot product is from −1 to 
1. If the observed and library spectra are identical, the result-
ing dot product is 1, and any differences between them will 
result in lower values of the dot product.

 6. The search space for de novo sequencing of unmodified pep-
tides is 20N where N is the length of the peptide. If there are 
m types of potential modifications, then search space increases 
to (20+m)N.

 7. The score, called hyperscore, is based on the assumption of a 
hypergeometric distribution and is given by = · !· !H I b yS S n n ,  
where yn  is the number of matching y-ions, bn  the number 
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of matching b-ions, and IS  is the dot product between the 
observed spectrum and the spectrum predicted from the 
peptide sequence. The intensities for the spectrum predicted 
from the peptide sequence are usually set to 1 for each 
expected fragment mass and 0 for all other masses. However, 
X! Tandem also supports using intensities that are depen-
dent on the two amino acids on each side of the fragmented 
bond.

 8. A complete description of the input parameters for X! Tandem, 
X! P3, and X! Hunter can be found at http://thegpm.org/
TANDEM/api/.

 9. Protein expectation values can be estimated from the expec-
tation values of its matching peptides. If more than one 
peptide has been found for a protein, the expectation val-
ues for the peptides are combined with a simple Bayesian 
model for the probability of having two peptides from the 
same protein having the best score in different spectra: 
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 where n is the 

number of unique peptide sequences matching the protein, 
je  is the expectation value of the jth peptide, N is the total 

number of peptides scored to find the n unique peptides, s is 
the number of mass spectra in dataset, and b is  
N/(the total number of peptides in the proteome consid-
ered). If only one peptide is matching the protein, then the 
protein expectation value is set to the peptide expectation 
value, = 1.proe e

 10. r is defined as r
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number of peptides with expectation values between  
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for random matching.
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Chapter 12

Unbiased Detection of Posttranslational Modifications 
Using Mass Spectrometry

Maria Fälth Savitski and Mikhail M. Savitski 

Abstract

A major challenge in proteomics is to fully identify and characterize posttranslational modification (PTM) 
patterns present at any given time in cells, tissues, and organisms. Currently, the most frequently used 
method for identifying PTMs is tandem mass spectrometry combined with searching a protein sequence 
database. Although, database searching has been highly successful for the identification of proteins, it has 
a number of significant drawbacks for identification of modifications. The user needs to specify all 
expected modifications, and the search engine needs to consider all possible combinations of these modi-
fications for all peptide sequences. If several potential modifications are considered, the search can take 
much longer than the data acquisition, creating a bottleneck in high-throughput analysis. In addition, 
the many possible assignments that need to be tested increase the noise and require better quality data 
for confident identification of modifications. Here, we describe a method for identifying both known and 
unknown PTM using mass spectrometry that does not suffer from these problems. The method is based 
on the observation that, in many samples, peptides are usually present both with and without modifica-
tions. By identifying the unmodified peptide with conventional database searches, the modified species of 
the peptide can be identified by searching for peptides with common and similar fragments as the unmod-
ified peptide. After identifying both the modified and unmodified peptide, the elemental composition of 
the modification can be deduced if the mass accuracy of the precursor ion is sufficiently high.

Key words: Bioinformatics, Mass spectrometry, Posttranslational modifications, MS/MS, ModifiComb

Posttranslational modifications (PTMs) are covalent-processing 
events that often are, as the name indicates, among the last steps 
in the protein biosynthesis. PTMs can be produced by proteolytic 
cleavage or by addition of a modifying group to one or more 
amino acid residues. PTMs change the intrinsic properties of the 
protein, and can determine its activity state, localization, turnover, 
and interactions with other proteins. In signaling, for example, 

1.  Introduction

1.1. Posttranslational 
Modifications

David Fenyö (ed.), Computational Biology, Methods in Molecular Biology, vol. 673,
DOI 10.1007/978-1-60761-842-3_12, © Springer Science+Business Media, LLC 2010
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kinase cascades are turned on and off by the reversible addition 
and removal of phosphate groups (1), and in the cell cycle, 
ubiquitination marks cyclins for destruction at defined time points 
(2). PTMs are key regulators of protein function, localization, 
and interactions taking place inside the cell (3, 4).

The reversible phosphorylation of serine, threonine, and 
tyrosine residues in proteins is considered to be one of the most 
important PTMs (3, 5–7). It is estimated that in higher organ-
isms more than 25% of all proteins are phosphorylated and more 
than 2% of the human genes code for protein kinases and the 
respective phosphatases. Protein phosphorylation is believed to 
play a major role in many important cellular processes such as the 
cell cycle, cell differentiation, metabolism, cell motility, and sig-
naling (8). Other PTMs such as glycosylation (9), methylation 
(10, 11), and ubiquitination (12) play important roles in cellular 
processes. Other types of known and unknown PTMs are also 
involved. Many types of PTMs have been discovered serendipi-
tously and many more remain yet to be discovered.

Mass spectrometry (MS) is an analytical technique that measures 
the mass-to-charge (m/z) ratio of ions. A mass spectrometer con-
sists of an ion source where the analytes are ionized, a mass ana-
lyzer where the ionized analytes are separated according to their 
m/z ratio, and a detector that measures the relative abundance of 
the ions at each m/z value. Ionizing proteins and peptides for MS 
analysis is most commonly done by electrospray ionization (ESI) 
(13) or by matrix-assisted laser desorption/ionization (MALDI) 
(14, 15). ESI and MALDI are called soft ionizations techniques 
because they can ionize a large molecule (e.g., protein or peptide) 
without fragmenting it, which makes it possible to determine the 
mass of the intact peptide or protein.

To be able to decipher the amino acid sequence of a peptide, 
it has to be broken into pieces. Ions of the peptide of interest are 
gathered at its specific m/z and the peptide ions are fragmented 
by, for example, collision with an inert gas such as helium. This is 
called tandem mass spectrometry (MS/MS) (16). To identify the 
amino acid sequence, the MS/MS spectra are searched against 
databases using search engines such as Mascot (17), Sequest (18), 
and X! Tandem (19).

There are two major techniques to fragment peptides, either 
through vibrational excitation or through electron capture/
transfer. Collision-activated dissociation (CAD) (20, 21) is the 
most common vibrational dissociation method, whereas electron-
capture dissociation (ECD) (22) and electron-transfer dissocia-
tion (ETD) (23) are examples of dissociation through electron 
capture/transfers. The different types of fragmentation methods 
yield different types of fragment ions. The two most common ion 
types in CAD fragmentation are b and y ions, which are formed 

1.2. Mass 
Spectrometry
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from backbone cleavage of the peptide. b ions are formed when 
the N-terminal fragment retains the charge and y ions are formed 
when the C-terminal fragment retains the charge. If the ionized 
peptide contains more than one charge, complementary ion pairs 
can be produced, for example, fragmentation of a doubly charged 
peptide can produce a bn/ym ion pair, where the sum of n and m 
equals the total number of residues in the peptide. Although 
CAD fragmentation most often yield b and y ions, ECD/ETD 
mainly produce c and z·ions. ECD and ETD provide more exten-
sive peptide fragmentation than CAD and are better for charac-
terizing PTMs, because they remain intact during the backbone 
fragmentation (vide infra) (24).

From a mass spectrometric point of view, PTMs can be roughly 
classified into two distinct classes: labile and stable modifications 
(Fig. 1). The loss of a labile modification is a preferred fragmentation 

1.3. Identification  
of PTMs Using MS

Fig. 1. (a) Fragmentation of an unmodified doubly charged peptide (only y + ions are 
shown for simplicity). (b) Fragmentation of the same peptide with a stable modification on 
serine. y4, y5, y6, and y7 are shifted by the mass of the modification X compared with the 
unmodified peptide. (c) Fragmentation of the same peptide with a labile modification on 
serine. The most dominant peak corresponds to a loss of the neutral modification mass Y 
from the modified peptide. All y ions are low abundant and do not contain information on 
the position of Y, because they arise through secondary fragmentation of (M − Y )2+.
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channel in CAD. A tandem mass spectrum of a peptide with a 
labile modification frequently, only exhibits one very abundant 
fragment ion corresponding to the loss of the modification and 
few to none backbone fragment ions, making it very difficult to 
derive the identity of the peptide and the location of the modifi-
cation (Fig. 1c). A stable modification, however, has no such 
effect. Fragmentation of a peptide with a stable modification gives 
rise to a spectrum dominated by backbone fragmentation 
(Fig. 1b). Many modifications fall in the gap between the two 
classes (4). Phosphorylation is such an example: serine/threonine 
phosphorylation is a labile type of modification, whereas the less 
frequent tyrosine phosphorylation is a stable modification.

One of the most striking features of the ECD/ETD approach 
is that it always produces backbone fragmentation regardless of 
what type of modification is attached to the peptide, even such 
labile ones as phosphorylation (25) and glycosylation (26). 
Basically, ECD/ETD MS/MS spectra of modified peptides always 
give rise to the type of fragmentation pattern shown in Fig. 1b 
(with c and z ions instead of y and b). This makes the combined 
use of ECD/ETD and CAD very effective for the study of phos-
pho-peptides. The strong neutral loss of phosphoric acid in CAD 
serves as a flag for identifying the spectra of phospho-peptides, 
and the accompanying ECD spectrum can reveal the identity of 
the peptide by providing sequence information and possibly also 
the location of the phosphorylation site (27).

In order to detect stable modifications using database 
searching, the following strategy is employed. Assume that one 
is looking for a modification of mass ∆M located on the amino 
acid residue X (X is any of the 20 common amino acids). Then, 
the search engine will expand the search space by adding for 
every peptide containing X an additional modified peptide with 
(X + ∆M) instead of X (e.g., a peptide containing three X will 
give rise to seven additional modified peptides, three with one 
modification, three with two modifications, and one with three 
modifications). The experimental spectra will be compared in 
addition to the “usual” theoretical spectra, also to the spectra 
stemming from these added modified peptides.

The addition of a large number of new peptides to the data-
base leads to a longer overall search time and to a decreased sen-
sitivity. It is very computationally demanding to perform searches 
assuming the presence of more than ten types of modifications. 
Also no new types of modifications can be discovered by using 
this standard approach.

Craig and Beavis (28) have suggested a strategy for reduc-
ing the time required to search MS/MS data with variable modi-
fications. The strategy works under the assumption that an 
unmodified, tryptic (without missed cleavages) peptide will be 
selected for MS/MS for each identifiable protein in the sample. 
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In the first stage of identification, only search criteria for 
unmodified tryptic peptides (if desired one or more potential 
modifications can be added) will be used. In subsequent stages, 
searches allowing for modifications, non-specific hydrolysis 
and missed cleavages will be conducted against proteins that 
were identified in the first stage by tryptic peptides. This strat-
egy allows for a more sensitive and specific identification of 
known modifications.

Here, we are going to describe a method for how to identify 
both known and unknown PTMs utilizing MS. These types of 
approaches have already uncovered various new and hitherto 
unreported types of modifications.

The type of data required for the analysis described in this chapter 
would preferentially come from a high-resolution mass spectrom-
eter such as the Fourier Transform mass spectrometer [29] or the 
Orbitrap [30]. The data analysis would require access to a regular 
PC and to one of the established search engines, e.g., X! Tandem 
or Mascot.

This strategy for identifying PTMs is based on the assumption 
that a modified peptide (dependent peptide) will be present 
along with its unmodified counterpart (base peptide) in the sample 
(most PTMs are substoichiometric) (Fig. 2). The computational 
approach can identify PTMs without making any assumptions 
about which PTMs are present in a given sample. It requires that 
the MS data are in high resolution, and preferably the MS/MS 
data should be in high resolution as well. The mass resolution is 
the dimensionless ratio of the mass of the peak divided by its 
width. Usually, the peak width is taken as the full width at half 
maximum intensity. The resolution required for a reliable unbi-
ased PTM identification should be above 50,000. If the MS data 
are of low resolution, it will be very difficult to reliably assign the 
elemental composition to a potential modification mass. If the 
MS/MS data are of low resolution, the procedure can still work, 
but only for high-quality spectra and will require more matching 
fragments.
Step 1. Perform a regular database search to identify base pep-
tides in the dataset.

2.  Materials

3.  Methods
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Step 2. Make a new dataset of the unidentified MS/MS spectra, 
these are potential-dependent peptides.
Step 3. For every identified base peptide, search the dataset of 
unidentified MS/MS spectra for spectra with similar fragment 
ions (same mass or shifted by the mass of the potential modifica-
tion, ∆M = Mmodified − Munmodified) (see Note 1). For an MS/MS spec-
trum to be considered as a dependent peptide to the base peptide, 
there should be at least six common fragments (see Note 2). The 
validity of the six fragment approach was tested on high-resolution 
data using a special decoy database approach described in (31) 
and was shown to yield less than 2% false-positive hits.
Step 4. The last step is to identify the elemental composition of 
the modification. This can be done, unambiguously in most cases, 
when the mass of the peptide is measured within 5 ppm (see Notes 
3 and 4).

 1. Retention time difference can also be used to identify the pairs 
of base and dependent peptides, because the dependent peptide 
may be expected to elute within a limited time window before or 
after the base peptide. For instance, in a typical 2 h liquid chro-
matography gradient, the phosphorylated version of a peptide 
will rarely elute 10 min later or earlier than its unmodified 
version. By using the retention time, the number of MS/MS 
spectra of possible dependent peptides can be limited. Although 
the retention time resolution is relatively low compared with 
the m/z resolution (a standard deviation of around 5 min can 

4. Notes

Fig. 2. Flowchart for the unbiased PTM detection. The text explaining the individual steps 
can be found in the methods part.
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be expected in replicate experiments using a 90 min gradient), 
it is still a highly useful parameter. For instance, retention time 
alone can predict whether formylation (+CO) occurs on a ser-
ine/threonine side-chain or the N-terminus.

 2. If there are MS/MS spectra from both CAD and ECD fragmen-
tation available, these can be added together to filter out real peptide 
peaks by using golden complementary pairs (32, 33). Golden com-
plementary pairs are fragment ions pairs that can be reliably 
identified from both CAD and ECD spectra by utilizing the fact 
that different bonds are cleaved (in CAD the peptide bond and 
in ECD the N–Ca bond). The fragment ions identified in such 
a way have a very high, >95%, probability of being true fragment 
ions. The golden pair matching also gives information about 
whether the ions are N-terminal or C-terminal fragments. When 
using golden pair, a criterion of four common fragments between 
the base and the dependant peptides could be used.

 3. The mass accuracy of the precursor ion is important when it 
comes to identifying the elemental composition of the modi-
fication. The unique elemental composition of modifications 
can be deduced in the majority of the cases when working 
with MS data of <5 ppm accuracy.

 4. An important part of the characterization of PTMs is to eval-
uate their biological significance –do the modifications have a 
function in vivo, or are they in vitro modifications due to the 
sample preparation.
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Abstract

Mass spectrometry is a method of choice for quantifying low-abundance proteins and peptides in many 
biological studies. Here, we describe a range of computational aspects of protein and peptide quantita-
tion, including methods for finding and integrating mass spectrometric peptide peaks, and detecting 
interference to obtain a robust measure of the amount of proteins present in samples.

Key words: Proteomics, Quantitation, Proteins, Peptides, Mass spectrometry

Mass spectrometry (MS)-based quantitative proteomics has been 
applied to solve a wide variety of biological problems, and several 
MS-based workflows have been developed for protein and pep-
tide quantitation (Fig. 1). In mass spectrometric quantitation 
methods it is usually assumed that the measured signal has a lin-
ear dependence on the amount of material in the sample for the 
entire range of amounts being studied. A prerequisite for accu-
rate quantitation is that unwanted experimental variations in 
sample extraction, preparation, and analysis be minimized, and it 
is therefore critical that each step in the workflow is optimized 
for reproducibility.

One way of optimizing the reproducibility is to label the 
 samples with stable isotopes, mix them together and perform the 
subsequent sample-handling steps on the mixed sample. The earlier in 
the workflow that the stable isotope label is introduced and the sam-
ples mixed, the smaller is the effect of variations in sample handling. 

1. Introduction

David Fenyö (ed.), Computational Biology, Methods in Molecular Biology, vol. 673,
DOI 10.1007/978-1-60761-842-3_13, © Springer Science+Business Media, LLC 2010
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Metabolic labeling (1, 2) provides the earliest possible introduc-
tion of stable isotope labels into the sample (Fig. 1a). Here, labels 
are introduced as isotopically distinct metabolic precursors, and 
the samples can be mixed before all subsequent steps in the work-
flow. It is important to monitor the level of incorporation of the 
label, but this can, for example, be done by using two heavy labels 
that are incorporated into the samples with equal efficiency (3). In 
cases when metabolic labeling is not feasible, the stable isotope 
labels also can be introduced later in the workflow (4–9) by heavy 
isotope labeling of proteins (Fig. 1b, c) or peptides (Fig. 1d–f ). 
In general, stable isotope labels need to be designed carefully in 
order to prevent introducing systematic errors caused by dissimi-
lar behavior of the compounds with different labels. For example, 
it has been observed that using hydrogen/deuterium substitution 
in the heavy label can affect the retention time of the labeled pep-
tides, while 12C/13C substitution does not have any observable 
effect on the retention time (10).
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Fig. 1. Workflows for mass spectrometry-based protein and peptide quantitation. (a) Metabolic labeling (1, 2).  
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intensity of fragment ions.
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Label-free methods (11–13) for quantitation are often used 
when the introduction of stable isotopes is impractical (e.g., in 
many animal studies) or the cost is prohibitive (e.g., in biomarker 
studies where a relatively large number of samples need to be 
analyzed). Three label-free quantitation workflows are shown in 
Fig. 1g–i. In these workflows the different samples are analyzed 
separately and it is therefore critical that each step of the workflow 
is carefully optimized for reproducibility. In label-free quantita-
tion workflows, usually the peptide ion peaks are integrated and 
used as a measure of quantity. This allows the quantity of protein 
and peptides to be compared in different samples (Fig. 1g) or the 
absolute quantity can be calculated using a standard curve 
(Fig. 1h). The peptide fragment ions can also be used for quanti-
tation by integrating one or more of their peaks (Fig. 1i) as, for 
example, in Multiple Reaction Monitoring (MRM) (14). Using 
fragment ions for quantitation provides increased specificity 
because in addition to requiring the mass of the precursor ion be 
close to its predicted mass, the masses of the fragment ions are 
also required to be correct. Because peptides fragment in a 
sequence-specific manner, additional specificity can be gained by 
requiring that the relative intensities of the fragment ions do not 
deviate from the expected intensities. Alternative methods for 
quantitation using fragment mass spectra do not integrate peaks 
but are based on the results of searching protein sequence collec-
tions (see Note 1).

Currently, there are several software packages available for 
analysis of data from these different workflows where the quanti-
tation is done by integrating peaks of ions that correspond to 
peptides or their fragments (see Note 2 for a few examples). Here, 
we describe how the mass spectra are processed to allow for find-
ing the peptide peaks, detecting interference, and integrating the 
peaks to obtain a measure of the amount of material present in 
the samples.

Step 1: Detecting peptide peaks. Peptide peaks of interest for quan-
titation may range between smooth peaks with a large signal-to-
noise ratio and noisy peaks that are barely above the background. 
The width of these peaks is, however, characteristic of the resolu-
tion of the mass spectrometer, the data acquisition parameters 
used, as well as the mass-to-charge ratio (m/z) of the peptide. 
Therefore, peaks can readily be detected by scanning the mass 
spectra for local maxima of the expected width (see Note 3). In 
addition, peptides are not observed as a single peak in mass spec-
trometry, but as a cluster of peaks, because of the presence of 

2. Methods
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small amounts of stable heavy isotopes in nature (e.g., 1.11% 13C) 
and each peptide contains many carbon atoms. The relative inten-
sities of the peaks in these isotope clusters are characteristic of 
the atomic composition of the peptides and they are strongly 
dependent on the peptide mass (Fig. 2a–c, see Note 4).

A majority of quantitation experiments are performed by 
coupling liquid chromatography with mass spectrometry, which 
introduces a retention time dimension. During these experiments, 
usually the same peptide is observed during several adjacent time 
points (Fig. 2d–g) with highly abundant peptides typically being 
observed over larger time windows than low-abundance peptides. 
But even with separation in both m/z and retention time, it is not 
uncommon to have unwanted interference between peaks from 
different peptides (Fig. 2e, g).
Step 2: Detecting interference. The following characteristics of 
peptide peaks can be used as filters to differentiate them from 
interfering and non-peptide peaks: (1) the width of individual 
peaks in m/z and retention time, (2) the intensity distribution of 
the isotope clusters, and (3) the measured peptide m/z. These 
characteristics are shown in Fig. 3 for two peptides. The width of 
individual peaks as a function of m/z is highly characteristic of the 
instrument parameters with very little variation and therefore a 
narrow peak width filter can be used. The width of individual 
peaks as a function of retention time (Fig. 3a–c, j–l) shows larger 
variation. This variation is mainly dependent on the peak intensity 
and the elution time, although strong peptide sequence depen-
dent variation can also be observed, and therefore a wider filter 
must be applied. High-accuracy measurement of peptide mass is 
a sensitive and selective filter that is highly reproducible even at 
the tails of the peak where the intensity is low (Fig. 3g–i, p–r). 
The shape of the isotope distribution is also a sensitive and selec-
tive filter that can be used to detect interference from other peaks 
(Fig. 3d–f, m–o). A convenient measure of the similarity of iso-
tope distributions is the dot product (see Note 5) between them 
(Fig. 3f, o). The dot product can be applied to compare sets con-
taining any number of peaks, for example, to detect interferences 
when a set of fragment ions is monitored in a MRM experiment. 
In the example shown in Fig. 3, dot product analysis of the chro-
matograms shown in the panels on the right shows that only the 
first isotope cluster corresponds to the peptide of sequence 
YVLTQPPSVSVAPGQTAR, while the second and third peaks 
are interfering peaks from peptides whose first three isotope peaks 
have a similar m/z, but their relative intensity is different.
Step 3: Measuring peptide quantity. The quantity of peptides is 
measured by calculating the height or the area of the corresponding 
peaks in the ion chromatograms. Careful background subtraction 
is essential for accurate determination of both the height and the 
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Fig. 2. Isotope distributions of peptides. (a–c) The isotope distribution of peptides is strongly dependent on the peptide 
mass (see Note 4). (d–g) Examples of peptide isotope distributions observed by LC-MS with different levels of interfer-
ence from other peaks acquired using quadrupole time-of-flight MS.
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Fig. 3. Examples of the variation in mass measurements and the shape of isotope distributions. (a–i) Peptide with amino 
acid sequence: AADDTWEPFASGK; j–r) Peptide with amino acid sequence: YVLTQPPSVSVAPGQTAR. Panels from top to 
bottom: The intensity distribution of the first (a, j), second (b, k), and third (c, l) isotope peaks as a function of time; the 
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peak (the line represents the expected ratio based on the amino acid sequence); The normalized dot product of the three 
first peaks of the measured and the theoretical isotope distributions (f, o); the m/z distribution of the first (g, p), second 
(h, q), and third (i, r) isotope peaks as a function of time (the solid line represents the mass predicted from the amino acid 
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area of peaks (see Note 6). The advantage of using the height of 
the peak as the measure of quantity is the simplicity and robust-
ness of its calculation (e.g., the average or median height for a few 
points around the centroid can be used). The peak height is a 
good measure of quantity if the width of the peak does not vary 
between samples and the signal is strong with little noise. In con-
trast, the peak area is a better measurement of quantity when 
there is substantial noise because many more data points are used, 
but it is much more sensitive to interference from other peaks 
because of the larger area in the m/z and retention time space 
that is used. The difficulty in calculating the peak area is in decid-
ing where the peak ends and the background starts in both m/z 
and retention time dimensions. This determination can be very 
challenging for peaks with long tails. It is also important to use 
the same peak limits for a specific peptide in all samples. One way 
of circumventing the problem of finding the peak limits is to 
select a function and fit its parameters (e.g., centroid, width, 
skewness, etc.) to the peak and integrate the function. However, 
often it is not straightforward to find a function that fits well to 
all peaks in the spectrum.
Step 4: Matching peptides from different experiments. In many 
quantitation studies more than one experiment (i.e., replicates 
and/or multiple samples) is performed. This requires the match-
ing of the peptides quantified in the different experiments. For 
successful matching of peptides, the retention time scales of all 
experiments have to be aligned, because there are always uncon-
trolled variations in the experimental conditions that affect the 
peptide retention times in a nonlinear manner. This alignment can 
be done by identifying peaks present in all experiments that can be 
used as landmarks. These peaks are matched across experiments 
using either their mass and retention time, or their identity as 
determined by tandem MS. A smooth function is fitted to the 
retention times of these landmarks and used for aligning the reten-
tion times of all quantified peptides. The residual difference in 
retention time for the landmarks can be used to estimate the 
uncertainty in the alignment.

For some mass spectrometers, the m/z scale needs to be cali-
brated between experiments. This mass calibration can be done 
using the same landmarks as used for retention time alignment. 
When experiments are aligned in retention time and are mass cali-
brated, the quantified peptides can be matched within windows 
determined by the uncertainty in the retention time and the m/z.

The measured intensities of peptide peaks commonly vary from 
experiment to experiment in a global manner. It is therefore advis-
able to design experiments so that only a few of the quantified 
peptides have changes related to the hypothesis, and the majority 
of peptides change because of random variations in the experimen-
tal conditions. The randomly changing peptides can be used to 
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normalize the overall intensity using either their median change 
in the intensity ratios or by fitting an intensity dependent smooth 
function to the measured intensity ratios.
Step 5: Calculating protein quantity. Protein quantity can be 
estimated by measuring of peptide quantities. There are, how-
ever, several factors that can make the estimates of protein quan-
tity uncertain even when highly accurate peptide quantities have 
been obtained. Because only a few peptides are typically measured 
for a given protein, these peptides might not be sufficient to 
define all isoforms of the protein that are present in the sample – 
i.e., some of the peptide sequences might be shared with other 
proteins, making them only suitable for quantitating the group of 
proteins. A few peptides might also be modified, and the change 
in the amount of the modified and unmodified forms of the 
 protein is often not the same. Despite these issues, a reasonable 
estimate of the protein quantity can often be obtained even when 
only a few of its peptides are quantified. When many peptides are 
observed for a given protein it can be possible to even calculate 
the variation in quantity of several isoforms.
Step 6: Determination of the significance of the change in  quantity. 
The significance of a measured change in quantity can be calcu-
lated if the distribution of random quantity changes (due to 
uncontrolled variation of experimental conditions) is known 
(Fig. 4a). This distribution can be obtained by analysis of techni-
cal and biological replicates. When the distribution of random 
quantity changes is known, the significance of a measured change 
in quantity can be calculated by integrating under the curve from 
the measured change in quantity to infinity and dividing this area 
by the area under the entire distribution of random changes. This 
value represents the probability that the measured quantity change 
was obtained from purely random variations, that is, the probabil-
ity of rejecting the null hypothesis that there is no change in the 
experimental conditions. The distribution of random quantity 
changes is strongly dependent on the experimental conditions 
and the workflow that is chosen. For example, for label-free quan-
titation the distribution of random quantity changes depends on 
the number of replicates obtained (Fig. 4b–g). It is important to 
design quantitation experiments to minimize the width of the 
distribution of random quantity changes to allow for detection of 
small nonrandom changes.

 1. Alternative methods for quantitation search fragment mass 
spectra against a protein sequence collection and use the 
search results for quantitation. One method uses the number 

3. Notes
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of different fragment mass spectra that identifies a peptide as 
a measure of its quantity (15). Another method calculates a 
measure that is based on the fraction of the protein sequence 
that the identified peptides cover (16). However, these alter-
native methods that are not based on peak integration are 
generally less accurate when only a few fragment spectra or 
peptides are observed for a given protein because of the 
 limited statistics. On the other hand, they are less sensitive to 
interference and can often be more robust. 

 2. There are many software packages available for quantitation. 
A few examples of freely available software are listed below:

–1 –0.5 0 0.5 1
log2(ratio)

1-3-1
3-3-1

–1 –0.5 0 0.5 1
log2(ratio)

1-1-1
3-3-1

–1 –0.5 0 0.5 1

log2(ratio)

6-3-1
3-3-1

–1 –0.5 0 0.5 1

log2(ratio)

3-6-1
3-3-1

–1 –0.5 0 0.5 1

log2(ratio)

3-3-3
3-3-1

–1 –0.5 0 0.5 1
log2(ratio)

3-1-1
3-3-1

log2(ratio)

a

dcb

gfe

Fig. 4. (a) The distribution that represents the null hypothesis, that is, that a given ratio is random. This distribution can 
be obtained by analysis of samples where only random variation is expected (technical and biological replicates). Then 
the significance of a ratio measurement can be calculated by integrating this distribution from the measured ratio to 
infinity. (b–g) Combining data from repeat analysis makes the distribution that represents the null hypothesis narrower, 
and smaller changes can be detected. Examples of the effect of replicate analysis on the protein ratio distribution for a 
 workflow comprising immunoprecipitation, protein fractionation, and digestion (simulated data based on measurements 
of the variation in the individual steps) (26). Only limited improvements are observed beyond 3, 3, 1 repeat analyses for 
immunoprecipitation, protein fractionation and digestion, respectively (solid curves). Dotted curves: (b) 1, 1, 1; (c) 1, 3, 1; 
(d) 3, 1, 1; (e) 3, 3, 3; (f ) 3, 6, 1; (g) 6, 3, 1 repeat analyses for immunoprecipitation, protein fractionation and digestion, 
respectively.
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Name Type Location

ASAPratio (17) ICAT
SILAC

http://tools.proteomecenter.org/wiki/index.
php?title=Software:ASAPRatio

MaxQuant (18, 19) SILAC http://www.maxquant.org/

MSQuant (20) SILAC http://msquant.sourceforge.net/

Pview (21) SILAC Label-free http://compbio.cs.princeton.edu/pview/

Quant (22) iTRAQ http://sourceforge.net/projects/protms/

RAAMS (23) 16O/18O http://informatics.mayo.edu/svn/trunk/ 
mprc/raams/index.html

Skyline (24) MRM http://proteome.gs.washington.edu/ 
software.html

 3. For a mass spectrum where I(k) is the measured intensity at a 
point k with 0 ≤ k ≤ N, and N is the total number of points in 
the mass spectrum. The peaks are detected by calculating the 
sum, 

− <

= ∑
| | /2

( ) ( )
lk l w

S l I k  over the expected peak width wl for 

  each point, l, in the spectrum, and detecting local maxima in 
S(l). In cases where there is sufficient noise in the spectrum 
the signal-to-noise ratio is calculated by taking the ratio of the 
root mean square (RMS) of the intensities over the peak 

  (
− <

= −∑ 2

| | /2

ˆRMS ( ( ) ) /
l

l
k l w

I k I w , where Î  is the mean intensity 

  over the peak) and the RMS of the intensities in a nearby 
region where there are no peaks (see Note 6).

 4. Peptides are observed as clusters of peaks in mass spectrometry, 
because of the presence of small amounts of stable heavy iso-
topes in nature (e.g., 0.015% 2H, 1.11% 13C and 0.366% 15N, 
0.038% 17O, 0.200% 18O, 0.75% 33S, 4.21% 34S, 0.02% 36S). The 
intensities of the isotope distribution are calculated accurately 
by including all possible isotopes. The largest effect comes 
from 13C and a first order estimate of the relative peak intensi-

ties is given by (1 )m n m
m

n
T p p

m
− 

= −  
, where Tm is the inten-

sity of peak m in the distribution, m is the number of 13C, n 
the total number of carbon atoms in the peptide, and p is the 
probability for 13C (i.e., 1.11%). The isotope distribution of 
peptides is strongly dependent on the peptide mass because 
the number of atoms increases with mass, and therefore the 
probability increases for having one or more of the naturally 
occurring heavy isotopes.

 5. The normalized dot product between the measured intensities, 
1 2( , , , )nI I I= …I  and theoretical intensities 1 2( , , , )nT T T= …T  

of the isotope distribution is given by 

http://tools.proteomecenter.org/wiki/index.php?title=Software:ASAPRatio
http://tools.proteomecenter.org/wiki/index.php?title=Software:ASAPRatio
http://www.maxquant.org/
http://msquant.sourceforge.net/
http://compbio.cs.princeton.edu/pview/
http://sourceforge.net/projects/protms/
http://informatics.mayo.edu/svn/trunk/mprc/raams/index.html
http://informatics.mayo.edu/svn/trunk/mprc/raams/index.html
http://proteome.gs.washington.edu/software.html
http://proteome.gs.washington.edu/software.html
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= = =

⋅ = ∑ ∑ ∑2 2

1 1 1

/
| || |

n n n

k k k k
k k k

I T I T
I T
I T

. The range of the normalized 

  dot product is from −1 to 1. If the measured and theoretical 
intensities are identical the resulting dot product is 1 and any 
differences between them will result in lower values of the dot 
product.

 6. Low-frequency background can be removed by fitting a 
smooth curve to the regions of the mass spectrum where 
there are no peaks. This smoothing can, for example, be 
achieved by applying a very wide and strong smoothing func-
tion to the entire spectrum, which will result in a smooth 
function slightly higher than the background. Subsequently, 
points in the original spectrum that are far above this smooth 
curve are removed (i.e., the peaks). The smoothing proce-
dure is repeated, this time without including the peaks, to 
produce a smooth function that will closely follow the back-
ground of the spectrum (25).
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Chapter 14

Modeling Experimental Design for Proteomics

Jan Eriksson and David Fenyö 

Abstract

The complexity of proteomes makes good experimental design essential for their successful investigation. 
Here, we describe how proteomics experiments can be modeled and how computer simulations of these 
models can be used to improve experimental designs.

Key words: Proteomics, Mass spectrometry, Experimental design, Simulations, Modeling

The proteomics researcher that aims at comprehensive proteome 
analysis using mass spectrometry (MS)-based methods will face 
experimental challenges. These challenges are due to the many 
different proteins encoded by a genome, the rich variation of 
protein posttranslational modifications, and the large concentra-
tion differences between different proteins. The range of protein 
concentrations have been measured to be six orders of magni-
tude in Saccharomyces cerevisiae (1) and estimated to be larger 
than ten orders of magnitude in body fluids (2). In contrast to 
these wide abundance ranges, the MS detection methods typi-
cally employed in proteomics span only a few orders of magni-
tude in range, hampering the identification and quantitation of 
low-abundance proteins. A good experimental design for pro-
teomics should manage to keep the detection of low-abundance 
proteins and the cost for instrumentation and analysis at reason-
able and desired levels.

Proteomics researchers have realized that the complexity and 
the range of protein abundance of a proteome make it necessary 
to apply various separation protocols prior to the MS-analysis. 

1. Introduction

David Fenyö (ed.), Computational Biology, Methods in Molecular Biology, vol. 673,
DOI 10.1007/978-1-60761-842-3_14, © Springer Science+Business Media, LLC 2010
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Most current experimental designs in proteomics (3) involve 
(1) taking samples of proteins relevant to the biological hypothesis 
or phenomenon explored; (2) protein separation by liquid chro-
matography (LC) and/or gel electrophoresis (4); (3) protein 
digestion using an enzyme of high specificity; (4) chromato-
graphic (5) or electrophoretic separation (6) of the proteolytic 
peptides; (5) mass spectrometric (MS) analysis (7); and (6) search-
ing a protein sequence collection to identify proteins (8–10) 
based on the MS and MS/MS information. There are many 
choices available for each step in the workflow, and this makes the 
parameter space for the workflow design large (Fig. 1).

Optimization of experimental design in the large parameter 
space by relying on experiments only would be prohibitively 
expensive, and it is therefore bound to yield an incomplete 
investigation. Instead, we have proposed a simulation-based 
optimization approach (11) that employs an experimental model. 
This approach can be used to evaluate the success of current 
designs, predict the performance of future, and further optimized 
proteomics experimental designs. Here, we describe methods for 
building the experimental model, and show an example how the 
model can be applied to optimize proteomics experiments.
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Fig. 1. (a) Model of a common proteomics experiment. (b) Generalized model of a proteomics experiment.
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Any computer simulation (see Note 1) needs input of reasonable 
assumptions about the model parameters in order to generate 
meaningful predictions about the experimental reality. The best 
overall strategy to improve experimental design is to use simula-
tions together with good background information about the 
experimental components. In a general model of proteomics 
experiments there are many parameters (Fig. 1b), and many of 
these can be very difficult to determine (see Note 2), but often a 
simple model is sufficient to find the bottle-necks in the experi-
mental design. The benefit of simulations is that once there is 
meaningful information available about parts of a system, this 
information can be employed in many different combinations in 
the computer to generate predictions much more rapidly than by 
experimental investigation. The simulations can also be used to 
determine which parameters are important to determine experi-
mentally. Therefore, the proteomics researcher that would like to 
investigate and improve an experimental design should perform 
some model experiments or by other means determine the impor-
tant model parameters. Pertinent information about all the parts 
that are important for the experimental design should be derived. 
The task can be viewed as containing three parts: (1) the protein 
sample, (2) the peptide sample, and (3) the mass spectrometry.

The protein abundance distribution in the sample is always 
uncertain, but models describing two major groups of distribu-
tions, tissue (Fig. 2a) and body fluid (Fig. 2b), have been suggested 
(11). The tissue distribution is based on protein quantitation 
experiments using an antibody against a tag engineered into the 
protein sequence of individual S. cerevisiae genes, followed by 
quantitative western blot analysis (1). This experiment revealed 
a bell-shaped distribution of proteins ranging about six orders 
of magnitude in abundance. The body fluid  distribution was 

2. Methods
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Fig. 2. Protein abundance distributions for (a) tissue and (b) body fluid.
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assumed to cover a larger range of protein  abundances (2), and 
to be bell-shaped at high abundances, and flat at low abundances. 
The flat shape at low abundances was chosen because many dif-
ferent tissues in the body contribute proteins at a low level to the 
body fluid proteome. These distributions need to be calibrated 
based on the specific details of the experiment modeled. For 
example, these models do not take into account modified pro-
teins. A scaling toward lower abundances is needed if, e.g., phos-
pho-proteins are to be detected.

The next steps in the workflow that need to be modeled are 
protein separation by electrophoresis or chromatography and the 
subsequent digestion of the proteins with endoproteases. The losses 
associated with these steps need to be estimated. Here we refer this 
mixture of proteolytic peptides originating from the digested pro-
teins as the peptide sample.

Separation of peptides is typically done using a reverse phase 
chromatography (RPC) column. The loading capacity and the 
resolving power of the RPC column should be estimated and 
incorporated in the model. The elution time of peptides in RPC 
is dependent on their sequence and can be estimated (12). There 
are many possible sources of losses for peptides: they can stick to 
walls, not bind to the column, or bind too hard to the column so 
that they cannot be eluted. All these losses are sequence depen-
dent and difficult to elucidate in detail, but they can be estimated 
from model experiments.

In model experiments, samples from peptide libraries can be 
employed to estimate the detection sensitivity and dynamic range of 
the mass spectrometer. Note that the dynamic range of the mass 
spectrometer is the ratio of concentrations for two different peptide 
species that can be detected simultaneously, and it is much narrower 
than the range of concentrations over which a single peptide species 
can be detected when there are no other peptides in the sample. The 
rate of acquisition of the mass spectrometer can be determined in 
various modes of operation. In experimental designs with the mass 
spectrometer coupled online with the RPC column, the limited rate 
of acquisition will cause losses of peptides that are potentially detect-
able. Other sources of losses in the mass spectrometry step include 
low ionization and fragmentation efficiencies.

Using a simple model for a typical proteomics experiment, we 
investigated the effect of changing the dynamic range and detec-
tion limit of the mass spectrometer on the success rate and the 

2.2. The Peptide 
Sample

2.3. The Mass 
Spectrometry

3. Results
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relative dynamic range (RDR). The success rate indicates what 
fraction of the proteome is detected (Fig. 3a), and the RDR indi-
cates how deep down into the low abundance proteins an experi-
mental design can manage to detect proteins (Fig. 3b). The 
assumptions of the simple model are that (1) the abundance dis-
tribution of proteins in the sample is given by Fig. 2a; (2) proteins 
are separated into a number of fractions each having the same 
number of proteins without any losses; (3) the proteins in frac-
tion are digested with trypsin and loaded onto a reverse phase 
column with the peptides having a probability of being lost; (4) the 
peptides are separated by RPC and analyzed by MS with a certain 
probability of not being detected.

Figure 4 displays an example of how simulations (see Note 1) 
can reveal the impact on the success rate and the RDR by one 
feature of the sample preparation and two features of the mass 
spectrometer: the degree of protein separation, the MS detection 
limit, and the MS dynamic range. The top left panel of Fig. 4a 
indicates how the Success rate and the RDR vary when first 
improving the protein separation, then improving the MS detec-
tion limit, and finally improving the MS dynamic range. The right 
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panel of Fig. 4a shows the protein abundance distribution model 
employed in the simulation together with the distribution of the 
proteins detected for the initial design (Fig. 4a, 1), the design 
with better protein separation (Fig. 4a, 2), after improving the 
detection limit (Fig. 4a, 3), and after enhancing the MS dynamic 
range (Fig. 4a, 4). It is evident that all these three features of the 
experimental design can influence strongly the outcome of an 
experiment. The way in which design parameters are changed can 
however be critical. For example, if instead upon improving the 
protein separation, the MS dynamic range is enhanced, there is 
no improvement of the success rate and the RDR until also the 
MS detection limit is improved (Fig. 4b, 1–4).

Simulations also reveal that improving the detection sensitivity 
of the mass spectrometer is analogous to increasing the amount of 
peptide material loaded in the peptide separation step, and that 
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Fig. 4. Results from simulations showing the effect of protein separation and the effect of MS detection limit and MS 
dynamic range on the success rate, and the relative dynamic range (RDR) for detection of proteins from Homo sapiens 
tissue samples. (a) Left : RDR as a function of success rate when first improving the protein separation and going from 
30,000 (1) to 300 proteins (2) in each fraction, then enhancing the sensitivity of the mass spectrometer from 1 fmol to 
1 amol (3), and finally improving the MS dynamic range from 102 to 104 (4). Right : The protein abundance distribution 
assumed for human tissue together with the distribution of the proteins detected for the experimental designs (1–4).  
(b) Same as in (a), but with the MS dynamic range improved prior to improving the MS detection sensitivity. Note that the 
effect of improving the dynamic range is negligible compared with the effect of improving the detection sensitivity.
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improving the MS dynamic range is analogous to enhancing the 
proteolytic peptide separation (11). The starting point in Fig. 4 
assumes no protein separation, a load of 0.1 mg of peptides in the 
peptide separation step that separates the peptides into 100 frac-
tions, and a mass spectrometer with a detection sensitivity of 1 fmol 
and a dynamic range of 100. This setup is not uncommon in pro-
teomics, but is obviously the wrong choice for comprehensive anal-
ysis. If comprehensive analysis is desired, Fig. 4 and results in ref. 
11 show clearly that the practitioner should avoid the design 
(Fig. 4a, 1) and employ some protein separation and either load 
more material in the peptide separation step or choose a mass spec-
trometer with better detection sensitivity prior to either improving 
separation of peptides or improving the MS dynamic range.

 1. In the simulations, a mixture of human proteins is randomly 
selected. The estimated distribution of protein amounts in 
the sample (Fig. 2a) is used to assign an amount to each pro-
tein in the mixture, and the protein mixture is digested. The 
resulting proteolytic peptides are randomly selected based on 
a precolumn survival probability. The surviving peptides are 
separated into fractions according to a separation model (12). 
The separated peptides are randomly selected based on a 
postcolumn survival probability. The surviving peptides are 
considered detected by MS if their amount is above the detec-
tion limit and their peak intensity is within the dynamic range 
of the mass spectrometer. The entire process is repeated many 
times to obtain sufficient statistics.

 2. A general model for a proteomics experiment has many 
parameters and it is often not feasible to determine many of 
them experimentally. An alternative to experimental determi-
nation of model parameters is to investigate how sensitive the 
conclusions are to the model parameters. The experimental 
effort does not need to be focused on parameters that do not 
affect the conclusions when varied within a wide range. For 
example, the loss of material in the different workflow steps 
are often difficult to estimate in absolute numbers, therefore 
their impact was investigated by changing the pre- and post-
column peptide survival rates between 10 and 100%. Within 
this range of peptide survival rates the conclusions drawn 
from Fig. 4 did not change.

4. Notes
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Chapter 15

A Functional Proteomic Study of the Trypanosoma brucei 
Nuclear Pore Complex: An Informatic Strategy

Jeffrey A. DeGrasse and Damien Devos 

Abstract

The nuclear pore complex (NPC) is the sole mediator of transport between the nucleus and the cytoplasm. 
The NPC is composed of about 30 distinct proteins, termed nucleoporins or nups. The yeast (Rout et al., 
J Cell Biol 148:635–651, 2000) and mammalian (Cronshaw et al., J Cell Biol 158:915–927, 2002) NPC 
have been extensively studied. However, the two species are relatively closely related. Thus, to reveal 
details about NPC evolution, we chose to characterize the NPC of a distantly related organism, 
Trypanosoma brucei. We took a subcellular proteomic approach and used several complementary strate-
gies to identify 865 proteins associated with the nuclear envelope. Over 50% of ~8,100 open reading 
frames of T. brucei have little or no known function because T. brucei is distantly related to model meta-
zoa and fungi (Berriman et al., Science 309:416–422, 2005). By sequence similarity alone, we could 
identify only five nucleoporins. This chapter outlines our strategy to identify 17 additional nucleoporins 
as well as contribute functional annotation data to the T. brucei genome database.

Key words: Trypanosoma brucei, Functional proteomics, Functional annotation, Informatics, 
Evolution, Nuclear pore complex, Structure prediction

The reductionist scientific experiment focuses on one molecule, 
gene, or protein. Rapidly advancing and accessible computational 
tools have allowed scientists to probe complex biological net-
works with an integrative strategy. This interdisciplinary, and 
often collaborative, field is known as systems biology. Genomics 
and proteomics are both focused on the complicated interaction 
networks of biological macromolecules and how these networks 
respond to stimuli.

Functional genomics uses prediction algorithms to identify 
and functionally annotate putative open reading frames (ORFs). 

1. Introduction

David Fenyö (ed.), Computational Biology, Methods in Molecular Biology, vol. 673,
DOI 10.1007/978-1-60761-842-3_15, © Springer Science+Business Media, LLC 2010
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In a large proportion of the cases, function is predicted by the 
similarity of a query ORF to a growing library of known genes or 
domains in an automated fashion. Inevitably, there is a subset of 
ORFs that do not significantly match to a previously functionally 
annotated gene due to the loss of sequence similarity through 
divergent evolution. In the case of Trypanosoma brucei, over 50% 
of the ORFs have insufficient functional annotation (3).

The union of separation science, biological mass spectrome-
try, and informatics led to the field of proteomics. With appropri-
ate sample preparation and separation (e.g., chromatography), 
the current generation of mass spectrometers are sufficiently effi-
cient and sensitive to analyze and indentify a few thousand pep-
tides, corresponding to several hundred proteins, in a single 
experiment (4). The identification of peptides from the raw mass 
spectra relies heavily on informatics and genomics (5). At a mini-
mum, an early draft genome sequence is required for a large-scale 
proteomic project.

The flow of information between functional genomics and 
proteomics is bidirectional. Functional genomics enables the pro-
teomic community to quickly identify the function of an identi-
fied protein. Proteomic data can reveal that an ORF is expressed 
under the conditions of the proteomic experiment and thus con-
firming that it is not a pseudogene.

We discuss here the role of informatics as a bridge between 
functional genomics and proteomics to reveal the functional 
nature of a protein. As a case study, we outline our general 
informatics strategy to identify the protein components (col-
lectively known as nucleoporins or nups) of the T. brucei 
nuclear pore complex (NPC)(23). T. brucei is a member of the 
order Kinetoplastida, which is distantly related to other model 
organisms, such as mammals and yeast. This distant relation-
ship challenges automated functional genomics. Thus, despite 
identifying over 865 proteins associated with the T. brucei 
nuclear envelope (NE), the paucity of functional annotation 
data challenged our ability to readily ascribe function to a sig-
nificant number of the experimentally identified proteins. The 
integrative strategy we outline in this chapter overcomes that 
challenge and allowed us to successfully identify the vast major-
ity of T. brucei nups.

The programs used in this strategy are outlined below (see Note 1).

 1. Sequence alignment:
(a) PSI-BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) (6).

2. Materials

http://www.ncbi.nlm.nih.gov/BLAST/
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(b) FASTA (http://fasta.bioch.virginia.edu/) (7).
(c) HMMER (http://hmmer.janelia.org/) (8).

 2. Pattern matching: ProteinInfo (http://prowl.rockefeller.
edu/).

 3. Motif prediction:
(a) Phobius (http://phobius.cbr.su.se/) (9).
(b) DISOPRED (http://bioinf.cs.ucl.ac.uk/disopred/) (10).
(c) COILS (http://www.ch.embnet.org/software/COILS_

form.html) (11).
(d) Nucleo (http://pprowler.itee.uq.edu.au/Nucleo-Release- 

1.0/) (12).
 4. Secondary structure prediction: PSIPRED (http://bioinf.

cs.ucl.ac.uk/psipred/) (13).
 5. Fold prediction: HHSearch (http://toolkit.tuebingen.mpg.

de/hhpred) (14).
 6. Multiple sequence alignments: ClustalW/ClustalX (http://

www.clustal.org/) (15).

A subcellular proteomic approach was utilized to identify proteins 
associated with the T. brucei NE and, specifically, the trypano-
some nuclear pore complex (TbNPC). To that end, we isolated 
the NE from the cytoplasm and the nucleoplasm (16, 17). Using 
several complementary proteomic strategies, such as hydroxyapa-
tite chromatography LC-MS and SDS–PAGE MALDI-MS, we 
identified 865 proteins associated with the NE.

To identify the putative nucleoporins (nups) present in our 
dataset, the following strategy was developed (see Fig. 1). This 
general strategy is necessary when significant primary structure 
similarity between species has been lost due to divergent evolu-
tion. As in the case described here, inferring protein function 
between distantly related species by homology can be particularly 
difficult. In trypanosomes, sequence homology alone is sufficient 
to identify only five constituents (of ~30 predicted nups in yeast 
(1) and humans (2)) of the TbNPC (TbSec13, TbNup96, 
TbNup158, TbNup144, and TbNup62). Using the below strat-
egy, we identified 17 additional nups, allowing us to characterize 
the majority of the trypanosome nups.

 1. We begin parsing the 865 member dataset by cross referenc-
ing each identified protein to its functional annotation page 
on GeneDB, the functional annotation database of the 

3. Methods

3.1. Parsing the 
Dataset and Homology 
Searching

http://fasta.bioch.virginia.edu/
http://hmmer.janelia.org/
http://prowl.rockefeller.edu/
http://prowl.rockefeller.edu/
http://phobius.cbr.su.se/
http://bioinf.cs.ucl.ac.uk/disopred/
http://www.ch.embnet.org/software/COILS_form.html
http://www.ch.embnet.org/software/COILS_form.html
http://pprowler.itee.uq.edu.au/Nucleo-Release-1.0/
http://pprowler.itee.uq.edu.au/Nucleo-Release-1.0/
http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
http://toolkit.tuebingen.mpg.de/hhpred
http://toolkit.tuebingen.mpg.de/hhpred
http://www.clustal.org/
http://www.clustal.org/
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Wellcome Trust Sanger Institute. If a protein had been 
 functionally annotated, and found not to be related to the 
NE or the NPC, then the protein was cataloged and set aside. 
There is a possibility that these proteins may functionally 
interact with the NE, but further study would be required to 
demonstrate such an interaction or localization. In this way, 
497 proteins were set aside from further interrogation and 
five proteins were immediately identified as putative nups.

 2. Following genome sequencing, ORFs are automatically 
predicted and functionally annotated. To reduce the number 
of incorrectly predicted and functionally annotated ORFs, 
high-confidence thresholds are set for these predictions. This 
leads to a large number of proteins without functional 
annotation due to low pairwise alignment scores. Thus, we 
first manually functionally annotated and characterized the 
remaining 368 proteins identified by mass spectrometry by 
pairwise alignments. The sequences were queried using both 
PSI-BLAST and FASTA against the National Center for 
Biotechnology Information (NCBI) nonredundant database 
(see Note 2). The alignments were seeded with a word size 
of 2, filters were turned off, and alignments were scored 
against the BLOSUM45 matrix. Setting the word size to 
2 increases the sensitivity of the alignment at the expense of 
computational efficiency, and the BLOSUM45 matrix is 

Fig. 1. Flowchart illustrating the logical parsing of the proteomic dataset as described in this strategy.
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calibrated for low-similarity alignments. The resulting 
 alignments were individually inspected by hand to avoid 
false positives (see Note 3).

 3. Querying the domain architectures between distant orthologs 
is more sensitive than querying the entire primary structure 
(18). To identify conserved domains, we conducted a hidden 
Markov model (HMM) alignment using HHMer, to the 
Pfam HMM-profile database of domain families (19). This 
search is particularly sensitive, because the query sequence is 
aligned to a profile, or consensus sequence, generated by a 
family of sequences.

Occasionally, a domain will have a conserved sequence pattern. 
Within the nups, the FG-repeat domain contains the FG dipep-
tide at regular or irregular intervals. Based on the FG-repeat 
domains examined prior to this study, we established the follow-
ing criteria for the prediction of FG-repeat domains: the FG 
dipeptide is present at least five times within 200 residues; there 
is a depletion of arginine; and the intervening sequence is compo-
sitionally enriched in proline, serine, threonine, asparagine, and 
glutamine. Aside from the FG dipeptide, the intervening sequence 
is not conserved enough to be confidently identified by BLAST 
alone. Thus, we also scanned both the trypanosome protein data-
base (http://www.genedb.org) and our dataset for the presence 
of FG-repeat domains by using a pattern recognition algorithm 
within ProteinInfo (20). The pattern is entered using regular 
expressions to allow for plasticity in the sequence. The search 
revealed ten putative FG-repeat containing nups within our pro-
teomic dataset that met the overall criteria for an FG-repeat 
domain. All recognizable FG-repeat domains in the trypanosome 
genomic database were identified in the proteomics dataset.

At this point, we have identified ten FG-repeat containing nups 
(two of which were previously annotated) as well as three previ-
ously annotated nups. To continue parsing the remaining ~200 
proteins, we predicted the presence of several types of motifs with 
various prediction algorithms. We concentrated on the motifs 
that are present within proteins known to associate with the NPC 
and NE, which include transmembrane helices (Phobius), natively 
disordered regions (Disopred and PONDR), coiled coils (COILS), 
and putative nuclear localization sequence (NLS, Nucleo) (see 
Note 4). We kept for further investigation those results that had 
better than an 80% predictive confidence score, based on the 
benchmarks of the individual algorithm.

Exhausting primary structure similarity and motif prediction, we 
turn next to secondary structure prediction to identify nups in 

3.2. Pattern Matching

3.3. Motif Prediction

3.4. Secondary 
Structure Prediction

http://www.genedb.org
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our proteomic dataset. Previous work showed that nups fall into 
eight major fold types with characteristic secondary structure 
patterns (21). To facilitate the detection of these specific fold 
types, we predicted the secondary structure of all 368 unanno-
tated proteins using PSI-PRED. When interpreting the results, 
one should bear in mind that these algorithms require primary 
structure similarity for accurate prediction. For the purposes of 
this study, we are not concerned by the details of element size and 
boundaries. We are concerned only whether a domain is primarily 
b-sheet rich or a-helix rich, as the previously identified fold types 
have these characteristics. This method allowed us to identify nine 
additional putative T. brucei nups for a total of 22 T. brucei nups.

Complementary to secondary structure prediction, we predicted 
the three-dimensional fold type of the putative trypanosome nups 
using the HHSearch algorithm. We considered a protein a nup if 
it was confidently predicted to have one of the fold types previ-
ously defined as a nup-specific fold type (21). The confidence 
increased, if the arrangement of the domains was consistent with 
previously described architectures (21, 22).

For several known domains and conserved sequences, multiple 
sequence alignments were conducted with ClustalX using default 
settings. Conserved residues are indicative of a functional role 
within the NPC and nucleocytoplasmic transport and, whenever 
possible, were cross checked with the literature for any mutational 
analysis. The multiple alignments also elucidate phylogenetic 
relationships and probe the evolutionary history of the system of 
interest.

This strategy yielded a comprehensive inventory of the T. brucei 
nups. By searching for modules using the algorithms outlined in 
the previous sections, rather than sequence similarity alone, we 
identified an additional 17 putative nups, for a total of 22 nups. 
Based on comparisons with the nup inventories of NPCs from 
vertebrates and yeast, we estimate that we have identified at least 
80%, by mass, of the trypanosome NPC. We anticipate that the 
balance is most likely species-specific or highly divergent nups, 
which would be difficult to identify within the proteomic dataset 
by comparative methods. Of the 22 putative TbNups identified in 
this work, 21 were confirmed by fluorescence microscopy local-
ization in vivo.

Aside from the 497 annotated, but unrelated, proteins and 
the 22 nups, we characterized the remaining 346 functionally 
unannotated proteins within the proteomic dataset. Using the 
strategies noted above, we found 23% of these proteins contain at 
least one coiled coil, 30% of the unannotated proteins are pre-
dicted to have at least one transmembrane helix (TMH), and 9% 

3.5. Fold Prediction

3.6. Multiple 
Alignments

3.7. Concluding 
Remarks
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of the proteins do contain an NLS. At least one Pfam domain was 
identified in 33% of the unannotated proteins. The details of these 
domains and motifs was uploaded to the T. brucei functional 
genomics database to participate in the functional characteriza-
tion of this organism.

 1. This is not an exhaustive list of available programs. Others 
may be found at sites such as the European Bioinformatics 
Institute (EBI) toolbox (http://www.ebi.ac.uk/Tools/) and 
the Swiss Institute of Bioinformatics (SIB) ExPASy (Expert 
Protein Analysis System) server (http://us.expasy.org/). 
Advanced users may consider downloading and executing 
local versions of informatic programs described in this chap-
ter. Doing so allows the user to search custom self-curated 
databases and scoring matrices (to reduce false-positive rate), 
and the outputs can be readily saved. Also, because the pro-
gram will run faster on a local computer, the user can run 
several experiments with different parameters to test the 
robustness of a result.

 2. Unless otherwise stated, the default parameters were used for 
each program.

 3. While Expect scores are a good indicator of a confident 
alignment, a trained eye can inspect the alignment closely 
to see if the score has not been artificially inflated due to low-
complexity regions (regions that contain repetitive sequences) 
or artificially deflated due to small, but significant, regions of 
similarity.

 4. We hasten to add that NLS prediction is not as sophisticated 
as other motif prediction algorithms, and the results should 
be used with caution until further benchmark standards have 
been established.
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Chapter 16

Inference of Signal Transduction Networks  
from Double Causal Evidence

Réka Albert, Bhaskar DasGupta, and Eduardo Sontag 

Abstract

Here, we present a novel computational method, and related software, to synthesize signal transduction 
networks from single and double causal evidences. This is a significant and topical problem because there 
are currently no high-throughput experimental methods for constructing signal transduction networks, 
and because the understanding of many signaling processes is limited to the knowledge of the signal(s) 
and of key mediators’ positive or negative effects on the whole process. Our software NET-SYNTHESIS 
is freely downloadable from http://www.cs.uic.edu/~dasgupta/network-synthesis/.

Our methodology serves as an important first step in formalizing the logical substrate of a signal 
transduction network, allowing biologists to simultaneously synthesize their knowledge and formalize 
their hypotheses regarding a signal transduction network. Therefore, we expect that our work will appeal 
to a broad audience of biologists. The novelty of our algorithmic methodology based on nontrivial com-
binatorial optimization techniques makes it appealing to computational biologists as well.

Key words: Computational biology, Network inference, Signal transduction, Systems biology, 
Double causal evidence

Most biological characteristics of a cell involve complex interac-
tions between its numerous constituents such as DNA, RNA, pro-
teins, and small molecules (1). Cells use signaling pathways and 
regulatory mechanisms to coordinate multiple functions, allowing 
them to respond to and acclimate to an ever-changing environ-
ment. In a signal transduction network (pathway), there is typically 
an input, perceived by a receptor, followed by a series of elements 
through which the signal percolates to the output node, which 
represents the final outcome of the signal transduction process. For 
a cellular signal transduction pathway not involving alterations in 

1. Introduction
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gene expression, elements often consist of  proteinaceous receptors, 
intermediary signaling proteins, metabolites, effector proteins, and 
a final output that represents the ultimate combined effect of the 
effector proteins. If the signal transduction process includes regula-
tion of the transcript level of a particular gene, the intermediate 
signaling elements will also include the gene itself and the tran-
scription factors that regulate it, as well any small RNAs that regu-
late the transcript’s abundance, with the final output being presence 
or absence of transcript. Genome-wide experimental methods now 
identify interactions among thousands of proteins (2–5). However, 
the state-of-the-art understanding of many signaling processes is 
limited to the knowledge of key mediators and of their positive or 
negative effects on the whole process.

The experimental evidence about the involvement of specific 
components in a given signal transduction network frequently 
belongs to one of these three categories:

 (a) Biochemical evidence. This type of evidence provides informa-
tion on enzymatic activity or protein–protein interactions. 
These are “direct,” physical interactions. Examples include:
•	 Binding	of	two	proteins,
•	 A	 transcription	 factor	 activating	 the	 transcription	 of	 a	

gene, or
•	 A	 simple	 chemical	 reaction	 with	 a	 single	 reactant	 and	

single product.
 (b) Pharmacological evidence. This type of experimental evidence 

is generated by processes in which a chemical is used either to 
mimic the elimination of a particular component or to exog-
enously provide a certain component, leading to observed 
relationships that are not direct interactions but indirect 
causal relationships most probably resulting from a chain of 
direct interactions and/or reactions.

 (c) Genetic evidence of differential responses to a stimulus. Such 
evidence in a wild-type organism versus a mutant organism 
implicates the product of the mutated gene in the signal 
transduction process. This category is a three-component 
inference as it involves the stimulus, the mutated gene prod-
uct, and the response. We will call this category as a double 
causal inference.

In this chapter, we describe a method for synthesizing single and 
double causal information into a consistent network. Our method 
significantly expands the capability for incorporating indirect (path-
way-level) information. Previous methods of synthesizing signal 
transduction networks only include direct biochemical interactions, 
and are therefore restricted by the incompleteness of the experi-
mental knowledge on pair-wise interactions. Figure 1 shows a sche-
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matic diagram of our overall goal. Mathematical and more technical 
details about our method are available in our publications (6–9).

A starting point in applying our method involves distilling 
experimental conclusions into qualitative regulatory relations 
between cellular components. We differentiate between positive 
and negative regulation by using the verbs “promote” and 
“inhibit” and representing them graphically as → and , respec-
tively (see Fig. 2).	Biochemical	and	pharmacological	evidence	is	
represented as a component-to-component relationship, such as 
“A	 promotes	 B,”	 and	 is	 incorporated	 as	 a	 directed	 edge	 (also	
called	 link)	 from	vertex	 (also	called	node)	A	 to	B	 (see	Fig.	2). 
Edges corresponding to “known” (documented) direct interac-
tions are marked as “critical.” Genetic evidence leads to double 

single causal
relationship

A → B

double causal
relationship

A → (B → C)

additional
information

Method
(algorithms, software)

FAST

minimal complexity
biologically relevant

Fig. 1.  A schematic diagram of the overall goal of our method.

Single causal relationships

A promotes B A → B

A inhibits B

Illustration of double causal relationships
C promotes the process of A promoting B

A B

BA

C

BA
pseudo

Fig. 2. Direct and double causal interactions. Illustration of graph–theoretic interpreta-
tions of various types of interactions.
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causal inferences of the type “C promotes the process through 
which	A	promotes	B.”	We	assume	that	a	three-node	double	causal	
inference corresponds to an intersection of two paths (one path 
from	A	to	B	and	another	path	 from	C	to	B)	 in	the	 interaction	
network; in other words, we assume that C activates an unknown 
intermediary (pseudo)	vertex	of	the	AB	path;	see	Fig.	2 for a picto-
rial illustration.

The main idea of our method is to find a minimal graph, both 
in terms of pseudo-vertex numbers and noncritical edge num-
bers, that is consistent with all reachability relationships between 
nonpseudo (“real”) vertices. A schematic diagram of an overall 
high-level view of our method is shown in Fig. 3 and a detailed 
diagram appears in Fig. 4. Two main computational steps involved 
are: (1) binary transitive reduction	(BTR)	of	a	resulting	graph	sub-
ject to the constraints that no edges flagged as direct are eliminated 
and (2) pseudo-vertex collapse (PVC) subject to the constraints that 
real vertices are not eliminated. In the next two subsections, we 
discuss these two computational substeps in more detail.

Intuitively, the PVC problem is useful for reducing the pseudo-vertex 
set to the minimal set that maintains the graph consistent with all 
double causal experimental observations. Computationally, an exact 
solution of this problem can be obtained in polynomial time.

The PVC operation is shown schematically in Fig. 5. Mathe-
matically, the PVC computational problem can be defined as fol-
lows. Our input is a signal transduction network G = (V, E) with 
vertex set V and edge set E in which a subset of vertices are pseudo-
vertices. For any vertex v, the vertex sets are defined as follows:

in (v) = {(u,x) | u has a path to v of type x with x ∈{→

out (v) = {(u,x) | u has a path to v of type x with x ∈{→

1.1. Pseudo-vertex 
Collapse

Synthesize single causal relationshipsSynthesize single causal relationships

OptimizeOptimize

Synthesize double causal
relationships

Synthesize double causal
relationships

OptimizeOptimize

Interaction
with

biologists

Interaction
with

biologists

BTRBTR

PVCPVC

BTRBTR

Fig. 3. High-level description of the network synthesis process. PVC and BTR refer to the 
pseudo-vertex collapse and the binary transitive reduction computational steps, 
respectively.
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Collapsing two vertices u and v is permissible provided both 
are not real vertices, in(u) = in(v) and out(u) = out(v). A PVC 
operation is as follows: if permissible, collapse two vertices u and v 
to create a new vertex w, make every incoming (respectively, out-
going) edge to (respectively, from) either u or v an incoming 
(respectively, outgoing) edge from w, remove any parallel edges 
that may result from the collapse operation and also remove both 
vertices u and v. A valid solution consists of a network G ′ = (V ′, 
E ′) obtained from G by a sequence of permissible collapse opera-
tions; the goal is to minimize the number of edges in E ′.

1. [encode single causal relationships]
1.1 Build networks for connections like A → B and A ┤B noting each critical edge.

1.2 Apply BTR
2. [encode double causal reltionships]

2.1 For each double causal relationship of the form A → (B → C) with x,y ∈ {0,1}, add new nodes  
and/or edges as follows:

• if  B → C ∈ Ecritical then add A → (B → C)
• if  no subgraph of the form (for some node D with b = a+b = y (mod 2) )

then add the subgraph (where P is a new pseudo-node and b = a+b = y (mod 2) )

2.2 Apply PVC

3. [final reduction] Apply BTR

x y

x

x

x

y y

A

B D C

ba

a b

A

PB C

Fig. 4. Algorithmic details of the basic network synthesis procedure (8). In this diagram, a right arrow → labeled by 0 
denotes a “promotes” relation and a right arrow → labeled by 1 denotes an “inhibits” relation. Similarly, a right double 
arrow ⇒ labeled by 0 denotes a “promotes” path and a right double arrow ⇒ labeled by 1 denotes an “inhibits” path. 
E

critical denotes the set of critical edges. The mathematical notation like a + b = c (mod 2) indicates that a + b has the same 
remainder as c when divided by 2.

u

v

in(u) = in(v) out(u)=out(v)

uv

pseudo-vertices

new 
psuedo-vertex

Fig. 5. Pictorial illustration of a PVC operation. Repeatedly performing this operation results in a graph with fewer nodes 
and edges
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Intuitively,	the	BTR	problem	is	useful	for	determining	a	sparsest	
graph consistent with a set of experimental observations. 
Computationally, in contrast to the PVC problem, an exact solu-
tion of this problem is hard.

The	BTR	operation	is	shown	schematically	in	Fig.	6. Mathe-
matically,	the	BTR	computational	problem	can	be	defined	as	fol-
lows. Our input is a signal transduction network G = (V, E) with a 
subset Ec ⊆ E of edges marked as critical. A valid solution is a sub-
set of edges E¢, with Ec ⊆ E¢ ⊆ E, that maintains the same “reach-
ability”: u has a path to v in G of nature x (x ∈ {→, }) if and only 
if u has a path to v in G¢ = (V, E¢) of the same nature. The goal is 
to minimize the size of E¢.

The	BTR	problem	is	known	to	be	NP-hard	as	a	consequence	
of the results in (10). A few results were obtained for certain ver-
sions	of	BTR	(11, 12) before our work in (6–9), but they were 
either special cases or biologically more restrictive versions. A spe-
cial	 case	of	 the	BTR	problem,	 called	 the	minimum-equivalent-
digraph problem, has been of special interest to computer scientists 
for a long time with regard to optimizing computer networks 
with connectivity requirements (13–17) and has also found appli-
cations in the context of visualization of social networks (18). 
Our theoretical results (6) resulted in efficient 2-approximation 
algorithms	for	BTR,	which	has	been	recently	improved	further	to	
a 1.5-approximation (19).

The final product of our method led to a custom software 
package NET-SYNTHESIS (available at http://www.cs.uic.
edu/~dasgupta/network-synthesis/) that can be simply down-
loaded and run in almost any machine with Microsoft Windows 
as the operating system (for LINUX users, source C/C++ codes 
for a nongraphic version of the software can be provided on 
request). The input to NET-SYNTHESIS is a list of relationships 
among biological components (single causal and double causal) 

1.2. Binary Transitive 
Reduction

yes,
alternate path

remove?

remove?

no,
critical edge

Fig. 6. Pictorial illustration of a BTR operation. The lighter edge is a critical edge and thus 
cannot ever be removed. The indicated inhibitory edge can be removed because there 
is an alternate inhibitory path from the beginning node of the edge to the end node of 
the edge.

http://www.cs.uic.edu/~dasgupta/network-synthesis/
http://www.cs.uic.edu/~dasgupta/network-synthesis/
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and its output is a network diagram and a text file with the edges 
of the signal transduction network.

Below	is	a	summary	of	the	standard	steps	necessary	for	carrying	
out the network synthesis and simplification task using NET-
SYNTHESIS:

 1. Gather the direct interactions, single causal inferences, and 
double causal inferences regarding your signal transduction 
network.

 2. Read the single inferences into NET-SYNTHESIS to form a 
graph.	Perform	BTR	on	the	graph.

 3. Integrate the double causal inferences into the graph.
 4. Perform PVC.
	 5.	Perform	a	follow-up	round	of	BTR	and	vertex	collapse	until	

the graph cannot be reduced further.
 6. If warranted, simplify the graph further by designating known 

vertices as pseudo-vertices and performing PVCs.

Large-scale repositories such as Many Microbe Microarrays (http://
m3d.bu.edu/cgi-bin/web/array/index.pl?read=aboutM3D), 
NASCArrays (http://affymetrix.arabidopsis.info/narrays/experi-
mentbrowse.pl), and Gene Expression Omnibus (http://www.
ncbi.nlm.nih.gov/geo/) contain expression information for thou-
sands of genes under tens to hundreds of experimental conditions. 
In addition, information about differentially expressed genes 
responding to a combination of two experimental perturbations, 
e.g., the presence of a signal in normal versus mutant organisms, 
can be expressed as double causal inferences. Signal transduction 
pathway repositories such as TRANSPATH (http://www.gene-
regulation.com/pub/databases.html#transpath) and protein inter-
action databases such as the Search Tool for the Retrieval of 
Interacting Proteins (http://string.embl.de/) contain up to thou-
sands of interactions, a large number of which are not supported by 
direct physical evidence and thus are best treated as single causal 
inferences.

The input to the NET-SYNTHESIS software package is a list 
of relationships among biological components (single causal and 
double causal) and its output is a network diagram and a text file 
with the edges of the signal transduction network. We note that 
“nodes” and “vertices” are used interchangeably in the software 
and in this chapter. In the following, we explain a few menu 

2. Materials

2.1. Information  
and Data Sources

2.2. Software

http://m3d.bu.edu/cgi-bin/web/array/index.pl?read=aboutM3D
http://m3d.bu.edu/cgi-bin/web/array/index.pl?read=aboutM3D
http://affymetrix.arabidopsis.info/narrays/experimentbrowse.pl
http://affymetrix.arabidopsis.info/narrays/experimentbrowse.pl
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.gene-regulation.com/pub/databases.html#transpath
http://www.gene-regulation.com/pub/databases.html#transpath
http://string.embl.de/
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options for NET-SYNTHESIS; a user manual is available at the 
software’s webpage, http://www.cs.uic.edu/~dasgupta/network-
synthesis/help.html.

●● Read. Reads an input file from your local directory. After 
reading, it builds a network for single causal inferences (i.e., 
edges) only.

●● Write. Writes the current result to a text file in your local 
directory.

●● Redundant edges. Finds out and removes if there are dupli-
cate edges in your file or in the current graph.

●● Add pseudonodes. Adds the double causal (i.e., three-vertex) 
inferences in the input file to the network via introducing 
pseudo-nodes if necessary.

●● Collapse pseudonodes. Collapses pseudo-nodes using the PVC 
algorithm.

●● Reduction (slower).	Performs	BTR	on	 the	current	network.	
Recommended for networks of no more than 150 nodes.

●● Reduction (faster).	 Performs	BTR	on	 the	 current	 network.	
Recommended for networks of more than 150 nodes.

●● Collapse degree-2 pseudonodes. Collapses pseudo-nodes that 
have a single incoming edge and a single outgoing edge.

●● Randomize before reduction. The transitive reduction algo-
rithm has steps where ties are broken arbitrarily. If you turn 
on this action, then such tie-breaking steps will be random-
ized, thus potentially giving different solutions at different 
runs of the transitive reduction. This option may be useful if 
you wanted to check out more than one solution for the tran-
sitive reduction step.

●● Info. Shows basic information about the current graph such 
as the number of vertices and edges.

●● Edge handle. Displays the edges more visibly (and, hopefully 
more nicely).

●● Show critical. Shows critical edges with a different color.

●● You can right click on a vertex on the canvas to change the 
name of that node. This may be especially useful in changing 
a real node to a pseudo-node or vice versa because the pro-
gram assumes that nodes whose names start with an asterisk 
(*) are pseudo-nodes.
You can right click on the edge handle to change the nature ●●

of an edge (e.g., from excitatory to inhibitory or vice versa).

2.2.1. File Menu

2.2.2. Action Menu

2.2.3. View Menu

2.2.4. Other Functions

http://www.cs.uic.edu/~dasgupta/network-synthesis/help.html
http://www.cs.uic.edu/~dasgupta/network-synthesis/help.html
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First, thoroughly read the relevant literature concerning the signal 
transduction pathway of interest. After reading all available litera-
ture on the topic, assess whether sufficient information is on hand 
such that network synthesis is necessary. For example, if all that is 
known about a system is that component/process X activates 
component Y which in turn activates component Z, one can draw 
a simple linear network and deduce that knockout of Y will elimi-
nate signaling, but a formal analysis is hardly required.

In assessing the literature, the modeler should especially focus 
on experiments that provide information of the type relevant to 
network construction. Experiments that identify nodes belonging 
to a signaling pathway and the relationships between them include: 
(1) in vivo or in vitro experiments which show that the properties 
(e.g., activity or subcellular localization) of a protein change upon 
application of the input signal or upon modulation of components 
already definitively known to be associated with the input signal; 
(2) experiments that directly assay a small molecule or metabolite 
(e.g., imaging of cytosolic Ca2+ concentrations) and show that the 
concentration of that metabolite changes upon application of the 
input signal or modulation of its associated elements; (3) experi-
ments that demonstrate physical interaction between two nodes, 
such as protein–protein interaction observed from yeast two-
hybrid assays or in vitro or in vivo coimmunoprecipitation;  
(4) pharmacological experiments which demonstrate that the out-
put of the pathway of interest is altered in the presence of an inhib-
itory agent that blocks signaling from the candidate intermediary 
node (e.g., a pharmacological inhibitor of an enzyme or strong 
buffering of an ionic species); (5) experiments which show that 
artificial addition of the candidate intermediary node (e.g., exog-
enous provision of a metabolite) alters the output of the signaling 
pathway; (6) experiments in which genetic knockout or overex-
pression of a candidate node is shown to affect the output of the 
signaling pathway. The first three types of experiments correspond 
to single causal inferences that will become edges of the network; 
the third also corresponds to direct interactions that will become 
critical edges of the network. The fourth to sixth types of experi-
ments correspond to double causal inferences.

The experimental conclusions need to be distilled into two kinds 
of regulation: positive (usually described by the verbs “promotes,” 
“activates,” and “enhances”) and negative (usually described by the 
verbs “inhibits,” “reduces,” and “deactivates”), and represented 
graphically as → and  (see Fig. 2). As the input to NET-SYNTHESIS 
is simple text files, the graphical symbols are replaced by “→” and 
“.” Component-to-component relationships are  represented such 

3. Methods

3.1. Gather the Direct 
Interactions, Single 
Causal Inferences, and 
Double Causal 
Inferences Regarding 
Your Signal 
Transduction Network
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as “A →	B.”	Double	causal	inferences	are	of	the	type	“C	promotes	
the	process	through	which	A	activates	B.”	The	only	way	this	state-
ment can correspond to a direct interaction is if C is an enzyme cata-
lyzing	a	 reaction	 in	which	A	 is	 transformed	 into	B.	We	 represent	
supported enzyme-catalyzed reactions as both A (the substrate) and 
C	(the	enzyme)	activating	B	(the	product).	If	the	interaction	between	
A	and	B	is	direct	and	C	is	not	a	catalyst	of	the	A–B	interaction,	we	
assume that C activates A. In all other cases, we represent the double 
causal inference such as “C → (A →	B).”

Note that some choices may have to be made in distilling the 
relationships, especially in the case where there are two conflict-
ing reports in the literature. For example, imagine that in one 
report it is stated that proteins X and Y do not physically interact 
based on yeast two-hybrid analysis, while in a second report, it is 
described that proteins X and Y do interact, based on coimmuno-
precipitation from the native tissue. The modeler will need to 
decide which information is more reliable, and proceed accord-
ingly. Such aspects dictate that human intervention will inevitably 
be an important component of the literature curation process, 
even as automated text search engines such as GENIES (20–22) 
grow in sophistication.

We will illustrate the five analysis steps following the data-
gathering phase on a sample collection of single and double causal 
inferences. This sample is a small subset of the evidence gathered 
for the signal transduction network responsible for abscicic acid-
induced closure of plant stomata (23). The vertices correspond to 
the	signal,	denoted	“ABA,”	the	output,	denoted	“Closure,”	and	
seven	 mediators	 of	 ABA-induced	 closure,	 the	 heterotrimeric	 G	
protein a subunit (GPA1), the small molecules NO and phospha-
tidic acid (PA), the enzymes Phospholipase C (PLC) and 
Phospholipase D (PLD), K+ efflux through slowly activating out-
wardly rectifying K+ channels at the plasma membrane (KOUT). 
The compilation includes nine single causal inferences, two of 
which correspond to direct interactions and two double causal 
inferences.

The input to NET-SYNTHESIS is given as follows:

ABA	 NO
ABA	→ PLD
ABA	→ GPA1
ABA	→ PLC
GPA1 → PLD Y
PLD → PA
NO  KOUT
KOUT → Closure Y
PA → Closure
PLC →	(ABA	→ KOUT)
PLD →	(ABA	→ Closure)
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The single inferences need to precede the double inferences. 
The direct interactions are marked by the letter “Y” following the 
component-to-component relationship.

To use NET-SYNTHESIS on this example, it needs to be saved into 
a text file, e.g., “example.txt.” After starting NET-SYNTHESIS, 
select the command “Read” from the File menu, and open the 
input file “example.txt.” This will display the vertices and edges 
corresponding to the single inferences. You can move the nodes 
by clicking and holding your left mouse button on them. Try to 
arrange the nodes so the edges do not cross each other. Note that 
the small circles correspond to edge handles (if you have the 
option of edge handles chosen in the View menu) which can also 
be moved to make the graph clearer. Clicking on Info in the View 
menu indicates that currently the network contains eight vertices 
and	nine	edges.	To	perform	BTR,	 select	“Reduction	 (slower)”	
from the Action menu. This reduction method is the better choice 
for networks smaller than 150 vertices. A pop-up window will 
indicate	that	one	edge	was	removed.	Indeed,	the	edge	from	ABA	
to PLD was superfluous as it did not indicate a direct interaction 
and had no effect on the reachability of any node in the 
network.

To read in the double causal inferences, select “Add pseudonodes” 
from the Action menu. The pop-up window will indicate that two 
pseudo-vertices and six edges were added to account for the two 
double causal inferences. Rearrange the nodes to see what is new. 
Indeed, the PLD →	(ABA	→ Closure) inference created a new 
pseudo-vertex, indicated by a circle with a star in it, and three 
new	edges,	one	from	PLD	to	the	pseudo-vertex,	one	from	ABA	
to the pseudo-node, and one from the pseudo-node to Closure. 
The second inference was incorporated in a similar manner. The 
newly added edges created new redundancies in the network. For 
example,	 the	 newly	 introduced	 pseudo-node	 connecting	 ABA	
and PLD to Closure has the same in and out reachability as the 
node	PA,	i.e.,	it	can	be	reached	from	ABA,	GPA1,	and	PLD	and	
it can reach Closure. Therefore, the pseudo-vertex is a candidate 
for PVC.

To perform PVC, select “Collapse pseudonodes” from the Action 
menu. The pop-up window will indicate that one pseudo-node 
was removed. An inspection of the network will tell you that 
indeed the pseudo-vertex indicated above was collapsed with the 
real node PA. This decreased the number of vertices by one and 
the	number	of	edges	by	two.	As	an	effect	of	the	collapse,	ABA	is	
now directly connected to PA in addition to being connected by 
the	 chain	 GPA1–PLD.	 The	 ABA	→ PA edge is redundant with 
the	 path,	 thus	 it	 is	 a	 candidate	 for	 BTR.	 In	 addition,	 an	 edge	

3.2. Read the Single 
Inferences into 
NET-SYNTHESIS to 
Form a Graph. Perform 
BTR on the Graph

3.3. Integrate the 
Double Causal 
Inferences into  
the Graph

3.4. Perform PVC



250 Albert, DasGupta, and Sontag

among	 the	 three	 that	 connect	 ABA,	 PLC,	 and	 the	 remaining	
pseudo-vertex is also redundant. Thus, we should try to simplify 
the network further.

Select “Reduction (slower)” again and you will see that indeed 
the two edges have been removed. The remaining pseudo-vertex 
is	now	simply	a	mediator	between	PLC	and	KOUT.	But	because	
its existence does not add any further information, it should be 
removed. You can do that by selecting “Collapse degree-2 
pseudonodes” from the action menu. Now the network has eight 
vertices and nine edges. Select “Reduction (slower)” to make 
sure no more reduction is possible.

In the example above, we succeeded in integrating single and 
double causal inferences into a signal transduction network whose 
nodes are all known (i.e., they are not pseudo-nodes). For a real 
situation, as opposed to an illustrative example, the resulting net-
work can be quite large and complex. In cases when some of the 
nodes are clearly more documented, more important, or more 
interesting than others, it may be beneficial to focus on the reach-
ability among these more important nodes and disregard the oth-
ers without explicitly removing them. One can do this by 
designating the less important nodes as pseudo-nodes and then 
simplifying	the	network	by	using	PVC	and	BTR.

Let us designate the node NO as a pseudo-node. We can do 
this by right-clicking on the node, prepending a * to the node 
name that appears in a pop-up window, and press Enter. The 
node will now become a pseudo-node, indicated by the fact that 
the symbol corresponding to the node becomes a small circle 
with a star in the middle. Selecting “Collapse degree-2 
pseudonodes”	will	 remove	 the	pseudo-node	and	connect	ABA	
and KOUT with a positive edge. This is because a path with an 
even number of negative edges is positive. The new edge is 
redundant with the path going through PLC and “Reduction 
(slower)” will delete it.

We have previously successfully illustrated the usefulness of our 
software by applying it to synthesize an improved version of a pre-
viously published signal transduction network (7, 23) and by using 
it to simplify a novel network corresponding to activation-induced 
cell death of T cells in large granular lymphocyte leukemia (7, 24). 
It is our hope that this method, in assistance with interactive 
human intervention as discussed before, will be useful in the future 
in synthesizing and analyzing networks in a broader context.

3.5. Perform a 
Follow-up Round  
of BTR and Vertex 
Collapse Until  
the Graph Cannot  
be Reduced Further

3.6. If Warranted, 
Simplify the Graph 
Further by Designating 
Known Vertices as 
Pseudo-vertices and 
Performing PVC

4. Conclusion
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Chapter 17

Reverse Engineering Gene Regulatory Networks Related  
to Quorum Sensing in the Plant Pathogen Pectobacterium 
atrosepticum

Kuang Lin, Dirk Husmeier, Frank Dondelinger, Claus D. Mayer, Hui Liu, 
Leighton Prichard, George P.C. Salmond, Ian K. Toth,  
and Paul R.J. Birch 

Abstract

The objective of the project reported in the present chapter was the reverse engineering of gene regula-
tory networks related to quorum sensing in the plant pathogen Pectobacterium atrosepticum from mic-
orarray gene expression profiles, obtained from the wild-type and eight knockout strains. To this end, we 
have applied various recent methods from multivariate statistics and machine learning: graphical Gaussian 
models, sparse Bayesian regression, LASSO (least absolute shrinkage and selection operator), Bayesian 
networks, and nested effects models. We have investigated the degree of similarity between the predic-
tions obtained with the different approaches, and we have assessed the consistency of the reconstructed 
networks in terms of global topological network properties, based on the node degree distribution. The 
chapter concludes with a biological evaluation of the predicted network structures.

Key words: Pectobacterium atrosepticum, Quorum sensing, Transposon mutagenesis, Microarrays, 
Graphical Gaussian models, Sparse Bayesian regression, LASSO, Bayesian networks, Nested effects 
models, Degree distribution, Power law, Gene ontologies

Pectobacterium atrosepticum (Pba), which is a plant pathogen on 
potato in temperate regions, synthesizes and secretes large quan-
tities of plant cell wall degrading enzymes that are responsible for 
the soft rot disease phenotype, earning it the epithet “brute force” 
pathogen. In particular, the “brute force” attack utilizes a population 
density-dependent regulatory mechanism called quorum sens-
ing (QS), which controls a wide range of phenotypes in many 

1.  Introduction
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different bacteria. Utilizing the production and secretion of certain 
signalling molecules, QS serves as a communication network that 
allows bacteria to coordinate their activities based on the local 
density of their population. A recent study by Liu et al. (1) pro-
vides the first evidence that Pba uses QS to target host defences 
simultaneously with a physical attack on the plant cell wall. 
Moreover, Liu et al. (1) demonstrate that a wide range of previ-
ously known and unknown virulence regulators lie within the QS 
regulon, revealing it to be the master regulator of virulence. The 
objective of the present study is to shed further light on the QS 
regulatory mechanism by applying current methods from multi-
variate statistics and machine learning to reconstruct putative 
gene regulatory networks from gene expression profiles obtained 
from wild-type and various knockout strains.

Mutated bacterial strains were generated via transposon muta-
genesis. Transposons are relatively short pieces of mobile DNA 
that can insert into pieces of DNA within a genome. Transposon 
mutagenesis is a process that allows transposons to be transferred 
to a host organism’s chromosome. This is accomplished by way of 
a plasmid from which a transposon is extracted and inserted into 
the host chromosome. The insertion can result in the interrup-
tion or modification of the function of an extant gene on the 
chromosome, effectively creating a mutant knockout strain. In 
the present study, nine mutant Pba strains were generated, where 
the following genes were knocked out: expM, hor, hrpL, expI, 
expR, aepA, virR, and virS. Additionally, a double mutation event 
was induced, where both virR and expI were knocked out. For 
further details and an exact specification of the experimental 
protocol, see ref. (1).

Wild-type and mutant Pba strains were grown in a nutrient broth to 
stationary phase, and then used to inoculate sterilized potato tubers. 
At 12 h postinoculation, the bacterial cells were isolated from the 
tuber by scraping infected tissue into sterilised water. RNA was iso-
lated by following the protocol described in Liu et al. (1), then 
reverse transcribed and cDNA labelled. 60-Mer oligonucleotide 
probes were designed to Pba-coding sequences and used, together 
with controls, to generate 11K custom arrays with 99.5% genome 
coverage (Agilent, Inc., Santa Clara, CA, USA). All microarray 
experiments were carried out in triplicate, for each of the eight single 
Pba knockout mutants in expM, hor, hrpL, expI, expR, aepA, virR, 
and virS, and the double knockout mutant in virR/expI, to obtain 
relative gene expression levels with respect to Pba wild-type.

2.  Material

2.1. Gene Knockout via 
Transposon 
Mutagenesis

2.2. Genome-Wide 
Transcriptomic 
Profiling with 
Miroarrays
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All microarray images were visually assessed for quality prior to 
feature extraction, whereby standard probe quality control stan-
dards were applied1. Features flagged as poor were removed. Box 
plots and principal components analysis of whole data sets were used 
to assess array to array variation. Any outlying microarrays were 
repeated as necessary. The microarray data were preprocessed using 
GeneSpring2 software (version 7.2) and normalized using the 
Lowess algorithm (Agilent Technologies Inc.). This nonparametric 
normalization technique first fits a nonlinear curve to the plot of the 
log-ratios of the two dye intensities Cy5 and Cy3, M = log2(Cy5/Cy3), 
versus the average log-ratio A = log2(Cy3 * Cy5)/2. It then uses the 
residuals of the fit as normalized log-ratio values. This method was 
first suggested by Yang et al. (2) and has become the standard 
method of normalizing two-colour microarrays.3

To assess differential gene expression in Pba knockout strains with 
respect to Pba wildtype, we computed p- values with the empirical 
Bayes method proposed in Smyth (3). Recall that all knockout 
experiments were carried out in triplicate. The three resulting log-
ratio values for each mutant versus wild-type comparison were tested 
against 0 by using the moderated t-test available in the Bioconductor 
library LIMMA (4). This test differs from a standard t-test by using 
a standard error estimate that is obtained from an empirical Bayesian 
analysis. The individual estimate for a single gene is shrunk towards 
the average estimate for all genes, which stabilizes the analysis par-
ticularly for small sample sizes, as in our example. This method was 
first introduced by Lönnstedt and Speed (5), later generalized and 
implemented in Bioconductor4 by Smyth (3), and it is one of the 
most widely used tools for detecting differential gene expression. As 
a result of this analysis, we obtain a p- value for each gene, which 
indicates whether the corresponding average log-ratio between 
mutant and wild-type is significantly different from 0.

It would be difficult to visualize and interpret regulatory networks 
involving several thousand genes. Moreover, there would be con-
siderable inference uncertainty, as the likelihood in network space 
would be diffuse, with many different networks having very similar 
scores. We therefore resorted to a clustering approach as a preliminary 

2.3. Preprocessing  
of Gene Expression 
Profiles

2.4. Assessing 
Differential Gene 
Expression

2.5. Clustering of Gene 
Expression Profiles

1 See further information in ArrayExpress-http://www.ebi.ac.uk/microarray-
as/aer/.
2 http://www.chem.agilent.com/en-US/Products/software/lifesciences-
informatics/genespringgx/Pages/default.aspx.
3 Note that in contrast to most home-spotted cDNA microarrays, Agilent 
arrays are not printed by different print tips and thus are not subdivided into 
separate subblocks within the array. For this reason, it was not necessary to 
use the print-tip lowess algorithm, which applies the same curve fitting tech-
nique separately to each subblock on the array.
4 http://www.bioconductor.org/.

http://www.ebi.ac.uk/microarray-as/aer/
http://www.ebi.ac.uk/microarray-as/aer/
http://www.chem.agilent.com/en-US/Products/software/lifesciencesinformatics/genespringgx/Pages/default.aspx
http://www.chem.agilent.com/en-US/Products/software/lifesciencesinformatics/genespringgx/Pages/default.aspx
http://www.bioconductor.org/
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complexity reduction step, and then inferred regulatory interactions 
among about 100 inferred clusters and nine key target regulatory 
genes. In order to infer biologically plausible clusters, we combined 
the outputs from several clustering algorithms based on a biologi-
cal scoring scheme using gene ontologies. The basic idea is depicted 
in the flow chart of Fig. 1. We applied five clustering algorithms: 
K-means and hierarchical agglomerative average linkage clustering 
(6), using both Euclidean and correlation distances, as well as mix-
tures of factor analyzers inferred with variational Bayesian 
Expectation Maximization (7). We assessed the biological plausibil-
ity of the inferred clusters by testing for significantly enriched GO 
(Gene Ontology) terms. We collected GO annotations for both 
Pba genes and close homologues from the EBI5 and ASAP6 data-
bases. In total, 18,996 GO terms were assigned to the 3,616 genes 

Fig. 1. Flow chart of the algorithm used for clustering gene expression profiles.

5 http://www.ebi.ac.uk/GOA/proteomes.html.
6 https://asap.ahabs.wisc.edu/asap/logon.php.

http://www.ebi.ac.uk/GOA/proteomes.html
http://https://asap.ahabs.wisc.edu/asap/logon.php
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in our set. We computed the significance of GO term enrichment 
in the clusters using the program Ontologizer7 with the default 
options. We applied a standard 5% threshold cutoff on the 
Bonferroni-corrected p- values, and considered a cluster to be bio-
logically plausible when the p- value of a GO term enrichment was 
smaller than 5%. We then combined clusters from different cluster-
ing methods by the application of the algorithm depicted in Fig. 1, 
resulting in 110 clusters. The composition of these clusters, as well 
as further details of the clustering scheme, can be obtained from 
the supplementary material8.

A simple method for reconstructing gene regulatory networks, 
proposed by Butte and Kohane (8) and termed “relevance net-
works,” is based on the following procedure. First, compute all 
pairwise similarity scores between gene expression profiles. 
Standard measures of similarity that are commonly used are the 
Pearson correlation or the mutual information. Next, apply a ran-
domization test to test for significant deviation from zero. Finally, 
connect all nodes by edges whose pairwise similarity scores are 
significantly greater than zero. The method is computationally 
cheap and easy to apply. However, its main disadvantage is that it 
is intrinsically impossible to distinguish between direct and indi-
rect interactions. If two genes are regulated by a set of common 
regulators, their gene expression profiles tend to be similar. The 
relevance network approach will therefore tend to infer an edge 
between these genes even if there is no direct interaction between 
them. For instance, in the scenario depicted in the left panel of 
Fig. 2, where a set of m genes x1, x2, …, xm are regulated by the 

3.  Methods

Fig. 2. Schematic of the approach of partial correlation (left) and sparse regression (right ). 
Left : Conditional on y, the gene expression profiles x1, x2, …, xm are independent, and the 
partial correlation coefficients will be small. Right : The approach of sparse regression aims 
to find a minimal set of predictors x1,x2, …, xm to explain gene expression profile y.

7 http://www.charite.de/ch/medgen/ontologizer/commandline/
Ontologizer.jar.
8 http://www.bioss.ac.uk.testweb.bioss.sar i .ac.uk/staf f/dirk/
Supplements/FF842/.

http://www.charite.de/ch/medgen/ontologizer/commandline/Ontologizer.jar
http://www.charite.de/ch/medgen/ontologizer/commandline/Ontologizer.jar
http://www.bioss.ac.uk.testweb.bioss.sari.ac.uk/staff/dirk/Supplements/FF842/
http://www.bioss.ac.uk.testweb.bioss.sari.ac.uk/staff/dirk/Supplements/FF842/
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common regulator y, the approach of relevance networks is prone 
to inferring spurious edges between the genes x1, x2, …, xm; see 
Werhli et al. (9) for an empirical corroboration.

In the following subsections, we will briefly review various 
more sophisticated methods that aim to distinguish direct inter-
actions from indirect ones, and which also give some indication 
about the putative direction of the regulatory interactions. We 
first assume that we have complete observability, i.e. that the gene 
expression profiles provide a good indication of the correspond-
ing protein activities. We review four approaches aiming to infer 
gene regulatory networks from expression profiles: Graphical 
Gaussian models, LASSO, sparse Bayesian regression, and 
Bayesian networks. We conclude this section with a review of 
nested effects models, which aim to infer interactions among reg-
ulatory genes that are themselves subject to post-transcriptional 
modification. This approach allows regulatory gene interactions 
to be inferred when the data are incomplete, i.e., when the rele-
vant changes at the protein level are not indicated by changes at 
the gene expression level.

Graphical Gaussian models (GGMs) are undirected probabilistic 
graphical models that allow the identification of conditional inde-
pendence relations among the nodes under the assumption of a 
multivariate Gaussian distribution of the data. The inference of 
GGMs is based on a (stable) estimation of the covariance matrix 
of this distribution. The element Cik of the covariance matrix C is 
proportional to the correlation coefficient between nodes Xi and 
Xk. A high correlation coefficient between two nodes may indi-
cate a direct interaction, an indirect interaction, or a joint regula-
tion by a common (possibly unknown) factor. However, only the 
direct interactions are of interest to the construction of a regula-
tory network. The strengths of these direct interactions are mea-
sured by the partial correlation coefficient rik, which describes the 
correlation between nodes Xi and Xk conditional on all the other 
nodes in the network. From the theory of normal distributions, it 
is known that the matrix of partial correlation coefficients rik is 
related to the inverse of the covariance matrix C, C−1 (with ele-
ments 1

ikC−  (10).
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To infer a GGM, one typically employs the following procedure. 
From the given data, the empirical covariance matrix is computed, 
inverted, and the partial correlations rik are computed from (1). 
The distribution of |rik| is inspected, and edges (i, k) correspond-
ing to significantly small values of |rik| are removed from the 

3.1. Graphical 
Gaussian Models
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graph. The critical step in the application of this procedure is the 
stable estimation of the covariance matrix and its inverse. Note 
that the covariance matrix is only nonsingular if the number of 
observations exceeds the number of nodes in the network. This 
condition is not satisfied for many real applications in systems 
biology. In order to learn a GGM from a data set in such a sce-
nario, Schäfer and Strimmer (11) explored various stabilization 
methods, based on the Moore–Penrose pseudo inverse and bag-
ging. In the present work, we apply an alternative regularization 
approach based on shrinkage, which Schäfer and Strimmer (11) 
found to be superior to their earlier schemes. The idea is to add a 
weighted nonsingular regularization matrix, e.g., the unity matrix, 
to the covariance matrix so as to guarantee its nonsingularity. The 
optimal weight parameter is estimated based on the Ledoit Wolf 
lemma from statistical decision theory so as to minimize the expected 
deviation of the regularized covariance matrix from the (unknown) 
true covariance matrix. The method of GGMs, which are undi-
rected graphs, can be extended to infer putative directions of 
causal interactions, as proposed in Opgen-Rhein and Strimmer 
(12). This scheme is based on the computation of the standard-
ized partial variance, which is the proportion of the variance that 
remains if the influence of all other variables is taken into account. 
All significant edges in the GGM network are directed in such a 
fashion that the direction of the arrow points from the node with 
the larger standardized partial variance (the more exogeneous node) 
to the node with the smaller standardized partial variance (the 
more endogeneous node), provided the ratio of the two partial 
variances is significantly different from 1. For further details, see 
ref. (12).

The approach discussed in the previous subsection aims to predict 
interactions between genes based on the partial correlations 
between their expression profiles. In the present subsection, we 
review an alternative paradigm, which pursues a regression 
approach: given the gene expression profile yg of some target gene 
g, we aim to find a set of regulator genes {r} whose gene expression 
profiles {xr} are good predictors of gene expression profile yg:

 
= ∑ rˆ ,g gr

r

wy x
 

(2)

where ŷg is a predictor of yg, and the regression parameters wgr 
represent interaction strengths between the target gene g and the 
putative regulator genes r. The different concepts are illustrated 
in Fig. 2. We denote the vector of interaction strengths as wg, 
which has wgr as its rth component. The mismatch between the 
predicted and measured expression profile of target gene g is typi-
cally measured by the L2 norm

3.2. Sparse Regression 
and the LASSO
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Obtaining the optimal interaction parameters ŵg by minimizing 
E(wg) corresponds to a maximum likelihood estimator under the 
assumption of isotropic Gaussian noise. In practice, this approach 
is usually susceptible to overfitting, which calls for the application 
of some regularization scheme. The standard method of ridge 
regression is given by

  2argmin ( ) .
g

g g gr
r

E w
 

= + λ  ∑w
w w  (4)

This can be interpreted in three different ways: (1) maximizing 
the penalized likelihood with an L2-norm penalty term and regu-
larization parameter l; (2) constrained maximization of the likeli-
hood under the L2-norm constraint <∑ 2

r grw C, where l is a 
Lagrange parameter; (3) Bayesian maximum a posteriori estimate 
under a zero-mean Gaussian prior on wg with diagonal isotropic 
covariance matrix l−1I: P(wg) = (0, l−1I). A disadvantage of 
ridge regression is that the set of interaction parameters {wgr} does 
usually not tend to be sparse. This is a consequence of the fact 
that the derivative of the regularization term with respect to wgr 
approaches zero as wgr → 0. Consequently, there is no “force” 
pulling the parameters to zero when they are small. According to 
our current knowledge, gene regulatory networks are usually 
sparse, and a stronger regularization term is therefore desirable. 
This is can be effected with an L1-norm instead of the L2-norm 
regularization term:

 
g

argmin ( ) | | ,g g gr
r

E w
 

= + λ  ∑w
w w  (5)

which can be interpreted as a Bayesian maximum a posteriori esti-
mate under a Laplacian prior on wg, as first proposed by Williams 
(13). The derivative of the regularization term with respect to the 
parameters is now constant, which provides a stronger “force” 
driving small parameters to zero. The discontinuity of the deriva-
tive at wgr → 0 can be exploited to implement an effective pruning 
scheme for discarding interactions, as discussed in Williams (13). 
The L1-norm regularization term was introduced to the statistics 
community by Tibshirani (14), where it was termed the LASSO 
(least absolute shrinkage and selection operator). One of the first 
applications to the reconstruction of gene regulatory networks is 
reported by van Someren et al. (15). Grandvalet and Canu (16) 
showed that the LASSO estimate of the interaction strengths is 
equivalent to ridge regression with r-dependent regularization 
hyperparameters
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subject to the constraint ==∑ 1 / /
1 r

R R
r

λ λ , for some predefined 
constant l. The regulatory network between the target gene g 
and the regulatory genes {r} is defined by the set of interactions 
with non-zero interaction strengths wgr. The degree of sparsity is 
determined by the regularization hyperparameter l, with larger 
values of l resulting in sparser networks. The question, then, is 
how to set l. Williams (13) suggested integrating l out; this 
approach has been subject to some controversy, though (17). A 
standard non-Bayesian approach is to estimate l with k-fold cross-
validation. This is the approach that was implemented in the soft-
ware we applied in the present study, with k = 10; see Table 1. An 
alternative Bayesian approach would be to estimate l by maxi-
mizing the evidence, as discussed in the next subsection.

Note that the generalization of the sparse regression approach 
to more target genes g is straightforward: E(wg) in Eq. (3) just 
needs to be replaced by

 = −∑
2

ˆ) ( )( ,g g
g

E yW y wg  (7)

where W is a matrix with column vectors wg. If there is no clear 
separation between the set of target and regulatory genes, the 
effect of gene g needs to be excluded when forming the predictor 
ŷg(wg). Again, this requirement is straightforward to implement. 
To avoid notational opacity, we have not described this approach 
in its full generality, though.

Table 1 
Software packages used for the application of the network 
reconstruction methods described in Subheading 3.

Method Software Web address

GGM GeneNet http://strimmerlab.org/software/
genenet/

LASSO Lars http://www-stat.stanford.edu/~hastie/
Papers/LARS/

SBR SparseBayes http://www.miketipping.com/index.
php?page=rvm

BNet BNlearn http://crantastic.org/packages/bnlearn

NEM Nem http://www.bioconductor.org/packages/ 
2.3/bioc/html/nem.html

All software packages are freely available from the specified web addresses. All 
programs are written in R, except for SparseBayes, which is written in Matlab

http://strimmerlab.org/software/genenet/
http://strimmerlab.org/software/genenet/
http://www-stat.stanford.edu/~hastie/Papers/LARS/
http://www-stat.stanford.edu/~hastie/Papers/LARS/
http://www.miketipping.com/index.php?page=rvm
http://www.miketipping.com/index.php?page=rvm
http://crantastic.org/packages/bnlearn
http://www.bioconductor.org/packages/2.3/bioc/html/nem.html
http://www.bioconductor.org/packages/2.3/bioc/html/nem.html
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As mentioned in the previous subsection, the minimization of 
E(wg) in Eq. (3) corresponds to maximizing the likelihood 
P (D|wg) under the assumption of isotropic Gaussian noise, where 
D = {yg, {xr}} is used to denote the data. The estimates ŵg in 
Eqs. (4) and (6) are equivalent to the maximum a posteriori 
estimates

   = λ = + λ arg max ( | , ) arg max log ( | ) log ( | )
g s

g g g gP P P
w

w w D D w w
W    (8)

under the assumption of an isotropic Gaussian or Laplacian prior 
P(wg|l) on the interaction strengths wg. Within the Bayesian 
framework, the hyperparameter l is optimized by maximizing the 
marginal likelihood or evidence

 λ = λ λ λ∫( | ) ( | , ) ( | )dP P PD wD w  (9)

as discussed by MacKay (18). In the present study, we applied the 
“sparse Bayesian regression” (SBR) approach of Rogers and 
Girolami (19), which is based on the work of Tipping and Faul 
(20). Here, the prior on the interaction parameters is chosen to 
be a product of zero-mean Gaussian distributions

 
1( | )= ( |0, )g gr r

r

P w −λ λ∏w   (10)

with separate hyperparameters for the regulatory genes r. This 
scheme is similar to Eq. (6), except that the constraint 

1
1 / /

R

rr
Rλ λ

=
=∑  is missing. The hyperparameters lr are optimized 

with the evidence scheme described above9 Tipping and Faul (20) 
showed that the marginal likelihood can be decomposed into 
separate contributions from the individual regulatory genes {r}. 
This leads to a fast, iterative maximization algorithm not only for 
the hyperparameters lr, but also the network structure: interac-
tions between the target gene g and the putative regulatory genes 
{r} are progressively added and removed until a local maximum 
of the marginal likelihood is reached. Specific details of the algo-
rithm can be found in Tipping and Faul (20).

Bayesian networks (BNets) have received substantial attention 
from the computational biology community as models of gene 
regulatory networks, following up on pioneering work by 
Friedman et al. (21) and Hartemink et al. (22). Several tutorials 
on Bayesian networks have been published (23–25). We therefore 
only qualitatively recapitulate some aspects that are of relevance 
to the present study, and refer the reader to the above tutorials for 
a thorough and more rigorous introduction.

3.3. Sparse Bayesian 
Regression

3.4.  Bayesian Networks

9 In statistics, this is called a type-II maximum likelihood estimation.
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The structure H  of a Bayesian network is defined by a directed 
acyclic graph (DAG) indicating how different variables of interest, 
represented by nodes and connected by directed edges, “interact.” 
The edges of a Bayesian network are associated with conditional 
probabilities, defined by a functional family and their parameters. 
The interacting entities are associated with random variables, 
which represent some measured quantities of interest, like relative 
gene expression levels or protein concentrations. We are interested 
in learning a network of causal relations between interacting nodes. 
While such a causal network forms a valid Bayesian network, the 
inverse relation does not always hold: when we have learned a 
Bayesian network from the data, the resulting graph does not nec-
essarily represent the correct causal graph. One reason for this dis-
crepancy is the existence of unobserved nodes. When we find a 
probabilistic dependence between two nodes, we cannot necessar-
ily conclude that there exists a causal interaction between them, as 
this dependence could have been brought about by a common yet 
unobserved regulator. Even under the assumption of complete 
observation the inference of causal interaction networks is impeded 
by symmetries within so-called equivalence classes, which consist 
of networks that define the same conditional independence rela-
tions. As such, each Bayesian network represents a whole equiva-
lence class, represented by a complete partially directed acyclic 
graph (CPDAG). Under the assumption of complete observation, 
directed edges in a CPDAG can be taken as indications of putative 
causal interactions.

We denote the set of all measurements of all random variables 
as the data, represented by the letter D. As a consequence of the 
acyclicity of the network structure, the joint probability of all the 
random variables can be factorized into a product of lower-com-
plexity conditional probabilities according to conditional inde-
pendence relations defined by the graph structure H . Under 
certain regularity conditions, the parameters associated with these 
conditional probabilities can be integrated out analytically. This 
allows us to compute the marginal likelihood H( | )P D , which 
captures how well the network structure H  explains the data D. 
In the present study, we compute H( | )P D  under the assumption 
of a linear Gaussian distribution. The resulting score was derived 
by Geiger and Heckerman (26) and is referred to as the BGe score.

The objective of inference is to find the DAG (or CPDAG) 
that is most supported by the data. Mathematically, this is the 
mode of the posterior distribution

 ∝H H H( | ) ( | ) ( ),P P PD D  (11)

where ( )P H  is the prior distribution over network structures, 
which represents the biological knowledge that we might have 
prior to measuring the data D. Since the number of structures H  
increases super-exponentially with the number of nodes, an 
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exhaustive search for the mode of H( | )P D  is usually intractable, 
and some greedy search procedure based on hill climbing is usu-
ally pursued: the network structure is locally modified, and the 
modification is accepted if the score H( | )P D  increases. This pro-
cedure is iterated until some convergence criterion is satisfied.

Note that in systems biology, where we aim to learn complex 
interaction patterns involving many components, the amount of 
information from the data and the prior is usually not sufficient to 
render the distribution H( | )P D  sharply peaked at a single graph. 
Instead, the distribution is usually diffusely spread over a larger 
set of networks. Summarizing this distribution by a single network 
is therefore usually not appropriate. A more sophisticated procedure 
is to sample network structures H  from the posterior distribution 
H( | )P D  with MCMC, as pursued, e.g., (27–29). As a heuristic 

simplification of this approach, a hill climbing optimization 
scheme can be run repeatedly on bootstrap replicated data, as 
pursued in Friedman et al. (21), and carried out in the present 
work; see Subheading 4 for further details.

Many approaches towards reverse engineering gene regulatory 
networks are based on analyzing expression levels of the regula-
tors and comparing them to those of the genes they regulate. 
This is a reasonable method if there is reason to believe that highly 
expressed regulators have more influence on the genes they regu-
late. However, this may not always be the case. For example, some 
regulatory genes may be posttranscriptionally modified, with the 
consequence that the amount of mRNA present in the cell is not 
a good indicator of the corresponding protein activity.

Nested effects models (NEMs) (30) are one approach to 
 dealing with this problem. Rather than looking at the expression 
levels of regulating genes (called S-genes for signalling genes), 
NEMs look at the effect that knocking out each of these genes 

3.5. Nested Effects 
Models

3.5.1.  Model Overview

Fig. 3. Illustration of nested effects models (NEMs). Circles represent S-genes, boxes represent E-genes. Left panel: The 
black circle represents an S-gene that has been knocked out. The shaded boxes represent E-genes where significant 
effects are expected. Right panel: Due to noise in the data, some true effects are missed (here: E22 and E32), and some 
spurious effects are observed (here: E41).
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has on the expression levels of the genes that they regulate (called 
E-genes for effect reporting genes). Based on these effects, it is pos-
sible to determine the structure of the signalling pathway that the 
S-genes are a part of. For example, if gene S1 regulates E1 and S2 
regulates E2, and additionally S2 is downstream from S1, then we 
would expect to see an effect on E1 and E2 if we knock out S1, but 
only an effect on E2 if we knock out S2. Note that for real world 
applications, the situation is more difficult than described in this 
simple example. This is because gene regulation is a stochastic 
process and measurements are susceptible to noise. An illustra-
tion is given in Fig. 3.

To complete the specification of an NEM, we need two sets 
of parameters: A network hypothesis H , which describes the rela-
tions between the S-genes, and a model Q for the regulation of 
the E-genes, where qi = j if E-gene i is regulated by S-gene j. We 
assume that an E-gene can only be regulated by one S-gene and 
use model averaging to account for all possibilities. Using Bayes’ 
theorem, the score for a network hypothesis given data D is:

 =
H H

H
( | ) ( )

( | ) .
( )

P P
P

P
D

D
D  (12)

If we assume that the observations of each E-gene, the parameters 
qi and the knockout experiments are independent, then the likeli-
hood P H( | )D  for a data set consisting of m E-genes and n 
S-genes decomposes as:

 
1 11

( | ) = ( | , ) ( | ),
nm n

ik i i
i kj

P P j P jq q
= ==

= =∏∑∏DH H HD  (13)

where P q =( | , )ik i jD H  is the likelihood of the effect observed at 
E-gene i when knocking out S-gene k and P ( | )i jq = H  is the 
prior probability of E-gene i being regulated by S-gene j. Note 
that we usually do not know which E-genes are controlled by 
which S-genes. For this reason, Eq. (13) includes a marginaliza-
tion over all possible assignments of E-genes to S-genes. More 
details can be found in refs. (30, 31).

In order to find the likelihood of observing an effect at E-gene i 
when knocking out S-gene k, Markowetz et al. (30, 32) first used 
a discretization scheme based on thresholding to transform the 
continuous expression values of the E-genes into binary indica-
tors. Then they calculated the likelihood based on the expected 
false-positive and false-negative rates. This approach incurs an 
inevitable loss of information, and also requires both positive and 
negative controls to estimate the error rates, which may not always 
be available. Fröhlich et al. (31) developed an alternative method 
which uses p- values that correspond to the likelihood of an E-gene 

3.5.2. Modelling  
the Effects



266 Lin et al.

i being differentially expressed when S-gene k is knocked out. 
They obtain the raw p- value using LIMMA (3), as described in 
Subheading 2.4, and fit a three-component Beta-uniform mix-
ture (BUM) model to those values. The BUM model consists of 
a uniform distribution (reflecting the null hypothesis) and two 
Beta distributions such that:

 
1 2 3( ) ( , ,1) ( ,1, ),ik k k ik k k ik kP D Beta D Beta Dp p a p b= + +  (14)

where Dik is the p-value of Ei at knockout Sk, the p*k are the mixing 
coefficients and we have the constraints that ak < 1 and bk > 2. If 
p = =ˆ ( 1)ikP D is the maximum uniform part of the model, then we 
have:

 
p

p





−


= −

ˆ( )
if predicts an effect

ˆ( | , ) 1
1 .otherwise

ik

ik i

P D
P D θ

H
H  (15)

A typical microarray experiment can measure the expression levels 
of thousands of genes, not all of which will be affected by the 
knockout of an S-gene. For that reason, it makes sense to apply an 
a priori filtering step to remove E-genes that only show random 
effects. Fröhlich et al. (31) use a scheme that finds patterns of dif-
ferentially expressed genes that are statistically significant. Given 
the multiple-testing corrected p-value pk of an E-gene expression 
level in experiment k, and a false-positive rate a, we can set:

 
1 if
0 otherwise.

k
k

p
b

a<
= 


 (16)

If sk is the number of significant genes in experiment k, then the 
probability of observing a pattern b = (b1, …, bn) under the null 
hypothesis H0 is:

 0
1

( | ) (1 )(1 ) ,
n

k k
k k

k

s M s
P H b b

M M
a a

=

− = + − −  ∏b  (17)

where M is the total number of E-genes. This allows us to calcu-
late the number of times that we should expect to see b by chance. 
Using a binomial test, we can calculate the statistical significance 
of seeing b more often than expected, and keep only those effects 
which show a significant pattern.

We now know how to calculate the likelihood for a given network 
hypothesis. Unfortunately, unless the number of S-genes is very 
small, it is impractical to score all possible network structures. To 
circumvent this problem, Markowetz et al. (32) developed a method 
based on scoring networks consisting of triples and combining 

3.5.3. A Priori Filtering  
of Effects

3.5.4. Network Inference 
Methods
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them. Two alternative methods are greedy hill climbing (33) and a 
module approach based on hierarchical clustering (31).

In the triples approach, we consider all possible triples of 
S-genes and score the networks that can be formed using only 
three nodes. Then we select the highest-scoring network for each 
triple and use model averaging to combine them into a complete 
network. We calculate the frequency of each edge and include all 
the edges whose frequency exceeds a certain threshold.

Greedy hill climbing is a more basic approach where we start 
from a network (usually with no edges) and at each step add the 
edge that gives the biggest improvement to the score. If no more 
improvements are possible, the algorithm terminates. This only 
gives us a local optimum, so it is usually advisable to use boot-
strapping (repeat the greedy hill climbing algorithm several times, 
each time sampling with replacement from the E-genes) to get a 
measure of the confidence we have in each edge.

The module networks method starts out by creating a hierar-
chical clustering of the gene expression profiles using a standard 
clustering method (Frohlich et al. (33) suggest average linkage). 
Then, starting from the top, we look for clusters containing at 
most four S-genes. When the network has been decomposed into 
non-overlapping clusters (or modules) of at most four S-genes, 
we find the highest-scoring network for each cluster using an 
exhaustive search. Finally, the modules are connected using a 
constrained greedy hill climbing approach, which only adds edges 
between S-genes in different modules.

A feature that NEMs have in common with Bayesian net-
works is the existence of equivalence classes. Two pathway hypoth-
eses 1 and 2 have the same likelihood, P(D| 1) = P(D| 2) if 
they only differ in transitive edges. Consider three S-genes A, B, 
and C. If A is upstream of B, and B is upstream of C in the regula-
tory hierarchy, then silencing A will affect C. The structure of the 
model and the scoring scheme do not allow distinguishing between 
a direct interaction A → C, an indirect interaction A → B → C, 
or the existence of both regulatory paths. Assuming parsimony, 
we can select among all score-equivalent graphs the one with the 
minimum number of edges. This technique is called transitive 
reduction and was adopted in our study.

This section contains notes on how we applied the methods 
described in the previous section in practice. Table 1 includes an 
overview of the software packages used, with their web addresses 
from which they can be downloaded. Networks are obtained with 
these programs as follows.

4.  Notes
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BNlearn (for BNets) learns a network using a greedy learning 
algorithm (the growth-shrink algorithm) proposed by Margaritis 
(34). To estimate the confidence in the edges, we follow Friedman 
et al. (21) and apply a bootstrap procedure. To this end, the opti-
mization is repeated on 100 bootstrap replicas, from which boot-
strap support values are computed as the relative frequency of 
occurrence of the edges. These bootstrap support values provide an 
indication of the confidence we have in the edges. They also allow 
us to obtain sparser network structures by only keeping those edges 
whose bootstrap support values exceed a specified threshold.

SparseBayes (for SBR) predicts a network that results from a 
greedy optimization procedure where, starting from an empty 
graph, parent nodes are added and removed for each node until 
the Bayesian score can no longer be improved. Again, confidence 
scores for the edges are obtained via bootstrapping, in the same 
way as obtained for BNets.

GeneNet (for GGMs) computes p- values for both non-zero 
edges and edge directions. From these p- values, a network can be 
predicted when a target false-discovery rate (FDR) is specified. In 
our application, we used the default threshold provided by the soft-
ware. In principle, networks at different connectivity densities can 
be obtained by varying the FDR threshold. Alternatively, one can 
keep the threshold fixed and obtain support values for the edges via 
a bootstrap analysis, as described above. We found that both proce-
dures lead to similar results. The bootstrap approach is computa-
tionally more expensive, but avoids the assumption of an asymptotic 
functional form for the distribution under the null hypothesis, on 
which the computation of the p- values in GeneNet is based.

Given a fixed value for the regularization parameter, Lars (for 
LASSO) predicts a network using a greedy optimization scheme. 
The program automatically optimizes the regularization hyperpa-
rameter via tenfold cross-validation. Networks with different con-
nectivity densities can be obtained by varying the threshold. As an 
alternative, we use a 100-fold bootstrapping procedure, where for 
each bootstrap replica the hyperparameter is inferred on the basis 
of the same tenfold cross-validation procedure.

Owing to the absence of a gold-standard network for the real data, 
we evaluated the performance of the methods on simulated data.

We first compare the performance of the four methods for 
complete data: GGM, BNet, LASSO, and SBR. We would also 
like to compare their individual performance with that of the con-
sensus network obtained from model averaging. In machine 
learning, it is well known that model averaging leads to an 

5. Simulations
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improvement of the generalization performance of a predictor or 
classifier. The performance of the combined model is better than 
the average performance of the individual model: see e.g. Chapter 
9 in Bishop (35). We would like to test whether model averaging 
also results in an improved network reconstruction. We take as 
the gold-standard network the graph shown in the top left panel 
of Fig. 11, and generate data in the following way. For the root 
node (expM), we sample a new value Y from a normal distribution:

 2~ (0,Y ),as  (18)

with sa = 1.0. For a node with parent set {p}, new values are 
sampled from a Gaussian distribution whose mean is given by the 
average over the parent set:

 p p p
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where Xp is the value of the pth parent node, and K is the cardinality 
of the parent set. The factor x is chosen to yield a constant aver-
age signal-to-noise ratio of s s2 2/a b  across all nodes in the network. 
We chose three signal-to-noise ratios: s =2 0.1, 0.2b , and 0.5. We 
generated data sets with N = 30 instances, which is about the same 
number as available for the real data. For each value of s 2

b , we 
inferred networks from the data by applying the programs listed in 
Table 1. We repeated this process on 100 independent data instan-
tiations and computed, for each method and each edge, the mar-
ginal probability of the edge occurring. We also averaged the 
probabilities over the individual methods; this gives the marginal 
probability of an edge obtained from model averaging. Imposing a 
threshold on these probabilities, we can determine the number of 
true-positive (TP), false-positive (FP), true-negative (TN), and 
false-negative (FN) edges by comparison with the gold-standard 
network. We then compute the sensitivity = TP/(TP + FN), the 
specificity = TN/(TN + FP), and the complementary specificity = 
1 − specificity = FP/(TN + FP). Rather than selecting an arbitrary 
value for the threshold, we repeat this scoring procedure for all pos-
sible threshold in the interval (0,1), and plot the ensuing sensitivity 
scores against the corresponding complementary specificity scores. 
This gives the receiver operating characteristics (ROC) curves of 
Fig. 4, where a larger area under the curve (AUC) indicates, overall, 
a better performance of the method. We found that the AUC score 
obtained with model averaging was slightly but consistently larger 
than the average AUC score, in corroboration of our conjecture.

In order to assess the reliability of the NEM results, we 
decided to perform a simulation study similar to the one described 
in Fröhlich et al. (31). However, rather than sample network 
structures, we restricted ourselves to one of the networks inferred 
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from the real knockout data. We chose, rather arbitrarily, the 
graph in the top left panel of Fig. 11. This has the advantage that 
we evaluate the NEM performance on a network that is semireal-
istic, rather than the transitively closed ideal networks of Fröhlich 
et al. (31). Like Fröhlich et al. (31), we sample p-values for each 
knockout from the mixture distribution in Eq. (14). Each S-gene 
is linked to 100 E-genes. The p-values for E-genes where we do 
not expect an effect due to the network structure are sampled 
from the uniform distribution. There is a slight subtlety in when 
to expect an effect if there are different paths between two S-genes 
(e.g. between expM and aepA in the network we use here). If one 
path is disabled by a network, do we expect to see an effect down-
stream (AND model) or will the signal travel via the alternative 
path (OR model). We chose to adopt the AND model, which 
corresponds, e.g. to heterodimerization. For each S-gene where 
one would expect an effect, we calculate the probability of observ-
ing that effect, based on the distance of the current S-gene to the 
knockout gene. The observed effects are sampled from the beta 
distributions according to the mixing coefficients p1k and p2k, 
while for unobserved effects we sample from the uniform distri-
bution. For each knockout, all parameters are drawn from the 
same ranges as in Fröhlich et al. (31), and for each E-gene a small 
amount of Gaussian noise is added to these parameters.

The results are shown in Fig. 5. There is no significant differ-
ence between the two optimization schemes: triples versus greedy 
search, whereas the filtering versus unfiltering scheme shows a sig-
nificant difference (at the 0.05 significance level). Surprisingly, the 
effect of filtering is not consistent, though, leading to an improvement 

Var=0.5 Var=0.2 Var=0.1

SBR(0.94)
BNets(0.91)
GGM(0.91)
Lasso(0.81)
CON(0.90)

SBR(0.96)
BNets(0.93)
GGM(0.92)
Lasso(0.85)
CON(0.93)

SBR(0.95)
BNets(0.94)
GGM(0.93)
Lasso(0.93)
CON(0.94)

1

0.9

0.8

0.7

0.6

0.5

T
ru

e 
po

si
tiv

e 
ra

te

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6

False positive rate
0.8 1 0 0.2 0.4 0.6

False positive rate
0.8 1 0 0.2 0.4 0.6

False positive rate
0.8 1

1

0.9

0.8

0.7

0.6

0.5

T
ru

e 
po

si
tiv

e 
ra

te

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

T
ru

e 
po

si
tiv

e 
ra

te

0.4

0.3

0.2

0.1

0

Fig. 4. ROC curves obtained on the synthetic data for GGMs, BNets, LASSO, SBR, and the consensus network. For each 
graph, the proportion of true-positive edges (vertical axis) is plotted against the proportion of false-positive edges (hori-
zontal axis). The three panels refer to different noise levels. The areas under the ROC curves (AUC) obtained for the differ-
ent methods are shown in the legends. Note that the AUC scores obtained with model averaging were found to be slightly 
but consistently larger than the average AUC scores. Left panel s =2( 0.5)b : 0.90 versus 0.89; centre panel s =2( 0.2)b : 
0.93 versus 0.915; right panel s =2( 0.1)b

: 0.94 versus 0.9375.
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in the performance of the triple method, but a deterioration in the 
performance of the greedy search. Given these inconsistencies, we 
decided to apply all four methods to the real data.

In order to assess the networks inferred with the different meth-
ods, we use a three-prong approach. First, we compute global 
network properties based on the degree distribution and check if 
they are consistent with typical patterns found in gene regulatory 
networks. Second, we assess how consistent the different predic-
tions are, based on a bootstrap analysis and ROC (receiver oper-
ating characteristics) curves. Finally, we investigate the biological 
plausibility of the inferred network structures. Owing to our lim-
ited knowledge of regulatory networks and signalling pathways in 
Pba, the last approach is only partially feasible for the key regula-
tory genes targeted in the knockout experiments, as listed in 
Subheading 2.1. We have therefore only applied it to the graphs 
inferred with NEMs.

A comparison of topological features in networks has revealed 
certain common characteristics among gene regulatory networks. 
In particular, these networks tend to be scale free, as discussed for 
instance in Guelzim et al. (36). This means that gene regulatory 

6. Results

6.1. Global Network 
Properties and Degree 
Distribution

Fig. 5. ROC curves obtained for different training schemes of the NEMs. Two training methods (triples versus greedy 
search) were combined with two data filtering schemes; see Subheadings 3.5.3 and 3.5.4 for details. The different line 
types refer to the four different combinations. The areas under the ROC curves are as follows: Greedy filtered (solid thick 
line): 0.84 ± 0.04. Greedy unfiltered (solid thin line): 0.86 ± 0.04. Triples filtered (dashed thick line): 0.84 ± 0.05. Triples 
unfiltered (dashed thin line): 0.81 ± 0.04. The graphs and estimates were obtained from ten independent data 
instantiations.
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networks tend to be characterized by a power law, where the 
number of nodes with a certain degree k is a power of that degree: 
N(k) ∝ka. The degree of a node k is the number of connections it 
has. The polynomial dependence of N(k) on k implies a linear 
dependence in a double-logarithmic representation. Figure 6 
suggests that none of the networks inferred from the original 
gene expression profiles with the programs listed in Table 1 satisfies 
this dependence. This means that none of the inferred networks 
exhibits a global structure that is consistent with what is expected 
to be found in gene regulatory networks. We suspect that this 
deviation is a consequence of the prediction of several spurious 
edges. To proceed, we carried out the bootstrap analysis described 

Fig. 6. Double logarithmic plot of the number of nodes N(k) with a given degree k for networks inferred with different 
methods. Left column : Graphical Gaussian models (GGMs). Centre left column : LASSO. Centre right column : Sparse 
Bayesian regression (SBR). Right column : Bayesian networks (BNets). The top row shows the degree distributions for 
networks obtained as outputs of the programs shown in Table 1. The remaining rows show the degree distributions for 
sparser networks obtained from a bootstrap analysis, as described in Subheading 4. Percentage scores over the graphs 
indicate the thresholds on the bootstrap support values. For each panel, the x-axis represents the degree of a node, N (k), 
and the y-axis represents the number of nodes with a specified degree, k. Both axes are on a logarithmic scale. Hence, 
a non-trivial straight line is indicative of a power law distribution.
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in Subheading 4. We then discarded all edges with a bootstrap 
support value below a specified threshold. The results are shown 
in the bottom rows of Fig. 6. For GGMs, a threshold on the 
bootstrap support value of over 80 or 90% results in a network 
that approximately follows a power law. This finding is encourag-
ing, as the resulting network has a topological feature that is con-
sistent with other gene regulatory networks. For the other 
methods, the results are less encouraging though. The resulting 
networks either do not exhibit a power law, or otherwise become 
too sparse, without a degree greater than 3 or even 2, and hence 
only a trivial linearity in the log–log plot10.

In machine learning it has been known for a long time that com-
bining the predictions from several models, ideally of different nature 
and differently trained, leads on average to more accurate predictions 
than what can be obtained with a single model; see for instance Battiti 
and Colla (34), and our discussion in Subheading 5. While this 
approach of model averaging has mainly been applied to regression 
and classification tasks, we here pursue the same idea for predicting 
network structures. Our aim is to combine the networks predicted 
with BNets, GGMs, LASSO, and SBR. One approach is to combine 
the original predictions via a filter that ignores all interactions unless 
they are supported by at least m different methods. The top two rows 
of Fig. 7 show plots of the number of nodes against their connectivity 
degree for different values of m. It is seen that by increasing m, the 
network first shows a better compliance with the power law, until 
eventually (for m = 4) we obtain a trivial linearity defined by only two 
non-vanishing node degrees. An alternative approach is to combine 
bootstrap-thresholded rather than the originally predicted networks. 
Guided by Fig. 6, we chose the following thresholds on the bootstrap 
support values. GGMs: 80%, LASSO: 40%, SBR: 80%, and BNets: 
8%. These values were selected on the basis that we want to find the 
lowest threshold (and hence the densest connectivity) subject to the 
requirement that the double-logarithmic plot of the number of nodes 
N(k) against the degree k shows approximately a linear relationship. 
The bottom row of Fig. 7 shows the double logarithmic N(k) versus 
k plot for different consensus networks. This figure suggests that 
requiring edges to be independently predicted by two different 
methods gives the best compromise between sparsity versus power 
law, and the resulting consensus network is shown in Fig. 9.

It would be interesting to study how consistent or different the four 
methods for reconstructing networks from complete observation 
(GGMs, BNets, SBR, and LASSO) are. To this end, we infer a net-
work with each of the four methods, using the software packages 
of Table 1 with default options. We then carry out the bootstrap 

6.2. Consistency 
Among the Predictions

10 Note that one can always draw a straight line through two points.
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analysis described in Subheading 4 to obtain confidence scores 
for the edges, on the basis of which the latter are ranked. Given a 
network structure and a ranking of the edges, we can obtain the 
receiver operating characteristic (ROC) curve. For instance, tak-
ing the network learned with GGM as a gold standard, and taking 
the bootstrap support values for SBR, we obtain the ROC curve 

Fig. 7. Double logarithmic plot of the number of nodes N(k) (vertical axis) with a given degree k (horizontal axis) for 
different consensus networks. Top two rows: The consensus networks were obtained from the networks constructed with 
GGMs, BNets, LASSO, and SBR, using the programs listed in Table 1 with default values. Bottom row : Individual networks 
were obtained from the bootstrap analysis described in Subheading 4, which were then combined to form a consensus 
network; see the main text for further details. CON1 is the union of all networks, i.e. an edge is contained in the consen-
sus network if it is present in any of the individual networks. CON2 is a network that contains all those edges that are 
predicted by at least two reconstruction methods. Likewise, CON3 and CON4 are stricter consensus networks, which 
contain only edges predicted independently by at least three or all four methods, respectively.
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shown as a solid line in the top left panel of Fig. 8. Repeating the 
same with the bootstrap support values obtained for BNets, we 
obtain the ROC curve shown as a dotted line in the top left panel 
of Fig. 8, and so on. The resulting ROC curves, shown in Fig. 8, 
are consistently better than what would be expected for a random 
ordering of the edge scores, with areas under the ROC curve 
ranging between 0.7 and 0.9. This suggests that the agreement 
between the different methods is significantly better than 
random.

The consensus network obtained from the reconstruction methods 
for complete observation – BNets, GGMs, LASSO, and SBR – 
is shown in Fig. 9. Each node represents a gene cluster, obtained 

6.3. Predicted 
Networks

Fig. 8. ROC (receiver operating characteristic) curves for a comparison between different network reconstruction meth-
ods. For each of the four investigated methods – GGMs, BNets, LASSO, and SBR – a network was inferred, using the 
software listed in Table 1. Following the bootstrap procedure described in Subheading 4, bootstrap support values for the 
edges were obtained with each of the remaining three methods. Taking the network from the first stage as a gold stan-
dard, the ROC curves were obtained, with larger areas under the curve indicating a better agreement between the 
respective methods. The names of the reference methods are shown at the top of each panel.
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with the pre-processing method described in Subheading 2.5. 
Information about the composition of the clusters, with a com-
plete list of genes they contain and GO terms that are significantly 
enriched, is available from Table 2 of the supplementary material.11 
Note that the threshold on the edges was chosen conservatively 
to reduce the number of false positives and to ensure that the 
degree distribution is approximately consistent with a power law. 
This implies that we incur a certain proportion of false-negative 
edges, which is indicated by the existence of many disconnected 
modules. Hence, Fig. 9 only shows the most salient gene regula-
tory interactions in which we place a comparatively high confidence. 
To our knowledge, the reconstruction of gene regulatory networks 
in Pba from expression profiles of several knockout strains has not 
been attempted before, and no gold-standard network is available 
for assessing our prediction. The biological interpretation of the 

Fig. 9. Consensus network obtained from the networks inferred with GGMs, BNets, LASSO, and SBR. The edges were 
inferred by at least two different methods. Edges that were inferred by three or four methods are shown as thick lines. 
Each node refers to a gene cluster, described in detail in Table 2 of the supplementary material at http://www.bioss.ac.
uk/staff/dirk/Supplements/FF842/.

11 http://www.bioss.ac.uk/staff/dirk/Supplements/FF842/.

http://www.bioss.ac.uk/staff/dirk/Supplements/FF842/
http://www.bioss.ac.uk/staff/dirk/Supplements/FF842/
http://www.bioss.ac.uk/staff/dirk/Supplements/FF842/
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inferred gene regulatory interactions is still the subject of current 
research and can be expected to shed new light on the mechanism 
of quorum sensing in Pba.

The results obtained with NEMs are shown in Fig. 10 and 11. 
Recall that the objective here is to infer the interactions among 
the genes targeted in the transposon mutagenesis experiment; 
these genes are listed in Subheading 2.1. The method allows 
for the fact that these regulator genes might be subject to post-
transcriptional regulation: interactions are inferred from the 
effects gene knockouts have on the down-stream regulated genes 
rather than from their gene expression profiles. Recall from 
Subheading 3.5.4 that due to intrinsic symmetries of the scoring 
scheme, NEMs cannot distinguish between two network struc-
tures that are related via a transitive closure operation. This 
implies that the two network structures in Fig. 10 are score 
equivalent, that is, they cannot be distinguished on the basis of 
the data and the inference scheme. As such, the method only 
infers regulatory hierarchies rather than actual interaction networks. 
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hrpL

virR/
expl

expl

expR

aepA

virR
virR/
expl

expM

hor

hrpL

Fig. 10. NEMs trained with greedy search on filtered data. This figure shows the network obtained using a greedy search 
with bootstrapping, where only the edges that were present in all the bootstrap samples have been retained. The set of 
effector genes (E-genes) used for the search has been pre-filtered, as described in subheading 3.5.3, to retain only those 
genes that show a non-random expression pattern over all knockouts. Left : Owing to an intrinsic symmetry feature of 
NEMs, the network has to be transitively closed, meaning that if there is an edge from A to B and an edge from B to C, 
then there has to be an edge from A to C. Right : Transitively reduced graph, where all shortcut edges have been removed. 
This is the sparsest graph in its equivalence class. The nodes represent the genes targeted in the knock-out experiments: 
expM, hor, hrpL, expI, expR, aepA, virR, virS, and the double knock-out expI/virS. The genes virS and expM are not 
included in the left panel for visibility purposes (expM was found to be a universal regulator, and virS was found to be 
regulated by every node).



278 Lin et al.

To resolve ambiguities, we have adopted the principle of transitive 
reduction, which means that we always present the most parsimo-
nious graph of an equivalence class. For instance, the right panel 
of Fig. 10 shows the transitively reduced graph of the one shown 
in the left panel. This has to be considered when interpreting the 
networks in Fig. 11: whenever two nodes are connected by a path, an 
interaction via a shortcut path is supported by the data also. The 
networks in Fig. 10 and 11 were obtained with different inference 
schemes and pre-filtering methods, as described in Subheadings 
3.5.3 and 3.5.4. We have also repeated the analysis with and 
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Fig. 11. NEMs learned with different optimization schemes and filtering methods. Top left : Transitive reduction of the 
network found using the same method as shown in this figure, but excluding the virS knockout data. There was reason 
to believe that the virS data could affect filtering (and possibly network construction) because it was generated under 
different conditions than the other knockouts, which might lead to spurious effects. Top right : Transitive reduction of the 
network found using the same method as for Fig. 10, but without applying the filtering method of Subheading 3.5.3. 
Bottom left : Transitive reduction of the network found using the triples scoring method, described in Subheading 3.5.4. 
Only edges with 100% support have been retained. The same gene filtering method as for Fig. 10 has been applied. 
Bottom right: This graph was obtained with the same method as for the panel on the bottom left, but without filtering the 
genes. All edges with support values over 50% support were retained.
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 without virS included; this is motivated by the fact that the virS 
knockout experiment was carried out under different conditions, 
which might add an unwanted source of noise.

Owing to the lack of a gold standard, the direct evaluation of 
the predicted networks is not feasible. However, some patterns of 
the regulatory interactions among the selected genes have been 
reported in the literature. According to our current understanding, 
summarized in Fig. 5 in ref. (1). expI is upstream of both virR 
and aepA in the regulatory hierarchy. Figures 10 and 11 suggest 
that this order is, in fact, consistently predicted by all the graphs 
learned in our study. Moreover, in none of the predicted net-
works does the double knockout expI/virR appear above both 
the individual knockouts expI and virR. This can only be explained 
by some antagonism between expI and virR, which is again in 
agreement with the regulatory structure reported by Liu et al. (1). 
There are also some interesting deviations, though. Liu et al. (1) 
predict expM to be quite low in the regulatory hierarchy. However, 
all the graphs learned in our study concur in predicting expM to 
be at the top of the regulatory hierarchy. This finding might point 
to some flaws in the current hypotheses about the regulatory 
mechanisms in Pba, with the prospect to obtain a revised and 
improved model of gene regulatory interactions from the novel 
data analysis tools explored in the present work. A comparison of 
the predicted graphs points to some disagreement between them. 
This is an inevitable consequence of the noise in the data, the 
complexity of the inference problem, and the different nature of 
the approaches adopted for dealing with both. Our work is one of 
the first studies to investigate the robustness of learning NEMs 
from real data and provides insight into the degree of variation 
in graph structure that results from a variation of the learning 
algorithm and pre-filtering scheme.

To our knowledge, the present work is the first study that aims to 
reverse engineer regulatory networks related to quorum sensing 
in the plant pathogen Pectobacterium atrosepticum (Pba) from 
gene expression profiles obtained after transposon mutagenesis. 
We have applied four different methods for reconstructing net-
works from complete data: graphical Gaussian models (GGMs), 
LASSO, sparse Bayesian regression (SBR), and Bayesian networks 
(BNets). We have complemented these methods with nested 
effects models (NEMs), which allow for post-transcriptional 
modification and which infer regulatory interactions between 
regulatory genes from their downstream regulation effects. We 
first tested the selected methods on synthetic data. The insight 

7.  Conclusion
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gained from these studies has guided our application to the gene 
expression profiles from mutated Pba strains. We observed a sig-
nificant degree of agreement among the different methods and 
found that some known features of regulatory interactions 
between key regulator genes in Pba could be consistently recov-
ered. This suggests that the network structures reconstructed in 
our study contain relevant information and have the potential to 
contribute to the elucidation of the nature of signalling pathways 
and regulatory processes related to quorum sensing in plant 
pathogens.
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Chapter 18

Parameter Inference and Model Selection  
in Signaling Pathway Models

Tina Toni and Michael P. H. Stumpf 

Abstract

To support and guide an extensive experimental research into systems biology of signaling pathways, 
increasingly more mechanistic models are being developed with hopes of gaining further insight into 
biological processes. In order to analyze these models, computational and statistical techniques are 
needed to estimate the unknown kinetic parameters. This chapter reviews methods from frequentist and 
Bayesian statistics for estimation of parameters and for choosing which model is best for modeling the 
underlying system. Approximate Bayesian computation techniques are introduced and employed to 
explore different hypothesis about the JAK-STAT signaling pathway.

Key words: Statistical inference, Approximate Bayesian computation, Bayesian model selection, 
Ordinary differential equation models, Signal transduction, Systems biology

It is crucial for cells to be able to sense the environment and react 
to changes in it. This is done through signaling pathways, which 
involve complex networks of often nonlinear interactions between 
molecules. These interactions transduce a signal from outside the 
cell to trigger a functional change within a cell. Signaling path-
ways are important for differentiation, survival, and adaptation to 
varying external conditions. The dynamics of these pathways are 
currently a subject of extensive experimental and computational 
research (1–5); and some of the most important biological signaling 
pathways have received considerable attention from mathematical 
modelers and theoretical systems biologists. These signaling 
networks include MAPK and Ras-Raf-ERK (6–14), JAK-STAT 
(15–17), GPCR (18), NF-kB (4, 19). It has become abundantly 
clear, however, that these signaling pathways cannot be separated 

1.  Introduction
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from one another, but that they interact; this phenomenon is 
known as crosstalk (20).

A series of modeling approaches have been applied to the 
study of signaling pathways. Most widely used are ordinary dif-
ferential equation (ODE) models that follow mass action kinetics. 
Also Boolean and Bayesian networks and Petri nets have been 
employed for modeling and simulation. The rich formalism under-
lying these different approaches has provided us with efficient 
tools for the analysis of signaling models.

Computational approaches have been mainly used for simu-
lation and for studying qualitative properties of signaling path-
ways such as motifs and feedback loops (21, 22), and quantitative 
properties such as signal duration, signal amplitude, and amplifi-
cation (23–25).

To develop and utilize detailed quantitative signaling models 
we require the values of all the parameters, such as kinetic rates of 
protein turnover and posttranslational modifications (e.g., phos-
phorylation or dimerization). Due to technological restrictions 
and cost it is impossible to measure all the parameters experimen-
tally. In this chapter, we review computational tools that can be 
used for parameter inference for ODE models. While many stud-
ies have dealt with the subject of parameter estimation, relatively 
little attention has been given to model selection; that is, which 
model(s) to use for inference. Despite this, “What is the best 
model to use?” is probably the most critical question for making 
valid inference from the data (26), and this is the second topic 
that we touch on in this chapter.

There are two broad schools of thought in statistical infer-
ence: frequentist and Bayesian. In frequentist statistics one talks 
about point estimates and confidence intervals around them. The 
likelihood function is a central concept in statistical inference, and 
is used in both frequentist and Bayesian settings. It equals the 
probability of the data given the parameters, and it is a function 
of parameters.

 ( ) ( | )L P Dq q=  

The canonical way of obtaining the point estimate is by taking 
a maximum likelihood estimate; i.e., the set of parameters for 
which the probability of observing the data is highest. On the 
other hand, Bayesian statistics is based on probability distributions. 
Here one aims to obtain the posterior probability distribution 
over the model parameters, which is proportional to the product 
of a suitable prior distribution (which summarizes the user’s prior 
knowledge or expectations) and the likelihood (the information 
that is obtained from the data).

In the following sections we will review how frequentist and 
Bayesian statistics can be used to estimate parameters of ODE 
models of signaling pathways, and how to choose which model 
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has the highest support from the data. We then outline an 
approximate Bayesian computation (ABC) algorithm based on 
Sequential Monte Carlo and apply it to the JAK-STAT signaling 
pathway where we will illustrate aspects related to parameter esti-
mation and model selection.

Signaling pathway models include numerous parameters, and it is 
generally impossible to obtain all of these values by experimental 
measurements alone. Therefore parameter inference (also referred 
to as model calibration, model fitting, or parameter estimation by 
different authors) algorithms can be used to estimate these para-
meter values computationally. A variety of different approaches 
has been developed and is being used; they all share the two main 
ingredients: a cost function, which reflects and penalizes the dis-
tance between the model and experimental data, and an optimi-
zation algorithm, which searches for parameters that optimize the 
cost function. The most commonly used cost functions in a fre-
quentist approach are the likelihood (one wants to maximize it) 
and the least squares error (one wants to minimize it). The 
Bayesian equivalent to a cost function is the Bayesian posterior 
distribution.

There are many different kinds of optimization algorithms. 
Their goal is to explore the landscape defined by cost function 
and find the optimum (i.e., minimum or maximum, depending 
on the type of cost function used). The simplest are the local 
gradient descent methods (e.g., Newton’s method, Levenberg–
Marquardt). These methods are computationally fast, but are 
only able to find local optima. When the cost function landscape 
is complex, which is often the case for signaling models with high 
dimensional parameter space, these methods are unlikely to find 
the global optimum, and in this case more sophisticated methods 
need to be used. Multiple shooting (27) performs better in terms 
of avoiding getting stuck in local optima, but, as argued by Brewer 
et al. (28) may perform poorly when measurements are sparse 
and data are noisy. A large class of optimization methods is the 
global optimization methods that try to explore complex surfaces 
as widely as possible; among these, genetic algorithms are partic-
ularly well known and have been applied to ODE models (25). 
Moles et al. (29) tested several global optimization algorithms on 
a 36-parameter biochemical pathway model and showed that the 
best performing algorithm was a stochastic ranking evolutionary 
strategy (30) (software is available (31, 32)). Further improve-
ments in computational efficiency of this algorithm were obtained 
by hybrid algorithms incorporating local gradient search and 
multiple shooting methods (17, 33).

2. Parameter 
Inference
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To obtain an ensemble of good parameter values, an approach 
based on simulated annealing (34) and Monte Carlo search 
though parameter space can be used (35, 36). In a Bayesian set-
ting, MCMC methods (37) (software is available (38)) and 
unscented Kalman filtering (39) have been applied to estimate the 
posterior distribution of parameters. Bayesian methods do not 
only estimate confidence intervals, but provide even more infor-
mation by estimating of the whole posterior parameter distribu-
tion. To obtain confidence intervals for a point estimate in a 
frequentist setting, a range of techniques can be applied that 
include variance–covariance matrix based techniques (40), profile 
likelihood (41), and bootstrap methods (42).

Parameter estimation should be accompanied by identifiability 
and sensitivity analyses. If a parameter is nonidentifiable, this 
means it is difficult or impossible to estimate due to either model 
structure (structural nonidentifiability) or insufficient amount or 
quality or data measurements (statistical nonidentifiability) (19, 
43, 44). Structurally nonidentifiable parameters should ideally be 
removed from the model. Sensitivity analysis studies how model 
output behaves when varying parameters (45). If model output 
changes a lot when parameters are varied slightly, we say that the 
model is sensitive to changes in certain parameter combinations. 
Recently, the related concept of sloppiness has been introduced 
by Sethna and coworkers (35, 46). They call a model sloppy when 
the parameter sensitivity eigenvalues are roughly evenly distributed 
over many decades; those parameter combinations with large 
eigenvalues are called sloppy and those with low eigenvalues stiff. 
Sloppy parameters are hard to infer and carry very little discrimi-
natory information about the model. The concepts of identifi-
ability, sloppiness, and parameter sensitivity are, of course, related: 
nonidentifiable parameters and sloppy parameters are hard to 
estimate precisely because they can be varied a lot without having 
a large effect on model outputs; the corresponding parameter 
estimates will thus have large variances. A parameter with large 
variance can, in a sensitivity context, be interpreted as one to 
which the model is not sensitive if the parameter changes.

Model selection methods strive to rank the candidate models, 
which represent hypothesis about the underlying system, relative 
to each other according to how well they explain the experimen-
tal data. Crucially, the chosen model is not the “true” model, but 
the best model from the set of candidate models. It is the one 
which we should probably use for making inferences from the 
data. Generally, the more parameters are included in the model; 

3.  Model Selection
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the better a fit to the data can be achieved. If the number of 
parameters equals the number of data points, there is always a way 
of setting the parameters so that the fit will be perfect. This is 
called overfitting. Wel (47) famously addressed a question of 
“how many parameters it takes to fit an elephant,” which practically 
suggests that if one takes a sufficiently large number of parameters, 
a good fit can always be achieved. The other extreme is underfit-
ting, which results from using too few parameters or too inflexible 
a model. A good model selection algorithm should follow the 
principle of parsimony, also referred to as Occam’s razor, which 
aims for to determine the model with the smallest possible number 
of parameters that adequately represents the data and what is 
known about the system under consideration.

The probably best known method for model selection is 
(frequentist) hypothesis testing. If ODE models are nested (i.e., 
one model can be obtained from the other by setting some param-
eter values to zero), then model selection is generally performed 
using the likelihood ratio test (16, 48). If both models have the 
same number of parameters and if there is no underlying biological 
reason to choose one model over the other, then we choose 
the one which has a higher maximum likelihood. However, if the 
parameter numbers differ, then the likelihood ratio test penalizes 
overparameterization.

If the models are not nested, then model selection becomes 
more difficult but a variety of approaches have been developed 
that can be applied in such (increasingly more common) situa-
tions. Bootstrap methods (42, 48) are based on drawing many 
so-called bootstrap samples from the original data by sampling 
with replacement, and calculating the statistic of interest (e.g., an 
achieved significance level of a hypothesis test) for all of these 
samples. This distribution is thin compared to the real data.

Other model selection methods applicable to non-nested 
models are based on information-theoretic criteria (26) such as 
the Akaike Information Criteria (AIC) (16, 48–50). These meth-
ods involve a goodness-of-fit term and a term measuring the para-
metric complexity of the model. The purpose of this complexity 
term is to penalize models with high number of parameters; the 
criteria by which this term should be chosen can differ consider-
ably among the various proposed measures.

In a Bayesian setting, model selection is done through 
so-called Bayes factors (for comprehensive review see (51)). We 
consider two models, m1 and m2 and would like to determine 
which model explains the data x better. The Bayes factor measuring 
the support of model m1 compared to model m2, is given by:

 = = ò
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To compute it, marginal likelihoods have to be computed, 
and this is done by integrating nonlinear functions over all possible 
parameter combinations. This can be a challenging problem when 
the dimension of the parameter space is high, and Vyshemirsky 
and Girolami (37) asses various methods how this can be done 
efficiently. A Bayesian version of information-theoretic model 
selection techniques introduced above is the Bayesian Information 
Criterion (BIC) (35, 52), which is an approximation of the loga-
rithm of the Bayes factor. Unlike the AIC, which tends toward 
overly complex models as the data saturates, the BIC chooses correct 
models in the limit of infinite data availability.

There are several advantages of Bayesian model selection 
compared to traditional hypothesis testing. Firstly, the models 
being compared do not need to be nested. Secondly, Bayes factors 
do not only weigh the evidence against a hypothesis (in our case 
m2), but can equally well provide evidence in favor of it. This is 
not the case for traditional hypothesis testing where a small p 
value only indicates that the null model has insufficient explana-
tory power. However, one cannot conclude from a large p value 
that the two models are equivalent or that the null model is superior, 
but only that there is not enough evidence to distinguish between 
them. In other words, “failing to reject” the null hypothesis can-
not be translated to “accepting” the null hypothesis (51, 53). 
Thirdly, unlike the posterior probability of the model, the p value 
does not provide any direct interpretation of the weight of 
evidence (the p value is not the probability that the null hypothesis 
is true). We expect that Bayesian methods will also deal better 
with so-called sloppy parameters because they are based on explicit 
marginalization over model parameters.

When formulating the likelihood for an ODE model, one nor-
mally assumes the Gaussian error distribution on the data 
points: by definition this is the only way of defining a likelihood 
for a deterministic model. Moreover, it might be hard to ana-
lytically work with the likelihood (e.g., finding maximum likeli-
hood estimate and integrating the marginal probabilities). ABC 
methods have been conceived with the aim of inferring poste-
rior distributions by circumventing the use of the likelihood, in 
favor of exploiting the computational efficiency of modern sim-
ulation techniques by replacing calculation of the likelihood 
with a comparison between the observed data and simulated 
data. These approaches are also straightforwardly applied to 
ODE model of signaling networks.

4. Approximate 
Bayesian 
Computation 
Techniques
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Let q be a parameter vector to be estimated. Given the prior 
distribution p(q), the goal is to approximate the posterior distri-
bution, p(q|x) ∝ f (x|q)p(q), where f (x|q) is the likelihood of q 
given the data x. ABC methods have the following generic form:

 1. Sample a candidate parameter vector q* from some proposal 
distribution p(q).

 2. Simulate a data set x* from the model described by a conditional 
probability distribution f (x|q).

 3. Compare the simulated data set, x*, to the experimental data, 
x0, using a distance function, d, and tolerance e; if d(x0,x*) £ e, 
accept q*. The tolerance e ³ 0 is the desired level of agree-
ment between x0 and x*.

The output of an ABC algorithm is a sample of parameters from 
a distribution p(q|d(x0,x*) £ e). If e is sufficiently small then the 
distribution p(q|d(x0,x*) £ e) will be a good approximation for the 
“true” posterior distribution, p(q|x0).

The most basic ABC algorithm outlined above is known as 
the ABC rejection algorithm; however, recently more sophisti-
cated and computationally efficient ABC methods have been 
developed. They are based on Markov Chain Monte Carlo (ABC 
MCMC) and Sequential Monte Carlo (ABC SMC) techniques 
(54, 55), respectively. They have recently been applied to dynami-
cal systems modeled by ODEs and stochastic master equations; 
ABC SMC has been developed for approximating the posterior 
distribution of the model parameters and for model selection 
using Bayes factors (56). In the next section we illustrate the use 
of ABC SMC for parameter estimation and model selection in the 
context of the JAK-STAT signaling pathway.

The JAK-STAT signaling pathway is involved in signaling through 
several surface receptors and STAT proteins, which act as signal 
transducers and activators of transcription (57, 58). Here we look 
at models of signaling though the erythropoietin receptor (EpoR), 
transduced by STAT5 (Fig. 1). Signaling through this receptor is 
crucial for proliferation, differentiation, and survival of erythroid 
progenitor cells (59).

When the Epo hormone binds to the EpoR receptor, the 
receptor’s cytoplasmic domain becomes phosphorylated, which 
creates a docking site for signaling molecules, in particular the 
transcription factor STAT5. Upon binding to the activated recep-
tor, STAT5 first becomes phosphorylated, then dimerizes and 
translocates to the nucleus, where it acts as a transcription factor. 

5. Application  
to JAK-STAT 
Signaling Pathway
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There have been competing hypotheses about what happens with 
STAT proteins at the end of the signaling pathway. Originally it 
had been suggested that STAT proteins get degraded in the 
nucleus in an ubiquitin-asssociated way (60), while other evidence 
suggests that they are dephosphorylated in the nucleus and then 
transported back to the cytoplasm (61).

Here we want to understand how STAT5 protein transduces 
the signal from the receptor in the membrane through the cyto-
plasm into the nucleus. We have approached this problem by 
applying ABC SMC for model selection and parameter estimation 
to data collected for the JAK-STAT signaling pathway. The most 
suitable model from model of a STAT5 part of the JAK-STAT 
signaling pathway among the three proposed models was chosen 
and parameters have been estimated.

The ambiguity about the shutoff mechanism of STAT5 in the 
nucleus triggered the development of several mathematical mod-
els (16, 48, 62), each describing a different hypothesis. These 
models were then fitted to experimental data and systematically 
compared to each other using statistical methods of model selec-
tion. The model selection procedure ruled in favor of a cycling 
model, where STAT5 reenters the cytoplasm.

Timmer et al. (16, 48, 62) developed a continuous mathe-
matical model for STAT5 signaling pathway, comprising of four 

Fig. 1. STAT5 signaling pathway. Adapted from Biocarta.
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 differential equations. They assume mass action kinetics and denote 
the amount of activated Epo-receptors by EpoRA, monomeric 
unphosphorylated STAT5 molecules by x1, monomeric phospho-
rylated STAT5 molecules by x2, dimeric phosphorylated STAT5 in 
the cytoplasm by x3, and dimeric phosphorylated STAT5 in the 
nucleus by x4. The most basic model Timmer et al. developed, 
under the assumption that phosphorylated STAT5 does not leave 
the nucleus, consists of the following kinetic equations:
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= - +

= - +
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One can then assume that phosphorylated STAT5 de-dimerizes 
and leaves the nucleus and this can be modeled by adding appro-
priate kinetic terms to Eqs. 1 and 2 of the basic model:

 = - +1 1 1 A 4 4EpoR 2k x k xx  

 = -4 3 3 4 4k x k xx  

Timmer et al. develop their cycling model further by assuming a 
delay in moving of STAT5 out of the nucleus. They write ODE 
equations for x1 and x4 for this model as

 1 1 1 A 4 3EpoR 2 ( )x k x k x t t= - + -  (3)

 = - -4 3 3 4 3 ( )x k x k x t t  (4)

while equations for x2 and x3 remain as above. The outcome of 
their statistical analysis is that this model fits the data best, which 
leads them to the conclusion that this is the most appropriate 
model.

Instead of Timmer’s chosen model, we propose a similar 
model with clear physical interpretation. Instead of 3 ( )x t t- , we 
propose to model the delay of phosphorylated STAT5 x4 in the 
nucleus with x4(t – t):

 t= - + -1 1 1 A 4 4EpoR 2 ( )k x k x tx  

 t= - -4 3 3 4 4 ( )k x k x tx  

We have performed the ABC SMC model selection algorithm 
(56) on the following models: (1) Cycling delay model with 
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3 ( )x t t- , (2) Cycling delay model with 4 ( )x t t- , and (3) Cycling 
model without a delay. The model parameter m can therefore 
take values 1, 2, and 3.

Figure 2 shows intermediate populations leading to the approx-
imation of the marginal posterior distribution of m (population 
13). Bayes factors can be calculated from the last population and 
according to the conventional interpretation of Bayes factors (51), 
it can be concluded that there is very strong evidence in favor of 
models 2 and 3 compared to model 1. However, there is only weak 
evidence for model 3 being more suitable than model 2.

Fig. 2. Histograms show populations of the model parameter m. Population 13 represents the approximation of the 
marginal posterior distribution of m. The dark shaded sections present 25% and 75% quantiles around the median.
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Modeling biological signaling or regulatory systems requires 
 reliable parameter estimates. But the experimental dissection of 
signaling pathways is costly and laborious; it furthermore seems 
unreasonable to believe that the same set of parameters describes 
a system across all possible environmental, physiological, and 
developmental conditions. We are therefore reliant on efficient 
and reliable statistical and computational methods in order to 
estimate parameters and, more generally, reverse engineer mecha-
nistic models.

As we have argued above, any such estimate must include a 
meaningful measure of uncertainty. A rational approach to mod-
eling such systems should furthermore allow for the comparison 
of competing models in light of available data. The relative new 
ABC approaches are able to meet both objectives. Furthermore, 
as we have shown elsewhere they are not limited to deterministic 
modeling approaches but are also readily applied to explicitly sto-
chastic dynamics; in fact it is possible to compare the explanatory 
power of deterministic and stochastic dynamics in the same mech-
anistic model.

One of the principal reasons for applying sound inferential 
procedures in the context of dynamical systems is to get a realistic 
appraisal of the robustness of these systems. If, as has been 
claimed, only a small set of parameters determines the system out-
puts then we have to ascertain these with certainty. It is here, in 
the reverse engineering of potentially sloppy dynamical systems, 
where the Bayesian perspective may be most beneficial.
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Chapter 19

Genetic Algorithms and Their Application to In Silico 
Evolution of Genetic Regulatory Networks

Johannes F. Knabe, Katja Wegner, Chrystopher L. Nehaniv,  
and Maria J. Schilstra 

Abstract

A genetic algorithm (GA) is a procedure that mimics processes occurring in Darwinian evolution to solve 
computational problems. A GA introduces variation through “mutation” and “recombination” in a 
“population” of possible solutions to a problem, encoded as strings of characters in “genomes,” and 
allows this population to evolve, using selection procedures that favor the gradual enrichment of the gene 
pool with the genomes of the “fitter” individuals. GAs are particularly suitable for optimization problems 
in which an effective system design or set of parameter values is sought.

In nature, genetic regulatory networks (GRNs) form the basic control layer in the regulation of gene 
expression levels. GRNs are composed of regulatory interactions between genes and their gene products, 
and are, inter alia, at the basis of the development of single fertilized cells into fully grown organisms. 
This paper describes how GAs may be applied to find functional regulatory schemes and parameter values 
for models that capture the fundamental GRN characteristics. The central ideas behind evolutionary 
computation and GRN modeling, and the considerations in GA design and use are discussed, and illus-
trated with an extended example. In this example, a GRN-like controller is sought for a developmental 
system based on Lewis Wolpert’s French flag model for positional specification, in which cells in a grow-
ing embryo secrete and detect morphogens to attain a specific spatial pattern of cellular differentiation.

Key words: Evolutionary computation, Genetic algorithm, Genetic regulatory network, Modeling, 
Simulation, Gene regulation logic, Developmental program

Abbreviations

CPM Cellular Potts model
CRM Cis-regulatory module
EC Evolutionary computing
GA Genetic algorithm
PR Gene product (protein or RNA)
GRN Genetic regulatory network
TF Trans-regulatory factor
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With the sequencing of the human genome, and the inventory of 
its total protein-coding gene content, a full understanding of the 
programs controlling metabolism, development, and adaptation 
may seem to be within reach. However, over the years it has 
become increasingly clear that regulation of gene expression is 
achieved through highly complex dynamic interaction networks, 
often called genetic regulatory networks (GRNs). There is now a 
large amount of information available about gene expression levels 
in different cells, tissues, and organisms, at different stages of 
development, response, and adaptation. Nonetheless, unraveling 
the intricate structure of the GRNs that underlie these processes is 
difficult, and requires the integration of a great number of experi-
mental and computational resources. Techniques are being devel-
oped to pinpoint and quantitatively describe the interactions – of 
so-called cis-regulatory sites with trans-regulatory factors (TF) – 
that lead to enhanced or reduced gene expression. In addition, 
network structures can, at least partially, be inferred using sophis-
ticated statistical techniques that detect correlations and depen-
dencies in gene expression levels. On the basis of the progress 
already made in these fields, it is widely expected that one day it 
will be possible to use the knowledge about the basic interactions, 
constrained by information obtained with network inference tech-
niques, to automatically create mathematical GRN models that 
not only show similar dynamics and responses, but also have the 
same network structure as the intracellular GRNs that they aim to 
describe. Procedures for automatic or computer-aided dynamic 
GRN generation will almost certainly make use of computational 
evolutionary techniques to search for networks that exhibit the 
intended behavior. It is likely that computational tools will be 
using a limited number of predefined dynamic components that 
describe processes such as transcription, translation, and transport, 
and subnetworks such as signaling cascades. The greatest 
challenges in the development of such tools lie, in the first instance, 
in deciding what the nature and characteristics of these predefined 
components should be, and in collecting sufficient information to 
be able to describe their dynamics in adequate detail.

The purpose of this chapter is to give readers an impression of 
what evolutionary computation (EC) is, and what its advantages 
and limitations are, and how it may be used. We illustrate how EC 
techniques, specifically a class of techniques called genetic algorithms, 
can be used to generate GRN models that show a particular, 
relatively complex behavior on the basis of an example taken from 
our own investigations into the potential of GRN-like structures as 
control systems. An in-depth discussion of the requirements for 
quantitative modeling and simulation of biological GRNs is beyond 
the scope of this chapter, and we will focus mostly on “conceptual” 

1.  Introduction
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or artificial GRNs, mathematical models that qualitatively capture 
the most distinctive features of biological GRNs.

Relatively early in the history of modern computation, engineers 
had the idea to harness the power of evolution for optimization 
purposes. After all, evolution, driven by the related mechanisms 
of genetic drift and natural selection, has led to the huge diversity 
of well-adapted species we see on earth nowadays. Evolution, it is 
argued, is a massively parallel search that tests the ability of 
millions of populations to adapt to their habitats.

In its most general definition, biological evolution is “change 
in the gene pool of a population from one generation to the next.” 
A gene is a hereditary, functional unit that can be passed on unal-
tered for many generations, and a gene pool is the collection of all 
genes in a population – here, a group of individuals that are able to 
interbreed and produce fertile offspring (see Note 1). Genetic drift 
is the accumulation of random change in the gene pool of a popu-
lation over time. Each individual member of a population has its 
own, unique genotype, the full set of genes in its genome. Genetic 
variation within a population is brought about by mutation, heri-
table change in the genotype of a single individual, or recombina-
tion, the reshuffling, and exchange of genetic material between two 
individuals. An individual’s ability to adapt to its environment is 
determined by its phenotype, the physical expression of its genotype 
in that environment. While mutation and recombination increase 
the diversity within a population, natural selection makes it decrease. 
“Fitter” individuals – those whose phenotype is best adapted to the 
environment – are the ones that, on average, produce more off-
spring. Greater fitness may be due to greater viability, the probabil-
ity to survive to a given age, or to increased fertility, which is related 
to the total number of offspring produced during a lifetime. In a 
population whose size remains the same, traits that make individu-
als fitter will accumulate as the population evolves over many gen-
erations, while the less favorable ones will disappear.

The evolutionary cycle, in which a number of individuals are 
selected from a population on the basis of their fitness in step 1, to 
produce offspring that receives, in step 2, a combination of the – 
possibly mutated – parental genomes, and where, in step 3, the new 
generation replaces the whole previous generation in the popula-
tion, is depicted in Fig. 1. This simple cycle of selection, variation, 
and replacement forms the basis of all evolutionary computation. 
Evolutionary computation (EC) has been found particularly appro-
priate for solving multidimensional problems whose parameter 
space is too large to search exhaustively or too complex to investi-
gate systematically. By probabilistically searching and improving a 
“population” of “candidate solutions” – rather than trying to find 
a single analytical solution, or applying deterministic search rules 
– the algorithms used in EC often find good, albeit not necessarily 
the best, solutions. As with all such global search  heuristics, EC 

1.1. Evolutionary 
Computation and 
Genetic Algorithms
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techniques are better suited to certain types of problems than to 
others, and are certainly not guaranteed to solve any problem opti-
mally. However, because they have fewer restrictions, evolutionary 
algorithms are, on the whole, applicable to a wider range of prob-
lems than many other optimization techniques.

Genetic algorithms (GAs) form a particular class of EC techniques 
(see Note 2), first developed in the 1960s by John Holland in 
an attempt to use natural adaptation mechanisms in computer 
science (1, 2). GAs use selection methods and so-called genetic 
operators, such as cross-over, mutation, and inversion, to slowly 
change the information content in a population of “genomes.” 
Using a set of rules that is different for different problems, the 
information in each genome is translated into a “phenotype.” 
The characteristics of each phenotype are then compared with a 
set of desired characteristics, and assigned a “fitness value” on the 
basis of the comparison. The selection process is set to favor 
genomes that produce fitter phenotypes, allowing the fitter 
individuals to produce most of the offspring.

Thus, GAs employ procedures that simulate, in a highly simpli-
fied fashion, the processes that operate in biological evolution. The 
assignment of a fitness value to a genotype on the basis of a compari-
son with a target behavior is clearly unrealistic, as in nature there are 
no targets, just survival and reproduction probabilities in a given 
environment. However, the primary purpose of a GA is not to accu-
rately simulate biological evolution, but to solve computational 
problems. In that context, GAs are often capable of providing satis-
factory solutions to complex optimization problems that cannot so 
easily be solved by other, more formal methods. For further reading 
we recommend An Introduction to Genetic Algorithms by M. 

Fig. 1. The evolutionary cycle, consisting of parent “selection” (fitter parents produce, 
on average, more offspring), introduction of genetic variation in the offspring through 
cross-over and mutation mechanisms, and replacement of the parent generation with 
their offspring, who will act as parents in the next round. In Evolutionary Computation, 
an evolutionary run must be initiated with a starting population, and is terminated when 
a predefined fitness or time criterion is met. The population size is kept constant 
throughout the full evolutionary run.
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Mitchell (3), and the two volumes in the series Evolutionary 
Algorithms, edited by Back, Fogel, and Michalewicz (4).

In its most basic definition, a GRN is a collection of regulatory 
interactions between genes and gene products. A gene product 
(PR) (see Note 3) is a macromolecule that has been constructed 
on the basis of the information present in the coding region of 
the gene, and may be a polyribonucleotide (RNA) or a polypep-
tide (protein). A gene is said to be expressed in a cell when its gene 
products can be found in that cell. Some genes are constitutively 
expressed, and their PRs always present. Most genes, however, 
are conditionally expressed: they are only activated under certain 
conditions. In spite of the fact that all cells that form an organism 
have the same genome, expression levels within a single organism 
often vary widely from tissue to tissue, from cell to cell, and over 
time. This differential gene expression may originate in variations 
in certain extracellular conditions, or in variable detection of, or 
response to the external conditions, but can also be caused by 
asymmetries in the distribution of certain key molecules after cell 
division. Thus, the PRs participating in the cell signaling appara-
tus that detects these differences in conditions form the “input” 
to GRNs, whereas the PRs that contribute to the cell structure 
and metabolism are the “output.”

Many PRs are involved in the activation or repression of the 
expression of one or more genes: they are said to function as TFs 
(see Note 4) to those genes. Thus, the statement “gene A regulates 
gene B” in actual fact means that the PR of gene A is involved as a 
TF in the regulation of the expression of gene B. Regulation is 
mediated through so-called cis-regulatory TF-binding sites. Physically, 
a cis-regulatory binding site is a stretch of DNA that has a high 
affinity for a specific TF or TF complex. If TF molecules are present 
in a given cell over a certain period of time (i.e., their genes are 
being expressed), they will bind to their cis-regulatory binding sites 
for at least part of that time, during which they act to increase or 
decrease the gene transcription rate. A gene may have many 
cis-regulatory sites that bind as many different TFs, each of which 
may affect the transcription rate differently. TFs often act synergis-
tically, with their combined effect very different from the sum of their 
individual effects. A simple example of synergy is a situation in which 
only the complex of two different TFs (a hetero-dimer) is able to 
repress transcription, whereas either of the constituents of the com-
plex have no effect. In that case, repression will only occur under 
conditions in which both TFs – which, as the products of different 
genes, may require different sets of conditions for their own expres-
sion – are being expressed. Because the expression of a single gene 
may be regulated by many different TFs, and a particular PR may 
take part in the regulation of multiple genes including its own, the 
connection patterns in GRNs are often highly convoluted, and 
feedback loops are in abundance.

1.2. Genetic 
Regulatory Networks
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Mature PRs are created in a series of consecutive transforma-
tions of the primary transcript that include chemical modifica-
tion (carried out by enzymes, a class of proteins that catalyze 
chemical reactions), transport from the nucleus to other parts in 
the cell, and, for proteins, translation of the information in the 
mRNA into a polypeptide chain, followed by posttranslational 
modification into a mature protein. Activation of mature PRs 
may require further modification or complex formation. 
Furthermore, mature RNA and protein molecules are often 
actively broken down as soon as they are somehow surplus to 
requirement (see Note 5). Modification, translation, transport, 
and breakdown are all as tightly controlled as gene transcription. 
In the following, however, we shall focus on the regulation of 
transcription, not only because it forms the basis for all higher-
level regulation, but also because it can be highly adaptive, and 
has the ability to integrate the information contained in a large 
amount of incoming data.

All GRN models include components that fulfill the roles of 
genes and TFs in biological GRNs. In their most abstracted form, 
GRNs are simply represented by “directed graphs”: sets of nodes 
(boxes or circles) connected by arrows. The nodes represent 
genes, and the arrows indicate control: the arrowhead points at 
the gene whose expression is being regulated by the PR of the 
gene connected to the other end of the arrow. The arrows may 
have weights that express the effectiveness of a PR as a TF.

In more elaborate models, PRs, their precursors, and the vari-
ous processes that contribute to changes in their levels may have 
individual representations. Although no one way of representing 
GRNs is “the best,” the inclusion or omission of detail will cer-
tainly make particular models more fit for purpose than others.

Graphical representations such as the ones described above 
specify which processes can and cannot occur. However, the 
response of a network to an incoming signal can only be assessed 
on the basis of rules that describe how rapidly the value of a node 
changes when the values of other system components change. In 
their most simplified form, GRNs are modeled as Boolean  networks, 
in which the genes are either “on” or “off.” Boolean net work mod-
els usually let a full response to changed conditions take place in 
a single, discrete time step. More complex dynamic models may 
include delays and fractional or exponential response mechanisms, 
and PR levels are allowed to assume (positive) values on discrete 
or continuous scales. Most models define a functional depen-
dency of the rate of PR production on the amount of TFs present, 
so that increasing the amount of an activator, or decreasing the 
amount of a repressor increases the rate of PR production. In 
order to prevent unlimited growth, a PR breakdown rate or an 
upper level must be specified. Synergistic effects may be modeled 
in different ways, some of which are outlined in (5).
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The parameters associated with the delayed, fractional, or 
exponential response determine the rate at which these networks 
can adapt to changed conditions. Time may be modeled discretely 
or continuously. To simulate the responses of a network over 
time, discrete time models require solution of a set of difference 
equations, whereas continuous-time models translate to sets of 
differential equations that are numerically integrated. Stochasticity 
(randomness) may be introduced in various ways in both types of 
models; however, introduction of stochasticity tends to be com-
putationally costly, and, for highly abstracted models, does not 
usually yield a more accurate reflection of reality.

Again, no particular modeling framework is necessarily better 
or more realistic than any of the others. The mechanisms that oper-
ate within a biological cell or organism are so diverse and complex, 
and the models so abstract, that it is possible to find some “biologi-
cal justification” for most. Altogether, there are far more ways of 
modeling GRNs than can be evaluated here. Many excellent reviews 
have appeared over the last decade, some discussing specific sys-
tems, some examining specific modeling techniques, and others 
attempting to evaluate the whole (6–28). An example of how the 
above concepts and considerations can be incorporated in a dynamic 
model is presented in Subheading 2.2.

Throughout this chapter, we shall illustrate the most important 
concepts in the field of evolutionary computation and GAs on the 
basis of an example application in which a GRN is evolved that 
controls cell division and gradient formation in a system based on 
Lewis Wolpert’s famous French flag model of positional specifica-
tion in the embryo ((29, 30) and references therein; see also 
(31)). Wolpert proposed this model in 1969 to explain a mecha-
nism for retrieving positional information by arrays of cells in an 
embryo or tissue. The model is based on the assumption that, 
during early development, gradients of chemical signals called 
morphogens build up across the growing embryo. The cells in 
the embryo detect the morphogen concentration and compare it 
with certain built-in thresholds, to decide in which domain of the 
embryo – here, in the red, white, or blue section of the French 
flag – they are located. Since this model was first proposed, several 
variations of have been explored, e.g. (32, 33). Although these 
models differ in detail, all include a 2D spatial arrangement of 
cells that can detect the concentration of morphogen in an under-
lying stratum. In our version, all cells can also produce this mor-
phogen, and secrete it into the stratum. Gradients form when the 
morphogen diffuses away from the cells that secreted it, and even-
tually decays. Cells only “communicate” through these morpho-
gen gradients; there is no other exchange of information between 
cells. Each cell has its own independent control unit that regulates, 
inter alia, its morphogen secretion rate, and determines its color. 

1.3. Running Example: 
Evolving a GRN-Like 
Control System for 
Cellular Differentiation 
into a French Flag 
Pattern



304 Knabe et al.

These control units are instances of a GRN, and have the same 
components and connectivity in each cell.

The task for the GA in this example is to find a GRN that 
controls cellular morphogen secretion in such a way that a gradient 
forms along the long axis of the flag-shaped environment as the 
cells in the embryo multiply and eventually fill the whole flag. The 
gradient has to be steep enough to allow the cells to determine 
whether its level at their position is above, in between, or below 
two separate thresholds, in order for them to adopt a blue, white, 
or red color. More information on the development of this 
GRN-controlled French flag system, including a detailed description 
and discussion of the results, is found in (34).

To mimic the growth and multiplication of cells in a developing 
embryo, we used an existing implementation of the so-called 
cellular Potts model (CPM). The CPM was originally developed 
by Glazier and Graner to simulate differential adhesion-driven 
cell arrangement (35), but has been re-used for a variety of cell-
level modeling tasks, recently reviewed by Merks and Glazier 
(36). The CPM has two layers, both consisting of pixel lattices 
(here of 60 × 40 pixels each). In the top layer, “cells” are repre-
sented as domains of adjacent pixels. Every pixel is associated with 
an integer number that identifies the cell to which it belongs, 
with zero indicating that it does not belong to any cell. The sys-
tem advances in time steps in which each pixel attempts once, on 
average, to copy its value into a randomly chosen neighboring 
pixel. Copying success is limited by so-called effective energy con-
straints: each cell has an ideal size (number of pixels in the cell) at 
which its energy content is minimal, and deviation from the ideal 
incurs an energy penalty. A copying attempt will succeed in any 
case if the copying decreases the energy of the whole system. The 
copying event may even proceed if the overall energy is predicted 
to increase, but the probability of success decreases exponentially 
with increasing energy differences. Because of this, cells remain 
dynamic, even if their energy is close to minimal. Other cell prop-
erties that can be constrained, and therefore externally controlled, 
include shape (the ratio of its projections on the horizontal and 
vertical axes), its tendency to “stick” to neighboring cells, and the 
direction in which to divide. Importantly, all cells in our model 
have the ability to “secrete” one or more types of morphogen 
into the “stratum” in the bottom layer, and to read out its current 
level in each time step. The rate of secretion is open to external 
control. Each type of morphogen has fixed diffusion and decay 

2.  Materials

2.1.  Cellular Model
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rates, and its distribution over time over the stratum is computed 
by numerically solving the partial differential equations that 
describe the diffusion, decay, and production (secretion) of the 
morphogen. We used a flexible open source CPM implementa-
tion called CompuCell3D (see http://CompuCell3D.org and 
(36) for implementation and formalism details), which allowed us 
to choose predefined constraints, and also to define new ones 
where necessary. CompuCell3D also facilitates the use of external 
control modules to control the various parameters that determine 
cell behavior.

The central components of the GRN control unit used to con-
trol the French Flag development are genes and gene products 
(PRs). The genes contain one or more cis-regulatory modules 
(CRMs), and each of these modules consists of one or more 
binding sites for TFs. Each gene produces one type of PR, and 
each type of PR can function as a TF in the expression of any 
gene (including its own) if at least one of the CRMs of that gene 
contains a binding site for that PR. A PR can function as a TF in 
the regulation of many genes, and a gene can have many 
TF-binding sites. A PR may have many multiple binding sites on 
one gene, even within a single CRM. Genes may be constitutive 
or facultative. Constitutive genes are “on” in the absence of their 
TFs, and need overall repression to reduce their expression level; 
facultative genes are “off” by default, and need to be activated by 
their TFs to produce their PRs. TFs that bind to the same CRM 
act together, whereas the CRMs make independent contribu-
tions to the gene expression level. These contributions may either 
be activating or inhibitory (repressive).

These effects are quantitatively implemented as follows. At 
any one point in time, each PR in each cell is associated with a 
number, n, that represents the amount of PR molecules in that 
cell. The TFs that bind to a single CRM do so (conceptually) as a 
tight complex (a hetero-oligomer), so that the TF with the small-
est number molecules present determines the total amount of 
complex that can be formed (see Note 6). The contribution of one 
CRM to the overall expression level is taken to be proportional to 
the amount of complex formed. Activating CRMs make a positive, 
and inhibitory CRMs make a negative contribution. The sum S of 
the individual CRM contributions is then translated into a PR pro-
duction rate vp between zero and a maximum rate (e.g., 150 PR 
molecules per time unit). The relationship between vp and S is 
sigmoid, with its inversion point below zero for constitutive, and 
above zero for facultative genes. Figure 2a shows a graphical rep-
resentation of a single gene, and demonstrates how vp is calculated 
from the quantities of its TFs. Each PR also decays at a rate vd that 
is proportional to the amount n of PR present: vd = kd × n. The pro-
portionality constant kd is different for each PR.

2.2.  GRN Model

http://CompuCell3D.org
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To simulate the response of the GRN in each cell to the 
changing conditions, time is divided in discrete steps Dt of unit 
size (Dt = 1). The quantity of the ith PR in the jth cell at the end 
of time step t, ni,j(t), is calculated by simply adding the number of 
PR molecules formed in time step t to the quantity ni,j(t−1) of the 
same PR in the previous time step, and subtracting the number of 
molecules that have disappeared, as shown in Eq. 1. This is done 
for all PRs in all cells.

 d
, , , ,( ) ( 1) ( ( ) ( ))p

i j i j i j i jn t n t v t v t t= − + − × ∆  (1)

The GRN for the French Flag system uses 20 genes to pro-
duce a maximum of 16 different PRs (justified in Subheading 3.1). 
All PRs may be used as TFs (to regulate the expression of other 
genes). Furthermore, a total of 12 PRs have the following 
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Fig. 2. Gene representation. (a) Dynamic model, illustrating how a PR production rate is computed from the TF quantities 
present in one cell, at one particular point in time. The gene depicted here (as a horizontal line crossed by a bent arrow ) is 
constitutive, and has three CRMs, a, b, and g, one of which (g) is activating, and the other two inhibitory. The boxes indicate 
the names of the PRs that act as TFs to the gene, with their quantities shown in bold above the boxes. For each CRM, the 
minimum TF quantity is carried through, and negated for inhibitory CRMs. The sum S of these values is then used to com-
pute v p, the PR production rate. The relationship between S and v p is sigmoid, as shown in the graphs to the right of the 
gene. The broken line, here with a midpoint at −5, represents v p(S ) for constitutive genes; the solid line (midpoint at 15) 
that for facultative genes. (b) Gene encoding: genes are encoded in the genome using 3 as the gene delimiter, 2 as CRM 
delimiters, and zeros and ones immediately to the right of the delimiter to indicate a constitutive (13) or facultative (03) 
gene (bold, underlined ), and an activating (12) or inhibitory (02) CRM (bold  ). The rest of the gene representation consists 
solely of zeros and ones, and represent the PR of the gene (the four characters immediately to the left of the 31 or 30), and 
the TFs (as many quadruplets to the left of each 21 and 20 that will fit). The residual characters (of which there may be 
zero or more in the PR area, and zero to three in the CRM areas), indicated in gray, do not have a function.
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 predefined functions. For each cell, the only input into the GRN 
comes from the average concentration of two morphogens, m1 
and m2, in the part of the stratum directly underneath the cell. 
This is done at the start of each time step by reading out, and set-
ting the number of molecules of two particular PR to values pro-
portional to m1 and m2. A further 10 PRs form the GRNs output, 
and act as controllers for the CPM. One PR controls the cell’s 
target size: when there is a large amount present, the cell will try 
to grow until it reaches the size threshold for division (and then 
divides); if its quantity is zero, the cell will shrink, and eventually 
disappear (undergo “apoptosis”). Five more PRs set the cell’s 
shape, stickiness, and division direction targets, essentially in the 
same way. Another two govern the morphogen production–
secretion rate: again, the more PR, the greater the rate. Finally, 
two PRs determine the color of the cell: high quantities of both 
(compared with a set threshold) make the cell blue, one high and 
one low gives white, and two low quantities yields a red cell.

In a simulation round, the CPM is combined with a “wired” 
(equipped with a particular connectivity pattern, as encoded in 
the genome; see Subheading 3.1) and parameterized GRN model. 
The simulation starts with a single cell, and therefore one copy of 
the GRM. After setting the PR quantities in that cell to their ini-
tial values (usually zero), the system is left to develop. In viable 
individuals, the cell will begin to grow as soon as the PR that 
controls the target size accumulates, and will divide when its 
threshold for division is reached. Upon division, the cell’s PR 
content is distributed between the daughter cells in quantities 
proportional to their sizes, and each daughter receives an exact 
copy of the GRN. Because of the way the CPM is designed, cells 
cannot grow on top of each other, or outside the pixel lattice, so 
that the lattice fills up with cells over the course of the simulation. 
The fraction of the lattice that is covered by cells by the end of a 
simulation round (of 200 time steps, in our case) is dependent on 
the growth rate that is achieved by the system. Numerical integra-
tion of the rate equations for the GRN system, as expressed in 
Eq. 19.1, is deterministic: if a simulation is started with the same 
initial PR quantities in cells with equal and constant sizes, the PR 
quantities will develop equally in all cells. However, the CPM is a 
nondeterministic system: it uses a random number generator 
(RNG) to choose a neighboring pixel in each copying attempt 
(see Subheading 2.1). Provided they are carried out with a differ-
ent sequence of random numbers, no two simulation rounds will 
be the same (see Note 7), even if they start under equal initial 
conditions.

Genetic algorithm-aided design of artificial GRNs as controllers 
for specific system requires a combination of three elements:  

2.3.  Simulation

2.4.  Software
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(1) the device for which a controller is required (here the CPM), 
(2) a GRN modeling and simulation tool, and (3) a tool that 
applies the GA.

Obviously, the “device” is different for each application; it 
may be a virtual system (such as the CPM in our running exam-
ple), but could equally well be a physical apparatus, a robot of 
some kind, or simply a table that lists the quantities of particular 
PRs during a simulation. Whatever the device, it must be possible 
to formulate a desired behavior for it, and to somehow quantify 
its accomplishment in comparison with the target.

Because there is no standard way of modeling GRNs, few off-
the-shelf tools are available for this purpose. Some relatively 
mature tools that have been designed specifically for modeling 
and analyzing GRNs are the Genetic Network Analyser (GNA) 
(37), and GINsim (38), which use qualitative simulation meth-
ods for predicting gene expression in highly abstracted GRN 
models. Furthermore, there are many software packages that are 
suitable for modeling of biochemical reaction networks and 
dynamical systems in general (see (39) and (40) for examples), 
and in principle it is possible to use almost any of these to create 
dynamic GRN models and simulate their dynamics. Mathematics 
packages such as Mathematica, MATLAB, Maple, and Octave, as 
well as programming languages for which mathematics libraries 
are available, such as FORTRAN, C/C++, Java, and Python, may 
facilitate the numerical simulation of GRNs. Moreover, these 
high-level programming packages often contain generic tools for 
setting up and using GAs.

In general, because application of GAs to any problem 
requires the integration of a number of software tools, some of 
which may have to be developed from scratch, and most will need 
to be adapted to the current problem, knowledge of a high-level 
programming or scripting language, or familiarity with a dedi-
cated mathematics package is essential.

As a general rule, application of GAs is computationally inten-
sive. In the case of our running example, an “evolutionary run” 
lasted for 250 generations, with each generation consisting of 
250–300 individuals; that is 250 times 250–300 × 10 simulation 
rounds of 200 time steps each (see Subheadings 2.3 and 3.3), plus 
overhead for the computation involved in the fitness assessment 
for each individual in each generation, the selection procedure, 
and the application of the evolutionary operators to each genera-
tion. Although it is possible to do these computations using a 
single processor, they are readily split into segments that can be 
performed in parallel. We used a specialized workload manage-
ment system called Condor (41) to distribute the parallel segments 
between hundreds of desktop workstations in our University 
(including many student lab machines), harnessing the CPU 
power that would have been wasted while they were standing idle, 
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and cutting the overall computation time by one or two orders of 
magnitude.

As explained in Subheading 1.1 and shown in Fig. 1, an evolu-
tionary cycle includes three steps:

 1. Selection: from a population of candidate solutions to the 
problem, encoded in “genomes,” a number of individuals are 
selected for reproduction. Each genome is associated with a 
“phenotype,” and selection occurs on the basis of its pheno-
typic characteristics.

 2. Variation: the offspring of the selected genomes receive a 
“mutated” and “recombined” version of their parental 
genomes.

 3. Replacement: the previous population is replaced by their off-
spring, after which event a new cycle begins.

An evolutionary run usually starts with a population of random solu-
tions (genomes), and terminates either when a predefined level of 
satisfaction with the solution has been met, or simply after a preset 
number of cycles has been completed. The application of a GA to a 
specific problem requires tailored specification of the following:

 1. A genome (see Note 8): a representation of the “solution 
domain” that allows modification by evolutionary operators.

 2. A phenotype: a representation whose characteristics can be 
compared to the target of the search, and a collection of rules 
that stipulate how the information contained in a genome is 
transformed into a phenotype.

 3. A fitness function to evaluate the solution contained in the 
genotype and manifested in the behavior of the phenotype.

 4. Appropriate mechanisms for selection, mutation and recom-
bination, and reproduction and a termination strategy.

In this section we introduce the most popular approaches to the 
introduction of variation and selection, and describe in detail how 
the genome, phenotype, and fitness concepts were tailored to our 
running example.

In GAs, genomes are typically represented by strings (linear 
sequences, as in DNA itself) of characters that somehow represent 
a solution to the problem that needs to be solved. These strings 
are often just sequences of zeros and ones, but larger “alphabets” – 
sets of permitted characters – are also allowed. The genome 

3.  Methods

3.1. Genome 
Representation
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 representation in our running example uses an alphabet of four 
characters: 0, 1, 2, and 3. Each genome consists of 20 individual 
“genes” (see Note 9), and also encodes some information that is 
global to the system. Each gene is subdivided into one “coding” 
area and several “CRMs.” In turn, each CRM contains a number 
of “binding sites” for TFs. The characters 2 and 3 function as 
CRM and gene delimiters only, whereas the information carried 
by the characters 0 and 1 varies, as explained below. Figures 5b 
(full genome) and 2b (single gene) illustrate the encoding. The 
last (rightmost) seven characters in the full genome are used to set 
two global properties, whose significance for brevity we will not 
go into. The next (from the end) 16 × 4 positions in the string 
encode the decay rates for each of the 16 (see below) different 
PRs. The 72nd character from the end, always a 3, indicates the 
start of the first gene. Although genes may have different num-
bers of CRMs, they are structured in the same way. The gene 
delimiter, 3, is followed by a single character (0 or 1) that deter-
mines whether the gene is constitutive (0) or facultative (1). The 
next four characters, all 0 or 1, indicate, as a binary number, the 
PR encoded by the gene; thus 0000 simply encodes pr00, 0101 
corresponds to pr05, and 1111 to pr15 (see Note 10). Any zeros 
or ones following this five-character area are ignored, and the 
regulatory region begins at the first CRM delimiter (a 2) to the 
left of the gene. CRM representations may have different lengths, 
but the character (0 or 1) that immediately follows the delimiter 
always indicates whether the overall effect of the TF complex that 
binds to the CRM is inhibitory (0) or activating (1). The charac-
ters (0 or 1) in the “TF-binding area” of the CRM, which extends 
up to the following CRM or gene delimiter, determine which PRs 
will bind to the CRM. To this aim, the TF-binding area, for 
instance 00111110010110, as in CRM a in Fig. 2b, is split into 
as many quadruplets as possible, reading from left to right along 
the CRM (here, 0011, 1110, and 0101), and a residual (here 10). 
The residual (10) is taken to be “junk,” and ignored, but the 
quadruplets (0011, 1110, and 0101) specify that pr03, pr14, and 
pr05 act, in synergy, as TFs in the expression of the gene to which 
the CRM belongs.

In the case of our running example, the rules that specify how the 
information contained in the genome is transformed into the phe-
notype are easily understood. The phenotype is formed by the 
whole machinery of the CPM (see Subheading 2.1) and its GRN 
controller (Subheading 2.2). Most of the equations that govern 
behavior of the phenotype are contained in the CPM and GRN 
model themselves, and are therefore unchangeable. However, the 
connectivity of the GRN is contained in the genome, as well as 
some of the parameter values that determine the dynamics of the 
PRs (namely their decay rates). The decay rates are encoded as 

3.2. Genotype–
Phenotype Mapping
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“words” of four characters (0 or 1), each of which can therefore 
represent (“address”) one of 16 different values. In our example, 
an even narrower “mapping” was used: the numbers 0–9 (0000–
1001) represent decay rates of 0.0–0.9 (in steps of 0.1), and all 
higher numbers (1010–1111) map on a decay rate of 1.0. 
Furthermore, 12 of the 16 possible PRs were given the following 
(predetermined, and unchangeable) control functions: color 
determinants: pr00 and 01; CPM constraint control: pr02, 03 
(morphogen secretion), 04 (shape), 05, 06, 07 (stickiness), 08 
(size), 10 (preferential division direction); and morphogen con-
centration sensors (input): pr12 and 13.

To rank the fitness of the individual genomes, a so-called fitness 
function, a quantitative measure for their proximity to the target, 
must be specified. The design of the fitness function depends 
entirely on the nature of the problem, and may vary from simple 
root mean square deviation to a sophisticated statistical analytic 
function.

In our example, fitness was assessed as follows. As stated in 
Subheading 2.3, each simulation round, in which a phenotype 
was given a chance to develop from a single cell into a fully grown 
2D array of cells, lasted for 200 time steps. At the end of the 
simulation, the fitness f of each individual was quantified using a 
pixel-by-pixel comparison of final arrangement of colors R in the 
cell array (after 200 time steps in the simulation) with the target 
pattern T (the French flag) as expressed in Eq. 2:
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Here, x and y enumerate the width w (60 pixels) and height 
h (40 pixels) of the lattice, respectively, so that 0 < x £ w, and 
0 < y £ h. The color Txy of the pixel at position (x, y) in the target 
lattice is compared with the color of the pixel in the same position 
in the cell array, Rxy. If the colors are different, the statement 
Rxy ¹ Txy is true, and if they are the same, it is false. Each “false” 
is converted to 0, and each “true” to 1, and the resulting zeros 
and ones for each position are added up, and the answer divided 
by the total number of pixels, w × h. Thus, the fitness f will eval-
uate to its maximum value of 1 if all pixels in R have the same 
color as those in T (so that the sum of all (Rxy ¹ Txy) terms equals 
0). The factor 4−nC, where nC is the total number of colors pres-
ent in the final cell array, in the second term of the function, 
puts a “penalty” on the use of fewer than three colors in the final 
pattern, as follows. Suppose R uses all three colors (4−nC = 1), 
and 25% of the pixels in R have the same color as their counter-
parts in T, so that the sum of all (Rxy ¹ Txy) terms equals 0.75. In 
that case, f evaluates to 0.25. However, if only one or two colors 

3.3.  Fitness Evaluation
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are used in R (4−nC = 3 or 2), f is much smaller, namely −1.25 
or −0.5, respectively. In this way, individuals are “encouraged” 
to use all three colors early on in the evolution. This refinement 
of the fitness function was deemed to be necessary when it was 
found that too many evolutionary runs led to monochrome 
arrays, indicating that the original fitness function (without the 
4−nC factor) had insufficient discriminatory power to allow the 
search come to a satisfactory conclusion. Furthermore, the over-
all fitness of an individual was computed by carrying out ten 
separate simulation rounds (performed with different random 
number sequences, see Subheading 2.3) and averaging the val-
ues of f obtained in each of these rounds, to ensure that the 
solution was relatively robust.

To start an evolutionary run, an initial genome population must 
be created. The composition of this initial population is, again, 
entirely dependent on the problem itself, on the way the problem 
has been encoded in the genome, and also on the prior knowl-
edge that is to be taken into account. In the case of the running 
example, the initial population of 250–300 individuals consisted 
of genomes in which each of the 20 genes had a single CRM. All 
mutable characters in the sequences (the zeros and ones) were 
randomly assigned, yielding a collection of randomly connected 
network. Note that the genes in these networks produced a sub-
set, and not necessarily all, of the possible PRs.

Once the fitness of each individual in the population has been 
established, a proportion of the genomes are selected to act as 
parents for the next generation. Typically, two individuals are 
selected, and allowed to produce two offspring. During this pro-
cess, exchange and mutation of the genetic material occurs, so 
that the offspring differ somewhat from the parents. Selection of 
parents continues until the total number of offspring is equal to 
the number of individuals in the parent population, after which 
the older population is replaced with its offspring. Several strate-
gies have been developed that let the fittest produce the most 
offspring, but leave a fair amount of genetic variability in the pop-
ulation. Here we introduce the selection techniques that are most 
widely used for the selection of the parents.

The first method is “fitness proportionate” selection, a 
weighted lottery in which the chance to be selected increases with 
fitness. This method is often depicted as a roulette wheel, as in 
Fig. 3a. As individuals may be selected more than once, their 
reproduction rate is proportional to their fitness. Another method 
involves a “tournament,” in which a number of individuals are 
randomly chosen from the current population, and out of these 
the two fittest are selected for reproduction (Fig. 3b). Again, 
individuals may be selected multiple times, and the fittest may win 

3.4.  Initial Population

3.5. Selection and 
Replacement
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several tournaments, but here their reproduction rate is not nec-
essarily proportional to their fitness. The last strategy is “elitism,” 
in which the genomes of a number of the fittest individuals are 
copied exactly into the pool of offspring. The remainder of the 
offspring is then generated using one of the other procedures. 
In a strategy that uses elitism, the highest fitness value never 
decreases in the population, which some consider to be an advantage.

In the example, a combination of elitism with tournament 
selection was used: the fittest genome was kept unchanged, and 
the rest of the offspring were obtained from tournaments involv-
ing 15 randomly chosen individuals.

As in nature, mutations in a genome are achieved by changing a 
character in a random position along the length of the genome 
into another character from the alphabet, or by inserting or delet-
ing a string of characters. Cross-over is realized by allowing two 
parents to exchange part of their genomes. Figure 4 illustrates the 
typical implementation of point mutation, deletion, duplication, 
inversion, and cross-over.

In the running example, point mutations are made by changing 
a 0 into a 1 or a 1 into a 0. Point mutations to delimiters (2 or 3)  

3.6.  Variation

Fig. 3. Selection methods. (a) Roulette wheel selection: each individual is assigned a 
slice of the wheel whose size is proportional to its fitness. The wheel is rotated, and 
when it stops, the individual associated with the slice under the pointer is selected as a 
parent. (b) Tournament selection: a fixed number of individuals is randomly chosen from 
the pool. The couple with the highest fitness scores is selected as parents.
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do not occur. Cross-over requires a pair of genomes, P1 and P2, 
and is performed as follows. Each genome is parsed into 21 seg-
ments, 20 of which containing a gene, and one containing the 
global parameter section. One segment is randomly selected, and 
a cross-over position, X, is chosen within this segment. If the 
chosen segment happens to be the global area of the genome 
(which has the same length in both parents), the genome parts 
distal (see Note 11) to X on P1 and P2 are swapped (Fig. 4, Xeq). 
If X is situated in one of the genes, an offset d is randomly selected 
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Fig. 4. Introducing genetic variation. Top panel: mutation mechanisms, requiring one parent 
(P) and producing one child (C). PM, point mutation: a single zero changes into a one or vice 
versa; Del, deletion: a substring of characters is deleted in the child genome; Dup, duplica-
tion: a copy of substring appears in the child genome (not necessarily adjacent to the origi-
nal); Inv, inversion: a substring is inverted in the child. Bottom panel : Cross-over mechanisms, 
requiring two parents (P1, P2), and producing two children (C1, C2). Xeq, equal cross-over: 
the characters to the left of a position X on two equally sized genomes or genome parts are 
swapped between the parents; Xne, nonequal cross-over: the characters to the left of X−d 
on P1 are swapped with those left of X+d on P2. In a Gaussian-offset cross-over mecha-
nism, the offset d is randomly chosen from a Gaussian distribution.
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from a Gaussian distribution centered on 0, with a standard devi-
ation of 4 (but cut off in cases where the end of a gene will be 
crossed). Then the parts distal to X1 = X − d on P1 and X2 = X + d 
on P2 are swapped, as illustrated in Fig. 4, Xne. The insertions 
and deletions that result from this Gaussian-cross-over mecha-
nism may generate a reading frame shift, and thus change the 
gene’s regulatory pattern. Moreover, it allows the total number 
of CRMs within a gene to change. The relatively small standard 
deviation in the Gaussian distribution prevents extensive pertur-
bation of existing control patterns. Nonetheless, in the course of 
the evolutionary run CRMs, and as a result even whole genes, 
may become nonfunctional, as CRM size is allowed to drop below 
that of a single TF-binding site. “Degenerate” CRMs without 
TF-binding sites are ignored in the computation of the gene 
expression rate.

Associated with each genetic operator is a value that specifies 
the frequency with which it is to be applied. In the example, the 
probability that a 0 or 1 changes into a 1 or a 0 during a single 
evolutionary cycle is 1%, whereas the probability for a point 
mutation in a 2 or a 3 is zero. The deletion, duplication, and 
inversion parameters were not used, but the Gaussian-offset 
cross-over frequency per genome in one evolutionary cycle was 
set at 90%.

The results of one successful evolutionary run are summarized in 
Fig. 5. The top panel shows that the fitness of the best individual in 
the population rises in a number of distinct phases. These phases 
are characterized by an initial sharp increase in fitness, followed by 
period in which the rate of increase becomes gradually smaller, 
sometimes dropping down to almost zero for an extended period. 
It would appear that an “evolutionary innovation” has been made, 
and a whole new set of better solutions has been uncovered. The 
GA then spends some time searching “close to home” for the best 
solution within this new area, until it hits upon a next innovation. 
The similarity between the target pattern in the inset in the top 
panel, and the achieved solution, in the bottom right panel (Fig. 5d, 
t = 200, bottom row) is approximately 90% after 250 evolutionary 
cycles. The genome string of the best individual after the full run 
and the diagram of the GRN it represents (Fig. 5b, c) demonstrate 
that during the course of the evolution the genome has shrunk 
from the initial 20 functional genes to 13, and that of these only 8 
contribute to the total gene expression pattern (all 5 noncontribut-
ing genes are facultative and need activation to start producing 
their PR; however g04, 15, 17, and 19 have no activating TFs, and 

4.  Results
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representing the blue and the red areas of the flag. (b) The genome of the fittest individual in the 250th generation. 
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g10 is activated only by its own product). Only 8 of 16 possible 
PRs are produced, with only one (out of a possible 4) without a 
predefined function: pr00 and 01 (color 1 and 2), 03 (morphogen 
2 secretion), 05 and 06 (stickiness 1 and 2), 08 (size), 10 (division 
direction), 13 (morphogen 2 concentration sensor), and 15 (the 
only TF without a predefined function). Note that the system could 
have used two different morphogens and three different stickiness 
constraints, but appears to have “discovered” that it needed to use 
only one morphogen (morphogen 2), and that two stickiness con-
straints were sufficient.

Figure 5d shows snapshots of the expanding cell array and the 
morphogen gradients in its stratum at various developmental stages. 
The simulation begins with a single cell, initially consisting of one 
blue pixel, which grows and turns to red, then to white, and divides. 
After five time steps, there are two white cells, which then prolifer-
ate in the next five steps to a total of 14. After 20 time steps, there 
are about 50 cells, and second (red) color begins to appear to the 
right of the white cells. At around t = 40, the third color (blue) 
appears to the left of the pattern. The area fills up with cells in 
70–80 time steps, and, while the cells remain dynamic, the final pat-
tern stabilizes after some 110 time steps. It should be emphasized 
that the solution presented here is not the only one possible: other 
evolutionary runs have produced GRNs with an apparently entirely 
different connectivity and greater complexity that were equally 
capable of directing the development of a French flag pattern.

Just as there is no single best way of modeling GRNs, there is no 
all-purpose GA, and not all problems lend themselves equally well 
to the GA approach. Even if a solution domain is easily expressed 
in some sort of “genome” structure, the genome may turn out not 

5. Concluding 
Remarks

Fig. 5. (continued) The gene delimiters are underlined; the area of the genome with the global information is indicated 
in gray. (c) Box-and-arrow GRN representation of the genome in b (visualized using the tool BioTapestry (49)). The sym-
bols labeled g00, g03, etc., represent genes, and the text boxes labeled pr00, pr01, etc., represent their gene products. 
Constitutive and facultative genes are represented by, respectively, black and gray symbols. The boxes of PRs with a 
predefined function have a solid outline; black for input and output, and gray for PRs that drive a CPM constraint (see 
text). Connections ending in arrows (activating) and bars (inhibitory) specify regulatory interactions; the a under g13 
indicates that both regulatory interactions happen on one CRM, named a (in this GRN, there are no other CRMs with 
multiple participants, and none of the genes have more than one CRM). Note, furthermore, that non-functional genes g01, 
02, 06, 08, 09, 11, and 16 have been left out of the drawing, and that only pr00, 01, 03, 05, 06, 08, 10, 13, and 15 are 
produced. (d) Four stages (after 10, 20, 50, and 200 time steps) in the simulation of the development controlled by the 
GRN in b and c. The four top panels show the spread of the morphogen over the stratum (with the cell outlines superimposed; 
the stratum itself consists of 40 × 60 pixels with no higher-level structure); darker grays indicate higher morphogen 
concentrations. The bottom panels show the proliferation of cells. Blue, white, and red cells are represented in middle 
gray, white, and black, respectively, and the light gray background color indicates the absence of cells.
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to be “evolvable.” Poor evolvability may be inherent in the problem, 
but it may also be due to the way the solution domain is encoded, 
the genotype–phenotype mapping, or simply to the choice of 
evolutionary operators and parameter settings. As a rule, it is a 
good idea to ensure, if possible, that single mutations mostly lead 
to relatively small changes in the phenotype. It is also advised to try 
out different evolutionary operators and parameter settings. 
Techniques exist to automatically adapt parameter values during an 
evolutionary run: a widely used algorithm is Simulated Annealing 
(42, 43), but it is also possible to use other EC techniques (which 
are, after all, good at optimization) for this purpose (44). 
Furthermore, solutions to complex problems may sometimes be 
found by “easing” the system along by shifting the target, as was 
done in (45, 46). To this aim, the “evolutionary pressure” is 
gradually increased, by first letting the system find a good solution 
to a part of the problem, and then gradually changing the target to 
the parts for which a solution is more difficult to find.

It may have become clear from the above exposition that 
while GAs borrow ideas from nature, they still lack a lot of bio-
logical detail. Because basic GAs have quite a few limitations, 
their users – engineers, scientists – have been prompted to inject 
more ideas from natural evolution into GAs to try and boost their 
performance in optimization problems (47). It is generally 
believed that the introduction of “junk code” (as in the genome 
representation in our example) and diploidy with dominance–
recessivity allows for information buffering and protection. The 
inclusion of developmental programs in which a single unit grows 
into a differentiated multiunit structure may result in improved 
scalability, modularity, and robustness. Because genetic diversity 
allows species to adapt more easily to changing conditions in 
nature, some GAs include strategies designed to preserve diver-
sity. Many of these and similar extensions do indeed improve per-
formance in particular instances, but on other occasions they may 
only add complexity and increase the search time (48).

 1. For reasons of simplicity we have omitted the concept of 
species from this discussion.

 2. Other techniques include evolutionary strategies, genetic 
programming, and evolutionary programming; discussion of 
their characteristics and application is outside the scope of 
this article.

 3. We use PR, rather than GP, as the abbreviation for gene product, 
in order to avoid confusion with GP as an abbreviation for genetic 

6.  Notes
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programming, another branch of evolutionary computation. Note 
that PR does not stand for protein, although proteins are a PR 
category, but could mean protein/RNA.

 4. TF is often used as an abbreviation for transcription factor; 
however, in the definition of trans-regulatory factor to which 
we adhere here, transcription factors are a specific class of TFs.

 5. In fact, a capacity for rapid breakdown contributes significantly 
to a cell’s potential to adapt efficiently to changed conditions.

 6. Note that this approach is highly simplified, and does not take 
into account that a complex may contain more than one mol-
ecule of a particular PR, and that a PR may take part in more 
than one type of TF complex.

 7. Provided the sequences of random numbers produced by the 
RNG are different: this is achieved by using a different “seed” 
value for the RNG in each simulation round.

 8. In this context, sometimes also indicated as genotype or 
chromosome.

 9. The number of genes was fixed to facilitate further analysis.
 10. Thus, a coding area consisting of four “bits” (whose value can 

be 0 or 1) may code for one of a total of 24 = 16 different PRs.
 11. Distal to X: the genome section from X to the end of the 

genome.
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