


7972tp.new.indd   1 7/30/10   3:15 PM



SCIENCE, ENGINEERING, AND BIOLOGY INFORMATICS

Series Editor:Jason T. L. Wang
(New Jersey Institute of Technology, USA)

Published:

Vol. 1: Advanced Analysis of Gene Expression Microarray Data
(Aidong Zhang)

Vol. 2: Life Science Data Mining
(Stephen T. C. Wong & Chung-Sheng Li)

Vol. 3: Analysis of Biological Data: A Soft Computing Approach
(Sanghamitra Bandyopadhyay, Ujjwal Maulik & Jason T. L. Wang)

Vol. 4: Machine Learning Approaches to Bioinformatics
(Zheng Rong Yang)

Vol. 5: Biodata Mining and Visualization: Novel Approaches
(Ilkka Havukkala)

Vol. 6: Database Technology for Life Sciences and Medicine
(Claudia Plant & Christian Böhm)

Vol. 7: Advances in Genomic Sequence Analysis and Pattern Discovery
(Laura Elnitski, Helen Piontkivska & Lonnie R. Welch)

XiaoLing - Advances in Genomic Sequence Analysis.pmd 3/2/2011, 9:18 AM2



N E W  J E R S E Y   •  L O N D O N   •  S I N G A P O R E   •  B E I J I N G   •  S H A N G H A I   •  H O N G  K O N G   •  TA I P E I   •  C H E N N A I  

World Scientific

editors

Laura Elnitski  
National Human Genome Research Institute, 

National Institutes of Health, USA

Helen Piontkivska  
Kent State University, USA

Lonnie R Welch 
Ohio University, USA

advances in genomic 
sequence analysis and 

pattern discovery

7972tp.new.indd   2 7/30/10   3:15 PM



British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-4327-72-5
ISBN-10 981-4327-72-7

Typeset by Stallion Press
Email: enquiries@stallionpress.com

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2011 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office:  27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office:  57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

ADVANCES  IN  GENOMIC  SEQUENCE  ANALYSIS  AND  PATTERN  DISCOVERY
Science, Engineering, and Biology Informatics — Vol. 7

XiaoLing - Advances in Genomic Sequence Analysis.pmd 3/2/2011, 9:18 AM1



December 16, 2010 16:55 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-fm

Contents

Preface vii

About the Editors ix

Part I: Pattern Discovery Methods 1

Chapter 1: Large-Scale Gene Regulatory Motif Discovery
with NestedMICA 3
Matias Piipari, Thomas A. Down
and Tim J. P. Hubbard

Chapter 2: R’MES: A Tool to Find Motifs with a Significantly
Unexpected Frequency in Biological Sequences 25
Sophie Schbath and Mark Hoebeke

Chapter 3: An Intricate Mosaic of Genomic Patterns
at Mid-range Scale 65
Alexei Fedorov and Larisa Fedorova

Chapter 4: Motif Finding from Chips to ChIPs 93
Giulio Pavesi

Chapter 5: A New Approach to the Discovery of RNA
Structural Elements in the Human Genome 117
Lei Hua, Miguel Cervantes-Cervantes
and Jason T. L. Wang

Part II: Performance and Paradigms 133

Chapter 6: Benchmarking of Methods for Motif
Discovery in DNA 135
Kjetil Klepper, Geir Kjetil Sandve,
Morten Beck Rye, Kjersti Hysing Bolstad
and Finn Drabløs

v



December 16, 2010 16:55 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-fm

vi Contents

Chapter 7: Encyclopedias of DNA Elements for Plant Genomes 159
Jens Lichtenberg, Alper Yilmaz, Kyle Kurz,
Xiaoyu Liang, Chase Nelson, Thomas Bitterman,
Eric Stockinger, Erich Grotewold
and Lonnie R. Welch

Chapter 8: Manycore High-Performance Computing
in Bioinformatics 179
Jean-Stéphane Varré, Bertil Schmidt,
Stéphane Janot and Mathieu Giraud

Chapter 9: Natural Selection and the Genome 209
Austin L. Hughes

Index 221



December 16, 2010 16:55 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-fm

Preface

Those who are involved with mapping the genomic landscapes are
participating in one of the most exciting frontiers of science. We have the
opportunity to reverse engineer the blueprints and the control systems of
living organisms. Computational tools are key enablers in the deciphering
process. Thus, this book provides an in-depth presentation of some of the
important computational biology approaches to genomic sequence anal-
ysis. The first part of the book discusses methods for discovering patterns
in DNA and RNA. This is followed by the second part that reflects on
methods in various ways, including performance, usage and paradigms.

Part I, Pattern Discovery Methods, provides a collection of computa-
tional methods and tools. Chapter 1, “Large-Scale Gene Regulatory Motif
Discovery with NestedMICA,” presents an algorithmic approach, describes
usage of the tool based on the algorithm, and illustrates its usage via a
detailed case study. In Chapter 2, “R’MES: A Tool to Find Motifs with a
Significantly Unexpected Frequency in Biological Sequences,” the authors
describe a software tool that contains rigorous statistical models of DNA
words. “An Intricate Mosaic of Genomic Patterns at Mid-range Scale,”
Chapter 3 of the book, focuses on intricate mosaics found in genomes; a
number of specific patterns are identified. The fourth chapter, “Motif Find-
ing from Chips to ChIPs,” provides a comprehensive survey of methods
for the de novo discovery of putative over-represented transcription factor
binding sites in nucleotide sequences. Part I concludes with a chapter that
considers the discovery of RNA structural motifs: “A New Approach to the
Discovery of RNA Structural Elements in the Human Genome.”

The second part, Performance and Paradigms, consists of chapters
that contemplate the effectiveness of relevant computational biology tech-
niques. Chapter 6, “Benchmarking of Methods for Motif Discovery in
DNA,” presents a variety of metrics for assessing the performance of
the class of methods described in Part I. In “Encyclopedias of DNA Ele-
ments for Plant Genomes,” the application of methods is illustrated with
case studies. The topic of scalable algorithmic approaches is considered in

vii
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viii Preface

Chapter 8, “Manycore High-Performance Computing in Bioinformatics.”
Chapter 9, “Natural Selection and the Genome,” discusses evolution of
genomic sequences and the role that natural selection plays in direct-
ing genome evolution. It also provides a conceptual framework for better
understanding of the evolutionary implications and insights that are gen-
erated through genomic sequence analyses, and emphasizes the critical
role of purifying selection.



December 16, 2010 16:55 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-fm

About the Editors

Dr. Laura Elnitski is a molecular and computational
biologist who studies noncoding functional elements
in vertebrate genomes. She has served as an analyst
for the Mouse, Rat, Chicken and Bovine Genome
Consortia.

Dr. Elnitski is extensively involved in NHGRI’s
ENCODE (Encyclopedia of DNA Elements) project,
which aims to produce a comprehensive catalog
of functional elements in the human genome.

Dr. Elnitski’s research uses integrative analyses to elucidate both the pres-
ence and activity of functional elements in the human genome that have
been historically difficult to characterize. For example, computationally,
her work predicts mutations in coding sequences that affect proper splic-
ing. Targets of these mutations include exonic splicing enhancers and
silencers. In experimental analyses, she is mapping elements that silence
gene expression using an assay system designed in her lab.

Driving towards a molecular understanding of ovarian cancer,
Dr. Elnitski combines in silico and wet-bench techniques. She has anno-
tated bidirectional promoters in the human genome, including those reg-
ulating noncoding genes, using data collected in RNA-seq assays. These
results are being used to find gene silencing events caused by aberrant
methylation in tumor samples. She is also addressing functional conse-
quences of mutations in those tumors.

Dr. Elnitski is the recipient of a Ruth L. Kirschstein Postdoctoral Fel-
lowship through the NIH (2000–2003), Outstanding Research Achieve-
ment Award (International Symposium on Bioinformatics Research and
Applications — 2007), a featured scientist in the Women in Bioinformatics
Research documentary (2007) and a Genome Technology Young Investi-
gator Award (2009). She serves as an ad hoc reviewer for the NIH GCAT
Scientific Grant Review Panel and is an associate editor of BMC Genomics
and formerly Genome Research.

ix



December 16, 2010 16:55 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-fm

x About the Editors

She is currently the Head of Genomic Functional Analysis Section
of the Genome Technology Branch at the National Human Genome
Research Institute, NIH, USA.

Dr. Helen Piontkivska is currently an Assistant Pro-
fessor in the Department of Biological Sciences at
Kent State University. She received her Ph.D. in
Genetics from the Pennsylvania State University, and
has over 10 years of experience in bioinformatics and
evolutionary genomics and published over 35 peer-
reviewed publications. Dr. Piontkivska’s research
is focused on understanding the mechanisms of
genome evolution using state-of-the-art bioinfor-

matics approaches, in particular, delineating evolutionary mechanisms
responsible for genomic changes in infectious agents, such as viruses,
and disease-related genes, including cancer and immune and inflammatory
genes using bioinformatics, machine learning and molecular evolutionary
and phylogenetic approaches. Her work is funded by the National Insti-
tutes of Health. She currently serves on the editorial board of Molecular
Biology and Evolution and is a member of the steering committee of The
Ohio Bioinformatics Consortium.

Professor Lonnie R. Welch received a Ph.D. in Com-
puter and Information Science from the Ohio State
University. Currently, he is the Stuckey Professor
of Electrical Engineering and Computer Science at
Ohio University, and he is a member of the Gradu-
ate Faculties of the Biomedical Engineering Program
and of the Molecular and Cellular Biology Program.

Dr. Welch performs research in the areas of
bioinformatics, computational regulatory genomics,

machine learning and high performance computing. His research has been
sponsored by the National Human Genome Research Institute, the Ohio
Plant Biotechnology Consortium, NASA, the National Science Founda-
tion, the Defense Advanced Research Projects Agency, and the Ohio Board
of Regents. Dr. Welch has more than 20 years of research experience in the
area of high performance computing. In his graduate work at Ohio State



December 16, 2010 16:55 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-fm

About the Editors xi

University, he developed high performance 3-D graphics rendering algo-
rithms, and he invented a parallel virtual machine for object-oriented soft-
ware. For 15 years, his research focused on middleware and optimization
algorithms for high performance computing; this work produced three
successive generations of adaptive resource management middleware for
high performance real-time systems, and resulted in two patents and more
than 150 publications. Currently, Professor Welch directs the Bioinformat-
ics Laboratory at Ohio University, where he performs research in the area
of computational regulatory genomics.

Dr. Welch is the founder and Chair of the Ohio Collaborative Con-
ference on Bioinformatics and the Great Lakes Bioinformatics Confer-
ence (an official conference of the International Society on Computational
Biology). As Founding Chair of the Ohio Bioinformatics Consortium, an
Affiliated Regional Group of the International Society on Computational
Biology, Dr. Welch has been an active member of the Regional Affili-
ates Committee of the ISCB. He is the Principal Investigator of the $9M
Bioinformatics Program which is funded by the Ohio Board of Regents
and 11 academic institutions from Ohio. Prof. Welch is founder and Co-
Chair (2010, 2011) of the ISMB Special Interest Group on Bioinformatics
for Regulatory Genomics (BioRegSIG). He has served on the organiz-
ing committees of the 2009 Bioinformatics Open Source Conference, the
2008 ISMB Special Interest Group on Genome-scale Pattern Analysis in
the Post-ENCODE Era, the International Symposium on Bioinformatics
Research and Applications, and the IEEE International Symposium on
Bioinformatics and Bioengineering.



December 16, 2010 16:55 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-fm

This page intentionally left blankThis page intentionally left blank



December 16, 2010 16:54 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-ch01

Part I

PATTERN DISCOVERY METHODS
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Chapter 1

Large-Scale Gene Regulatory Motif
Discovery with NestedMICA

Matias Piipari∗, Thomas A. Down†

and Tim J. P. Hubbard∗

In this chapter we describe practical uses of computational regulatory motif
discovery with the NestedMICA suite, with a focus on higher eukaryotic
genomes. The NestedMICA algorithm is contrasted with other popular motif
inference approaches. Recent developments of the algorithm and additions
to analysis tools included with the suite are also described.

The practical use of NestedMICA is demonstrated with a case study
where 120 Drosophila melanogaster regulatory motifs are inferred and
validated computationally and experimentally. This work was previously pub-
lished (Down et al., 2007) and is summarized here to demonstrate key prin-
ciples of genome-scale regulatory motif studies for the research community.
The importance of the interplay between computational and experimental
work in finding and understanding functional elements is discussed. It is
demonstrated how computationally discovered motifs can be associated with
several independent lines of supporting evidence for their function, such as
tissue-specific gene expression and inter-species conservation pattern. Simi-
larity comparisons between computationally discovered and experimentally
verified motif sets are also shown.

A practical tutorial of the NestedMICA is included to introduce the
suite to researchers new to such tools. NestedMICA is used to reproduce
the binding site motif of the STAT1 transcription factor using ChIP-seq
data from a previously published study. We describe several new additions
to the suite: a tool for analyzing motif hit overrepresentation in a positive
sequence set versus a negative sequence set, a tool for finding statistically
significant sequence motif matches, and a series of utilities for retrieving and
preprocessing sequence regions for motif inference experiments.

∗Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
†Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge,
Cambridgeshire, UK
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1. Introduction

Computational discovery of transcription factor (TF) binding sites using
short motif discovery algorithms from genomic DNA sequences is a long-
standing research problem. It has motivated computational biologists to
propose literally hundreds of algorithms over the course of over 30 years,
beginning from a pioneering paper in 1977 where pairwise comparisons
of aligned sequence immediately close to prokaryotic transcription start
sites (TSS) and terminator sequences were used to infer recurring motifs
(Korn et al., 1977).

Binding site motif inference methods on their own have proven far
from perfect in predicting functional TF binding sites in higher eukaryotic
genomes. Transcriptional regulation is now known to be a complex land-
scape of regulatory signals not only encoded in short (5–20 bp) transcrip-
tion binding site motifs proximal to transcription start sites. Distant-acting
enhancers (Visel et al., 2009), chromatin state (Cairns, 2009) and epige-
netic signals (Jaenisch and Bird, 2003) are also thought to contribute to
gene regulation. Promoters in higher eukaryotes are also large and variable
in size, and alternative transcripts are common (Zhu and Halfon, 2009). It
should therefore not come as a surprise that inferring transcription factor
binding site motifs, let alone functional sites, remains difficult. As we will
show, development and application of such methods is still highly impor-
tant. Recent reviews (Das and Dai 2007; MacIsaac and Fraenkel, 2006;
Nguyen and Androulakis, 2009; Sandve and Drabløs, 2006) considered
and categorized subsets of motif inference methods according to varying
criteria. We discuss here only the most essential factors to consider for a
researcher new to the field: motif model used, the types of data that are
considered in context of the genomic sequence, and the scalability of the
methods for genomic scale analysis of regulatory sequences.

The common principle in regulatory motif discovery studies is the use
of computational methods to infer enriched sequence word signals from
non-coding sequences associated with a set of genes. Input sequences
of fixed length for motif discovery are usually taken from around the
TSS of a gene set of interest. More specific regions of interest identi-
fied through upstream analyses can also be used when supporting evi-
dence is available (e.g. ChIP-chip or ChIP-seq derived “peak” regions).
It has only recently become possible to computationally infer large num-
bers of regulatory motifs from a considerable fraction of genes of a whole
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eukaryotic organism in a single large experiment (Down et al., 2007; Xie
et al., 2005).

1.1. Assessment of motif inference tools

The motif hit finding sensitivity of some of the most commonly used
ab initio motif discovery methods has been benchmarked by Tompa
et al. (2005). Ab initio refers to methods that consider sequence alone
in search of recurring signals. Binding site sequences from the TRANS-
FAC transcriptional regulation database (Matys et al., 2006) were “spiked”
to sequences that were either synthetic or originated from randomly
chosen promoter sequence (assumed to be devoid of motifs other than
those inserted). The overlap of match positions of the best-ranking motif
inferred by each of the benchmarked tools was then used in the assessment.
It should be noted that a standard methodology or statistical criteria for
assessing regulatory motif inference performance have not surfaced in the
research community. This is not surprising given the variety of aims of the
different tools and scales of dataset sizes at which each method operates
on, and more pressingly the low number of “gold standard” regulatory
regions that have been annotated in depth. We still lack the necessary
understanding of site-specific gene regulatory signals to accurately call
sequence specific gene regulatory binding events on the needed scale.
Large-scale transcription factor ChIP-sequencing experiments conducted
as part of the ENCODE scale-up project hold great potential for providing
such benchmarking data for computational motif discovery tools.

1.2. What is a motif?

Arguably the most important distinction between motif discovery tools is
the model that is used as a description of the inferred sequence signals.
Oligonucleotide word enumeration methods are the classical approach
that is still used in several recent algorithms, ranging from reporting ranked
k−mers of a specified length (van Dongen et al., 2008) to IUPAC con-
sensus strings that allow for describing degeneracy in positions (Marschall
and Rahmann, 2009) to regular expression like patterns which also allow
degenerate and gap positions (Xie et al., 2005). Enumeration-based meth-
ods are generally computationally light and therefore very fast, but are not
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Fig. 1. A sequence logo depiction of the 12-column long human E47 (TAL1) tran-
scription factor motif (Hsu et al., 1994) deposited in the TRANSFAC regulatory motif
database (Matys et al., 2006). Relative height of each nucleotide in a column corre-
sponds to its weight in the probability distribution for the position. Columns are scaled
by information content to depict the strength of the bias of nucleotides at that position.

capable of modeling long TFBS patterns, or those with a large number of
weakly constrained positions. Probabilistic models such as position weight
matrix (PWM) preserve more of the information of individual motif posi-
tions (columns) and PWMs have been shown to systematically perform
better in describing regulatory binding site patterns (Osada et al., 2004).
The PWM, introduced by Stormo et al. (1982) to motif discovery, con-
sists of independent column-wise probability distributions. They are often
visualized with the “sequence logo” representation (Fig. 1) introduced by
Schneider and Stephens (1990).

The PWM is well suited for defining sequence motifs that have a mix-
ture of strongly and weakly constrained positions. It provides a more accu-
rate and readily interpretable description of binding specificity of most
transcription factors than oligonucleotide word based models. It however
also lacks the capacity to describe possible interdependencies or variable
length linker positions in binding site motif, both known effects for cer-
tain transcription factors (Benos et al., 2002). A recent protein-binding
microarray-based in vitro profiling of 104 different mouse transcription
factor motifs (Badis et al., 2009) suggests that “in between motif position”
variation in binding specificity is widespread amongst higher eukaryotic
transcription factors. Badis et al., did not report the number of factors
studied for which multiple PWM models are needed for describing high-
affinity binding sites (additional PWMs per TF are reported to be nec-
essary mostly for describing lower affinity sites). The scarcity of in vivo
binding site specificity data makes it premature to assess whether more
complex probabilistic models than PWM are generally necessary for accu-
rately recording TF specificity patterns. More complex motif models based
on Bayesian networks (Barash et al., 2003) or Markov networks (Sharon
et al., 2008) that have been developed to address the shortcomings of the
PWM tend to suffer from issues associated with parameter estimation from
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the available data: it is hard to estimate more complex motif models that
generalize to sequences other than those used for model training (prob-
lem known as “overfitting”). PWM therefore remains a central model in
computational motif discovery.

1.3. Motif inference with additional supporting data

Some motif inference algorithms consider other data in addition to
genomic sequence to support the inference task. Especially gene expres-
sion data have been made use of in various approaches. The earliest method
for this is gene expression clustering based division of genes to sets fol-
lowed by motif inference from the individual sets (Roth et al., 1998).
More sophisticated methods have been developed for gene expression,
beginning from the pioneering regression-based framework REDUCE by
Bussemaker et al. (2001) that sparked publication of several related meth-
ods (Conlon et al., 2003; Foat et al., 2005; Kechris and Li, 2008; Keleş
et al., 2002). Ranking or weighting sequences based on ChIP-chip exper-
iments has also been applied in motif discovery (Conlon et al., 2003; Liu
et al., 2002).

Phylogenetic foot printing methods that apply sequence conserva-
tion, alignment of orthologous sequences and phylogenetic models of
regulatory regions to improve sensitivity in detecting regulatory motif
and cis-regulatory modules also show great promise (Siddharthan, 2008).
In addition to sequence conservation, other nucleotide position specific
properties have been connected to TF binding potential in motif discov-
ery algorithms, including for example predicted nucleosome occupancy
(Narlikar et al., 2007) and DNA duplex stability (Gordân and Hartemink,
2008).

1.4. The NestedMICA algorithm

NestedMICA is a probabilistic ab initio motif discovery algorithm that can
be used to discover motifs in either DNA (Down et al., 2007; Down and
Hubbard, 2005) or protein sequence (Dogruel et al., 2008). Like many
other probabilistic algorithms for the purpose, it treats the input sequence
as a combination of points of interest (motifs) and background sequence
that is generated by a random process. We call this model consisting of a
series of motifs and a background a “Sequence Mixture Model” or SMM
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Fig. 2. The default sequence mixture model used in NestedMICA. Numbers inside
the motif model nodes denote different columns of the motif. A part of the motif
inference problem is optimizing the parameters for a SMM as shown above: the number
of columns used for each of the motifs, and the parameters of each of the probability
distributions.

(the simplest SMM used in NestedMICA is described as a hidden Markov
model in Fig. 2).

NestedMICA uses an independent component analysis (ICA) based
motif discovery algorithm that simultaneously optimizes a model for a
set of motifs and their “occupancy” (which motif is found from which
sequence, depicted in Fig. 3(a)). The motif set model has five key parame-
ters: the number of motifs to estimate, the minimum and maximum length
of motifs, the fraction of sequences expected to contain at least one hit
to each of the sequence motifs (“usage fraction”), and a sequence back-
ground model.

The particular SMM used in NestedMICA addresses several short-
comings of common sequence models used in motif discovery algorithms.
Firstly, homotypic and heterotypic clustering of TFBSs that is known to
occur commonly in both promoter and enhancer elements (Arnone and
Davidson, 1997) is modeled naturally by the NestedMICA SMM that
allows for simultaneous modeling of multiple matches of regulatory motifs
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Fig. 3. Schematic depiction of nested sampling. (a) At each step of the algorithm,
there exists a fixed size set of mixing matrices consisting of a set of motifs and their
occupancy. The set is ranked by likelihood and is evolved with Monte Carlo moves.
(b) The lowest-ranking member of the ensemble is removed at each iteration and a
new sample is drawn from the prior until a solution with a higher likelihood is found.

per sequence. This model improves the sensitivity and runtime of the
method in especially large motif inference tasks by making it unnecessary
to repeat a run of the algorithm after masking motif instances. Repeated
runs are needed for example by the popular MEME (Bailey et al., 2006). In
NestedMICA, the set of motifs and their occurrence are estimated simul-
taneously as a “mixing matrix”. Both the motif column parameters and
their occurrence are optimized within the same iterative sampling process
(Fig. 3(a)). A specific SMM is included for inferring specifically motifs that
show heteroclustering.

1.5. Nested sampling

NestedMICA uses a Markov Chain Monte Carlo (MCMC) inference strat-
egy called nested sampling which does not require heuristics to provide
suitable local starting points for motif search, or require repeated restarts
of the algorithm like Gibbs samplers (Lawrence et al., 1993) and greedy
expectation maximization based procedures such as that applied in the
popular MEME (Bailey et al., 2006). A schematic of the NestedMICA
nested sampling procedure is provided in Fig. 3.

Scalability and runtime performance were a key consideration in the
design and implementation of NestedMICA. The tool makes use of
multiple CPUs when available and the computational load can also be
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distributed over multiple computers. The algorithm scales to 40 CPU
cores (unpublished data). In practical terms, this makes it possible to train
motif sets on the scale of a hundred motifs with at least two megabases of
sequence. A demonstration of distributed computing with NestedMICA
is given in the tutorial section.

1.6. Mosaic sequence background model

NestedMICA provides a sophisticated sequence background model that
allows for modeling compositionally distinct regions, for example the vari-
ation in GC content that is known to occur on multiple scales in eukaryotic
genomes (Burge et al., 1992; FitzGerald et al., 2006). We call this back-
ground model “mosaic” to highlight its capability to describe sequence as
a mixture of multiple generative processes (Markov chains). Use of mul-
tiple Markov chains, or “classes”, that are weighted per sequence posi-
tion improves the capacity of the background to describe compositional
biases and is considerably a less complex model than a high-order Markov
chain background that is commonly used in motif inference algorithms.
Interestingly, a recently published motif inference algorithm BayesMD
which uses a background model approach related to that of NestedMICA
improves sensitivity over MEME, Align-ACE, MDScan, and also against
NestedMICA in most benchmarks (Tang et al., 2008).

2. Results

Since its publication, NestedMICA has been used in a number of regu-
latory genomics studies of both human and other organisms. Examples
include analysis of Polycomb and Trithorax binding sites in Drosophila
(Kwong et al., 2008), zebrafish distal enhancers (Rastegar et al., 2008),
targets of the transcription factor Ntl (Morley et al., 2009), indirect targets
of the deafness associated micro-RNA miRNA-96 in mouse (Lewis et al.,
2009), as well as transcription factors involved in determination of ES cell
transcriptional programs in mouse (Chen et al., 2008; Loh et al., 2006).
Here, we will concentrate on work done by Down et al. (2007) as a case
study of applying NestedMICA for genome scale motif discovery, namely
the discovery of 120 enriched motifs from proximal Drosophila promot-
ers. The analysis of this motif set predicted from putative promoters of
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over 2400 Drosophila genes provides validation of genome scale ab initio
motif inference in discovering gene regulatory patterns from eukaryotic
genomes. This study demonstrates certain principles that are important in
such computational studies: over-represented motifs should be rigorously
analyzed in the context of other biological data such as gene expression,
conservation and experimentally determined motif sets.

2.1. Choice of sequence regions for motif inference

The first key step in genomic DNA motif discovery is the choice of
search regions. In Down et al. (2007), a conscious choice was made
to not constrain input sequences by conservation. Sequence conserva-
tion of the predicted motifs was applied as an independent validation
of the predicted motifs. The motifs were trained from 200-base long
sequences from positions −200 to −1 of each of the 2424 annotated
genes from the D. melanogaster chromosome arm 2L with overlaps and
mono- and di-nucleotide repeats removed. This yields over 422 kb of
sequence. The benefits of weighting a motif inference experiment by
inter-species conservation to directly aim the experiment is not clear;
highly conserved noncoding sequences are known to contain regula-
tory elements, especially those that are developmentally active (Visel
et al., 2008), but binding site turnover and by this mechanism “shift-
ing” of functional TFBSs between related species has been observed in
both mammalian (Dermitzakis and Clark, 2002) and more closely related
Drosophila regulatory sequences (Costas et al., 2003; Emberly et al.,
2003). It is also worth remembering that a conservation score contains an
implicit assumption of a correct alignment between different organisms,
which is hard to guarantee for noncoding sequences of higher eukaryotic
genomes.

One hundred and twenty motifs of 12-nt length were trained from
the above-mentioned input sequences in a single experiment, using a back-
ground model trained from the same sequences. Notably the version 0.7 of
NestedMICA used in this work required a fixed length motif parameter —
motifs were retrained from initial motif match sequences by choosing the
motif length that gave optimal Bayesian evidence. The more recent Nest-
edMICA version 0.8 optimizes the motif length as part of the sampling
procedure and additional post-processing of the results is therefore no
longer required.
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2.2. Finding significant matches

After motif discovery, a score cutoff was calculated for each of the motifs
as a prerequisite to determining the statistically significant motif match
positions in the Drosophila genome. The cutoffs were assigned using a
binomial test (p < 0.05). The motif score cutoff assignment protocol
is described in more detail by Down et al. (2007), but in simple terms
it is used to find the point in the motif hit score distribution at which
random samples from the background model produce scores that resem-
ble the observed distribution (as measured by a binomial test). This is in
contrast to most motif discovery studies where a binding site p-value cut-
off is derived assuming a background model parameterized essentially by
nucleotide content.

2.3. Comparison of NestedMICA Drosophila motifs
against reference motifs

The NestedMICA Drosophila motifs were compared with several refer-
ence motif sets to find reciprocally matching motif pairs. The reference
motifs included a 10-motif set from an earlier computational study of
Drosophila core promoters (Ohler et al., 2002), 15 consensus motifs
derived from positionally biased octamers (FitzGerald et al., 2006), 30
motifs trained from DNAse I footprinting derived binding site data from
the FlyReg database (Bergman et al., 2005), as well as 172 motifs contain-
ing the JASPAR database (Sandelin et al., 2004) extended with additional
49 SELEX- or consensus-based Drosophila motifs from primary publica-
tions referenced in the FlyReg database. Match between NestedMICA
motifs and each of the reference sets was measured with an Euclidian-
like distance metric (Down et al., 2007) in a reciprocal match compar-
ison similar to the procedure used to identify orthologous genes from
genomes. An empirical p-value was calculated for each identified recip-
rocal match using a distribution of hit scores between random recip-
rocal match between the target motifs with shuffled reference motifs.
A total of 25 significant matches (p < 0.05) were identified, suggest-
ing that NestedMICA is able to capture regulatory motifs that closely
match previously described ones, but also discovers a number of novel
ones. Overlap of sequence-level matches between NestedMICA motifs
and the corresponding reference motifs was determined. Interestingly, it
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Fig. 4. High motif match score is associated with a high fraction of con-
served matches. Adapted from Fig. 5 in Down et al., 2007 (doi:10.1371/journal.
pcbi.0030007.g005).

was found that although there is overlap in bases covered, for almost half
of the motifs the overlap in matches falls to a range of 10–50% of bases
covered.

2.4. Sequence conservation analysis of motif
matches

Conservation of motif hits was assessed to identify motifs that show evi-
dence for functional constraint. Non–protein-coding sequence alignments
of the motif match positions between two closely related Drosophila species
D. simulans and D. yakuba (excluding those sequences used for Nested-
MICA motif discovery) were assessed. The majority of motifs (78/120)
show a statistically significant correlation between motif score and degree
of conservation (example shown in Fig. 4).
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2.5. Positional bias analysis — finding motifs close
to transcription start sites

The choice of search regions was motivated by the expectation that reg-
ulatory binding site motifs are found close to and specifically upstream of
TSS (Ohler et al., 2002). Nonuniform positions of regulatory motifs were
studied using 200 hundred base long windows upstream and downstream
of TSS on chromosome arm 2R (these sequences were not used in the dis-
covery experiment). For 70 out of the 120 motifs, the highest frequency
of hits was found to be within 400 bases immediately upstream of the TSS,
which is a significantly nonuniform position distribution (p < 0.01).

2.6. Association of motifs with tissue-specific gene
expression pattern

Function of the NestedMICA motifs was studied by associating core pro-
moter motif matches with the in situ hybridization dataset of Tomancak
et al. (2002) that contains alongside in situ images a structured vocabu-
lary of tissue and development stage specific expression patterns for over
2000 D. melanogaster genes (the ImaGO ontology). All 120 motifs were
scanned against the D. melanogaster genes, using score thresholds defined
above. The number of times that each motif was found to be associated
with an expression pattern term was recorded (either directly with a term
or through the ImaGO ontology hierarchy). Motif labels of individual
hit records were shuffled to determine empirical p-values for the observed
motif-expression associations. To account for multiple testing (motif tested
against all the expression terms), motif identifiers were shuffled prior to
repeating the p-value calculations and the distribution of shuffled p-values
was compared against the correctly labeled p-values. This comparison
shows that many motifs associate strongly with at least one ImaGO term
(Fig. 5). Expression-associated motifs include several previously unchar-
acterized motifs. This suggests that large fraction of the discovered motifs
is indeed involved in time- or tissue-specific transcriptional regulation.

An example of a previously known association identified by Nested-
MICA is given by Down et al. (2007) in the form of an srp like motif whose
associated expression patterns (developing fat body and amnioserosa)
match those described in prior literature for srp. This example also shows
a weakness of motif inference and expression analysis alone in mapping
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Fig. 5. (a) Examples of the 25 NestedMICA motifs that show association with
ImaGO embryonic expression ontology terms. (b) Significance scoring of shuffled
motif labels indicate the false discovery rate at different p-value thresholds. Adapted
from Down et al., 2007 (doi:10.1371/journal.pcbi.0030007.g007).

regulatory motifs to gene regulatory events: srp has five paralogs in the
Drosophila genome, including pnr that has a similar sequence specificity
pattern (Haenlin et al., 1997), and is also known to be expressed and
required for the survival of the developing amnioserosa (Ramain et al.,
1993; Winick et al., 1993).

This study demonstrates methods for and importance of analyzing
computationally inferred regulatory motifs in the context of different lines
of evidence. Although a relatively small fraction of the motifs is supported
in a statistically significant way by any of the analyses described, combining
their results shows that the great majority of the motifs have a significant
association with either a specific expression pattern, sequence conservation
or positional bias (Fig. 6).

3. Motif Inference Tutorial

In this chapter, we have described a study where the NestedMICA suite
was applied to a genome-scale computational regulatory motif inference
task. However, we have recently developed an additional suite of sequence
retrieval and motif set analysis tools to complement NestedMICA. We
call this set of tools NMICA-extra. To demonstrate the application of
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Fig. 6. Summary of lines of evidence supporting the 120 motifs discovered in Down
et al., 2007 (doi: 10.1371/journal.pcbi.0030007.g009).

NestedMICA and NMICA-extra to the increasingly important task of
motif inference from ChIP-seq data, we will use these tools to recreate
the STAT1 transcription factor binding motif described by Robertson
et al. (2007) with the ChIP-seq peak region data from Robertson et al.
(2008). A more detailed version of the tutorial with command line exam-
ples and installation instructions for the necessary software is available at
http://wiki.github.com/mz2/nmica-extra.

3.1. Sequence retrieval and preprocessing

The first step in the exercise is retrieving input genomic sequences cor-
responding to the ChIP-seq peak regions. To ease the retrieval and
preprocessing of input sequence (repeat masking and exclusion of trans-
lated sequences), NMICA-extra includes tools for retrieving sequence
from the Ensembl database (Flicek et al., 2008), namely nmensem-
blseq, nmensemblfeat and nmensemblpeakseq. The first of the three,
nmensemblseq, can be used to retrieve sequences around transcription
start sites or 3′ UTRs or introns. nmensemblfeat is used for retrieving
specific sequence regions using GFF formatted annotation files as input.
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We use nmensemblpeakseq to retrieve sequence windows corre-
sponding to 50-base-long sequence windows around ranked ChIP-
sequencing peak maximum positions of the 500 top-ranking peaks.
nmensemblpeakseq supports several common peak caller formats: MACS
(Zhang et al., 2008), FindPeaks (Fejes et al., 2008), SWEMBL, as well as
the more generic BED and GFF annotation data formats.

3.2. Background model estimation

Before conducting motif inference from the retrieved sequences, it is advis-
able to estimate a sequence background model from the input sequences
as a separate step. This can be done with the command nmmakebg
that requires two input parameters: Markov chain order and the num-
ber of mosaic classes. The Markov chain parameter is usually set to 1st
order because some of the DNA motif specific downstream analysis tools
included in the suite require this. Four mosaic classes tend to yield the best
performance with eukaryotic noncoding sequence (Down and Hubbard,
2005). It is however best to evaluate different mosaic class parameters
before the potentially long-running motif inference analysis. Background
models can be evaluated using the command nmevaluatebg.

The output of nmevaluatebg can be used to find the mosaic order
parameters at which the background model performance, as measured by
sequence likelihood given the background model, shows little increase or
drops. These parameter values are then taken as the optimal ones.

The evaluation shown in Fig. 7 suggests four as an appropriate value for
the mosaic count parameter for our ChIP-seq peak sequences (sequence
likelihood shows little improvement with five or more classes). We there-
fore trained the background model with four classes.

3.3. Motif inference

After retrieving the input sequences and determining class and order
parameters with nmmakebg, we run the NestedMICA motif inference
tool nminfer to discover a single motif from the input data. For long run-
ning NestedMICA tasks, it is helpful to instruct it to output checkpoint
files that can be used to restart the computation, as well as sample motif
set files that can be used to visualize the state of the sampling periodically.
Please refer to the online version of the tutorial for details.
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Fig. 7. Evaluation of different sequence background model class counts with meval-
uatebg (1st order Markov chain) with the STAT1 ChIP-seq peak sequences. The
sequence likelihood is shown to level after four classes.

3.4. Visualizing NestedMICA motifs as sequence
logos

NestedMICA’s output can be visualized with a number of tools, including
the cross-platform MotifExplorer,a the OS X only iMotifs (Piipari et al.,
2010) (Fig. 8), or the seqLogo package supplied as part of BioConductor
(Gentleman et al., 2004).

3.5. Motif overrepresentation analysis

When interpreting the output of NestedMICA, it is important to note that
the algorithm does not rank its output motifs relative to one another or
predict hit positions for them. A common way of assessing computationally

ahttp://www.sanger.ac.uk/Software/analysis/nmica/mxt.shtml
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Fig. 8. A screenshot of iMotifs — a motif viewer and analysis tool for OS X that also
includes an integrated NestedMICA tool suite.

inferred motifs is by a motif overrepresentation analysis. Overrepresenta-
tion analysis is a statistical exercise where sequences with the motif (the
positive set) are discriminated from those assumed to be devoid of it (the
negative set).

The approach taken in NMICA-extra for calculating the degree of
overrepresentation in a set of sequences is the ROC-AUC (Receiver-
Operator Characteristic Area Under the Curve) statistic, computed with
the tool nmrocauc. In short, sequences are labeled as positive or negative
and the maximum motif bit score is used to predict if any given sequence
is part of the positive or the negative sequence set. The AUC statistic that
is reported by this analysis is a measure of how often a randomly chosen
positive sequence is ranked above a randomly chosen negative sequence. It
therefore provides a measure of separation of maximum motif hit score dis-
tribution of the positive examples from the negative examples. To estimate
the null distribution of scores with the length distribution and sequence
composition used, the negative sequences are shuffled and the randomly
generated sequences are then scored according to the same criterion. The
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shuffling conducted as part of this method accounts for the fact that the
maximum hit score distributions of sequences can vary based on nucleotide
composition. We retrieve 1000 random core promoter sequence fragments
of length 50 bp (in between −900 nt and +100 relative to TSS, exclud-
ing repeats and translated sequence) to compare the maximum scores
achieved with these fragments as opposed to the 500 top ranked STAT1
peak sequences. A comparison of the top ranked peak sequence windows
with the AUC score shows the STAT1 data to be highly enriched: 0.99
(p < 1 × 10−5) when compared to random noncoding nonrepetitive
sequence of the same genome.

3.6. Comparison of sequence motifs
with a reference motif set

The STAT transcription factors are a well studied family and DNA binding
motifs have therefore been recovered and deposited to publicly available
databases such as TRANSFAC (Matys et al., 2006) and JASPAR (Bryne
et al., 2008). This makes it possible to validate the sequence motif we have
inferred from the ChIP-seq data with NestedMICA by searching it against
motif databases with the reciprocal matching procedure described above.
Reciprocal matching of motifs is implemented in the tool nmshuffle that
is distributed as part of NestedMICA.

A statistically significant match is identified for the NestedMICA
STAT1 motif in the TRANSFAC database (p < 1×10−5), and an inspec-
tion of the closest matching motifs makes it clear that NestedMICA infers
a very similar binding specificity pattern for STAT1 as has been previously
reported for members of the STAT family transcription factors (Fig. 9).

4. Conclusions

In this chapter, we outlined the use of ab initio motif discovery algo-
rithm NestedMICA in computational discovery of higher eukaryotic tran-
scription factor binding site motifs. We validated the sequence motif sig-
nals by associating them with tissue-specific gene expression, positional
bias and inter-species conservation patterns. We also show similarity com-
parisons between computationally discovered and experimentally verified
motif sets.
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Fig. 9. Comparison of the motif inferred by NestedMICA from the ChIP-seq data
(motif0) compared with close hits from the TRANSFAC database.

The NestedMICA case study and tutorial demonstrate in practical
terms how a researcher new to regulatory genomics can make use of motif
discovery tools to identify and analyze sequence motifs from genomic
sequences.
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Chapter 2

R’MES: A Tool to Find Motifs
with a Significantly Unexpected
Frequency in Biological Sequences

Sophie Schbath∗,† and Mark Hoebeke∗,‡

Statistics of motifs have been widely revisited in the last 15 years due to
the increasing availability of genomic sequences. The identification of DNA
motifs with biological functions is still a huge challenge of genome analysis.
Many functional and essential motifs have the particularity to be very fre-
quent all along the chromosome or to be concentrated in some particular
regions or to be preferentially co-oriented with the replication direction. It
is therefore neccessary to distinguish significant features (e.g. frequency or
skew) from what one could expect just by chance. Many approaches aiming
at predicting functional motifs are then based on statistical properties of pat-
tern occurrences in random sequences. R’MES has been initially designed
to address the following question: “which are the motifs of length � occur-
ring with an exceptional frequency in this DNA sequence?” Now, it can also
detect which motifs have a significant skew in a given sequence and deal
with amino acid sequences. Soon it will allow researchers to compare the
motif exceptionalities in two different sequences. This chapter presents the
R’MES software package from a user’s point of view and gives many practical
examples, including recent DNA motif identifications.

1. Introduction

The number of complete genomes available in public databases is still
increasing and their automatic annotation has become very crucial. The
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identification of DNA motifs with biological functions in particular
organisms remains a huge challenge of this annotation process. Many
known functional and essential motifs have statistical properties related
to their occurrences along genomes. Some of them are significantly more
frequent than what we could expect by chance either all along the chro-
mosomes or in some particular regions of the chromosomes (in front of
genes for instance). Others are significantly co-oriented with the replica-
tion direction leading to a significant high skew. The prediction of func-
tional motifs is then mostly based on the distinction between expected and
unexpected features. R’MES has been initially developped to detect which
motifs of a given length occur with an exceptional frequency in a given
DNA sequence. R’MES relies on theoretical results on the statistical prop-
erties of pattern occurrences in random sequences. The general principle is
presented below and the statements of the statistical results are presented
in the Methods section. The reader interested by more methodological
details and proofs should refer for instance to the book by Robin et al.
(2005) or to Chapter 6 from Lothaire (2005).

A model as reference. The key idea is to compare the observed count
of the motif with the expected one given some knowledge about the
sequence. To decide if a word count is indeed unexpected, we need to
know what to expect at random. This will be defined by a probabilis-
tic model, i.e. by the description of what “random” means. In practice,
Markovian models are used because a Markov chain model of order m fits
the observed counts of all oligonucleotides of length 1 up to (m + 1) of
the observed sequence. Let us denote by Mm such model.

Choice of the model. Choosing model Mm means to take the base,
the dinucleotide, the trinucleotide, . . . , the (m + 1)-mer compositions
of the sequence into account to determine what to expect. However, the
sequence should be long enough to correctly estimate the 3 × 4m param-
eters of the model (the transition probabilities). Note that a motif of size
� can only be analyzed in M0 up to M(� − 2) because higher models
would fit the motif count itself (the motif will then be expected by defini-
tion); Model M(�−2) will be referred to as the maximal model. Since the
model determines the reference, changing the reference may change the
exceptionality feature of a motif. A word can be exceptionally frequent in
one model but expected in another one which, for instance, takes more
information on the sequence composition into account. Therefore, when
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claiming that an observation is statistically significant, it is necessary to
mention the reference, i.e. the chosen model.

p-value. To evaluate the significance of the difference between observed
and expected counts, we need to evaluate the p-value which is the proba-
bility, under our model, to observe as much (or as few) occurrences of our
motif of interest. It requires to know the statistical distribution of the count
of a motif in Markovian sequences. Several methods exist either to calculate
this p-value exactly (not tractable for long sequences) or to approximate
it (see Lothaire (2005) or Robin et al. (2005) for some reviews). R’MES
implements the two most classical approximations for word count distri-
bution, namely a Gaussian approximation for expectedly frequent words
(Prum et al., 1995; Reinert et al., 2000) and a compound Poisson approx-
imation for expectedly rare words (Schbath, 1995; Roquain and Schbath,
2007). The parameters of these approximate distributions are given in the
Methods section.

Score of exceptionality. R’MES converts the p-values into scores of
exceptionality using the standard one-to-one probit transformation: for
a given probability p ∈ [0, 1], the associated score u ∈ R is such that
P(N (0, 1) ≥ u) = p. Therefore, exceptionally frequent motifs have high
positive scores, whereas exceptionally rare motifs have very negative scores.
The Gaussian approximation has the advantage to allow the direct calcu-
lation of the scores without going through the p-value calculation, which
is much faster. This is not the case for the compound Poisson approxi-
mation. Nevertheless, for word counts, the limiting compound Poisson
distribution is a Geometric Poisson distribution (a particular case) and
efficient algorithms exist to directly compute the tail of such distribu-
tion (Nuel, 2008). In the word family case, one needs to compute and
to sum up point probabilities from general compound Poisson distribu-
tions (Barbour et al., 1992b) which may lead to numerical problems for
expectedly frequent families.

Extensions. R’MES can also provide scores associated with the statisti-
cal significance of word skews in order to detect significant DNA strand
bias. Except for the skew scores, R’MES can analyze frequency motifs in
sequences on any alphabets. Markovian models with periodic transition
probabilities can also be addressed, which is particularly of interest for
coding DNA sequences.
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Implementation and availability. R’MES is a free software package
available under the GNU General Public License. It can be down-
loaded with an online user guide from its home web page http://
migale.jouy.inra.fr/outils/mig/rmes or directly from http://
mulcyber.toulouse.inra.fr/projects/rmes. R’MES comes as a
source distribution. It is written in C and C++. Our distribution was specif-
ically designed to be compiled with the GNU GCC compiler. It has been
tested on a variety of Unix platforms (Linux, Solaris, MacOS X). R’MES
has a companion tool, R’MESPlot, which provides a graphical user inter-
face for the visualization of R’MES generated results.

2. User Guide

R’MES has to be run via a command line which looks like:

$rmes [options] -s <filename> -o <string>

All the options can be obtained by typing:

$rmes --help

In this section, we start by giving the most basic use case of R’MES
(getting the scores of exceptionality for word frequencies) and then we
describe other possible cases with the associated options.

2.1. Getting exceptional frequency scores for words

The most basic use case of R’MES consists in analyzing all the oligonu-
cleotides of a given length in a given sequence. Naturally, the input param-
eters are:

• the sequence file: it is provided after the -s <filename> option; the
sequence should be in FASTA format;

• the word length: it is provided after the -l <int> option;
• the order of the model : it is provided after the -m <int> option;
• the approximation method: it is provided either by the --gauss option

for the Gaussian approximation or by the --compoundpoisson option
for the compound Poisson approximation.

An additional option -o <string> is required to specify the prefix of the
output files.
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Table 1. Exceptional 6-letter words in E. coli complete genome under
model M4.

Word Count Expect Sigma2 Score Rank

ggcgcc 96 2058.166 1181.549 −57.0834 1
gccggc 294 1771.336 943.784 −48.0887 2
ctgcag 958 1982.772 925.338 −33.6882 3
agcgct 779 1773.006 1065.129 −30.4571 4
cggccg 285 858.880 468.397 −26.5164 5
tccgga 906 1708.700 922.467 −26.4288 6
ccgcgg 659 1405.005 847.795 −25.6210 7
gcatgc 589 1145.942 603.744 −22.6664 8
gtcgac 544 1064.316 579.037 −21.6229 9
cagctg 1777 2378.358 793.028 −21.3545 10
...

agcgcc 2846 1945.233 1136.143 26.7237 4093
ggcgct 2782 1875.940 1107.697 27.2237 4094
gccgga 2622 1744.846 934.807 28.6890 4095
tccggc 2634 1734.641 931.326 29.4701 4096

Example 1. We want to find the exceptional words of length � = 6
in the complete genome of the bacterium Escherichia coli (sequence file
ecoli.fasta) under the Markov model of order m = 4 (i.e. with respect
to the sequence composition in words of length 1 up to 5). For this we
first run the following command:

$rmes --gauss -s ecoli.fasta -l 6 -m 4 -o ecoli-6.4

which will generate the output file named ecoli-6.4.0. The results stored
in this file (see below) can be either formatted in a sorted table (see Table 1
for a truncated table) thanks to the rmes.format program included in the
distribution (see Sec. 2.5) or displayed via the graphical interface (see
Sec. 2.6).

In the sorted table (see Table 1), words are ordered from the most
exceptionally rare (score very negative) to the most exceptionally frequent
(highest positive score). In this example, one can notice that the most
avoided 6-letter words in E. coli are palindromic, probably restriction sites
(Karlin et al., 1992). The columns named expect and sigma2 refer to
the estimation of the expected count and to a variance-like quantity (see
Methods section, Eqs. (2) and (4)).
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Example 2. We want to find the exceptional words of length � = 9 in the
complete genome of the bacterium Haemophilus influenzae (sequence file
hinf.fasta) under the Markov model of order m = 5 (i.e. with respect
to the sequence composition in words of length 1 up to 6). Since 9-
letter words are a priori rare in a sequence of length n � 1.6 × 106, we
use a compound Poisson approximation for the counts. We then run the
following command:

$rmes --compoundpoisson -s hinf.fasta -l 9 -m 5 -o hinf-9.5

and the rmes.format program will produce a sorted list of words whose
truncated version is given in Table 2. Note that the two most exception-
ally frequent words aagtgcggt and accgcactt are precisely the uptake
sequences of the bacterium (Smith et al., 1995). Since their expected
counts are rather large (greater than 200), it could be more relevant to
use a Gaussian approximation for getting their scores. Columns named
expect_p and A refer to the estimation of the expected count of clumps
and to the overlapping probability (see Methods section, Eq. (7)).

Output file. The above rmes commands produce a unique output file
with the “.0” suffix. This file is not intended to be read by the user but
only to store the numerical values of each of the quantities of interest
(observed counts, expected counts, scores, etc.). To obtain user readable

Table 2. Exceptional 9-letter words in H. influenzae complete genome under
model M5.

Word Count Expect Expect_p A Score Rank

ttttttttt 8 89.824 62.888 0.29987 −8.8940 1
ttagtgcgg 3 41.810 41.810 0.00000 −7.6622 2
atttttttt 37 104.439 104.439 0.00000 −7.5343 3
aaagtgcga 19 74.081 74.081 0.00000 −7.5331 4
...

aaaagtgcg 355 136.559 136.559 0.00000 15.5191 262138
agtgcggtc 214 48.116 48.116 0.00000 17.4957 262139
gaccgcact 241 59.489 59.489 0.00000 17.6206 262140
ccgcacttt 614 193.117 193.117 0.00000 24.0413 262141
aaagtgcgg 643 195.573 195.573 0.00000 25.2005 262142
accgcactt 731 220.284 220.284 0.00000 27.0469 262143
aagtgcggt 740 219.081 219.081 0.00000 27.5486 262144
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output, this file needs to be formatted. Two tools are available for this: the
rmes.format program included in the distribution (see Sec. 2.5) or the
Java interface R’MESPlot (see Sec. 2.6). Moreover, the output file will
be compressed if the -z option is specified.

Simultaneously analyzing several word lengths. It is possible to simul-
taneously analyze several word lengths with a single command. For this,
the -l <int> option should be replaced with options --lmin <int> and
--lmax <int> which specify the minimal and maximal word lengths.

Using the maximal model. When using the maximal model, i.e. when
m = � − 2, the -m <int> option can be replaced with --max; it allows in
particular the simultaneous analysis of several word lengths, each one in the
associated maximal model (see previous paragraph). Despite its statistical
interpretation (see Discussion section), the maximal model allows us to
use a more efficient (and thus significantly faster) algorithm to calculate
the score from the Gaussian approximation.

Analyzing concatenated sequences. R’MES can consider a concatenation
of several sequences as a single sequence. In order to avoid introducing
non-existing words at the boundaries of each piece of the concatenated
sequence, the latter must be separated by a specific character which
depends on the sequence type or alphabet. For DNA, this separator
is the letter “Z”, and for amino acids the separator is the letter “X”.
Separators can be either upper or lower case. For user-specified alpha-
bets, the separator must be part of the alphabet definition (see next
paragraph).

Warning: the sequence file should however look like a unique sequence
file in FASTA format, i.e. with a unique title line and a unique sequence
of concatenated bases.

Using different alphabets. The default alphabets included in R’MES
are case-insensitive. By default, the nucleotide alphabet is used assuming
that the analyzed sequence is a DNA sequence. When analyzing protein
sequences, the amino acid alphabet should be used with the --aa option.
The user can however specify his/her own alphabet with the --alphabet
<character string> option. The character string explicitly describes the
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alphabet used in the sequence according to a particular format:

validchars:interruptchars:jokerchar

where

• valdichars is the list of allowed characters of the sequence,
• interruptchars is the list of characters used to separate pieces in a

concatenated sequence,
• jokerchar is a single character standing for any of the valid characters.

For instance, if a sequence of protein secondary structures is to be analyzed,
the alphabet definition could be ABC:X:N, where A could stand for alpha-
helix, B for beta-sheet, C for coil and X would be used to separate pieces
of sequences and N could replace any of A, B or C.

Note: all characters contained in the sequence but different from the
“valid characters” have the same effect than the “separator” character,
namely they are not taken into account in the word counting process.

2.2. Getting exceptional frequency scores
for word families

To analyze families of oligonucleotides, for instance degenerated oligonu-
cleotides of length 8 with an “n” in the second position, or starting with
a purine, or oligonucleotides with their reverse complement,. . ., the -l
<int> option must be replaced by the -f <filename> option, in which
<filename> represents the file which enumerates the families (see the for-
mat below). Both approximations, Gaussian and compound Poisson, can
be used.

Compatibility with other options. The -f <filename> option can be
used with the --max (maximal model) option but is not compatible with
the word length options -l <int>, --lmin <int> and --lmax <int>.

Format of the family file. A word family has to be composed of words
of the same length, say �. All the families contained in a family file have to
be composed of the same number of words, say d. The structure of the
associated family file is as follows:

• the first line is a title (character string) ended by the # character,
• the second line contains the number of families,
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4 families rny, rnr, ynr et yry of 16 trinucleotides #
4
16
3
rny

aac agc acc atc aat agt act att gac ggc gcc gtc gat ggt gct gtt

rnr
aaa aga aca ata aag agg acg atg gaa gga gca gta gag ggg gcg gtg

ynr
caa cga cca cta cag cgg ccg ctg taa tga tca tta tag tgg tcg ttg

yny
cac cgc ccc ctc cat cgt cct ctt tac tgc tcc ttc tat tgt tct ttt

Fig. 1. Family file associated to the four families rny, rnr, yny and ynr.

• the third line contains the number d of words in each family,
• the fourth line contains the length � of the words,
• then, each family is listed as follows: the family name followed by all the

d words of this family.

As an example, Fig. 1 gives the family file corresponding to the four families
rny, rnr, yny and ynr, where r stands for a purine (a or g) and y stands
for a pyrimidine (c or t). Note that some family files can be automatically
generated thanks to the rmes.gfam program included in the distribution
(see Sec. 2.5).

Output file. The rmes command with the -f <filename> option pro-
duces an output file (with the “.0” suffix) which contains the list of the
word families with their observed count, estimated expected count and
score. This list is ordered like in the family file and not with respect to the
scores. This output file can also be formatted thanks to rmes.format or
visualized with the graphical interface R’MESPlot. The output file will be
compressed if the -z option is specified.

Example 3. We want to find the exceptional degenerated words of length
� = 8 with any letter in the second position (i.e. n) in the complete genome
(leading strands) of the bacterium H. influenzae under the Markov model
of order m = 1 (i.e. with respect to the sequence composition in bases
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and dinucleotides). Regarding Example 2, we analyze the sequence file
hinf-uptake.fasta in which all occurrences of the uptake sequences
have been masked (otherwise all subwords of the uptake sequences will
be found exceptionally frequent). For this, we first generate the file
fam.xnxxxxxx which contains the 47 word families (from anaaaaaa to
tntttttt) and their content by running the rmes.gfam program (see
Sec. 2.5). Then we run the following command:

$rmes --gauss -s hinf-uptake.fasta -f fam.xnxxxxxx -m 1
-o hinf-xnxxxxxx.1

which will generate the output file named hinf-xnxxxxxx.1.0. As for
words, the results stored in this file (observed and expected counts, scores,
etc.) can be either formatted in a sorted table (see Table 3 for a truncated
table) via the rmes.format program included in the distribution (see
Sec. 2.5) or displayed via the graphical interface (see Sec. 2.6).

In this example, one can notice (cf. Table 3) that the most exception-
ally frequent family is gntggtgg which is precisely the Chi sequence of
H. influenzae (Sourice et al., 1998).

Table 3. Exceptional 8-letter degenerated words with an n in the
second position in H. influenzae complete genome under model M1.

Family Count Expect Sigma2 Score Rank

tntttttt 845 1642.439 2766.196 −15.1620 1
anatgcat 62 312.138 308.106 −14.2505 2
anttcgaa 32 241.699 239.799 −13.5417 3
antgcatg 29 229.790 227.111 −13.3237 4
tncatgca 32 217.582 217.686 −12.5782 5
tntgcatg 47 240.495 237.758 −12.5488 6
...

cngaagaa 326 114.194 113.528 19.8787 16379
gnagaaga 270 83.638 85.924 20.1048 16380
tnatcgcc 279 84.555 84.252 21.1840 16381
anatcgcc 288 87.883 87.559 21.3862 16382
anttcatc 469 180.373 178.635 21.5950 16383
gntggtgg 223 55.317 56.352 22.3375 16384
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2.3. Analyzing coding DNA sequences

When analyzing coding DNA sequences, it is usually more relevant to use a
Markov model which takes the phase into account, i.e. which distinguishes
the position of the bases with respect to the codons. More generally, one
may be interested to take some periodicity of the sequence into account.
For this purpose, the --phases <int> option can be used to specify the
period. Note that only the Gaussian approximation is available with phased
models. The basic command becomes:

$rmes --gauss -s <filename> -l <int> -m <int> --phases
<int> -o <string>

Compatibility with other options. The --phases <int> option can
be used with the --max (maximal model) option, with the word length
options --lmin <int> and --lmax <int> and with the family option -f
<filename>. However, it cannot be used with the --compoundpoisson
(compound Poisson approximation) option.

Output files. If a phased model with r phases is used, the above command
will produce r + 1 output files with suffixes “.1”, “.2”, . . . , “.(r + 1)”.
The file suffixed by “.i”, 1 ≤ i ≤ r , corresponds to the statistical analysis
of the number of occurrences ending exclusively on phase i (see Methods
section), while the file suffixed by “.(r + 1)” corresponds to the number
of all occurrences (like for a non-phased model). Each of these files has
the same structure as the one obtained with a non-phased model (see
previous paragraphs). They can be formatted by rmes.format, displayed
in the R’MESPlot graphical interface and automatically compressed.

Example 4. We want to find the exceptional words of length � = 8 in the
genes of the bacterium Escherichia coli (sequence file ecoli-genes.fasta
containing genes separated by the symbols ZZZ to preserve the reading
frame) under the three-phased Markov model of order m = 5 (i.e. with
respect to the sequence composition in bases up to hexamers on each of
the three phases). For this we run the following command:

$rmes --gauss -s ecoli-genes.fasta -l 8 -m 5 --phases 3
-o ecoli-genes.8.5
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Table 4. Exceptional 8-letter words in E. coli genes under model
M5 with 3 phases.

Word Count Expect Sigma2 Score Rank

ttctgaca 70 123.926 52.050 −7.4746 1
aaaaaaaa 80 172.531 184.597 −6.8104 2
ttgagctg 138 198.275 115.982 −5.5968 3
aaaaaaac 112 174.200 125.756 −5.5466 4
gtggcggg 101 165.133 137.979 −5.4598 5
...

aggcgctg 560 447.136 245.921 7.1971 65532
aaaaaata 206 128.751 105.366 7.5256 65533
gattctgg 292 199.572 134.006 7.9844 65534
gctggtgg 783 619.041 391.529 8.2862 65535
ccaccagc 205 117.297 89.722 9.2590 65536

which will generate four output files, one for the number of occurrences
ending on each of the three phases and one for the total number of occur-
rences (suffix “.4”). After formatting the file ecoli-genes.8.5.4, we
notice that the two most exceptionally frequent 8-letter words in E. coli
genes are the Chi sequence of the bacterium (gctggtgg) and its reverse
complement (see Table 4).

If we now look separately at occurrences on each phase (by
formatting the files ecoli-genes.8.5.1, ecoli-genes.8.5.2 and
ecoli-genes.8.5.3), we can notice for instance that most of the 783
occurrences of the Chi sequence occur on phase 1, i.e. like g|ctg|gtg|g
with respect to the reading frame, and in a significant way (see Table 5).

2.4. Getting exceptional skew scores

When analyzing a DNA sequence, one can be interested to know if an
oligonucleotide has a significant skew. The skew of an oligonucleotide
is usually defined like the ratio between the oligonucleotide count and
the count of its reverse complement (or conjugate). The skew is used to
describe the strand bias. The p-value associated with an oligonucleotide
skew can be easily approximated using a Gaussian approximation of the
word counts (see Methods section). With R’MES it is then possible to
get an exceptionality score of the skew of an oligonucleotide or of a word
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Table 5. Exceptional 8-letter words on phase 1 in E. coli genes
under model M5 with 3 phases.

Word Count Expect Sigma2 Score Rank

taaactgg 131 192.543 119.364 −5.6330 1
gttctgac 0 19.936 12.851 −5.5610 2
tttctgac 0 17.344 11.870 −5.0342 3
ctggcaaa 111 157.661 89.711 −4.9264 4
...

ctaccaag 12 1.964 1.810 7.4604 65532
gctggtgg 677 532.312 323.696 8.0420 65533
gaggcccc 5 0.326 0.307 8.4290 65534
ccccaagg 10 1.048 0.990 8.9970 65535
gattctgg 257 163.002 104.913 9.1771 65536

family. To do this, the --gauss option from the basic command must be
replaced with the --skew option:

$rmes --skew -s <filename> -l <int> -m <int> -o <string>

Compatibility with other options. The --skew option can be used with
the --max (maximal model) option, with the word length options --lmin
<int> and --lmax <int> and with the family option -f <filename>.
However, it cannot be used with the options --gauss (Gaussian approx-
imation) --compoundpoisson (compound Poisson approximation) and
--phases <int> (phased models), neither with the alphabet options --aa
and --alphabet <character string>.

Additional output file. The quantities associated with the skew and its
significance are stored in an additional file with the “.skew” suffix. This
file is presented like a table: the columns successively correspond to the
word (or word family), the observed count, the observed count of the
reverse complement, the observed skew and the score of exceptionality of
the skew.

Example 5. We want to detect the 8-letter words which are the most
significantly skewed along both leading strands of the bacterium E. coli
(ecoli-rep.fasta sequence file). Since we only want to take the base
composition of the sequence into account (i.e. m = 0), we then run the
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Table 6. The 8-letter words which are the most significantly
skewed along the leading strands of E. coli with respect to the
base composition (model M0).

Word Count Conj.Count Skew Score

tcctccta 13 1 13 8.359953

gggggccc 14 1 14 7.975611

gagtaggg 43 1 43 7.645669

gggtctcc 9 1 9 7.609322

ggggaggg 41 1 41 7.586326

following command:

$rmes --skew -s ecoli-rep.fasta -l 8 -m 0 -o ecoli-rep.8.0

Table 6 gives an excerpt of the produced file ecoli-rep.8.0.0.skew;
more precisely it gives the words with the highest scores except those
whose conjugate does not occur in the sequence (infinite skew in this
case). One can recognize that one of them (ggggaggg) is a member of the
KOPS family (Bigot et al., 2005).

2.5. Utilities

rmes.format This program displays the results contained in an output file
(<rmesfilename>) generated by the rmes command. It produces a table
with the motifs sorted according to their exceptionality scores. The basic
command is:

$rmes.format < <rmesfilename> > <tablefilename>

Table 1, for instance, is an excerpt of the table produced by the command:

$rmes.format < ecoli-6.4.0 > ecoli-6.4.0.table

The meaning of the different columns of the output table
depends on the approximation used, i.e. from the options --gauss,
--compoundpoisson, or --skew.

• Gaussian approximation (options --gauss or --skew): the six columns
successively correspond to the motifs, their observed count, their
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estimated expected count, their estimated limiting variance, their score
of exceptionality and their rank when all motif scores are sorted by
increasing order.

• Compound Poisson approximation (option --compoundpoisson): the
seven columns successively correspond to the motifs, their observed
count, their estimated expected count, the estimation of their expected
number of clumps (see Sec. 5.5), their overlapping probability, their
score of exceptionality and their rank when all motif scores are sorted
by increasing order.

If the input file contains results for more than one word length, then
as many tables as the considered word lengths will be produced. However,
if only a subset of word lengths (between �min and �max) is of interest,
the -i <int> and -a <int> options can be used (-l <int> is enough
for a unique word length).

The significance associated with a given score is obtained thanks to the
standard Gaussian distribution with mean 0 and variance 1. In particular,
scores ranging from −3 to 3 are not really significant (p-value greater than
0.00135). Therefore, motifs with such scores are removed by default from
the tables. To specify other thresholds, one can use the --tmax <float
value> and --tmin <float value> options; in this case, only motifs
with a score greater than the maximal threshold or less than the minimal
threshold will be displayed in the table.

rmes.gfam This program allows us to generate family files when the cor-
responding families are degenerated DNA motifs which can be written
thanks to the bases a, c, g, t and n. The basic command is:

$rmes.gfam -t <label> -p <string>

The -t <label> option just specifies the title of the resulting family file
(this title will be the first line of the family file).

The pattern specified by the -p <string> option is the template to
generate the degenerated motifs (families). Its length � will be the length
of the words in the families. Each of its � characters can take a value among
#, a, c, g, t and n.

• If the i-th character of the template is a (respectively c, g or t), each
family is labeled with a pattern whose i-th character is a (resp. c, g or t)
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and all words from all families will have an a (resp. c, g or t) at
position i.

• If the i-th character is n, each family is labeled with a pattern whose i-th
character is n and a series of words belonging to a same family will be
generated whose i-th character is a letter of the alphabet.

• If the i-th character is #, a series of families will be generated, each
family being labeled with a pattern whose i-th character is a letter of the
alphabet.

The number of families is then 4α where α is the number of #’s in the
template and the number of words in each family is 4β where β is the
number of n’s in the template.

For instance, the family file fam.xnxxxxxx from Sec. 2.2 which con-
tains the 47 degenerated octamers having an n in the second position has
been produced by the following command:

$rmes.gfam -t ’Octamers of the form xnxxxxxx’ -p ’#n######’
>fam.xnxxxxxx

2.6. Graphical user interface

As already stated above, the raw output files generated by R’MES are not
destined to be read directly. The previous section describes a command-
line utility for reformatting these result files, but there also exists a graphical
user interface that can be used to explore the contents of R’MES’s output,
called R’MESPlot .

Exploring data. At a basic level, R’MESPlot is capable of displaying the
contents of any number of result files as a tree. Each top-level branch con-
tains a subtree with results relative to the same sequence. The subtree itself
is subdivided according to the approximation method, the phase, the word
length and the Markov order, as can be seen in Fig. 2. Selecting tree leaf
node will add a table with its contents to the data panel (this table is similar
to the one produced by the rmes.format utility). Each table row repre-
sents the results for a single word, and the columns are its attributes. The
latter can be independent of the approximation (like the rank, the word
itself, the observed count, the score) or specific (the estimated variance
for Gaussian approximations for example). As can be expected, the whole
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Fig. 2. Screenshot of R’MESPlot showing the result tree and the data table.

table can be sorted according to any of the column headers. Moreover, an
option panel allows the user to look for a specific word or to define which
graphical representation to build, either from the whole result set or from
a given word.

Drawing comparative plots. Sometimes it may be desirable to compare,
at a glance, word scores from two different result sets. In order to do so, all
that is needed is to select them from the result tree and to use the option
panel to define on which axis each of the dataset will be displayed. The
resulting plot will contain tiny cross symbols, one for each word. This may
for instance occur when a word has an infinite or “not a number”-like
score in one of the sets. The application uses shades of green Figure 3
shows a plot built from two result sets. Selecting a data point in the plot
by clicking on a cross will switch the display of the corresponding word on
or off. Other graphical manipulations are allowed with the option panel
below the drawing area.

Building pyramids. In some cases it might be relevant to examine if
the exceptionality of a word might be caused by the exceptionality of
some of its subwords. R’MESPlot allows this, if result data are available
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Fig. 3. Screenshot of R’MESPlot showing how to plot word scores from two differ-
ent result sets. Along the x-axis: scores computed using the Gaussian approximation.
Along the y-axis: scores computed using the compound Poisson approximation. Some
of the words have been highlighted with a mouse click.

for different word lengths related to a same sequence in a single result
file. Once the file has been loaded into R’MESPlot, one has to select a
specific word length and, in the data table, a specific word. The “Pyramids”
tab of the graphics window will show the exceptionality scores of the
selected word and of all its subwords: the top square corresponds to the
actual word, the squares of the layer below correspond to the scores of
the two subwords whose length is one less than the selected word, and so
forth. Square colors are indicative of the score level of each of the words.
The application uses shades of green (resp. red) to highlight words with
exceptionally high (resp. low) scores. Figure 4 shows a representation of
word pyramids. To enhance the readability of this printed greyscale figure,
a “+” (resp. “−”) symbol was drawn on squares with exceptionally high
(resp. low) scores. For example, word tccggc has a high exceptionality
score (vivid green top square of left pyramid), as is the case for its left
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Fig. 4. Screenshot of R’MESPlot displaying pyramids of words to assess their excep-
tionality with respect to the exceptionality of their subwords.

subword of length 5 (tccgg, leftmost square of the layer just below the
topmost layer). Its right subword of length 5 (ccggc, rightmost square of
the same layer) however has an exceptionally low score, as denoted by its
deep red color.

2.7. Implementation details

This section starts by detailing the design of R’MES’s main classes and
its core algorithms for one of the available approximations, followed by
some considerations about the time and space complexities with respect to
the word and sequence lengths as well as the Markov order of the model.
Finally, a few tables summarize measurements of both execution time and
memory footprint for a set of runs of R’MES.

2.7.1. Main data structures and algorithms

Design of main classes in R’MES. Basically, R’MES computes various
quantities on words present in a sequence. A significant part of the pro-
gram thus relies on the extraction of subwords from larger words or from
the whole sequence, or the creation of new words by adding letters to
already existing ones. In order to be capable of uniformly using word and
sequence objects to perform these operations, they are provided by an
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Fig. 5. Hierarchy of classes representing words and sequences. The use of an abstract
base class allows the definition of polymorphic methods to uniformly manipulate single
letters or substrings.

abstract RMESString class from which both the Word and the Sequence
classes are derived. Indeed, in the current release of R’MES, the internal
representation of words (coded as long integers) and sequences (coded as
character vectors) are different enough to prevent the use of a single class
for both entities. Figure 5 shows how these classes are organized.

It also comes as no surprise that the main data structure used to store
the results (the ResultSet class) is made of a series of vectors, one for
each word-related quantity (count, expected count, variance, score and
so on), indexed by an integer representation of each word. The exact
nature of the quantities varies with the type of approximation (Gaussian
or compound Poisson), leading to a C++ class hierarchy reflecting this
diversity, as shown in Fig. 6. The duality of the hierarchy is needed to
distinguish results related to word families from those dealing with raw
words.

A similar, although not identical, structural approach has been taken
for the organization of estimation related classes. Each combination of
approximation type and word or family results gives rise to a specific class,
as shown in Fig. 7. The only method present in the root of the estimator
classes is the actual estimation method, which is over-written by each sub-
class with its specific algorithm. It is the task of a dedicated factory class to
instantiate the correct estimator given the combination of command line
arguments.

Apart from these core class hierarchies, R’MES obviously has also some
more trivial classes for sequence reading, word counting and processing
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Fig. 6. Hierarchy of classes storing computational results. Examples of class specific
attributes and over-written methods are shown for word related result classes. Their
counterparts for family-related result classes are omitted.

Fig. 7. Hierarchy of estimation performing classes. Examples of class specific
attributes and over-written methods are shown for word-related estimation classes
and family-related estimation classes. Moreover, computation of variance and covari-
ance for two words is sufficiently approximation-independent to be declared at the
WordEstimator level. There is no formal score computation method, because its sig-
nature would be too divergent between approximations. Hence, score computation is
directly performed in the estimate() method where the needed quantities are avail-
able.
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of command-line arguments. Also, there is a class (StatRoutines) ded-
icated to the computation of various quantities (upper and lower tails of
compound Poisson distributions, Gamma function, etc.).

Algorithm outline for the computation of word-related quantities.
Computing word-associated quantities (score, expected count, variance,
etc.) is carried out in a straightforward way. The following steps go into
some detail as to how the successive stages are implemented in R’MES.

1. Reading of sequence data. In this trivial step, the successive letters
of the sequence are stored in the character vector representation of a
Sequence instance.

2. Counting of word occurrences. An instance of the Counter class,
created by specifying the lengths of the words to be counted, scans the
Sequence class, and tallies the subsequences of the correct length at
each position. As a result, the Counter instance is capable of returning
the number of times a given word occurs in the sequence.

3. Computation of word-related quantities. This step iterates over all
possible words and, knowing the approximation type and the Markov
order, computes their expectation, variance and score (see next para-
graph for a more detailed description). These quantities are stored in
an instance of the appropriate ResultSet subclass.

4. Generation of result file. In this final step, the result set is simply
dumped to a file whose prefix was given as an initial argument.

Expectation computation for a single word with the Gaussian approx-
imation. The expected count of a word w of length � in a sequence, given
a Markov order m, mainly depends on the number of occurrences, in the
original sequence, of words of length m + 1 whose prefix of size m is a
subword of w (see Eq. (2), Sec. 5.2). Hence, the algorithm proceeds by
extracting every subword (w′) of length m of w, and then by building the
set of all possible words by adding one of the letters from the alphabet
to the right of w′. A step by step pseudo-code of the algorithm can be
found in Listing 1, and is an implementation of Eq. (2). The algorithm
for computing the variance follows a similar approach although it is a bit
more complex due to the fact that self-overlaps of w have to be taken into
account and counts of subwords have to be done also inside the word itself
(see Eq. (4)).



December 21, 2010 18:19 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-ch02

R’MES 47

Listing 1: Pseudo-code for expectation computation
//Extract lefmost word of length m+1 from word w.
prefix=w.substring(0,m)
//Initialize expectation with number of occurrences of prefix
//in whole sequence. ‘c’ is an instance of Counter containing
//all word counts for the current sequence.
expectation=c.wordCount(prefix)
//Loop on all possible subwords of length m+1 in w
for (p=1; p<w.length()-m; ++p) {

//Start by extracting subword of length m at position p
runningprefix=w.substring(p,p+m-1)
//Keep track of occurrences of all possible subwords
quantity=0
//Loop on all letters of the alphabet
for (i=0;i<alphabet.size();++i) {

//Build word of length m+1 by appending letter to subword of length m
subword=runningprefix+alphabet[i]
//Add occurrences of subword in the sequence
quantity+=c.wordCount(subword)

}
//Finally get occurrences of actual subword of length m+1 at position p in w.
actualsubword=runningprefix+w[p+m]
//And compute the expectation.
expectation*=c.wordCount(actualsubword)/quantity

}

2.7.2. Space and time complexity

In the current implementation of R’MES, both time and space complexity
are determined first and foremost by the word length (�) and the size of
the alphabet (k). The size of the alphabet determines the number of bits
b needed to store a single character, with b = log2(k). The amount of
memory needed to store all possible integer representations of words of
length � then equals 2b�. If q is the number of quantities associated with
each word, and s the space taken by a single quantity, the overall space
complexity becomes O(qs × 2b�) which explains the present limitationa of
� ≤ 14.

The time complexity also depends on the same set of parameters
with the added cost of the approximation type (Gaussian or compound

aWe are in the process of changing the internal representation of words to overcome
this limitation on the word length.
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Poisson). So globally, the time complexity is about O(c × 2b�), where c is
related to the approximation and the Markov order. In some cases, c may
be relatively small (e.g. Gaussian approximation + maximal model). At
the opposite, compound Poisson approximation for short words may lead
to a high value of c (see next paragraph).

In these space and time complexity expressions, the costs related to
initially processing the sequence and storing it in memory have been
neglected. Note however that when collecting statistics on small words
in huge sequences, this assumption may not hold, leading to space and
time complexities of O(n) where n is the length of the sequence.

2.7.3. Computation time and memory requirements

Tables 7 and 8 contain execution times (in seconds) for R’MES (respec-
tively for the Gaussian and the compound Poisson approximations) with
different word lengths (2 to 10) and Markov orders (0 to the maximal
order for the given word length). The sequence file used to measure exe-
cution time was the complete genome of E. Coli along its direction of repli-
cation (≈ 4.7 Mb). The test platform had Ubuntu Linux 9.10 installed on
an Intel Pentium Core2 Duo CPU at 2.4 Ghz.

One can see that the Gaussian approximation is very fast for short
words (� ≤ 8) with an increasing runtime as the word length (and thus

Table 7. R’MES runtime (in seconds) using the Gaussian approx-
imation for different word lengths � and different orders m for the
Markov model.

Word length �

m 2 3 4 5 6 7 8 9 10

0 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 1.01 2.63 8.59
1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 1.08 2.80 8.95
2 ≤ 1 ≤ 1 ≤ 1 ≤ 1 1.10 3.06 9.94
3 ≤ 1 ≤ 1 ≤ 1 1.12 2.95 10.27
4 ≤ 1 ≤ 1 1.17 3.14 10.80
5 ≤ 1 1.31 3.75 13.13
6 1.18 7.16 27.28
7 2.20 80.05
8 5.61
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Table 8. R’MES runtime (in seconds) using the compound Poisson approximation
for different word lengths � and different orders m for the Markov model.

Word length �

m 2 3 4 5 6 7 8 9 10

0 36,186 9,095 3,757 1,079 266.25 74.00 16.91 6.80 10.98
1 9,014 3,739 1,071 265.58 74.04 16.86 6.76 10.90
2 734 378 85.78 18.41 6.41 4.01 8.85
3 64.52 34.83 6.91 2.20 3.17 8.48
4 4.49 3.70 1.62 2.77 8.09
5 ≤ 1 1.34 2.68 8.21
6 1.11 2.65 8.09
7 2.60 7.96
8 7.80

the number of analyzed words) or the model order increases. For long
words, one can observe the benefit of using the maximal model. The
picture is different for the compound Poisson approximation which is
drastically penalized by short words simply because their observed and
expected counts are high (this approximation is theoretically not adapted
in these cases). Runtime is quite small for long words and decreases as the
model order increases (only word periods less than � − m have indeed to
be considered, see Methods section).

Tables 9 and 10 show the amount of memory (in Mb) needed by
R’MES for the same parameters as those used to measure execution
times.

3. Discussion

We will first illustrate how R’MES could be useful to identify functional
DNA motifs, then discuss the choice of the Markov model and finally the
choice of the approximation for the word count distribution.

DNA motif discovery. We describe here the strategy used in Halpern
et al. (2007) to identify the Chi motif in the bacteria Staphylococcus aureus.
This identification is based on the following properties of already known
Chi motifs for several bacteria (El Karoui et al., 1999): they are very
frequent and their occurrences are mainly oriented in the direction of
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Table 9. R’MES memory footprint (in Mb) using the Gaussian approx-
imation for different word lengths � and different orders m for the
Markov model.

Word length �

m 2 3 4 5 6 7 8 9 10

0 26.0 26.0 26.0 26.1 26.2 26.5 27.9 33.4 55.4
1 26.0 26.0 26.1 26.2 26.5 27.9 33.4 55.4
2 26.0 26.1 26.2 26.5 27.9 33.4 55.4
3 26.1 26.2 26.5 27.9 33.4 55.4
4 26.3 26.5 27.9 33.4 55.4
5 26.8 27.9 33.4 55.5
6 29.0 33.5 55.6
7 37.9 55.9
8 73.5

Table 10. R’MES memory footprint (in Mb) using the compound
Poisson approximation for different word lengths � and different orders
m for the Markov model.

Word length �

m 2 3 4 5 6 7 8 9 10

0 32.2 28.0 26.7 26.3 26.3 26.7 28.4 35.5 63.8
1 28.0 26.7 26.3 26.3 26.7 28.4 35.5 63.8
2 26.6 26.3 26.3 26.7 28.4 35.5 63.8
3 26.3 26.3 26.7 28.4 35.5 63.8
4 26.3 26.7 28.4 35.5 63.8
5 26.7 28.5 35.5 63.8
6 28.5 35.6 63.9
7 35.8 64.1
8 64.9

DNA replication. The first step has been to extract the backboneb of the
S. aureus genome by comparing the genome of six strains of the bacteria.

bThe backbone is composed of the genomic regions common to all the compared
strains.
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The obtained backbone contains about 2.44 × 106 letters and can be
retrieved from the MOSAIC databasec (Chiapello et al., 2005).

The second step was to search for motifs which are frequent enough,
exceptionally frequent and relatively skewed on the leading strands. They
start by analyzing 8-letter words (like for the Chi motif of E. coli) with
R’MES but none of the most over-represented and skewed motifs were
frequent enough to be retained as potential Chi candidates. They thus
focused on 7-letter words. Scores of exceptionality were calculated with
the Gaussian approximation and in the maximal model, namely model
M5. Six motifs had an exceptionality score greater than 11 (see Table 11
or Fig. 8 for a global view). Two of them have a negative skew score so
they were not retained. A biological experiment has then been done to
test for S. aureus Chi activity of the four candidates: gaaaatg, ggattag,
gaagcgg and gaattag. The conclusion was that gaagcgg is necessary and
sufficient to confer Chi activity in S. aureaus. This strategy has also been
successfully used to predict and validate the Chi motif of three species of
the Streptococcus genus (Halpern et al., 2007).

Table 11. The 10 most exceptionally frequent 7-letter words under
model M5 in the S. aureaus complete genome. Columns correspond
respectively to the word, its observed count, its estimated expected
count, its normalizing factor, its score of over-representation under
model M5, its observed skew and its skew score under model M0.

w Nobs(w) Ê5[N (w)] σ̂2
5(w) u5(w) Skew Score

taaaaaa 1542 1214.3 603.4 13.34 1.61 −1.28
gaaaatg 1067 789.9 454.2 13.00 2.48 1.13
taaaatt 1356 1062.6 552.8 12.48 1.04 −1.53
ggattag 266 143.2 97.5 12.43 2.53 1.52
gaagcgg 272 162.4 88.1 11.67 7.56 2.91
gaattag 614 420.7 274.4 11.67 3.89 7.23
gaaaaag 1177 942.1 518.0 10.32 3.52 2.53
taagatt 316 201.3 130.9 10.03 1.07 −2.98
ttaaaag 1059 856.5 431.6 9.75 2.00 3.85
gatttag 657 488.1 305.9 9.66 2.16 4.25

chttp://genome.jouy.inra.fr/mosaic/
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Fig. 8. Over-representation scores under M5 and skew scores under M0 for the
most over-represented 7-letter words (over-representation scores greater than 5) in the
backbone genome of S. aureus. The four best candidates (motifs A to D) are indicated.
Motif C (gaagcgg) has been confirmed as the functional Chi site of S. aureus.

Choice of the model. Clearly the exceptionality score depends on the
chosen Markov model (i.e. on the order m of the model, but also on the
phased/unphased feature) because it quantifies how much the observed
count of a given motif differs from the count one should expect under the
model. Recall that a Markov model of order m fits the sequence composi-
tion in short words of length 1 up to (m + 1). Therefore, when the order
of the Markov model increases, the model better fits the sequence compo-
sition and less exceptional words are globally found. This is illustrated by
the boxplots of Fig. 9. Moreover, in a high-order model we have a more
accurate knowledge about the sequence composition than in a low-order
model: the significance of a word frequency has then no reason to be the
same. This point is illustrated by the plot of Fig. 9 which compares scores
of 8-letter words in models M1 and M6 in the E. coli genome. We recog-
nize the Chi motif gctggtgg which is clearly outside the cloud but let us
take the case of the word ggcgctgg. It occurs 761 times in the sequence;
it has a significantly high score of 62.4 in model M1 (it is the second most
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Fig. 9. Exceptionality scores for the 65 536 eight-letter words in the E. coli genome.
Top: Boxplots of the scores under models M0 to M6. Bottom: Scores under models
M1 (x-axis) and M6 (y-axis).

exceptional word) but has a score of 0.8 in model M6 (rank 17100). It
simply means that its high frequency can be explained by the sequence
composition of 7-letter words; indeed it is expected about 749 times in
model M6. The maximal model (m = � − 2) is probably the best one to
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check if an observed frequency is really exceptional or can just be explained
by the sequence composition.

Choice of the approximation. R’MES proposes two approximations to
get the score (equivalent to the p-value thanks to the probit transforma-
tion) of exceptionality of word counts. On the one hand the Gaussian
approximation uses a more efficient algorithm to compute the score than
the compound Poisson approximation; on the other hand, it is quite well
known that a Gaussian approximation is not good for the count of expect-
edly rare words (see Robin and Schbath (2001) for instance). In this case,
a compound Poisson approximation is much better. The frontier is not
easy to determine, but we can use the following rule of thumb: if the
expected count is greater than 100, then we use the Gaussian approxima-
tion; if it is less than 20, then we use a compound Poisson approximation.
In between, both approximations mostly give the same list of exceptional
words (but the scores could be different). Since the scores obtained by the
Gaussian approximation are faster to get, it is probably the method to try
first. If the question is really to get accurate p-values, then the compound
Poisson approximation is better. Note however that, for word families, the
algorithm to compute compound Poisson tail distributions may encounter
numerical problems especially if the family is expectedly frequent (a warn-
ing message will appear in such cases).

4. Conclusion

R’MES provides a wide variety of statistical analyses based on word fre-
quencies in sequences. It implements the Gaussian approach particularly
adapted for getting the exceptionality scores of expectedly frequent words
(roughly “short” words) under Markovian models of any order, periodic
or not. It also implements the compound Poisson approach devoted to
expectedly rare words in homogeneous Markovian models of any order.
For both approaches, R’MES can consider single words and families of
words.

Several extensions or improvements are currently addressed, some
related to R’MES’s core functionalities, and others in the user interface
field. First of all, R’MES will allow the comparison of exceptionalities
between two sequences. In order to do so, the p-values proposed by Robin
et al. (2007) will be computed. Also, the internal representation of words
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is undergoing a major overhaul to lift the word limitation barrier. And
on a very technical level, the next major release of R’MES will rely on
new packaging tools, allowing us to release the software on a wider range
of platforms, including the Windows™operating system. In this effort to
widen the community of R’MES users, the potential complexity of its
command-line leads us to initiate, or to plan, the development of more
user friendly interfaces. In a first stage, a graphical user interface will offer
an easier way to specify the arguments and to launch the actual R’MES
program. Needless to say, this GUI will embed R’MESPlot giving access
to execution and result exploration in a single application. As installing a
stand-alone application can still be cumbersome, a Web interface is also
planned. It will offer remote execution of a trimmed-down version of
R’MES (to prevent resource exhaustion on the hosting platform) with a
Web browser.

5. Methods

In this section, we give the expression of most of the quantities calculated
by R’MES and relate them to theoretical results on word occurrences in
Markovian sequences. First, we define the Markov chain models used in
R’MES and their estimation from an observed sequence. Next we give
the formula for the estimated expected count and we state the Gaussian
approximation for the count distribution. In particular, we give the expres-
sion of the estimated variance. We also derive the exceptionality score for
the skew. Finally, we present the compound Poisson approximation for the
count distribution which relies on the fundamental fact that words occur
in disjoint clumps of overlapping occurrences, the number of clumps being
approximately Poisson distributed.

Let us consider a random sequence S = X1X2 · · · Xn of length n on a
given alphabet A, i.e. Xi ∈ A for i = 1, . . . , n. Without loss of generality,
let us suppose that A := {a, c, g, t}.

Let us define a word w = w1w2 · · · w� of length � and W =
{w1, w2, . . . , wr } a word family composed of r words of length �. We
are then interested in approximating the p-values P(N (w) ≥ N obs(w))
and P(N (W) ≥ N obs(W)) where N (·) and N obs(·) stand respectively
for the random number of occurrences in S and the observed number of
occurrences in the DNA sequence.
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5.1. Markov chain models

The random sequence S = X1X2 · · · Xn is a stationary Markov chain of
order m if and only if the distribution of Xi conditionally to all the previous
letters is equal to the distribution of Xi conditionally to the only m previous
letters Xi−m , Xi−m+1, . . . , Xi−1. It simply means that the letters of the
sequence are dependent of each other but they only depend on the m
previous letters. Such a model, denoted by Mm, is thus defined by the
following transition probabilities:

π(a1a2 · · · am , b)

= P(Xi = b | Xi−m = a1, Xi−m+1 = a2, . . . , Xi−1 = am),

∀ai , b ∈ A
and an initial distribution for the first m letters X1X2 · · · Xm . Classically
the initial distribution is set to the stationary distribution µ of the Markov
chain so we have

µ(a1a2 · · · am) = P(X1 = a1, X2 = a2, . . . , Xm = am), ∀ai ∈ A.

Estimation of the parameters. To estimate the transition probabilities
given an observed sequence, it is classical to maximize the likelihood of
the observed sequence. By doing so, we get the following estimates:

π̂(a1a2 · · · am , b) = N obs(a1a2 · · · amb)
N obs(a1a2 · · · am + )

with N obs(a1a2 · · · am +) = ∑
b N obs(a1a2 · · · amb). Moreover, the usual

estimate of µ(a1a2 · · · am) is µ̂(a1a2 · · · am) = N obs(a1a2 · · · am)/(n −
m + 1).

It is not difficult to show that in a Markov chain of order m whose
parameters are set to the previous estimates, we have:

EN (a1a2 · · · amam+1) = (n − m)µ̂(a1a2 · · · am )̂π(a1a2 · · · am , am+1)

� N obs(a1a2 · · · amam+1);

in other words, the random sequences will have in average the same com-
position as the observed sequence in words of length m +1, and by recur-
sion in words of length m down to 1.
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Phased Markov chain for coding DNA sequences. In a phased Markov
chain of order m, say with three different phases and denoted by Mm_3,
we have three different transition probabilities from a1a2 · · · am to b
depending on the phase of the letter that will be set to b. Namely,
we have

P(Xi = b | Xi−m = a1, Xi−m+1 = a2, . . . , Xi−1 = am)

=


π1(a1a2 · · · am , b) if i%3 = 1,
π2(a1a2 · · · am , b) if i%3 = 2,
π3(a1a2 · · · am , b) if i%3 = 3.

The estimates are

π̂φ(a1a2 · · · am , b) = N obs(a1a2 · · · amb, φ)
N obs(a1a2 · · · am+, φ)

,

where N obs(w, φ) denotes the number of occurrences of w ending into
phase φ.

5.2. Estimated expected counts

The number of occurrences N (w) of an �-letter word w in the sequence
S = X1X2 · · · Xn can simply be defined by

N (w) =
n−�+1∑

i=1

Yi(w), (1)

where Yi(w) equals 1 if and only if an occurrence of w starts at posi-
tion i in the sequence and 0 otherwise. This leads to Em[N (w)] =∑n−�+1

i=1 Em[Yi(w)] where Em denotes the expectation under model Mm.
Note that Em[Yi(w)] = P(w occurs at position i) and thanks to the
Markov property, we have

µm(w) := P(w occurs at position i)

= µ(w1 · · · wm)π(w1 · · · wm , wm+1) × · · · × π(w�−m · · · w�−1, w�).

Therefore, we have Em[N (w)] = (n − � + 1)µm(w).
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If we now replace the model parameters by their estimates, we get the
following estimator for the expected count of w:

ÊmN (w) =
∏�−m

j=1 N (wj · · · wj+m−1wj+m)∏�−m
j=2 N (wj · · · wj+m−1 + )

. (2)

This is the expect quantity calculated by R’MES.

Generalization to phased models. Under model Mm_3, we have

Êm_3N (w, φ) =
∏�−m

j=1 N (wj · · · wj+m−1wj+m , φ − � + j + m)∏�−m
j=2 N (wj · · · wj+m−1+, φ − � + j + m)

and Êm_3N (w) = ∑3
φ=1 Êm_3N (w, φ).

Generalization to word families. We simply have

ÊmN (W) =
∑

w∈W
ÊmN (w).

5.3. Gaussian approximation

The count N (w) is a sum of (n −�+1) random Bernoulli variables Yi(w)
with mean µ(w). Since these Bernoulli variables are not independent, the
count does not follow a binomial distribution. By using a Central Limit
Theorem for Markov chains, the asymptotic normality of the count can
be established:

N (w) − Em[N (w)]√
Vm[N (w)]

D−→ N (0, 1) as n → +∞, (3)

where Vm denotes the variance under model Mm. However, if we replace
the expected count Em[N (w)] by its estimate ÊmN (w), the plug-in esti-
mator of the variance is no more the good normalizing factor to get an
asymptotic variance equal to 1.

Estimated variance. The score of exceptionality calculated by R’MES is
the following asymptotically Gaussian ratio (Prum et al., 1995; Reinert
et al., 2000):

um(w) := N (w) − Êm[N (w)]√
σ̂2

m(w)
D−→ N (0, 1),
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where

σ̂2
m(w) = Êm[N (w)] + 2

�−m−1∑
d=1

ε�−d(w)Êm[N (w1 · · · wdw1 · · · w�)]

+ {Êm[N (w)]}2

 ∑
a1,...,am

[Nw(a1 · · · am+)]2
N (a1 · · · am)

−
∑

a1,...,am+1

[Nw(a1 · · · am+1)]2
N (a1 · · · am+1)

+ 1 − 2Nw(w1 · · · wm+)
N (w1 · · · wm)

 .

(4)

In this expression, Nw means the count inside the word w, ε�−d(w) is equal
to 1 if and only if two occurrences of w can overlap on �− d letters and in
this case w1 · · · wd w1 · · · w� is the resulting composed word (ε�−d(w) = 0
otherwise). The above variable σ̂2

m(w) corresponds to the quantity sigma2
computed by R’MES.

In the maximal model, namely if m = � − 2, the formula of the
estimated variance reduces to:

σ̂2
�−2(w) = Ê�−2[N (w)]

[N (w2 · · · w�−1)]2 [N (w2 · · · w�−1) − N (w2 · · · w�)]

× [N (w2 · · · w�−1) − N (w1 · · · w�−1)]. (5)

p-value. To get the significance of the score um(w), one just has to com-
pute the probability:

P(N (0, 1) ≥ um(w)).

High positive values of the score will correspond to exceptionally frequent
words (p-value close to 0), whereas negative scores with high absolute
values will correspond to exceptionally rare words (P(N (0, 1) ≤ um(w))
close to 0).

Generalization to phased models. The score calculated by R’MES for
the word w in phase φ is

um_3(w, φ) := N (w, φ) − Êm_3[N (w, φ)]√
σ̂2

m_3(w, φ)

D−→ N (0, 1),
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where σ̂2
m_3(w, φ) is derived from σ̂2

m(w) by adding the relevant phases.
As an example, here is the formula in the maximal model with m = � − 2:

σ̂2
m_3(w, φ) = Êm_3[N (w, φ)]

[N (w2 · · · w�−1, φ − 1)]2 [N (w2 · · · w�−1, φ − 1)

− N (w2 · · · w�, φ)] × [N (w2 · · · w�−1, φ − 1)

− N (w1 · · · w�−1, φ − 1)]. (6)

Generalization to word families. The asymptotically Gaussian score for
the word family W is

um(W) := N (W) − Êm[N (W)]√
σ̂2

m(W)
,

where the estimated variance is the sum of the estimated covariances
between all pairs of words in W :

σ̂2
m(W) =

∑
w,w′∈W

σ̂2
m(w, w′).

If w = w′, then σ̂2
m(w, w) = σ̂2

m(w), and otherwise we have:

σ̂2
m(w, w′) =

�−m−1∑
d=1

ε�−d(w, w′)Êm[N (w1 · · · wd w′
1 · · · w′

�)]

+
�−m−1∑

d=1

ε�−d(w′, w)Êm[N (w′
1 · · · w′

dw1 · · · w�)]

+ Êm[N (w)]Êm[N (w′)]

×
 ∑

a1,...,am

Nw(a1 · · · am+)Nw′(a1 · · · am+)
N (a1 · · · am)

−
∑

a1,...,am+1

Nw(a1 · · · am+1)Nw′(a1 · · · am+1)
N (a1 · · · am+1)

+ 1I{w1 · · · wm = w′
1 · · · w′

m} − Nw(w′
1 · · · w′

m+)
N (w′

1 · · · w′
m)

− Nw′(w1 · · · wm+)
N (w1 · · · wm)

]
,
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where ε�−d(w, w′) is equal to 1 if and only if an occurrence of w can be
overlapped on � − d letters by a later occurrence of w′ (ε�−d(w, w′) = 0
otherwise).

Exceptionality score for the skew. The skew of w is defined by B(w) :=
N (w)/N (w) where w is the reverse complement (or conjugate) of the
word w, for instance gattcg is the conjugate of cgaatc. The p-value to
measure the significance of the observed skew Bobs(w) is

P(B(w) ≥ Bobs(w)) = P( N (w) − Bobs(w)N (w)︸ ︷︷ ︸
T (w)

≥ 0)

= P

(
T (w) − E[T (w)]√

V(T (w))
≥ − E[T (w)]√

V(T (w))

)
.

Thanks to the Gaussian approximation of word counts, we can use that
T (w) is asymptotically Gaussian with

E[T (w)] = E[N (w)] − Bobs(w)E[N (w)]
V(T (w)) = V[N (w)] − 2Bobs(w)Cov(N (w), N (w))

+ [Bobs(w)]2V[N (w)]
and that T (w)−E[T (w)]√

V(T (w))
is asymptotically distributed like a N (0, 1). There-

fore, we can derive the following score

−Êm[N (w)] + Bobs(w)Êm[N (w)]√
σ̂2

m(w) − 2Bobs(w)̂σ2
m(w, w) + [Bobs(w)]2.̂σ2

m(w)
.

5.4. Clumping occurrences

This section will be crucial for the compound Poisson approximation of
the count. It relies on the fact that occurrences of a given word may overlap
in a sequence and that occurrences will occur in clumps. A clump of w is a
maximal set of overlapping occurrences of w in a sequence. By definition,
clumps do not overlap each other and the number of occurrences of w
in a clump of w is called the size of the clump. Actually, only periodic (or
overlapping) words will tend to occur in clumps.

Periods of a word. An integer p ∈ {1, . . . , � − 1} is said to be a period of
w if and only if two occurrences of w can start at a distance p apart; we
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denote by P(w) the set of periods of the word w. In other words,

p ∈ P(w) ⇐⇒ ε�−p(w) = 1

⇐⇒ wj = wj+p for all j ∈ {1, . . . , � − p}.
For instance P(aataataa) = {3, 6, 7}. A nonoverlapping word is a word
which has no period, for instance, P(aatcc) = ∅.

Periods that are not a strict multiple of the smallest period are said to
be principal since they will be more important, as we will see later. P ′(w)
denotes the set of the principal periods of w, for instance P ′(aataataa) =
{3, 7}.

5.5. Compound Poisson approximation

The asymptotic normality of the count distribution requires that the
expected count tends to infinity with the length of the sequence. In prac-
tice (fixed sequence length), it means that the expected count should be
large enough so that the limiting Gaussian distribution is not truncated at
zero. When the expected count is too small, it means that the occurrences
are rare and they can be considered like a compound Poisson process along
the sequence. Indeed, the clumps are asymptotically Poisson distributed
and the compound feature is due to the clump size (Schbath, 1995). The
key formulas are the following:

N (w) =
Ñ (w)∑
c=1

Kc(w) =
∞∑

k=1

kÑk(w),

where Ñ (w) denotes the number of clumps of w, Ñk(w) denotes the
number of clumps of sike k and Kc(w) represents the size of the c-th
clump.

Limiting Poisson distribution. It has been shown that if w is nonover-
lapping or has no period less or equal to � − m, then the count N (w) can
be approximated by a Poisson random variable with mean Em[N (w)]. In
that case, the p-value P(N (w) ≥ N obs(w)) is just the upper tail of the
Poisson distribution P(Êm[N (w)]).
Limiting compound Poisson distribution. When w has periods less or
equal to � − m, then the number of clumps Ñ (w) can be approximated
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by a Poisson random variable with mean (1 − am(w))Em[N (w)] where

am(w) =
∑

p∈P ′(w), p≤�−m

p∏
j=1

π(wj · · · wj+m−1, wj+m) (7)

and the clump size is asymptotically geometrically distributed:

P(Kc(w) = k) = (1 − am(w))[am(w)]k−1.

The quantity am(w) can be interpreted like the overlapping probability
of w. A compound Poisson distribution is the distribution of

∑Z
c=1 Kc

where Z is a Poisson random variable and the Kc ’s are independent and
identically distributed. In the particular case where the Kc ’s follow the
geometric distribution with parameter a, the associated compound Pois-
son distribution is called Geometric-Poisson or Pólya-Aeppli distribution
(Johnson et al., 1992), and the parameters are (EZ , a).

The p-value P(N (w) ≥ N obs(w)) is then the upper tail of the
Geometric-Poisson distribution with parameters ((1 − am(w))Em
[N (w)], am). The algorithm from Nuel (2008) is used to compute such
upper tail. Both quantities am and (1 − am(w))Em[N (w)] are calculated
by R’MES under the names A and expect_p in the output tables.

Generalization to word families. When studying the count of a word
family W , one has to consider possible overlaps between any two words
from the family and to work with the clumps composed of overlapping
occurrences of W. It results from Roquain and Schbath (2007) that
N (W) can be approximated by a general compound Poisson distribu-
tion whose parameters are derived from an overlapping probability matrix
(am(w, w′))w,w′∈W . The p-value is obtained by summing up all the point
probabilities of a compound Poisson distribution calculated thanks to the
algorithm from Barbour et al. (1992b).
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Chapter 3

An Intricate Mosaic of Genomic Patterns
at Mid-range Scale

Alexei Fedorov and Larisa Fedorova∗

1. Introduction

Genomic patterns on short-range scales represent various “words” com-
posed from nucleotide “letters.” Each of these words occurs many times
within DNA sequences. The longest words, also known as “pyknons,”
are up to 17-nucleotide-long sequences which are over-abundant in the
exons and introns of humans and other mammals (Rigoutsos et al., 2006;
Tsirigos and Rigoutsos, 2008). The vast majority of sequences only a little
bit longer than pyknons are unique even for the large genomes of animals
and plants. For example, the complete theoretical set of 20-nucleotide-
long sequences is comprised of 420 different words of length 20, which
is just over one trillion. More than 99% of these 20-mer oligonucleotides
never occur in the entire human genome (∼3×109 bp). Therefore, biolo-
gists frequently use 20-mer oligonucleotides as PCR primers or hybridiza-
tion probes for experimental characterization of particular genomic seg-
ments. The genomic arrangement of short sequences (<20 bp) is covered
in other chapters of this book. Here we consider genomic patterns longer
than 30 and up to several thousands of nucleotides to be called mid-range
scale. At this mid-range, most of the sequences are unique, i.e. occur only
once in the entire genome, hence, it is more appropriate to characterize or
group them not by their exact sequence of nucleotides but rather by their
overall nucleotide composition, such as (G+C)-richness, purine-richness,
etc. We also distinguish mid-range genomic scales from the long-range one

∗Department of Medicine, The University of Toledo, Health Science Campus,
Ohio, USA
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represented by genomic isochores reviewed elsewhere (Bernardi, 2007).
Traditionally, (G+C)-rich and (G+C)-poor isochores are considered to
be from 100 kb and longer. Recently, scientists have started to describe
ultra-short isochores in the range of tens of thousands of nucleotides. In
order not to interfere with isochores, we limit the length of mid-range
patterns by ten thousand bases. The main focus of this chapter is to show
that at mid-range scales, genomes of complex eukaryotes consist of a num-
ber of different patterns and are associated with unusual DNA conforma-
tions. Some of these patterns are scarcely investigated and still waiting for
thorough exploration and recognition.

2. Results and Discussion

2.1. DNA repeats — important elements at genomic
mid-range scale

All eukaryotic genomes contain several extra-large “words” recurring
many times — so called DNA repetitive elements, the size of which are
generally within mid-range scale. DNA repeats are classified into three
major classes based on the molecular mechanisms of their origin and prop-
agation: transposons, retrotransposons, and tandemly organized repeats.
There is a large variety of transposons and retrotransposons that can be
specific for narrow taxons (like the Alu-elements within primates), or that
have a much broader representation (like the L1-repeats found in all verte-
brates). We will not consider these DNA repetitive elements, but only refer
a reader to several excellent, detailed reviews on their genomic organiza-
tion and evolution (Jurka et al., 2007; Eickbush and Jamburuthugoda,
2008; Richard et al., 2008). Here we concentrate only on the simple
tandem repeats that exist in almost every eukaryotic organism. Our exam-
ples well illustrate the common trend for mid-range scale sequence pat-
terns to associate with DNA conformation abnormalities or alternative 3D
structures.

We begin the examination of a simple tandem repeat from a well-
characterized type composed of a reiterating pentamer sequence AATGG.
Our computer analysis of completely sequenced mammalian genomes
demonstrates that there were 162 different loci inside the euchromatic
genomic regions of humans, 24 in mouse, 14 in rat, 21 in cow, and 58
in dog that contain (AATGG)N perfect repeats, where N ≥ 4. These
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sequences are proportionally distributed between intergenic regions and
introns and, often, there are up to several dozens of tandem AATGG
pentamers in one locus. The location of these repeats inside genes is not
evolutionarily conserved, since we have not detected their presence in
the same intron of the named species. In addition, the same tandemly
repeated pentamer AATGG is one of the most evolutionarily conserved
parts of a centromere, where it exists in thousands of copies and serves
as an attachment point for the two sister chromosomes during mitosis
(Grady et al., 1992; Lee et al., 1997). Interestingly, under physiological
conditions, this DNA-repeat comprised of at least four pentamers could
exist not only as B-form Watson–Crick duplex but also in an unusual
form with highly asymmetrical conformations of AATGG-strand and its
complementary CCATT-strand (Jaishree and Wang, 1994; Catasti et al.,
1999). Its transition from Watson–Crick duplex to single-stranded struc-
tures is facilitated by acidic pH conditions. Figure 1 demonstrates the
NMR solution structure of the anti-parallel stranded non-B-form DNA
duplex 5′-TGGAATGGAA:TGGAATGGAA-3′ created by two repetitive
pentamers published by Chou et al. (1994). This particular structure is
also known as “interdigitated” or zipper-like stacking (Chou et al., 2003).
The scheme of the unusual 3D structure of AATGG repeats is illustrated in
Figs. 8–10 of Catasti and co-authors (Catasti et al., 1999) while a slightly
different variant of spatial organization of the same repeat is illustrated
in Fig. 1 of Jaishree and Wang (1994). These two papers demonstrate
that the AATGG strand of the repeat forms stable doubly folded hair-
pins with Watson–Crick A-T and non-Watson–Crick A-G and G-G base
pairs in the stems. The stability of these stems is reached partially due to
stacking of the three purines shown by arrows in Fig. 1. Moreover, the
same authors demonstrated that a greater number of the AATGG pen-
tamers might form higher-order structure in which doubly folded hair-
pins are compactly organized in a helical array of (AATGG)4 units. At the
same time, the complementary strand formed by CCATT pentamers is
unstable under physiological conditions and likely represents loose struc-
tures. Under acidic conditions, this CCATT tandem repeat might also
form unusual structures known as i-motif with intercalated cytosine bases
shown in Fig. 2 (Catasti et al., 1999; Nonin-Lecomte and Leroy, 2001).

Other tandemly organized simple repeats could also have conforma-
tions far distinct from Watson–Crick double helices. One of the promi-
nent noncanonical structures, known as G-quadruplex, G-quartet, or
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Fig. 1. Cartoon of 3D-structure of anti-parallel DNA duplex 5′TGGAATGGAA:
TGGAATGGAA3′ formed by two copies of TGGAA pentamer repeat. This picture is
a snapshot of the structure with the identifier 103D obtained from the Protein Data
Bank. The structure was resolved via solution NMR approach by Chow and co-authors
(Chou et al., 1994). Four arrows point to unpaired guanosine residues stacked between
Hoogsteen G-A pairs.

G4, is formed by guanine-rich strands of the repeats. Quadruplexes are
arranged in four-stranded structures with stands connected to each other
via Hoogsteen hydrogen bonding. G-quadruplex has been well charac-
terized in human telomeric and related sequences with the core repeti-
tive element TTAGGGG and also within promoters and 5’-untranslated
regions of human genes whose sequences have a loose consensus of
G3−5NL1G3−5NL2G3−5NL3G3−5, where NL1, NL2, and NL3 are loops
with the length from 1 to 7 nucleotides and variable nucleotide com-
position (Neidle, 2009). There are several alternative conformations of
G-quadruplexes due to the organization of the strands relative to each
other. Among them are anti-parallel, parallel, and parallel/anti-parallel
hybrids (Oganesian and Bryan, 2007; Huppert, 2008). One example of a
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Fig. 2. Cartoon of 3D-structure of a C-rich strand fragment of the human
centromeric satellite III d(CCATTCCATTCCTTTCC) that forms intramolecurlar
i-motif structure with C.C(+) pairs from parallel strands intercalated head-to-tail. This
picture is a snapshot of the structure with the identifier 1G22 obtained from the Pro-
tein Data Bank. The structure was resolved via solution NMR approach by Nonin-
Lecomte and Leroy (2001) for uridine derivative methylated on the first cytidine
base, d(5mCCATTCCAUTCCUTTCC), whose proton spectrum is better resolved.
Modified residue 5-METHYL-2′-DEOXYCYTIDINE is demonstrated with white,
blue, red, and grey spheres.

parallel-stranded G4 NMR structure is illustrated in Fig. 3. G-quadruplex
structure has been demonstrated for several G-rich short tandem repeats.
Among them are GGA and CGG triplet repeats ((Matsugami et al.,
2003; Nakagama et al., 2006) and the GGCAG mouse minisatellite Pc-1
(Katahira et al., 1999). Four elements of GGA-repeat can form intramolec-
ular parallel quadruplex, while the neighboring quadruplexes can form a
dimer stabilized through the stacking interaction between the heptads of
the two quadruplexes (Matsugami et al., 2003). While G-quadruplexes
are formed by a guanine-rich strand, their complementary strand being
C-rich may also form a completely different four-stranded structure known
as i-motif or intercalated cytosine tetraplex. This structure is only stable
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Fig. 3. Cartoon of 3D-structure of a parallel-stranded G-quadruplex DNA formed
by the Tetrahymena telomeric sequence d(T-T-G-G-G-G-T). This picture is a snapshot
of the structure with the identifier 139D obtained from the Protein Data Bank. The
structure was resolved by combined NMR-computational approach by (Wang and
Patel, 1993).

under acidic conditions (Huppert, 2008). Intercalated cytosines have been
found in several unusual conformations, one of which is shown in Fig. 2.

There are up to 10 different non-B-from DNA conformations
associated with the simple repeats listed and well illustrated by Wells
(Wells, 2007). Among them are slipped structure formed by CNG repeats;
triplex DNA formed by purine (R)-rich or pyrimidine (Y)-rich mirror
repeats (described below in details); sticky DNA formed by (G+A)-rich
tracts like (GAA)N ; and DNA unwinding elements formed by (A+T)-rich
regions. In addition, Wells describes cruciforms created by inverted
repeats; and left-handed Z-DNA formed by alternated R/Y bases in
(RY)N repeats (Wells, 2007). There is evidence that CGG triplet repeats
could form a non-B-type higher order structure (Nakagama et al., 2006).
This particular CGG repeat is widespread in animal genomes and it
expands inside the first exon of the FMR1 gene that causes Fragile X
syndrome (Mandel, 1993; Crawford et al., 2001). NMR and X-ray crys-
tallography studies of DNA oligonucleotides strongly suggest that (GA)N
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and (A)N repeats could form parallel-stranded homeoduplexes (Kypr et al.,
2007; Chakraborty et al., 2009). However it is questionable whether such
structures might exist in vivo.

Tandem repeats with longer units could also form non-B structures.
For instance, the (ACAGGGGTGTGGGG)N insulin minisatellite has a
complex loop-folding conformation (Catasti et al., 1999). The listed
non-B DNA conformations likely do not exist permanently, but only
under specific conditions. Their formation can be facilitated by negative
supercoiling during transcription or by binding with transcription factors
(Mirkin, 2008). The very specific pattern of mutagenesis within simple
repeats associated with particular bases and particular sites strongly sug-
gests the existence of non-B structures in vivo (Wells, 2007). Also, several
non-B structures have been confirmed in various experiments including
in vivo studies (Wells, 2007; Fernando et al., 2009; Kypr et al., 2009).
Currently, more than 70 human genetic disorders have been associated
with changes in simple repeats (Lupski, 1998; Wells, 2007).

In summary, simple repeats are abundant in the genomes of diverse
animals and plants. In rodents, 2.4% of the euchromatic part of their
genome is represented by simple repeats, which is two times bigger than
the length of all protein-coding sequences (Gibbs et al., 2004). Addi-
tionally, tandemly organized short sequences are abundant and are key
components of telomeres and centromeric regions. Many simple repeats,
whose total length reaches 20 bases and above, under certain condi-
tions can exist in a variety of non-B DNA conformations in vivo asso-
ciated with specific genomic functions. Computationally, simple repeats
can be detected by the RepeatMasker program (Smit AFA). However,
the default parameters of this program could skip recognition of simple
repeat loci whose copy numbers are low or where the sequences have
accumulated mutations (fuzzy repeats). In this case the best choice is
the stand-alone Tandem Repeat Finder with advanced search parameters
(Benson, 1999).

2.2. Genomic Mid-Range Inhomogeneity (MRI):
Nucleotide compositional extremes
and sequence nonrandomness

In thousands of genomic regions, the composition of A, T, C, or G con-
tent or different combinations of these bases exist at extremes far different
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from the average base composition. We call such compositional extremes
genomic mid-range inhomogeneity or MRI if they stretch at least 30 base
pairs but less than 10 000 base pairs. To characterize genomic MRI pat-
terns, a public computational resource (Genomic MRI) has been created
that allows detecting sequence regions with any type of extreme com-
position (Bechtel et al., 2008). Using this resource it was demonstrated
that various MRI regions occupy up to a quarter of the human genome
and their existence is maintained via strong fixation bias (Prakash et al.,
2009).

2.2.1. Genomic MRI toolkit

For examining mid-range sequence patterns, Genomic MRI programs do
not characterize particular “words” but only the overall compositional
content of particular base(s) that we refer to as X (X could be a sin-
gle nucleotide A, G, C, or T or any of their combinations like A+C,
or G+T+C, etc.). Genomic MRI allows studying the distribution of
X-rich regions in any sequence of interest. These X-rich MRI regions are
highly over-represented in mammalian genomes for all kinds of X-contexts.
For instance, in the human genome, (G+C)-rich sequences with lengths
from 100 to 200 nucleotides are 20 times over-represented; (A+T)-rich
sequences in the same length range are about 12 times over-represented;
(A+G)-rich and (T+C)-rich sequences 10 times; and (G+T)-rich and
(A+C)-rich sequences up to six times over-represented (Bechtel et al.,
2008). In order to measure the abundance of X-rich regions in the
sequences under analysis, Genomic MRI compares their presence inside a
specifically generated random sequence that has the same oligonucleotide
distribution as the real one. This evaluation is achieved by the follow-
ing computational steps. Firstly, the short-range inhomogeneity (SRI)
of a given sequence is analyzed by the SRI-analyzer program from the
Genomic MRI package to create an oligonucleotide frequency table for
each possible 1–9 nucleotide long “word.” Then, a second program,
SRI-generator, creates a random sequence with a short-range inhomo-
geneity that approximates the oligonucleotide frequency table of the nat-
ural sequence. This random sequence is used further for comparison
with the natural one. Finally, the third program, MRI-analyzer, scans
a sequence under analysis and the random sequence with a window of
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a specified size and checks whether the nucleotide composition of the
sequence in the current window is X-rich or X-poor for a particular chosen
combination of nucleotides (X), e.g. A, T, C, G, G+C, A+G, G+T, etc.
A window is rich for the X-content if its X-composition is above a user-
specified threshold-X1, while a window is X-poor if it is below another
user-specified threshold-X2. (Note that X-poor regions can be referred
to as non-X-rich ones, e.g. (G+C)-poor are (A+T)-rich). An example
of MRI analyzer graphical output is shown in Fig. 4 that illustrates the

Fig. 4. The graphical output of the MRI-analyzer program for the first intron
of the Dystrophin gene (marked as “intron”) and also for the SRI-generated
random sequence based on the tetramer oligonucleotide frequency table of
the intron (marked as “random”). The entire sequence of the 319 kb intron
and the random sequence is displayed on the x-axis. Dark gray bars on each
top row represent positions of content-rich MRI regions on the sequence.
Light gray bars on the bottom row represent content-poor MRI regions. The
y-axis contains upper and lower thresholds for the given content type. (a)
Genomic MRI analysis of (A+G)-rich and (A+G)-poor (or (T+C)-rich) regions;
(b) Genomic MRI analysis of (G+T)-rich and (G+T)-poor (or (C+A)-rich)
regions.
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MRI-patterns for an extra-large human intron of the dystrophin gene from
chromosome X.

Two scales of MRI regions should be considered. First, regions from
30 to 1000 bp, whose properties have been investigated in detail and for
which several periodicities have been reported (Trifonov, 1991; Herzel
et al., 1999; Ioshikhes et al., 1999). Second, larger regions from 1 to
10 kb, which are one of the least studied areas in genomic composition
and where as yet unknown biological properties may be found. Such sub-
divisions are important for the proper choice of parameters for the MRI
thresholds. For instance, for a 100-nucleotide-long window, there are a
vast number of regions in mammals where (G+C) composition is 85% or
higher. However, for studying regions with a window-size of around 5 kb,
the upper threshold for (G+C) content should not be more than 65% to
find the areas satisfying the criterion.

Extended regions with compositional extremes satisfying (G+C)- or
(A+T)-richness are abundant in vertebrates and can be as long as several
million bases (known as genomic isochores). Other composition extremes,
such as R-, Y-, (G+T)-, (A+C)-richness, that extend over long chromo-
somal regions are not as abundant as (C+G)- and (A+T)-rich genomic
areas. Nonetheless, for more than 2100 human chromosomal regions with
lengths exceeding 10 kb, we have detected frequencies of more than 60%
for (G+A)-, (T+C)-, (A+C)-, or (G+T)-nucleotides. As for extremes,
our computations have shown that there are 22 regions in the human
genome where R or Y composition exceeds 70% within a sequence longer
than 10 kb.

Recently, by studying the distribution of more than four million SNPs
in the human genome and by taking into account their frequencies in
the population, the influence of mutations on different MRI regions has
been examined (Prakash et al., 2009). The authors demonstrated that
MRI regions have comparable levels of de novo mutations to the control
genomic sequences with average base composition. De novo substitutions
rapidly erode MRI regions, bringing their nucleotide composition toward
genome-average levels. However, those substitutions that favor the main-
tenance of MRI properties have a higher chance to spread through the
entire population. All in all, the observed strong fixation bias for muta-
tions helps to preserve MRI regions during evolution, indicating their
involvement in genomic operations.
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2.2.2. (G+C)-rich and (A+T)-rich MRI regions are associated
with several unusual DNA structures

We start considering mid-range genomic compositional patterns from the
most studied case: (G+C)-rich and (A+T)-rich regions. These (G+C)-rich
and (A+T)-rich regions of various lengths from thirty to several thousand
nucleotides are 4–20 times over-represented in the mammalian genomes
compared to random expectation (Bechtel, 2008; Bechtel et al., 2008).
Among (G+C)-rich genomic segments, CpG-islands have drawn the most
public attention, due to their functional properties and involvement in
gene expression regulation (Hackenberg et al., 2006). CpG-islands are
found in nearly 60% of human genes including almost all of the house-
keeping ones (Hackenberg et al., 2006). According to two different def-
initions of these islands, their length must be at least 200 or 500 bp
long; (G+C) content more than 50 or 55%; and the number of CpG
dinucleotides in the islands should exceed more than twice their occur-
rence in other genomic regions (Gardiner-Garden and Frommer, 1987;
Takai and Jones, 2003; respectively). CpG dinucleotides are important
sites for cytosine methylation in all vertebrates and some invertebrates
and plants. However, inside CpG-islands CpG dinucleotides are predomi-
nantly nonmethylated (Suzuki and Bird, 2008). It has been shown recently
that CpG dinucleotide without methylation exhibit structural abnormali-
ties in the DNA helix. Particularly, they are one of the most frequent sites
for DNA backbone cleavage by hydroxyl radicals (Greenbaum, Pang, and
Tullius, 2007; Greenbaum, Parker, and Tullius, 2007) and during the son-
ication of double-stranded DNA (Grokhovsky et al., 2008). The crucial
involvement of cytosine methylation in the regulation of gene expres-
sion is well described in a number of reviews including some recent ones
(Prokhortchouk and Defossez, 2008; Suzuki and Bird, 2008; Illingworth
and Bird, 2009). Thus, here we concentrate on the other physicochemical
properties of (G+C)-rich and (A+T)-rich regions.

It is well known that A-form of DNA helix exists in high salt concentra-
tions and in ethanol-containing solutions. However, (G+C)-rich regions
may be present in A-form DNA even in aqueous solutions (Warne and
deHaseth, 1993; Stefl et al., 2001; Kypr et al., 2009). A special form of
DNA which is an intermediate between A- and B-forms, has been char-
acterized in (G+C)-rich sequences with methylated cytosines (Vargason
et al., 2000). In addition, short (CpG)n repeats could adopt Z-DNA as
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recently reviewed by P.S. Ho (Ho, 2009). This Z-DNA is proposed to
serve as transcriptional co-activator (Liu et al., 2001).

(A+T)-rich regions, on the other hand, are also associated with special
DNA conformations. Some of these sequences with specific distributions
of A and T bases form an unusual structure known as the DNA unwind-
ing element (Kowalski et al., 1988). These elements are often associated
with the origins of replication in eukaryotes and prokaryotes (Umek et al.,
1989). There are several (A+T)-rich simple repeats widespread in eukary-
otes. Among them, (AT)n is one of the most common in animals. X-ray
and NMR studies of the DNA oligomer d(ATATAT) have shown that in
addition to B-DNA, it could form an anti-parallel double helical duplex
in which the base pairing is of the Hoogsteen type (Abrescia et al., 2004).
The adenines in this duplex are flipped over making the minor groove
narrow and hydrophobic. This structure is very similar to the standard
B-form helix with about 10 base pairs per turn. Theoretical analysis has
demonstrated that energies of the Hoogsteen form and B-form of DNA
are practically identical (Cubero et al., 2003). Most recently, Chakraborty
and co-authors demonstrated that poly-dA oligonucleotides (dA15) under
acidic pH conditions could allow the formation of a double-helical parallel-
stranded duplex held together by reversed Hoogsteen type AH+-H+A
base pairs (Chakraborty et al., 2009).

(A+T)-rich regions presumably have several important cellular func-
tions. First, the most indicative compositional characteristic of scaffold/
matrix-attached regions is that they are (A+T)-rich (Liebich et al., 2002).
Second, centromere DNA of diverse animals, plants and fungi always con-
tain (A+T)-rich regions (Choo, 1997; Abrescia et al., 2004).

2.2.3. R-rich/Y-rich MRI regions are associated
with H-DNA triplex

All combinations of nucleotide pairs except (G+C) and (A+T) have strand
asymmetry. For example, if one strand is enriched by purines (R), the
complementary strand is enriched by pyrimidines (Y). Therefore, R- and
Y-rich sequences and also (T+G)- and (A+C)-rich ones have physically the
same loci, yet representing complementary strands. From here on we will
consider them together and refer to them as R/Y-rich and (T+G/A+C)-
rich, respectively.
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Since 1957, it has been shown that complementary DNA strands,
one of which is R-rich and another Y-rich, can form three-stranded heli-
cal structures or triplexes (Felsenfeld and Rich, 1957). Intramolecular
triplexes, known also as H-DNA, materialize under certain conditions,
like supercoiling, when half of the DNA duplex may dissociate into sin-
gle strands and one of the stand-alone strands can interact via Hoogsteen
base pairing with the remaining Watson–Crick DNA duplex along its major
groove forming a triplex structure. The remaining stand-alone strand stays
unpaired. An example of a DNA triplex is shown in Fig. 5. There are
four kinds of H-DNA depending on strand type and orientation (Jain
et al., 2008). One type of H-DNA forms under acidic conditions when
the stand-alone Y-rich strand interacts with the R-rich strand of the remain-
ing duplex. Particularly, thymines of the stand-alone strand interact with

Fig. 5. Cartoon of 3D-structure of a purine.purine.pyrimidine DNA triplex contain-
ing G.GC and T.AT triples. This picture is a snapshot of the structure with the identifier
134D obtained from the Protein Data Bank. The structure was resolved using a com-
bined NMR and molecular dynamics approach by Radhakrishnan and Patel (1993).
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adenosines of the A-T Watson–Crick pairs of the duplex via Hoogsteen
hydrogen bonding, while cytosines of the stand-alone strand interact with
guanines of G-C Watson–Crick pairs. Due to this base match requirement
for the assembly of this kind of triplex, the sequences of Y-rich stand-alone
strand and the Y-rich strand in the duplex should have sequence mirror
symmetry. (Here is an example of two sequences with mirror symmetry:
5′-TAGTTCC-3′ and 5′-CCTTGAT-3′.) In many R/Y-rich regions of
the genomes, such mirror symmetry has been observed. For example,
a 2.5 kb R-rich sequence of the 21st intron of the human PKD1 gene
has 23 mirror repeats that form H-DNA (Van Raay et al., 1996; Blaszak
et al., 1999). Another kind of intramolecular triplex, can be formed at
neutral pH and requires bivalent cations for stability. It is formed by the
interaction of R-rich stand-alone strand with the remaining duplex via
Hoogsteen bonding. It does not require strong mirror symmetry within
its sequences, since the adenines of the stand-alone R-rich strand could
interact with the A-T pair of the duplex or with the G-C pair (Malkov
et al., 1993).

There are several documented functions of H-DNA. It is well estab-
lished that H-DNA could exist in vivo under certain conditions. Vari-
ous experimental methods for the characterization of H-DNA have been
reviewed recently (Jain et al., 2008; Wang, Zhao, and Vasquez 2009).
Single stranded DNA not participating in the triplex is accessible to
S1-nuclease cleavage. Eukaryotic genomes contain many S1-nuclease sen-
sitive sites within runs of homo-purine sequences. These segments of
single-stranded DNA are frequently involved in the recombination of
homologous DNA and thus are sites for genetic instability. Different
schemes of recombination involving H-DNA have been described by
Jain and others (Jain et al., 2008). Bacolla with co-authors characterized
nearly 3000 homo-purine tracks in the human genome longer than 100
nucleotides (Bacolla et al., 2006). They supported evidence for these tracks
in promoting recombination and association with higher rates of muta-
tions. In addition, stable H-DNA structures are able to block transcrip-
tion and replication. Jain and co-authors surveyed the evidence for how
H-DNA influences the activity of DNA and RNA polymerases. Finally,
Goni and others (Goni et al., 2006) performed a large-scale bioinfor-
matic analysis of the distribution of short R-rich sequences in the human
genome. They demonstrated that short R-rich sequences are several times
more abundant in the downstream promoter regions compared to other
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regions and to random expectation models. These short R-rich sequences
hold evolutionary conservation between human and mouse yet; likely they
are not direct targets for transcription factors. Goni and co-authors have
suggested that these sequences act as pacing fragments in promoter regions
and help in the correct positioning of transcription factors.

2.2.4. DNA and RNA properties of GT-rich/AC-rich
MRI regions

Recall that the complementary strands of (G+T)-rich regions are naturally
(A+C)-rich regions. They co-exist with each other and we consider them
interchangeably with respect to their description in the literature. Accord-
ing to nucleic acid nomenclature, G or T nucleotides are also known as
Keto or K while A or C are known as aMino or M (Moss). Thus, some-
times these regions are referred to as K.M-tracks or motifs (Yagil, 2004).
Bechtel and co-authors demonstrated that (G+T)-regions are about five
times more abundant in the mammalian genomes compared to random
expectation (Bechtel et al., 2008). Moreover, these regions practically do
not intersect with interspersed DNA repeats at all. In 2004 Yagil demon-
strated that K.M motifs are significantly over-represented in the genomes
of diverse animals, plants, and fungi. Specifically, K.M motifs are pre-
dominant in the D. melanogaster genome, where they outnumber other
motifs such as R/Y-rich motifs (Yagil, 2004). Despite their abundance,
(G+T)-rich motifs are much less investigated than other regions with
extremes in base compositions. Possible functions that could be associated
to (G+T)-rich regions are the following. Firstly, (CA)N simple repeats are
one of the most profuse tandem repeats in mammalian genomes (Water-
ston et al., 2002). They also should be considered as alternating R/Y
sequence, and, due to this property, associated with a Z-DNA conforma-
tion (Vogt et al., 1988), which is considered in the next section. Second,
C-rich regions, which could be a component of CA-rich regions, are capa-
ble of forming four-stranded intercalated molecules (Berger et al., 1996).
We mentioned such structures (i-motifs) above in the Simple Repeat sec-
tion and present an example of it in Fig. 2. Third, telomeres of various
eukaryotic species are represented by (G+T)-rich regions which form G-
quadruplexes (see above). Fourth, short (G+T)-rich regions could rep-
resent transcription factor binding sites such as for factor Sp1 (Wang
et al., 2009). Intriguingly, (G+T)-rich oligonucleotides possess antiviral
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activities. For example, T2(G4T2)3 sequences are virucidal against her-
pes simplex virus (Shogan et al., 2006). At the RNA level, (C+A)-rich
sequences within intronic segments could regulate alternative splicing by
being binding sites for the hnRNP L protein (Hui et al., 2005). The pres-
ence of (C+A)-rich sequences at the 3’-UTR of mRNA could regulate
gene expression at the level of translation (Hamilton et al., 2008). The dis-
tribution of (C+A)-rich sequences enriched by (CA)N imperfect repeats is
highly skewed towards telomeres, and minisatellites can usually be found
in the vicinity as well (Giraudeau et al., 1999). Despite the listed prop-
erties associated with (G+T)-rich regions, they seem significantly under-
investigated and may yet reveal unknown important functional properties
in the near future.

2.2.5. Alternated R/Y MRI regions adopt Z-DNA conformation

Left-handed anti-parallel Z-DNA double helix conformation has been
first characterized in 1979 by Wang and co-authors for (GC)3 repeats
(Wang et al., 1979). Detailed Z-DNA structure has been considered else-
where (Rich and Zhang, 2003; Ho, 2009). This particular conformation
is characterized by rotation of R bases that adopt syn form and stack over
the deoxyribose ring, while Y bases do not adopt unfavorable syn form
(Ho, 2009). Thus, Z-DNA, which is characterized by alternating pat-
tern of anti-syn conformations, is formed by alternating R/Y sequences
(Johnston, 1992). The latest version of the Genomic MRI package has a
new feature allowing the detection of excesses and shortages of alternating
bases including R/Y patterns. It reveals that in mammalian genomes there
is more than 40 times the over-abundance of alternating R/Y stretching
over 50–100 bp genomic segments, where RY plus YR comprise more
than 80% of all dinucleotides. A considerable portion of these alternat-
ing R/Y patterns are represented by short (GC)n , (AC)n , (AT)n, and
(TG)n repeats that can alternate with each other and be accompanied
by alternating R/Y bases without strong periodic sequence pattern. For
example, here is a sequence of a 50 bp segment from the third intron of
human heparanase-2 gene highly enriched with alternated R and Y bases:
5′AAATGGATGTGTGTATATATATGAAGTCGATACACACACATATA
CACATA3′. We showed that such alternating R/Y sequences are plentiful
throughout the mammalian genomes either inside introns or within
intergenic regions.
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In 1986 Ho and others developed a ZHUNT program for detec-
tion of genomic sequences with high propensity to form Z-DNA (Ho
et al., 1986). They found a high concentration of these sequences near the
transcription start sites (Schroth et al., 1992; Rich and Zhang, 2003). Most
recently, human genomic Z-DNA segments have been detected experi-
mentally using a Z-DNA binding protein domain as a probe (Li et al.,
2009). These authors found an abundance of Z-DNA hotspots located
in centromeres of 13 human chromosomes. Z-DNA-forming sequences
induce high levels of genetic instability in both mammalian and bacterial
cells. These sequences could be causative factors for gene translocations
found in leukemias and lymphomas (Wang et al., 2006). The discovery of
certain classes of proteins bound to Z-DNA with high affinity and speci-
ficity indicated a biological role of this structure. Yet, it is a common view
that Z-DNA is an unstable conformation that is formed and disappears
during particular physiological activities such as transcription (Rich and
Zhang, 2003).

2.3. Weak periodicities and loose patterns

In addition to MRI patterns, there are several weak genomic periodicities
and specific signals at the mid-range scale. Many of them are described
in “The codes of life” (Barbieri, 2008). Wherein, Trifonov reviewed dif-
ferent codes that exist in the genomes at DNA, RNA, and protein levels.
He emphasized a special property of genomic sequences to make super-
position (overlapping) of the codes they carry. The overlapping is possibly
due to degeneracy of the codes and might be useful for organism surviv-
ability (Peleg et al., 2004). Here we consider three types of such patterns
in eukaryotic genomes.

2.3.1. Chromatin periodicities

There exists a nonrandom positioning of nucleosomes along genomic
DNA of eukaryotes (Salih et al., 2007). Nucleosome binding preferences
are achieved via sequence-dependent deformational anisotropy of DNA
(Barbieri, 2008). On average, one nucleosome occupies 200 bp including
145 nucleotides that contact its core particle while the rest corresponds
to linkers between nucleosomes. Due to this specificity in nucleosome
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positioning, Trifonov and co-authors described sequence features that are
repeated with 200- and 400-base periodicities (Trifonov 1998; Cohanim
et al., 2006).

2.3.2. Periodicities in protein-coding sequences

There are well-known short-range periodicities in coding sequences that
exist due to nonsymmetry in the genetic code, nonrandom amino acid
appearance and association of neighboring amino acids within protein
sequences, and also regularities in codon bias and context-dependent
codon bias (Fedorov et al., 2002). In addition, there exist longer period-
icities in the coding sequences that correspond to modular organization
of globular proteins. They extend over 20–30 codons and represent ini-
tial protein folding modules (Aharonovsky and Trifonov, 2005; Barbieri,
2008).

2.3.3. Transcription-associated mutational asymmetry
in mammals

In 2003 Green et al. demonstrated that the transcribed strands of mam-
malian DNA have an excess of G+T over A+C due to the difference of par-
ticular mutation frequencies (Green et al., 2003). Specifically, the A → G
transition occurs at a 28% higher rate than the complementary transition
T → C on the transcribed strand in most human genes. This transcription-
associated mutational bias exists for both the exonic and intronic parts of
genes. Thus, if we look at the nucleotide frequencies in the combined
sequences of all human introns (T = 30.7%; A = 28.0%; G = 21.1%;
C = 20.2%) there is a 3.6% excess of G+T over A+C. (These calculations
were obtained on our nonredundant set of 11 315 human genes contain-
ing 96 931 introns (Bechtel et al., 2008). For each intron we removed
the first 10 and the last 30 bases). We detected the same preference of
G+T over A+C in introns of other mammals, a smaller preference for sea
urchin (2.2%), and the highest preference in Arabidopsis (11.8%). For the
mouse-ear cress, the nucleotide bias in introns is mainly due to significant
excess of T (39.6%) over A (28.2%). Such strong transcriptional asymme-
try in the preference of G+T over A+C is typical for other plants. No
difference for G+T versus A+C composition has been detected for fruit
fly and worm introns.
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2.4. A complex mosaic of MRI patterns and their
fundamental importance

2.4.1. Intricate arrangement of genomic MRI patterns

Different MRI regions are not randomly arranged relative to each other
(Bechtel, 2008). For example, Fig. 6 illustrates that (G+C)-rich regions

Fig. 6. Visualization of (G+C)-rich (dark gray, top row) and (A+T)-rich (light gray,
bottom row) MRI features in human introns using a 400-nt base window size. The
scale for each sequence is independent and is given in its subheading in nucleotides
per pixel. The figure represents a fragment of Fig. 17 in Bechtel (2008).
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tend to be associated in clusters. On the other hand, the distribution of
(A+T)-rich regions is much more close to a random distribution with
the exception that (A+T)-rich regions avoid very close proximity to each
other (Bechtel, 2008). So far, investigators have examined only individual
genomic patterns. The mutual arrangement of various genomic mid-range
patterns has never been thoroughly investigated yet. Our preliminary
results suggest that within mammalian genomes, there is a complex mosaic
picture of MRI regions. Modeling sequences only with one particular
type of MRI compositional bias using MRI-generator program from the
Genomic MRI package has proven not to be a trivial computational task
(Bechtel et al., 2008). This has made us appreciate that the reconstruc-
tion of the entire set of MRI patterns in modeling DNA sequences is an
extremely challenging mission due to a complex multi-layer nonrandom-
ness in genomic sequences. In addition, genomic sequences have an intri-
cate organization of nested patterns and also with respect to the clustering
of particular patterns. Some features of this complex organization were
described as genomic fractals in several publications (Havlin et al., 1995;
Cheng et al., 2007; Pellionisz, 2008). This arrangement has been stud-
ied by methods such as “detrended fluctuation analysis” and a “Brownian
walk” to uncover relationships such as power law correlations and expo-
nential decays, which assess the scaling behavior of a system. This scaling
behavior is related to fractal geometry and deals with “self-similarity,”
defined as the property of resembling a subset of oneself. Earlier investi-
gations of this kind generally confined themselves to clusters of purines
and pyrimidines, but later studies have shifted to examining (G+C) and
(A+T) clusters for the thermodynamic implications of their pair-binding
(Peng et al., 1992; Havlin et al., 1995; Peng et al., 1995; Haring and
Kypr, 2001; Nicolay et al., 2004; Cheng and Zhang, 2005; Cheng et al.,
2007).

2.4.2. The purpose of MRI regions

Often, in the popular literature, genomes are presented as a set of texts or
instructions. Such a representation implies that there should be an intelli-
gent creature somewhere inside a cell interpreting these DNA texts. Thus,
it is more appropriate to compare genomes with self-realization programs
that autonomously fulfill their tasks and are able to respond to environment
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signals and conditions. Such programs must be extremely complicated for
complex organisms, like humans, which are built from trillions of cells
of hundreds of different kinds, yet sharing the same genomic sequence.
There must be fundamental principles for construction and functioning
of genomic programs. One of the most important principles is the Prin-
ciple of Recursive Genome Function (PRGF) illuminated by Pellionisz
(Pellionisz, 2008). The author considers the genome as an unsupervised
operating system. The well-known examples of such a system are neural
networks for which mathematical models describing their behavior have
been developed. According to Pellionisz, “the recursive genome function
is a process when at every step of development already-built proteins iter-
atively access sets of primary and ensuing auxiliary information packets of
DNA to build constantly developing hierarchies of protein structures.”
In other words, there is a crucial flow of information from proteins back
to the genomic DNA. According to Pellionisz, this principle converts a
genome from a closed to an open physical system and resolves the paradox
of genomic entropy posed by John Sanford (Sanford, 2005). This perspec-
tive elucidates the importance of MRI regions as specific sites for chang-
ing genomic information by proteins. Indeed, MRI regions are intricately
associated with unusual DNA conformations, which in turn are binding
sites for a number of proteins. These proteins could stabilize and/or ini-
tiate DNA conformation transformation and propagate the signal along
neighboring DNA segments. For instance, Z-DNA binding proteins could
initiate this transformation from right-handed B-DNA to the left-handed
Z-form. This structural transition changes the DNA supercoiling for the
regional DNA landscape and additionally creates specific B-Z-boundaries
with flipped-over bases. Such transformation could modify, open, and/or
hide, some information on the genomic DNA not only at the protein
binding site but within neighboring regions.

3. Conclusions

Overall, within vast areas of previously thought “junk DNA,” represented
by introns and intergenic sequences, there exists an intricate mosaic of
various MRI regions with extreme base compositions. Various genomic
MRI regions are tightly associated with unusual DNA conformations and
must be of crucial importance for proper functioning of multi-cellular
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eukaryotes. Understanding of genomic MRI functions is critical for the
newly emerged field of personal genomics and also for drug discovery.
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Chapter 4

Motif Finding from Chips to ChIPs

Giulio Pavesi∗

Motif finding aimed at the de novo discovery of putative over-represented
transcription factor binding sites in nucleotide sequences has been, and still
is, one of the most challenging and open problems in bioinformatics. This
article aims to provide a survey of different approaches and methods, from
the days when typical instances were sets of promoters from co-expressed
genes obtained from microarray (the “chips”) expression data, to the latest
advances in the field, that permit more reliable identification of transcription
factor target sequences through genome-wide experiments like Chromatin
Immunoprecipitation (the “ChIPs”).

1. Introduction

Motif finding in bioinformatics can be defined as the problem of finding
short similar sequence elements shared by a set of nucleotide or protein
sequences with a common biological function, in order to single out which
parts of the sequences are more likely to be essential for the function
itself. The identification of regulatory elements in nucleotide sequences,
modulating the expression of genes, has been one of the most widely
studied flavors of the problem, both for its biological significance and for
its sheer difficulty (Pavesi et al., 2004; Sandve and Drablos, 2006).

It is a well-known fact that researchers in biology and medicine have
nowadays at their disposal enormous amounts of data and information, like
the complete DNA sequences of human and a number of different organ-
isms of interest, that in turn permit the large-scale annotation of genes
and their products, the bricks of which life is built. On the other hand,
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introduction of technologies like oligonucleotide microarrays (Churchill,
2002; Schulze Downward, 2001) has given the possibility of measuring
the level of transcription of genes, that is, when and how much a given
gene is active according to developmental stage, cell cycle, external stimuli,
disease, and so on.

This first step of gene expression, the transcription of a DNA region
into a complementary RNA sequence, is finely modulated and regulated
by the activity of transcription factors (TFs), which are proteins that in
turn are encoded by the genome. TFs bind DNA in the neighborhood of
the transcription start site of genes (in the promoter region), or often in
distal elements (enhancers or silencers) that are brought by the 3D arrange-
ment of DNA close to the gene region, with the effect of initiating the
transcription process, or, in some cases, of blocking it (Lemon and Tjian,
2000; Levine and Tjian, 2003). The transcription of a given gene is thus
initiated only when the “right” combination of TFs are bound to the DNA
at the “right” time in its neighborhood. To understand the complexity of
this process suffices it to say that about 10% of the about 22 000 human
genes have been estimated to possess this function, that is, binding DNA
in order to regulate the transcription of a subset of the other genes, with
an exponential number of possible TF combinations and interactions.

The actual DNA region bound by a TF (called transcription fac-
tor binding site, or TFBS) usually ranges in size from 8–10 to 16–20
nucleotides (small sequence elements of this size are also called oligonu-
cleotides, or oligos) (Lemon and Tjian, 2000; Stormo, 2000). TFs bind the
DNA in a sequence-specific fashion, that is, they recognize sequences that
are similar but not identical, tolerating a certain degree of “approxima-
tion.” On the other hand, changing binding affinity according to DNA
sequences allows TFs to obtain a more fine-grained modulating effect on
the level of transcription of the target genes.

The “binding preference” of a given TF can be summarized and mod-
eled starting from an experimentally validated collection of its sites, as
shown in Fig. 1. In the simplest form, we can take, position by position, the
most frequent nucleotide, and build a consensus of the sites. All oligos that
differ from the consensus up to a maximum number of nucleotide substi-
tutions can be considered valid instances of binding sites for the same TF.
Clearly, this is an over-simplification that does not take into account the dif-
ferent level of variability at different position of the sites. A more involved
method is to employ “degenerate consensuses,” that can be formalized,
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for example, by using regular expressions. Positions where there does not
seem to be any preference for any nucleotide are left “undefined,” and any
nucleotide is allowed there; positions where two or three nucleotides can
be found with approximately the same frequency are left ambiguous, and
any of the ambiguous nucleotides are considered a valid match; a single
nucleotide is used only for the most conserved positions, which require an
exact single-nucleotide match. Finally, the most flexible and widely used
way of building descriptors for TF binding is to align the available sites, and
to build an (ungapped) alignment profile with the frequency with which
each nucleotide appears at each position in the sites. Thus, any candidate
oligo can be compared to the profile, and the corresponding nucleotide
frequencies can be used to assess how well it fits the descriptor (rather
than a yes/no decision like with consensuses) (Stormo, 2000). A typical
example is shown in Fig. 1. By comparing the different sites, we can notice
that they differ in a few positions (mismatches) — as nearly always the sit-
uation with TFBSs. And, we can notice how some positions are strongly
conserved, i.e. the TF does not seem to tolerate substitutions in those
places, while in others any nucleotide seems to do.

Ever since researchers had at their disposal both genomic sequences
and measurements of the level of transcription of genes through tech-
nologies like oligonucleotide microarray “chips,” the rationale has been
straightforward: TFs are responsible for activating or blocking the tran-
scription of genes; genes co-expressed, that is, with similar expression
patterns should be regulated to some extent by the same TFs; by inves-
tigating genomic regions taken from co-expressed genes (for example,
their promoters) one should be able to detect the presence of short “over-
represented” sequence elements, corresponding to binding sites for the
common regulators (Brazma and Vilo, 2000; Cordero et al., 2007).

On the other hand, while traditionally promoters from clusters of
co-expressed genes have been the most typical input to algorithms for
finding over-represented sequence motifs, more recently the introduc-
tion of technologies like Chromatin Immunoprecipitation (ChIP; Collas
and Dahl, 2008), coupled with tiling arrays (ChIP on Chip; Pillai and
Chellappan, 2009) or next-generation sequencing (ChIP-Seq; Mardis,
2007; Park, 2009), has permitted the direct genome-wide identification
of regions bound in vivo by a given TF. As we will discuss in the follow-
ing, these experiments are also a perfect case study for motif finding, and
indeed have led to the introduction of novel methods inspired by them.
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Fig. 1. Describing a “motif” representing the binding specificity of a transcription
factor. Given a set of oligos known to be bound by the same TF, we can represent
the motif they form by a “consensus” (bottom left) with the most frequent nucleotide
in each position; a “degenerate” consensus, which accounts for ambiguous positions
where there is no nucleotide clearly preferred (N = any nucleotide; K = G or T; M = A
or C, according to IUPAC codes (Nomenclature Committee, 1986)); an alignment
profile (right) which is converted into a nucleotide frequency matrix by dividing each
column by the number of sites used.

Regardless of the source experiment, the problem can be informally
defined as follows: given a set of DNA sequences, typically a few hundred
base pairs (bps) long, find a set of oligos (10–16 bps long) appearing in
all or most of the sequences (thus allowing for experimental errors and
the presence of false positives in the set) similar to one another enough to
be likely to be instances of sites recognized by the same TF. And, clearly,
the same set of similar oligos should not appear with the same frequency
and/or the same degree of similarity in a set of sequences selected at ran-
dom (thus very unlikely to share any common regulator) or built at random
with some model generating of “biologically feasible” DNA sequences.
The similar and over-represented oligos collectively build a motif recur-
ring in the input sequences.

The problem thus defined has been widely studied throughout all the
history of bioinformatics, and all the methods introduced so far for the
problem mainly differ in two points:

(1) in how similar oligos forming a candidate motif are chosen, and the
motif they form is described and evaluated;
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(2) in the “background random model” used to assess the statistical
significance (over-representation) of the motifs.

The first choice is in how to model a solution, that is, summarizing a
set of short sequence elements. As we have shown, there are two main
strategies in describing the binding specificity of a TF: consensuses or
profile matrices. Likewise, the most widely known motif discovery algo-
rithms can be roughly split into “consensus-driven” and “profile-driven”
methods (Pavesi et al., 2004). In fact, we should keep in mind that, given
k input sequences DNA of length n, and a motif size m, by assuming that
a motif instance should appear in each sequence we have (n − m + 1)k

candidate solutions that can be built by combining all the oligos of length
m (m-mers) in all the possible ways, a number exponential in the number
of input sequences that regardless of scoring function used to evaluate
the solutions leads to a NP-hard problem. Leaving aside the design of
performance-guaranteed approximation algorithms (Akutsu et al., 2000),
which produce solutions too much far from the optimal one to be biologi-
cally meaningful, different heuristics can be applied to the problem. Thus,
the choice of how to model the motifs has straightforward implications in
the heuristics that can be applied to explore the solution space.

2. Profile-Based Methods — The Basics

As stated before, profiles provide a more fine-grained and flexible descrip-
tion of the binding specificity of a TF. Unsurprisingly then, until the
last few years nearly all the methods introduced for the problem have
been profile-based. The basic idea is to select some oligos from the input
sequences, align them, and score the resulting profile according to its
conservation with a suitable measure of significance. Since exhaustive enu-
meration of all the possible profiles is computationally infeasible, meth-
ods of this kind have to rely on some heuristic to explore the solution
space. Nearly all the “traditional” optimization techniques (i.e. greedy,
local search, stochastic search, genetic algorithms, and so on) have been
tried over the years. For sake of space, here we confine our description to
those methods that have achieved greater success and wider usage in the
biological community.

Despite its name, “Consensus” is an alignment-based method that
employs a greedy heuristic (Hertz et al., 1990; Hertz and Stormo, 1999).
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Given as input a set of sequences S1 . . . Sk, the basic version of the
algorithm requires as input the length m of the motif to be found, and
assumes that it occurs once in each sequence. The steps performed by the
algorithm can be summarized as follows: all the m-mers of S1 are aligned
to the m-mers of S2, and each alignment produces a profile. All the pro-
files are scored according to their conservation, and the highest scoring
ones are saved. Each oligo of length m of sequence S3 is aligned with
the matrices saved at the previous step, generating a new set of three-
sequence profiles; each one is scored as before, and again only the highest
scoring ones are saved. This step is iterated for each sequence of the set;
the final profiles, output by the program, will contain one oligo for each
input sequence. The algorithm is greedy, that is, at each step saves only
the best partial alignments, and employs them to build new profiles. Fur-
ther improvements to the algorithm introduced the possibility of finding
motifs that do not occur or appear more than once in each sequence, and
avoid explicitly requiring the length parameter from the user. Also, the
calculation of a p-value for an alignment is introduced. The p-value gives
an estimate of the probability of finding a profile with the same score by
chance, which is especially useful in comparing alignments with different
lengths and different numbers of sites.

Another way of looking at the problem of finding the best alignment
profile is to assess whether a given oligo fits better the alignment pro-
file or a “background” model against which the motif should stand out.
Given a profile, the MEME (Multiple Expectation Maximisation for Motif
Elicitation) algorithm (Bailey and Elkan, 1994; 1995) evaluates the like-
lihood of each oligo of given length to fit the profile with respect to the
rest of the sequences, while the rest of the sequences should fit the back-
ground better than the profile. According to this principle, a likelihood
normalized value is computed for each m-mer of each input sequence.
This is the E (Expectation) step. Then, the algorithm builds a new pro-
file by aligning all the sequence regions of length m, but weighting each
one with the corresponding likelihood value. This is the M (Maximisa-
tion) step. At the beginning the algorithm builds a profile from each
m-mer in the input sequences, then it performs on each one a single
E and a single M step. The highest scoring profile obtained in this way
is further optimized with more EM steps, until no further increase on
the score is obtained. Finally, the profile is reported, and its oligos are
removed from the input sequences. Then, the algorithm is restarted,
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until a given number of profiles that can be specified as input has been
generated.

One of the most successful heuristics in profile-based motif finding
has been the Gibbs sampling strategy, first introduced for motif discov-
ery in protein sequences by Lawrence et al. (1993) and Neuwald et al.
(1995) but nevertheless perfectly suitable also for nucleotide sequences.
The best indicator of its success is the number of times it has been used
in the algorithmic part of different methods, which varied the statistical
measures used to generate and evaluate the results. The main motivation
was to improve a EM local search strategy similar to the one employed by
MEME (Lawrence and Reilly, 1990), avoiding possible premature con-
vergence to local maxima, typical of local search heuristics. The basic
idea, assuming again that one site appears in each input sequence, is the
following:

(1) An m-mer is chosen at random in each of the k input sequences (at the
beginning, with uniform probability).

(2) One of the k sequences is chosen at random: let S be this sequence.
(3) A profile is built with the oligos that had been taken from the other

k − 1 sequences.
(4) A likelihood value is computed for each oligo in S, representing how

well it fits the model induced by the profile with respect to some
background distribution.

(5) A new probability value, proportional to the likelihood, is assigned to
each oligo of S.

(6) Go to the first step, applying it to sequence S only: now the proba-
bility with which the m-mers of sequence S can be picked are those
computed at the previous step, and the oligos that fit better in the
alignment described by the profile are more likely to be chosen, and
to replace the original oligo chosen with uniform probability.

These steps are iterated a number of times, or until convergence is reached.
This variant of the algorithm is also known as the site sampler. At the begin-
ning all the oligos have the same probability of being chosen; in successive
iterations, those that better fit the profile are more and more likely (but
not guaranteed) to be selected. The main difference with MEME is in the
first step: while local search selects oligos deterministically according to
how well they fit the current solution, the Gibbs sampler chooses how to
modify the current solution in a stochastic way. The algorithm is thus less
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likely to get stuck in local optima; on the other hand, given its probabilistic
nature, it has often to be run several times.

Further improvements were introduced successively (Neuwald et al.,
1995), allowing multiple occurrences (or no occurrence) of a motif within
the same sequence (algorithm known as motif sampler). Modifications of
the basic Gibbs sampling technique especially devised for DNA sequences
are described in Hughes et al. (2000) and Workman and Stormo (2000).
AlignACE (Hughes et al., 2000) is a fine-tuned Gibbs sampling algo-
rithm for DNA regulatory sequences, including for example a different
sampling technique that also considers similarity in the position in the
input sequences of each of the oligos of a motif. In ANN-Spec (Workman
and Stormo, 2000), Gibbs sampling is combined with an artificial neural
network that replaces the frequency matrix. Instead of aligning the oli-
gos, the algorithm trains a neural network in order to recognize the oligos
selected (the putative TFBSs) against the rest of the sequences.

3. Profile-Based Methods — Modeling
the Background

So far, we have described different optimization strategies leaving aside the
discussion of the significance function to be optimized. Quite intuitively,
the latter should simultaneously take into account both how much each
column of the profile is conserved and how the nucleotide frequencies in
the columns of the profile differ from a “background” distribution that
should be obtained from aligning random sequences. If we assume that
nucleotides in genomic sequences are independent, that is, the probability
of finding a nucleotide in any position is not influenced by its neighbors,
the overall conservation (similarity among the oligos) of the motif and its
distance from the “background noise” can be measured by computing the
information content (IC) or relative entropy of the profile:

IC =
4∑

i=1

m∑
j=1

mi,j log
mi,j

bi
,

where mi,j is entry in row i and column j of the profile and bi is the
expected frequency of nucleotide i in the input sequences (which in turn
can be estimated by using the genomic sequence of the organism stud-
ied or by the input sequences themselves). Clearly, for each column j we
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have that
∑4

i=1 mi,j = 1 and
∑4

i=1 bi = 1. It can be clearly seen how this
measure accounts for how much each column is conserved, and how much
the nucleotide frequencies obtained in the profile differ from what would
have been obtained by aligning oligos chosen at random. Notice that in
case of uniform background frequencies, this measure equals Shannon’s
entropy, where the source probabilities equal the nucleotide frequencies in
the profile. Information content was the measure used in the first versions
of Consensus, MEME and the Gibbs Sampler. It is suitable for comparing
alignments built by using the same number of sequences, and in order to
compare alignments containing a different number of oligos, the infor-
mation content of each profile can be multiplied by the number of oligos
aligned, yielding the maximum a posteriori (MAP, or log-likelihood ratio)
score.

The main drawback of this type of model is the independence assump-
tion: in other words, the probability associated with each nucleotide in
the background is not influenced by its neighbors in the sequence, an
assumption that can be easily proven to be too restrictive. It is thus hardly
a surprise that in the “second generation” of profile-based methods, better
results were obtained not by introducing a novel optimization heuristic,
but rather by focusing on the statistical measure of significance and espe-
cially the background model.

After all, the better the representation of the background is, the more
likely a method is to detect something that significantly differs from the
background itself, and the strategy used plays a less essential role. Thus, an
improvement, introduced in different tools, has been to model the back-
ground with a higher-order Markov model (Thijs et al., 2001). Intuitively,
when a j -th order Markov model is employed, the probability of finding a
nucleotide in a given position of a sequence depends on the j nucleotides
preceding it in the sequence itself. Indeed, recent research has also focused
on which model order seems to be more suitable for the problem. The
model parameters can be estimated from the analysis of a number of regu-
latory regions of different species (for example, by taking all the promoters
of all the genes annotated in a given species), leading to organism-specific
probability distributions and expected oligo frequencies (Marchal et al.,
2003). In turn, the IC and MAP scores can be augmented by terms indi-
cating not only how much the profile itself is conserved, but also how
“surprising” it is to find the oligos composing it in the sequences analyzed
according to the background model employed (Narasimhan et al., 2003).
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For example, the performance of MEME can be significantly improved
by the introduction of an higher-order background (Bailey et al., 2006).
Bioprospector (Liu et al., 2001) is a Gibbs sampler where the background
is described with a third-order Markov model based on the genome-wide
analysis of different organisms, and also Thijs et al. (2002) and Aerts et al.
(2003) present similar algorithms where higher-order organism-specific
modeling of the background is employed.

GLAM (Frith et al., 2004) is another Gibbs sampler especially tailored
to TFBSs, where the sampling procedure as well as the IC score have been
modified in order to compare profiles of different size, sparing the user
the visual inspection and comparison of the results obtained on different
lengths. The optimal motif length is computed with a simulated annealing
strategy.

Also the authors of the original Gibbs sampler have developed ver-
sions of their algorithm designed and adapted for TFBSs (Thompson et al.,
2003), with an improved method for the modeling of the sequence back-
ground. The idea is to use position-specific frequencies: in other words,
if an oligo is located 100 bps upstream of the transcription start site of
a gene, its expected frequency is estimated by analyzing the oligos that
appear at approximately the same distance from the transcription start site
with a Bayesian segmentation algorithm.

NestedMICA (Down and Hubbard, 2005) introduces mosaic back-
ground modeling. The idea is to use four different higher-order back-
ground models according to the overall nucleotide composition of the
input sequences, and in particular to the content of C and G nucleotides
(corresponding to the presence or absence of CpG islands in promoters).
The profile optimization strategy adopted in this algorithm is also novel,
based on a sequential Monte Carlo Expectation Maximization approach.

Indeed, work has been done also on the optimization strategies. It
should be noticed that in nearly all the algorithms, we just mentioned
the optimization steps are performed only by adding or replacing oligos
in the current solution according to their respective similarity or their
fitness in the profile, but the IC, MAP or similar scores are optimized
only a posteriori by comparing different candidate solutions. A straight-
forward approach could be then to optimize directly the scoring function,
as in Fogel et al. (2004) where evolutionary computation is employed.
A recent work (Defrance and Helden, 2009) applies the Gibbs sam-
pling strategy directly to the IC score of the profile to be optimized,
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reporting performance improvement with respect to traditional a posteriori
methods.

4. Consensus-Based Methods — The Basics

As described earlier, a set of oligos can be summarized by using a consen-
sus, and all the oligos differing from the consensus up to a maximum num-
ber of mismatches can be considered a priori a valid instance of the motif.
Hence, the problem can be formalized as follows: for each of the 4m DNA
strings of TFBS-like length m (8–16 bps), collect from the input sequences
all its approximate occurrences with up to e mismatches. In other words,
the problem becomes exhaustive approximate pattern matching, allowing
typically from two to four substitutions, according to the motif length.
Introduced in the early days of bioinformatics (Galas et al., 1985; Sadler
et al., 1983; Waterman et al., 1984), this approach had been abandoned
because it was considered too time-consuming, since it required enumerat-
ing an exponential (in the solution length) number of candidate solutions.
The application of indexing structures to the input sequence set showed
later on its feasibility, reducing its complexity to be exponential in the
number of mismatches allowed (Pavesi et al., 2001; Marsan and Sagot,
2000).

The simplest solution is anyway to consider only exact oligos, that is,
allow no substitutions in instances of the same motif. The problem thus
becomes much simpler and its complexity is just linear in the length of the
input. Given its computational efficiency, this strategy can be employed
in genome-wide analyses of over-represented oligos, as for example in
(Caselle et al., 2002; Cora et al., 2004; van Helden et al., 1998), among
many others. Similar over-represented sequences can anyway be clustered
in a post-processing stage, and considered different forms of binding sites
for the same TF.

The search space can be also trimmed down by using “degener-
ate consensuses” to model the solutions, and tolerate mismatches only
in the degenerate or ambiguous positions, with a significant improve-
ment in the time needed for matching (Shinozaki et al., 2003; Sinha
and Tompa, 2003). The YMF algorithm (Sinha and Tompa, 2003)
computes the expected number of occurrences of each motif with a
Markov model of 4th order, and evaluates its significance with a statistical
z-score.
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No restrictions on the position of mutations are imposed by the
SMILE (Marsan and Sagot, 2000) and Weeder (Pavesi et al., 2001; 2004)
algorithms, where the exhaustive search for the exponential number of can-
didate consensuses is implemented with the preliminary indexing of the
sequences with a suffix tree. While the structure underlying the algorithm
is virtually the same, the two approaches differ in how the significance
of the motifs found is evaluated. SMILE compares the number of occur-
rences of a given motif with its occurrences in a random set of sequences of
the same size built with a Markov model whose parameters are estimated
from the input. Alternatively, a negative set of sequences that should not
contain any instance of the binding sites appearing in the positive set can
be used: the highest-scoring motifs will be the ones that present the most
significant variation between the number of occurrences in the input set
and in the random or negative sets.

In Weeder, instead the observed number of occurrences of a motif
is compared with expected frequencies derived from the oligo-frequency
analysis of all the regulatory regions of the same organism of the input
sequences. The significance score is the sum of a general term and a
sequence-specific term, based respectively on how many sequences each
motif appears in and how much conserved it is in each sequence. Motif
parameters (length, number of substitutions) suitable for TFBS identi-
fication are automatically employed by the algorithm in different runs.
A post-processing phase compares the top-scoring motifs of each run
in order to detect which ones could be more “interesting.” Finally,
the best instances of each motif are selected from the sequences by
using a profile built with the oligos selected by the consensus-based
algorithm, in order to have a more fine-grained ranking of the oligos
that belong to the motif, and the possibility of detecting oligos well
fitting the motif but exceeding the predefined substitution thresholds
used.

A further refinement of consensus-associated significance measures is
presented in Marschall and Rahmann (2009), where given a Markov model
of some order, a p-value is computed with a compound Poisson approxi-
mation for the null distribution of the number of motif occurrences both in
terms of overall number of occurrences and of number of sequences con-
taining a motif instance. The monotonicity properties of the compound
Poisson approximation are exploited to avoid exhaustive enumeration of
candidate consensuses.
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5. Other Methods

Clearly, profiles and consensuses are not the only possible ways to model a
set of oligos. While the representation is relevant when one has to employ it
to predict candidate sites according to the model (and this is what is done in
profile- or consensus-based methods for selecting oligos and build motifs
from them), it is much less of an issue when the aim is detecting a set of
oligos sharing some level of pairwise similarity. Starting from this observa-
tion, another straightforward way of modeling the problem is to employ
a graph, where nodes correspond to the oligos of the input sequences and
edges connect nodes corresponding to similar enough oligos. The prob-
lem can be thus recast in graph-theory terms, and motifs can be found
for example by detecting cliques (Pevzner and Sze, 2000) or maximum
density subgraphs (Fratkin et al., 2006).

6. Does Motif Finding Work?

It is far from being straightforward to evaluate the merits and shortcom-
ings of the different algorithms for motif finding. Building sequence sets on
which the “answer” is already known is quite hard, since the experimental
validation in vivo of a given candidate site is a slow and painstaking work,
and much more so assembling a promoter set of feasible size (for motif
finding algorithms). Algorithms are thus often tested on synthetic datasets,
in which “simulated” binding sites are planted into “simulated” sequences
(Pevzner and Sze, 2000; Buhler and Tompa, 2002; Hu, 2003; Sze et al.,
2002).

Some benchmark sequence sets derived from experimental data were
then introduced over the last few years, like the one used in the compara-
tive assessment presented in Tompa et al. (2005), Li and Tompa (2006),
or in Sandve et al. (2007), which are still very often used to assess the
performance of a novel method.

All in all, the overall picture that emerged was that motif finding algo-
rithms could provide reliable results in simple organisms like bacteria or
yeast, but that the situation in higher eukaryotes like human was much
bleaker. Consensus-based methods showed somehow a slightly better per-
formance (Tompa et al., 2005; Sinha and Tompa, 2003), probably thanks
to the possibility of performing an exhaustive search and thus of finding
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optimal solutions, or sub-optimal candidate solutions to be further refined
with profile-based optimization methods.

Apart from the design of benchmark sets, the poor performance in
motif finding in practice can be due to several reasons. First of all, the fact
that the similarity shared by sites recognized by the same TF is often very
subtle, and when just a few sequences are investigated the motif they form
is not conserved enough to be discriminated against background noise,
and vice versa random similarities are likely to be detected and reported
as a motif because the similarity is “more significant.” Second, we have to
consider the fact that the complexity of the regulation of every level of gene
expression seems to grow in parallel to the complexity of the organisms,
and thus also in the regulation of transcription. In other words, the obser-
vation of a set of co-expressed genes in human, mouse, or Drosophila is
most often than not the result of the combined activity of several different
co-operating or competing factors, each one acting on a subset of genes.
Hence, what would be “interesting” motifs are much less over-represented
or not over-represented at all regardless of the model employed. Third,
the analysis of the promoter region alone is often not enough, since tran-
scription can be regulated by distal elements like enhancer or silencers:
thus motifs are not found simply because they do not appear at all in the
sequences investigated, but rather thousands or even millions of base pairs
away from the genes they regulate, a sequence size clearly out of bounds for
motif finding algorithms. Fourth, we should not forget the fact that DNA
is, after all, a molecule, with a three-dimensional structure it assumes by
wrapping around histones forming chromatin. Hence, not all the regions
of DNA are accessible to TFs, but their binding depends first of all on
chromatin structure and its modifications.

Other additional considerations are thus usually employed when per-
forming a standard promoter analysis aimed at finding the common reg-
ulators of the genes and their sites in the sequences. Perhaps the most
widely used technique is phylogenetic footprinting (Chiang et al., 2003;
Sauer et al., 2006; Dermitzakis and Clark, 2002), that is, to compare a
given sequence with its orthologous counterparts in evolutionary close
enough species. In fact, not only a strikingly high level of sequence con-
servation can be observed by comparing the protein coding sequence
of orthologous genes from, for example, human and mouse, but also in
non-coding regions likely to possess some regulatory function (Bejerano
et al., 2004). Identifying significantly conserved non-coding sequences



December 16, 2010 16:54 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-ch04

Motif Finding from Chips to ChIPs 107

in different genomes has thus become the method of choice for example
for predicting likely distal regulatory elements like enhancers or silencers,
but also for standard promoter analysis, by identifying conserved short
sequence elements likely to be single TFBSs conserved by evolution. Quite
naturally this type of analysis can be performed prior to motif finding,
by masking out the less conserved parts of the promoters investigated,
but also simultaneously, by designing algorithms aimed at finding motifs
both over-represented in a sequence set, and at the same time signifi-
cantly conserved with respect to homologous sequences in other species
(see for example Siddharthan et al. (2005) and Sinha et al. (2004), which
are enhancements of the Gibbs sampler and MEME to this case). The
drawback is clearly that we cannot expect, for example, to have every sin-
gle functional site in human to be conserved in other species (Odom et al.,
2007).

Improvements in motif finding have also been reported when for
example nucleosome occupancy of sequences (that is, selecting for analysis
only those parts of the sequences that are free to be bound by TFs) has
been added to the input (Narlikar et al., 2007). In any case, a very elegant
way to incorporate any kind of additional information in any motif finding
algorithm is to modify the a priori probabilities, as in Tang et al. (2008),
where a sampling method (parallel tempering) similar to NestedMICA is
employed with better convergence properties than standard Gibbs sam-
pling. While in the general formalization of the problem, all the oligos in
the input sequences have the same probability of being part of a conserved
motif, these probabilities can be modified according to any given criterion,
for example, conservation in orthologous sequences giving conserved oli-
gos higher a priori probabilities, and consequently higher probability of
being selected during the optimization iterations.

7. Chips vs ChIPs

In the last few years, novel experimental methodologies have been intro-
duced, opening to researchers in the field novel avenues of unprecedented
power. Modern laboratory techniques, in fact, allow for the large-scale
identification of TF-DNA binding sites on the genome, with experiments
that were simply impossible to perform just a few years ago. A striking
example is Chromatin Immunoprecipitation (ChIP) (Collas and Dahl,
2008), that allows for the extraction from the cell nucleus of a specific
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protein–DNA chromatin complex, in our case of a given TF bound in vivo
to the DNA. First, the TF is cross-linked, that is, fixed to the DNA. Then,
a specific antibody that recognizes only the TF is employed, and the anti-
body, bound to the TF which in turn is bound to the DNA, permits the
extraction and isolation of the chromatin complex. At this point, DNA is
released from the TF by reverse-crosslinking — and researchers have at
their disposal the DNA regions corresponding to the genomic locations
of the sites that were bound in vivo, that is, inside living cells. The exper-
iment is performed on thousands of cells at the same time, so to have a
quantity of DNA suitable for further analysis, and to have in the sample a
good coverage of all regions bound by the TF.

The next phase is quite logically the identification of the DNA regions
themselves — and of their corresponding location in the genome, which
in turn is made possible by the availability of the full genomic sequences.
Also for this step, technology has witnessed dramatic improvements. From
the identification of only pre-determined candidate sites through PCR,
the introduction of “tiling arrays” has permitted the analysis of the DNA
extracted on a whole-genome scale (ChIP on Chip; Pillai and Chellappan,
2009) by using probes designed to cover the sequence of a whole genome.
The recent introduction of novel and efficient sequencing technologies
collectively known as next-generation sequencing (Mardis, 2008) has per-
mitted to move this type of experiment one step further, by providing at
reasonable cost perhaps the simplest solution: in order to identify the DNA
extracted by the cell, simply sequence the DNA itself (ChIP Sequencing,
or ChIP-Seq (Mardis, 2007)) and compare it to the reference genomic
sequence. Once the regions have been identified, the next logical step is
the identification of the actual oligos bound by the TF investigated, which
is much shorter than the region itself — and thus another perfect case
study for motif finding.

Luckily enough, when instead of a set of promoters from co-expressed
genes, the input is a set of sequences derived from a ChIP experiment, the
problem seems to become easier, for different reasons:

• The size of the sequence sets: a genome-wide ChIP usually yields thou-
sands of candidate regions, while a typical promoter analysis of co-
expressed genes is performed on a few dozen sequences.

• The length of the sequences: sequences extracted from experiments like
ChIP-Seq can be as short as 200–300 bp, as opposed to promoters which
are usually defined as 500–1000 bp long.
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• The frequency with which binding sites for the same TF appear: in
a ChIP there should appear a very high percentage of the sequences
examined, even more than once in a single sequence, while in a set of
co-expressed genes there is no guarantee for this.

All in all what happens is that with ChIP we have a somewhat cleaner input
sequence set (most of the sequences should contain an instance of the
motif), and more importantly much more redundant, since in thousands
of sequences we can expect to find several instances of binding sites very
similar to one another. In gene promoter analysis, the input set is much
less cleaner (there is no guarantee on how many sequences actually share
the same motif), the sequence set is much smaller (and thus the different
sites in the sequences can be very different from one another) and the
sequences are longer. Thus, in ChIP we can expect to obtain a clearer
separation of the signal (the motif) from the background “noise.”

Indeed, the performance of traditional motif finding methods on ChIP
sequence sets managed to redeem their bad reputation in several cases, by
actually “discovering” the sites bound by the TF (see among many others:
Krig et al., 2007; Zeller et al., 2006; Chen et al., 2008; Loh et al., 2006).
On the other hand, algorithms devised ad hoc for large scale ChIP exper-
iments like MDScan (Liu, et al., 2002), Trawler (Ettwiller et al., 2007)
and Amadeus (Linhart et al., 2008) have been introduced, with somewhat
superior performance in terms of motifs correctly identified, but much
more significantly in computational resources required over methods that
were devised for smaller sequence sets and subtler motif instances. The
general ideas underlying these three methods are somewhat similar. Ini-
tial candidate solutions are built by matching consensuses (MDScan) or
degenerate consensuses on the input sequences — indexed with a suffix
tree in Trawler to speed up the search. Exact or degenerate consensuses
are in fact powerful enough to capture significant motifs given the much
higher redundancy of motif instances in the sequences. Significance is then
assessed with a third-order background model (MDScan), or more simply
by comparing the match counts in the input to randomly selected back-
ground sequence sets, with z-scores (Trawler) or a hypergeometric test
(Amadeus). Finally, similar motifs are merged, and motifs are modeled
with a profile which is further optimized on the input sequences.

Research on this topic is also trying to take advantage of the additional
features that can be associated to regions derived from ChIP. For example,
since probe or sequence enrichment defining a bound region in ChIP is
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reported to be an indicator of the affinity of the TF for the region (Jothi
et al., 2008), higher priority or weight should be given to those regions
that are more enriched in the experiment. This is something that can be
trivially done by applying existing methods to only the “best” sequences,
but this factor could be taken into account directly by the algorithms, as in
MDScan, similarly to what has been done by correlating sequence motifs
in promoters with gene expression (Bussemaker et al., 2001; Roven and
Bussemaker, 2003). The modeling of the binding specificity of the TF
with a profile (resulting from motif discovery algorithms) should also give
higher weight to high-affinity sites corresponding to the most enriched
regions. Finally, in experiments like ChIP-Seq the sites bound by the TF are
more likely to be located in the center of the region extracted (Jothi et al.,
2008): thus adding positional bias to sequence conservation in assessing
the motifs should somewhat improve the results.

Apart from their sheer interest for the scientific community, genome-
wide ChIP experiments, now quite common, provide also a source of great
value for building feasible benchmark sequence sets for the testing of motif
finding algorithms, like the “Harbison dataset” derived from the work on
203 DNA binding proteins in yeast presented in Harbison et al. (2004),
or the “metazoan dataset” introduced in Linhart et al. (2008), built from
several different genome-wide ChIP experiments.

8. Conclusions

Motif finding has been and still is one of the most challenging problems
in bioinformatics. Without claiming to be exhaustive, in this article we
provided a survey of different methods and approaches for the problem,
applied to the discovery of over-represented candidate transcription factor
binding sites in nucleotide sequences. We discussed only the most general
definition of the problem, while there exist other different widely studied
flavors of it, from phylogenetic footprinting to the detection of corre-
lated or structured motifs to the discovery of clusters of motifs forming
cis-regulatory modules (CRMs) like enhancers or silencers. From every
point of view, however, we are very far from the common goal of having
a complete and thorough annotation of sites for transcription factors, in
virtually all the genomes of interest. Thus, research in this area is still very
active, and we can imagine it will remain so in the next few years. We advise
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the interested reader to keep a close eye on the bioinformatic advances in
this field, but most importantly to follow the evolution of experimental
techniques: for example the scenario changed radically when ChIP was
introduced, and with its coupling with next-generation sequencing tech-
nologies changed even more. After all, selecting a good problem to work
on is at least as important as finding good solutions for it.
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Chapter 5

A New Approach to the Discovery
of RNA Structural Elements
in the Human Genome

Lei Hua∗, Miguel Cervantes-Cervantes†

and Jason T. L. Wang∗

Analysis of a large number of RNA molecules indicates that variations in
their nucleotide sequences do not necessarily convey differences in their sec-
ondary structures. Numerous methods have been developed to find patterns
in RNA molecules, including the detection of structural motifs in families of
noncoding RNAs (ncRNAs). When almost identical sequences render sim-
ilar structures, these methods work well. However, when given structures
differ from each other, there may not exist a motif common to all of them.
In such cases, it is desirable to find out if such motifs are indeed present and
if not, to determine the extent to which they are shared by the structures
under study. We present here a novel tool to be used in finding common
patterns among RNAs. In particular, we describe the use of this tool to find
RNA structural elements in the human genome. Many of the RNA structures
found by our method overlap with human genomic regions that have been
previously found through other genome-wide studies aimed to discover con-
served structured RNAs. Our method thus provides a complementary tool
to the currently used approaches for mining conserved structured RNAs in
the human genome.

1. Introduction

In addition to its central role in translation of a cell’s genetic information
into proteins, ribonucleic acid (RNA) has several other functions, a number
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of which are attributable to its structural particularities (herein called RNA
motifs). RNA molecules other than messenger RNA (mRNA) are desig-
nated noncoding RNAs (ncRNAs) and have been extensively studied for
the presence of RNA motifs. ncRNAs include transfer RNA (tRNA), ribo-
somal RNA (rRNA), small nuclear RNA (snRNA), and small nucleolar
RNA (snoRNA) (Griffiths-Jones et al., 2003). More recently, small inter-
fering RNA (siRNA) and microRNA (miRNA) have been under intensive
analysis (Ambros et al., 2003). Nevertheless, secondary structures in the
untranslated regions (UTRs) of messenger RNAs (mRNAs) have not been
characterized in-depth (Pesole et al., 2002). The importance of study-
ing UTRs emerges from a myriad of biochemical and genetic studies that
have demonstrated functions associated with UTRs in mRNA metabolism,
including RNA translocation, translation, and maintenance of RNA sta-
bility.

Whereas RNA structure determination via biochemical and biophysi-
cal experiments is laborious and costly, predictive approaches are valuable
in providing guidance for wet lab experiments. RNA structure prediction
is usually based on thermodynamics of RNA folding or phylogenetic con-
servation of base-paired regions. The former uses thermodynamic prop-
erties of various RNA local structures, such as base-pair stacking, hairpin
loop, and bulge, to derive thermodynamically favorable secondary struc-
tures. Optimal or suboptimal structures can be found by using dynamic
programming algorithms such as the well-known tools MFOLD (Zuker,
1989) and RNAfold in the Vienna RNA package (Schuster et al., 1994;
Hofacker, 2003). Similar tools exist to predict higher-order structures, e.g.
pseudoknots (Rivas and Eddy, 1999). On the other hand, RNA struc-
ture prediction using phylogenetic information helps in inferring RNA
structures based on covariation of based-paired nucleotides (Gulko and
Haussler, 1996; Hofacker et al., 2002; Knudsen and Hein, 2003). It is
generally believed that methods using phylogenetic information are more
accurate but their performance critically depends on high-quality align-
ment of a large number of structurally related sequences.

Tools utilized in the alignment of biological sequences (DNA, pro-
tein), such as FASTA and BLAST, are valuable in identifying homolo-
gous regions, which in turn may lead to the discovery of functional units,
such as protein domains, DNA cis elements and others (Pearson and Lip-
man, 1988; Altschul et al., 1990). Bioinformaticians are mostly satisfied
with these tools for proteins, but not for RNAs. Eddy (Eddy, 2006)
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pointed out some reasons in his excellent paper presented in the 2006
Cold Spring Harbor Symposium on Quantitative Biology. In the case of
proteins, for the task of similarity searching, BLAST is able to identify
significant homologies down to 20–30% amino acid sequence identity.
Many proteins are conserved at this level across billions of years of diver-
gence. In contrast, significant nucleic acid sequence alignments are only
detected down to about 60–70% nucleotide sequence identity, largely due
to the smaller nucleotide alphabet. Many conserved RNAs diverge below
a 60–70% identity threshold in just tens or hundreds of millions of years.
BLAST comparisons of RNAs are thus unable to detect important evolu-
tionary divergences. Therefore, it is necessary to take into account struc-
tural information in analyzing RNA data.

We present here a method, named DiscoverR, for identifying common
patterns of two RNA secondary structures based on our previous work on
tree pattern finding (Wang et al., 1998). DiscoverR works by representing
RNA secondary structures as ordered labeled trees and performs tree pat-
tern discovery by allowing certain subtrees to be removed at no cost. This
method is able to identify common patterns in the secondary structures
of two RNA molecules R1 and R2, where the common patterns may con-
tain noncontiguous subsequences in R1 and R2. The method can detect
distant bases interacting remotely that are part of the common patterns
of R1 and R2. Both the time complexity and the space complexity of the
DiscoverR method is O(|R1||R2|) where | · | represents the number of
nucleotides in the indicated RNA molecule.

2. Related Work

Several methods have been developed that carry out RNA secondary
structure prediction and comparison at the same time. For example,
Sankoff’s method involves simultaneous folding and aligning of two RNA
sequences in O(N 6) time where N is the average length of the sequences
(Sankoff, 1985). FOLDALIGN (Gorodkin et al., 2001; Havgaard et al.,
2005a) improves Sankoff’s method with a time complexity of O(N 4);
a faster version of the tool was recently presented in (Havgaard et al.,
2007). Havgaard et al. (Havgaard et al., 2005b) described a method
based on FOLDALIGN and the Sankoff algorithm that is effective for
sequences with low similarity, specifically with similarity <40%. Mathews
and Turner (Mathews and Turner, 2002) presented Dynalign that runs in
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time O(d3N 3) by restricting the maximum distance allowed, d, between
aligned nucleotides in two RNA molecules. Tabei et al. (Tabei et al., 2006)
aligned RNA sequences by matching fixed-length stem fragments in a
very efficient way, and implemented their algorithms into a tool called
SCARNA. By taking into account local similarity, stem energy and covaria-
tions, Perriquet et al. (Perriquet et al., 2003) proposed CARNAC for fold-
ing and finding the common structure of two RNA sequences. The the-
oretical time complexity of CARNAC is O(N 6), which could be reduced
to O(N 2) by pre-processing the sequences.

Tools that perform global or local alignment of two given RNA
secondary structures include RNAdistance (Shapiro and Zhang, 1990),
rna_align (Jiang et al., 2002), RNAforester (Hochsmann et al., 2004) and
RSmatch (Liu et al., 2005). RNAdistance (Shapiro and Zhang, 1990)
uses a tree-based model to coarsely represent RNA secondary struc-
tures, and compares the secondary structures based on the edit distance
of trees. The rna_align method (Jiang et al., 2002) models RNA sec-
ondary structures by nested and/or crossing arcs that connect bonded
nucleotides and aligns the RNA secondary structures efficiently. The
time complexity of rna_align is min{O(MN 3), O(M 3N )} where M , N
are the lengths of the input structures. RNAforester (Hochsmann et al.,
2004) performs RNA alignment by extending the tree model to a forest
model. More recently, RSmatch (Liu et al., 2005; Khaladkar et al., 2007;
Khaladkar et al., 2008) adopts a loop model for representing and align-
ing RNA secondary structures with a time complexity of O(MN ). The
structural RNA alignment can be displayed and viewed using RNALogo
(Chang et al., 2008).

DiscoverR is not an alignment method. The tool differs from a global
alignment (GA) algorithm in the following way. When globally aligning
a small RNA molecule with a large RNA molecule, the GA algorithm
inserts many gaps, which would lead to a meaningless alignment result.
In this situation, DiscoverR is able to extract common patterns from the
two RNA molecules having different sizes without inserting gaps. On the
other hand, DiscoverR differs from a local alignment (LA) algorithm in
the following way. When locally aligning two RNA molecules, the LA
algorithm seeks small, local regions with high similarity where bases are
close to each other (Backofen et al., 2007). In contrast, DiscoverR looks at
the entire RNA molecules to extract their largest common substructures
possibly with distant bases on the respective molecules.
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3. Methods

RNA molecules acquire their secondary structures through proper folding
(Fig. 1(a)). Let RS be an RNA sequence consisting of nucleotides or bases
A, U, C, G. RS [i] denotes the base at position i of RS and RS [i, j ] is
the subsequence starting at position i and ending at position j in RS. Let
R be the secondary structure of RS. A base pair between position i and
position j in R is denoted by (i, j ) and its enclosed sequence is RS [i, j ].
A loop in R refers to a hairpin loop H , a bulge loop B, an internal loop
I or a multibranched loop M (Mathews et al., 1999; Hofacker, 2003;
Zuker, 2003). Given a loop L in the secondary structure R, the base pair
(i∗, j∗) in L is called the exterior pair of L if position i∗ (j ∗, respectively)
is closest to the 5′ (3′, respectively) end of R among all positions in L . All
other nonexterior base pairs in L are called interior pairs of L(Spirollari
et al., 2009).

As previously described by our group and other workers (Shapiro and
Zhang, 1990; Hochsmann et al., 2004; Liu et al., 2005; Nawrocki et al.,
2009), we modeled the RNA secondary structure R of the sequence RS
by a rooted ordered labeled tree RT. The tree has a root, each node has
a label and the left-to-right order of siblings is significant. Pseudoknots
are not allowed in this model. Each node in RT corresponds to a base
pair in R and vice versa. Base pairs are orderly numbered from the 5′-end
to the 3′-end of R. Except for the exterior pairs of loops, the kth base
pair of R corresponds to the node labeled “Pk” in RT and vice versa.
For example, the node labeled “P3” in the tree RT shown in Fig. 1(b)
corresponds to the 3rd base pair in the secondary structure R shown in
Fig. 1(a). The exterior pair of a multibranched loop containing n interior
pairs in R corresponds to a node v with n children in RT with each child
corresponding to one of the n interior pairs. Assuming the exterior pair is
the kth base pair in R, the node label of v is “Mk”. The exterior pair of a
bulge loop (internal loop, hairpin loop, respectively) in R corresponds to
the node labeled “Bk” (“Ik”, “Hk”, respectively) in RT if the exterior pair
is the kth base pair in R. For example, the node labeled “M5” (“B18”,
“I24”, “H31”, respectively) in the tree RT shown in Fig. 1(b) corresponds
to the exterior pair of the multibranched loop (bulge loop, internal loop,
hairpin loop, respectively) where the exterior pair is the 5th (18th, 24th,
31st, respectively) base pair in the RNA secondary structure R shown in
Fig. 1(a). For each node v in the tree RT, we use NB(v) to represent the
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Fig. 1. The tree representation of RNA secondary structure. (a) An RNA secondary
structure is comprised of base pairs, which are numbered according to the order from
the 5′ end to the 3′ end of the secondary structure. (b) The base pairs are organized
into an ordered labeled tree. Each node in the tree corresponds to a base pair in the
secondary structure and vice versa. The numeric number next to each node in the tree
is the position of that node in the left-to-right postorder traversal of the tree.
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number of bases v has. If the node label of v is “Pi” for some i, NB(v) = 2.
If v corresponds to the exterior pair of a loop, NB(v) equals the number
of bases in that loop.

Let R1 and R2 be two RNA secondary structures. Let RT1 (RT2,
respectively) be the tree representing R1 (R2, respectively). Let rt1 be a
node in RT1 and let rt2 be a node in RT2. The dissimilarity between the
two nodes rt1 and rt2, denoted δ(rt1, rt2), is calculated as follows:

δ(rt1, rt2) = |NB(rt1) − NB(rt2)|
|NB(rt1) + NB(rt2)| .

Thus, δ(rt1, rt2) equals 0 if rt1 and rt2 have the same number of bases.
We say node rt1 matches node rt2, denoted rt1 ≈ rt2, if δ(rt1, rt2) ≤ ε,
where ε is a user-determined threshold. We say tree RT1 matches tree
RT2, denoted RT1 ≈ RT2, if the two trees are isomorphic and each node
in RT1 matches its corresponding node in RT2. DiscoverR is based on the
dynamic programming algorithm presented in (Wang et al., 1998), which
is capable of finding the largest common structures of two trees.

The DiscoverR program is available on the web at http://datalab.
njit.edu/rna/DiscoverR/, which can find the largest common sub-
structures or patterns of two RNA secondary structures modeled by trees
as described above. Figure 2 shows the output of the DiscoverR program
given two RNA secondary structures as input, where beginning and end-
ing positions of the contiguous bases on the common patterns in the two
input structures are printed out. In Fig. 3, the output of the DiscoverR
program is portrayed using RnaViz 2 (Rijk et al., 2003), where the com-
mon patterns of the two input structures are highlighted. This tool is used
to mine conserved structured RNAs in the human genome, as described
in the next section.

4. Results

We applied DiscoverR to finding conserved RNA secondary structures
in the human genome and examined how the structures we found dif-
fer from the results obtained from other studies that were recently car-
ried out for finding conserved RNA secondary structures in the human
genome (Washietl et al., 2005; Pedersen et al., 2006; Khaladkar et al.,
2008). Using 8-way human-referenced vertebrate genome alignments,
Washietl et al. (Washietl et al., 2005) detected 91 676 conserved RNA
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(a)

(b)

(c) (d)

Fig. 2. (a) A query RNA. (b) A subject RNA. (c) The pattern found in the query
RNA. (d) The pattern found in the subject RNA. In (c), (d), beginning and ending
positions of the contiguous bases on the common patterns found in the query RNA
and subject RNA are displayed.

structures (at p > 0.5) using the RNAz program, which identified RNA
structures with similar thermodynamic stabilities across multiple species.
Pedersen et al. (Pedersen et al., 2006) developed a phylogenetics-based
stochastic context-free grammar (phylo-SCFG), and identified 48 479 can-
didate RNA structures using the same genome alignments. Torarinsson
et al. (Torarinsson et al., 2006) focused on human and mouse genomic
sequences that could not be aligned on the sequence level, and identified
conserved structures by FOLDALIGN surveyed in the Related Work sec-
tion. Khaladkar et al. (Khaladkar et al., 2008) developed a clustering-based
approach, named GLEAN-UTR, to identify stem-loop RNA structure
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Fig. 3. Common patterns found by DiscoverR in the two RNA molecules
gnl|11825421 and gi|118130856 in Fig. 2 are highlighted.
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elements in untranslated regions (UTRs) that were conserved between
human and mouse orthologs, and existed in multiple genes with common
Gene Ontology terms. For the 10 448 human genes that were analyzed,
Khaladkar et al. obtained 90 RNA structure groups, containing 748 dis-
tinct RNA structures in 5′ or 3′ UTRs from 698 genes.

We began with the 130 conserved human RNA structures each hav-
ing at least 14 bases identified by GLEAN-UTR that were found to be
overlapping with the conserved structures detected by Washietl et al. and
Pedersen et al. (Fig. 4 and Additional file 4 in (Khaladkar et al., 2008)).
The structures predicted by Torarinsson et al. did not overlap with these
130 RNA structures. We located the genomic regions of these 130 RNA
structures (Pruitt and Maglott, 2001), and mapped the genomic regions
to the 8-way human-referenced (hg17) vertebrate genome alignments
available at the UCSC Genome Browser (http://genome.ucsc.edu/).
We selected the 8-way genome alignments that fully contained the

8-way alignment blocks
(102)

Sets of multiple structures
(102)

Conserved human substructures with 
≥ 14 bases that occur in ≥ 6 species 

(577)

Structures identified by 
GLEAN-UTR

(130)

Find patterns
by DiscoverR with ε = 0.1

Remove gaps and fold

Genomic regions with ≥ 14 bases that are 
part of conserved human substructures

(56)

Fig. 4. Illustration of the flowchart of our approach for mining conserved structured
RNAs in the human genome.
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genomic regions of the RNA structures (if a structure straddled two differ-
ent genome alignments, that structure was excluded). Some of the selected
genome alignments were long, with several thousand nucleotides. We
extracted a subalignment or alignment block from each selected genome
alignment where the length of an alignment block was Ln and each align-
ment block fully contained the genomic region of at least one structure
listed in Additional file 4 in (Khaladkar et al., 2008). (In the study pre-
sented here, Ln was set to 300.) If the length of a selected genome align-
ment was less than Ln, that whole genome alignment was treated as an
alignment block. This step resulted in 102 alignment blocks where each
alignment block had four to eight sequences (species).

We then designed a systematic approach to detecting conserved
human structures using DiscoverR, which worked as follows. For each
alignment block B, we removed gaps in it and obtained a set SB of eight
or fewer sequences for that alignment block. Using the Vienna RNA Pack-
age (version 1.7.2) (Hofacker, 2003), we folded each sequence in SB to
get its minimum-energy secondary structure, also placed in SB. We then
compared the human structure, H , with each of the other structures, R,
in SB using Discover R(with ε = 0.1). Specifically, for the tree HT repre-
senting H and the tree RT representing R, we found the largest common
substructures of HT[i] and RT[j ], for all 1 ≤ i ≤ |HT | and 1 ≤ j ≤ |RT |.
The found patterns or substructures of the human structure H were stored
in a list, denoted List. Each substructure in List had at least 14 bases as
in (Khaladkar et al., 2008); substructures with less than 14 bases were
excluded from List. We identified those human substructures in List that
occurred in at least Occur secondary structures in SB. (In the study pre-
sented here, Occur was set to 6.) If the number of secondary structures
in SB was less than Occur, no substructure in List qualified to be a solu-
tion. Here a solution was a conserved human substructure that occurred
in at least Occur species and had at least 14 bases. This step resulted in
577 qualified substructures. Among the 577 found substructures, some
were substructures of others; these subpatterns were eliminated from fur-
ther consideration. Within the remaining qualified substructures, there
were 56 genomic regions each having at least 14 contiguous bases (short
regions with less than 14 bases were not considered as in (Khaladkar et al.,
2008)). This structure mining method is illustrated in Fig. 4. The genomic
regions within the conserved human substructures found by our approach
are listed in Table 1. It can be seen from Table 1 that some of the conserved
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Table 1. Results of the experiments performed in this study.

Chromosome Start Position Length Strand Overlap with

Genomic regions within conserved human substructures that occur in eight species.

Chr6 26265302 14 + P
ChrX 106763864 27 − K, P

Genomic regions within conserved human substructures that occur in seven species.

Chr1 96992213 19 + W
Chr2 144979616 17 − −
Chr2 144979712 17 − K, P
Chr3 197265646 23 − P
Chr3 197265693 23 − −
Chr3 197265758 23 − K, P
Chr3 197266161 25 − K, P
Chr3 197266211 25 − K, P
Chr6 19947838 20 + K, W, P
Chr6 19947871 21 + K, W
Chr6 168884945 15 + K, P
Chr14 28308288 16 + −
Chr17 59926225 18 − −
ChrX 106763863 29 − K, P

Genomic regions within conserved human substructures that occur in six species.

Chr1 8006261 15 − −
Chr1 96991635 15 + W
Chr1 96991697 18 + W
Chr1 96992209 27 + K, W
Chr2 14726767 16 + W
Chr2 144979653 18 − P
Chr2 144979710 21 − K, P
Chr2 144979850 16 − −
Chr2 190270896 21 − K, P
Chr3 37835407 14 + −
Chr3 37835524 14 + −
Chr3 161701103 17 − K, P
Chr3 161701244 17 − P
Chr3 197265645 25 − P
Chr3 197265757 25 − K, P
Chr3 197266160 27 − K, P

(Continued)
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Table 1. (Continued)

Chromosome Start Position Length Strand Overlap with

Genomic regions within conserved human substructures that occur in six species.

Chr3 197266210 27 − K, P
Chr5 179136573 17 + P, W
Chr5 179136607 17 + W
Chr5 179136709 16 + −
Chr6 134532540 16 − K, P
Chr7 38196970 16 − K, P
Chr7 77229459 15 + W
Chr7 77229519 33 + K, P, W
Chr7 101486144 16 + K, P
Chr7 101486165 14 + W
Chr8 117927555 16 − −
Chr8 117927581 22 − −
Chr8 136728826 16 + W
Chr9 89160953 15 + K, P, W
Chr10 30790413 19 + K, W, P
Chr10 119298963 14 + −
Chr10 119298984 17 + P
Chr14 28308435 17 + W, P
Chr14 53964017 14 − −
Chr14 53964115 22 − −
Chr17 59926370 23 − −
Chr19 1386284 25 + P
Chr19 39410717 38 + K, P, W
Chr19 39410811 20 + W

human substructures found by our approach overlap with the known struc-
tures detected by the existing methods (K for GLEAN-UTR (Khaladkar
et al., 2008), P for Pedersen et al. (Pedersen et al., 2006) and W for
Washietl et al. (Washietl et al., 2005)), while others are novel ones that are
not identified previously.

5. Conclusion

We presented a new tool (DiscoverR) for finding common patterns in
RNAs and described a new approach to detecting conserved human struc-
tures using DiscoverR. Experimental results showed that the proposed
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approach is able to locate many genomic regions with conserved RNA
secondary structures where some of the genomic regions overlap with
known regions detected by the existing methods (Washietl et al., 2005;
Pedersen et al., 2006; Khaladkar et al., 2008) while others are not reported
previously. These results demonstrate that DiscoverR is a useful tool for
RNA motif discovery (Leontis and Westhof, 2002; 2003). The findings
also indicate that there may exist much more conserved RNA secondary
structures in the human genome that remain to be explored.
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Chapter 6

Benchmarking of Methods
for Motif Discovery in DNA

Kjetil Klepper∗, Geir Kjetil Sandve†, Morten Beck Rye∗,
Kjersti Hysing Bolstad∗ and Finn Drabløs∗,‡

Reliable benchmarking is a prerequisite for unbiased comparison of
alternative approaches to motif discovery in DNA. This chapter focuses on
datasets and procedures for benchmarking of discovery methods for tran-
scription factor binding sites in genomic DNA. The general concept of
benchmarking is discussed briefly, including the importance of using sep-
arate training data, test data and benchmark data. The need to distinguish
between different aspects of the motif discovery process during benchmark-
ing is also discussed. The various score functions for binding site predictions
are presented, including both sequence based scoring and position-weight
matrix based scoring as well as the relationship between these. The prob-
lem of unannotated binding sites in real sequences as well as the high rate
of false positive predictions normally associated with motif discovery is also
discussed in this context. Relevant criteria for good benchmark sets and some
frequently used datasets are presented, together with new and improved sets
for benchmarking of both single motif and module based prediction meth-
ods. Approaches towards genome-wide benchmarking using ChIP-chip and
in particular ChIP-seq data are evaluated, including the problem of identify-
ing functionally significant weak binding sites and benchmarking of methods
using additional genome data as prior information. This is extended into a dis-
cussion of benchmarking without access to high-quality reference datasets of
known binding sites. Finally, benchmarking of prediction methods of partic-
ular relevance to genome-based motif discovery is briefly discussed, including
promoter and transcription start site prediction and nucleosome positioning.

∗Department of Cancer Research and Molecular Medicine, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway
†Department of Informatics, University of Oslo, Norway
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1. Introduction

It has been demonstrated several times that robust in silico identification
of transcription factor binding sites (TFBSs) in eukaryote genomes is an
extremely challenging problem (Tompa et al., 2005). As a consequence,
very many different approaches have been tried; in a survey from 2006
more than 100 different published methods were identified (Sandve and
Drablos, 2006), and the number is still growing. These methods use
different algorithms and motif representations, and many methods also
include additional information like evolutionary sequence conservation
or interaction between binding sites into the search process. However,
the improvement in performance is in most cases only marginal. It is
therefore important to ensure that the criteria used for comparing dif-
ferent methods are relevant to the problem at hand, sensitive to signif-
icant differences between methods, and generally accepted within the
research community. It is also important to consider alternative bench-
marking strategies and datasets that may be needed for proper evaluation
of novel approaches to motif discovery.

A benchmark may be defined as a standard by which something is
evaluated or measured. The term originates from surveying, where a chis-
eled mark in a rock was used to indicate the position of the bench for
the levelling rod. A benchmark was therefore a fixed reference point for
repeated measurements. The term is now used in several areas to indi-
cate a reference-based approach for comparing performance. In computer
science, specific software applications are used to compare the perfor-
mance of computer systems, as for example the LINPACK benchmark
used to rank supercomputers (http://www.top500.org/). In a simi-
lar way, specific datasets can be used to compare the performance of
software tools.

In this paper, we focus on benchmarking of methods for identification
of transcription factor binding sites in DNA. In particular, we explore rel-
evant score functions and suitable benchmark datasets, and indicate best
practice with respect to actual benchmarking. However, it is a problem
that many datasets seem to be under-annotated (Hawkins et al., 2009),
leading to misclassification of predictions as false positives. We will there-
fore look at improved datasets for benchmarking and also discuss briefly
the potential for benchmarking without having to rely on annotation data
for the benchmark dataset.
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2. Score Functions

A typical benchmarking study includes one or more sequence sets with
annotated binding sites (often described as the “gold standard”) and one
or more score functions for evaluating the match between predicted and
known binding sites. Most score functions have been developed for this
situation. However, many of these functions are strongly affected by the
high rate of false positives that are normally encountered in motif dis-
covery. This situation is often described by what is known as “the futility
theorem” (Wasserman and Sandelin, 2004). It is therefore worth consid-
ering alternative score functions, or even scoring where no information
about known binding sites is used at all, as discussed towards the end of
this chapter.

2.1. Scoring by known binding sites

Based on the transcription factor (TF) binding site locations predicted by
a motif discovery tool, each nucleotide in the sequence can be labeled as
being either in a predicted binding site or in a predicted background. To
evaluate the performance of a program, its predictions can be compared
against the location of known motifs, using real sites in real background
sequence or sites inserted into synthetic background sequences.

When a program correctly predicts that a nucleotide is part of a binding
site, this is called a true positive prediction (TP). A nucleotide correctly
predicted as not being part of a binding site is a true negative (TN). If a
nucleotide is predicted as lying within a binding site when in reality it is not,
this is called a false positive prediction (FP), also known as a Type I error.
A missed binding site position on the other hand is called a false negative
(FN) or Type II error. The number of TP, TN, FP and FN predictions
(Fig. 1) serves as basis for several integrated performance measures, the
formulas for which are listed in Table 1.

Sensitivity (Sn, also called recall rate) is a measure of the fraction of
true binding site nucleotides that have been correctly discovered by a
program. It is found by dividing the true positive predictions by the total
number of true sites (the ones correctly predicted (TP) and the ones missed
(FN)). A program that has high sensitivity is less likely to miss out on true
binding sites (or commit type II errors). This measure should never be
interpreted in isolation, however, since it is possible for a method to obtain
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FN FN TPTPTN TN TNFP FP

TP FN FP

Known

Pred

Nucl

Site

Fig. 1. Comparing known and predicted binding sites. Known and predicted (Pred)
binding sites in a DNA sequence are compared at the level of nucleotides (Nucl) and
individual binding sites (Site) and classified into TP, TN, FP and FN nucleotides or TP,
FP or FN sites. The classification of sites depends on the degree of overlap between
known and predicted sites, where e.g. an overlap of at least 25% is required for a positive
prediction.

Table 1. Formulas for commonly used score functions.

Measure Formula Range

Sensitivity Sn = TP/(TP + FN ) 0 to 1

Specificity Sp = TN /(TN + FP ) 0 to 1

Positive Predictive Value PPV = TP/(TP + FP ) 0 to 1

Negative Predictive Value NPV = TN /(TN + FN ) 0 to 1

Performance Coefficient PC = TP/(TP + FN + FP ) 0 to 1

Average Performance AP = (Sn + PPV )/2 0 to 1

F-measure F = 2 × (Sn × PPV )/(Sn + PPV ) 0 to 1

Accuracy Acc = (TP + TN )/(TP + TN + FP + FN ) 0 to 1

Correlation Coefficient CC = TP×TN −FN ×FP
(TP+FN )(TN +FP )(TP+FP )(TN +FN ) −1 to 1

Average Performance at the site level is often known as Average Site Performance
(ASP), and Average Nucleotide Performance (ANP) may be used in an analogous
way. For other measures n and s are often used to distinguish between nucleotide or
site level statistics (e.g. nPPV or sPPV).

a perfect sensitivity score simply by predicting all nucleotides as belonging
to binding sites.

Sensitivity is thus usually seen in combination with specificity (Sp),
which is analogous to sensitivity except that it rates nonbinding site
nucleotides. Specificity is the number of nucleotides correctly predicted as
background divided by the total number of true background nucleotides.



December 16, 2010 16:54 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-ch06

Benchmarking of Methods for Motif Discovery in DNA 139

Programs that show high specificity are less likely to make false binding
site predictions (commit type I errors).

Another measure to compare against sensitivity is the positive predic-
tive value (PPV) or precision rate, which is the proportion of nucleotide
binding site predictions made by a program that actually correspond to
real binding sites. PPV is sometimes preferred over Sp in motif discovery
because it is not biased by the large number of nonbinding sites in these
datasets. A high sensitivity score combined with a low PPV would suggest
that a program is able to find a high proportion of the true binding sites
in a sequence but at the expense of simultaneously making a lot of unde-
sirable false predictions. Analogous to positive predictive value, but not
as frequently used for motif discovery evaluation, the negative predictive
value (NPV) is the proportion of predicted background nucleotides that
are indeed background.

While sensitivity is the fraction of correctly predicted binding sites in
relation to all true sites and PPV is the fraction of correctly predicted sites
in relation to all predicted sites, the performance coefficient (PC) captures
aspects of both of these measures. PC is the number of true positive pre-
dictions divided by the sum of all true binding sites (TP and FN) and
all predicted binding sites (FP). A more straightforward combination of
sensitivity and PPV is the average performance (AP), which is simply the
arithmetic mean of these two measures, while the related F-measure is
the harmonic mean. The PC, AP and F measures reward programs that
are able to correctly locate more true binding sites while at the same time
penalize spurious binding site predictions. For the AP and F-measure, it
is also easy to weight the relative importance of precision and recall by
slightly modifying the basic formulas.

Each of the measures mentioned so far use only two or three out of
the four TP, TN, FP and FN variables. They are thus aimed at measuring
particular aspects of performance, and it is often possible for a program to
optimize for one or more of these measures at the expense of others. For
instance, programs can generally obtain high sensitivity scores by making
numerous binding site predictions or high specificity scores by being more
conservative.

One measure that combines all four variables is accuracy. Accuracy is
the fraction of nucleotides that are correctly classified, either as binding
site or background. Although this measure provides a more overall view
of performance, the result can still be biased if the number of binding
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site nucleotides in a sequence is skewed compared to the number of back-
ground nucleotides, which is usually the case. If for instance the ratio of
binding sites to background is small, a high accuracy can be obtained by
predicting all nucleotides as background. Another measure that combines
all four variables and also accounts for differences in the number of bind-
ing site and background nucleotides is the correlation coefficient (CC).
CC is a measure of the overall agreement between predicted and true
locations. A CC score of 1 means that the predictions made by a program
are in perfect agreement with the true locations, while a score of −1 would
imply the complete opposite: that a program has predicted all true bind-
ing sites as background and all background as binding sites. A CC score
close to zero would mean that there is no statistical correlation between
the predictions made by a program and the location of true binding sites.
Such a score is to be expected if the predictions are based on random
chance.

Although nucleotide level performance measures are the most accu-
rate, this fine level of evaluation can also be too stringent, since it can
severely penalize predictions that are slightly off target even though the
prediction itself mostly agrees with the location of a true binding site. This
can be problematic, for instance for motif discovery programs that operate
with a fixed motif width when the annotated binding sites have varying
lengths.

An alternative to nucleotide level scoring is site level scoring, where one
does not look at whether individual nucleotide positions are predicted cor-
rectly or not, but whether the location of a predicted site overlaps with
the true binding site. At the site level, a predicted binding site is consid-
ered a true positive if there is at least a certain degree of overlap with a
true binding site (for instance minimum 25% overlap). A prediction which
does not overlap with a true site, or has too little overlap, is considered a
false positive prediction, while a true binding site that is not overlapped
by any prediction is a false negative. It is not easy to define what we
mean by a “site” for negative data, and true negative (TN) predictions
are therefore not used at the site level. Hence, the specificity, accuracy and
correlation coefficient measures can only be calculated at the nucleotide
level.

If the benchmark dataset consists of several sequences, or if several
datasets are used for evaluation, it might be desirable to produce a single
aggregated score that summarizes the overall performance with respect to
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a chosen score function. There are different ways to approach this (e.g.
Tompa et al., 2005). One option is to calculate the score function inde-
pendently for each sequence or subset and then average these values to
generate a final score. An alternative option is to sum up TP, TN, FP and
FN counts for all the sequences and use these combined counts as input
to the scoring function. With the first option, the results obtained for each
subset will have equal weight in the total score irrespective of the proper-
ties of the subset. On the other hand, by combining the counts from all the
sequences before calculating the total score, the properties of each subset
become important. The net effect depends upon the score function; e.g.
some functions are affected by variation in sequence length, but not by
variation in motif length, and vice versa.

2.2. The futility theorem

The discussion so far has focussed on the comparison between real and
predicted binding sites. However, there is a subtle discrepancy between
what motif discovery tools actually predict and what we would like them to
predict. The “gold standard” reference datasets we use to evaluate meth-
ods usually consist of sequences containing experimentally verified func-
tional binding sites, while motif discovery methods look for occurrences
of potential motifs in the sequences. The mere presence of a motif, how-
ever, does not imply a functional binding site. In fact, it is expected that
most binding site motifs encountered in a genome play no functional role
whatsoever in vivo, even though the sites themselves might very well bind
transcription factors in vitro. Reasons for this can be that the conformation
of chromatin in vivo precludes access to certain sites or because transcrip-
tion factors require the presence of additional factors binding nearby to
successfully exert their biological function. It has been estimated that a
whole-genome scan with a binding site model for a given transcription
factor would typically incur in the order of 1000 false predictions for each
functional site (Wasserman and Sandelin, 2004). Thus, predicting binding
sites based on sequence similarity alone is essentially a futile undertaking
since nearly all sites found this way will have no regulatory role — an asser-
tion which has been termed the “futility theorem.” Hence, current motif
discovery methods are often plagued with high false-discovery rates, and
performance evaluations that are based on comparing predicted sites to
annotated sites will consequently suffer.
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2.3. Alternative scoring

Computational motif discovery is to some extent a two-part process, where
motif definition on the one hand and identification of potential binding
sites in target sequences on the other hand may be regarded as separate
aspects of this process. In most cases, the program either uses a predefined
model and finds binding sites by scanning the sequences with that model,
or the program does de novo motif discovery by optimizing a motif model
directly or by optimizing a selection of potential binding sites, which sub-
sequently may be used to build a motif model. In most cases, only the
predicted binding sites are evaluated, as already described. However, it
may give additional information on benchmark performance if we also
evaluate the motif model itself, independent of the specific binding sites,
in particular since this evaluation may be less affected by inadequate anno-
tation of binding sites in the benchmark sequences.

A commonly used motif representation is the position weight matrix
(PWM) or position specific scoring matrix (PSSM), which is often based
on a count matrix from a multiple alignment of binding sites (Wasserman
and Sandelin, 2004). Several prediction tools report a count matrix or
a PWM as part of the prediction result; otherwise a PWM can easily be
generated from the list of predicted binding sites. This PWM will not
be strongly affected by unannotated sites as long as they are similar to the
known binding sites, and it can be compared to a PWM generated from the
benchmark set or from external data (e.g. TRANSFAC (Matys et al., 2003)
or Jaspar (Sandelin et al., 2004)), using one of several available methods
for comparing matrices (e.g. STAMP (Mahony and Benos, 2007)).

Figure 2 (Bolstad, 2009) shows a comparison between nucleotide level
correlation score (nCC) (Tompa et al., 2005) and significance of PWM
similarity (p-value) (Mahony and Benos, 2007) as performance measures
for several de novo motif discovery methods (MEME (Bailey et al., 2006),
MotifSampler (Thijs et al., 2001), Weeder (Pavesi et al., 2004), AlignACE
(Roth et al., 1998) and Ameme (Ao et al., 2004)) tested with alternative
parameter settings, using relatively easy (“Algorithm”) benchmark sets
of random sequences (“Markov”) with implanted motifs (Sandve et al.,
2007). The figure shows that there is a reasonably clear distinction between
successful and unsuccessful cases and a good correlation between the two
performance measures, but with a couple of interesting exceptions. These
two measures (correlation and PWM similarity) give slightly different and
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Fig. 2. PWM similarity vs nCC score functions. Performance of several motif discov-
ery tools with alternative parameter settings on a benchmark dataset consisting of real
binding sites in randomized background sequences. The tools are plotted according
to the number of subsets in the benchmark set with reasonable binding site prediction
(nCC (Tompa et al., 2005)) and PWM similarity (p-value from STAMP (Mahony and
Benos, 2007)). The methods tested were MEME (�), MotifSampler (�), Weeder (�),
AlignACE (♦) and Ameme (�).

potentially complementary information, and there is a clear value in com-
bining information from such alternative performance measures.

3. Benchmark Datasets

It has until now been very challenging to find comprehensive benchmark
datasets for motif discovery in DNA. This has been mainly due to limited
availability of experimental data with sufficient accuracy. This situation
is likely to change with the recent development of chromatin immuno-
precipitation and sequencing (ChIP-seq) protocols for high-throughput
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genome-wide identification of binding sites for individual transcription
factors. However, we will first discuss the main experiment-based and syn-
thetic datasets that have been available so far, as well as the benchmarking
procedures that have been defined based on these data. We will then pro-
ceed by discussing how the availability of genome-wide ChIP-seq datasets
may lead to more realistic and sensitive benchmarking.

3.1. Criteria for good benchmark datasets

As the purpose of benchmarking is to give indications on what perfor-
mance can be expected in real scenarios, four basic requirements should
be met:

1. Datasets should not differ too much from typical real cases.
2. Datasets should represent challenging but solvable scenarios.
3. Resulting scores should be unbiased with respect to motif discovery

method.
4. Resulting scores should be reasonably robust with respect to minor

changes in algorithm or parameters.

The first requirement that benchmark sets have to be representative is
obvious, but due to the broad usage of motif discovery methods it is not
straightforward to define precisely. The second requirement means that we
should focus on those datasets where it is reasonable to assume that motif
discovery may be able to find a relevant solution. For instance, as single
motif discovery is typically based on overrepresentation of patterns, the
dataset needs to be of a certain size in order for the binding sites to stand
out from random variability. Having datasets that are reasonably large
and diverse and with sufficient conservation between binding sites means
that motif discovery should be possible in theory, leaving it to the meth-
ods to meet this challenge. The third requirement means that a dataset
should not favor a certain set of discovery approaches. This is typically the
case with synthetic benchmark sets, as discussed below. Such biases could
also result from the procedures used to select and process experimen-
tal data to be used for benchmarking. The fourth requirement basically
means that a benchmark suite should be sufficiently large and varied to
give robust and reproducible results, and not too sensitive to nonsignif-
icant fluctuations in output caused e.g. by the stochastic nature of some
methods.
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However, it is important to realize that even if the dataset itself is
unbiased, it can still be used in a biased way. There are several examples
of published motif discovery methods where the performance is optimal
mainly on a specific dataset published together with the method, and it
is tempting to believe that effects related to overtraining are involved.
Most method development includes some implicit training in terms of
parameter tuning and choice of background model. To avoid overtraining,
it is important to do this on a separate dataset (training set) and use the
benchmark set only for benchmarking (test set). If this is difficult to realize
then cross validation may be an alternative, using a random subset for
training and the remaining data for testing, and repeating this over several
splits of the dataset.

3.2. Substring-based datasets

Most available benchmark sets are what we could call substring-based,
meaning that they use substrings of DNA (e.g. promoter regions) with
annotated binding sites. Sometimes the genomic location of each substring
may be known, but in many cases only the DNA string itself and the
binding site positions within the string will be available.

Table 2 lists a selection of recent benchmark suites, showing the num-
ber of datasets, the minimum number of sequences per dataset, as well
as general benchmark type. The single motif discovery benchmarks only

Table 2. Some important benchmark datasets.

Benchmark # seq sets Min # seqs Comment

Single motifs
(Pevzner and Sze, 2000) 8 20 Synthetic
(Hu et al., 2005) 62 2 E. coli
(Tompa et al., 2005) 52 2 TRANSFAC
(Sandve et al., 2007)

Algorithm 50 5 TRANSFAC
Model 25 18 TRANSFAC

Regulatory modules
(Krivan and Wasserman, 2001) 1 12 Liver-specific
(Wasserman and Fickett, 1998) 1 24 Muscle-specific
(Ivan et al., 2008) 33 4 Drosophila
(Klepper et al., 2008) 10 5 TRANSCompel
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provide sets of sequences with shared regulatory motifs. The composite
motif discovery benchmark (Klepper et al., 2008) also provides binding
motifs for relevant as well as randomly selected transcription factors, in
order to control the level of “noise” in the benchmark.

3.2.1. Synthetic datasets

Synthetic datasets may be an attractive alternative for benchmarking as
they allow full control over dataset properties. Given an acknowledged
model of real data, it is possible to benchmark performance of different
methods on synthetic data generated according to alternative parameteri-
zations of the model. The problem with this approach is that real data are
complex, varied and not accurately understood. There are almost as many
suggestions on appropriate data models as there are methods. By gener-
ating datasets according to a given model, one can give an unintended
advantage to methods that rely on that same model for motif discovery.
This may not be appropriate, in particular since although a set of methods
may be based on the same particular model, they may have varying robust-
ness when input data do not match this assumed model. Many different
synthetic datasets have been accompanying newly proposed methods, but
few synthetic datasets have been used in independent benchmarking. A
synthetic benchmark suite based on the k-mismatch model (string match-
ing allowing up to k mismatches) has been proposed (Pevzner and Sze,
2000). Some benchmarks (e.g. Tompa et al., 2005; Sandve et al., 2007)
include semi-synthetic datasets where real binding sites have been inserted
into synthetic background sequences, generated by a Markov model.

3.2.2. Single motifs

A seminal benchmark by Tompa et al. (2005) represented the first broad
comparison of motif discovery methods, with 13 commonly used methods
being evaluated. The benchmark suite consisted of 52 organism-specific
datasets (together with four negative controls) compiled from the TRANS-
FAC database (Matys et al., 2003). Although having organism-specific
datasets has advantages, it also enforces restrictions on dataset compila-
tion. Thus, many of the datasets used in the comparison were very small,
with only 2 sequences in the smallest datasets. This influences the robust-
ness of the benchmarking, but it also raises the question whether it is



December 16, 2010 16:54 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-ch06

Benchmarking of Methods for Motif Discovery in DNA 147

reasonable to expect any meaningful results from motif discovery on some
of these datasets.

An alternative benchmark suite was proposed by Sandve et al. (2007).
This benchmark was also based on experimental data from TRANSFAC,
but made some alternative choices for compiling the datasets. First, it
combined regulatory regions having instances of the same motif in related
organisms, which gave considerably larger datasets. It then analyzed upper
limits to motif discovery performance according to a given model, and
made two groups of data depending on the ability of the chosen model
to distinguish between annotated binding sites and remaining sequence
in each set. This gave datasets that were possibly less realistic, due to the
mixed origin of data, but more robust and more controlled with respect to
expected optimal performance compared to the datasets used by Tompa
et al. Evaluation of benchmark performance based on these datasets is
available as a web-based service (http://tare.medisin.ntnu.no/).

3.2.3. Regulatory modules

Transcription factors seldom work in isolation but cooperate with other
factors to regulate genes in specific ways. A collection of nearby binding
sites for transcription factors that work in concert is called a cis-regulatory
module (CRM). A gene can have several associated CRMs that regulate
the gene in different contexts. Discovering such cis-regulatory modules
computationally is the next logical step up from discovering single tran-
scription factor binding sites, and several programs have been developed
for this problem. However, the complex nature of CRMs makes these ele-
ments laborious to identify experimentally, and the availability of data on
verified regulatory modules is limited.

One of the oldest sources of CRM data is a set of about fifty CRMs
that regulate gene expression along the anterior–posterior axis during
Drosophila blastoderm development. The blastoderm CRMs have been
included, in addition to many other modules, in the REDfly database, a
publicly available resource on regulatory elements in Drosophila (Halfon
et al., 2008). REDfly currently contains 737 CRMs associated with 249
genes. These modules were originally identified without regard to their
constituent single binding sites, and although version 2.0 includes data
about single sites taken from the former FlyReg database, the CRM
regions in REDfly remain largely uncharacterized with respect to their
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actual binding sites. In fact, most of the CRMs lack any information about
their constituent sites whatsoever. Ivan et al. (2008) used the data from
REDfly to construct benchmark datasets for module discovery tools. The
annotated CRMs were first grouped into separate datasets based on infor-
mation about the expression pattern of the regulated genes, so that CRMs
with similar tissue-specificity were grouped together. To avoid potential
problems with other unknown CRMs in the vicinity of the annotated
modules, each CRM was taken out of its original genomic context and
planted into a synthetic background sequence. The background sequence
was constructed by concatenating 1000 base pair (bp) segments randomly
sampled from Drosophila noncoding regions, but with GC content similar
to the original flanking sequence of the CRM. The resulting 33 datasets
contained from 4 to 77 sequences each (average 16) with CRM lengths
ranging from 83 to 2013 bp in sequences with total length of 10 times the
size of corresponding CRM. These benchmark datasets only contain infor-
mation on the location of the full module and no information on the
binding sites for individual transcription factors.

Two other widely used module discovery benchmark datasets have
been based on CRMs that drive tissue-specific regulation of genes in mus-
cle and liver tissue respectively (Wasserman and Fickett, 1998; Krivan and
Wasserman, 2001). These modules where taken from the genomes of var-
ious mammals and chicken and have an average length of about 100 bp.
The muscle-specific CRMs consist of various combinations of binding sites
for the five transcription factors Mef-2, Myf, Sp-1, SRF, and Tef, while the
liver modules have binding sites mainly for CREB, HNF-1, 3 and 4 as well
as a few other factors.

TRANSCompel is a database that specializes in composite motifs
from a variety of sources, but the majority of the annotated modules
come from human, mouse and rat (Matys et al., 2006). TRANSCompel
contains CRMs consisting of pairs and triplets of closely located bind-
ing sites where experiments have confirmed cooperative action between
the transcription factors. The database is available both in a free version
containing 322 modules and a commercially licensed version currently
containing 428 modules. Klepper et al. (2008) derived 10 benchmark
datasets from a subset of binding site pairs in TRANSCompel, where each
dataset was based on sequences with similar CRMs containing binding
sites for the same two transcription factors. These datasets provide infor-
mation on both the location of the single sites and the full module, and



December 16, 2010 16:54 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-ch06

Benchmarking of Methods for Motif Discovery in DNA 149

evaluation of benchmark performance is available as a web-based service
(http://tare.medisin.ntnu.no/).

3.3. Genome-wide datasets

The ultimate goal of motif discovery is to be able to work on a genome-
wide scale, in particular since it is often difficult to identify the correct
regulatory regions for datasets based on limited genomic substrings (e.g.
promoter regions). But even for substring-based approaches it does make
sense to develop datasets in a genome-wide context to make it easier to
integrate various types of additional information like evolutionary conser-
vation and histone modification patterns into the prediction process. It
has been shown that such external data improve the performance of motif
discovery methods (Hawkins et al., 2009; Whitington et al., 2009).

Both ChIP-seq and ChIP-chip technologies are able to map
TF-binding on a genome-wide scale. However, ChIP-seq is rapidly becom-
ing the most popular method for experimental identification of tran-
scription factor binding sites compared to ChIP-chip. In a ChIP-seq
experiment, the binding regions can typically be narrowed down to
100–300 bp, which is a major improvement compared to the regions
identified by ChIP-chip (often above 1000 bp). As more ChIP-seq data
become available, the relatively precise regions defined by ChIP-seq
should be ideal for benchmarking purposes, in particular as more data
and improved procedures may help us to identify regulatory complexes,
and not only single binding sites (Wallerman et al., 2009).

The methodology behind a ChIP-seq experiment is as follows. First
cross-linking of DNA and proteins in living cells is used to capture DNA
bound by transcription factors in vivo. Sonification is used to fragment
the DNA. The average length of the resulting fragments is typically
200–300 bp. Immunoprecipitation using an antibody specific to the pro-
tein of interest is then used to select the DNA fragments bound by that
transcription factor. Reversion of the cross-link separates the transcription
factor from the DNA, and the resulting DNA fragments can be sequenced
using high-throughput sequencing techniques. Only 25–30 bp of each
fragment is sequenced, and this constitutes a tag. Tags are mapped to the
genome, and a cluster of tags around a certain genomic region indicates
a high probability that the TF is binding in this region. A typical region
where binding has occurred is shown in Fig. 3, where the peaks indicate
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Fig. 3. Example of ChIP-seq peak data. Typical peak data from a ChIP-seq exper-
iment. (a) Peaks as they appear on the positive (upper) and negative (lower) strand.
(b) Combined peak, where the tags on each strand are shifted towards the center. The
peak shows tag-enrichment from position 1600 to 1800. Significant binding regions
from two software tools are shown, where the squares indicate regions returned by
the program MACS (Zhang et al., 2008), and the arrows indicate regions returned
by the program SISSRs (Jothi et al., 2008). A region-scan by a standard PWM reveals
positions for potential binding sites, where the colors from gray to black indicate
the strength of the PWM-score. The darkest motif is a clear binding site, while
the others are ambiguous or possibly false positives. The ChIP-seq data are from a
study of NRSF (neuron-restrictive silencer factor) (Johnson et al., 2007), and the
PWM used (Schoenherr et al., 1996) was downloaded from the TRANSFAC database
(Matys et al., 2003).

tag density. The peak-shift observed in Fig. 3 is a result of limiting the
sequencing to 25 bp in each fragment while sequencing both strands.

In order to be useful for benchmarking, the tag cluster regions have
to be identified. Several freely available software tools exist for perform-
ing this task (Jothi et al., 2008; Zhang et al., 2008; Tuteja et al., 2009),
and typical results from two of them are shown in Fig. 3. However, some
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requirements have to be fulfilled for the defined regions to be useful as a
benchmark set. First, the regions have to be narrowed down to represent
only the underlying peak. This is necessary to avoid too many false positive
binding sites in the benchmark as described previously. Another problem
in ChIP-seq data is noise, and many of the regions defined by the soft-
ware do not represent relevant peaks or true binding sites. The false peaks
are usually compensated for by submitting samples of nonbound DNA to
the same ChIP-seq procedure, and comparing the resulting tags from the
nonbound DNA with those obtained when transcription factors are bound
to the DNA. This procedure reduces the number of false peaks consider-
ably. However, additional filtering is still needed to remove artefacts that
are not related to active binding sites. Finally, several well-defined peaks
do not seem to include recognizable binding sites, or only weak binding
sites. There may be several reasons for this: the transcription factor can, for
example, bind indirectly through another factor, or participate in coopera-
tive binding together with other factors. In the first case, there is no direct
contact between the transcription factor and the DNA, but the factor will
still be selected by the antibody. If the goal is to use the benchmark to
predict binding sites, it should be required that the defined peak region
includes at least one potential binding site. At the same time, proper eval-
uation and filtering of the peak regions will be required to produce a good
benchmark set.

The main advantage of a ChIP-seq dataset over most existing bench-
mark sets is coverage. Given that a good procedure has been used for iden-
tifying significant peak regions, we should expect the identified regions to
contain all active binding sites for the TF in question under that specific
set of experimental conditions (cell type, metabolic state, etc.). This means
that we should be able to use such datasets to test conditional prediction
of binding sites on a genomic scale. This is of course different from pre-
dicting all possible binding sites in a given promoter region, independent
of cell type or status, and it is also a much more challenging problem.
On the other hand, ChIP-seq gives us essential data for evaluating the
importance of additional information like evolutionary conservation and
nucleosome positioning as input to the prediction process. ChIP-seq data
also give us much more complete information on binding site status for
a particular experiment, i.e. we should expect much lower numbers of
unannotated active binding sites. Although this means that we are mov-
ing towards more cell-type specific datasets, as previously pointed out for
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predictions using chromatin modification data (Whitington et al., 2009),
this is probably an important and necessary step towards a more realistic
setting for motif discovery.

4. Benchmarking Without a
Benchmark Dataset

Most of the benchmarking approaches discussed so far are based on the
assumption that we are able to define a “gold standard” reference set,
i.e. a well-annotated sequence set where all binding sites are known and
annotated. However, this may actually be a very rare situation. In a recent
paper on assessment of TFBS prediction using phylogenetic motif models
(Hawkins et al., 2009), the initial conclusion was that using phylogenetic
information during TFBS prediction did not improve performance for any
of the methods that were tested. This was quite unexpected, as it has been
generally assumed that sequence conservation across species would help to
identify significant binding sites. The most likely explanation seems to be
that there are more weak binding sites than expected in most sequences.
Normally only strong binding sites will be known and annotated. How-
ever, more sensitive prediction methods will excel mainly in the predic-
tion of weak sites. In standard approaches to benchmark assessment, these
predictions will be incorrectly classified as false positives and the method
will therefore get a low performance score. Improved reference data, e.g.
from ChIP-seq analysis, may improve the situation, but we do not know
yet whether all relevant weak binding sites will be populated under the
experimental conditions used for a given ChIP-seq experiment. A syn-
thetic dataset can be an alternative if we are able to give a good definition
of weak binding sites relative to strong binding sites and nonbinding posi-
tions. This is normally not the case, although recent experimental data
may give some relevant input to such approaches (Badis et al., 2009). The
alternative approach used by Hawkins et al. (2009) was to estimate the null
distribution of motif scores, based on previous work on regular expression
motifs (Kheradpour et al., 2007). Then no information about the actual
binding site positions is needed.

In order to estimate the null distribution of scores for a given motif,
the motif was shuffled in a controlled way (mainly to maintain the general
conservation profile of the motif), and 100 motif variants were tested by
scanning against reference sequences, in this case from yeast. The motifs
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where the number of “hits” was comparable to the original motif were
then clustered together with known motifs from the same organism, and
the clusters containing known motifs were discarded. From the remain-
ing clusters, 20 representative motifs were selected, and these were used
to estimate the null distribution of scores for the real motif. Using this
approach, they were able to show that the inclusion of phylogenetic infor-
mation indeed improved prediction performance, as expected.

Although this is a very interesting approach, there are also several
potential problems. It may not be possible to find enough shuffled variants
for all motifs, e.g. because the motif itself has too much internal similarity,
or because the performance of the shuffled variants is too different from
the real motif, or because the shuffled variants are not different enough
from other real motifs. In order to design adequate benchmark datasets,
we have to get a better understanding of the importance of weak binding.
How weak can a binding site be and still be relevant? How important are
cooperative effects in weak binding sites? At least until we have more exper-
imental data on this, these “gold standard” free approaches may actually
be an important addition to traditional benchmarking.

5. Related Areas

Although the focus of this chapter is on benchmarking of TFBS pre-
diction methods, there are several associated areas where benchmarking
is essential because prediction performance may influence the quality of
TFBS prediction. Methods predicting genomic features that are correlated
with TF binding may for example be used as prior information in TFBS
prediction, and the quality of the prior information will then have con-
sequences for the performance of the TFBS prediction. One example is
the identification of gene regulatory regions. Although TFBS prediction
methods ideally should work well on genome-wide data, this is normally
not the case. We can therefore improve performance if we can focus on
active regulatory regions. Several methods have been developed for pre-
dicting transcription start site (TSS) and the core promoter region of a
gene (e.g. Abeel et al., 2008; Abeel et al., 2009), and similar approaches
may be used to identify regulatory regions within the gene as well as distal
enhancer regions. Within a given regulatory region, it is also relevant to
predict the position of nucleosomes (e.g. Segal et al., 2006) in order to
identify available binding sites. The quality of such approaches will both
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directly and indirectly influence the benchmarking discussed here, as it may
affect the selection of genome regions used for prediction, the association
between specific genes and their regulatory regions and the distinction
between true and false binding sites.

6. Conclusion

The choice of methods for prediction of transcription factor binding sites
should be based on an objective and unbiased assessment of performance.
The most obvious approach to this is benchmarking against a reference
dataset. However, this requires that the benchmarking itself is realistic
and unbiased. In a recent study we showed (Sandve et al., 2007) that
the data used by Tompa et al. (2005) potentially could underestimate
the performance of motif discovery tools because it was not possible to
separate annotated binding sites from nonbinding sites with standard motif
representations for several of the subsets. On the other hand, by using data
where we knew that an optimal classification in principle was possible, we
could also show that none of the tested methods were able to find that
solution. This shows the importance of using tested and verified datasets
for benchmarking in order to draw reliable conclusions.

Here we have tried to give a general overview of the current status in
benchmarking of motif discovery methods. We have also tried to point out
some future directions for the area, in particular with respect to genome-
wide approaches and benchmarking of methods that include additional
genomic information into the prediction process. A lot of work remains
before we have an optimal approach for this. But without improved bench-
marking tools, motif discovery may remain an unsolved problem for many
years to come.

Abbreviations
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bp — base pairs
CC — correlation coefficient
ChIP-chip — chromatin immunoprecipitation with microarray analysis
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Chapter 7

Encyclopedias of DNA Elements
for Plant Genomes

Jens Lichtenberg∗,††, Alper Yilmaz†, Kyle Kurz∗,
Xiaoyu Liang∗, Chase Nelson‡, Thomas Bitterman§,
Eric Stockinger¶, Erich Grotewold†

and Lonnie R. Welch∗,‖,∗∗,‡‡

This chapter focuses on the enhancement of existing plant regulatory
databases by adding DNA word encyclopedias. The authors present DNA
word encyclopedias for small sets of co-regulated sequences (C-repeat bind-
ing factor genes in wheat) and for intergenic regions of an entire genome
(Arabidopsis thaliana). It is also shown how the resulting DNA word ency-
clopedia for Arabidopsis is incorporated into an existing repository, the
Arabidopsis Gene Regulatory Information Server (AGRIS). This provides a
model for how DNA word encyclopedias can be incorporated into organism-
specific regulatory databases.

1. Introduction

The cis-regulatory code corresponds to the set of hardwired DNA instruc-
tions necessary for the expression of all genes. The cis-regulatory code can
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be conceptualized as being formed by short DNA-sequence words and
motifs — the cis-regulatory elements (CREs) — which can mediate the
recruitment of trans-acting regulatory proteins — the transcription factors
(TFs) — to gene regulatory regions. CREs can also affect gene expression
at other levels, for example by serving as docking sites for small interfering
RNAs (siRNAs), or by affecting chromatin structure.

Cis-regulatory elements are DNA words that are often shared among
highly co-regulated genes (Liang, et al., 2010) or among functionally sim-
ilar genes (Lichtenberg et al., 2009a). Based on this idea, DNA word
encyclopedias can be created for small sets of related promoter regions.
In this paper, we present a DNA encyclopedia for the C-repeat binding
factor genes in Triticeae. Additionally, the authors establish a DNA word
encyclopedia for Arabidopsis thaliana. Together with existing functional
information on specific cis-regulatory elements, the word encyclopedia for
Arabidopsis is incorporated into the Arabidopsis Gene Regulatory Infor-
mation Server (AGRIS) (Davuluri et al., 2003). This not only provides
a valuable resource for the reference organism Arabidopsis thaliana, but
also serves as a model for other organism-specific regulatory databases.

2. C-repeat Binding Factor Genes in Triticeae

The capacity to survive freezing temperatures is a trait essential for the
winter-grown cereal crop plants wheat and barley. Central to gene regula-
tory network pathways affecting freezing tolerance are the CBF (C-Repeat
Binding Factor) transcription factors (Thomashow, 2001). More than
20 CBF genes distributed across multiple phylogenic clade occur in the
diploid genome of barley (Skinner et al., 2005). CBFs in the CBFIIIa,
CBFIIId, CBFIVa, CBFIVc, and CBFIVd clades are induced by low
temperature (Badawi et al., 2007; Stockinger et al., 2007). Induction is
affected by a circadian clock and is repressed by the developmental state
(Stockinger, et al., 2007). CBFs in the CBFIIIc clade are non-responsive to
low temperature (Badawi et al., 2007; Stockinger et al., 2007). Identifying
the DNA elements controlling CBF expression is an essential step towards
understanding the molecular processes regulating CBF expression, and in
turn will enable strategies to improve the freezing tolerance of wheat and
barley.

CBF promoters were divided into three groups based on phylogeny
and expression patterns (Table 1). Using 1250 bp upstream of the ATG
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Table 1. Identified motifs for CBF gene in Triticeae.

CBFIIIa and
CBFIIId (A) CBFIIIc (B)

CBFIVa,
CBFIVc, and
CBFIVd (C)

All cold
responsive All promoters

Number of sequences in dataset

7 7 8 15 22

Word (R-score)a Nb O N O N O N O N O

CGCGT(0.3677)a 7d 24 7 12 6 9 13 33 20 45
ACCGCGT 6 7 0 0 0 0 6 7 6 7
ACGCGTC 6 11 2 2 1 1 7 12 9 14
AGCGCGTTCATACAC 0 0 5 5 0 0 0 0 5 5
CACCGCGT 4 5 0 0 0 0 4 5 4 5
CGCGTC 6 15 4 4 2 4 8 19 12 23

ACGCG(0.3523) 7d 25 4 6 6 15 13 40 17 46
AACGCGG 6 7 0 0 1 1 7 8 7 8
ACGCGTC 6 11 2 2 1 1 7 12 9 14

CACTC (0.3642) 7d 24 7 33 6 11 13 35 20 68
ACACTC 6 15 7 17 2 2 8 17 15 34
AGCACTCTG 0 0 5 5 0 0 0 0 5 5

(Continued)
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Table 1. (Continued)

CBFIIIa and
CBFIIId (A) CBFIIIc (B)

CBFIVa,
CBFIVc, and
CBFIVd (C)

All cold
responsive All promoters

Number of sequences in dataset

7 7 8 15 22

Word (R-score)a Nb O N O N O N O N O

CACACTC 5 6 7 12 1 1 6 7 13 19

CTCAA (0.2597) 7 21 7d 26 7 12 14d 33 21 59
CTCAAGC 3 4 7 13 1 2 4 6 11 19
TAAGCTCAAGCA 0 0 5 5 0 0 0 0 5 5
TCAAGCTCAA 5 6 5 5 0 0 5 6 5 5

CTCCA (0.3512) 7 20 7 17 8d 29 15d 49 22d 66
ACTCCA 6 12 5 6 6 8 12 20 17 26
CTCCAC 3 3 4 6 7 17 10 20 14 26
GCTCCAC 0 0 0 0 5 7 5 7 5 7

CTTGT (0.3409) 7 20 5 10 8d 24 15d 44 20 54
GCGTCACTTGTC 3 5 0 0 0 0 3 5 3 5

CACCG (0.3272) 6 21 6 13 8d 17 14d 38 20 51
CACCGC 5 9 3 5 8 8 13 17 16 22

(Continued)
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Table 1. (Continued)

CBFIIIa and
CBFIIId (A) CBFIIIc (B)

CBFIVa,
CBFIVc, and
CBFIVd (C)

All cold
responsive All promoters

Number of sequences in dataset

7 7 8 15 22

Word (R-score)a Nb O N O N O N O N O

CACCGCGT 4 5 0 0 0 0 4 5 4 5
CCACCG 5 8 1 1 6 11 11 19 12 20

GCTTG(0.2763) 7 15 3 4 7 19 14d 34 17 38
TGCTTG 6 6 1 1 6 9 12 15 13 16

CAAGC(0.4219) 7 21 7 35 7 14 14 35 21d 70
AGCACCAAGC 0 0 4 5 0 0 0 0 4 5
CAAGCT 5 7 7 16 5 6 10 13 17 29
CTCAAGC 3 4 7 13 1 2 4 6 11 19
TAAGCTCAAGCA 0 0 5 5 0 0 0 0 5 5
TCAAGCTCAA 0 0 5 5 0 0 0 0 5 5
aThe first five 5-bp motifs were predicted with maximum confidence because the word (1) scored high,
(2) appeared frequently within a single sequence, and (3) appeared in multiple sequences; the latter four
motifs met only two of these three criteria and were predicted with high confidence.
bMotif frequency: N = Number of promoters possessing motif, O = Number of occurrences in promoters.
cThe 5-bp core motifs are in the top row of each column section. They are followed by the larger motifs
within which the 5-bp motif occurred.
dDataset within which motif score is maximal or high.
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translation initiation codon, we searched for motifs that were at least 5-bp
in length, invariant at a minimum of five positions, and were present in a
minimum number of sequences. Nine of the identified 5-bp motifs were
predicted to be biologically relevant (Table 1), each motif embedded in
larger motifs that were also identified during the analysis. The larger motifs
differentiated the three CBF groups and were usually present in only one
group. For example, the 5-bp motif CGCGT occurred within the larger
motifs ACCGCGT, ACGCGTC, and CGCGTC present in the low-
temperature responsive CBFIIIa and CBFIIId CBF promoters (Table 1).
The 5-bp motif was present in all seven low-temperature responsive
CBFIIIa and CBFIIId promoters, appearing 24 times in total in this
group (Table 1). The 5-bp core motif was also present in all of the
low-temperature non-responsive CBFIIIc promoters, appearing 12 times
in total, and in six of the eight CBFIVa, CBFIVc, and CBFIVd pro-
moters. However, the 5-bp core motif in the low-temperature non-
responsive CBFIIIc promoters harbored nucleotides 5′ (AG) and 3′
(TCATACAC) to the 5-bp core motif resulting in a much larger motif,
AGCGCGTTCATACAC, that was exclusive to the CBFIIIc promoters
(Table 1).

Querying the 5-bp identified motifs against the PLACE (plant cis-
acting regulatory DNA elements) database (Higo et al., 1999) indicated
that the CGCGT motif and three others occurred as part of the consen-
sus motif in known transcription factor binding sites. Two of the 5-bp
cores were reverse compliments differing in their flanking nucleotides;
five were novel. The CGCGT motif plays a role in Ca2+-responsiveness
and is a Calmodulin-Binding Transcription Activator (CAMTA) bind-
ing site (Wang et al., 2002; Kaplan et al., 2006; Doherty et al., 2009).
CAMTA proteins were recently identified as key regulators of Arabidop-
sis thaliana CBF expression and effectors of freezing tolerance (Doherty
et al., 2009). The ACGCG, CACCG, and CACTC motifs are implicated
in ABA-responsive and embryo-specification elements (Kim et al., 1997).
The CACTC motif is also implicated as an initiator element in TATA-less
promoters (Nakamura et al., 2002).

Additional patterns were also detected. The larger motifs, unique and
structurally conserved across the low temperature non-responsive CBFI-
IIc promoters, with the exception of the AGCGCGTTCATACAC motif,
occurred either within the 5′ UTR, or flanked the TATA box (not shown).
Motifs in the low-temperature responsive CBFs were randomly distributed
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(not shown). Additionally, most CBFIII subgroup CBF promoters
(low-temperature–responsive and low-temperature–nonresponsive) har-
bored a positionally-correct TATA box motif having the configuration
TATAAA, whereas most of the CBFIV subgroup CBFs had the TATA
box configuration of TATATA (not shown).

The identification of 5-bp core motifs common to the different CBF
promoter groups suggests the trans-acting factors interacting with the dif-
ferent promoters may be shared while the presence of group-specific base
pairs flanking the core motifs suggests an additional level of regulatory
control. These identified motifs are currently being used in functional
screens to identify factors binding them.

3. Analysis of the Non-coding Segments
in Arabidopsis thaliana

The word landscape of noncoding segments of Arabidopsis thaliana (based
on TAIR version 9) was generated, updating the authors’ previously pub-
lished Arabidopsis word landscape of 8-mers (Lichtenberg et al., 2009b)
to include word lengths of 5–15 bp. The resulting word landscape has
been used to populate the AGRIS database.

Based on the approach outlined in (Lichtenberg et al., 2009b; Welch
et al., 2009), the top five words are extracted and presented for each
segment (Table 2), while the complete results are made available in the
database. The results are sorted based on the S*ln(S/E_s) score and
filtered for words with a p-value of 0.05 or below to ensure its sta-
tistical significance. The S*ln(S/E_s) score provides a measure of cov-
erage for each word by determining how over-represented the word
is with regard to the number of sequences containing it. Additionally,
the occurrence of each word is captured in the O/E and O*ln(O/E)
scores.

An analysis of the top five statistically significant words for the different
segments reveals that six of them are shared across different segments,
with two of them in two segments (AATATT, GAAAAAG), two of them
in three segments (CAAAAAC, GTTTTG) and also two of them in four
segments (CAAAAC, GTTTTTG). While a strong overlap between the
proximal and distal promoters can be determined based on the top five
significant words, the remaining segments show little to no overlap, with
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Table 2. Top five words for each of the noncoding segments and the genome of Arabidopsis thaliana.

Segment Word S E_s O E O/E O*ln(O/E) S*ln(S/E_s) RevComp Pval

3′ UTRs CTTTTG 4755 4160.29 5682 4989.47 1.1388 738.514 635.328 CAAAAG 2.22E-16
GTTTTG 5147 4589.77 6377 5602.8 1.13818 825.38 589.765 CAAAAC 3.33E-16
GTTTTTG 2129 1614.09 2322 1760.4 1.31902 642.937 589.477 CAAAAAC 0
ATTTTG 5320 4781.61 6432 5883.9 1.09315 572.875 567.617 CAAAAT 9.67E-13
ATTTTA 4395 3863.93 5257 4578.6 1.14817 726.344 565.998 TAAAAT 1.11E-16

5′ UTRs CTCTTT 3608 2979.93 4622 3623.72 1.27549 1124.66 690.041 AAAGAG 2.22E-16
ACCCTA 1294 763.683 1381 824.08 1.67581 713.004 682.379 TAGGGT 4.44E-16
TTCTCC 2910 2302.65 3391 2696.69 1.25747 776.874 681.214 GGAGAA 1.55E-15
CAAAAAC 1083 683.968 1132 740.7971.52808 479.985 497.725 GTTTTTG 0
CAAAAC 2316 1869.71 2643 2138.81 1.23573 559.426 495.753 GTTTTG 4.44E-16

Introns GTAAGT 17853 13144.5 18484 14919.8 1.23889 3959.58 5465.98 ACTTAC 7.77E-16
TTGCAG 21003 16440.4 21843 19090.2 1.1442 2942.33 5144.19 CTGCAA 0
TTTCAG 21722 17297.3 23673 20204.2 1.17169 3750.84 4947.76 CTGAAA 3.33E-16
GTTTTTG 13570 9789.74 14939 10929.2 1.36689 4669.04 4430.96 CAAAAAC 7.77E-16
GTTTTG 31987 27849.5 40244 34987.5 1.15024 5632.94 4430.71 CAAAAC 1.78E-15

Core
promoters

TATAAA 5284 4351.35 5675 4987.17 1.13792 733.22 1026.13 TTTATA 0
TAAAAT 3421 2726.78 3822 3023.08 1.26427 896.25 775.923 ATTTTA 1.11E-16
CAAAAC 2740 2089.76 2984 2287.99 1.3042 792.52 742.287 GTTTTG 1.11E-16
TATAAAT 2249 1634.88 2298 1793.17 1.28153 570.027 717.241 ATTTATA 2.22E-16
AATATT 2664 2057.7 2869 2251.49 1.27427 695.365 687.946 AATATT 8.88E-16

(Continued)
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Table 2. (Continued)

Segment Word S E_s O E O/E O*ln(O/E) S*ln(S/E_s) RevComp Pval

Proximal
promoters

CAAAAC 13854 12338.4 20348 16534.4 1.23065 4223.06 1605.13 GTTTTG 1.67E-15
GTTTTTG 5740 4378.95 6608 4806.62 1.37477 2103.23 1553.54 CAAAAAC 1.67E-15
CAAAAAC 6136 4769.88 7314 5279.79 1.38528 2383.67 1545.36 GTTTTTG 0
GTTTTG 13057 11640.8 18875 15279.4 1.23533 3988.94 1499.04 CAAAAC 9.99E-16
GAAAAAG 5538 4310.83 6384 4725.01 1.35111 1921.1 1387.28 CTTTTTC 0

Distal
promoters

GTTTTTG 10688 8475.7 14445 10188.4 1.41779 5042.7 2478.75 CAAAAAC 8.88E-16
CTTTTTC 9891 7848.09 12682 9288.69 1.36532 3948.99 2288.33 GAAAAAG 3.33E-16
CAAAAAC 10259 8217.71 13765 9814.97 1.40245 4655.6 2276.1 GTTTTTG 0
GAAAAAG 9761 7791.02 12591 9208.33 1.36735 3939.39 2200.35 CTTTTTC 4.44E-16
GTTCTTG 6425 4930.29 7728 5456.47 1.4163 2689.71 1701.34 CAAGAAC 2.22E-16

Genome TTTTTT 5 5 372939 319693 1.16655 57453 AAAAAA Yes
TTTTTTT 5 5 209185 173079 1.20861 39634 AAAAAAA Yes
TATATA 5 5 179209 145199 1.23423 37714 TATATA Yes
CAAAAC 5 5 89769 74581.8 1.20363 16638 GTTTTG Yes
AATATT 5 5 118527 105726 1.12107 13546 AATATT Yes
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Table 3. Overlap between the top five significant words and the segments.

Core Proximal Distal
Word 3′ UTR 5′ UTR Intron promoter promoter Promoter Genome

AATATT X X
GAAAAAG X X
CAAAAAC X X
GTTTTG X X
CAAAAC X X
GTTTTTG X X

the 3′ UTR exhibiting a signature that is completely independent from
the other segments (Table 3).

An analysis of the shared words against the AGRIS transcription fac-
tor binding site repository revealed that two of the words are known func-
tional elements. GTTTTG and its reverse complement, CAAAAC, map the
PII promoter motif with a binding site represented by TTGGTTTTGAT-
CAAAACCAA, which is palindromic. A comparison of the words against
the TRANSFAC database revealed a similarity between GTTTTG and the
ELF-1 binding site (M00110), as well as a match between AATATT and
the FOXJ2 binding site (M00423). Expanding the analysis to incorporate
all top five words of the different fragments reveals additional matches
between TATATA and CF2-II (M00013), TATAAA and the TATA box
(M00216, M00252, M00320, M00471) as well as the XFD-2 binding
site (M00268), CTCTTT and SOX (M01014), and ACCCTA and ZAP1
(M00754). Besides the strong similarities of some words with known cis-
regulatory elements, other words are not part of current regulatory ele-
ment databases. While it is possible that these words themselves are not
functional, a recent study has shown that they could be part of larger
nonrandom sequence patterns, called pyknons (Feng et al., 2009).

Determining the positional bias of a putative regulatory element can
lead to additional evidence that the word is truly of regulatory nature by
exhibiting similar positional characteristics (as does the TATA box). As
shown in Table 4, a strong positional bias is observed for the interesting
word extracted from the core promoters at position 70. Since core promot-
ers have been arbitrarily assigned to 100 base pairs in length, position 70
within the extracted sequence relates to a base pair at position 30 upstream
of the transcription start site, a position that has been confirmed for the
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Table 4. Positional distribution for interesting words discovered in the noncoding
segments.

Segment Word Positional bias

3′ UTR CTTTTG

5′ UTR CTCTTT

Introns GTAAGT

(Continued)
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Table 4. (Continued)

Segment Word Positional bias

Core promoters TATAAA

Proximal promoters CAAAAC

Distal promoters GTTTTTG
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TATA-box in Arabidopsis thaliana. A spike similar to the one observed for
the word embedded in the core promoters can be detected for those in
the 3′ and 5′ UTRs, providing evidence for a possible regulatory behavior
associated with the sites. For introns, the word GTAAGT shows a very
strong peak at the start of the intron sequences, but very few occurrences
afterwards, which, together with the lack of known regulatory function
associated with the word, would lead to the prediction that this word
could be used as an intronic recognition site in the splicing process. Finally,
the words embedded in the proximal and distal promoter regions show
no apparent positional bias. This, however, does not eliminate them as
potential regulatory elements, since it is possible that the transcription
factor binding sites are position independent.

4. Enhancement of the Arabidopisis Gene
Regulatory Information Server (AGRIS)

The results of the analysis of the Arabidopsis thaliana genome were incor-
porated into the Arabidopsis Gene Regulatory Information Server for use
in plant regulatory genomics research. Words of length 5–15 have been
counted and analyzed, and are available for query through the AGRIS
webpage http://arabidopsis.med.ohio-state.edu/.

In addition to AGRIS, there are several resources which provide details
about putative or confirmed cis-elements in the Arabidopsis genome.
PLACE (Higo et al., 1999) lists known cis-regulatory elements by curat-
ing the publications. AthaMap (Steffens et al., 2004) utilizes known bind-
ing site motifs and performs matrix-based and pattern-based screenings in
the genome to identify potential transcription factor binding sites. These
websites rely on known motifs. On the other hand, ATTED-II (Obayashi
et al., 2009) provides a list of heptamers based on correlation between
expression and a defined group of genes, and positional information, iden-
tified by searching oligomers that are correlated with gene expression.
They exhibit only 304 heptamers out of all possible heptamers and their
study examined only 200 bp upstream of genes. The integration of regu-
latory encyclopedia data into AGRIS makes it a unique tool, distinct from
other cis-regulatory element databases. After the integration, AGRIS con-
tains data on all possible 5- to 15-mers analyzed in several noncoding
regions.
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When a user requests information about a specific word or puta-
tive regulatory element, the new AGRIS interface provides a table of
statistics about that word’s presence in the various segments of the Ara-
bidopsis genome (Fig. 1), as well as interactive graphs of the locations
where the word occurs in each segment (Fig. 1(c)). By clicking the
“sequence hits” number from the column “Unique sequence occurrences”
(Fig. 1(b)), AGRIS provides detailed location information of the queried
word (Fig. 2). Besides including the locations of the selected word in the
chosen segment, the locations of the word in the genome and the ori-
entation are included as well. Furthermore, sequences that contained the
query word are displayed with the chosen word shown in red. An addi-
tional query searches for matches between the selected word and all exper-
imentally verified motifs stored in AGRIS, and any matches are reported
to the user along with the original publication (Fig. 1(a)). If a word does
not occur in a segment, the table will reflect this and an image will replace
the graph for the segment where the word is missing to notify the user that
no location infomation is available. This allows AGRIS to report missing
words without storing them explicitly in the database. Graphs are available
for the 3′ UTR, 5′ UTR, intron, core promoter, proximal promoter, and
distal promoter segments.

Additionally, researchers may submit a sequence, or sequences, and
see a list of words in their sequence(s), a comparison of how those words
are distributed in a selected segment, and a score indicating if a word is
over-represented or under-represented in the input compared to its repre-
sentation in the chosen segment (Fig. 3). In the event that the words list is
longer than 50, the top 50 words are displayed in the table, and sorted in
descending order according to the score. In addition, a download option
is provided for downloading either the original result files or the compari-
son result between selected segments and a user-defined query. Each word
found in the input sequence(s) is queried against known binding sites and
matches are marked with a double-asterisk (**). The user may click on
any word found to submit a word query as described above.

To create location histograms for word queries, the javascript library
Flot was used. Available at http://code.google.com/p/flot/, Flot uses
jQuery plugins to create interactive plots of word locations throughout
the various segments of the Arabidopsis thaliana genome, while maintain-
ing the responsiveness and simplicity of the AGRIS query webpage. Each
figure may contain multiple plots, and multiple figures may be created for
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Fig. 1. AGRIS representation of a word query. (a) Representation of experimentally
verified motifs that are matched with the query word. (b) Statistics of each segment
for a single word. (c) Interactive location graphs in each segment for a single word.
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Fig. 2. AGRIS representation of detailed location information for a single word.

any single page. By clicking and dragging within the plot, or within the
overview immediately under the plot, the user may zoom in or out on
specific sections of the graph (Fig. 4).

In order to accurately depict location information, several graphs are
created for each segment to show where the word occurred in that seg-
ment. Six different graphs are provided each time a user performs a search.
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Fig. 3. Mapping of words form a user-provided sequence against information stored
in AGRIS.

Fig. 4. Illustration of the zooming functionality for word location distributions in
the enhanced AGRIS interface.
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The locations of the specified word are shown in the 3′ UTR, 5′ UTR,
intron, core promoter, proximal promoter and distal promoter regions.
The 3′ UTR, 5′ UTR and intron graphs have three distinct graphs asso-
ciated with each: one anchored to the 5′ region of the segment, one
anchored to the 3′ region of the segment, and one normalized to elmi-
nate length bias. Since the promoter regions are all equal in length, these
additional graphs are not necessary for the promoter regions.

5. Methods

Using a sliding window approach, the sequences of the Arabidopsis
thaliana genome (genome build TAIR version 9) are enumerated and
stored in a radix trie data structure (Morrison, 1968), allowing for scal-
able (in regard to memory and time complexity) word searching.

Each word w of length v is assigned a probability pw , using a Markov
model (Robin et al., 2005; Ewens and Grant, 2001) of maximum order
(order = v−2). In a set of sequence of the overall length l , the expectation
E(w), for a word w of length v, of the total number of occurrences is
calculated using (Lichtenberg et al., 2009a):

E(w) = (l − v + 1) ∗ pw

In a similar fashion, the expected number of sequences ES (w), among m
input sequences, that a word w occurs in is calculated as (Lichtenberg
et al., 2009a):

Es (w) =
m∑

k=1

(1 − (1 − pwi )
lk−v+1)

To score the words, the expectation counts are set in correlation with
the observed counts — S denoting the sequence occurrence and O the
number of total occurrences — to compute the O/E(w), O*ln(O/E(w))
and the S*ln(S/ES) scores. In order to assign statistical significance to
each of the words, p-values are calculated (Lichtenberg et al., 2009a):

p(w) = 1 −
m∑

k=1

lk−v+1∑
i=a

(
lk − v + 1

i

)
pi

w(1 − p)lk−v+1−i

Besides the statistical significance and over-representation, each word
is looked up in the TRANSFAC database (Wingender et al., 2000) and
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the AGRIS database (Davuluri et al., 2003) of known transcription factor
binding sites.

6. Conclusion

An approach for the compilation of DNA word encyclopedias was applied
to several plant genomes. Additionally, it was shown how the resulting
encyclopedias can be integrated with existing genomic repositories and
that the enhanced databases provide valuable insights to scientists who
study regulatory genomics. Regulatory encyclopedias can be created for
any sequenced and annotated genome. The incorporation of such infor-
mation into organism-specific regulatory repositories will provide valuable
insights into the regulatory genomics.
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Chapter 8

Manycore High-Performance
Computing in Bioinformatics

Jean-Stéphane Varré∗,†, Bertil Schmidt‡,
Stéphane Janot∗,† and Mathieu Giraud∗,†

Mining the increasing amount of genomic data requires very efficient tools.
The efficiency can be improved with better algorithms, but one could also
take advantage of the hardware itself to reduce the application runtimes.

It has been a few years that issues with heat dissipation prevent the
processors from having higher frequencies. One of the answers to maintain
Moore’s Law is parallel processing. Grid environments provide tools for effec-
tive implementation of coarse grain parallelization. Recently, another kind of
hardware has attracted interest: the multicore processors.

Graphics Processing Units (GPUs) are a first step towards massively
multicore processors. They allow everyone to have some teraflops of cheap
computing power in a personal computer.

The CUDA library (released in 2007) and the new standard OpenCL
(specified in 2008) make programming of such devices very convenient.
OpenCL is likely to gain a wide industrial support and to become a stan-
dard of choice for parallel programming. In all cases, the best speedups are
obtained when combining precise algorithmic studies with a knowledge of
the computing architectures. This is especially true with the memory hier-
archy: the algorithms have to find a good balance between using large (and
slow) global memories and some fast (but small) local memories.

In this chapter, we will show how those manycore devices enable more
efficient bioinformatics applications. We will first give some insights into
architectures and parallelism. Then we will describe recent implementations
specifically designed for manycore architectures, including algorithms on
sequence alignment and RNA structure prediction. We will conclude with
some thoughts about the dissemination of those algorithms and implemen-
tations: are they today available on the bookshelf for everyone?

∗LIFL, UMR CNRS 8022, Université de Lille, France
†INRIA Lille Nord-Europe, France
‡School of Computer Engineering, Nanyang Technological University, Singapore

179



December 16, 2010 16:54 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-ch08

180 J.-S. Varré et al.

1. Introduction

Most of the algorithms presented in this book require powerful com-
puters to run, as for example NestedMICA and R’MES tools discussed
in Chapters 1 and 2. These problems are intrinsically complex to solve,
and, above all, the amount of input data follows an exponential curve.
With next-generation sequencers (NGS), the data produced every day are
growing faster than before. The exponential grows much faster than the
growth of computational power.

The challenge for computer scientists and bioinformaticians is to think
about new methods and technologies which are able to deal with this
incredible amount of data. A first solution is to design better algorithms
with more elaborate data structures. However, even if a good algorithm
is known, the growth of data still imposes on better supports of execution.
To increase the computational power, one may use several computers or
processors in a grid. Another possibily is to use multicore processors. Now
manufacturers manage to put several processors in one: this is what is called
dual-core, quad-core, or, more generally, multicore processors.

In this chapter, we will see how these recent advances in massively mul-
ticore processors, also called manycore processors, help to treat the growing
flow of bioinformatics data. Manycore processors like Graphics Process-
ing Units (GPUs) offer a huge density of computational units, for an
extremely cheap price. They are more and more often directly included
in personal computers, making their power available without extra cost.
Thus, developments of methods using them have an impact stronger than
ever. But the drawback of this technology is that the design of algorithms
must take into account the constraints of these architectures. In fact, com-
pletely new distributed algorithmics are required, giving new challenges
for bioinformaticians. But it is worth the effort: results published in 2008
and 2009 achieve speedups up to 100× compared to serialized one-core
algorithms — on commodity GPUs costing less that $500!

In the following, we briefly describe the evolution of processors that
leads to manycore processors. The evolution of power consumption and
heat dissipation has led to the so-called power wall, that limits the rise
of frequencies and commands us to use more and more cores in parallel.
In Sec. 2 methods, we present manycore processors and their program-
ming. In Sec. 3 results, we detail algorithms in different fields of bioin-
formatics, explaining where gains can or cannot be obtained. Finally, we
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discuss whether these solutions can now be used by everyone, on real
applications.

1.1. A small history of processors

A processor, or Central Processing Unit (CPU), is roughly made of three
units: the memory unit that stores input data, intermediate results and out-
put data, the instruction unit that decodes instructions; and the processing
unit, also called Arithmetic Logic Unit (ALU), that actually realizes the
computations (Fig. 1(a)) at regular clock cycles. The following paragraphs
explore two dimensions contributing to the “computational power” of
processors: their complexity, driven by the number of transitors, and the
frequency of their clock cycles.

1.1.1. Moore’s law

The number of transistors used to build a chip has dramatically increased,
from 2300 for the Intel 4004, released in 1971, to several billions today.
Moore’s law, formulated in (Moore, 1965) and improved in (Moore,
1975), states that this number doubles every two years. This law has

Fig. 1. (a) Von Neumann architecture: at each clock cycle, one instruction is fetched
from the memory, decoded, and then executed on the ALU. Results are stored back
in the registers (very fast, but small, local memory) or in the main memory (slower
access). Real processors also contain one or several caches (not shown here) between the
registers and the main memory. (b) A processor with two cores. Note that each core
has its own instruction decoding, and so they can operate independently as long as they
do not access the same places in the memory. (c) A SIMD processor. A single instruc-
tion decoding unit controls several processing units. Only one flow of instructions is
executed, but most of the surface area of the chip is devoted to actual computation.
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Fig. 2. Number of transistors and power consumption of some Intel chips. Scales
on the y-axis are logarithmic. Both values have grown at an exponential rate between
1970 and 2005. Data from http://www.intel.com/.

been almost exactly verified since 1960 (Fig. 2). More than a natural
observation, this is a self-fulfilling prophecy that drives the semiconductor
industry.

With more transistors, it is possible to increase the data width (from
4 bits in 1970 to 128 bits or more today), to build more complex oper-
ators with more complex instruction sets, and to enhance memory and
caches management. This rise of the number of transistors also made
possible several improvements in processor design, including instructions
pipelines (dividing operators into shorter sections, processing more than
one instruction at a time and thus increasing the frequency), superscalar
architectures (processing several instructions at a time), out-of-order exe-
cution (permuting instructions to better use processor pipelines).

1.1.2. Frequencies and the “power wall”

A common misformulation of the Moore’s law is that the “computational
power” of the processors doubles every 18 or 24 months. Of course, all
techniques cited in the previous paragraph aim to obtain more computa-
tional power. Most notably, between 1970 and 2000, the frequencies of
the processor steadily increased, resulting in major speed gains. Between
1990 and 2000, Intel estimates that the 75× gain in computational power
was composed by a 13× gain due to the frequencies and a 6× gain due to
processor design improvements (Gelsinger, 2001).

It has been a few years that issues with heat dissipation prevent the
processors from having higher frequencies. Figure 2 displays some power
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consumptions of common CPUs. The last Intel mono-core processor,
the Pentium 4, achieved a power density of about 100 W/cm2. If this
increase in the frequencies had continued between 2000 and 2010, the
thermal density of some processors today could approach that of a rocket
nozzle (Gelsinger, 2001).

1.1.3. Multicore processors

One of the answers to maintain the growth of computational power despite
frequency limits is parallel processing. Parallelism is not new: research in
distributed algorithms has been ongoing for more than 40 years with
many specialized architectures for high-performance computing. Today,
this field of research reaches commodity hardware through grids (several
processors or computers) or multicore processors (several cores in a pro-
cessor).

The idea of multicore processors is to have two, four, eight, or even
more processors in one (Fig. 1(b)). A high majority of personal comput-
ers are provided with this kind of processors at the end of the 2000s.
Basically, this can be seen as a “grid on a chip”, each core having its own
instruction flow. This allows to execute either the same piece of code
or different instructions on the different cores, on the same data or on
different data.

1.1.4. Data-parallelism and SIMD

To compute the same piece of code on different data, another idea can be
implemented. Instead of several processors, we can use a single instruction
unit and several processing units (Fig. 1(c)). In this case, the same piece of
code is executed at the same time by several processing units. This SIMD
paradigm (Single Instruction, Multiple Data) dates from the supercom-
puters of the 1980s. It becomes really interesting if the same task has to
be executed on different data. No surface area is wasted in unnecessary
control logic: the processor can be filled with efficient computing units.

1.2. Towards manycore processors

Multicore processing and SIMD processing can be combined to obtain a
higher level of parallelism (Fig. 3). This is what is implemented in current
manycore processors, including Graphical Processing Units (GPUs) and
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Fig. 3. A manycore processor, like current GPUs, combining several cores, each one
being a high-density SIMD unit. Again, real processors also contain local memories or
caches at different levels between the registers and the main memory.

Cell/BE processor. Depending on the design of the processor, emphasis
is put either on the multicore or on the SIMD.

1.2.1. GPU processors

Today, GPUs allow everyone to have some teraflops of cheap computing
power in its personal computer. High-end GPUs, for no more than $500,
encompass far more arithmetic units than a CPU of the same price. For
example, the NVIDIA GTX 285 has 30 cores, each one being a SIMD
unit on 8×32 bits at about 600 MHz, whereas the ATI Radeon 4890 has
10 cores, each one being a SIMD unit on 80×32 bits, at about 850 MHz.

The GPUs also include memories with different sizes and capabilities.
For example, the NVIDIA GTX 285 has 1 or 2 GB of global memory,
additional global memories (constant and texture memories), and, for each
core, 16 KB of local memories. A detailed presentation on some GPUs is
available in (Fatahalian and Houston, 2008).

1.2.2. The CPU/GPU convergence

Recent trends blur the line between GPUs and CPUs: CPUs have more
and more cores, and cores in GPUs have more and more functions. Some
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processors are now designed both for graphics and high-performance com-
puting.

The Cell Broadband Engine Architecture (Gschwind et al., 2006), or
Cell/BE, is the chip included in the Playstation 3. It was designed by IBM
and Sony and released in 2006. The Cell includes one CPU-like core, the
Power Processor Element (PPE), and 8 GPU-like cores, the Synergistic
Processing Elements (SPE), each one being a SIMD unit on 8 × 16 bits.

Larrabee (Seiler et al., 2008) is an Intel graphic processor project. It
can be considered as a hybrid between a CPU and a GPU. Basically, each
Larrabee core is a simple Pentium core running an extended version of
the ×86 instruction set, but it also includes a 16 × 32 bits SIMD vector
processing unit. The Larrabee was supposed to be released in 2010, but
Intel recently announced (in December 2009) that the release is delayed,
without giving any new launch date.

Intel argues that the Larrabee processor is more flexible than GPUs.
However, next-generation GPUs from NVIDIA (Fermi architecture) and
ATI will also have greater flexibility. In 2006, AMD (CPU manufacturer)
bought ATI (GPU manufacturer), and their next project, Fusion, is also
expected to mix CPU-like and GPU-like cores.

1.2.3. General purpose computation on GPU

Since the 1980s, graphics hardwares have been used for scientific computa-
tions (see for example (Trendall and Stewart, 2000)). The revolution con-
cerning today’s “General-Purpose Computation on Graphical Processor
Units” (GPGPU) is mainly due to the increasing number of cores, making
those chips potentially very efficient, and the availability of programming
libraries for developers non-specialized in graphics computing (see Sec. 2
Methods). Some specialized GPUs do not have any video output: such
cards are completely dedicated to general computation!

2. Methods

All manycore processors presented in the previous paragraphs have a large
number of cores, each of them being made of a lot of processing subunits.
An algorithm for such hardware thus requires a high level of parallelism,
i.e. computations to dispatch to several cores and subunits. This section
details how to program such parallelism, and the next section explains in
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what kind of bioinformatics applications such parallelism can be used to
obtain interesting speedups.

2.1. From GPU tweaks to OpenCL

General-Purpose Computing on GPU, or GPGPU, was firstly done by
tweaking graphics primitives. Operations on color components and pixels
have been used to perform, for example, linear algebra computations. Such
techniques require expertise in graphics. One of the first popular abstrac-
tions proposed for GPU programming is BrookGPU (Buck et al., 2004),
developed from 2003 at the Stanford University. It allows to compile and
run code in the Brook Stream processing language on NVIDIA and ATI
cards.

The CUDA libraries, released by NVIDIA in 2007,a deeply popu-
larized GPGPU. CUDA is an extension of plain C/C++ (Fig. 4), and
does not require any knowledge in graphics. Hundreds of applications in
various computer science domains are now using CUDA.

The next big step was the specification of a new standard, OpenCL,
by a large consortium in December 2008.b OpenCL is very close to
CUDA, and is likely to gain a wide industrial support. OpenCL offers

Fig. 4. Vector addition in (a) CUDA and (b) OpenCL. The addv function is the
kernel, that is the function executed on each ALU. Each work-item executes this
addition on different data, as showed by the instruction modifying the value of i. Full
codes include initialization of the card, transfer of arrays a and b from the host to the
GPU, and transfer of the resulting array c back to the GPU.

ahttp://www.nvidia.com/cuda
bhttp://www.khronos.org/opencl
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a unique programming interface to deal with different manycore proces-
sors, allowing the same code to be compiled and run on different chips.
But a compiler is needed for each architecture. In 2009, three different
implementations, by NVIDIA, AMD/ATI and Apple, were already avail-
able, and OpenCL could become a standard for parallel programming in
the following years.

In CUDA/OpenCL programs, there are some special functions, called
kernels, that are executed on the GPU (Fig. 4). Due to the architecture
of the GPU, such functions are limited: for example, as there is no stack,
there are no recursive functions. Ideally, the most intensive computing
tasks of an application should be mapped into a kernel. The same kernel
is then executed many times by different work-items, working on different
datasets. The host program calls the kernel, but also ensures that data are
transferred to and back from the GPU.

2.2. Programming SIMD work-items

The CUDA/OpenCL kernels in Fig. 4 contain an addition instruction,
c[i] = a[i] + b[i]. As all work-items execute this same instruction,
this model is exactly the SIMD paradigm (Fig. 1(c)). This is implicit
SIMD: the compiler generates a code that simultaneously controls all
subunits.

Similar SIMD instructions are available in the common CPUs, but
on a much smaller data width. For example, the original SSE instruction
set, published in 1999, allows us to consider four “packed” 32-bit floats
in one 128-bit machine word. The SSE assembly instruction ADDPS adds
two float vectors with one single operation. This instruction can also be
compiled from a C “intrinsic” instruction _mm_add_sd. Using SSE assem-
bly or intrinsic operations is explicit SIMD. Even if it allows the developer
to have more control, it is not as useful as CUDA or OpenCL for the
programmer.

2.3. Branches and divergence

In the SIMD model, at one clock cycle, every arithmetic unit executes
the very same instruction, allowing efficient operations on large vectors.
But this is not always wanted. For example, depending on a condition in
a loop, one could want to execute different instructions (Fig. 5(a)).
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Fig. 5. Simulating branching in SIMD. The branching in (a) can be simulated by
the code in (b). Both branches are executed, and the mask finally chooses the good
value for each item.

Such branches can be software simulated in SIMD extensions, by actu-
ally running both branches, and finally selecting with a mask the correct
value (Fig. 5(b)). Although half of the computations are “wasted” in those
branches, a good overall speedup can still be obtained. On some hardware,
it is possible to temporarily disable some processing subunits into a SIMD
group. This leads to hardware simulated branches: at a given time, only
some subunits can be working in the SIMD processor (Lorie and Strong,
1984).

In CUDA/OpenCL, the developer directly writes a code similar to
that shown in Fig. 5(a), and the compiler produces a code suitable for the
GPU, including software or hardware simulation. When, within a same
work-group, all work-items do not pass the same branch, a divergence
occurs and some work-items are stalled (Fig. 6) (Coon and Lindholm,
2008, Collange et al., 2009). Of course, a code with a lot of divergence

Fig. 6. Hardware simulation on branches in a SIMD unit with 8 subunits. Here
only work-items 2 and 6 execute the conditional code: all other work-items are stalled,
reducing the overall performance.
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between work-items results in very poor performance. But, knowing this
limitation, it is simpler to write such instructions in CUDA/OpenCL than
to explicitly design SIMD masks.

2.4. Work-groups

Current GPUs are not purely SIMD, because work-items are gathered into
independent work-groups. There is some global memory available for their
communication. This logical organization implied by CUDA/OpenCL
has different physical implementations in actual hardware. For example, the
exact relation between the work-groups depends on the efficiency of the
global memory and its caching mechanisms. On the current GPU archi-
tectures, it is advised to design truly independent work-groups, whereas
the Larrabee, with global cache coherence, will allow a more traditional
programming with independent threads.

3. Results

Recent parallelizations on GPUs for sequence analysis problems achieve
speedups up to 100× compared to a serialized one-core version. This
section reviews recent results in different bioinformatics applications.

The first part of this section deals with Smith–Waterman sequence
alignments. Manycore processors deliver speeds enabling us to run exact
dynamic programming (DP) computations rather than incomplete heuris-
tics. The second part explains other algorithms manipulating sequence
data, including RNA algorithms and algorithms on weight matrices.
Those applications use string algorithmics and DP computations similar to
those used by sequence alignments, but on other objects or with different
dependencies. Finally, the last part presents a few other applications where
kernels deal with non-sequence data.

3.1. Smith–Waterman sequence alignments

In this section, we describe how the Smith–Waterman (SW) algorithm
for scanning of protein sequence databases can be efficiently mapped
onto some manycore architectures. Mapping onto any SIMD architec-
ture requires choosing a fine-grained SIMD vectorization. Mapping to
the Cell/BE or a GPU architecture further requires coarse-grained distri-
bution on available cores.
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3.1.1. Smith–waterman algorithm

SW computes the optimal local pairwise alignment (Smith and Waterman,
1981) of two given sequences S1 and S2 of length l1 and l2 using DP with
the following recurrence relations.


E(i, j ) = max{E(i, j − 1) + ge , H (i, j − 1) + go}
F (i, j ) = max{F (i − 1, j ) + ge , H (i − 1, j ) + go}
H (i, j ) = max{0, E(i, j ), F (i, j ), H (i − 1, j − 1) + sbt (S1[i], S2[j ])}

,

where sbt () is a substitution matrix such as BLOSUM62 (Henikoff and
Henikoff, 1992), go is the gap opening penalty, ge and is the gap extension
penalty. The above recurrences are computed for 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2
and are initialized as H (i, 0) = H (0, j ) = E(i, 0) = F (0, j ) = 0 for
0 ≤ i ≤ l1 and 0 ≤ j ≤ l2.

The score of the optimal local pairwise alignment is the maximal
score in matrix H (maxScore). The actual alignment can be found by
a traceback procedure. However, for SW-based protein sequence database
scanning, we just need to compute (maxScore) for each query/database
sequence pair. Database sequences are then ranked according to their
(maxScore) value and the top hits are displayed to the user. Note that the
score-only computation can be done in linear space and does not require
storing the full DP matrix. The data dependency in the SW DP matrix
(Fig. 7) implies that all cells in the same minor diagonal can be computed
in parallel.

Fig. 7. Dependencies in the Smith–Waterman DP matrix. Each cell depends on its
left, upper, and upper-left neighbors. All the cells in the same minor diagonal can be
computed in parallel.
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Fig. 8. SIMD vectorization approaches: (a) minor diagonal; (b) column-based with
sequential layout; (c) column-based with striped layout. Each blank box depicts a
parallel profile stored into a SIMD register, here with four different values.

3.1.2. Mapping onto SIMD registers

Between 1997 and 2007, three approaches have been proposed to vector-
ize SW on CPUs with SIMD instructions sets (Fig. 8): (i) minor diagonal
approach (Wozniak, 1997), (ii) column-based approach with sequential
memory layout (Rognes and Seeberg, 2000); (iii) column-based approach
with striped memory layout (Farrar, 2007).

In order to calculate H (i, j ), the value sbt (S1[i], S2[j ]) needs to be
added to H (i − 1, j − 1). The main challenge for any vectorized SW
implementation is to avoid performing this table lookup for each element
in a SIMD register. Therefore, all three approaches shown in Fig. 8 cal-
culate a query profile parallel to the query sequence beforehand. In the
minor diagonal approach, the query profile is then used to arrange a SIMD
register with all required sbt ()-values. The advantage of this approach is
that it does not require any conditional branches in the inner loop. How-
ever, it has the disadvantages that this SIMD register has to be updated in
each iteration step and that registers are not fully utilized for diagonals at
the beginning and at the end. Both column-based approaches have shown
higher efficiency due to the simplified dependency relationship and par-
allel loading of the vector scores from memory. However, a disadvantage
introduced by processing in column-based order with sequential mem-
ory layout is that a conditional branch is introduced in the inner loop for
computing matrix F .
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The advantage of the striped layout compared to the sequential layout
is that data dependencies between vector registers are moved outside the
inner loop. For instance, when calculating vectors for the DP matrices H
or F with the sequential layout, the last element in the previous vector
has to be moved to the first element in the current vector. When using
the striped query layout, this needs to be done just once in the outer loop
when processing the next database sequence character.

3.1.3. Implementation on Cell/BE

To fully exploit the capability of the Cell/BE, a parallel SW implemen-
tation has to take advantage of the SIMD registers of each SPE. Overall,
the column-based approach with striped memory layout is the most effi-
cient of the three approaches and is consequently utilized in publicly
available Cell/BE SW implementation such as SWPS3c (Szalkowski et al.,
2008) and CBESWd (Wirawan et al., 2008). However, it should be men-
tioned that actual performance depends on the utilized scoring scheme
(i.e. substitution matrix and gap penalties).

For coarse-grained parallelization across SPEs, the database can be
partitioned into nonoverlapping workloads of similar size which are then
distributed from the PPE to the different SPEs using multi-threading.
Furthermore, due to the limited SPE local store (256 KB), a partitioning of
the DP matrix for long query sequences is required in SWPS3 (Szalkowski
et al., 2008).

3.1.4. Intra-task or inter-task parallelization on GPUs

There are two basic approaches to map SW-based protein sequence
databases scanning onto manycore GPUs: (i) inter-task and (ii) intra-task.
Considering the SW alignment of a query sequence/database sequence
pair as a basic task, the inter-task approach assigns each task to one work-
item while the intra-task approach assigns each task to one work-group
(Fig. 9). Implementation results have shown that inter-task parallelization
generally achieves higher performance at the cost of higher memory con-
sumption. Therefore, CUDASW++e (Liu et al., 2009a) uses this method

chttp://www.inf.ethz.ch/personal/sadam/swps3/
dhttp://sourceforge.net/projects/cbesw/
ehttp://cudasw.sourceforge.net/
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Fig. 9. Inter-task vs intra-task parallelization, from (Liu et al., 2009a).

for most alignments with the exception of very long database sequences,
which use the intra-task approach. To achieve good load balancing within
a work-group, all work-items within the same work-group can be assigned
database sequences of roughly equal length.

3.1.5. Memory optimization on GPUs

In the CUDA programming model, global memory has to be accessed
in a coalesced fashion to achieve high efficiency. Inter-task parallelization
uses a coalesced global memory access pattern. A memory slot is allo-
cated to a work-item in a work-group and is indexed top-to-bottom.
Therefore, the access to the memory slot uses the same index for all
work-items in a work-group. The coalesced global memory arrangement
is used for both database sequences and intermediate results of the SW
computation.

Fast local memory and registers can be exploited in the SW computa-
tion as follows. Instead of computing only one SW cell by each work-item
for each global memory access, a whole cell block of size n × n can be
computed. In this case, the computation of n cells in a column (or row) of
a cell block only requires one load and one store operation to the global
memory instead of n load and n store operations. Since one global access
takes hundreds of clock cycles, this method leads to a significant perfor-
mance improvement. However, the size of the cell block is limited by the
amount of local memory and registers available; e.g. CUDASW++2.0
uses a size of 8 × 8 on a GTX280. Furthermore, the gap penalties and
query sequence are stored in a constant global memory, while the scoring
matrix is loaded to local memory.

3.1.6. Performance comparison

Table 1 lists some peak performance achieved by recent SW implemen-
tations, measured in GCUPS (Billion Cell Updates Per Second). In two
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Table 1. Peak performance of several implementations of Smith–Waterman in
GCUPS (Billion Cell Updates Per Second). All Cell/BE and GPU implementations
were published in 2008 or 2009. Note that the average performance greatly depends
on the input size, as well as on the score matrix and gap penalties. The 14.5 and
16.1 GCUPS of Ligowski and CUDASW++ are on dual-GPU cards.

Peak performance

SSEARCH
(Pearson and
Lipman,
1988)

CPU (2.0 GHz
Xeon)

∼0.1 GCUPS non-SIMD SW
implementation

(Farrar, 2007) CPU (2.0 GHz
Xeon)

3.0 GCUPS striped layout, SSE2
SIMD instructions

CBESW
(Wirawan
et al., 2008)

Cell/BE 3.6 GCUPS striped layout, long
queries (800)

SWPS3
(Szalkowski
et al., 2008)

Cell/BE 9.3 GCUPS striped layout, long
queries

(Farrar, 2009) Cell/BE 16 GCUPS striped layout, long
queries (32 K)

SWCUDA
(Manavski
and Valle,
2008)

GeForce 8800
GTX

∼1.5 GCUPS inter-task

(Ligowski and
Rudnicki,
2009)

GeForce 9800
GX2

7.5 / 14.5 GCUPS

CUDASW++2.0
(Liu et al.,
2009a)

GTX 280/295 16.8 / 28.8 GCUPS inter-task + intra-task,
short/long queries

years, this active field of research has brought a 10× improvement on
almost equivalent hardware. Compared to the non-SIMD plain SW imple-
mentation of Pearson and Lipman (1988), the best implementations now
achieve a more than 100× speedup.

However, peak performances do not measure every aspect of the
implementations. For example, in (Liu et al., 2009a), the authors com-
pare the performance of their CUDASW++ on a single-GPU GTX 280
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and a dual-GPU GTX 295 versus the performance of SWPS3. SWPS3
achieves a peak performance of around 9.3 GCUPS for longer queries,
but is very inefficient for short queries. Due to the inter-task paralleliza-
tion, the CUDASW++2.0 single-GPU version has a relatively constant
performance with an average of 16.3 GCUPS. The dual-GPU version
performance is relatively low for short query sequences, but increases up
to 28.8 GCUPS for longer ones.

3.2. Algorithms on sequence data

The algorithms discussed in this section also use kernels working on raw
sequence data, but address other bioinformatics problems. The first two
algorithms concern DP recurrences, whereas the last one is about weight
matrices computations.

3.2.1. RNA folding

Determining the folding of RNAs is important for the study of noncoding
RNAs. The secondary structure is a succession of base pairings, most often
A/T, C/G and G/U. This secondary structure is a basis of the tertiary
structure of the RNA. Moreover, comparative genomics has shown that,
through evolution, this structure is more conserved than the nucleotide
sequence.

Nussinov’s algorithm finds the RNA structure with the maximum
number of base pairs (Nussinov et al., 1978). However, complete RNA
folding algorithms are typically based on energy minimization, and include
energies of stacking regions (or helices), bulge loops, internal loops,
hairpin loops and multiple loops, for example as in the full Turner
model (Matthews et al., 1999), included in the mfold/unafold packages
(Zuker, 2003).

In (Rizk and Lavenier, 2009), the authors develop an optimized GPU
implementation of mfold/unafold, by computing in parallel all cells from
the diagonal of the dynamic programming matrix (Fig. 10). At each cell
(i, j ), if bases i and j can pair, huge computations are run to search for
additional RNA structures. However, in the mfold/unafold implemen-
tation, only 6 over the 16 possible combinations of bases launch these
computations. That means that only 6/16 cells of the DP matrix lead to
further computations. This breaks the SIMD model of the GPU, as neigh-
bor work-items would probably diverge. To prevent this, the authors pack
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Fig. 10. Dependencies in the RNA folding DP matrix, as implemented in (Rizk and
Lavenier, 2009). Each cell depends on its underlying triangle. All cells in the same
major diagonal can be computed in parallel.

together these 6/16 cells, and compute all of them at the same time.
Finally, they obtain a 17× speedup on a GTX 280 over a one-core version
on a 2.66 GHz Xeon.

3.2.2. Generic dynamic programming

Algebraic Dynamic Programming (ADP) (Steffen and Giegerich, 2005) is
a framework to encode different DP problems. Starting from an abstract
grammar (Fig. 11) and an evaluation algebra, the ADP compiler generates
the DP dependencies and recurrences, and finally translates them into
C (Fig. 12). This abstraction is especially useful when the optimization
problem includes lots of subcases, resulting in large DP recurrences.

Fig. 11. Excerpt from the ADP grammar for RNA folding. Starting from the
axiom (struct), several productions detail how to generate different RNA structure
components.
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Fig. 12. ADP workflow, from (Steffen et al., 2009). The same abstract grammar and
algebra, in RNAfold.lhs, is used to produce plain C or CUDA code.

In (Steffen et al., 2009), a CUDA backend of the ADP compiler is
proposed.f In all ADP programs, all results are combined from results of
shorter subsequences. Therefore, the calculation of a table element (i, j )
depends only on results that lie in the “underlying triangle” under (i, j ),
and, as in the case of RNA folding, such elements can be computed in
parallel (Fig. 10).

The authors apply this technique on several RNA tools. On pknot-
sRG, a RNA pseudo-knot detection application (Reeder et al., 2007),
they obtain speedups up to 7×. On RNA folding, they achieve a
speedup up to 9×, far below the implementation of (Rizk and Lave-
nier, 2009). This solution is thus less efficient than a manually crafted
implementation but the advantage is definitely the generic nature of
the approach; even for now only a few DP problems are encoded
like that.

3.2.3. Position Weight Matrices algorithms

Position Weight Matrices (PWMs) model approximates patterns from a set
of sequences, as for instance in transcription factor binding sites, splicing
sites or protein domains. Given a finite alphabet

∑
and a positive integer

m, a PWM M is a matrix with |∑ | rows and m columns (Fig. 13). The
PWM associates to each word u − u1u2 . . . up the score

∑m
p=1 M (p, np).

Given a score threshold α, it is possible to compute the probability to
achieve a score greater than α: this is the p-value.

There are three usual problems on PWMs: finding positions where
a pattern occurs (the scan), assessing a p-value for each occurrence, and
comparing patterns. In (Giraud and Varré, 2009), a CUDA parallelization

f http://bibiserv.techfak.uni-bielefeld.de/adp/cuda.html
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Fig. 13. A Position Weight Matrix (PWM) modeling the CREB1 transcription factor
binding site (from the JASPAR database). The coefficients indicate affinities between
letters and positions at the binding site: positive if the letter is over-represented in the
binding site, else negative. From (Giraud and Varré, 2009).

Fig. 14. (a) Parallel scan. Positions on the text τ are distributed amongst differ-
ent work-items. (b) Parallel computation of PWM score distribution. The first row
is computed in parallel, from brute-force word enumerations. From (Giraud and
Varré, 2009).

achieves speedups of 21× for the brute-force parallelization of the scan and
77× for the p-value computation (on a NVIDIA GTX 280).g

The parallelization of the scan is straightforward, distributing posi-
tions of the text to different work-items. To reduce memory transfers,
work-items in the same work-group process have interleaved positions
(Fig. 14(a)).

Computing the p-value is NP-hard (Touzet and Varré, 2007). The
usual algorithm proceeds by recursion (Staden, 1989), computing the
score distribution QM , where QM (s) is the probability to achieve exactly
the score s . Then, for a given score s ′, the p-value is obtained with the equa-
tion: p-valueM (s ′) = ∑

s≥s ′ QM (s). The distributed algorithm of (Giraud
and Varré, 2009) computes an approximation of the score distribution

ghttp://bioinfo.lifl.fr/cudapwm/



December 16, 2010 16:54 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-ch08

Manycore High-PerformanceComputing in Bioinformatics 199

QM by splitting the matrix into submatrices. Q is computed for each
submatrix and the resulting score distributions are merged (Fig. 14(b)).
Here the brute-force computation of Q for each submatrix takes advan-
tage of the GPU architecture: each work-item evaluates a large set of 4l

words (where l is the length of the submatrix), with no divergence, and
no communication nor memory access during the main computation. The
best speedups are obtained for larger matrices. Unfortunately, for smaller
matrices, which are the ones stored into databases, the execution time
remains lower using the CPU.

3.3. Other applications

We now briefly review other bioinformatics algorithms that have been
parallelized on GPUs. Even if some problems still input sequence data,
here the kernels do not directly deal with sequence data.

3.3.1. Indexing structures

As some string algorithms are intrinsically complex, several heuristics have
been proposed on CPUs, including the popular BLAST (Altschul et al.,
1990) for SW sequence alignments. Heuristics often build indexes when
preprocessing a part of the input. Some researchers try to put this kind of
heuristics on manycore processors.

MUMmer (Kurtz et al., 2004) is a heuristic that uses maximal exact
matches (MEM) to seed SW sequence alignments. The MEM detection
uses a large suffix tree (Gusfield, 1997). Schatz et al. (2007) proposed a
CUDA parallelization of MUMmer, which splits the text into 8-Mb pages.
Schatz and Trapnell (2009) further optimized this implementation. This
latter article contains an exhaustive study of 27 = 128 combinations of
design choice for their CUDA implementation.h

Shi et al., (2009) elaborated an error correction algorithm for read
mapping, based on spectral alignment. Their algorithm uses a specific
data structure, a Bloom filter, that is a set of hashing tables with mul-
tiple keys. The parallelization is done on the querying of this Bloom fil-
ter. They reported speedups up to 19× compared to an equivalent CPU
algorithm.

hhttp://www.mummergpu.sourceforge.net
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3.3.2. Phylogeny

Charalambous et al. (2005) used the first bioinformatics application on
GPU. The authors studied the RAxML phylogenetics program, and, after
profiling, decided to parallelize a particular loop. The speedup (1.2×) was
obtained with a Brook kernel on a NVIDIA GeForce FX 5700.

Suchard and Rambaut (2009) studied statistical phylogenetics. The
goal of such methods is to evaluate the likelihood of a set of sequences,
given a phylogenetic tree and a model of evolution. The difficulty is in
the computation of the likelihood itself. Their implementation uses very
precise memory accesses, obtaining a speedup up to 60× on a NVIDIA
GTX 280 GPU.i

3.3.3. Multiple sequence alignment

ClustalW (Larkin et al., 2007) is a multiple sequence alignment program.
This progressive alignment technique aims to align the sequences follow-
ing a guided tree, computed from distance matrices. Liu et al. (2006)
proposed a parallelization of the first phase that builds pairwise align-
ments, with a method similar to the one presented in the first part of this
section.

Liu et al. (2009b) elaborated a parallelization of the second phase,
the Neighbor-Joining algorithm (Saitou and Nei, 1987). Here the par-
allelization is on the distance matrix computation, where each cell can
be computed independently. The study includes a discussion on the
optimal number of work-items and work-groups, as well as on a good
memory management taking advantage of the symmetry of the distance
matrix. A speedup up to 26× is finally obtained on a NVIDIA GTX
280 card.

3.3.4. Motif finding

CUDA-MEME (Liu et al., 2010) is a CUDA implementation of the popu-
lar MEME tool for finding regulatory regions in DNA sequences (so-called
motifs). It achieves a speedup of up to 20.5× over the sequential MEME
code on a GTX280.

ihttp://beagle-lib.googlecode.com/
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3.3.5. Hidden Markov Models profiles

In (Walters et al., 2009), the authors propose a GPU version of HMMER
(Eddy, 1998). HMMER is a popular software that aims to compute a
Hidden Markov Model (HMM) from a set of aligned protein sequences,
which allows searching for occurrences of similar proteins in databases.
The parallelization focused on the heart of the hmmmsearch tool that uses
the Viterbi algorithm. A speedup up to 38× is obtained depending on the
size of the HMM.

3.3.6. Cell molecules simulation

Roberts et al. (2009) simulated diffusion of molecules in the cell.j The cell
topology is modeled as a lattice, and particles follow a random walk. The
speedup is not so high (2.4× on a NVIDIA GTX 280), but this study has
interesting remarks on the limits of the GPU for this problem.

4. Discussion

The previous section shows that the development of manycore algorithms
for bioinformatics has already started, taking into account architecture
details of such processors. Here we point out what difficulties might be
encountered, and discuss how to exploit the processing power of manycore
processors in bioinformatics analysis. We also mention some challenges in
designing parallel algorithms.

4.1. Challenges in parallel algorithmics

Most of the applications presented in this chapter exhibit data-parallelism
on sequence data: the same instruction flow is applied to every chunk
of data. This is especially the case for DP algorithms (Smith–Waterman
sequence comparison, RNA folding, Algebraic Dynamic Programming),
but also for other algorithms on sequence data. In all those algorithms,
different work-items work on different small sections of the input data.
These algorithms are the best ones to parallelize, with almost no diver-
gence between work-items in a SIMD subunit. As mentioned in the

jhttp://www.ks.uiuc.edu/Research/gpu/
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previous section, researchers try to further optimize those algorithms
by better memory access patterns or better work-item/work-group
balancing.

Another active field of research is to design elaborated data struc-
tures which are intrinsically parallel, for example, parallel structures for
trees allowing large independent parallel executions. Works on suffix trees
(Schatz et al., 2007, Schatz and Trapnell, 2009) are a first step in this direc-
tion, but the speedups are not so high for the moment (around 5×). Tech-
niques can be borrowed from the graphics community, where research on
ray-tracing also tries to conceive good parallel algorithms for trees (Popov
et al., 2007).

Of course, new chips with more independent cores could allow more
functionalities, but at the price of less dense computational units. Anyway,
there is place for research on improved parallel algorithms, using better
resources of manycore architectures.

4.2. Challenges for bioinformatics analysis

The end-users of algorithms and methods developed for manycore pro-
cessors are supposed to be biologists or bioinformaticians who analyze
data. Nevertheless, most of these programs are research prototypes rather
than end-user applications. In some cases, they need better integration to
be, for example, compliant with existing programs, using the same data
formats for input and output.

Biomanycores. Biomanycoresk is intended to be a collection of manycore
bioinformatics tools (Varré et al., 2009). The goal is both to gather many-
core programs and to propose interfaces to Bio* frameworks like BioJava
(Holland et al., 2008), BioPerl (Stajich et al., 2002), and Biopython (Cock
et al., 2009) (Fig. 15).

We mentioned in the previous section several parallel bioinformatics
applications which are already available, especially for sequence alignment,
that can provide important speedups with common GPUs. However, those
programs are seldom used by, or even unknown to, biologists or bioin-
formaticians. Biomanycores is based on Bio* frameworks, that are widely
used. These frameworks are a collection of tools that allow the user to
create specific analysis pipelines for the data. With Biomanycores, the user

khttp://www.biomanycores.org
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Fig. 15. Biomanycores interfaces. (a) Biopython code for a SW comparison. (b)
BioJava code for a computation with a weight matrix. The interfaces try to use as far
as possible the standard objects of existing APIs (such as Biopython’s SeqIO).

can keep the pipeline and increase the capacity of analysis by replacing the
sequential tool by a parallel one. For example, suppose that a biologist has
a large number of sequences to analyze, and wants to format the results. By
simply replacing the call to the alignment function by a call to the parallel
one, he/she can have a speedup of around 10×. Concretely, Biomanycores
is a repository of open-source parallel bioinformatics code (in Opencl or
Cuda) and interfaces to use these programs from Bio* frameworks. It
tries to bridge the gap between research in high-performance computing
and platforms used by bioinformaticians and biologists, by giving access
to high-performance prototypes through Bio* frameworks. The project
started with three different applications: Smith–Waterman (Manavski and
Valle, 2008), pKnotsRG and weight matrices scan (see Sec. 3 Results).
Contributors are welcome to upload their own applications. Of course,
the speedup using those APIs is lower than the one obtained by directly
using the applications or a manually crafted pipeline, but the advantage is
the ease of use inside standard frameworks.

5. Conclusion

Initiated by multicore and graphics processors, the trend of having more
cores in a processor will surely continue in the coming years. As explained
in the introduction, in the future, the increase of computational power
will come from a higher number of processors (either in CPUs or in
GPUs) rather than higher frequencies. On the other hand, the amount
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of biological data produced is growing more and more rapidly, and this
increases the need for high-performance bioinformatics applications. Par-
allel algorithms could then become the standard, since parallelism is nec-
essary to fully exploit the power of such processors. New tools like CUDA
or OpenCL, as detailed in Sec. 2, makes the use of GPUs for general
programming easier, allowing the user to benefit from the computational
power of GPUs.

In the third section, we have studied some parallel bioinformatics
applications. Parallelism is particularly suitable for bioinformatics algo-
rithms based on dynamic programming, like sequence comparisons. Those
applications can achieve good speedups, even on common (and cheap)
GPUs. But the use of parallelism is not always straightforward, and more
work is needed, for example, to design parallel data structures or to find
new parallel methods. Bringing parallelism to biologists and bioinformati-
cians is another challenge; the Biomanycores project is a first step toward
this goal.

We believe that the development of manycore processors (on com-
modity hardware) starts a new era in parallel processing, and creates
opportunities for high-performance computing in bioinformatics.
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Chapter 9

Natural Selection and the Genome

Austin L. Hughes∗

1. Introduction

In 2009, the 200th anniversary of Charles Darwin’s birth and the 150th
anniversary of his publication of On the Origin of Species were marked
by dozens of symposia, books, and articles, both scholarly and popular.
Amid this acclamation, we heard frequent references to “Darwinism” —
a kind of terminology more appropriate for a political (e.g. “Marxism”),
philosophical (e.g. “Platonism”), or religious (e.g. “Calvinism”) doctrine
than for a scientific theory. Critical assessments of Darwin’s contribution
to biology were few, and the opportunity to assess exactly how far evo-
lutionary biology has progressed since Darwin’s seminal publication was
largely missed.

It is no detraction from Darwin’s contribution to biology to point
out that his understanding of evolution was rather limited by modern
standards, and that the field has progressed greatly since his time. Indeed,
it is a tribute to Darwin’s commitment to a rigorous scientific approach
to questions that, before his time, were most often addressed in a highly
speculative, philosophical way. Because of the solid foundation given to the
field of evolutionary biology by Darwin and several of his contemporaries,
they set in motion a process leading eventually to discoveries that rendered
their own views obsolete. This is how science is supposed to work — in
contrast to philosophical dogmatism.

∗Department of Biological Sciences, University of South Carolina, Columbia, SC
29208, USA
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2. The Molecular Revolution

It might be argued that most of the progress that has occurred in evolu-
tionary biology since its inception has occurred in just the past 30 years or
so; that is, in the short time since the availability of nucleotide sequence
data made possible the study of evolution at the most fundamental level.
Though phenotypic changes are the consequence of evolutionary change,
when biologists were confined to the study of phenotypes, they were not
really able to study evolution itself. Evolution in its essence is change at
the nucleotide sequence level, and without access to the genotype, evolu-
tionary biologists were always one step away from where the real action is.
As long as the molecular basis of phenotypes remained unknown, it was
essentially impossible to understand their evolution.

When Darwin published On the Origin of Species in 1859, not only
was evolution not a widely accepted idea even among scientists, but also
the mechanism of natural selection proposed by Darwin was novel. Thus,
there was a tendency to confound the hypothesis of evolution with the
proposed mechanism. In a number of cases in his writings, Darwin referred
to “my theory” without making it clear whether he meant evolution itself
or natural selection. Unfortunately, the tendency to confound evolution
and natural selection persists to this day, when it is no longer necessary or
fruitful.

Today no scientist would question the statement that life on earth is
the result of an evolutionary process. Moreover, we have abundant evi-
dence that natural selection has occurred in the past and is occurring in
contemporary populations. But today we also have a great deal of evi-
dence suggesting that the kind of natural selection envisioned by Darwin
is by no means the only factor at work in the evolutionary process. Darwin
focused mainly on what today is known as positive selection — or “posi-
tive Darwinian selection” — that is, selection favoring adaptive mutations.
But the molecular evidence suggests that positive selection is very rare and
sometimes rather trivial in its effects. Rather, the molecular evidence over-
whelmingly identifies purifying selection — that is, selection acting against
deleterious mutations — as the predominant form of natural selection that
occurs in nature.

The over-emphasis on positive selection is a legacy of the period of
Neo-Darwinism. Neo-Darwinism arose in the 1920s and 1930s, when
modern population genetics was developed by biologists such as Fisher,
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Haldane, and Wright in the attempt to synthesize Darwin’s theory of
natural selection with Mendelian genetics. The Neo-Darwinists, especially
Fisher and his school, postulated that new adaptive traits arise mainly (if
not exclusively) according to a scenario by which a new advantageous
mutation occurs on a single chromosome in a population and eventually
is driven to fixation (i.e. a frequency of 100%) by positive selection. In
the molecular era, this scenario imposes an outmoded straight-jacket on
evolutionary thinking that has harmful consequences for the biological
sciences, including their application to human health.

3. The Neutral Theory

When the first amino acid sequence data became available in the 1960s,
along with the first data on the level of polymorphism at protein-coding
loci, both Kimura (1968) and Jukes and King (1969) proposed that much
of the polymorphism observed in natural populations is selectively neutral
and that genetic drift is the primary mechanism leading to fixation of new
variants at the molecular sequence level. Kimura’s so-called neutral theory
of molecular evolution, which was grounded in his intensive previous study
of the stochastic element in population genetics, was controversial in the
1970s, giving rise to the selectionist-neutralist debate. For a summary of
Kimura’s theory and the main issues in the debate, see Kimura (1983).

In the 1980s, the advent of rapid DNA sequencing somewhat altered
the terms of the debate. Sequencing revealed the existence of noncod-
ing introns breaking up the protein-coding sequence of many eukaryotic
genes; moreover, it was discovered that the vast majority of the genome of
many eukaryotes is noncoding, often consisting of repeats and other appar-
ently functionless DNA. As a consequence, even many staunch selectionists
were willing to concede that mutations in noncoding regions may often
be selectively neutral and that genetic drift thus must determine their fate
in populations. At the same time, most neutralists were willing to concede
that positive selection plays an important role in evolution, even though
it is responsible for only a minority of fixation events.

Moreover, the advent of abundant sequence data provided strong sup-
port for Kimura’s prediction that purifying selection, not positive selec-
tion, predominates at the molecular level. An important source of insights
into the role of natural selection was provided by the redundancy of the
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genetic code, which makes it possible to estimate separately the number
of synonymous nucleotide substitutions per synonymous site (dS ) and the
number of nonsynonymous nucleotide substitutions per nonsynonymous
site (dN ). Nonsynonymous mutations, because they change the amino
acid sequence, are generally harmful to protein structure. Thus, many
nonsynonymous mutations will be quickly eliminated by purifying selec-
tion. Other nonsynonymous mutations, which are selectively neutral or
very slightly deleterious, may persist in populations and eventually become
fixed by genetic drift. Synonymous mutations, because they do not change
the amino acid sequence, are generally much less likely to be subject to
purifying selection. As a consequence, it is predicted by the neutral theory
that dS will exceed dN in most proteins; and support for this prediction
has provided strong support for the neutral theory (Li et al., 1985).

The central insight behind such comparisons can readily be extended
outside coding regions. For example, in bacteria, the rate of substitution in
spacers between genes has been shown to be significantly reduced in com-
parison to that of synonymous substitution in the adjacent gene (Hughes
and Friedman, 2004). Moreover, the search for potentially functionally
important regions of the genome outside coding regions is generally con-
ducted by looking for regions of conservation between species, using
sequence alignment programs (MultiPipmaker (Schwartz et al., 2003),
rVISTA (Loots and Ovcharenko, 2004)). That conservation is taken as
evidence of important function, based on the insight of the neutralists
that natural selection is primarily purifying.

4. Positive Selection:The MHC Case

Comparison of dS and dN has also been used to study exceptional cases
of positive selection at the molecular sequence level, e.g. the highly poly-
morphic genes of the major histocompatibility complex (MHC) genes of
vertebrates (Hughes and Nei, 1988; 1989). The polymorphism of the
MHC genes was discovered — because of the role of the class I MHC
genes in transplant rejection — before the function of these genes was
known. As a result, biologists proposed numerous hypotheses to account
for both MHC polymorphism and function, some of which were quite
fanciful. For example, since the only other genetic system known to dis-
play a level of polymorphism equal to that of the MHC was the self-
incompatibility system of plants, it was proposed that the MHC is a kind
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of self-incompatibility system for vertebrates (Thomas, 1974). Amazingly,
an extensive literature continues to be produced regarding the supposed
role of the MHC in mate-choice in a variety of species (including humans),
despite the fact that no adequately controlled study has ever demonstrated
such a phenomenon (Hughes and Yeager, 1998).

Zinkernagel and Doherty (1974) unraveled the mystery of class I
MHC function, showing that these molecules function to present pep-
tides to cytotoxic T-cells (CTL), which function to kill cells infected by
intracellular pathogens such as viruses. The same authors soon provided
evidence that different class I MHC allelic products bind different pep-
tides (Doherty and Zinkernagel, 1975). The latter discovery suggested
the hypothesis that MHC polymorphism is maintained by overdominant
selection (heterozygote advantage). Since a heterozygote at a given MHC
locus will be able to bind and present to CTL a broader array of pathogen-
derived peptides, heterozygosity should be predicted to provide an advan-
tage in terms of disease resistance (Doherty and Zinkernagel, 1975).

Working shortly after the first crystal structure of a class I MHC
molecule had been reported (Bjorkman et al., 1987), Hughes and Nei
(1988) predicted that, if Doherty and Zinkernagel’s (1975) hypothesis is
correct, amino acid changes should be selectively favored in the peptide-
binding region (PBR) of the class I MHC molecule. Thus, in the codons
encoding the PBR, we might expect to see the highly unusual pattern
dN > dS , whereas in the rest of the gene we should see dS > dN , as
in most genes. This prediction was supported, in both class I and class II
MHC genes, consistent with the predictions of Doherty and Zinkernagel’s
(1975) hypothesis.

The MHC provides an example of balancing selection, i.e. selection
that acts to maintain a polymorphism (of which overdominant selection is
the best-understood mechanism). Balancing selection is one of two kinds
of positive selection; the other is directional selection, which is selection
leading to fixation of an advantageous variant. Note that Darwin him-
self focused on directional selection, being unaware of balancing selec-
tion. The neutral theory predicts that both forms of positive selection are
rare, and data from sequence analyses overwhelmingly support this predic-
tion. However, the literature has been increasingly clogged over the past
decade or so with fallacious claims of positive selection at the molecular
level, based on the use of poorly conceived statistical methods (Hughes,
2007). In order to appreciate the state of evolutionary biology today, it
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is important that we understand why the reasoning behind these statisti-
cal methods is faulty, and the consequent serious damage to evolutionary
biology as a science.

5. Codon-Based Methods

In the MHC case, we were testing a specific prediction of an a priori
biological hypothesis; namely, that if selection favored diversity in the PBR
because it confers enhanced immune surveillance, multiple amino acid
substitutions should be selectively favored in the PBR (Hughes and Nei,
1988; 1989). It does not follow that positive selection must be occurring
in every case where dN > dS in an individual codon or set of codons.
Rather, it can easily be shown that such codons will occur in virtually
every dataset of aligned coding sequences, even under strong purifying
selection, due to the random nature of the mutational process (Hughes and
Friedman, 2005; 2008). Yet, many computational biologists have made
the unwarranted assumption that the existence of even a single codon with
dN > dS constitutes a “signature” of positive selection.

This false assumption provides the basis of the so-called “codon-
based” tests for positive selection (Hughes, 2007). Because these meth-
ods identify as “positively selected” any codon with one or more
nonsynonymous changes and no synonymous changes (Hughes and
Friedman, 2008), they are highly sensitive to sequencing and alignment
errors (Schneider et al., 2009). Although thousands of papers have been
published based on these methods, none of the alleged cases of positive
selection which were supposedly uncovered can be taken seriously. A recent
study by Yokoyama and colleagues (2008) provides dramatic evidence of
how misleading these methods are. On the basis of both phylogenetic
analysis and laboratory experiments, these authors were able to identify
the amino acid changes underlying adaptive differences among vertebrate
rhodopsins (Yokoyama et al., 2008). On the other hand, the “codon-
based” methods completely failed to identify the amino acids actually
involved in adaptive evolution, focusing instead on irrelevant changes.

6. The McDonald–Kreitman Test

An equally widespread and equally misguided method is the McDonald–
Kreitman test (McDonald and Kreitman, 1991), of which there are several
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versions and modification in use. The basis idea of the McDonald–
Kreitman test is to compare the ratio of nonsynonymous polymorphisms
(Pn) to synonymous polymorphisms (Ps) in a species with the ratio of
nonsynonymous (Dn) to synonymous (Ds) substitutions between that
species and an outgroup species. The expectation under strict neutral-
ity is that Pn:Ps will equal Dn:Ds. Typically cases where Dn:Ds sig-
nificantly exceeds Pn:Ps are taken by users of the method to indicate
positive selection favoring fixation of amino acid differences between
species.

The problem with this method is that a significant result may have
more than one interpretation besides positive selection. Several alternative
explanations involve slightly deleterious mutations. When effective pop-
ulation size is small, purifying selection is ineffective in removing slightly
deleterious mutations, thus allowing them to increase in frequency or even
become fixed as a result of genetic drift (Ohta, 1973). Slightly deleterious
mutations in coding regions are much more likely to be nonsynonymous
than synonymous. If a bottleneck occurs during speciation, the result may
be an increase in Dn:Ds and thus a significant result of the test. This phe-
nomenon seems to have occurred in the case of the alcohol dehydrogenase
(Adh) gene of Hawaiian Drosophila (Ohta, 1993).

A deeper problem with the McDonald–Kreitman test affects even
species that have not undergone bottlenecks. All populations of organ-
isms contain numerous slightly deleterious variants, and those that occur
in coding regions are largely nonsynonymous. However, the intensity of
purifying selection against such variants will vary across loci. At loci where
this selection is very intense, Pn will be low relative to Ps. As a consequence,
at these loci, Dn:Ds will appear high relative to Pn:Ps. Those who use the
McDonald–Kreitman test uncritically will conclude that positive selection
is occurring between species when in fact particularly strong purifying
selection is occurring within species (Hughes et al., 2007). Thus, this test
mistakenly identifies the very proteins that are most constrained as subject
to positive selection!

The McDonald–Kreitman test has sometimes been extended to areas
of the genome outside protein-coding genes (e.g. Andolfatto, 2005). In
this case, polymorphism and divergence in noncoding regions replace
those at nonsynonymous sites, with synonymous sites still being used as a
neutral standard. Here, the inherently poor design of the test also renders
the supposed “signal” of positive selection essentially meaningless, as even
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synonymous sites within a coding sequence can be subject to purifying
selection due to various functional constraints (e.g. taking part in cis-
regulatory regions). Again effective purifying selection within species is
mistaken for positive selection between species.

7. Single Nucleotide Polymorphisms

With the accumulation of data on single nucleotide polymorphisms (SNPs)
in humans and other organisms, one striking observation has been found
in virtually every species: there are numerous nonsynonymous SNPs in
coding regions, but nonsynonymous SNPs tend to have lower gene diversi-
ties (heterozygosities) than synonymous SNPs in the same genes (Hughes,
2005; Hughes et al., 2003). Since most human SNPs are bi-allelic (reflect-
ing the overall low genetic diversity in humans), one way that diversity at
human SNPs is often measured is by the “minor allele frequency” (MAF),
the frequency of the less common allele. MAF is negatively correlated with
gene diversity. Thus, MAF at nonsynonymous SNPs tend to be lower than
MAF at synonymous SNPs in the same genes.

The most obvious interpretation of this finding is that most of the
nonsynonymous SNPs in the human genome represent slightly delete-
rious variants that are subject to ongoing purifying selection (Hughes
et al., 2003; Sunyaev et al., 2001; Zhao et al., 2003). The effects of
purifying selection explain the reduction in MAF at nonsynonymous SNP
sites. Note that the MAF values at these nonsynonymous SNP loci are
generally in the 1–10% range. These values are thus much higher than
MAFs at classic Mendelian disease genes (such as the genes causing cystic
fibrosis or Huntington’s chorea), which are kept at very low frequency
(typically 10−3 or less) in a mutation-selection balance maintained by
strong purifying selection. The existence of numerous slightly deleteri-
ous variants in the human population is consistent with the bottlenecked
population history of humans, since in a small population purifying selec-
tion is not effective in removing slightly deleterious variants (Hughes
et al., 2003).

Given the abundance of SNP data from humans, there has been sub-
stantial interest in finding supposed “signatures” of positive selection in
SNP data. As with other so-called tests for positive selection, the methods
that have been proposed to identify “signatures” of positive selection in
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SNP data are all problematic; thus, in spite of the fact that these analyses
have been reported in numerous high-profile publications, few of them
can be taken seriously. An example of such a defective method is a test
based on MAF (Walsh et al., 2006). This test is based on the reasoning
that a “selective sweep” will cause a reduction in MAF at the selected site
and linked sites, while balancing selection will cause high MAF. A selective
sweep is hypothesized to occur as a result of recent fixation or near-fixation
of some selectively advantageous variant, leading to a reduction in diversity
in sites closely linked to the site under selection.

However, there are other population processes besides a selective
sweep that can cause a reduction in MAF at a number of linked sites.
Likewise, there are factors other than balancing selection that can cause
high MAF at a number of linked sites. The most obvious factor in both
cases is genetic drift. Both of these patterns will occur in a number of
genomic regions by chance as a result of genetic drift. Population bottle-
necks — as occurred when the ancestors of the European and Asian human
populations left Africa — will greatly enhance the likelihood of dramatic
changes in haplotype frequency as a result of genetic drift.

Moreover, because the human genome is subject to ongoing purifying
selection against numerous slightly deleterious variants, it is not surprising
that purifying selection will sometimes lead to reduced MAF at a number
of linked sites. Thus, the test based on MAF has the same problem as
other supposed tests of positive selection mentioned previously, i.e. that
it cannot distinguish positive selection from purifying selection. It has the
added disadvantage that it cannot even distinguish positive selection from
genetic drift.

Another type of test that has similar problems is one based on “derived
allele frequency” (DAF), again proposed by Walsh et al. (2006). Using
nonhuman primate sequences as an outgroup, it is possible to determine
in many cases whether one or both of the alleles at a human bi-allelic
SNP site is ancestral and which is derived. Walsh et al. (2006) argue that
very high or very low DAF might indicate positive selection. However,
since evolution is generally conservative, it might be predicted that derived
alleles are more likely to be deleterious than ancestral alleles are. Indeed,
there is evidence that this is so in the human genome, since the derived
allele tends to be the rarer allele at human nonsynonymous SNPs (Hughes
et al., 2003).



December 16, 2010 16:55 9in x 6in Advances in Genomic Sequence Analysis and Pattern Discovery b1051-ch09

218 A. L. Hughes

8. Conclusions:The Importance
of Purifying Selection

Misled by the outmoded concepts of Neo-Darwinism, many researchers
have sought evidence of positive selection with little reflection on why
knowledge of positive selection would be useful or important, or if the
supposed evidence were even reliable. Sometimes such searches are justi-
fied by the claim that positive selection on a gene should reveal a role in
disease. This frequently repeated idea reveals a failure to grasp the most
fundamental concepts of biology. A positively selected variant is one that
confers an advantage, and therefore ordinarily should not cause disease.
It is true that, in the case of the sickle-cell gene, overdominant selec-
tion has actually greatly increased in frequency a disease gene. But this is
surely a very unusual case, resulting from the very strong selection pressure
imposed by virulent malaria.

A result of the obsession with positive selection is that purifying selec-
tion has been comparatively neglected. Yet purifying selection is by far the
most important form of natural selection, both with regard to prevalence
and with regard to what it can tell us about biological function. Moreover,
the fact that purifying selection is not always effective (depending on pop-
ulation size) causes slightly deleterious mutations to be abundant in the
human population (and in many other populations). These slightly dele-
terious variants include not only nonsynonymous SNPs in coding regions,
but also certain SNPs outside of coding regions; for example, in regulatory
sequences and perhaps in microRNAs. It is these abundant slightly dele-
terious mutations that should be our focus if we are trying to determine
the causes of complex human diseases such as heart disease and cancer
(Hughes et al., 2003).
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