


BookID <BID>_ChapID <CID>_Proof# 1 - 29/08/2009

Bioinformatics



BookID <BID>_ChapID <CID>_Proof# 1 - 29/08/2009

David Edwards ● Jason Stajich ● David Hansen
Editors

Bioinformatics

Tools and Applications



BookID <BID>_ChapID <CID>_Proof# 1 - 29/08/2009 BookID <BID>_ChapID <CID>_Proof# 1 - 29/08/2009

Editors
David Edwards David Hansen
Australian Centre for Plant Functional Genomics Australian E-Health Research Centre 
Institute for Molecular Biosciences CSIRO 
 and School of Land Qld 4027, Brisbane, Australia
Crop and Food Sciences
University of Queensland
Brisbane, QLD 4072
Australia

Jason Stajich
Department of Plant Pathology  
 and Microbiology
University of California
Berkeley, CA
USA

ISBN 978-0-387-92737-4 e-ISBN 978-0-387-92738-1
DOI 10.1007/978-0-387-92738-1
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009927717

© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection 
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



v

BookID <BID>_ChapID <CID>_Proof# 1 - 29/08/2009

Preface

Biology has progressed tremendously in the last decade due in part to the 
increased automation in the generation of data from sequences to genotypes to 
phenotypes. Biology is now very much an information science, and bioinformatics 
provides the means to connect biological data to hypotheses. Within this volume, 
we have collated chapters describing various areas of applied bioinformatics, 
from the analysis of sequence, literature, and functional data to the function and 
evolution of organisms. The ability to process and interpret large volumes of 
data is essential with the application of new high throughput DNA sequencers 
providing an overload of sequence data. Initial chapters provide an introduction 
to the analysis of DNA and protein sequences, from motif detection to gene 
prediction and annotation, with specific chapters on DNA and protein databases as 
well as data visualization. Additional chapters focus on gene expression analysis 
from the perspective of traditional microarrays and more recent sequence-based 
approaches, followed by an introduction to the evolving field of phenomics, with 
specific chapters detailing advances in plant and microbial phenome analysis and 
a chapter dealing with the important issue of standards for functional genomics. 
Further chapters present the area of literature databases and associated mining 
tools which are becoming increasingly essential to interpret the vast volume of 
published biological information, while the final chapters present bioinformatics 
purely from a developer’s point of view, describing the various data and databases 
as well as common programming languages used for bioinformatics applications. 
These chapters provide an introduction and motivation to further avenues for 
implementation. Together, this volume aims to provide a resource for biology 
students wanting a greater understanding of the encroaching area of bioinformatics, 
as well as computer scientists who are interested learning more about the field of 
applied bioinformatics.

Brisbane, QLD David Edwards
Berkeley, CA Jason E. Stajich
Brisbane, QLD  David Hansen
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1.1  DNA Sequencing: An Introduction

The ability to sequence the DNA of an organism has become one of the most impor-
tant tools in modern biological research. Beginning as a manual process, where 
DNA was sequenced a few tens or hundreds of nucleotides at a time, DNA 
sequencing is now performed by high throughput sequencing machines, with 
billions of bases of DNA being sequenced daily around the world. The recent 
development of “next generation” sequencing technology increases the throughput 
of sequence production many fold and reduces costs by orders of magnitude. This 
will eventually enable the sequencing of the whole genome of an individual for 
under 1,000 dollars. However, mechanisms for sharing and analysing this data, and 
for the efficient storage of the data, will become more critical as the amount of data 
being collected grows. Most importantly for biologists around the world, the analy-
sis of this data will depend on the quality of the sequence data and annotations 
which are maintained in the public databases.

In this chapter we will give an overview of sequencing technology as it has 
changed over time, including some of the new technologies that will enable the 
sequencing of personal genomes. We then discuss the public DNA databases which 
collect, check, and publish DNA sequences from around the world. Finally we 
describe how to access this data.

D. Edwards (*) 
Australian Centre for Plant Functional Genomics, Institute for Molecular Biosciences  
and School of Land, Crop and Food Sciences, University of Queensland,  
Brisbane, QLD 4072, Australia 
e-mail: Dave.Edwards@uq.edu.au

Chapter 1
DNA Sequence Databases

David Edwards, David Hansen, and Jason E. Stajich
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1.2  Sequencing Technology

Because of the cost and time consuming nature of initial DNA sequencing methods 
it was not considered feasible to sequence the genomes of most organisms, and 
DNA sequencing projects focused on single pass sequencing of expressed genes, to 
produce Expressed Sequence Tags (ESTs). Genes are specifically expressed in tis-
sues in the form of messenger RNA (mRNA). A pool of mRNA is extracted from 
a tissue and used to produce a library of complementary DNA (cDNA) which is 
more stable and amenable to sequencing than the extracted RNA. Individual 
cDNAs from a library are then sequenced from one direction to produce the 
sequence tag. EST sequencing is a cost effective method for the rapid discovery of 
gene sequences that may be associated with development or environmental 
responses in the tissues from which the mRNA was extracted (Adams et al. 1991). 
However, mRNA species are highly redundant, with highly expressed genes 
demonstrating much greater abundance than genes expressed at lower levels. 
Similarly, only genes expressed in the tissue, growth stage and condition used to 
sample the mRNA are sequenced. As the number of EST sequences produced from 
a cDNA library increases, fewer sequences represent new genes that have not 
already been sampled. Thus, while EST sequencing is a valuable means to rapidly 
identify genes moderately or highly expressed in a tissue, the method rarely identifies 
genes that are expressed at lower levels, including many genes that encode regulatory 
proteins that are only expressed in very small quantities.

An alternative to EST sequencing is genome sequencing, aiming to sequence 
either the whole genome or portions of the genome. This method removes the bias 
associated with tissue specificity or gene expression level. However, eukaryote 
genomes tend to be very large, and genome sequencing only became feasible with 
the development of capillary-based high throughput sequencing technology. This 
technology has led to a move from EST sequencing to the sequencing of whole 
genomes, and the recent development of next generation sequencing technology 
will lead to genome sequencing becoming increasingly common.

The vast majority of DNA sequencing to date has been carried out using the chain-
termination method developed by Frederick Sanger (Sanger et al. 1977). The modern 
Sanger method involves DNA synthesis from a single stranded DNA template using 
a mixture of deoxynucleotides spiked with fluorescent chain terminating dideoxy-
nucleotides. A dideoxynucleotide lacks a 3¢-OH group preventing continued DNA 
synthesis, and each of the four dideoxynucleotides, ddATP, ddGTP, ddCTP, and 
ddTTP are labelled with a different fluorescent marker. This reaction results in a pool 
of fragments differing in length by one nucleotide and terminating with a specific 
fluorescent nucleotide corresponding to the terminal nucleotide base (A, C, G or T). 
Separation of these fragments by size combined with detection of the fluorophores 
provides a readout of the DNA sequence in the form of a chromatogram.

The term “next generation sequencing technology” describes platforms which 
produce large amounts (typically millions) of short length reads (25–400 bp). One 
such advance is the application of pyrosequencing. The first commercially available 
pyrosequencing system was developed by 454 and commercialised by Roche as the 
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GS20, capable of sequencing over 20 million base pairs in just over 4 h. This was 
replaced during 2007 by the GS FLX model and more recently, by the GS FLX 
Titanium, capable of producing over 400 million base pairs of sequence. Three 
alternative ultra high throughput sequencing systems now compete with the GS 
FLX, Solexa technology, which is now commercialised by Illumina; the SOLiD 
system from Applied Biosystems (AB); and the tSMS system from Helicos 
Biosciences Corporation. For a summary of each of these technologies, see 
Table 1.1. In addition, there are at least two other systems that are in the process of 
being commercialized by Pacific Biosciences and VisiGen Biotechnologies.

The Roche 454 FLX system performs amplification and sequencing in a highly 
parallelised picoliter format. In contrast with Solexa and AB SOLiD, GS FLX 
Titanium read lengths average 400–500 bases per read, and with more than one 
million reads per run it is capable of producing over 400 Mbp of sequence with a 
single-read accuracy of greater than 99.5%. Emulsion PCR enables the amplifica-
tion of a DNA fragment immobilized on a bead from a single fragment to 10 million 
identical copies, generating sufficient DNA for the subsequent sequencing reaction. 
Sequencing involves the sequential flow of both nucleotides and enzymes over the 
picoliter plate, which convert chemicals generated during nucleotide incorporation 
into a chemiluminescent signal that can be detected by a CCD camera. The light 
signal is quantified to determine the number of nucleotides incorporated during the 
extension of the DNA sequence.

The Solexa sequencing system, sold as the Illumina Genome Analyzer, uses 
reversible terminator chemistry to generate up to six thousand million bases of usable 
data per run. Sequencing templates are immobilized on a flow cell surface. Solid 
phase amplification creates clusters of up to 1,000 identical copies of each DNA 
molecule. Sequencing uses four proprietary fluorescently labelled nucleotides to 
sequence the millions of clusters on the flow cell surface. These nucleotides possess 
a reversible termination property, allowing each cycle of the sequencing reaction to 
occur simultaneously in the presence of the four nucleotides. Solexa sequencing has 
been developed predominantly for re-sequencing, but is also suitable for de novo 
sequencing.

The AB SOLiD System enables parallel sequencing of clonally amplified DNA 
fragments linked to beads. The method is based on sequential ligation with dye 
labelled oligonucleotides and can generate more than six gigabases of mappable data 
per run. The system features a two base encoding mechanism that interrogates each 

Table 1.1 Properties of the different sequencing methods

Sequencing Machine ABI 3730
Roche 
GSFLX

Illumina 
Solexa AB SOLiD Helicos tSMS

Launched 2000 2004 2006 2007 2008
Read length, 

nucleotides
800–1,100 250–400 35–70 25–35 28

Reads/run 96 400 K 120 M 170 M 85 M
Throughput per run 0.1 MB 100 MB 6 GB 6 GB 2 GB
Cost/GB (2007) >$2,500 k $84 k $4 k $4 k ?
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base twice providing a form of built in error detection. The system can be used for 
re-sequencing and tag based applications such as gene expression and Chromatin 
ImmunoPrecipitation, where a large number of reads are required and where the high 
throughput provides greater sensitivity for the detection of lowly expressed genes.

The field of sequencing technology is advancing very rapidly, with planned improve-
ments to current next generation systems and new systems becoming available. This 
will continue to place demands on data storage and interrogation and a radical rethink 
of the current DNA database systems may be required to manage this flood of data.

1.3  DNA Databases

DNA sequence data forms the core of genomics and is the foundation of much 
bioinformatics research. Because of this, several systems have been developed for the 
maintenance, annotation, and interrogation of DNA sequence information. DNA 
sequences are collected in many different databases and for different purposes. Often 
DNA sequences are the result of a collaboration effort to sequence a particular genome, 
such as the Human Genome Mapping Project in the 1990s or more recent efforts to 
sequence the genome of particular animals and plants. The data which is collected is 
often stored in different databases, sometimes with different annotations. For example, 
the DNA sequence for a particular organism might be stored in distributed databases 
as part of an organism specific dataset, with a subset of the data being submitted to the 
major international databases for distribution as part of those datasets.

The largest of the DNA sequence repositories is the International Nucleotide 
Sequence Database Collaboration (INSDC), made up of the DNA Data Bank of Japan 
(DDBJ) at The National Institute of Genetics in Mishima, Japan (Sugawara et al. 
2008), GenBank at the National Center of Biotechnology Information (NCBI) in 
Bethesda, USA (Benson et al. 2006), and the European Molecular Biology Laboratory 
(EMBL) Nucleotide Sequence Database, maintained at the European Bioinformatics 
Institute (EBI) in the UK (Cochrane et al. 2006). Daily data exchange between these 
groups ensures coordinated international coverage. The Institute for Genomic 
Research (TIGR) based at Rockville, Maryland, USA (Lee et al. 2005) also maintains 
various data types including genomic sequences and annotation.

1.3.1  GENBANK

GenBank® is a comprehensive database of publicly available DNA sequences for 
more than 300,000 named organisms, obtained through submissions from individual 
laboratories and batch submissions from large-scale sequencing projects.

GenBank is maintained and distributed by the National Center for Biotechnology 
Information (NCBI), a division of the National Library of Medicine (NLM), at the 
US National Institutes of Health (NIH) in Bethesda, MD. NCBI builds GenBank 
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from several sources including the submission of sequence data from authors and 
from the bulk submission of expressed sequence tag (EST), genome survey 
sequence (GSS), whole genome shotgun (WGS) and other high-throughput data 
from sequencing centers. The U.S. Office of Patents and Trademarks also contributes 
sequences from issued patents.

The FTP release of GenBank consists of a mixture of compressed and uncompressed 
ASCII text files, containing sequence data and indices that cross reference author 
names, journal citations, gene names and keywords to individual GenBank records. 
For convenience, the GenBank records are partitioned into divisions according to 
source organism or type of sequence. Records within the same division are packaged 
as a set of numbered files so that records from a single division may be contained in a 
series of many files. The full GenBank release is offered in two formats; the GenBank 
“flatfile” format, and the more structured and compact Abstract Syntax Notation One 
(ASN.1) format used by NCBI for internal maintenance. Full releases of GenBank are 
made every 2 months beginning in the middle of February each year. Between full 
releases, daily updates are provided on the NCBI FTP site (ftp://ftp.ncbi.nih.gov/gen-
bank/, ftp://ftp.ncbi.nih.gov/ncbi-asn1/). The Entrez system always provides access to 
the latest version of GenBank including the daily updates.

1.3.2  The Composition of GenBank

From its inception, GenBank has doubled in size about every 18 months. 
Contributions from WGS projects supplement the data in the traditional divisions, 
and the number of eukaryote genomes for which coverage and assembly are significant 
continues to increase as well. Database sequences are classified and can be queried 
using a comprehensive sequence-based taxonomy (Federhen 2003) developed by 
NCBI in collaboration with EMBL and DDBJ with the assistance of external advisers 
and curators. Detailed statistics for the current release may always be found in the 
GenBank release notes (ftp.ncbi.nih.gov/genbank/gbrel.txt).

1.3.3  EMBL

The European Bioinformatics Institute (EBI), part of the European Molecular 
Biology Laboratory (EMBL), is a non-profit organisation and a centre for research 
and services in bioinformatics. The Institute manages many databases containing 
biological information, including nucleic acid and protein sequences, and macromo-
lecular structures. Data and bioinformatics services are made available freely to the 
scientific community.

Among the databases provided, the most widely known are the EMBL 
Nucleotide Sequence Database (Kanz et al. 2005), further referred to as EMBL 
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database. The EMBL database is a typical primary (archival) database: it contains 
the results from sequencing experiments in laboratories together with the interpre-
tation provided by the submitters, but with no or very limited review. The data in 
the EMBL database originates from large-scale genome sequencing projects, the 
European Patent Office, and direct submissions from individual scientists. It is 
important to note that the editorial rights to an entry in the EMBL database remain 
with the original submitter. This means that apart from the addition of cross-refer-
ences, the data is not updated by EMBL database curators, unless explicitly 
instructed by the submitter. There is a quarterly release of the EMBL database and 
new and updated records are distributed on a daily basis. When EMBL entries are 
updated, older versions of the same entry can still be retrieved from the EMBL 
Sequence Version Archive (Leinonen et al. 2003).

Current statistics for the database can be found at http://www3.ebi.ac.uk/
Services/DBStats/. Data in the EMBL Nucleotide Sequence Database are grouped 
into divisions, according to either the methodology used in their generation, such 
as EST (expressed sequence tag) and HTG (high throughput genome sequencing), 
or taxonomic origin of the sequence source, such as the PLN division for plants. 
This is done to create subsets of the database which separates sequences of lower 
quality such as EST and HTG sequences from high-quality sequences, and groups 
high-quality sequences into groups that reflect the main areas of interest. The 
advantage becomes obvious when you wish to limit your database search or 
sequence similarity analysis to plant entries rather than the whole database; for 
example, only a relatively small fraction of the total database needs to be searched 
when using the PLN division.

1.3.4  Collation and Distribution of DNA Sequence Data

DNA sequence data is usually provided by researchers through a web application 
that captures the relevant sequence and associated annotation information. To main-
tain quality, there are processes to ensure that both the raw sequence files as well 
as relevant information from the sequencing machines about the quality of the 
sequence reads is collected. Annotation information may also be provided by the 
submitting scientists, and will generally include descriptions of known features and 
any publications related to the sequence.

While the data is stored and maintained in relational databases, distribution is in 
the form of a series of so called semi-structured text files. The format of a semi-
structured text file is that an entry will appear as a series of lines with the first word 
of each line denoting what is contained on the rest of the line. In order to allow the 
data to be processed by a computer, a formal specification of the format is also 
provided in Backus–Naur form.

Some DNA databases are distributed in a XML format. In these cases the data is 
the same but the format of the files they are in is different. Each database entry is 
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represented by an XML object, with each eXML object described by an XML 
schema or a DTD. The XML schema or document type definition (DTD) replaces 
the need for the Backus–Naur form description.

1.3.5  Data Maintained in a DNA Database

The actual DNA sequence is sometimes not the most important part of a DNA 
database. Rather, it is the annotation – or known information about the sequence 
– which provides the real value for biological interpretation. One reason for this is 
that sequence similarity tools, such as the BLAST family of tools, are typically 
used to compare sequences of unknown function with sequences in the DNA data-
bases. The function of the new sequence may then be inferred from the known 
function of like sequences. Much of the annotation is provided by the scientists 
submitting the sequence to the database, however there are numerous groups 
which apply both manual and semi automated methods of annotation to sequence 
databases to correct errors present during data submission and to generally 
improve the knowledge base of the data. Sequence annotation is covered in more 
detail in other chapters in this volume.

1.3.5.1  General Information

As well as the sequence itself, DNA databases generally maintain a host of 
additional information relating to the sequence. The general information relating to 
a DNA sequence may include:

Unique identifiers for the sequence. Within the large international databases, •	
EMBL, Genbank and DDBJ, entries are given a Primary Accession Number 
(denoted by AC in the flat file distribution). Entries also have a list of secondary 
Accession numbers.
The division that the sequence belongs to (e.g. PLN, plant or WGS, whole •	
genome shotgun).
A version number for the sequence, to allow errors in the sequence to be •	
corrected as new data becomes available.
A creation date, representing when the sequence was first added to the •	
database.
Modification dates, representing modifications to the entry.•	
A description of the sequence, including a general functional description, a list •	
of keywords that describe the sequence, the organism from which the sequence 
comes and a list of terms representing the taxonomic classification of the 
organism.
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1.3.5.2  Database Cross References

With the proliferation of bioinformatics databases, the cross referencing of 
entries between databases is an important feature of most databases. The large 
DNA databases cross reference the DNA entries to many additional databases 
that host related information about the entry. These include:

Protein sequence databases, such as Interpro and Uniprot, when the DNA •	
sequence encodes a protein
Protein structure databases, such as PDB, which again contain proteins encoded •	
by the DNA
GO, the gene ontology database, describing gene ontology terms that may relate •	
to the sequence
Pubmed for literature references relating to the sequence•	

1.3.5.3  Feature Table

The FH lines denote the feature table header, while the actual features and corre-
sponding qualifiers are listed on the FT lines. Features could include the source, 
describing the biological source of the nucleic acid sequenced; CDS (CoDing 
Sequence) features describing information relating to any translated protein; or 
mRNA describing information relating to expressed portions of the sequence. Each 
feature may have one or more qualifiers that provide additional information about 
the feature.

1.3.6  Model Organism Databases

The (INSDC) database system of NCBI, EMBL and DDBJ provides a stable and 
persistent archive of deposited DNA sequence data. However, the task of maintaining 
a curated and up-to-date genome annotation for an organism requires a different 
type of database with more hands-on expert curation. These make up the Model 
Organism Databases, which include TAIR – The Arabidopsis Information Resource 
(Arabidopsis thaliana) (Swarbreck et al. 2008); SGD – Saccharomyces Genome 
Database (Saccharomyces cerevisiae) (Hong et al. 2008), FlyBase (Drosophila 
melanogastor and related species) (Drysdale 2008) and WormBase (Caenorhabditis 
elegans and related worm species) (Rogers et al. 2008). These databases capture not 
only the genome sequence and DNA deposited from the community and the genome 
sequencing project, but also information about known genetic alleles (and their 
sequence if known), curated literature references, and detailed curation of the 
genomic sequence annotation including the gene models, repetitive sequence, and 
other genomic features. These databases serve as clearing houses for much of the 
knowledge about an organism focused around its role as a model system for research.
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1.4  Interrogating DNA Sequence Databases

The vast amount of data within DNA sequence databases provides the challenge of 
searching and accessing this data in a biologically relevant and rapid manner. The 
simplest means of accessing a sequence is to search a database with the sequence 
accession number, though even this may be confounded where a sequence may 
have multiple identifiers, not all of which are present in all databases. Other means 
to search sequence databases include sequence similarity or through sequence 
annotation and some examples of these are described below.

1.4.1  Sequence Similarity

One of the most common means to search sequence databases is through sequence 
similarity with known sequences. The mechanisms underlying these searches 
are detailed in the Imelfort chapter in this volume and will not be dealt with 
here. Of the sequence similarity search tools available, BLAST (Altschul et al. 
1990) and its various flavours is the most commonly used due to its speed. While 
the BLAST algorithm has been broadly adopted, the interfaces through which to 
conduct these searches are many and varied, with new and more complex interfaces 
being developed on a regular basis associated with specific species or datasets. 
BLAST is well documented (http://tinyurl.com/NCBIBLAST) and researchers are 
recommended to become familiar with the various flavours and options available to 
optimise sequence comparisons.

1.4.2  Keyword and GO Annotation

Many of the DNA sequence databases permit the searching of sequence annotation 
data using keywords or structured annotation in the form of Gene Ontologies. 
While the annotation data and search capabilities are more advanced in the model 
organism databases, some key information such as sequence submitter, preliminary 
annotation, and taxonomy details are also maintained within the NCBI, EMBL and 
DDBJ databases. The introduction of gene ontologies has greatly assisted the struc-
tured searching and analysis of the increasing quantities of DNA sequence informa-
tion. However, there remain concerns about the quantity of erroneous annotation, 
particularly from computational annotation methods. Gene annotation is addressed 
in more detail in other chapters in this volume.
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1.4.3  Genome Position

Where a genome has been fully sequenced, the position of a sequence in relation to the 
rest of the genome is important, particularly when comparing related genomes. 
Comparative genomics is a growing field of research which permits the deciphering of 
evolutionary events and allows the translation of information from model species to 
non-model species for direct applications in microbiology, as well as plant and animal 
biology. Genome position is becoming increasingly important in the era of second 
generation sequencing technology, where many related genomes are sequenced or 
re-sequenced and compared to a reference genome. In these cases, the storage of all 
the new sequence information is not required, and only the positions where the new 
sequence information differs from the reference is of relevance. The best example of 
this is the human HapMap project (The International HapMap Consortium 2007). 
With the continued increase in DNA sequence production, there will be a move from 
maintaining databases of increasingly redundant DNA sequences to developing data-
bases of genetic differences between individuals and species, leading to a fundamental 
change in the way we store, interrogate, and interpret DNA sequence data.
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2.1  Introduction

The evolution of methods which capture genetic sequence data has inspired a parallel 
evolution of computational tools which can be used to analyze and compare the 
data. Indeed, much of the progress in modern biological research has stemmed from 
the application of such technology. In this chapter we provide an overview of the 
main classes of tools currently used for sequence comparison. For each class of 
tools we provide a basic overview of how they work, their history, and their current 
state. There have been literally hundreds of different tools produced to align, clus-
ter, filter, or otherwise analyze sequence data and it would be impossible to list all 
of them in this chapter, so we supply only an overview of the tools that most readers 
may encounter. We apologize to researchers who feel that their particular piece of 
software should have been included here. The reader will notice that there is much 
conceptual and application overlap between tools and in many cases one tool or 
algorithm is used as one part of another tool’s implementation. Most of the more 
popular sequence comparison tools are based on ideas and algorithms which can be 
traced back to the 1960s and 1970s when the cost of computing power first became 
low enough to enable wide spread development in this area. Where applicable we 
describe the original algorithms and then list the iterations of the idea (often by 
different people in different labs) noting the important changes that were included 
at each stage. Finally we describe the software packages currently used by today’s 
bioinformaticians. A quick search will allow the reader to find many papers which 
formally compare different implementations of a particular algorithm, so while we 
may note that one algorithm is more efficient or accurate than another we stress that 
we have not performed any formal benchmarking or comparison analysis here.

The classes of tools discussed below are sequence alignment, including sequence 
homology searches and similarity scoring, sequence filtering methods, usually 
used for identifying, masking, or removing repetitive regions in sequences, and 
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sequence assembly and clustering methods. Sequence annotation tools including 
gene prediction and marker discovery have been covered elsewhere in this volume 
and are not discussed here.

2.2  Sequence Alignment

At the most basic level a sequence alignment is a residue by residue matching 
between two sequences, and algorithms which search for homologous regions 
between two sequences by aligning them residue by residue are arguably the most 
fundamental components of sequence comparison. It is also biologically relevant to 
consider situations where nucleotides have either been inserted into or deleted from 
DNA; most, but not all, sequence alignment algorithms allow the matching of a 
residue with a gap element or simply a gap.

Consider two sequences which are identical except that the first sequence contains 
one extra residue. When we view the alignment of these two sequences, the extra 
residue will be matched to a gap. This corresponds to an insertion event in the first 
sequence or a deletion event in the second. On the other hand, if we note that an 
insertion event has occurred in the first sequence (with respect to the second) then we 
know how to match that residue to a gap in the second. Thus one way to build a 
sequence alignment is to find a series of insertions, deletions, or replacements, 
collectively called mutation events, which will transform one sequence into the other. 
The number of mutation events needed to transform one sequence into the other is 
called the edit distance. As there will always be more than one series of possible 
mutation events which transform the first sequence into the second, it makes sense to 
rate each set’s likelihood of occurrence. Greater confidence is placed in alignments 
which have a higher likelihood of occurring. Each alignment can be rated by consid-
ering both the cumulative probabilities and biological significance of each mutation 
event. For example, an alignment which infers a lesser amount of mutations to transform 
one sequence into another is almost always considered more likely to have occurred 
than an alignment which infers many more mutations, therefore many alignment 
algorithms work by minimizing the edit distance.

To resolve the issue of biological significance, information about the distribution 
of mutation events is used. This information is most commonly stored, in a scoring 
matrix. Each pair of matched residues (or residue – gap pairs) can be scored and the 
similarity score is the sum of the scores of the individual residues. Most alignment 
algorithms seek to produce meaningful alignments by maximizing the similarity 
score for two sequences. Traditionally, sequence alignment algorithms have been 
called global if they seek to optimize the overall alignment of two sequences. Often 
the resulting alignment can include long stretches of residues which are matched 
with different residues or gaps. Conversely, if the algorithm seeks to align highly 
conserved subsequences while ignoring any intervening unconserved regions then 
it is called a local alignment algorithm. A local alignment of two sequences can 
produce a number of different subsequent alignments. So far, only the case where 
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two sequences are being compared has been described. This is called a pairwise 
alignment. The case where more than two sequences are being compared concurrently 
is called a multiple alignment.

Alignment algorithms can be broadly classified as taking a heuristic or dynamic 
programming approach. Generally, dynamic programming based approaches are 
guaranteed to produce the best alignments but are very often computationally and 
memory expensive, while heuristic based algorithms sacrifice guaranteed quality 
for speed. Note that a heuristic algorithm can produce an optimal alignment; there 
is just no guarantee that it will. Often dynamic programming approaches are used 
to finish or perfect alignments made using heuristics.

2.2.1  Substitution Matrices

When two sequences are aligned there are often residues in one sequence which do 
not match residues in the other. There is usually more than one way to align two 
sequences, so a scoring system is needed to decide which of the possible alignments 
is the best. For a nucleotide alignment, a simple scoring system could award one 
point for every match and zero points for a mismatch or a gap. This information can 
be stored in a matrix called a substitution matrix. An example of such a matrix is 
shown as the first matrix in Fig. 2.1 below. This is the substitution matrix employed 
with good results in the original Needleman–Wunsch algorithm (Needleman and 
Wunsch 1970). However, this matrix was criticized as lacking in both biological 
relevance and mathematical rigor and there have been a number of attempts to 
improve on both this and some earlier methods resulting in the scoring systems used 
today. In 1974, Sellers introduced a metric which could be used to describe the 
evolutionary distance between two sequences (Sellers 1974) and this method was 
generalized by Waterman et al in 1976 (Waterman et al. 1976). The idea behind these 
scoring systems was to minimize the number of mutations needed to transform one 
sequence into the other while also taking into account the differing probabilities of 
distinct mutation events. For example, a more sophisticated scoring system could 
award negative scores for gaps (a gap penalty) and for mismatches the scores 

Fig. 2.1 Two examples of nucleotide similarity matrices. The first matrix implements a binary 
scoring scheme awarding one point for a match and one for a mismatch. The second matrix intro-
duces a more sophisticated method where biological observations such as the unequal probabili-
ties of transitions and transversions influence the score
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could differ according to whether the mismatch was a transition event or a transversion 
event. An example of this is the second matrix in Fig. 2.1 below.

For protein alignments, each row and column in the substitution matrix S 
corresponds to a particular amino acid, where each entry S 

i,j
 contains a value 

representing the probability of substituting the residue in row i for the residue in 
column j. The most widely used examples of such matrices are the point accepted 
mutation (PAM) matrices (Dayhoff 1978) and Block substitution matrices 
(BLOSUM) (Henikoff and Henikoff 1992). Both matrices share many similarities. 
They are both 20 × 20 matrices and in both cases identities and conservative 
substitutions are given high scores while unlikely replacements are given much 
lower scores. Both matrices are assigned numbers which identify when they should 
be used, for example PAM30 or BLOSUM62. However, one should use a higher 
numbered BLOSUM matrix when comparing more similar sequences while for 
PAM matrices lower numbers should be used. A more important difference is the 
way the matrices are built. PAM matrices are derived from an explicit model of 
evolution and based on observations of closely related protein sequences, while 
BLOSUM matrices are based directly on observations of alignments of more 
distantly related sequences using a much larger dataset than for PAM. As a result 
the BLOSUM matrices tend to produce better results than PAM matrices, particularly 
when aligning distantly related sequences.

Work on the PAM matrix model of protein evolution was undertaken by Dayhoff 
in the late 1970s (Dayhoff 1978). The main idea behind the PAM matrices is that 
of all possible mutations; we are going to observe only those which are accepted by 
natural selection. PAM1 was calculated using the observed relative frequencies of 
amino acids and 1,572 observed mutations in multiple alignments for 71 families 
of closely related proteins. Each entry in PAM1 represents the expected rates of 
amino acid substitution we would expect if we assume that on average only 1% of 
the residues in one sequence have mutated (Dayhoff 1978). By assuming that 
further mutations would follow the same pattern and allowing multiple substitutions 
at the same site, one can calculate the expected rates of substitution if we assume 
on average that 2% of the residues have mutated.This is the PAM2 matrix. Thus all 
the PAM matrices are calculated from the PAM1 matrix and are based on an explicit 
model of evolution based on point mutations. Matrices were calculated by Dayhoff 
up to PAM250.

The PAM approach performs well on closely related sequences but its perfor-
mance declines for more distantly related sequences. The BLOSUM matrices were 
derived by Steven and Jorja Henikoff in the early 1990s to address this problem. To 
build a BLOSUM matrix, local alignments are made using sequences obtained 
from the BLOCKS database. Sequences with a similarity greater than a given cut 
off are combined into one sequence producing groups with a given maximum simi-
larity. This reduces any bias caused by large numbers of highly similar sequences 
(Henikoff and Henikoff 1992). The value for the cut off is appended to the name of 
the matrix, thus the BLOSUM62 matrix is effectively made by comparing 
sequences with less than 62% similarity. As a result BLOSUM80 is a better matrix 
to use when aligning closely related sequences than BLOSUM30 which is better 



172 Sequence Comparison Tools

BookID 151692_ChapID 2_Proof# 1 - 21/08/2009

suited to aligning highly diverged sequences. BLOSUM62 is the default matrix 
used in the BLAST algorithm described below.

2.2.2  Pairwise Sequence Alignment Algorithms

At the base of many sequence comparison tools are pairwise sequence alignment 
algorithms. Beginning in the mid 1960s a large number of heuristic algorithms were 
suggested for the pairwise alignment of protein sequences. The era of modern sequence 
alignment techniques began in 1970 with the publication by Needleman and Wunsch 
of a dynamic programming method which could be used to make a global pairwise 
alignment of two protein sequences (Needleman and Wunsch 1970). In 1981, Smith 
and Waterman extended the ideas put forward by Needleman and Wunsch to create 
the local alignment algorithm known as the Smith–Waterman algorithm (Smith 
et al. 1981). Both the Needleman–Wunsch and Smith–Waterman methods belong 
to a class of algorithms called dynamic programming algorithms. This class of 
algorithms can find optimal solutions to problems but can take a long time to run, 
especially in complicated cases or for large data sets. These two algorithms are the 
most accurate pairwise alignment algorithms in existence. Nearly all of the newer 
local pairwise alignment algorithms use a two step approach to reduce the running 
time. The first stage uses heuristics to search for areas which have a high probability 
of producing alignments. Next, these areas are passed to a dynamic programming 
algorithm such as the Smith–Waterman algorithm for true alignment. The most 
commonly used two step approaches are FASTP/FASTA, the BLAST family of 
algorithms, Crossmatch/SWAT, and BLAT, although there are many others.

Higher order sequence comparison tools often employ pairwise alignment algo-
rithms to judge similarity for use in clustering or assembly, so it is important to 
understand how these basic algorithms work and which sequences they are better 
suited to. We provide below an overview of the most common pairwise alignment 
algorithms.

2.2.2.1  The Needleman–Wunsch Algorithm

This is a highly accurate, dynamic programming based, global pairwise alignment 
algorithm. It was originally developed for aligning protein sequences but can also 
be used to align DNA sequences. This algorithm aligns two sequences A and B 
with lengths m and n residues respectively, by finding a path through a two dimen-
sional m × n array; S. As all m × n values in S must be calculated for every align-
ment, the work needed to align two sequences becomes intractable for large m and 
n. For the following example, we assume the use of the simple nucleotide similarity 
matrix in Fig. 2.1. First the bottom right cell S

m,n
 is assigned the value 1 or 0 

depending on whether the base in position m of A matches the base in position n 
of B. The cell diagonally above and to the left of this cell; S

m-1, n-1
, is given a value 
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of 2 if the base in position m – 1 of A matches the base in position n – 1 of B or a 
value of 1 otherwise. This is because a match will produce a maximum run of 
matches of length 2 for all bases from this point on, whereas a mismatch will 
produce a run of at most one match. The algorithm continues working backwards 
until every cell has been assigned a value. Finally the algorithm starts from the 
highest scoring cell in the array, and finds a path through the array which maximizes 
the cumulative sum of the values in the cells visited in the path. The resulting path 
represents a maximally matching global alignment.

2.2.2.2  The Smith–Waterman Algorithm

In 1981 Smith and Waterman extended the ideas presented by Needleman and 
Wunsch to create an algorithm which is capable of finding optimal local pairwise 
alignments. The method uses a distance metric introduced by Sellers in 1974 which 
can be summarized by a matrix similar to the second example in the Fig. 2.1 (Smith 
et al. 1981). This algorithm uses a method similar to that of Needleman and 
Wunsch; first filling in all the values for an m × n matrix based on the score for 
a maximum length run of matches and then finding a path through the matrix. 
There are two main differences between the Smith–Waterman algorithm and 
the Needleman–Wunsch algorithm. The first is that the matrix is completed 
from the top left cell downwards as opposed to the backtracking done by Needleman 
and Wunsch. The second is that the path is built by finding the maximal valued 
cell in the matrix and then backtracking until a zero is found. The resulting path 
represents an alignment of two segments, one from each sequence. Note that while 
not all the bases in both sequences are aligned, there can be no other pair of seg-
ments which will produce a higher score. The algorithm was modified by Gotoh to 
include affine gap penalties (Gotoh 1982) and is sometimes called the Smith–
Waterman–Gotoh algorithm. This algorithm is without doubt the cornerstone of 
modern sequence comparison.

2.2.2.3  SWAT and CrossMatch

Unlike many other fast pairwise algorithms, SWAT does not employ first stage 
heuristics to speed up the Smith–Waterman algorithm. Instead, the authors of 
SWAT focused on speeding up the code itself by revising recursion relations and 
making efficient use of word-packing. This resulted in a significant reduction in the 
number of machine instructions executed per Smith–Waterman matrix cell. Thus 
they have produced a raw implementation of the Smith–Waterman–Gotoh algo-
rithm which is about one tenth as fast as BLAST. SWAT is normally used to search 
query sequences against a sequence database or as an engine in other sequence 
comparison tools.

CrossMatch is a general-purpose sequence comparison utility based on SWAT 
and is used for comparing sets of DNA sequences. CrossMatch uses the same 
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algorithm as SWAT, but allows the use of heuristics to constrain the comparison of 
pairs of sequences to bands of the Smith–Waterman matrix that surround one or more 
matching words in the sequences. This step reduces the running time for large-scale 
nucleotide sequence comparisons without significantly compromising sensitivity. 
CrossMatch and SWAT form the kernel of the Phrap assembly program and 
CrossMatch is used as the comparison engine in RepeatMasker. Both Phrap and 
RepeatMasker are described in more detail below. SWAT and CrossMatch are unpub-
lished software; however, information can be found at: www.genome.washington.
edu/UWGC/analysistools/Swat.cfm.

2.2.2.4  The BLAST Family of Algorithms

BLAST (Altschul et al. 1990) and its many derivatives are arguably the most widely 
used pairwise local alignment algorithms. The BLAST algorithm attempts to heu-
ristically optimize a measure of local similarity called the maximal segment pair 
(MSP). The MSP is defined as the highest scoring pair of identical length seg-
ments chosen from two sequences. To enable the reporting of multiple local align-
ments BLAST can also return other locally maximal segment pairs. Put simply, the 
speed of the BLAST algorithm is mainly due to its ability to identify and divert 
resources away from areas in the query sequences which have very little chance of 
producing high scoring alignments. Most BLAST implementations enable the user 
to search a pre-compiled database for high scoring segments in a set of query 
sequences. The database is created by running the program formatdb which produces 
a set of files that have been optimized for size and speed of searching. The algorithm 
has three distinct steps. First, using the information in the database and the query 
sequence, the algorithm compiles a list of high scoring words of a set length k 
(k-mers) from the query sequence. The database is scanned for matches to the 
words and where these hits occur, the algorithm tries to extend the hit to the left and 
right. BLAST uses a minimum score cutoff when assessing word hit quality to filter 
out any hits which could have occurred due to random chance. Note that the BLAST 
algorithm is characterized by the creation of k-mer lists for each query sequence 
and a linear search of the entire database for words in these lists. The BLAST algorithm 
has been highly successful and there are many different implementations available 
which have been adapted to better suit particular applications.

2.2.2.5  BLAT

BLAT stands for BLAST-Like Alignment Tool and was developed by James Kent 
for use in the annotation and assembly of the human genome (Kent 2002). Kent was 
given the task of aligning many millions of mouse genomic reads against the human 
genome. He found that when using BLAST, the need to calculate high scoring 
k-mer lists for each query sequence and the linear nature of the database search 
proved too slow. To solve this problem, BLAT creates an indexed list of all possible 
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non-overlapping k-mers from sequences in the database. BLAT then compiles a list 
of all overlapping k-mers from each query sequence and attempts to find these in 
the database. In the regions where multiple perfect hits occur, BLAT performs a 
Smith–Waterman alignment of the two sequences. This allows BLAT to maintain 
relatively high sensitivity, although it must be noted for example that TBLASTX 
can be configured to be more sensitive to distant relationships than BLAT. The 
reduced sensitivity is compensated for by the fact that BLAT can be run up to 50 
times faster than TBLASTX (Kent 2002).

2.2.3  Multiple Sequence Alignment Algorithms

It is often necessary to produce an alignment of a group of three or more sequences. 
Examples include the comparison of the evolutionary distances between protein 
sequences, the evaluation of secondary structure via sequence relationship, or the 
identification of families of homologous genes. Efforts have been made to extend 
dynamic programming pairwise alignments to handle three or more sequences 
(Murata et al. 1985). However, the computational complexity of handling more 
than 4 sequences proved too much for the available computing power. Many modern 
multiple alignment algorithms use a method first suggested in 1987 by Feng and 
Doolittle called the progressive method (Feng and Doolittle 1987). The underlying 
assumption used in constructing the progressive method is that sequences with a 
high level of similarity are evolutionarily related. Given a set of sequences to be 
aligned, Feng and Doolittle use the Needleman–Wunsch pairwise alignment algo-
rithm to calculate rough evolutionary distances between every pair of sequences 
and these are used to create a reference phylogenetic tree. Starting from the two 
closest branches on the tree, a pairwise alignment is made and a consensus sequence 
is produced which is used as a substitute for the branch. This is continued for 
the next closest pair of branches until all the sequences have been added and the 
alignment is complete.

The intermediate pairwise alignments may include two of the query sequences, 
one query sequence and one consensus sequence or two consensus sequences. It is 
important to note that the order in which sequences are added will affect the ultimate 
alignment and it is very difficult to repair the damage caused to the overall quality 
of an alignment if a less than optimal choice is made early on. However, algorithms 
such as MUSCLE attempt to do this. The use of a reference tree helps ensure that 
closely related sequences are aligned before distantly related sequences. Thus the 
progressive method utilizes a greedy algorithm. Feng and Doolittle stressed the point 
that any gaps added to the alignment in earlier stages must remain, creating the rule 
“once a gap, always a gap” (Feng and Doolittle 1987). This ensures that distantly 
related sequences cannot disturb meaningful alignments between closely related 
sequences, however some implementations of the progressive method do not follow 
this rule. Finally it is important to note that the reference tree should not be used to 
infer phylogenetic relationships, as there is a high probability that the tree is erroneous 
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(in that sense). However, a new tree (or set of trees) can be made with the resulting 
multiple alignment and this can be used to study phylogeny. There are a number of 
multiple alignment algorithms based on the progressive method. The most widely 
used are the CLUSTAL family of algorithms, MUSCLE and T-Coffee.

2.2.3.1  The CLUSTAL Family of Algorithms

The CLUSTAL family of multiple alignment algorithms includes the original 
program CLUSTAL as well as CLUSTAL V and CLUSTAL W. All of the CLUSTAL 
derivatives are based on the progressive method (Higgins and Sharp 1988; Higgins 
et al. 1992; Thompson 1994). The original CLUSTAL package was released as a 
collection of different pieces of software with each one performing one stage of a 
progressive alignment. CLUSTAL V was a rewrite of this system which combined 
all the packages into one program. CLUSTAL W is a further update to CLUSTAL 
V which incorporates sequence weighting, position-specific gap penalties, and 
weight matrix choice. For the rest of this section we describe only the features of 
CLUSTAL W.

Highly similar sequences will be positioned very closely on the reference tree 
and consequently will be added to the alignment much earlier than divergent 
sequences. Too many highly similar sequences in the query set can create bias in 
the topology of the reference tree which can lead to future alignment errors 
(Higgins and Sharp 1988). Sequence weighting attempts to reduce this bias by 
down-weighting groups of similar sequences and up-weighting divergent sequences. 
This feature reduces the negative impact that the topology of the reference tree can 
have on the final alignment (Thompson 1994). When the algorithm starts, it can use 
gap penalties and substitution matrices as supplied by the user. CLUSTAL W 
provides a choice of PAM or BLOSUM matrices with the default being BLOSUM. 
As the algorithm progresses, CLUSTAL W adjusts the gap penalties according to 
the position, content (hydrophilic or hydrophobic regions) and length of the 
sequences. CLUSTAL W also adjusts the weight of the substitution matrix based 
on the estimated evolutionary distances obtained from the reference tree. These 
additions to the CLUSTAL algorithm reduce the negative impact of sub-optimal 
parameter choices made by the user.

CLUSTAL W is the most widely used multiple sequence alignment algorithm 
and represents an acceptable balance between speed and accuracy. The next two 
algorithms are faster and more accurate respectively. The first, MUSCLE, sacrifices 
some accuracy for significant gains in speed, while the second, T-Coffee, makes 
significant gains in accuracy for a modest sacrifice in speed.

2.2.3.2  MUSCLE

MUSCLE is a very fast multiple sequence alignment algorithm based on the 
progressive method. The algorithm is split into three phases. The first is typical of a 
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progressive algorithm except that instead of using an alignment algorithm to generate 
the reference tree and evolutionary distances, MUSCLE employs the faster method 
of k-mer counting to judge similarity (Edgar 2004). Once the preliminary tree has 
been built, MUSCLE progressively adds sequences to the multiple alignment 
following the branching order, with closer branches being added first. At this stage, 
a new tree can be constructed and the progressive alignment can be returned to 
the user. The second phase seeks to improve the results of the first by iteratively 
constructing progressive alignments in the same manner as the first stage but using 
the most recent tree generated from the previous progressive alignment. At the end 
of each iteration, a new tree is made for use in the next round or phase. The third and 
final phase performs iterative refinement on the tree produced in the second phase. 
At each iteration, the tree is first separated into two pieces by removing an edge. 
Superfluous indels (insertions or deletions) are removed from each of the partial 
multiple alignments and then the tree is rejoined by re-aligning the partial multiple 
alignments. MUSCLE can produce multiple alignments achieving accuracy similar 
to CLUSTAL W but two to three orders of magnitude faster. Thus MUSCLE is 
suited to fast alignment of large sequence datasets.

2.2.3.3  T-Coffee

Nearly all progressive based multiple alignment algorithms employ a greedy 
algorithm for adding sequences to the alignment. Unfortunately, errors can occur 
if the sequences are added in a less than ideal order. T-Coffee is an implementation 
of the progressive method which attempts to rectify some of the problems associ-
ated with the greedy approach to progressive alignment while minimizing speed 
sacrifices. To achieve this, T-Coffee first builds a library of both global and local 
pairwise alignments between all the query sequences. T-Coffee uses the progressive 
method, but in contrast to the algorithms described above, it attempts to consider 
the effects on every query sequence for each sequence being added. This approach 
seems to have worked as, on average, T-Coffee produces more accurate alignments 
than the competing algorithms (Notredame et al. 2000). However, this comes at 
the cost of increased running time, so T-Coffee may not be suited to the task of 
aligning large datasets.

2.3  Filtering, Clustering, and Assembly

This section covers the area of sequence filtering and the related areas of sequence 
clustering and sequence assembly. There is a great deal of overlap in the methods 
used for both sequence assembly and clustering. Pre-filtering reads and masking 
low complexity areas can improve the performance of assembly and clustering 
algorithms and is often a first step in many assembly/clustering pipelines.
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2.3.1  Filtering and Masking

The first phase for many sequence comparison algorithms is filtering or masking 
regions whose presence will reduce the efficacy of tasks further down the pipe-
line. For example, consider the process of automated sequence annotation. One 
task involves querying the sequence to be annotated against a database of 
sequences with high confidence annotations (usually performed by making pair-
wise alignments). If the query sequence contains a substring which is common to 
many, largely unrelated or loosely related sequences, then the algorithm may 
return a large number of matches to sequences in the database which do not 
reflect meaningful annotations. These common elements are usually called 
repetitive, repeats or low complexity sequences. For sequence assembly, finding 
overlaps between reads is a fundamental task, and spurious overlaps caused by 
low complexity sequences can severely impede an assembly program’s ability to 
produce accurate contigs.

Masking repetitive regions usually involves replacing all of the nucleotide bases 
in the repetitive region with another generic character, usually an “X” or an “N.” 
The majority of assembly and alignment programs ignore these characters by 
default. In this way, results made by comparing masked sequences are usually more 
accurate than those where masking has not been performed. Masking can also 
decrease the running time of sequence comparison algorithms by reducing the 
number of possible alignments.

Another form of pre-filtering is sequence trimming. Often DNA sequences will 
begin, and possibly also end, with nucleotide bases from the vector used in the 
cloning stage, and for many different types of reads, the quality of the data 
decreases towards the end of the sequence read. An easy way to overcome these 
problems is to trim the ends of the sequence reads. There are a number of programs 
which can be used to trim sequences, however they are not discussed here. Finally, 
reads which contain low amounts of information can simply be removed from the 
data set, for example if the majority of the read consists entirely of As or Ns. When 
raw quality values are available, it is also common to simply discard reads whose 
overall quality is below a certain threshold.

2.3.1.1  RepeatMasker

RepeatMasker screens DNA sequences for interspersed repeats and low complexity 
DNA sequences. The output of the program is a detailed annotation of the repeats 
present in the query sequence as well as a modified version of the query sequence 
where all the annotated repeats have been replaced by Ns or Xs. RepeatMasker 
draws information about which regions are repetitive by comparing the query 
sequences to a curated database of repeats. RepeatMasker uses CrossMatch for this 
task (Smit et al. 1996)
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2.3.2  Sequence Clustering

With the quantity of sequence data contained in online repositories increasing at an 
accelerating pace, tools that can cluster related sequences into meaningful groups 
provide a way for researchers to efficiently sort through and make sense of this 
mountain of data. Many researchers are interested in clustering reads from 
expressed sequence tag (EST) datasets in the hope of identifying the full length 
genes which the ESTs represent. Another application of clustering is the identifica-
tion of single nucleotide polymorphisms (SNPs). Clustering is often used to reduce 
redundancy in a dataset. For example, the BLOSUM substitution matrices use 
clustering of similar sequences as a first step to reduce the negative effect caused 
by including too many highly similar sequences. Clustering can also be useful as a 
first step in sequence assembly pipelines. Sequence assembly programs will often 
perform significantly better when run multiple times on sets of closely related 
sequences than when attempting to assemble the whole data set as one chunk. This 
approach can also significantly reduce the running time of the assembler. Clustering 
algorithms typically take as input a set of reads to be sorted and input parameters 
specifying the degree of similarity required for reads to be grouped together. The 
output is a grouping of the reads that match these criteria.

Most clustering algorithms use an agglomerative approach. At the start of the 
algorithm, each sequence is effectively in its own group. The algorithm succes-
sively merges groups if the similarity criteria are met, and repeats this process until 
no more merges are possible. These final merged groups are then returned to the 
user. Depending on user input or the algorithm itself, two groups will be merged 
when there exists a single pair of sequences (one sequence from each group) which 
match the similarity criteria. This is referred to as single linkage clustering or 
transitive closure. It is sometimes possible to raise the minimum number of pairs 
needed for merging to occur. If every possible pair of sequences from both groups 
must match the similarity criteria for merging to occur then this is called complete 
linkage clustering. Complete linkage clustering typically produces many small, 
high quality clusters, whereas single linkage clustering typically produces fewer, 
larger, lower quality clusters. Depending on the application, one approach may be 
more favorable than the other.

The similarity criterion for clustering is usually stated in terms of the minimum 
overlap and minimum percentage identity. This is sometimes augmented by limiting 
the maximum number of mismatches allowable. There are two main approaches 
available to find overlaps. The first uses information gathered from successive 
pairwise alignments, effectively looking at the edit distance, the number of mutation 
events needed to describe the distance. The second uses a k-mer counting approach, 
where the presence of multiple identical words is used to infer an overlap. Both 
methods perform well, but the k-mer counting approach has been proved to handle 
sequencing errors better. Furthermore, the k-mer counting approach can be imple-
mented in linear time whereas the edit distance approach can only be as fast as the 
underlying alignment algorithm, which in the case of Smith–Waterman is quadratic, 
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and slightly better for BLAST-like algorithms. Two popular clustering algorithms are 
WCD (Hazelhurst et al. 2008) and d2_cluster (Burke et al. 1999).

2.3.3  Sequence Assembly Overview

The greatest challenge to sequencing genomes is the vast difference in scale between 
the size of the genomes and the lengths of the reads produced by the different 
sequencing methods. While there may be a 10–500-fold difference in scale between 
the short reads produced by next generation sequencing and modern Sanger sequenc-
ing, this still dwarfs the difference between the Sanger read length and the lengths 
of complete chromosomes. For example, human chromosomes vary between 47 and 
245 million nucleotides in length, around 50,000–250,000 times longer than the 
average Sanger reads. For all technologies, the challenge is the assembly of sequence 
reads to produce a representation of the complete chromosomes. Whether this chal-
lenge is significantly greater for short reads is being hotly debated.

The first sequence fragment assembly algorithms were developed in the early 
1980s. Early sequencing efforts focused on creating multiple overlapping align-
ments of the reads (typically the Sanger sequence reads) to produce a layout assem-
bly of the data. A consensus sequence is read from the alignment and the DNA 
sequence is inferred from this consensus. This approach was referred to as the 
overlap-layout-consensus approach and culminated in a variety of sequence assem-
bly applications such as CAP3 and Phrap. Previous generation DNA sequencing 
has produced relatively long, high quality reads which were amenable to assembly 
using the overlap-layout-consensus approach.

From the late 1980s to the mid 1990s research began to focus on formalizing, 
benchmarking, and classifying fragment assembly algorithm approaches. Three 
papers, (Pevzner 1987, Myers, 1995, Idury and Waterman 1995) formalized the 
approach of placing sequence reads or fragments in a directed graph. Myers 
focused on formalizing the traditional overlap-layout-repeat method while Pevzner 
and Idury and Waterman developed a new method for solving the assembly problem. 
While both methods involved the construction of graphs, they differed in that 
whereas the fragments in Myers graph (Myers 1995) are represented as nodes, the 
fragments in Pevzner’s and Idury and Waterman’s graphs (Pevzner 1987; Pevzner 
2001; Idury and Waterman 1995) are represented as edges.

2.3.3.1  The Overlap Graph Method

The overlap graph method was formalized by Myers in 1995 (Myers 1995) and is 
referred to here as the Myers method. In this graph, each vertex represents a read 
or fragment, and any two vertices are joined by an edge if the two fragments 
overlap (often imperfectly with some level of significance set by the user). Next, 
the graph is simplified by the removal of transitive edges and contained nodes 
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which add little or no information. The removal of transitive edges is shown in 
Fig. 2.2. Contained nodes occur when the graph is made from reads of different 
lengths and one read is completely contained within another.

Finally, chains of nodes or linearly connected sub graphs are collapsed into 
“chunks” which themselves are treated as single nodes in the graph. This is shown 
in Fig. 2.3. These graph simplification methods are very effective for reducing the 
computational complexity of assembly and many modern day algorithms employ 
these methods. Once the graph has been simplified, the Myers method finds a maxi-
mum likelihood non-cyclic (Hamiltonian) path through the graph and infers the 
layout of the fragments from this path.

2.3.3.2  The Eulerian Path Method

Idury and Waterman proposed an algorithm which could be used to assemble data 
generated in sequencing by hybridization (SBH) experiments (Idury and Waterman 
1995). Although the mathematics for it was developed by Pevzner in 1989 (Pevzner 
1989), this is the first algorithm developed using this approach. We refer to the 
combined ideas of Idury and Waterman and Pevzner as the IWP method. The main 
application of SBH is now gene chips and not genome sequencing, but the ideas 
described in the IWP model can be seen in a number of sequence assembly algorithms, 
most notably the EULER algorithms developed by Pevzner in 2001 (Pevzner 
2001). In Idury and Waterman’s algorithm, sequence fragments are broken down 

Fig. 2.2 Removal of transitive edges from the overlap graph. (a) The original graph with numbers 
depicting offsets in the alignment of equal length reads. The dashed lines are transitive edges. 
(b) The simplified graph. (c) The short reads and their alignment as given by the graph yields 
the sequence ACCGGCTGAG

Fig. 2.3 The collapsing of linearly connected sub graphs into single nodes greatly reduces the 
complexity of the overlap graph. (a) The original graph which contains linearly connected sub 
graphs. (b) The simplified graph with white nodes representing “chunks”
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into every possible read of some length k (k is very small, approximately 10 bases) 
referred to as k-tuples. The set of all k-tuples found is often referred to as the 
spectrum of reads (Pevzner 2001). In Idury and Waterman’s model, assembled 
sequences are represented as paths through a de Bruijn graph where each node in the 
graph is a k-1 tuple. Two nodes X and Y are joined by a directed edge if there exists 
a read R in the spectrum where the first k-l bases of R match X and the last k-1 bases 
in R match Y. Thus it follows that if two edges are adjacent in the graph they will 
have a perfect overlap of k-1 bases. It is important to note that this model only 
finds perfect overlaps, while the Myers method can accept imperfect overlaps. 
An example of such a de Bruijn graph is shown in Fig. 2.4. Here the graph is for 
the sequence CAGTCGAGTTCTCTG with k equal to 4. Erroneous reads cause 
the inclusion of extra edges which can cause “tangles” in the graph. The dashed edge 
from TTC to TCG is due to the erroneous read TTCG being included in the spec-
trum. Idury and Waterman (Idury and Waterman 1995) describe a number of graph 
simplifications which can remove errors from the graph.

Assembly is achieved by finding an Eulerian path in the de Bruijn graph. That 
is a path which visits every edge exactly once. It is well known that the problem of 
finding Hamiltonian paths in a graph is NP hard whereas the problem of finding 
Eulerian paths is relatively easy. However, the theoretical advantage that the IWP 
method seems to have over the method of Myers has not translated into great 
computational or time savings. This is mainly due to the fact that heuristics have 
been employed to speed up the latter. The main problem with the Eulerian Path 
approach is that errors in real data cause the inclusion of extra edges, causing 
tangles. When there are too many errors in the data, the graph becomes entangled, 
and as a result the algorithm cannot be scaled up. An example of how erroneous 
reads cause graphs to become entangled is given in Fig. 2.4. In 2001, Pevzner 
successfully applied the method of Idury and Waterman to read sets with errors by 
developing an error correction algorithm which could reduce the number of errors 
by approximately 86% (Pevzner 2001). Pevzner introduced a number of transfor-
mations which simplify the graph and these transformations have a conceptual overlap 
with Myers simplifications. One transformation replaces a number of consecutive 
edges by one edge, in a way which mimics the collapse of linearly connected sub 
graphs described above. This process of edge formation/simplification is performed 

Fig. 2.4 A de Bruijn graph for the sequence CAGTCGAGTTCTCTG. The erroneous read TTCG 
has been included in the spectrum causing the inclusion of the dashed edge. Erroneous edges 
cause the graph to become entangled
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at the beginning of the assembly so that only the minimal number of edges possible 
need be processed.

The two methods described above have formed the foundation for modern assem-
bly approaches, and all modern sequence fragment assemblers include variations of 
these concepts, and in some cases algorithms may borrow from both methods.

2.3.3.3  Problems of Assembling Complex Genomes

One challenge of genome sequencing lies in the fact that only a small portion of the 
genome encodes genes, and that these genes are often surrounded by repetitive DNA 
which is comparably information poor. Large repeats can cause ambiguity with frag-
ment assembly and thus pose the greatest challenge when assembling genomic data. 
In Fig. 2.5, we know that regions B and C are surrounded by identical repetitive 
regions X and that both regions lie between regions A and D, but without more 
information, it is impossible to know the correct ordering of B and C.

The traditional method to overcome the problems created by large repeats when 
assembling sequence reads is to increase the read length to such a point that every 
repeat is spanned by at least one read. In practice however, this is simply not pos-
sible as these repeats are frequently longer than the current Sanger read length. 
Modifications to the original shotgun method that attempt to overcome this prob-
lem try to increase the “effective” read length. These include using paired end 
sequencing, where DNA fragments of known approximate size are generated and 
sequenced from both ends. Information about these pairs such as average fragment 
size and the orientation of reads with respect to the read pair is included in the 
assembly process (Pevzner 2001). If the distance between the paired ends, known 
as the insert size, is large enough, then there is a high probability that repeats will 
be spanned by a pair of reads (or mates) which can remove ambiguity from the 
assembly. For example, if paired end data is analyzed and region B is found to have 
mates in regions A and C but not D, while region C has mates in regions B and D 
but not A, then an ordering can be inferred. This is shown in Fig. 2.6. Note that 
if the insert size was too large and paired ends from B reached over to region D 
while the paired ends of C reached over to region A there would still be doubt as 
to how these reads should be arranged. There is also a problem if the insert size is too 
small and paired reads do not reach past the repetitive region. To address these 
issues, a number of different size fragment libraries are often used.

Fig. 2.5 An example of how repeats cause ambiguity in assembly. Because both fragments B and 
C are surrounded by repetitive region X, there is no way to know their ordering in the assembly
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Errors in data further exacerbate the problem of resolving repetitive regions as 
it is often difficult to differentiate between reads from slightly different repetitive 
regions and reads from the same region that contain errors. This can cause a prob-
lem called over-collapsing, where multiple copies of a repeat will be assembled on 
top of each other. Although we would expect a significant increase in read depth for 
contigs, which are made from over collapsed regions, the read depth is frequently 
variable across the genome and is therefore an unreliable indicator of repeat 
regions. Both paired end data and various statistical methods have been applied in 
an attempt to solve the problem of assembling short read sequence data and these 
are described in more detail below.

2.3.4  Traditional Fragment Assembly Algorithms

For many years, the vast majority of DNA sequence data has been produced using 
variations of the chain termination method first introduced by Sanger in 1977 (Sanger 
et al. 1977). The Sanger sequence reads are typically 700–1,000 bases long and of 
high quality. The individual nucleotide bases in a sequence file is called, based on 
information found in a chromatogram, a trace file which is produced by the automatic 
sequencing machines. Phred is the most commonly used base calling software pack-
age (Ewing et al. 1998), and the two most commonly used programs for assembling 
the Sanger sequence data are Phrap and CAP3. Both programs make use of Phred 
generated quality scores when performing the assembly, although this data can be 
omitted if it is not available. Aside from being used to assemble data generated in 
large scale genome sequencing projects, these programs have also been used to 
assemble EST sequence data. Both Phrap and CAP3 use variations of a Myers-like 
approach to fragment assembly, though Phrap deviates from this standard template 
in the final consensus phase.

2.3.4.1  Phrap

Phrap stands for “phragment assembly program” or “Phil’s revised assembly 
program” and is used for assembling shotgun DNA sequence data. Unlike many 
other assemblers, Phrap makes use of the whole read and not just the trimmed high 
quality portion. Phrap can be provided with a mixture of machine generated and 

Fig. 2.6 Resolution of ambiguities using paired end data. Solid edges indicate overlaps while 
dashed edges show links between reads in a region and the region(s) containing the paired mate
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user supplied quality data to assist in making reliable contigs. One aspect which 
sets Phrap apart from many other Myers type algorithms is that Phrap returns contig 
sequences which are mosaics of the highest quality parts of reads rather than a 
consensus or majority vote.

Phrap searches for reads with matching words and then does a SWAT compari-
son between pairs of reads with this property. This allows Phrap to efficiently 
make use of the very accurate Smith–Waterman algorithm encoded in the SWAT 
algorithm. This first stage identifies all potential overlaps. The next stage effec-
tively masks vector sequences. This stage also identifies near duplicate reads, 
reads with self matches, and reads which have more than one significant overlap 
in any given region. These steps help Phrap to deal with repetitive elements. 
Phrap then constructs contig layouts based on strong pairwise alignments using a 
greedy algorithm and from these layouts produces the contigs. Finally, Phrap 
aligns reads to the contigs identifying inconsistencies and possible misassembled 
sites. Phrap returns Phred-like quality scores for each base in the contig based on 
the consistency of the pairwise alignments at that position (http://www.phrap.org/
phredphrap/phrap.html).

2.3.4.2  CAP3

CAP3 is the third generation of the CAP assembly algorithm and was released in 
1999 (Huang and Madan 1999). CAP3 uses a Myers-like method which makes 
extensive use of quality values and paired read data. The overlap stage begins by 
using a BLAST-like algorithm to identify areas where detailed local alignments are 
produced using a modified version of the Smith–Waterman algorithm which 
weights the substitution matrix at each position using the quality scores at the bases 
concerned. Where CAP3 differs from other algorithms is in the way that these 
overlaps are then validated. First, CAP3 identifies good regions in a read. A good 
region is a run of nucleotide bases with high quality scores and which share an 
overlap with a region in another read which also has high quality scores. CAP3 uses 
the good regions to identify which bases to trim from the ends of the reads. Once 
the good regions have been identified, CAP3 produces a global alignment of the 
reads previously identified as having local alignments and attempts to identify 
inconsistencies in the global alignments between good regions. There are a number 
of criteria each overlap must satisfy and any overlaps which do not meet all the 
criteria are discarded. This completes the overlap stage. CAP3 then uses a greedy 
algorithm to produce a layout of the reads which is validated by checking whether 
the paired read data (if supplied) produces any inconsistencies. Finally, the reads 
are aligned to the layout and a consensus produced. CAP3 also produces Phred-like 
quality scores which are returned to the user. In benchmarking, CAP3 generally 
produces better quality, shorter contigs than Phrap due to the strict methods for 
creating contigs (Huang and Madan 1999). However, CAP3 relies heavily on paired 
end data and even more so on quality values, and may not perform as well if given 
raw sequence data alone.
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2.3.5  Short Read Fragment Assembly Algorithms

Several assemblers have been developed for short sequence reads, these include 
Edena, Velvet, EULER SR, SASSY and ALLPATHS. All of these algorithms 
borrow from the Myers or IWP models described above either implicitly or explicitly, 
and there are many similarities between the different algorithms in terms of their 
overall structure. Most algorithms are divided into up to five stages which include 
some or all of the following procedures: read error correction, read filtering, naïve 
assembly, refining of naïve assembly (using paired end data if available), and finish-
ing. To understand what a naïve assembly is we need to define the terms consecutive 
and linearly connected. Two reads A and B are consecutive if they overlap (either 
the first k bases in A match the last k bases in B or vice versa) and for a graph with 
no transitive edges, two reads A and B are linearly connected if they are consecutive 
and there exists no read C which is consecutive with A on the same side as B or with 
B on the same side as A. For naïve assembly, we mean that starting with some read 
R we can try to extend that read (on one side) by examining the consecutive reads 
(on that side). If there is only one candidate, then the read can be extended in the 
direction of the overlap by the bases which are overhanging. This process mimics 
the collapsing of linearly connected sub graphs in the Myers model or edge forma-
tion in the IWP model. Thus, any string of linearly connected reads can be concat-
enated into one long read. For a given read there may be more than one candidate to 
extend with, and in this case the extension stops. Similarly, the extension stops when 
there are no candidates. The case where there is more than one candidate can be 
caused when the extension reaches the boundary of a duplicated or repetitive region 
in the genome or as happens much more frequently, it can be caused by errors in the 
data. If all possible extensions have been made for all available reads, then the result-
ing set of extended reads represents a naïve assembly. The accuracy of this assembly 
declines rapidly as both the error rate and the complexity of the organism being 
sequenced increase (Chaisson et al. 2004; Whiteford et al. 2005).

2.3.5.1  Edena

Edena, released in 2008 (Hernandez et al. 2008), is the first short read assembly 
algorithm to be released which uses the traditional overlap-layout-consensus 
approach. Edena does not include an error correction phase before graph production, 
which leads to the formation of a messy sequence graph; however it does include a 
three step error correction phase which cleans the graph before assembly begins. The 
first phase of the algorithm removes duplicate reads, keeping only the original read 
and the number of times it has been seen. Next it uses the reads to construct an over-
lap graph where the reads are represented as nodes. Two nodes are joined by an edge 
if there is an overlap between them larger than a set minimum (defined by the user). 
Once this graph has been built, it contains many erroneous edges which have to be 
removed. First it removes transitive edges in the graph in the same manner as 
described by Myers (Myers 1995). Following this, all dead end paths are removed. 
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A dead end path is a series of consecutive nodes shorter than 10 reads in length which 
is attached to the main body of the graph on one side and to nothing on the other. 
These paths are caused when areas are sequenced with very low coverage, causing 
breaks in the sequence of consecutive reads, or when a series of errors combine to 
make a series of consecutive reads. Finally, the algorithm removes what are called 
P-bubbles. These occur when there are two regions which are identical except for a 
one base difference. In the case where this is caused by single nucleotide polymor-
phisms (SNPs) in repetitive regions, we would expect each side of the bubble to have 
a similar topology and copy number. Where a P-bubble is caused by an error, we 
would expect to see one side of the bubble with a very sparse topology and signifi-
cantly lower copy number. Figure 2.7 gives such an example.

When P-bubbles are found, Edena removes the side with the lowest copy 
number/sparsest topology. Hernandez points out that P-bubbles may be caused 
by clonal polymorphisms which would account for the low coverage and sparse 
topology observed (Hernandez et al. 2008). However, as Edena does not take 
paired end information into account, the method used for eliminating P-bubbles 
will most certainly cause over-collapsing of low copy-number repetitive regions. 
Once the graph has been cleaned using the three operations described above, a 
naïve assembly is formed and the resulting contigs are returned to the user.

2.3.5.2  Velvet

Velvet is the name given to the collection of algorithms that assemble short read 
data which were released by Zerbino in 2008 (Zerbino and Birney 2008). Velvet 
uses an IWP model to make the initial graph. Like Edena, Velvet does not include 
an initial error correction phase but instead uses a series of error correction 
algorithms to clean up the resulting graph. These algorithms work in a method 
analogous to the error correction phase in Edena (Hernandez et al. 2008), where 
tips are removed and then bubbles. In Velvet, tips are removed only if they are 
shorter than 2k, where k is the read length. Unlike Edena, Velvet uses an Eulerian 
path approach, which although highly efficient in terms of memory use, appears to 
further complicate the P-bubble removal step. Velvet includes an algorithm called 
Tour Bus which traverses the graph looking for P-bubbles, and when they are 
found, uses a combination of copy number and topographical information to 
remove the erroneous edges. Velvet then assumes that all low copy number edges 

Fig. 2.7 An example of a P-bubble most likely caused by an error. The reads making up the lower 
sequence will typically have a low copy number and the overlaps are very short. However, this 
phenomenon can also be caused by low copy number repeats
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that remain must be errors and removes them from the graph. Like many of the 
algorithms described here, Velvet does not make use of paired read information and 
therefore has an increased probability of over-collapsing repetitive regions.

2.3.5.3  Euler SR

There have been many iterations of the original EULER algorithm developed by 
Pevzner in 2001 (Pevzner 2001). The latest addition to the EULER family is EULER 
SR which is a version of EULER optimized to handle short reads (Chaisson and 
Pevzner 2008). The algorithm described by Idury and Waterman did not include a 
step for filtering or correcting errors, however it did include a number of graph 
simplifications which could be used to reduce the impact of errors. Unfortunately, 
this method could not scale up to handle the large amounts of error present in real 
data. The original EULER algorithm was designed as an implementation of the 
Idury and Waterman algorithm, but included a novel method for error correction. 
A short read is broken down into a number of even shorter k-tuples which are stored 
in a database. In the case when the dataset contains no errors then we would expect 
that the k-tuples generated for a particular read R would appear a number of times 
in the database, as all reads overlapping with R would also contain some number 
of these k-tuples. Pevzner describes a read as “solid” if all of its k-tuples appear 
at least n times (where n is set by the user) or “weak” otherwise. When used with 
real data, if a read has been classified as weak, the algorithm tries to find the mini-
mum number of base changes which will change its classification to strong. If that 
number is less than d (where d has been set by the user) then the changes are made, 
otherwise the read is discarded. Pevzner shows that this method corrects over 86% 
of errors with very few false positives for the dataset he analyzed (Pevzner 2001). 
This represents the most sophisticated and efficient approach for error correction of 
short reads that has been developed thus far. EULER SR builds on the original 
EULER algorithm and contains optimizations to make it more memory efficient, a 
property which is necessary for the vast amount of data produced by short read 
assemblers. Interestingly, in testing EULER SR, a hybrid approach was assessed 
where short read data was combined with longer Roche 454 read data. It was found 
that there was no significant improvement in assembly for the majority of reads 
(Pevzner 2001), which is contrary to most of the current opinion in this field. After 
the errors have been removed, a graph is built and a set of contigs produced by 
naïve assembly is returned to the user.

2.3.5.4  SASSY

We are currently developing an assembly algorithm called SASSY which is based on 
a Myers like method that incorporates paired end data. SASSY is being developed 
primarily to assemble eukaryotic sequences of around 100–200 Kbp in length cloned 
into BACs. While SASSY shares many similarities with the software described 
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above, there are a number of key differences. We have developed a novel iterative 
approach to graph construction which removes the need for some of the simplifica-
tion steps typically needed for this type of implementation. We aggressively filter 
the data set, flagging up to approximately 90% of the reads which are set aside to 
be used only in later stages. With the remaining reads we construct a first round 
naïve assembly using only reads which have an overlap of at least k – t nucleotide 
bases, where k is the read length and t is very low (usually 2 or 3). The advantage 
of using this approach is that erroneous areas of the graph usually have a sparse 
topology and the number of common bases between any two reads in these areas is 
usually much lower than for reads in correct areas of the graph. Thus, assemblies 
generated in the first round represent high confidence assemblies, however their 
length is typically very short, with an N50 of less than 50 bases for Applied 
Biosystems SOLiD reads and slightly longer for Illumina Solexa reads. It should 
be noted that the longest contigs produced from this preliminary assembly are 
typically 4,000–12,000 bases long. These longer contigs are used to identify stable 
areas in the overlap graph. The next stage involves building a new overlap graph 
which explicitly combines the overlap data in the original graph with the paired 
read data. Normally this would be difficult because of the repetitive nature of the 
data, but by starting the graph building in stable areas, many of the problems asso-
ciated with repeats are resolved. Thus we use the naïve contigs only as a guide 
instead of trying to extend them, which is the case for the other algorithms described 
in this section. Following the construction of the overlapping graph, we align all 
the reads flagged in the filtering stage to the assembled contigs. We examine the 
distribution of the insert size for the mapped reads to identify erroneous assemblies 
which are repaired where possible or flagged as conspicuous in the case when there 
is no obvious resolution. Finally, new contigs are built from the new overlap graph 
and these are returned to the user. SASSY is being developed to make optimal use 
of local topology and paired end data in order to avoid the problems of over-
collapsing repetitive regions or unnecessarily breaking contigs when errors are 
present in the data. This software is currently still in a developmental stage; however, 
initial test versions promise to overcome many of the limitations inherent in current 
small read assembly software.

2.3.5.5  ALLPATHS

ALLPATHS is another recent addition to the collection of short read assemblers 
based on an IWP model (Butler et al. 2008). ALLPATHS begins by correcting 
errors using an EULER like method, and then makes a large set of naïve assemblies 
which are referred to as “unipaths.” At this stage, ALLPATHS leaves the model 
followed by EULER, and uses paired read information to sort unipaths into local-
ized groups which can be worked on individually and in parallel. For each localized 
set of unipaths, ALLPATHS chooses paired reads which lie in the set, and proceeds 
to work out every path of consecutive unireads which could possibly be followed 
from the read to its mate. Once this is completed, the number of paths is trimmed 
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down using localization information and other statistical methods until, ideally, only 
one path remains. This method reduces the complexity in the overall sequence graph 
by making local optimizations, allowing many shorter unipaths to be condensed into 
longer unipaths. Once the long unipath generation has been completed separately, 
the results from the local optimizations are stitched together to produce one long 
sequence graph. One limitation of this algorithm is its sensitivity to the standard 
deviation of the fragment length used to make the paired sequence reads. Butler 
notes that in some cases, a large number read-mate pairs generate over 103 possible 
paths, and in some cases more than 107 possible paths are generated, which causes 
ALLPATHS to return erroneous unipaths (Butler et al. 2008). The final phase incor-
porates both read pair information and statistics to identify erroneous assemblies, 
and if possible it tries to fix them. The most unique aspect of ALLPATHS is that no 
information is discarded at any stage in the algorithm which improves the ability to 
repair errors in the final phase. Unlike every other algorithm described here it returns 
the entire graph to the user as opposed to just the contigs.

2.4  Discussion

There are many branches of research into sequence comparison (more than have 
been covered here) with varying levels of complexity. The amount of effort being 
spent on solving different branches has continuously shifted as computational 
power has increased and the nature of the data being produced has changed. 
For example, multiple sequence alignment algorithms only started to receive wide-
spread attention from the mid 1980s, almost 20 years after the merits of different 
phylogenetic tree making algorithms were being heavily debated, and many years 
after efficient algorithms had been produced for pairwise alignments. Pairwise 
sequence alignment has long been the base currency of sequence comparison, but 
graph theoretical methods; in particular k-mer distance methods and k-mer group-
ing/sorting have been demonstrated to be valuable for increasing the speed at which 
analysis can be performed. The typically long and accurate sequence reads 
produced using the Sanger sequencing method have been largely replaced (in terms 
of volume of data being produced) by next generation sequencing methods which 
produce copious amounts of largely error laden data, and the current focus of 
bioinformatics in this area has been to develop algorithms that can accurately 
assemble this data into long stretches of sequence. Again, graph theoretical 
approaches have proved valuable. Progress in the area of sequence assembly has 
only been feasible using computing power developed in recent years, although it 
should be noted that more than 40 years after the birth of comparative algorithms, 
the lack of ever greater computing power remains the main hindrance to progress. 
As an example, the original implementation of CLUSTAL was tested on a 10 MHz 
microcomputer (PC) with only 640K of memory, while the current iteration of the 
program SASSY was developed using an 8 core (1.8 GHz per core) cluster with 
access to 16 GB of memory and almost unlimited hard disk space. There is a clear 



36 M. Imelfort

BookID 151692_ChapID 2_Proof# 1 - 21/08/2009 BookID 151692_ChapID 2_Proof# 1 - 21/08/2009

trend that advances in computing hardware continue to spur development of ever 
more sophisticated comparison algorithms, allowing researchers greater insight 
into comparative genomics and the workings of the biological world.
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3.1  Introduction

The proliferation of data from genome sequencing over the past decade has brought 
us into an era where the volume of information available would overwhelm an 
individual researcher, especially one who is not computationally oriented. The need 
to make the bare DNA sequence, its properties, and the associated annotations more 
accessible is the genesis of the class of bioinformatics tools known as genome 
browsers. Genome browsers provide access to large amounts of sequence data via 
a graphical user interface. They use a visual, high-level overview of complex data 
in a form that can be grasped at a glance and provide the means to explore the data 
in increasing resolution from megabase scales down to the level of individual 
elements of the DNA sequence.  While a user may start browsing for a particular 
gene, the user interface will display the area of the genome containing the gene, 
along with a broader context of other information available in the region of the 
chromosome occupied by the gene. This information is shown in “tracks,” with 
each track showing either the genomic sequence from a particular species or a par-
ticular kind of annotation on the gene. The tracks are aligned so that the information 
about a particular base in the sequence is lined up and can be viewed easily. In mod-
ern browsers, the abundance of contextual information linked to a genomic region 
not only helps to satisfy the most directed search, but also makes available a depth 
of content that facilitates integration of knowledge about genes, gene expression, 
regulatory sequences, sequence conservation between species, and many other 
classes of data.

There are a number of tools now available for browsing genomes. Although 
there is some overlap both in terms of functionality and in types of accessible data, 
each offers unique features or data. In this chapter, we will give an overview of 
genome browsers and related software and discuss factors to be weighed in choosing 
the best browser for a researcher’s needs.
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3.2  Web-based Genome Browsers

With the abundance of genome feature information available for so many organisms, 
an almost equally large number of web-based genome browsers have arisen to display 
the data. When large numbers of genomes first became available, organizations that 
needed to present their genomics data generally produced their own software solu-
tions. Many of these early genome browsers have since fallen out of use as the data 
providers worked to standardize and reduce or redirect their development efforts. 
A few large, well-engineered and heavily utilized web-based genome browsing 
resources have grown to serve the needs of research communities. The “big three” 
public genome browsers are the University of California at Santa Cruz (UCSC) 
Genome Browser (Kent et al. 2002), Ensembl (Flicek et al. 2008) and the National 
Center for Biotechnology Information (NCBI) Map Viewer (Wheeler et al. 2007). 
Each uses a centralized model, where the web site provides access to a large public 
database of genome data for many species and also integrates specialized tools, such 
as BLAST at NCBI and Ensembl and BLAT at UCSC. The public browsers provide 
a valuable service to the research community by providing tools for free access to 
whole genome data and by supporting the complex and robust informatics infrastruc-
ture required to make the data accessible.

As these browsers are the most likely entry point to genome data for most 
researchers, there is a tendency to equate the user interface, the web site, with the 
underlying databases and infrastructure components. However, it should not be 
overlooked that the software driving the USCS and Ensembl browsers is open 
source and publicly available, and can be decoupled from the parent data sources 
and installed independently. Another commonly used browser, the Generic Genome 
Browser (GBrowse; Stein et al. 2002), takes this modularization even further. The 
software is specifically designed for deployment as a customized genome browser 
for model organisms and other genome databases and uses a generic data model 
that supports a variety of database types and schemas.

3.2.1  UCSC Genome Browser

The Genome Browser at the UCSC (http://genome.ucsc.edu; Kent et al. 2002) 
provides access to genome assemblies obtained from the NCBI and external 
sequencing centers. The annotations available at UCSC come from many sources, 
including data from NCBI’s RefSeq (Pruitt et al. 2007) and the Encyclopedia of 
DNA Elements project (ENCODE Consortium 2004). The UCSC annotation 
pipeline is responsible for more than half of the tracks in their browser. An example 
of UCSC annotations produced by this pipeline is the UCSC Genes set, which is an 
improved version of UCSC Known Genes (Hsu et al. 2006). These are high quality, 
moderately conservative gene annotations based on data from RefSeq, GenBank and 
Uniprot. Another prominent example of UCSC annotations is the comparative 
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genomics tracks. These tracks show a summary sequence conservation amongst 
species and also include chain and net tracks (Kent et al. 2003) that highlight chromo-
some alignments and rearrangements. The UCSC Genome Browser for the human 
genome features sequence conservation data for a 28-way vertebrate genome align-
ment (Karolchik et al. 2008). At the time of writing, the UCSC browser supports 48 
species and the human genome browser currently has 178 data tracks.

The UCSC browser features a simple user interface (Fig. 3.1). The typical entry 
point is a home page for each species, which provides background information about 
the genome build and the ability to search by either a keyword or position. The 
browser itself has a single window, with the detailed annotations displayed in one 
panel and the navigation and search functionality elsewhere on the page. Depending 
on the genome, a chromosome overview of the displayed region is also displayed at 
the top. As with most genome browsers, the orientation of the sequence is horizontal 
and the view can be zoomed in or out and panned right or left. Searching for genes 
or specific chromosome positions, using a search box and navigation buttons at the 

Fig. 3.1 The UCSC Genome Browser. A portion of human chromosome X is displayed. The 
UCSC browser features a simple user interface with navigation controls at the top, a chromosome 
overview, if available, and a details panel. Track configuration controls are at the bottom. Several 
display options are available for each track and tracks are grouped into categories (not all are 
shown) that can be opened and closed by clicking the +/− buttons
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top of the page, is very simple. The data are organized into linear, horizontal tracks, 
which contain glyphs representing individual sequence features. There can be a 
bewilderingly large number of tracks, but this is offset by grouping of tracks into logi-
cal categories, each of which can be opened or collapsed by the user. The browser 
also supports custom tracks via upload of third-party annotation files or through the 
table browser. Outbound data sharing via the Distributed Annotation Service protocol 
(DAS; Dowell et al. 2001) is also supported. After choosing a combination of tracks 
and display options, a user can save the session to a user account, which can be kept 
private or shared with colleagues. Access to the data displayed by the UCSC browser 
is provided in two ways. Bulk data can be downloaded from the FTP (File Transfer 
Protocol) site, which can be accessed via web browsers or dedicated FTP client soft-
ware. Interactive data mining, custom track generation and data download are sup-
ported by the table browser interface (Fig. 3.2) (Karolchik et al. 2004).

A particular strength of the UCSC browser is the speed and stability of its user 
interface. UCSC is unusual amongst web-based genome browsers, in that it is 
written in the C programming language and uses a combination of a MySQL database 
and highly optimized data serialization techniques to produce a very fast, responsive 
browser. Other strengths of this browser include the comparative genomics resources 
and the well-developed support for custom tracks and third-party annotations. A minor 
drawback is that the user interface is spartan compared to other genome browsers. 
The UCSC genome browser has a loyal and enthusiastic user base, particularly 
amongst members of the ENCODE consortium.

The complexity of the UCSC code base and data infrastructure do not lend 
themselves well to off-site installation or mirroring by the casual user, but the 
source code and underlying data are freely available for non-commercial use. Three 
official mirrors are available at the Medical College of Wisconsin, Duke, and 
Cornell Universities (genome.ucsc.edu/mirror.html). Also, according to web 
access logs, there are as many as a dozen unofficial sites mirroring the UCSC data 
(H. Clawson personal communication).

3.2.2  ENSEMBL Genome Browser

The Ensembl project’s (http://www.ensembl.org; Flicek et al. 2008) genome browser 
has a much more nuanced, feature-rich user interface. The sequence data are derived 
from EMBL and other external sources. This browser is also more than just a portal 
to externally derived data; the Ensembl project has extensive annotation pipelines, to 
which a substantial part of their resources are devoted. Ensembl has its own gene 
prediction and annotation pipeline (Curwen et al. 2004). Some examples of recent 
additions to the database include genome-wide maps of protein–DNA interactions 
and the regulatory build, an effort to annotate all regulatory sequences (Flicek et al. 
2008). The current release of Ensembl (release 52) contains 46 species, plus an addi-
tional three species in pre-release status. In the human genome browser, there are over 
200 data tracks to choose from.
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The Ensembl browser supports extensive keyword searching, which provides 
access to any textual information linked to the genome, genes, gene families, etc. 
An entry point to the browser is a home page for each species, which features a 
chromosome or karyotype view. In the species home page, clicking on a chromosome 
takes the user to a more detailed map view, from which more precise coordinates 
or search terms can be specified to enter the core of the genome browser. The 
Ensembl browser has three panels (with a fourth for base pair resolution in develop-
ment) for different levels of resolution from chromosome to contig to base pair. The 
two lower panels have their own set of tracks. The top panel displays the position 
viewed in the chromosome context. The region overview panel provides a high-
level visual summary of gene and contigs (the assembled sequences used in the 
genome build). The main “region in detail” panel displays a detailed view and displays 
tracks in a similar fashion to those at UCSC and other genome browsers. The base 
pair view was available in previous versions of the Ensembl browser but is still 
under development at the time of writing for the new Ensembl browser. It was use-
ful for nucleotide level features such as codons, single nucleotide polymorphisms 
(SNPs), and restriction sites. Each of the panels can be toggled open or closed as 
required. A rich set of track display options is available in pull-down menus acces-
sible from the top of the detailed view panel. An example of a feature that could be 
improved is the rubber-band selection. Although the selected area is represented as 
a red-bordered rectangle that resizes in both the vertical and horizontal dimensions, 
the actual selection is only the sequence coordinate range, not the particular items 
within the box.

Like the UCSC browser, the Ensembl browser supports uploading custom 
tracks, though the size of data in those tracks is limited to 5 megabytes. The 
Ensembl browser also makes extensive use of the Distributed Annotation System 
(DAS). The DAS menu allows the user to select from a number of pre-configured 
DAS sources or to configure their own DAS server as a source. Custom track files 
served from a users’ own web server that follow the UCSC formatting conventions 
can also be provided as a data source. Although setting up a DAS server or provid-
ing custom track files on a web server is less convenient than directly uploading 
files, it offers the flexibility of maintaining independent remote annotations that can 
be updated at will and included in the browser display.

There are a variety of ways to obtain bulk data from the Ensembl site. One 
approach is through DAS. An Ensembl DAS server is available to export some of its 
more popular tracks. A second method for interactive data mining and bulk down-
loads is BioMart (http://www.biomart.org). BioMart provides a high-level data user 
interface with capabilities of complex filtering and merging operations. BioMart has 
its roots in Ensembl but has since grown into a generic tool that supports data mining 
for different genome databases, such as WormBase, HapMap, VectorBase, among 
others. Ensembl offers programmatic access to the live database via direct SQL 
queries to a MySQL server and through a well-supported Application Programming 
Interface (API). As with the UCSC browser, the software and raw data for Ensembl 
can also be downloaded from their FTP site. The Ensembl software is completely 
open-source for both academic and commercial users.



453 Genome Browsers

BookID 151692_ChapID 3_Proof# 1 - 21/08/2009

The Ensembl user interface is very feature-rich and does take some time to learn 
but documentation and training are available to get the most out of the resource. 
The web site administrators report an average of 250 queries made on the Ensembl 
database every second (Giulietta Spudich, personal communication), a good indication 
that this genome browser has a large following. Mirroring the Ensemble web site 
or setting up an independent browser with Ensembl software are encouraged and 
well documented. The installation of mirrors or applications that use the Ensembl 
infrastructure is not closely tracked but there are at least 16 known instances of 
external use of all or portions of the Ensembl software (data from http://www.
ensembl.org/info/about/ensembl_powered.html). Some examples of websites using 
Ensembl software to serve their own data include Gramene (www.gramene.org) 
and VectorBase (http://www.vectorbase.org). Third-party genome browsers have 
also been written to use Ensembl data. On such example is the 3D genome browser 
Sockeye (Montgomery et al. 2004).

3.2.3  NCBI Map Viewer

The NCBI web site is best known for GenBank and PubMed. The Map Viewer 
(http://www.ncbi.nlm.nih.gov/projects/mapview) is able to draw from the consid-
erable resources of the NCBI toolkit and also from the vast stores of sequence 
data and annotations in GenBank. Species coverage is higher than the other 
browsers; the map viewer currently has 106 species. The NCBI browser is rather 
different from the others in terms of look and feel. For example, the display is 
vertically oriented (Fig. 3.3). Rather than being mapped to the reference sequence, 

Fig. 3.3 NCBI Map Viewer. A portion of human chromosome X is displayed. The chromosome 
ideogram and data tracks are in vertical orientation, with higher zoom level to the right. Track controls 
are located at the top of each track. It is possible to set track with a right-facing arrow icon as the 
“master map.” Clicking on the non-text part of a data track will access a zoom/navigation menu
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the tracks are displayed next to each other, with one of the tracks serving as a 
reference map. The maps are usually based on cytogenetic bands, contigs, genes, 
or genetic markers. The number of features displayed varies with the current 
zoom level and the density of features in that part of the map. The navigation 
features of the interface are somewhat limited and take some getting used to for 
users accustomed to the horizontal view typical of most genome browsers. Also, 
the number of tracks available for viewing is more limited than in the Ensembl or 
UCSC browsers.

A strength of the NCBI map viewer is its tight integration with other well-known 
NCBI resources, such as UniGene, LocusLink and RefSeq. Like Ensembl and the 
UCSC browser, sequence similarity search capabilities are also available in the 
form of BLAST. Unlike Ensembl and UCSC there is no mechanism for integration 
of third party data and the browser is neither a DAS server nor client, making inte-
gration with third party products difficult. The data that underlie the Map Viewer 
are publicly accessible via NCBI’s web and FTP sites. Programmatic access to the 
data is less obvious and care must be taken not to use “screen scraping” scripts 
designed to harvest a lot of data from the web site interface, as NCBI will block 
access from computers that make excessive queries of this nature. Less obtrusive 
access to NCBI’s data is available through tools in the BioPerl package (Stajich 
et al. 2002).

3.2.4  The Generic Genome Browser

GBrowse (http://gmod.org/wiki/GBrowse) represents a different class of genome 
browser in the sense that its raison d’etre is to be integrated as a user interface to 
third-party genome databases. In the early days of species-specific databases there 
was a lot of parochialism in software infrastructure development. For example, in 
2000, WormBase, FlyBase, the Saccharomyces Genome Database (SGD), Mouse 
Genome Informatics (MGI), and The Arabidopsis Information Resource (TAIR) all 
used different software to display their organism’s genome features. The division 
of efforts in the model organism community eventually gave rise to a software 
standardization movement, in the form of the Generic Model Organism Database 
project (GMOD; http://www.gmod.org). This effort has been successful in that, at 
the time of writing, more than a hundred sites use GBrowse including the afore-
mentioned “core” model organism databases. GBrowse is also the principal data 
browser for the model organism ENCODE (modENCODE) data coordinating 
center (http://www.modENCODE.org) and is used by the international HapMap 
consortium (http://www.hapmap.org).

GBrowse offers three horizontal display panels, the chromosome overview, the 
region view, and the detailed view (Fig. 3.4). Data are organized into tracks and 
individual features are organized as glyphs with tracks potentially present at all 
three zoom levels (panels). The user interface offers a rich set of core functions, 
such as the ability to vertically re-order tracks, in-line track configuration, popup 
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balloon tooltips, and a convenient track sharing function called by clicking on a 
button. Like Ensembl, GBrowse facilitates mouse-based navigation via rubber-
band selection of sequence regions in all three panels.

In order to cope with very dense quantitative data, such as microarray, the UCSC 
genome browser programmers developed the “wiggle” track, which uses a combination 

Fig. 3.4 GBrowse: A portion of C. elegans chromosome IV at WormBase is displayed. (a) User 
interface. GBrowse features three display panels at increasing zoom levels. The overview, region 
view and details view all may display tracks. Most tracks are generally displayed in the detail 
view. Track display options and track sharing can be accessed by clicking icons in the title bar at 
the top left of each track. Tracks can be vertically reordered by dragging the title bar. (b) Rubber-
band selection is available by clicking and dragging the mouse on the ruler at the top of each of 
the three panels. The behavior of this feature in configurable. The menu shown lists operations 
that can be performed on the selected sequence region. (c) A popup balloon tooltip. The tooltip 
behavior is configured via the configuration file and can be varied on a per-track basis. The 
example shown displays anatomical expression pattern information for promoter-GFP fusion 
constructs in C. elegans. The information displayed in the balloons is retrieved at runtime from 
the WormBase server via AJAX
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of relation database and data serialization to make dense quantitative data more 
tractable for real-time genome browsing. This functionality has also been adopted 
by GBrowse. GBrowse supports custom tracks and upload of third-party annota-
tions in a manner similar to the UCSC genome browser. It can act as both a DAS 
server or client and supports an additional DAS-like protocol that allows more fine 
grained control of configuration and graphical rendering and allows more complex 
sequence features than are supported by DAS. Tracks can be shared with a click of 
a button to produce a popup balloon with a URL which, when provided to another 
GBrowse instance, will allow data to be viewed in a separate browser.

GBrowse has two main advantages over other browsers. Firstly, it is totally 
decoupled from the underlying data sources, ensuring that it is easy to add new data 
sources. Secondly, GBrowse is very easy to install and is much more configurable. 
A typical installation can usually be completed within a few hours and fully configured 
in a day or two. The look and feel of GBrowse is customizable through hooks that are 
accessible via the configuration files. More than 70 glyphs are currently available for 
displaying graphical data in the genome browser context. The style and color of a 
track’s glyphs can be controlled dynamically by inserting Perl callbacks into the 
configuration file. Some examples of callback uses include changing the background 
color of an arrow glyph according to the strand of the feature and changing glyph 
types in the same track based on feature type, zoom level, or other context.

A flexible plugin architecture and API also provide the means for third-party 
developers to add new functionality to the browser with relative ease, without having 
to directly modify the software. A few default plugins come with the distribution, 
including support for exporting data in commonly used formats and an integrated 
program for designing PCR primers around features shown in the browser. 
GBrowse also has session management, though there are no user accounts. Through 
web browser “cookies” previous search sessions and configuration options and 
tracks are cached so the browser picks up where the user left off on the previous 
visit. A shareable snapshot of the current configuration can also be saved as a URL 
with a “bookmark this” link.

Like other browsers written in Perl, GBrowse cannot boast of the speed offered 
by UCSC. Recent advances in next-generation sequencing and microarray tech-
nologies have vastly increased the volume of rate of production of new data to be 
displayed, which strains the genome browsers’ ability to retrieve and display data 
quickly. Recently, GBrowse developers have responded to the need for improved 
performance in several ways. First, image caching is part of the graphical rendering 
process. GBrowse remembers if a region has been drawn before and re-uses images 
rather than drawing them from scratch each time. Second, for dense quantitative 
data such as the wiggle tracks, GBrowse has adopted a data serialization strategy 
based on the one employed by UCSC, which has improved browser performance. 
As of version 2.0 (to be released in late 2009), GBrowse also uses a combination 
of parallel processing and uses AJAX (asynchronous JavaScript and XML) tech-
nologies to dramatically speed up graphical rendering of all types of data in the 
browser. By rendering each track independently, it is possible to divide the process-
ing work across a compute farm and render tracks concurrently in the user interface. 
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Another aspect of this redesign is that GBrowse can display data from multiple 
databases simultaneously, making it possible to distribute data storage as well as 
data processing. For installations lacking a compute farm, GBrowse can still be run 
in standalone mode while enjoying the performance benefits of multiple databases 
and concurrent, rather than serial track rendering.

3.3  Standalone Annotation Browsers and Editors

While web-based genome browsers offer many advantages to users, there is a case 
to be made for using a standalone desktop application. From a performance 
perspective, responsiveness of the application is often an advantage – once the 
data are loaded into a standalone browser, there is no need to ask a server for more 
information to zoom or pan, so there is no network latency. Desktop application 
browsers can perform advanced operations not available in most web-based 
browsers, especially the ability to edit and save rather than just browse annota-
tions. Most of the standalone browsers covered in this chapter are written in the 
Java programming language. An advantage of this is that web-start is often avail-
able, which makes it possible to try these applications without installing them 
locally. There is an abundance of standalone annotation browsers and editors 
available. For example, in the description of their browser Genomorama (Gans and 
Wolinsky 2007), the authors list 19 freely available standalone applications. Here, 
we will give an overview of a few of the more commonly used, open-source anno-
tation browsers and editors.

3.3.1  Apollo

Apollo (http://apollo.berkeleybop.org ; Lewis et al. 2002) is a Java application 
initially developed as an editor for the curators annotating the D. melanogaster 
genome for FlyBase. It has since been included in the GMOD project and several 
other organizations have adopted it for genome annotation, including as a tool for 
“community annotation,” where the data providers allow interested outsiders to 
directly add annotations and edit gene models to their databases. It supports a wide 
variety of formats for importing and exporting data, including GMOD’s Chado 
database schema, XML, GenBank, and GFF3. Apollo’s main advantage as a 
browser is the ability for users to easily add and modify their own annotation data 
using a graphical tool and save changes to a remote database or a local file. 
However, Apollo is limited in the total amount of sequence features it can display 
at one time, thus limiting its utility as a genome browser for views of DNA larger 
than a megabase. It can be argued that this is not unreasonable, as the users of 
Apollo will typically be looking at a small region in detail as opposed to large scale 
whole genome data.



50 S. McKay and S. Cain

BookID 151692_ChapID 3_Proof# 1 - 21/08/2009 BookID 151692_ChapID 3_Proof# 1 - 21/08/2009

3.3.2  IGB

The Integrated Genome Browser (IGB, pronounced “iggbee”) is another Java 
based stand-alone browser (http://affymetrix.com/support/developer/tools/down-
load_igb.affx). While it can load data from a variety of flat file formats, IGB 
really shines when working with DAS servers. IGB retrieves data from multiple 
DAS1 and DAS2 servers and will intelligently retrieve an appropriate amount of 
data of either a whole chromosome or only the viewed region. It works well with 
whole genome analysis results, such as tiling array results, which is not surpris-
ing, given that development was based at the microarray company Affymetrix. 
Once the data are loaded, IGB scrolls and zooms smoothly, even over large 
sequences with many features.

IGB also has sophisticated analysis tools. Filters can be added to graphical 
tracks to limit upper and lower thresholds on scores and filtering the contents of one 
track based on the contents of another. For example, one could display only the 
expression results that appear where there are annotated exons. IGB can also 
perform a variety of other transformation operations, such as displaying the result 
of adding and subtracting values from tracks or performing a union or intersection of 
features for a set of tracks.

3.3.3  Artemis

Artemis (http://www.sanger.ac.uk/Software/Artemis; Berriman and Rutherford 
2003) is another Java based browser developed at the Sanger Institute. Artemis 
features a three-panel interface that depicts the genome at different resolutions. 
The interface is simple and easy to master, but lacks the color and flashiness in 
some of the other standalone browsers. Artemis allows the user to view and edit 
both sequence and annotation data. Though Artemis has been around for a decade, 
it is still under active development and has been used to annotate many microbial 
genomes primarily at the Sanger Centre in Hinxton, UK. It accepts the most 
common sequence and feature file formats: EMBL, GENBANK, FASTA, GFF3 
and the BLAST alignment format. Data can also be downloaded directly from the 
European Molecular Biology Laboratory (EMBL) database. Extra sequence and 
annotations can be integrated by loading files locally. The Artemis’s display is 
primarily focused on curation of gene models, which is facilitated by having the 
display of exon or coding regions nested within the six-frame translation and stop 
codons. Another nice feature for eukaryotic genomes is having spliced exons 
visually offset into the appropriate reading frame. Although the user interface for 
this application is fairly basic in appearance, it should be noted that Artemis and 
similar applications with simple no frills interfaces are generally used by power-users 
or data curators who annotate whole genomes rather than casual browsers.
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3.3.4  NCBI Genome WorkBench

The NCBI Genome Workbench (http://www.ncbi.nlm.nih.gov/projects/gbench) is a 
customizable workbench of tools that allows you to organize sequence data 
retrieved from NCBI databases, sequence data from your own files, or both. Unlike 
the other annotation editors, NCBI WorkBench is written in the C++ programming 
language and runs as a native application on Windows, MacOS, and various Linux 
distributions. What this means to the end user is that installation of the program is 
fairly straightforward as it does not require that Java be installed.

The Genome Workbench has a richer set of features than Apollo and Artemis. 
It allows the user to view sequences, construct phylogenetic trees, alignments, dot-
plots, and more. Also offered is an attractive zoomable graphics view that allows 
visual exploration of the sequence region in either horizontal or vertical orientations. 
A nice set of alignment analysis tools is provided and BLAST and analysis results can 
be saved into the project. Data can be downloaded directly from GenBank and a 
variety of file formats are supported for import and export of local files. It seems 
confusing that the Genome WorkBench will not accept GenBank files as an import 
format, though there are a reasonable number of alternative formats to use. The user 
interface could be improved by adding a progress bar or other obvious visual cues so 
that deployed tasks, such as BLAST, are running in the background. Of the browsers 
presented here, Genome WorkBench’s user interface is the most visually appealing. 
Not all aspects are intuitive, but it is worth spending some time exploring the application 
and its abundant documentation.

3.4  Web-Based Synteny Browsers

Interest in comparative genomics has risen with the number of genome sequences 
due to decreasing costs of DNA sequencing. Accordingly, computational biologists 
have begun to address the need for visualization tools for comparative genomics. This 
emerging class of software is generally referred to as synteny browsers. Typically, 
such browsers have a look and feel similar to single genome browsers, with additional 
features for displaying comparative data. Generally, there needs to be a way to 
display two or more reference sequences as well as the relationship between 
the annotated features. The relationship between features can be established in 
several ways, including human curation, BLAST/BLAT analysis or more sophisti-
cated comparative sequence analysis. There is considerable functional overlap 
amongst the various synteny browsers and it is not yet clear which will emerge as the 
dominant software. While a few commonly recognized file format standards have 
evolved or been extended for genome annotations, there is still considerable hetero-
geneity in the synteny browsers data. Each synteny browser has its own way of 
storing synteny data, and setting up a local installation is not straightforward, often 
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involving some ad hoc scripting to convert raw comparative data or alignment 
data to a suitable format.

The relationship between genes and aligned regions of their respective reference 
sequences is a feature common to most browsers. Some browsers also provide 
the means to examine larger regions of aligned sequences, generally referred to 
as syntenic blocks, from a more zoomed-out perspective. Some synteny browsers 
have no predetermined upper limit in terms of the number of species shown in 
the browser. However, practical limitations of processing power, real-time data 
retrieval and available screen space impose some moderation in this regard. Here, 
we provide a survey of web-based Synteny browsers that are connected to the 
GMOD consortium.

3.4.1  GBrowse-Based Synteny Browsers

3.4.1.1  GBrowse_syn

GBrowse_syn (http://gmod.org/wiki/GBrowse_syn) displays synteny data with a 
central reference genome and additional genomes displayed above and below the 
center panel (Fig. 3.5). Data are stored for GBrowse_syn in separate databases: 
each genome has its own GBrowse-compatible database (so that it can have a 
traditional GBrowse display in addition to GBrowse_syn), plus the alignment data 
are stored in a joining alignment database. This arrangement gives the system the 
flexibility to change the primary sequence context for the display. It also means that 
arbitrarily large or small blocks can be aligned in the GBrowse_syn display, so it 
can compare on the level of genes or larger blocks. The alignment database schema 
supports storage of information about insertions and deletions (indels) in the 
multiple sequence alignment. The indel information is then encoded in the graphical 
display as scaled gridlines within the shaded alignments. The configuration file for 
GBrowse_syn is a separate file, but similar to the GBrowse configuration file. 
GBrowse_syn is currently implemented at WormBase (http://dev.wormbase.org/db/
seq/gbrowse_syn ).

3.4.1.2  SynView

SynView (http://eupathdb.org/apps/SynView; Wang et al. 2006) is a synteny 
browser that uses only the standard GBrowse distribution and a sophisticated 
GBrowse configuration file. It uses Perl callbacks to overlay a synteny view onto 
the GBrowse details panel (Fig. 3.6). The fact that such a display can be accom-
plished simply by editing the configuration file is a testament to GBrowse’s flexi-
bility (and the ingenuity of the SynView developers). There are several parts that 
must come together for this to work. The synteny data are stored in standard GFF3 
format, and each genome that is compared to the reference is composed of two 
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tracks: one to draw the syntenic genome’s scale bars, and one to draw the features 
on the syntenic genome’s features. Information on how to scale the syntenic features 
is stored in each feature’s GFF line in its ninth column. How a syntenic gene is 
related to the reference gene is stored in the syntenic gene’s GFF line as well. 
In order to draw the polygons that show the relationship, Perl callbacks that are in 
the GBrowse configuration file are executed to layer the graphics on the panel 
between the reference genes and the syntenic genes.

3.4.1.3  SynBrowse

SynBrowse (http://www.synbrowse.org ) was written to take advantage of the 
same BioPerl (Stajich et al. 2002) infrastructure components used by GBrowse 
(Brendel et al. 2007). SynBrowse data are expressed as standard GFF2, using 
target tags to relate a region in one species to its counterpart in another species. 
SynBrowse also takes advantage of different “source” tags, in the second column 
of GFF file, to filter the view so as to display microsynteny as well as macrosyn-
teny, depending on the zoom level of the display. For example, a single database 
could display synteny on the exon, gene, or multimegabase levels. The graphical 
display of SynBrowse is similar to GBrowse, except for the multiple detail panel 
linked by the alignments (Fig. 3.7)

3.4.2  Other Synteny Browsers

3.4.2.1  Sybil

Sybil (http://sybil.sourceforge.net) is a synteny browser that runs on a GMOD 
Chado database (http://gmod.org/wiki/Chado) and is populated with multiple genomes 
(Crabtree et al. 2007). It was initially developed at The Institute for Genomic Research 
(TIGR) to support their bacterial genome sequencing and annotation. The Chado 
database schema was designed to support data from multiple organisms, so no special 
modification to the schema is required. Sybil focuses on protein and gene clusters, 
and displays them in the genome context. In addition to synteny views, Sybil also 
provides a “whole genome comparison” view (Fig. 3.8), where a reference genome 
is displayed as a color heat map, and compared genomes use the same map so that 
users can see immediately what sections of the compared genomes have rearranged 
relative to the reference.

3.4.2.2  CMap

CMap (http://gmod.org/wiki/CMap ; Faga 2007) was initially developed as a com-
parative mapping tool for Gramene to allow comparisons between different types of 
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0.0Mb

Streptococcus pneumoniae 670 (reference)

Streptococcus pneumoniae D39

Streptococcus pneumoniae CGSP14

Streptococcus pneumoniae CDC3059-06

Streptococcus pneumoniae CDC1873-00

Streptococcus pneumoniae CDC1087-00

Streptococcus pneumoniae CDC0288-04

Streptococcus pneumoniae ATCC 700669

Streptococcus pneumoniae 70585

0.1Mb 0.2Mb 0.3Mb 0.5Mb 0.6Mb 0.7Mb 0.8Mb 0.9Mb 1.0Mb 1.1Mb 1.2Mb 1.4Mb 1.5Mb 1.6Mb 1.7Mb 1.8Mb 1.9Mb 2.0Mb 2.1Mb

Fig. 3.8 Using Sybil to display aligned Streptococcus strain genomes. The 670 strains on the 
bottom is the reference, and the rearranged colors on the compared genomes show how regions have 
rearranged in those strains. The swapped light blue and green sections in the compared genomes 
relative to the 670 genome shows that a rearrangement has happened in the reference relative to 
the other genomes. White sections show regions that are missing either in the reference genome 
or the compared genome

Fig. 3.7 A SynBrowse comparison rice, cotton and Arabidopsis thaliana genomes using shared 
protein alignments. Blue lines drawn between genomes mark the edges of protein similarity between 
the compared genomes
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maps available for rice strains (physical maps, genetic maps and sequence maps). 
However, since CMap is organism agnostic and only “knows” about maps, it is quite 
easy to convert it to a synteny browser, comparing genomes of different species as 
maps. CMap is unique amongst synteny browsers, as it arranges the sequences 
vertically instead of horizontally (Fig. 3.9). Any number of genomes can be 
compared in this way, though side scrolling may be required just as vertical scrolling 
may be required with other unlimited synteny browsers.

3.5  How to Choose a Genome Browser

The choice of which browser to use is governed by a number of factors. In some 
cases, the browser of choice is a historical accident (the first browser the user 
happened to encounter), which is fine as long as the researcher’s needs are fully 
met. However, it is a good idea to explore the alternatives, as relevant data or 
better user interface features missing from one browser of choice may be offered 
by other browsers.

For an end-consumer who lacks the ability or interest to build a genome browser, 
or whose primary interest is accessing as much information as possible about a few 
favorite genes, the choice may be dictated by something as simple as which 
browser or browsers have the species of interest. Since there is fairly substantial 
overlap in terms of species coverage, the choice may be guided more by user pref-
erences for the type of interface or available features. If species choice is not lim-
ited and one prefers a fast browser with a simple interface, then UCSC would be a 
good choice. Nevertheless, it would still be a good idea to visit Ensembl occasion-
ally to ensure one is getting all there is to offer for the species or genes of interest. 
Likewise, if one prefers a richer feature set, then Ensembl would be a good starting 
point. If you happen to work on an established model organism, the first browser 
you should visit is the model organism database (MOD) for that species, for exam-
ples see Table 3.1. Although the data will likely be mirrored to some extent on one 
or more of the “big three” genome browsers, the attention to detail and integration 
of data from all sources will be best at the MOD for your organism.

For the research group who wants to host a browser for an organism, the choice 
of browsers is not quite as straightforward. Preference for particular functional or 
aesthetic qualities of a particular browser is important but other significant factors 
should be considered in the decision of software platforms. For example, the size 
and skill-level of your informatics group will be a key factor. For smaller groups 
who want to have genome browser up and running in a few days, GBrowse is a 
good choice. If you have several skilled informatics staff available, then you might 
want to consider using the Ensembl or UCSC infrastructure. Integrating the latter 
two into an established website or genome database may be more challenging, so 
GBrowse could be a better choice for integration an existing infrastructure. For 
genome databases being built started de novo, one possibility to consider is 
GMODweb (O’Connor et al. 2008). GMODweb is basically a “genome database in 
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Fig. 3.9 Using CMap as a synteny browser, showing a high-level comparison of rice chromosome 
1 and sorghum chromosome 3. The blue shaded polygons show regions of large blocks of synteny, 
where the blue lines show individual aligned regions
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a box” that can be set up with one’s own data and a small bioinformatics staff. For 
example, the Paramecium MOD (Table 3.1) was constructed with GMODweb 
(Arnaiz et al. 2007).

Finally, if your group is actively producing or annotating genomic sequences, 
gene predictions, expression data, etc., a local installation of an annotation editor 
would be preferable to a web-based genome browser. For curating gene models 
based on integration of external evidence such as sequence conservation and 
expression data, both Apollo and Artemis are seasoned editors that have been used 
to annotate many genomes. The Genome WorkBench offers a very rich suite of 
features and integrates tightly with other major NCBI resources. There is substan-
tial overlap in the functionality between the annotation editors covered in this 
chapter and the choice of which to use may depend on preference for a particular 
user-interface.

3.6  Next Generation Genome Browsers

The increasing use of JavaScript and AJAX on web sites such as Google maps™ 
and many others marks a trend towards enhancing web content through increasing 
reliance on client-side processing. Client-side processing refers to work being 
performed by the user’s web browser rather than at the web server. What this means 
to the end user is that the browsing experience is an improved user interface for 
web-based applications. Considering the Google maps™ example, it is possible to 
smoothly zoom, pan, and scroll the maps without having to continuously reload the 
page because asynchronous queries (AJAX) are used to load the map data independent 
of the parent web page. Most genome browsers still use primarily server-side pro-
cessing for database access and graphical rendering, which can result in perceptible 
delays, both from network latency and computational load imposed upon the server 
by large amounts of data. A few JavaScript based enhancements are already used 

Table 3.1 Some model organism databases with genome browsers

Organism Web Site

Caenorhabditis species wormbase.org
Drosophila species flybase.org
Mus musclulus www.informatics.jax.org
Rattus norvegicus rgd.mcw.edu
Saccharomyces cerevisiae yeastgenome.org
Paramecium tetraurelia paramecium.cgm.cnrs-gif.fr
Daphnia species wfleabase.org
Cereal species gramene.org
Arabidopsis thaliana www.arabidopsis.org
Dictyostelium discoideum dictybase.org
Schmidtea mediterranea smedgd.neuro.utah.edu
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by genome browsers such as the collapsible track sections in the UCSC browser 
and the rubber-band selection in the Ensembl browser. Generally, the adoption of 
more sophisticated JavaScript and AJAX features into genome browsers has lagged 
behind other classes of software but the current version of GBrowse has used 
JavaScript and AJAX to drive many of its user interface features, for example the 
popup balloons, rubber-band selection, draggable tracks, inline configuration, col-
lapsible sections, and, in the upcoming release, parallel processing of track render-
ing. However, all of the web-based browsers covered in this chapter still rely 
heavily on server-side processing to do the heavy lifting of converting sequence 
annotation in the database to images that are sent out to the web browser.

A new, AJAX-based version if GBrowse (JBrowse) is currently under development 
(Fig. 3.10). JBrowse is a ground-up rewrite rather than an enhancement of the 
existing GBrowse. JBrowse uses AJAX and client-side graphical rendering to 
produce a smooth scrolling, Google maps™-style interface to the genome, with 
intuitive semantic zooming, where the glyph-types change according to the zoom 
level. JBrowse will offer all of the same features as the original GBrowse but will 
use the client’s web browser to do most of the graphical rendering and display. 
End users will be presented with a genome browser which has a fast, smooth and 
intuitive user interface. More information about the AJAX GBrowse can be 
obtained at http://biowiki.org/view/GBrowse/WebHome.

An alternative to AJAX is Adobe Flash. Flash technology also allows rich, 
cross-platform web applications. An example of a Flash genome browser has been 
developed at The Broad Institute for a variety of genomes (Fig. 3.10). They have a 
parallel genome browser, synteny browser, a dot plot for genome comparison, and 
circular genome browser. More information can be obtained at http://www.broad.
mit.edu/annotation/genome/aspergillus_group/GenomeMap.html. While this 
software is not yet open source, the developers are looking into releasing it after 
development has stabilized.

3.7  Online Reading and Resources

UCSC Genome BrowserFree OpenHelix Tutorial:
http://www.openhelix.com/downloads/ucscUser’s Guide:
http://genome.ucsc.edu/goldenPath/helpDownloads:
http://hgdownload.cse.ucsc.eduEnsemblUser’s Guide:
http://www.ensembl.org/info/using/index.htmlDownloads:
http://www.ensembl.org/info/downloadsNCBI Map ViewerUser’s Guide:
http://www.ncbi.nlm.nih.gov/projects/mapview/static/MapViewerHelp.htmlG-
BrowseUser’s Guide:
http://gmod.org/gbrowse-cgi/tutorial/tutorial.htmlDownloads: http://gmod.org/
wiki/Gbrowse#DownloadsApolloUser’s Guide:
http://apollo.berkeleybop.org/current/userguide.htmlDownloads:
http://apollo.berkeleybop.org/current/install.htmlArtemisUser’s Guide: http://www.
sanger.ac.uk/Software/Artemis/v10/manual/Downloads:
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http://www.sanger.ac.uk/Software/Artemis/v10/IGBUser’s Guide:
http://www.affymetrix.com/Auth/support/developer/tools/IGB_User_Guide.
pdfDownloads:
http://www.affymetrix.com/support/developer/tools/download_igb.affxNCBI 
Genome WorkBenchTutorials:

Fig. 3.10 Next generation genome browsers. (a) A prototype of an AJAX GBrowse, as shown at 
(http://genome.biowiki.org/test/divbrowser). A portion of Drosophila melanogaster chromosome 
3R is shown. The browser features a smooth, Google maps-style horizontal and vertical scrolling. 
Tracks can be added or removed from the display by simply dragging the title bar in or out of the 
display window. (b) The Broad parallel genome browser. There are two genomes displayed here, 
where the alternating light and dark gray stretches correspond to chromosomes in the genome. For 
example, the first dark gray section is the organism’s chromosome 1, and the first light gray region 
is the organism’s chromosome 2. Colored tracks above and below the gray tracks correspond to 
features in the positive and negative strands. Selecting a region results in lines to the other genome 
highlighting orthologous genes. Here a region of the forth chromosome A. fumigatus is selected 
and the browser shows orthologous genes on 9 chromosomes on A. flavus
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http://www.ncbi.nlm.nih.gov/projects/gbench/tutorial.htmlDownloads:
http:/ /www.ncbi.nlm.nih.gov/projects/gbench/download.htmlSynteny 
BrowsersGMOD wiki:
http://gmod.org/wiki/Synteny
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4.1  Introduction

Non-coding RNAs are defined as all functional RNA transcripts other than protein 
encoding messenger RNAs (mRNA). Thus, they are defined more by what they 
are not than by what they actually are (Fig. 4.1). This unusual way of defining 
ncRNAs reflects a historical bias in biology. Early biological studies focused 
largely on prokaryotes, whose genomes are dominated by protein-coding 
sequence (80–95%) (Mattick 2004a; Mattick and Makunin 2006). This led to the 
presumption that cellular activities were carried out primarily by proteins. RNA 
was thought to be a passive carrier of genetic information as mRNA or as 
supporting molecules for the production of proteins such as transfer-RNA (tRNA) 
and ribosomal-RNA (rRNA).

While it certainly remains true that proteins are critical to cell function, biologists 
have discovered that ncRNAs exercise many key roles in the cell as well. A wide 
variety of functions are attributed to ncRNA, including gene regulation, chromatin 
remodeling, gene localization, gene modification and DNA imprinting (Leighton 
et al. 1995; Brannan and Bartolomei 1999; Tilghman 1999; Eddy 2001; Storz 2002; 
Seitz et al. 2003; Mattick and Makunin 2006; Costa 2007; Dann et al. 2007). 
ncRNA have also been linked to the development of cancer and associated with 
complex diseases (Hayashita et al. 2005; He et al. 2005; Lu et al. 2005; Sonkoly 
et al. 2005; Costa 2007).

Many ncRNAs may also be highly expressed, particularly in eukaryotes. 
In Saccharomyces cerevisiae ncRNA represent ~95% of RNA transcripts (Peng 
et al. 2003; Samanta et al. 2006). Bioinformatic approaches predict that the number 
of ncRNAs in bacterial genomes is in the order of hundreds, while in eukaryotic 
genomes it is in the order of thousands (Hershberg et al. 2003; Zhang et al. 2004; 
Washietl et al. 2005a, b; Huttenhofer and Vogel 2006). In humans, data suggests 
that the number of ncRNAs produced is comparable to the number of proteins 
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(Kapranov et al. 2002; Cawley et al. 2004; Gardner et al. 2004; Kampa et al. 2004). 
This suggests that ncRNAs are likely to play a greater role in cellular function in 
eukaryotes than in prokaryotes (Gardner et al. 2004).

Given the prevalence and significance of ncRNAs, it is important to identify 
them in genomic sequence. However, when new genomes are annotated, many 
ncRNA families remain unannotated or under-annotated because ncRNAs are dif-
ficult to identify computationally. High-throughput experimental methods are often 
employed for this purpose including tiling microarrays and cDNA sequencing 
(Cheng et al. 2005; Hiley et al. 2005b; Kawano et al. 2005; Huttenhofer and Vogel 
2006; Yin and Zhao 2007). Data from these experiments provide a genome-wide 
view of ncRNA transcription. These experiments provide valuable information 
about ncRNA expression levels and post-transcriptional processing. They often 
produce a sizable list of potential new ncRNA candidates. These candidates must 
then undergo further testing with methods like Northern hybridization, reverse 
transcript-PCR or rapid amplification of cDNA ends (RACE) to be confirmed as 
bona fide ncRNAs. Once a ncRNA is identified in this way, elucidating its function 
can often take years.

An intriguing discovery that has come from high-throughput methods is that 
much, if not most, of the eukaryotic genome is actually transcribed and may per-
form some function within the cell. This is contrary to the thinking that prevailed 
when the human genome was initially sequenced, that functional genes were con-
sidered remote islands in a sea of non-functional “junk” DNA. Recent large-scale 
identification of putative ncRNAs has launched a debate surrounding the question 
of how many of the observed transcripts represent legitimate ncRNAs and how 
many may result from transcriptional “noise” or experimental artifact (Babak et al. 

Fig. 4.1 RNA transcripts. Many ncRNA families serve as housekeeping genes and are well 
characterized. Many other ncRNA families function or play a variety of regulator roles and their 
discovery and characterization remains an active area of research
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2005; Cheng et al. 2005; Huttenhofer et al. 2005; Kapranov et al. 2005; Mattick and 
Makunin 2006; Mendes Soares and Valcarcel 2006; Costa 2007).

While experimental methods are essential for understanding ncRNAs, accurate 
computational tools for ncRNA prediction are sorely needed. Though methods for 
direct verification of ncRNAs are well established, most rely on an accurate prediction 
of the location of the ncRNAs to be useful. In addition, some ncRNAs are expressed 
at low levels and are difficult to detect experimentally. In many experimental systems 
it can be difficult to acquire enough RNA for experimental use. Experimental methods 
are limited in the number of samples or species they can survey, and are expensive and 
time consuming. Hence, coupling experimental methods with computational 
approaches will significantly improve our ability to identify ncRNAs.

Previous chapters have discussed protein-coding gene prediction. This chapter 
will explain why these methods do not work well for ncRNA gene prediction and 
will describe the methods that have been developed for this purpose. It will also 
discuss the algorithms that employ these methods to address specific ncRNA gene 
prediction problems. The intent is to give the reader an appreciation the field of 
ncRNA gene prediction and to provide guidance for selecting the best application 
for a specific situation.

4.2  Why ncRNA Prediction Is Difficult

Reasons that make computational prediction of ncRNAs difficult include (1) het-
erogeneity of ncRNAs, (2) lack of primary sequence features, and (3) extensive 
post-transcriptional processing.

4.2.1  Heterogeneity of ncRNAs

To understand the challenge presented by ncRNA gene prediction, it is first 
necessary to gain an appreciation of the variety of ncRNAs that exist. Table 4.1 
provides a list of known ncRNA families. They are involved in protein production 
(tRNA, rRNA), post-transcriptional modification of other RNA molecules (snoRNA), 
gene splicing (snRNA), control of gene expression (miRNA), chromatin structure 
modification (rasiRNA, siRNA), maintenance of telomere ends (telomerase), RNA 
turnover (RNAseP), imprinting (Eddy 2001) and chromosome silencing 
(X-chromosome inactivation) (Martens et al. 2004; Cheng et al. 2005; Samanta 
et al. 2006; Costa 2007). Some ncRNAs function in the nucleus while others are 
transported out of the nucleus or are encoded by the mitochondrial genome and 
function in the mitochondria (Cheng et al. 2005; Mendes Soares and Valcarcel 
2006). There is also great variations in ncRNA length. They range from ~18 to 25 
nucleotides (miRNAs), to 73–93 nucleotides (tRNA), to ~100–300 nucleotides 
(snoRNA), to as long as ~17,000 nucleotides (ncRNAs involved with chromosome 
inactivation) (Eddy 2001; Costa 2007).
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Table 4.1 Types of ncRNAs. Functional descriptions of the ncRNA discussed in this chapter 
are provided. Only a subset of these ncRNAs will be present in any cell and their expression is 
dependent on species, cell type and environmental conditions

ncRNA Description

miRNA (microRNA) Small noncoding RNAs (21–25 nucleotides) that are 
processed from longer hairpin RNA precursors. Control 
expression of target genes through repressed translation 
or mRNA degradation. Frequently, one miRNA can 
target multiple mRNAs and one mRNA can be regulated 
by multiple miRNAs targeting different regions of the 3¢ 
UTR (Seitz et al. 2003; Bartel 2004; Mendes Soares and 
Valcarcel 2006)

ncRNA (non-coding RNA) All RNA transcripts that are not messenger RNA (mRNA)
MRP RNA RNA component of the Ribonuclease MRP, which is an 

endonuclease that functions in eukaryotic pre-rRNA 
processing and is related to RNase P (Aspinall et al. 2007)

rasiRNAs (repeat-associated 
small interfering RNA)

Small RNA (23–27 nucleotides) typically generated from 
double-stranded RNA through overlapping bidirectional 
transcription. Encoded by repetitive elements within the 
genome (often transposons or retro-elements) and lead to 
histone and DNA modifications that induce heterochromatin 
formation and transcriptional repression by poorly 
understood mechanisms (Sontheimer and Carthew 2005; 
Verdel and Moazed 2005; Mendes Soares and Valcarcel 
2006; Yin and Zhao 2007)

RNAseP RNA component of Ribonuclese P, which is responsible for 
processing the 5¢ end of precursor tRNAs and some rRNAs 
(Stark et al. 1978; Frank and Pace 1998; Eddy 2001; Storz 
2002)

rRNA (ribosomal RNA) RNA component of the ribosome that is present in many copies 
in every cell. Extensively modified, cleaved, and assembled 
into the ribosome (Venema and Tollervey 1999; Peng et al. 
2003; Hiley et al. 2005b)

S/AS (sense/anti-sense 
transcripts)

Transcripts antisense of a coding mRNA that modulate mRNA 
expression by forming sense–antisense pairs. Function 
by affecting mRNA stability, translatability or chromatin 
structure (Cawley et al. 2004; Mattick 2004a, b; Katayama 
et al. 2005; Mendes Soares and Valcarcel 2006)

scaRNA (small Cajal body 
RNA)

A subset of H/ACA snoRNAs located in Cajal bodies (a class 
of small nuclear organelle) (Meier 2005; Mattick and 
Makunin 2006)

siRNA (small/short 
interfering RNA)

Small RNA (21–28 nucleotides) that direct cleavage of 
complementary mRNAs and lead to mRNA degradation 
and gene silencing. A natural mechanism of defense against 
viruses that seems to have evolved also as an important 
repressor of the transcriptional activity of heterochromatic 
regions of the genome, including centromeres and other regions 
with repetitive sequences and transposons (Hannon and 
Rossi 2004; Meister and Tuschl 2004; Bernstein and Allis 2005; 
Sontheimer and Carthew 2005; Zamore and Haley 2005; 
Mendes Soares and Valcarcel 2006; Yin and Zhao 2007)

(continued)
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ncRNA Description

snoRNA (small nucleolar 
RNAs)

An integral part of the RNA-protein complex called snoRNAs 
which guides modification of a specific site within a target 
RNA (rRNA, tRNA, telomerase, snRNA and others). Each 
snoRNA guides one type of modification and belongs to 
one of two main classes: C/D box (which cause 2¢-O-ribose 
methylation) and H/ACA box (which convert uridines 
to pseudouridines). They can also modulate editing or 
alternative splicing of pre-mRNAs (Eddy 2001; Bachellerie 
et al. 2002; Gesteland et al. 2006; Mendes Soares and 
Valcarcel 2006)

snRNA (small nuclear 
RNAs)

Important components of the spliceosome that recognize splice 
sites and establish an RNA scaffold that holds together the 
sequences involved in the splicing reaction. Some snRNAs 
serve in 3¢-end formation of particular transcripts or other 
RNA-processing events (Gesteland et al. 2006; Mendes 
Soares and Valcarcel 2006)

sRNA Term used predominantly in bacteria to mean non-coding 
RNA (do not function as a mRNA). Commonly found 
as translational regulators in bacterial cells.(Storz 2002; 
Gottesman 2004; Storz et al. 2004)

SRP RNA (signal 
recognition particle)

A small cytoplasmic RNA that forms the core of the signal 
recognition particle (SRP) required for protein translocation 
across membranes (Keenan et al. 2001)

tasiRNA (trans-acting small 
interfering RNA)

Small, plant-specific RNAs that regulate gene expression by 
guiding cleavage of target RNA. Their maturation involves 
miRNAs and they operate as part of an Argonaute protein 
complex (Hutvagner and Simard 2008)

telomerase RNA An integral part of the telomerase enzyme and serves as the 
template for the synthesis of the chromosome ends (Chen 
et al. 2000; Gesteland et al. 2006)

tRNA (transfer RNA) Short RNA molecules (73–93 nucleotides) that transfer a 
specific amino acid to a growing polypeptide chain at the 
ribosomal site during protein synthesis. They undergo 
extensive processing of their 3¢ and 5¢ ends, as well as 
covalent modifications, to achieve their mature form having 
a characteristic clover-leaf secondary structure (Hiley et al. 
2005b; Gesteland et al. 2006; Goodenbour and Pan 2006)

tmRNA (transfer-messenger 
RNA)

Found in eubacterial genomes and named for their dual tRNA-
like and mRNA-like functions. They function to liberate 
the mRNA from stalled ribosomes (Gillet and Felden 2001; 
Saguy et al. 2005)

Table 4.1 (continued)

Another variable among ncRNAs is the degree to which structure plays a role in 
their function. Because ncRNAs are single stranded molecules, they can fold back 
onto themselves to form complex structures. The remarkable catalytic properties 
and versatility of ncRNAs lie in this capacity to fold into many shapes (Caprara and 
Nilsen 2000; Holbrook 2005; Mendes Soares and Valcarcel 2006). Some ncRNA 
families are highly dependent on their shape to perform their function (tRNA,  
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H/ACA snoRNA). Other families appear to perform their function primarily 
through sequence motifs. These motifs may permit complementary binding to other 
RNA/DNA molecules (cis or trans), assist with protein binding, and promote 
catalytic self-cleavage (C/D snoRNA) (Meyer 2007). Most ncRNAs probably function 
through a combination of structural and primary sequence components. For some 
ncRNAs, the functional property derives from their complementary binding?? to 
another transcript, and thus, no particular common features at all have been identified 
for the members of some families (piRNA, S/AS).

4.2.2  Lack of Primary Sequence Features

Previous chapters discussed protein-coding gene prediction and described how primary 
sequence features are generally sufficient for predicting these genes. Protein coding 
genes share a common set of genomic features (splice sites, transcription factor 
binding motifs, polyadenylation signals, etc.), some of which are also part of non-
coding transcripts, in particular those transcribed by RNA polymerase II. However, 
the distinctive signal stems from the protein coding content and its associated 
features (start codon, stop codon, large open reading frame).

Primary sequence conservation was also shown to be very useful for identifying 
protein-coding genes. These genes typically demonstrate a high degree of cross-species 
amino acid conservation over long evolutionary distances. Allowable amino acid 
substitutions are limited to those that retain protein shape and functional integrity, and 
such conformational constraints restrict nucleotide substitutions. In particular, they 
create a bias in codon substitution patterns at the third codon position (synonymous 
changes). While individual features are typically insufficient for gene prediction, they 
provide a reasonably good indication of where protein-coding genes are located when 
taken together. De novo protein coding gene predictors can typically identify more 
than90% of the coding bases in mammalian genomes (Jones 2006).

The situation is very different in ncRNA gene prediction. ncRNAs do not form 
a homogeneous class of genes processed along the same path as the central dogma 
once implied. In particular, they do not specify amino acid sequences and therefore 
necessarily lack start codons, stop codons, open reading frames, and third codon 
position substitution patterns. They are transcribed by multiple RNA polymerases, so 
they do not all share a common set of promoter motifs, splice signals or polyade-
nylation signals. They also typically lack significant primary sequence conservation 
across species (Higgs 2000; Livny and Waldor 2007). For ncRNAs that rely on 
structure for their catalytic activity, structural constraints exert only minimal 
restrictions on primary nucleotide sequence. Many different nucleotide sequences 
can fold into the same structure (Sect. 4.3.1 and Fig. 4.2a). For ncRNAs that func-
tion through primary sequence motifs, the brevity and degeneracy of these motifs 
precludes their use as generic gene-finding tools. Hence, shared primary sequence 
features are virtually non-existent among ncRNAs.
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4.2.3  Extensive Post-transcriptional Processing

Many ncRNAs undergo extensive post-transcriptional modification after initial 
transcription to reach their mature, functional form (tRNA, rRNA, snRNA, snoRNA). 
Modifications may include exo- and endo-nucleolytic cleavage of precursor transcripts, 
covalent modifications, and intron splicing (Sprinzl et al. 1998; Allmang et al. 
1999; Venema and Tollervey 1999; Decatur and Fournier 2002; Hiley et al. 2005a). 
Many ncRNAs, including tRNA, are processed from a larger precursor transcript. 
MiRNAs are processed from precursor stem-loops that are themselves parts of 
larger primary transcripts. It is common for snoRNAs and miRNAs to be com-
pletely contained within the introns of other genes (Bachellerie et al. 2002; Seitz 
et al. 2003).

Post-transcriptional modifications have the potential to alter the manner in 
which RNA molecule folds and the complementary sequences it will match. 
However, our current understanding of ncRNA modifications, their role in function, 
and how to predict them, are still in their infancy. Consequently, ncRNA gene 
prediction programs do not account for many of these modifications.

Fig. 4.2 RNA secondary structure. (a) Nested bases form the ncRNA secondary structure.  
The structure is preserved in different sequences through compensatory changes that maintain base 
pairing. (b) The transcripts from complementary strands of DNA do not fold into the same structure



72 L.A. Kavanaugh and U. Ohler

BookID 151692_ChapID 4_Proof# 1 - 21/08/2009 BookID 151692_ChapID 4_Proof# 1 - 21/08/2009

4.3  Methods Used in ncRNA Gene Prediction

Several fundamental methods make up the core of ncRNA gene prediction. These 
methods form a toolkit that can be applied in slightly different ways to address a 
variety of problems. The myriad ncRNA algorithms are essentially variations on a 
theme. The following section will describe the key methods used in the field of 
ncRNA prediction. For a more detailed explanation of these topics, refer to the 
excellent discussion provided in the book by Durbin et al. (1998).

4.3.1  Minimum Folding Energy

In order to understand how ncRNA structural prediction is accomplished, it is 
necessary to review a few basic biological principles regarding RNA. RNA is a 
polymer of adenine (A), cytosine (C), guanine (G) and uracil (U) nucleotides 
(in DNA, thymine replaces uracil). RNA is a single stranded molecule that can 
fold intramolecularly to form complex structures. The structure is created by 
base pairing between AU pairs and CG pairs (canonical base pairing) as well as 
GU pairs (non-canonical base pairing). While GT pairing is not typically 
observed in DNA, GU pairs are common in RNA structure and are almost as 
thermodynamically favorable as the canonical base pairs. The nested pairing of 
an RNA molecule’s bases form its secondary structure and the same structure 
can be formed by many different sequences (Fig. 4.2a). The presence of GU 
pairing in RNA has a subtle but significant impact on structural prediction. 
It means that a transcribed strand of DNA and its complement will not fold into 
the same structure (Fig. 4.2b).

Secondary structure can be complex (Fig. 4.3a). Non-nested base pairing can 
also occur and form structures such as pseudoknots (Fig. 4.3b). This is referred to 
as the tertiary structure. While these structures are known to occur in many 
important RNAs, they are often ignored in practice because of the computational 
complexity they introduce for structure prediction (discussed later). This seems 
justified in many cases since the extent of pseudoknotted base pairing is typically 
relatively small. For example, in the well studied E. coli SSU rRNA molecule, 
only 8 of 447 base pairings are believed to be involved in a pseudoknot structure 
(Gutell 1993; Durbin et al. 1998). Given the allowable base pairings, it should  
be clear that a sequence could fold into many hypothetical structures. For an RNA 
of length n, there are approximately 1.8n possible secondary structures (3 × 1025 
structures for sequence length of 100 nucleotides) (Zuker and Sankoff 1984; 
Gesteland et al. 2006).

The goal of structural prediction tools is to predict the “true” (functional) 
ncRNA structure from among all the possibilities (assuming a structure is present). 
Unfortunately, predicting the functional structure of a ncRNA remains an unsolved 
problem in biology but biologists have developed methods to make a “best guess” 
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at what the functional structure is likely to be. These include maximum base 
pairing approaches (Nussinov algorithm (Nussinov et al. 1978)), minimum folding 
energy approaches (Zuker algorithm (Zuker and Stiegler 1981; Zuker 1989)), and 
probabilistic methods that relate energies to pairing probabilities (McCaskill 
algorithm (McCaskill 1990)). Of these, the one used most commonly in practice 
is the minimum folding energy approach (MFE) (Mathews and Turner 2006). 
MFE approaches use experimentally derived base-pair stacking energy parameters 
to determine the most energetically favorable structure among all the possible 
folded structures.

The difficulty of determining the MFE structure grows quickly with the complex-
ity of the RNA structure being considered. For example, the standard set of dynamic 
programming algorithms for MFE do not evaluate tertiary structure (pseudo-knots) 
and scale O(L3) in time, where L is the sequence length. Dynamic programming 
algorithms are capable of predicting most known pseudoknot topologies scale O(L6) 

Fig. 4.3 Complex ncRNA structures. (a) Multi-loop structure formed by nested pairing; (b) 
pseudoknot
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in time (Rivas and Eddy 1999). This means that a doubling of sequence length 
requires eight times as much computer time by standard methods but 64 times as 
much if pseudoknots are considered (Mathews and Turner 2006). There is a clear 
tradeoff between complexity and practicality. MFE programs must make assump-
tions that limit the search space of allowable structures. These assumptions are what 
distinguish one program from another and it is important to understand these 
assumptions when selecting a program to address a specific problem.

It is important to point out that a given sequence may fold into many different 
structures that have nearly the same MFE. Given the inaccuracies in experimental 
base-pair stacking energies, our incomplete understanding of thermodynamic rules, 
and simplification of the real physics of RNA folding, it is impossible to know 
which of these is the native structure (Mathews and Turner 2006). It may even be 
possible that the RNA molecule dynamically transitions among a series of low 
energy structures. This has prompted researches to augment their folding programs 
to also compute near-optimal structures. A variety of methods have been devised to 
generate selected representative low-energy structures, or even an ensemble of low 
energy structures (Ding and Lawrence 2003; Mathews and Turner 2006; Reeder 
et al. 2006). The latter allows for evaluations beyond just one structure, e.g., to 
assess whether particular regions are preferably open or paired under the whole 
ensemble of structures.

In addition, conditions in the cell may prevent an RNA molecule from actually 
assuming the predicted MFE structure. Binding partners, post-transcriptional 
modifications, folding kinetics , and other biological processing occurring during 
transcript synthesis can all influence the functional RNA structure (Repsilber et al. 
1999; Neugebauer 2002; Gardner and Giegerich 2004; Meyer and Miklos 2004; 
Mathews and Turner 2006; Meyer 2007). There are currently no computational 
tools available that assess these effects. A perfect example of the pitfall in the 
minimum free folding? energy structure comes from tRNA. This is one of the best 
analyzed RNA families and experiments have shown that they have a functional 
cloverleaf structure. Yet, when 99 tRNA sequences from the Rfam database 
(Griffiths-Jones et al. 2003, 2005) were evaluated using a MFE approach, only 33 
were predicted to have cloverleaf structure. The biological explanation for this is 
that tRNAs undergo many base modifications that alter their structure. Structural 
prediction programs are unable to account for these modifications. This example 
clearly shows that structural predictions should always be taken with a grain of salt 
(Reeder et al. 2006).

4.3.2  Hidden Markov Models

Some ncRNA families share common features on the primary sequence level. If a 
set of sequences belonging to the same family are available, there are several ways 
to search for additional family members. A naive approach would apply sequence 
based search methods like BLAST (Altschul et al. 1990) or FASTA (Pearson and 
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Lipman 1988; Pearson 2000) to look for high sequence identity in a target sequence. 
However, ncRNAs rarely preserve the level of sequence identity necessary for such 
searches (Freyhult et al. 2007). In addition, this approach can be misleading 
because it relies too heavily on individual sequences in the training set instead of 
focusing on the common features that characterize the set. It fails to take advantage 
of all of the available information.

When a family of homologous sequences is aligned, it is clear that some 
positions in the alignment are more conserved than others. Some columns of the 
alignment are highly conserved while others are not, and gaps and insertions are 
more likely to appear in some regions of the alignment than others. It makes sense 
to concentrate on these conserved features when looking for additional family 
members because these features are more likely to uncover authentic or distantly 
related family members. Profile-Hidden Markov Models (HMMs) are commonly 
used to derive a probabilistic model of sequence features in biological sequence 
analysis. They can be thought of as an extension of other non-probabilistic profiling 
approaches like position specific score matrix (PSSMs), but allow for nucleotide 
insertions and deletions. It should be clear that the success of the method is highly 
dependent on the quality of the input alignment. While HMMs can in principle 
be used to align primary sequences, aligning functionally equivalent regions of 
ncRNAs is not a trivial matter, and significant attention must be paid to this step if 
the profile-HMMs has to be successful.

Profile-HMMs build a model representing the consensus sequence for the family, 
not the sequence of any particular member. It does this by assigning position sensitive 
probability scores (emission probabilities) associated with observing a specific 
nucleotide for each column of the alignment. It also assigns position sensitive insertion 
and deletion probability scores (transition probabilities) for each column. One of 
several different approaches can be used to derive these probabilities from the 
alignment. Information about the evolutionary relationship of the sequences being 
aligned can also be incorporated to allow sequences to be weighted differently in 
the scoring scheme. Once these probabilities have been determined, the trained 
model can then be used to search a target sequence for regions similar to the training 
set. Determining the family of a sequence, and aligning it to the other members, 
often helps in drawing inferences about its function.

4.3.3  Stochastic Context-Free Grammars  
and Covariance Models

A beautiful mathematical method for efficiently modeling the long-distance 
interactions that occur in RNA structures has been developed from stochastic 
context-free grammars (SCFGs). This general theory for modeling strings of 
symbols was developed by computational linguists in an attempt to understand the 
structure of natural languages, but it is now being applied with great effectiveness 
to ncRNA structural prediction (Chomsky 1956, 1959).
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SCFGs are probabilistic models that consist of symbols and production rules 
with associated probabilities that can capture primary sequence features as well as 
long-range interactions between base pairs in a RNA secondary structure. They provide 
a unifying framework for primary sequence-based approaches (like HMMs) and 
approaches that predict secondary structure. The stacking-energy derived parameters 
for structural prediction can be implemented as rules in the grammar to allow 
prediction of the MFE structure. Once the parameters of the SCFG have been deter-
mined, dynamic programming algorithms are used to derive the secondary structure 
that maximizes a scoring function. These algorithms make use of the fact that the 
overall probability of a structure can be expressed as the product of probabilities 
for smaller parts of the RNA structure. SCFGs do not, however, capture tertiary 
interactions like pseudoknots.

In analogy to profile HMMs, SCFGs with a structure that incorporates biologically 
meaningful patterns of insertions and deletions are known as covariance models 
(CMs). They can be derived if a family of known ncRNA sequences are available 
to form a training set. To train a CM, it is necessary to develop an accurate alignment 
of the available sequences. This is typically done using standard multiple sequence 
alignment tools like ClustalW (Chenna et al. 2003) or M-coffee (Moretti et al. 
2007). The initial alignment can then be adjusted manually with the aid of a visu-
alization program like RALEE (Griffiths-Jones 2005). The expert knowledge 
added in this step provides the best chance of correctly aligning functionally 
equivalent sequence and structural elements. The better the initial alignment, the 
more likely it is that the CM will capture the true footprint of compensatory 
changes that reveal the underlying shared structure (Gardner et al. 2004; Gardner 
et al. 2005).

CMs have been used extensively by the ncRNA database, RFAM, to capture the 
features of many known ncRNA families (Griffiths-Jones et al. 2003, 2005). The 
trained CM model can then be used to search a target sequence for additional family 
members. Each match is assigned a score that reflects the extent to which it shares 
the features of the training set. A cutoff threshold can be used to select the best 
matches.

4.3.4  Structural Alignment with Multiple Sequences

Structure is typically conserved more than sequence among homologous RNA 
molecules that share the same function. Multiple homologous sequences can be 
used to derive a consensus structure that captures their common structural features. 
Comparative approaches are better at predicting functional RNA structure than 
MFE that only have information from a single sequence (Doshi et al. 2004; Gardner 
et al. 2004; Gesteland et al. 2006; Reeder et al. 2006).

There are three general approaches used to obtain a common structure from 
multiple sequences (Fig. 4.4) (Gardner et al. 2004). The best approach for a 
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given application depends largely on the degree of sequence identity among the 
homologous sequences. The first approach (plan A) attempts to identify a 
common structure from a fixed sequence alignment. This is a good approach 
when sequence identity is ³60%, allowing functionally equivalent regions to be 
aligned with a high degree of accuracy. The second approach (plan B) considers 
many different alignment possibilities and structures in order to identify the 
combination that yields the optimal solution. This is the best approach to take 
when sequence identity is less than about 50–60% and functionally equivalent 
regions cannot be reliably aligned based on sequence similarity alone. The third 
approach (plan C) folds each sequence independently and then attempts to align 
the resulting structures. This approach is fairly new to the field of structural 
alignment and holds the greatest hope for homologous sequences with little 
sequence identity.

To follow plan A, it is first necessary to obtain an accurate alignment of the set of 
sequences. Standard multiple sequence alignment tools, supplemented with expert 
curation, provides the greatest likelihood of accurately aligning functionally equiv-
alent regions. Once the best possible alignment has been obtained, several methods 
are available to infer the consensus structure from the pattern of compensatory 
changes among the sequences. These methods include mutual-information measures 
(Chiu and Kolodziejczak 1991; Gutell et al. 1992; Gorodkin et al. 1997), combi-
nations of MFE and covariation scores (Hofacker et al. 2002; Ruan et al. 2004a), 
and probabilistic models compiled from large reference data-sets (Knudsen and 
Hein 1999, 2003; Gardner et al. 2004).

If the pair-wise sequence identity in the set of homologous RNA sequences is 
below about 50–60%, plan A will not yield good results (Gardner et al. 2005). In 
this case, it becomes necessary to simultaneously align and fold the sequences in 
order to infer the common underlying structural features shared by the set (plan B). 
An exact solution to this simultaneous alignment and folding was presented by 
David Sankoff (1985). Unfortunately, the algorithm requires extreme computa-
tional resources and is not very useful in practice (O(n3m) in time, and O(n2m) in 
memory, where n is the sequence length and m is the number of sequences). 

Fig. 4.4 General approaches to structural alignment. Modified after Gardner and Giegerich
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Restricted versions of this algorithm have been developed to reduce run time but 
this remains an active area of research.

The final approach (plan C) applies when no helpful level of sequence conserva-
tion is observed. This approach skips the sequence alignment step altogether and 
jumps directly to predicting the secondary structure of each homologous sequence 
separately. The structures, or some subset of structures, are then compared to one 
another to try and identify a shared structure. The crucial point in plan C is the 
question of whether the initial independent folding produces at least some struc-
tures that align well and hence give clues as to the underlying consensus structure, 
assuming one exists (Gardner et al. 2004).

4.4  ncRNA Gene Characterization and Prediction Algorithms

ncRNAs are a highly heterogeneous group of genes that fulfill diverse roles in the 
cell through diverse mechanisms. They lack a common set of primary-sequence or 
structural features and are rarely evolutionarily conserved at the primary-sequence 
level. This dearth of generic ncRNA features makes ncRNA gene prediction several 
orders of magnitude more difficult than protein coding gene prediction. Biologists 
have adapted by developing gene finders that target the unique properties of fami-
lies of ncRNAs. The huge diversity in ncRNA families dictates a commensurate 
diversity in gene finding approaches producing a complex web of inter-related 
algorithms. Navigating this web can be daunting for the uninitiated. It is helpful to 
divide the algorithms into two broad categories: example-based approaches and 
de novo approaches.

Example-based approaches begin with a family of known ncRNA genes. 
The “family” may have only one known family member or may have many mem-
bers. De novo gene predictors do not begin with a specific set of known ncRNA 
examples but instead search for features shared among a large number of gene 
families. For example, these algorithms often look for genomic regions that have 
well-defined structural features suggesting the presence of a ncRNA. Example-
based algorithms and de novo algorithms use essentially the same methods but 
apply them in slightly different ways to achieve different objectives.

4.4.1  Example-Based Approaches

ncRNA families are groups of ncRNA genes that perform a common function 
and therefore share common features. They may all have a common structure or 
recognize their target genes through similar patterns of sequence-complementarity. 
Researchers that use example-based approaches are typically asking one of two 
questions. Either they want to determine the features of a family because it provides 
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insight into the function performed by the family (characterize family), or they 
want to use the features to search for additional family members (gene prediction). 
Different algorithms have been developed to perform these two different functions.

4.4.1.1  Well Characterized Families

Several ncRNA gene families are well characterized. These are typically highly 
expressed housekeeping genes with multiple family members per genome. Family-
specific features can be identified among the large training set of known examples. 
Examples of well-characterized families include tRNAs, tmRNAs, snoRNAs (C/D 
box and H/ACA box) and miRNAs. Family specific gene-finding programs have 
been developed for these cases and have been quite successful (Table 4.2).

Covariance models (CM) are used extensively by these programs (Sect. 4.3.3). 
The tRNA scan program is an example of this type of program used to predict tRNA. 
These ncRNAs are abundant in every cell, have a characteristic clover-leaf shape and 
contain a 3-basepair anti-codon sequence specifying an amino acid. The tRNAscan 
program is able to predict tRNAs with an accuracy of 1 false positive per 15 gigabases 
using a CM (Lowe and Eddy 1997). Other programs have been developed for tmRNA 
and snoRNA (Table 4.2) (Lowe and Eddy 1999; Omer et al. 2000; Laslett et al. 2002; 
Edvardsson et al. 2003; Schattner et al. 2004; Hertel et al. 2008).

MicroRNAs (miRNAs) are another family of ncRNAs that have been successfully 
predicted using family-specific features (Table 4.2). MiRNAs undergo significant 
post-transcriptional modification and it is not currently possible to computationally 
predict the primary transcript. Gene finders generally aim to identify the characteristic 
miRNA foldback structure which is excised out of the primary transcript. However, 
in animals, this foldback structure is relatively small (~60–70 nucleotide) and simple 
and, by itself, is not enough to identify miRNAs with reasonable levels of specificity. 
Hence, conservation patterns and additional heuristic features are often combined in 
a probabilistic model. Programs like MiRscan and miRRim take this approach (Lim 
et al. 2003; Lai 2004; Ohler et al. 2004; Terai et al. 2007). As an alternative, it is also 
possible to search for sequence-complementarity with potential targets to identify 
miRNA genes (Xie et al. 2005). This strategy has been shown to be particularly 
successful in plants, where the mature miRNAs target genes display longer stretches 
of sequence complementarity (Rhoades et al. 2002; Wang et al. 2004). Hybrid 
approaches, taking advantage of several different types of information, have also 
been developed (Jones 2006; Meyer 2007).

In addition to these family-specific programs, there are generic programs that 
aim to derive the parameters of a CM from any training set of known ncRNAs 
(Table 4.2). The INFERNAL software package, available from the RFAM database, 
uses a high quality alignment to derive the parameters of a CM (Eddy 2002). The 
program employs several techniques to extend its ability to recognize sequences 
more diverged than what was provided among members of the training set. It oper-
ates in O(L N1.3) time and O(N2log(N)) memory where L is the target sequence 
length and N is the alignment length. The CMFINDER program trains a CM from 
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a set of unaligned sequences (Yao et al. 2006). Both programs can be used to search 
for additional family members using the trained model. Each match found in the 
target sequence is assigned a score that reflects the likelihood that it is a true mem-
ber of the ncRNA family.

In some cases, ncRNA families share primary-sequence features but lack signifi-
cant structural features and a CM approach is inappropriate. A profile-HMM 
(Sect. 4.3.2) is the best approach for this case. The HMM software package is a 
generic profile-HMM algorithm that captures the shared sequence features among 
a set of homologous sequences (Eddy 1996; Meyer 2007). Once trained, the model 
can be used to predict additional family members in a target sequence. The program 
runs in O(L N) time and O(L N) memory for a target sequence of length L that 
models an alignment of N nucleotides.

4.4.1.2  Not Well Characterized Families: Single Example

Experimental work often leads to the discovery of new ncRNA genes. It is impor-
tant to characterize these genes in an attempt to gain insight into their function. 
They can also be used to search for additional family members. Numerous algo-
rithms have been developed to accomplish these two goals (Table 4.2).

Characterize Structure

If a single example of a ncRNA has been obtained, minimum folding energy (MFE) 
approaches can be used to predict its structure (Sect. 4.3.1). Programs that predict 
the MFE structure without considering tertiary structure (pseudo-knots) include 
RNAfold (Hofacker 2003), Mfold (Zuker and Stiegler 1981), and Afold to name a 
few (Ogurtsov et al. 2006). Programs like RNAsubopt predict structures using MFE 
while providing information about near-optimal folding structures (Wuchty et al. 
1999). Sfold is a Bayesian folding approach which identifies parts of the sequence 
which have a high probability of folding under an ensemble of possible structures 
(Ding et al. 2004). Programs capable of predicting pseudo-knot or other complex 
structures include pknots, pknotsRG and HotKnots (Rivas and Eddy 1999; Reeder 
and Giegerich 2004; Ruan et al. 2004a; Ren et al. 2005). Each of these programs 
makes different simplifying assumptions and provides different information about 
the sequence being evaluated. The most appropriate application depends on the 
question being asked. See Gardner and Giegerich (2004) for a comparison of some 
of these programs.

Find Additional Family Members

If the functional structure of the example is known from experimental data (crystal-
lography/NMR), programs like RSEARCH or RNAMotif (Macke et al. 2001; Klein 
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and Eddy 2003) can be employed to search for additional family members in a 
target sequence. They search for regions in the target sequence that are likely to fold 
into the same structure as the known example (Klein and Eddy 2003; Meyer 2007). 
RSEARCH uses a stochastic context-free grammar (SCFG) model and calculates 
a score for each match reflecting the reliability of the prediction. However, the 
program is computationally intensive. The RNAMotif program is highly customiz-
able and therefore may potentially provide high sensitivity and specificity (Macke 
et al. 2001; Meyer 2007). The user can define a search motif, secondary and tertiary 
structure features, and custom scoring parameters. However, in order to supply this 
information, the user must have a lot of information about the search sequence – 
information which is often not available.

In most cases, the structure of the example ncRNA is unknown. It can still be 
used to search a target sequence for additional family members if alignment and 
folding are performed simultaneously. This general approach is based on the 
Sankoff algorithm (Sect. 4.3.4). An exact solution of the Sankoff algorithm is 
extremely computationally intensive, so programs have been developed that imple-
ment approximations of the Sankoff approach. These programs include: DYNALIGN 
(Mathews and Turner 2002, 2006), FOLDALIGN (Havgaard et al. 2005a, b) and 
CONSAN (Dowell and Eddy 2006; Reeder et al. 2006; Meyer 2007).

It is important to examine each of these programs carefully when selecting the 
best application for a particular problem. Both DYNALIGN and FOLDALIGN can 
be used to search for a shorter sequence in a long test sequence. FOLDALIGN was 
developed to detect local regulatory structures rather than global structures with 
multi-loops. DYNALIGN reduces computational complexity by placing limits on 
the size of internal loops in RNA structures. Neither of them explicitly models 
unstructured regions in the two input sequences so that the predicted results may 
strongly depend on the chosen sequence window (Meyer 2007). A comparison of 
the CONSAN, DYNALIGN and FOLDALIGN programs by Dowell and Eddy 
2006 concluded that they provided comparable overall performance but have different 
strengths and weaknesses.

4.4.1.3  Not Well Characterized Families: Multiple Examples

As discussed in Sect. 4.3.1, MFE approaches are limited in their ability to predict 
accurate RNA secondary structure. Better results can generally be achieved if 
multiple sequences are available. These approaches benefit from the combined 
information provided by several sequences (Doshi et al. 2004; Gardner et al. 2004; 
Gesteland et al. 2006; Reeder et al. 2006). A variety of approaches have been 
developed for application to specific circumstances (Table 4.2).

Characterize Family (Fixed Alignment)

In some cases, it is desirable to determine the shared structure of a ncRNA family 
for which multiple examples have been identified (Sect. 4.3.4). When primary-
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sequence identity among the examples is greater than about 60%, a fixed alignment 
approach works best. Examples of programs that determine family structure from 
fixed nucleotide alignments (Fig. 4.4, plan A) include PFOLD (Knudsen and Hein 
2003), RNAALIFOLD (Hofacker 2007), RNAlishapes (Voss 2006) and RNA-
DECODER (Pedersen et al. 2004). These programs all look for co-varying 
columns in the input alignment to support structural predictions (pseudo-knot 
free). The computational complexity of these programs is O(L3) time and O(L2) 
memory for an alignment of length L. Programs that predict pseudo-knotted 
structures have also been developed and include ILM (Ruan et al. 2004b), 
HXMATCH (Witwer et al. 2004) and KNetFold (Bindewald and Shapiro 2006). 
All these programs provide scoring information reflecting the reliability of the 
predicted consensus structure.

The programs differ in the input data they require, their underlying assumptions 
and their speed. For example, PFOLD and RNA-DECODER require input of an 
evolutionary tree relating the sequences in the alignment. RNAALIFOLD and 
RNA-DECODER allow a structure to be provided as an additional input constraint. 
RNA-DECODER can take known protein-coding regions in the input alignment 
explicitly into account and model un-structured regions in the input alignment. 
RNA-DECODER typically runs slower than PFOLD and RNAALIFOLD because 
it uses more complex models (Meyer 2007). See Gardner and Giegerich 2004 for a 
comparison of the performance of RNAalifold, PFOLD and ILM.

Characterize Family (Simultaneous Align and Fold)

In case of below 50–60% sequence-identity, it becomes necessary to simultaneously 
align and fold homologous sequences in order to reveal their common structure 
(Sect. 4.3.4 and Fig. 4.4, plan B). The extreme computational demands of this 
approach are the major obstacles to its success. Many techniques are being explored 
in an effort to overcome this barrier and it remains an active area of research. 
The breadth of these techniques makes it impossible to provide a concise summary 
here. One approach is to limit the comparison to only two sequences and programs 
that do this were discussed in the section “Find Additional Family Members.” 
Other programs have been extended to operate on more than two sequences and 
examples include RNA Sampler (Xu et al. 2007), FoldalignM (Torarinsson et al. 
2007), MASTR (Lindgreen et al. 2007) and STEMLOC (Holmes 2005). Additional 
information about Sankoff-like programs and attempts to systematically compare 
their performance is provided in several reviews (Gardner et al. 2004; Gardner 
et al. 2005; Meyer 2007). These reviews conclude that the programs vary widely in 
their sensitivity and specificity over different sequence lengths and homologies. 
Hence, it remains unclear which program will perform best for a given data set.

Characterize Family (Structural Alignment)

When no helpful level of sequence conservation is observed among a set of homol-
ogous ncRNAs, it is best to skip any attempts at sequence alignment and jump 



84 L.A. Kavanaugh and U. Ohler

BookID 151692_ChapID 4_Proof# 1 - 21/08/2009 BookID 151692_ChapID 4_Proof# 1 - 21/08/2009

directly to structural comparisons (Fig. 4.4, plan C). The first step is to predict the 
secondary structure of each homologous sequence separately using programs like 
Mfold or RNAfold (Zuker and Stiegler 1981; Hofacker 2003). The resulting struc-
tures are then compared to one another to identify common structures. This is an 
active field of research and a variety of different structural comparison approaches 
have been proposed. Examples of these programs include RNAforester (Hochsmann 
et al. 2004), MARNA (Siebert and Backofen 2007), RNAcast (Reeder and 
Giegerich 2005), and LARA (Bauer et al. 2007).

RNAforester and MARNA can both be used to compute a global alignment of 
several unaligned input sequences whose pseudo-knot free structures are already 
known. They use structure and RNA sequence as input. RNAforester represents 
the individual structures as trees and computes a structural alignment by aligning the 
trees. It then calculates a score for the resulting structural alignments. In contrast, 
MARNA is a method that employs a progressive pair-wise alignment strategy that 
takes the known structures indirectly into account when calculating the global 
alignment. MARNA is the only one of the tree-based programs that is capable of 
proposing a pseudo-knot free secondary structure from input sequences whose 
structure is not known (Meyer 2007). The program RNAcast efficiently determines 
the consensus shapes of a set of sequences, and from their representative structures, a 
multiple alignment can be obtained with RNAforester (Reeder et al. 2006). The RNAcast 
program has also been integrated into a software package called RNAshapes that 
couples it with tools for the analysis of shape representatives and the calculation 
of shape probabilities (Steffen et al. 2006). See Gardner and Giegerich 2004 for a 
comparison of the RNAforester and MARNA programs.

4.4.2  De Novo ncRNA Prediction

De novo gene predictors attempt to identify ncRNA genes in an unannotated 
genome(s) without the use of a training set of examples. They look for regions that 
have features characteristic of several ncRNA families. The challenge is distin-
guishing true ncRNAs from non-functional regions of the genome that contain 
some features of ncRNAs simply by random chance. Although it is an area of active 
research, many of the methods already discussed, for example-based ncRNA 
prediction, are used with a slight change of perspective.

4.4.2.1  Genome Specific Approaches

These methods exploit the unique biology of a given organism to predict ncRNAs. 
They were initially developed using the relatively simple genomes of prokaryotes. 
The small size and compact structure of prokaryotic genomes made the ncRNA 
prediction problem computationally tractable. Most importantly, prokaryotic 
genomes are well understood in terms of promoter structure, nucleotide bias and 
gene arrangement. Biologists were able to take advantage of this knowledge to 
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identify features that distinguish ncRNAs from the background sequence. The 
approach has also been extended with some limited success to simple eukaryotes 
(Table 4.2).

One example of genome-specific information is di-nucleotide frequency. Though 
di-nucleotide frequencies vary widely among species, they tend to be relatively 
constant within a species (Karlin et al. 1998; Schattner 2002). Some species have 
evolved unusual nucleotide base composition biases in order to survive in their 
unique environmental niches. For example, the ncRNAs of some hyperthermophiles 
(Methanococcus jannaschii, Pyrococcus furiosus) can be identified by their unusu-
ally high GC nucleotide content in an otherwise AT-rich genome. The high GC 
content of these ncRNAs is necessary for folding and maintaining stable structures 
in their high temperature environment (Klein et al. 2002; Schattner 2002). However, 
such examples are rare and it is uncommon to find cases where a single feature is 
sufficient to identify ncRNAs. Most genome-specific prediction methods rely on a 
combination of information. They often begin by identifying intergenic regions that 
are unusually long, suggesting that the region contains an as-yet undetected ncRNA 
gene. The compact genomes of prokaryotes and some simple eukaryotes make it 
easy to see where unannotated genes are likely to be located. Intergenic regions can 
also be searched for stretches of unusually high nucleotide conservation among 
related species. High conservation is suggestive of a functional element that has 
been preserved over evolutionary time. The presence of strong promoter and termi-
nator signals, in spatially appropriate locations, are used to further substantiate the 
presence of ncRNAs. Investigators have used a variety of approaches to combine 
these search criteria. They are often applied in a serial, heuristic manner but more 
sophisticated methods like neural networks have also been applied (Carter et al. 
2001). The approach has proven highly successful in identifying ncRNAs in E. coli 
(Argaman et al. 2001; Eddy 2001; Wassarman et al. 2001; Lenz et al. 2004; 
Wilderman et al. 2004; Livny et al. 2005, 2006; Pichon and Felden 2005; Livny and 
Waldor 2007) and to a lesser extent S. cerevisiae (Olivas et al. 1997).

The development of customizable programs helps to extend this approach to 
new species. These programs accept genome-specific information as input 
(regions of conservation, intrinsic transcriptional terminators, promoter signals, 
secondary structure conservation, etc.) and then use it to search for new ncRNAs. 
When this type of information becomes available for a species, these programs 
can be used to search for ncRNAs in their genomes (Pichon and Felden 2003; 
Livny et al. 2006). Genome-specific approaches demonstrate how insight into an 
organism’s biology can prove valuable for ncRNA prediction. This highlights the 
interdependent nature of experimental and computational work.

4.4.2.2  MFE Stability

Many different types of ncRNAs have a significant structural component, so 
searching for structural features should, in theory, identify many ncRNAs. However, 
being able to fold a sequence into a nice structure does not mean that it is a bona 
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fide ncRNA. Sequences that fold into structures can occur by random chance. 
The challenge is to distinguish real ncRNA sequences from random sequences. 
In the late 1980s, research in the Maizel laboratory led to the proposal that ncRNAs 
have energetically more stable structures than random sequences (Le et al. 1988, 
1989; Chen et al. 1990). In this approach, a single sequence is folded using a MFE 
approach. The sequence is then randomly shuffled many times and the MFE of each 
of the randomly shuffled sequences is calculated. The distribution of MFEs of the 
random sequences is then compared to the MFE of the actual sequence. For true 
ncRNA, the MFE of the actual sequence will be distinct from the distribution of 
MFE of the random sequences.

Several researchers have investigated the general applicability of Maizel’s 
proposal. Some have provided evidence that ncRNAs are more energetically stable 
than randomly shuffled sequences (Clote et al. 2005; Bonnet et al. 2004; Freyhult 
et al. 2005; Kavanaugh and Dietrich in press) while others have provided evidence 
that this is not true in general (Rivas and Eddy 2000) and the issue remains unre-
solved. It is certainly worth pursuing this idea further since it is the only approach 
currently available for potential de novo prediction of ncRNAs using a single 
sequence (Table 4.2). It has been shown that it is important to preserve both mono 
and di-nucleotide distributions when creating the randomly shuffled sequences 
(Workman and Krogh 1999).

4.4.2.3  Comparative Approaches

It has been shown that comparative approaches produce more reliable structural 
predictions than MFE approaches (Doshi et al. 2004; Gardner et al. 2005; Gesteland 
et al. 2006; Reeder et al. 2006). Hence, it makes sense to employ these methods 
for de novo gene discovery. Comparative methods search for footprints of com-
pensatory changes among multi-species alignments, suggesting the presence of a 
conserved secondary structure likely to be a ncRNA. Random sequences are 
unlikely to produce patterns of compensatory changes over evolutionary time. 
Computational requirements are a major obstacle in the development of de novo 
ncRNA gene prediction programs and necessitate simplifications in the search 
method (Table 4.2).

Fixed Sequence Alignment

One approach to reduce computational complexity is to restrict the analysis to fixed 
sequence alignments. Programs that take this approach include QRNA (Rivas and 
Eddy 2001; Rivas et al. 2001), EVOFOLD (Pedersen et al. 2006), RNAZ (Washietl 
et al. 2005b) and AlifoldZ (Washietl and Hofacker 2004). All of these programs 
take fixed sequence alignments as inputs (two in the case of QRNA and multi-
sequences in the case of EVOFOLD and RNAZ). They search windows of 
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predefined length for patterns of mutations suggestive of structural features 
(pseudo-knot free) (Fig. 4.5). They categorize the aligned regions as structure 
encoding, non-structure encoding, and (in the case of QRNA) protein-coding. A 
score is assigned to each prediction to reflect the degree of confidence in the clas-
sification. It remains an open question as to how the selected window size affects 
the performance of these programs. It is unclear as to how much difference can be 
tolerated between the window size and the ncRNA transcript boundaries to produce 
a valid prediction (Meyer 2007; Kavanaugh and Dietrich in press).

Although these programs perform fundamentally the same task, they differ sig-
nificantly in their methods, assumptions and vulnerabilities. For example, 
EVOFOLD takes an evolutionary tree relating the aligned species as an input while 
the other two do not. EVOFOLD’s underlying model can explicitly model non-
structured regions in the input alignment, presumably making it less vulnerable to 
a specific window-size. The RNAz program evaluates the similarity of the encoded 
structures based on the similarity of their minimum free energies rather than the 
corresponding individual MFE structures. This may make its predictions somewhat 
less vulnerable to alignment errors and make it better at handling RNA structure 
variation. When co-evolving signals are absent in an alignment, RNAz assumes 
that ncRNA genes are thermodynamically more stable than expected.. The validity 
of this assumption remains controversial. When selecting a program for a specific 
task, it is important to understand their strengths and weaknesses (Meyer 2007). 
EvoFold, RNAz and AlifoldZ have been used to predict ncRNA genes in the human 
genome and have identified large sets of potential ncRNAs (Pedersen et al. 2006; 
Washietl et al. 2007).

Fig. 4.5 Patterns of mutation in different types of sequences. (a) A pattern of third codon position 
mutations (synonymous changes) indicative of protein-coding sequences. (b) A pattern of 
compensatory changes that preserve underlying structure are indicative of structural ncRNAs. 
(c) Random mutations are expected in non-coding sequence
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Simultaneous Align and Fold

When sequence similarity is not high enough to permit an accurate fixed alignment, 
it becomes necessary to simultaneously align and fold the sequences (Fig. 4.4, plan B). 
This requires considerably more computation than fixed alignments and has been 
implemented in the FOLDALIGN program. In order to keep run time at bay, 
FOLDALIGN limits the analysis to two sequences (Gorodkin et al. 1997; Havgaard 
et al. 2005b). The program has been used to search for ncRNAs shared between the 
human and mouse genomes (Torarinsson et al. 2006). Both strands of 36,970 
regions that were unalignable between the human and mouse genome were evalu-
ated using a window length of 200 and a length difference of 15. A total of 1,800 
common RNA structures were predicted.

The analysis highlights several important points about the current status of 
ncRNA prediction. First, such an analysis takes considerable computational 
resources. The FOLDALIGN analysis took ~5 months to run on a linux cluster of 
70 2-GB-RAM nodes. Second, it is often unclear as to how the results of such 
analysis could be interpreted. It was necessary to assume a fixed window length to 
make the computation tractable. It is unclear as to how effective will using a fixed 
length be at predicting ncRNAs that range considerably in size. Finally, experimental 
verification of the predicted ncRNAs presents a significant challenge. The typical 
approach is to show that the predicted ncRNAs are expressed in the cell using 
genome-wide microarrays. However, even if such evidence is lacking, it is virtually 
impossible to say that a region of the genome is never expressed and is not a 
ncRNA. On the other hand, microarray studies have shown that a significant portion 
of the genome is expressed. It remains unclear how much of this transcription is 
actually functional and how much is transcriptional noise. Extensive experimentation 
is required to truly demonstrate that a ncRNA prediction is accurate. It is certainly 
not practical to perform such experiments on a genome-wide scale. Hence, the 
accuracy of genome-wide ncRNA predictions remain largely unverified.

4.5  Conclusions and Future Directions

ncRNA gene prediction is an exciting area of research where much has been accom-
plished but much still remains to be achieved. Accurate general-purpose ncRNA gene 
prediction remains elusive. It is stymied by an apparent lack of clear common pri-
mary-sequence features and the challenge of discriminating functional structures 
from random sequences with folding potential. Many approaches have been devel-
oped to identify subsets of ncRNA but no unified method has been identified. This 
has led to the creation of many different programs for specific applications. It is also 
important to point out that any gene predicted to be a ncRNA should be checked for 
the possibility that it might be a protein-coding gene instead. Potential ncRNA candi-
dates should be evaluated for an open reading frame, a high degree of cross-species 
conservation, and a pattern of mutation suggestive of synonymous codon changes.



894 Predicting Non-coding RNA Transcripts

BookID 151692_ChapID 4_Proof# 1 - 21/08/2009

Users who apply ncRNA gene prediction programs must be wary, and should 
take time to determine the best algorithm for a given application. Investigators 
who have performed program-to-program comparisons report certain algorithm-
specific eccentricities. They have also suggested that some of the most popular 
methods are the least accurate or are applied inappropriately. It may be wise to 
evaluate the output of several related algorithms before drawing specific conclusions. 
Another important consideration is computational requirement. Many programs 
come with a heavy computational cost that makes them impractical. Several 
reviews have been published that compare the performance of different programs 
and they can serve as useful guides for program selection (Gardner et al. 2004; 
Freyhult et al. 2005, 2007).

In the field of ncRNA gene prediction, there is a clear need for more systematic 
studies of the type that compare the sensitivity and specificity of different 
algorithms using standard data sets. Unfortunately, performing this analysis is 
more challenging than it may first appear. There are only a limited number of 
well-defined data sets that can be used for these comparisons. It is clear that more 
verified examples of ncRNAs must be accumulated for the field to progress. 
When comparing programs, it is also difficult to get an accurate estimate of a 
program’s specificity. The fact that it is nearly impossible to prove that a predicted 
(ncRNA) gene is never expressed in the living organism, makes determining the 
degree of false positives a program may generate very difficult. Artificial data 
sets can be developed for this purpose but it is difficult to capture the nucleotide 
distribution and randomness of real biological data in artificially constructed sets 
(Meyer 2007).

Comparative approaches that rely on fixed sequence alignments (Fig. 4.4, 
plan A) present an area for further research. It is critically important that functionally 
equivalent regions be correctly aligned. It has been shown that structural ncRNA 
sequences evolve through compensatory mutations that frequently undergo 
transitions and rarely transversions (Gardner et al. 2004). Alignment programs 
that incorporated this information along with other sophisticated models of 
sequence divergence would probably provide better alignments for structural 
prediction. Window size is another area that merits further investigation. Fixed 
alignment programs typically assume a set window size for de novo gene 
discovery to reduce computational requirements (Washietl et al. 2005a; Pedersen 
et al. 2006). The difference in length that can be tolerated between a ncRNA 
transcript and the window size used by a program attempting to predict it is not 
clear. Current studies suggest that the tolerance is fairly small, in the order of 
tens of bases (Kavanaugh and Dietrich in press). Systematic studies of this type 
are necessary to interpret genome-wide predictions produced by thealgorithmic 
approach.

Structural comparison (Fig. 4.4, plan C) is another area of active research that 
holds significant promise. When sequence similarity is low, these methods offer 
the only hope for identifying shared structures. They may also avoid the pitfalls 
that befall approaches that operate on more closely related data sets. When 
sequences are very similar, the compensatory mutation signals available for 
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structural prediction are limited. The sequences may jointly fold into structures 
that are not the true functional structure. More diverged sequences are unlikely to 
have this problem and may be more informative. Structural comparison could 
become a powerful approach if new developments continue to improve its speed 
and accuracy.

Each of the algorithms discussed in this chapter have tended to focus on a par-
ticular aspect of ncRNAs to predict or characterize these genes. They evaluate 
sequence similarity, folding energy, covariation signals or some heuristic combina-
tion of this information. It remains unclear how to combine all of the available data 
in a statistically reasonable manner. Combinatorial methods represent another 
direction of potential improvement in the field of ncRNA gene prediction.

While comparative methods are currently the most successful for ncRNA gene 
prediction, they can only find ncRNA genes that are conserved across species. 
Genes that are unique to a given species or that have changed their relative 
position in different species cannot be found by these methods. There is a need 
to develop tools that can identify ncRNAs without the use of comparative 
methods. Genome-specific methods (Sect. 4.4.2.1) and ncRNA-family specific 
programs (Sect. 4.4.1.1) have accomplished this goal with some success but have 
fairly limited application. The MFE approach (Sect. 4.4.2.2) also holds promise 
for achieving this goal but requires significant development to demonstrate its 
reliability.

All gene prediction programs, both protein-coding and ncRNA, are based on 
features like start codons, stop codons, open reading frames, mutational patterns, 
and structural cues to predict the location of genes. It is clear, however, that these 
are not the signals used by a living cell to transcribe genes. The cell must locate a 
gene and begin transcribing it before encountering any of the signals currently 
used by biologists to identify genes. Exactly how cells do this remains unclear. 
Promoter signals undoubtedly play a key role, but their variety, short length, and 
degenerate nature frequently prevents their use as effective guides for biologists. 
How, then, are cells able to use these signals effectively to transcribe their genes? 
What other information might the cell be using that is currently unknown to 
biologists? What extent does random transcription play in this process? Learning 
to interpret the genomic signals like what ? the cell does, is the “holy grail” of 
gene prediction. Both computational and experimental efforts will be required to 
achieve this goal.
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5.1  The Problem of Finding and Parsing Genes

Most computational gene-finding methods in current use are derived from the fields 
of natural language processing and speech recognition. These latter fields are 
concerned with parsing spoken or written language into functional components 
such as nouns, verbs, and phrases of various types. The parsing task is governed by 
a set of syntax rules that dictate which linguistic elements may immediately follow 
each other in well-formed sentences – for example,

subject ® verb, verb ® direct object, etc...

The problem of gene-finding is rather similar to linguistic parsing in that we wish 
to partition a sequence of letters into elements of biological relevance, such as 
exons, introns, and the intergenic regions separating genes. That is, we wish to not 
only find the genes, but also to predict their internal exon-intron structure so that 
the encoded protein(s) may be deduced. Figure 5.1 illustrates this internal structure 
for a typical gene.

Generalizing from this figure, we can deduce several things about the syntax of 
genes: (1) the coding segment (CDS) of the gene must begin with a start codon 
(ATG in eukaryotes); (2) it must end with a stop codon (TGA, TAA, or TAG in 
typical eukaryotes); (3) it may contain zero or more introns, each of which must 
begin with a donor splice site (typically GT) and must end with an acceptor splice 
site (typically AG); and (4) it will usually be flanked on the 5¢ and 3¢ ends by 
untranslated regions (UTRs).

In practice, the UTRs are generally not predicted, so that by “exon” we 
mean only the coding portion of an exon. Thus, the prediction of exonic 
structure for a CDS consists of identifying the start/stop codons and splice sites 
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that mark the boundaries of coding exons. We refer to these different types of 
boundaries as signals. A parse of an input sequence, denoted f = (s

1
,s

2
,...,s

n
), 

consists of a series of signals s
i
 marking the boundaries of exons or introns (or 

intergenic regions). Denoting the four possible signals delimiting coding exons 
as ATG (for start codons), TAG (for any of the three stop codons: TGA, TAA, 
TAG), GT (for donor sites), and AG (for acceptor sites), we can encode the 
syntax rules for individual eukaryotic genes on the forward (“sense”) strand of 
a chromosome as:

ATG ® GT
ATG ® TAG

GT ® AG
AG ® GT

AG ® TAG

That is, if signal s
i
 is a start codon, then s

i+1
 can be either a donor site or a stop 

codon. Similarly, if s
i
 is an acceptor site, then s

i+1
 must be a donor site or a stop 

codon. Since the input sequence may contain multiple genes, we will extend our 
rules by introducing a left terminus signal, T

L
, which denotes the 5¢ end of the input 

sequence, and a right terminus signal, T
R
, which denotes the 3¢ end, with the 

following additional syntax rules:

T
L
 ® ATG

TAG ® ATG
TAG ® T

R

T
L
 ® T

R

Additional rules would be necessary for genes on the reverse strand (not shown – 
see, e.g., Majoros 2007a). An example of a valid parse under these rules is:

f =(T
L
 ® ATG ® GT ® AG ® TAG ® ATG ® TAG ® T

R
)

coding segment

complete transcript

5’ UTR initial
exon

intron

internal
exon

intron

final
exon

3’ UTR

Fig. 5.1 Eukaryotic gene structure. Canonical rules include the ATG start codon, GT-AG 
splice sites, and stop codon (shown here as TAA, but TAG and TGA are also typical). In the 
computational gene-finding field, the term “exon” typically refers to the coding parts of exons 
(white boxes) and does not include the untranslated regions (shaded boxes)
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This parse includes two genes on the forward strand of the input sequence, the first 
having a single intron and the second having none. Associated with each signal in 
the parse would be a coordinate specifying precisely where in the input sequence 
the signal occurs. Given such a parse one can easily extract the putative exonic 
sequences for each CDS and perform translation in silico to arrive at the amino acid 
sequence for the encoded protein.

The above rules ignore an important constraint. Once the introns are spliced out 
of a pre-mRNA transcript (resulting in a mature transcript), the length of the inter-
vening sequence between the start codon and the stop codon must be divisible by 
three, since the CDS must consist of an integral number of codons. We say that the 
stop codon is in frame, since it occurs in the same reading frame as all the other 
codons in the CDS. A related constraint is that the stop codon at the end of the CDS 
must be the only in-frame stop codon (except for the special case of selenocysteine-
bearing proteins – see, e.g., Castellano et al. 2005).

Implicit in this formulation of the gene-parsing problem is the assumption that 
each gene codes for exactly one transcript, since a single parse of an input sequence 
provides exactly one prescribed splicing pattern for each predicted gene. This 
assumption is known to be false. We will revisit this issue in section 5.6 when we 
consider classification-based methods of gene finding.

Because the short nucleotide motifs for boundary signals can be expected to 
occur with high frequency in any typical genome, syntax rules alone do not suf-
fice to discriminate true genes from spurious gene-like patterns, since, for exam-
ple, most ATG trinucleotides on a chromosome will not function as true 
translation initiation sites in the living cell. We say that the syntax rules for 
eukaryotic genes are highly ambiguous, since many syntactically valid parses 
will not correspond to real genes. Successful gene-finding programs therefore 
utilize statistical measures in addition to syntax rules, in order to identify those 
gene parses which best match the statistical profile of a real gene in the organism 
of interest. These statistical profiles consist of measures such as compositional 
biases (e.g., the relative frequencies of each nucleotide, dinucleotide, trinucle-
otide, etc.) which are “learned” from a training set of known genes during a 
process called parameter estimation, or training. Because compositional biases 
differ from genome to genome, it is important for a gene finder to be specifically 
trained (when at all possible) for each genome to which it is to be applied; utiliz-
ing a gene-finder trained for one organism to predict genes in another organism 
can result in very poor prediction accuracy (Korf 2004). We will elaborate on 
training issues in the section 5.5.

Procedures utilizing properties of the DNA sequence alone in order to predict 
locations of genes are termed ab initio methods and may additionally incorpo-
rate information from homologous regions of related genomes. Ab initio methods 
utilize only intrinsic measures – i.e., properties of the DNA sequence itself. 
An alternative to ab initio gene finding is to incorporate expression information 
such as ESTs, cDNAs, or tiling arrays – termed extrinsic information, since it pro-
vides evidence not observable from the genomic sequence alone. We will consider 
all of these scenarios in the following sections.
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5.2  Single-Genome Methods

Given only a single genomic DNA sequence, we can perform gene prediction by 
first identifying all the possible boundary signals, linking these together into syn-
tactically valid gene parses, scoring all such possible parses, and then selecting the 
highest-scoring parse as the final prediction to be emitted by the program. This is 
essentially the strategy of all ab initio gene finders, though for efficiency reasons a 
full enumeration of all possible parses is either not performed or is performed using 
an algorithmic trick known as dynamic programming (see Durbin et al. 1998 for a 
survey of dynamic programming methods for sequence analysis). Later, we will 
consider two popular frameworks for evaluating gene parses – Markov models and 
random fields.

The process of finding putative boundary signals (i.e., start/stop codons and 
splice sites) is termed signal sensing. The simplest method of signal sensing is the 
common “sliding window” approach used with position-specific weight matrices 
(PWMs). An example PWM is shown in Fig. 5.2. This particular PWM consists of 
seven positions with each having a distribution over nucleotides which can occur at 
that position in the sliding window. Since this PWM is intended for finding donor 
splice sites, the fourth and fifth positions accept only G and T, respectively. The 
other five cells are nucleotide distributions which reflect compositional biases at the 
corresponding positions flanking true donor sites in the organism of interest.

Such a matrix can be used to identify a set of putative boundary signals as fol-
lows. At each location in the input sequence, we can superimpose the matrix onto 
the corresponding interval s of the DNA sequence. For each such interval, we com-
pute a signal score, P(s|q), where q denotes the parameters of the PWM, which 
were presumably estimated from known signals of the same type. P(s|q) can be 
computed by multiplying the probabilities of each of the observed nucleotides 
falling in each position of the window where the matrix has been superimposed. 
The set of putative signals is obtained by retaining only those intervals for which 
P(s|q) exceeds some predetermined threshold value (also determined during 
training). Alternatively, one can use a likelihood ratio P(s|q)/P(s|q

bg
) for back-

ground model q
bg

, in which case, a natural threshold is the value 1; one option for 
the background model is to simply use another PWM trained on all intervals of the 
target genome indiscriminately.

A : 0.28
C : 0.31
G : 0.21
T : 0.20

G T
A : 0.60 
C : 0.13
G : 0.14
T : 0.13

A : 0.73
C : 0.08
G : 0.10
T : 0.09

A : 0.69
C : 0.10
G : 0.10
T : 0.11

consensus

A : 0.10
C : 0.05
G : 0.75
T : 0.10

A : 0.00
C : 0.00
G : 1.00
T : 0.00

A : 0.00
C : 0.00
G : 0.00
T : 1.00

Fig. 5.2 A PWM for donor splice sites. Fixed positions flanking the GT consensus sequence are 
modeled using separate probability distributions over the nucleotides which may occur in those 
positions
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Note that a PWM can have any (fixed) number of cells; in the example above, the 
matrix contained only two or three flanking cells on either side of the signal consen-
sus (GT), presumably because for this particular organism these are the only informa-
tive positions for this type of signal. Discovering the number of informative positions 
flanking each signal type is a task which should be performed during model training. 
Given a sufficiently large set of training examples for a particular signal type, the 
optimal number of flanking positions can be sought via cross-validation or a similar 
procedure – i.e., by systematically evaluating a range of possibilities for the number 
of flanking positions on either side of the consensus, and choosing the configuration 
which gives the best cross-validation score on the training set.

The regions between signals, which comprise putative exons, introns, or inter-
genic regions, can be separately scored by a model called a content sensor. Since 
these regions (called content regions) are generally not of fixed length, PWMs are 
not directly applicable for this task. A type of model which is commonly used for 
this purpose is the Markov chain. An nth-order Markov chain defines a probability 
distribution P(x

i
|x

i-n
...x

i-1
), which gives the probability of the nucleotide x

i
 at position 

i in some putative genomic feature, conditional on the nucleotides occupying 
the previous n positions; we call the flanking sequence x

i-n
...x

i-1
 the context. For some 

putative feature x
1
...x

m
 lying between two putative signals in the input sequence, 

we can evaluate P(x
1
...x

m
) via multiplication of the terms P(x

i
|x

i-n
 ...x

i-1
) evaluated at 

each position in the interval 1£i£m; at positions i<n, we would of course reduce the 
context size so as not to take context from the preceding feature in the parse. 
Conditioning on preceding (or following) bases can also be performed in a PWM, 
resulting in a matrix with inter-column dependencies (Zhang and Marr 1993).

Note that the interval to which a content sensor is applied should not overlap 
with the windows for the flanking signals at either end of the content region, since 
for probabilistic models, this would not result in a valid joint probability when the 
signal and content scores are combined via multiplication to produce a score for an 
entire parse (see Fig. 5.3).

A demonstration of the predictive power of Markov chains is given by Fig. 5.4. 
The gray bars denote real coding exons; the black line plots the score computed at 
each position by a Markov chain trained on coding exons, normalized by scores 
from a background Markov chain trained on noncoding DNA. The content sensor 
scores can be seen to peak very strongly in real coding intervals. Comparison of the 

Fig. 5.3 Evaluation windows for signal sensors and content sensors in a putative parse. By ensur-
ing that sensor windows do not overlap, a valid joint probability for the entire parse can be 
obtained by multiplying together the scores for all the feature intervals comprising the parse
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likelihood ratio curve L with the baseline (y = 1) shows that the regions satisfying 
L > 1 provide reasonable predictions of true coding exons, though the boundaries 
are not precisely demarcated. More accurate prediction of exon boundaries can be 
accomplished by combining the scores from appropriate signal sensors with those 
of the content sensor. In addition, short, spurious peaks above y = 1 can sometimes 
be effectively suppressed by incorporating a length distribution into the content-
sensor score, as we describe shortly.

As mentioned previously, enumeration of all syntactically valid parses is (in 
general) computationally too expensive to perform in practice. An efficient solution 
to this problem can be obtained using a shortest path algorithm (Cormen et al. 
1992). Figure 5.5 suggests how this can be done. This figure illustrates a type of 
graph called a trellis, which is a commonly-used data structure in dynamic-
programming algorithms. In the case of gene prediction, we can arrange the putative 
signals (ordered 5¢-to-3¢) as a series of vertices in the graph, with edges between 
vertices corresponding to the syntax rules outlined above (e.g., ATG ® GT, etc.). 
We then annotate each vertex with the corresponding signal score P(s|q) and each 
edge with the corresponding content score P(x

i
...x

j
|q). Once we have done this, it is 

a simple matter to apply a shortest-path algorithm to find the highest-scoring path 
connecting the T

L
 vertex to the T

R
 vertex, which corresponds to the highest-scoring 

parse of the full input sequence. In the figure, we have highlighted in bold the high-
est scoring path, which corresponds to the optimal gene parse for the input sequence 
(the full sequence is not shown).

Fig. 5.5 The shortest path (bold) through a simple trellis. Content-sensor scores are shown 
attached to edges in the graph; signal scores are omitted for clarity, but should be counted when 
computing the score of a prospective path

Fig. 5.4 Likelihood ratio scores (y-axis) from a pair of 2nd-order Markov chains, smoothed along 
a ~2,000 bp sequence (x-axis). Gray bars show the true locations of coding exons. Reproduced 
from: Methods for Computational Gene Prediction, ©2007 W.H. Majoros. Used with permission 
of Cambridge University Press
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A popular framework for integrating signal scores and content scores in a 
principled way is the generalized hidden Markov model (GHMM); an example is 
illustrated in Fig. 5.6. GHMMs are generative models, in that their scoring frame-
work is based on the notion that each element in the model generates, or emits, an 
interval of the input sequence, thereby, providing a means of scoring an input 
sequence by assessing the probability that the GHMM would have emitted that 
sequence according to some hypothesized parse. In the figure, each diamond 
represents a signal sensor (D = donor site, A = acceptor site) and each circle repre-
sents a content sensor (E

i
 = exon beginning in reading frame i, I

i
 = intron in reading 

frame i, N = intergenic).
The arrows in this diagram specify the syntax rules to be enforced by the gene 

finder. In GHMM parlance, these are also known as transitions, while the circles 
and diamonds are known as states. When illustrated graphically, the result is known 
as a state-transition diagram. With each transition is associated a fixed transition 
probability (not shown in the figure). Individual states obviously produce corre-
sponding signal scores (for the diamond states) or content scores (for the circle 

ATG TAG

N

E0 E1

I0 I1 I2

E2

Einitial

Esng

Efinal

DD D
A A A

AA A
D D D

+strand

−strand

Fig. 5.6 State-transition graph 
for a GHMM. E exon, I intron, 
D donor site, A acceptor site; 
integers denote phase
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states); these latter two scores are known collectively as emission probabilities. Each 
content state additionally induces a distribution of duration probabilities, which per-
mit the scoring of feature lengths. Any putative gene parse f will then denote a 
path through the GHMM’s state-transition graph, with each state having an asso-
ciated set of coordinates specifying which interval of the input DNA sequence it is 
hypothesized to have “emitted.” The score P(f|S,q) of each such parse can be 
obtained by multiplying the transition, emission, and duration scores incurred along 
the corresponding path through the GHMM. The problem of identifying the high-
est-scoring parse with a GHMM is termed decoding and can be accomplished 
efficiently using a dynamic-programming procedure based on the shortest-path 
algorithm mentioned earlier (Majoros et al. 2005a).

GHMM-based gene finders have been popular for a number of years, the earliest 
system being the popular GENSCAN system (Burge and Karlin 1997) which was 
for years the most accurate gene-finder for the human genome; the contemporary 
system GENIE (Kulp et al. 1996) was heavily used for the annotation of the fruitfly 
Drosophila melanogaster (Adams et al. 2000). More recent GHMM-based systems 
which allow for end-user retraining on novel organisms include AUGUSTUS 
(Stanke and Waack 2003), GeneZilla (Majoros et al. 2004), GlimmerHMM 
(Majoros et al. 2004), and SNAP (Korf 2004).

As noted above, GHMMs are formulated on the notion of sequence generation – 
i.e., given a GHMM q and a sequence S, we can compute the probability P(S|q) that q 
would, on any given invocation of the model, generate (or “emit”) sequence S. Models 
of this sort are said to be generative, since the focus in building and training the model 
is on most accurately representing the process of generating sequences of a particular 
type (in our case, genes). Instead of using the model to generate new sequences, how-
ever, we want to use it to parse existing sequences – i.e., to discriminate, with the 
greatest possible accuracy, between genomic elements such as exons and introns. 
Models which focus on the optimal discrimination between classes, rather than on 
their generation, are called discriminative models. For some tasks, explicitly discrimi-
native models have been found to produce more accurate predictions than their genera-
tive counterparts (Tong and Koller 2000; Ng and Jordan 2002).

Early attempts to derive more discriminative gene-finding models utilized 
generative models that were trained in a more discriminative way than usual – i.e., 
with the model parameters being chosen so as to maximize the expected prediction 
accuracy of the model, rather than optimizing the generative propensities of the 
model via maximum likelihood (e.g., Krogh 1997; Majoros and Salzberg 2004). 
Although these early studies showed some promise for such approaches, the 
preferred approach today is to employ techniques which do not model the generation 
of sequences at all, but instead directly model the act of parsing. By directly modeling 
the parsing process, such models can be more easily trained so as to maximize the 
expected parsing accuracy.

The most popular discriminative modeling framework for gene prediction is the 
conditional random field, or CRF (Lafferty et al. 2001). A CRF appears superfi-
cially much like a GHMM; indeed, the model illustrated in Fig. 5.6 could just as 
well have served as an example syntax model for a generalized CRF. One difference 



1075 Gene Prediction Methods

BookID 151692_ChapID 5_Proof# 1 - 21/08/2009

is that the scoring functions of a CRF are given as arbitrary potential functions, 
which need not evaluate to probabilities (they are automatically normalized into 
probabilities by the CRF framework). The ability to use arbitrary scoring functions 
in a CRF renders the framework very flexible, since the modeler can experiment 
with different scoring functions and select the set of functions which produce the 
most accurate predictions (e.g., via cross-validation on the training set).

Another difference is that CRFs are typically trained via conditional maximum 
likelihood (CML) rather than standard maximum likelihood estimation (MLE). The 
CML criterion – P(j|S) – is arguably more appropriate for training a parser than 
MLE – P(S,j) – since, during parsing, the model is used to find the parse j which 
is most probable for a given (fixed) sequence S – i.e., the maximal P(j|S). Thus, the 
way in which CRFs are trained is more consistent with the way in which they are 
used (i.e., for parsing). Intuitively, one would expect this to translate into higher 
expected parsing accuracy, and this is indeed supported by recent results (e.g., 
Gross et al. 2008). Although GHMMs can also be discriminatively trained via CML 
or other non-MLE approaches, CRFs offer other advantages over GHMMs, as we 
will describe later.

CRFs, in their current incarnation, suffer from two possible weaknesses. The 
first is that they may (depending on the number of parameters in a particular CRF 
model) be more susceptible to the problem of overtraining. Overtraining occurs 
when the amount of training data available to train a model is insufficient to ensure 
a robust estimation of all parameters in the model; as a result, an overtrained model 
may produce highly accurate predictions on the training set, but relatively inaccurate 
predictions on unseen data, since the model is too intimately tuned to the idiosyncratic 
properties of the training data.

Another problem which CRFs – but not GHMMs – suffer from is that they do 
not explicitly model feature lengths. In the case of GHMMs, the simpler (non-
generalized) hidden Markov model (HMM) can be shown to be inferior in cases 
where feature lengths do not follow a geometric distribution (see Fig. 5.7).

GHMMs address this problem by allowing explicit modeling of feature lengths 
for coding features and to a lesser extent for some noncoding features such as introns 
(e.g., Stanke and Waack 2003). This is easily rectified in the CRF framework, how-
ever, by instead employing a generalized CRF (GCRF) in which feature lengths can 
be explicitly modeled (Bernal et al. 2007; Majoros 2007b). An attractive feature of 
GCRF models is that they can additionally model longer-range dependencies than 
is currently feasible in non-generalized CRFs.

Fig. 5.7 Observed exon length 
distribution (solid line) for 
Aspergillus fumigatus, versus a 
geometric distribution (dashed 
line). Reproduced from: 
Methods for Computational 
Gene Prediction, ©2007 W.H. 
Majoros. Used with permission 
of Cambridge University Press 
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One very significant advantage of CRFs and GCRFs is their ability to incorporate 
arbitrary evidence into the gene-prediction process, using either probabilistic or 
non-probabilistic measures. We will explore this issue further in section 5.4.

5.3  Multiple-Genome Methods

Whereas some ab initio gene finders utilize only the DNA sequence of the target 
genome in making their predictions, others utilize additional information in the 
form of observed cross-species conservation, at either the DNA or amino acid level. 
Such conservation, when observed between sufficiently distant species, is assumed 
to result from the effects of purifying selection operating (separately) on homolo-
gous regions of heterospecific genomes (Korf et al. 2001; Parra et al. 2003; Majoros 
et al. 2005b). Systems utilizing this information are known as comparative gene 
finders, since they compare the target genome to homologous regions of related 
genomes. Figure 5.8 illustrates the potential value of DNA sequence conservation 
evidence for gene prediction: the regions of highest conservation among human, 
chimpanzee, mouse, rat, and even (to a lesser degree) chicken correlate very 
strongly with the coding portions of exons in the example human gene.

Note from this figure that conservation between human and chimpanzee appears 
to offer virtually no useful evidence regarding the locations of coding exons, since 
the two species have only recently diverged (<6 MYA). In order to be most useful, 
there needs to be enough evolutionary distance between the target and “informant” 
genome(s) to be able to discriminate exons from the background, but not so great a 
distance that homologous exons have diverged too far to be recognizable. Since 
genes evolve at different rates, there is no ideal pair of genomes for cross-species 
gene finding, though the human-mouse pair (60–80 MYA) has often been used with 
reasonable success. One difficulty in using sequence conservation is that the 
amount of conserved non-coding sequence can be greater than the amount of coding 
sequence (Gibbs et al. 2004). Therefore, simple phylogenetic footprinting (as the 
method is sometimes called) may not identify exons with great specificity. Even so, 
evolutionary conservation offers an additional level of information and has the 
potential for finding genes overlooked by other methods (Roest Crollius et al. 2000; 
Siepel et al. 2007).

Fig. 5.8 Concordance of exon structure and sequence conservation. Source: UCSC genome 
browser (Kent et al. 2002)
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The modeling of sequence conservation in gene-finding systems is increasingly 
carried out using standard models of molecular evolution – i.e., via phylogenetic 
trees and substitution rate matrices such as those due to Jukes and Cantor (1969), 
Felsenstein (1981), and others. Because the latter models are also probabilistic, they 
are easily incorporated into GHMM-based systems, resulting in what are known as 
phylogenetic (G)HMMs (PhyloHMMs – Siepel and Haussler 2004) or evolutionary 
(G)HMMs (Holmes and Bruno 2001; Pedersen and Hein 2003). The phylogenetic 
components (one per state) of a PhyloHMM can be trained separately from the (G)
HMM component and then trivially incorporated into the GHMM decoding process 
to allow efficient prediction. A similar approach can be taken in the GCRF frame-
work (Majoros 2007b), though as of yet no full implementation of such an approach 
has been described (but see Vinson et al. 2006, for an ad hoc solution).

One shortcoming of current comparative gene finders is that the substrate for their 
modeling of evolutionary conservation is typically a pre-computed multi-sequence 
alignment produced by a general-purpose alignment program such as MULTIZ 
(Blanchette et al. 2004) or MAVID (Bray and Pachter 2004). Because most alignment 
programs do not explicitly model gene elements, alignment errors often misinform 
the later gene-prediction process. A counterexample is the pair HMM, or PHMM, 
which performs alignment and gene finding simultaneously, so that the two processes 
may mutually inform one another (e.g., Meyer and Durbin 2002). Unfortunately, 
PHMMs and their generalized cousins, GPHMMs, tend to be extremely computation-
ally expensive in the absence of additional heuristics to constrain the search space of 
the alignment problem (i.e., the space of all possible alignments), so that simultane-
ous alignment and gene prediction in three or more species is likely not tractable for 
long sequences without liberal constraints on the search space.

Another shortcoming of many comparative gene finders is their reliance on 
homology information at the level of nucleotide conservation, rather than amino-
acid conservation. Given a pair of orthologous genes having highly conserved func-
tions but fairly diverged nucleotide sequences, it is reasonable to expect that the 
level of amino-acid similarity between the orthologous genes will be significantly 
higher than the level of nucleotide similarity. Indeed, amino-acid similarities have 
been shown to provide very strong orthology information (Majoros et al. 2005b), 
as suggested by Fig. 5.9. In this figure, a pair of orthologous fungal genes from 

oryzae:

fumigatus:

HSP’s:

3376300826412273190515381170803

Fig. 5.9 A pair of Aspergillus (A. oryzae vs. A. fumigatus) orthologues and their corresponding 
PROmer HSP’s. The annotated gene structures are shown at top and bottom as black rectangles 
(exons) connected by line segments (introns). PROmer HSP’s (in several frames) are shown as 
thin, hatched rectangles in the middle row. Reproduced from: Methods for Computational Gene 
Prediction, ©2007 W.H. Majoros. Used by permission of Cambridge University Press
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Aspergillus oryzae and A. fumigatus is shown aligned with their amino-acid HSPs 
as computed by the program PROmer (Kurtz et al. 2004). As can be seen from the 
figure, while the boundaries of exons are not precisely demarcated in the amino-
acid alignments (central track of the figure), the amino-acid HSPs provide strong 
indicators of individual coding regions.

The generalized pair hidden Markov model TWAIN (Majoros et al. 2005b) utilizes 
such amino-acid conservation information to predict orthologous genes in two 
related genomes, based on conservation scores as provided by PROmer, as well as 
emission, transition, and duration scores as in a standard GHMM. The result is a 
comparative gene-finder geared specifically toward prediction of conserved genes 
in pairs of moderately related genomes. A similar model was described by 
Alexandersson et al. (2003). A derived class of models utilizes similar computa-
tional machinery to transfer gene annotations from one genome to a related genome 
(Florea et al. 2005; Meyer and Durbin 2004).

Although PHMMs and GPHMMs have slipped from the spotlight in recent 
years, there are circumstances in which they may prove more useful than their 
more popular cousins, the PhyloHMMs. In cases where a genome to be annotated 
has one appropriately-distanced informant and few or no other related genomes 
available, the ability of PHMMs and GPHMMs to dynamically re-align putative 
orthologues provides an advantage over the “frozen alignment” approach of 
PhyloHMMs, which do not in practice allow for re-alignment of the informant 
sequences to the target genome. Thus, alignment errors introduced by the generic 
alignment program used to align the informants to the target genome will tend to 
impede PhyloHMMs more than they would a PHMM or GPHMM, with PHMMs 
having somewhat more flexibility to re-align informants than GPHMMs (Meyer 
and Durbin 2002).

Dynamic re-alignment of informants is an active research topic in the field 
of PhyloHMM-based gene finding (e.g., Moses et al. 2004). In the case of 
PHMMs and GPHMMs, the alignment of the (single) informant genome to the 
target genome proceeds simultaneously with the gene-prediction process, 
though in practice the alignment process tends to be fairly highly constrained 
based on heuristic preliminary alignment results, such as those based on 
BLAST-type programs (Altschul et al. 1990, 1997; Korf et al. 2001; Kurtz et al. 
2004). Figure 5.10b illustrates a common scenario in which the optimal align-
ment of two genomes during gene prediction is constrained by a set of HSPs 
(diagonal black bars) computed via a rapid heuristic such as BLAST. Regions 
between successive HSPs are typically “banded” (as in banded alignment – 
Durbin et al. 1998), so that the optimal parse for the target genome may be only 
a local optimum, since it is contrained to lie within a pre-determined region of 
the global search space.

A related issue is that of exon splitting/merging during the evolution of ortholo-
gous genes. As suggested by Fig. 5.10a, a pair of orthologous two-exon genes 
derived from a common single-exon gene can mislead a PHMM-based or GPHMM-
based gene finder, which may try to find the optimal parse consistent with the 
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(erroneous) assumption that the single intron common to both genes in the ortholo-
gous pair is itself orthologous. In this hypothetical example, introns have been 
independently introduced in the two lineages (part (a) of the figure), at different 
relative locations within the genes, so that alignment of the introns will produce low 
homology scores. Accounting for this possibility, however, may require arbitrarily 
large deviations from the diagonal path through the model’s dynamic programming 
matrix, so that decoding with a model aware of such non-orthologous intron insertions 
can incur large computational requirements in both space and time. In this case, 
aggressive banding of the matrix can result in the “correct” gene parse passing 
through parts of the matrix which are not evaluated, so that the correct gene parse 
will definitely not be found by the decoding algorithm. Addressing these issues in 
the context of CRFs and GCRFs seems a promising area of inquiry, though it is too 
early to report any progress in this area.
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Fig. 5.10 Intron insertion in two gene lineages. (a) Shows a pair of aligned orthologues in which 
an intron has been independently inserted in each lineage. (b) Shows a banded dynamic program-
ming matrix; only the white region along the diagonal is evaluated. Allowing for the correct path 
through this matrix for the given pair of genes would require the white region to be expanded so 
as to contain a very large portion of the entire matrix, significantly reducing space efficiency of 
the algorithm
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5.4  Expression-Based Methods

Apart from homology data, another useful type of external evidence is expression 
data, in the form of ESTs and cDNAs, which represent sequences of spliced mRNAs 
found in the living cell. After expressed RNAs have been mapped to locations on the 
genome via established programs for spliced alignment (e.g., sim4 – Florea et al. 
1998; PASA – Haas et al. 2003; EXALIN – Zhang and Gish 2006; PALMA – Schulze 
et al. 2007), the resulting EST clusters can be used internally by a gene finder to 
modify its scoring system so as to weight more highly those putative coding segments 
supported by the existence of aligned mRNAs. Programs utilizing this type of infor-
mation tend to be among the most accurate gene finders available (Guigo et al. 2006). 
One difficulty in the use of expression information is the effective integration of these 
data in a principled way. Although most expression-based gene finders have, to date, 
been fairly ad hoc in nature, more principled solutions are likely to emerge as modelers 
switch to the framework of conditional random fields, since CRFs provide a more 
direct means of incorporating arbitrary evidence into a predictive framework (e.g., 
Bernal et al. 2007; DeCaprio et al. 2007; Gross et al. 2008).

More generally, it is useful to include transcript (or even protein – see below) 
information when it is available and to fall back on ab initio methods when neces-
sary (Hubbard et al. 2002; Allen and Salzberg 2005; Stanke et al. 2006; Wei and 
Brent 2006; Cantarel et al. 2008). This allows one to delineate known genes with 
great accuracy and to propose reasonable gene structures in the case of partial or 
non-existent evidence.

Expression-based methods suffer from a number of practical difficulties, especially 
those based on ESTs. Since ESTs are typically only 500–1,000 bp long, they fre-
quently cover only a portion of a gene. One can assemble overlapping ESTs to produce 
facsimiles of complete cDNAs, but this takes a great deal of ESTs and may produce 
artifacts not present in a transcriptome. Newer transcript-profiling technologies, such 
as whole genome tiling arrays (Kampa et al. 2004; Li et al. 2007) or massively parallel 
sequencing (Meyers et al. 2004; Weber et al. 2007) can give a genome-wide picture of 
which areas are transcriptionally active, but these do not precisely delineate gene or 
exon boundaries. While transcript-based methods are a powerful source for gene 
finding, they are biased toward those genes that are abundantly and ubiquitously 
expressed: poorly expressed genes or those genes expressed in highly restricted devel-
opmental stages may not be represented by bulk transcript sequencing.

Another powerful source of information is the growing database of known 
proteins (Uniprot Consortium 2007). One can find the rough locations of exons by 
aligning translated nucleotide sequences to proteins from a protein database with 
BLAST and similar tools (e.g., Gish and States 1993; Pearson et al. 1997; Kent 
2002; Li et al. 2004; Slater and Birney, 2005; Kurtz et al. 2004). Some sophisticated 
alignment programs even produce complete exon-intron structures (Birney et al. 
2004). While protein-based alignments are very useful, they are limited to finding 
genes similar to known genes, and there is no guarantee that the highest scoring 
alignment is biologically meaningful.
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5.5  Practical Considerations

There are a number of practical considerations which must be kept in mind when 
using any gene-finding software. The most important of these relate to issues of 
training. It is a well-known fact that a gene-finder trained for some organism X, but 
applied to the task of predicting genes in a different organism Y, will generally 
produce less accurate predictions than if the program had been trained directly on 
example genes from Y. The practice of training on one organism and then predict-
ing genes in a different organism is called parameter mismatching (Korf 2004). 
More generally, it can be expected that a gene finder trained with larger numbers of 
training genes will tend to produce more accurate predictions than one trained with 
a smaller subset of training genes (see Fig. 5.11).

Furthermore, prediction accuracy can depend not only on the size of the training 
set, but also on the variety of genes in the training set. A gene-finding model is essen-
tially a model of the average gene, and unfortunately, not all genes in a genome 
can be expected to look like the average gene, in terms of their structure or compo-
sitional biases. Training sets are also often biased toward a few well-characterized 
gene families, and this obviously biases the gene-finder’s perception of what 
an “average gene” looks like. A related issue, in mammalian genomes, is that of 
isochores – regions of distinct G+C content. Early work with GHMM-based 
programs (Burge and Karlin 1997) showed that more accurate predictions can be 
obtained by including within the gene-finder several distinct models of composi-
tional biases, one for each isochore.

Fig. 5.11 Gene-finding accuracy tends to increase with the size of the training set. Training set 
size (#genes × 1,000) are shown on the x-axis; whole-exon prediction accuracy on an unseen test 
set is shown on the y-axis. Reproduced with permission from (Allen, et al. 2006)
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There are several options which are available when training data are very scarce. 
One is the practice of parameter mismatching mentioned earlier. A more promising 
approach is to train the gene finder on a closely related organism, use the program to 
predict a full complement of genes in the target organism, and then re-train the gene-
finder from scratch using the first round of predicted genes as the training set for the 
second round of training. This approach, termed bootstrapping (Korf 2004), has been 
applied in practice with some success (Eisen et al. 2006). Unfortunately, some gene 
finders are not even re-trainable by end-users. There has been some success in auto-
mated self-training, and it may be that such methods provide a general solution to the 
training problem (Korf 2004; Lomsadze et al. 2005; Majoros and Salzberg 2004).

Development of novel gene-finding technologies is always limited by concerns of 
efficiency, in terms of both space (memory) and speed (processor cycles). The use 
of dynamic programming solutions is, thus, common as in other areas of bioinformatics. 
Dynamic programming alone is often not sufficient, however, and in practice a 
number of simplifying assumptions are made so as to ensure efficiency. The use of 
pre-computed multiple-sequence alignments in comparative gene-finders is one 
example. Many other assumptions are typically involved in making these systems 
run efficiently, or in ensuring a reasonable tradeoff between sensitivity and specific-
ity. These include: (1) strict consensus sequences for splice sites and start/stop 
codons; (2) geometrically-distributed lengths for introns and other noncoding features 
surrounding genes; (3) that termination codons do not occur in-frame; (4) that 
statistical dependencies between nucleotides in a sequence do not extend over 
distances of greater than about 8 nucleotides; (5) that genes do not overlap; (6) that 
genes are not nested within other genes; (7) that the input sequence contains no 
sequencing errors or frameshifts; (8) that each gene has exactly one isoform (splice 
variant); (9) that functional start and stop codons are never interrupted by an intron; 
and (10) that the input sequence contains only As, Ts, Cs, and Gs (i.e., no ambiguity 
codes such as Y or R). Although some or all of these assumptions may be invalid 
for any given genome, they are typically assumed by practical software in order to 
ensure run-time efficiency or to avoid over-prediction of genes.

A number of heuristics have been employed in an attempt to relax some of these 
assumptions so as to improve the biological realism of the model (and more impor-
tantly, the predictive accuracy of the resulting software). Two examples are the 
modeling of non-geometric lengths for short introns (Stanke and Waack 2003) and 
the detection of genes coding for selenocysteine-bearing proteins (Castellano et al. 
2005). Other assumptions are more difficult to circumvent in practice, though work 
is ongoing in this direction, as we briefly survey below.

Overlapping and nested genes are known to occur in some organisms (e.g., 
Normark et al. 1983; Pavesi et al. 1997; Yu et al. 2005). In many cases, the overlap-
ping genes are on opposite strands. A few programs do allow prediction to be carried 
out separately on the two strands, so that such overlapping genes can be identified 
(e.g., SNAP – Korf 2004). The related issue of alternative splicing has been shown 
to be quite common in some organisms and is now receiving some attention (e.g., 
Allen et al. 2006), though the vast majority of current gene finders do not predict 
alternative isoforms; we comment further on this issue in the next section.
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Ambiguity codes such as R (for purine) and Y (for pyrimidine) are often found 
in contigs resulting from low-coverage sequencing of genomes. Unfortunately, 
most gene finders either do not accept input containing such codes or arbitrarily 
change them to a valid nucleotide upon reading their input. Another common 
ambiguity code is N, which some assemblers will place between fragments which 
are believed to lie close together on the genome, but for which the intervening 
gap has not been properly sequenced. Genomes sequenced to low coverage often 
produce large numbers of fragments and contigs which the assembler may then 
combine with arbitrarily long runs of N’s between. In order to attain high sensi-
tivity of exon predictions in such low-coverage genomes, it is generally necessary 
to enable partial gene prediction for these genomes; in these cases, runs of N’s 
may be effectively interpreted by the gene finder as the end of the contig. To our 
knowledge, no systematic studies have been published describing the effects of 
various strategies for dealing with ambiguity codes. Frameshifts are also gener-
ally not accommodated by gene-finders, though frameshifts do occur in some 
genome assemblies.

5.6  Future Directions

There are several areas worthy of future study. Two prominent issues are (1) the 
existence of alternative splicing, and (2) the distinctions between genes in different 
protein families. We will briefly consider both of these.

While it is now widely acknowledged that alternative splicing is common in many 
organisms, few systems at present attempt to address this issue. Instead, most gene 
finders predict the single, highest-scoring isoform of a putative gene. While some work 
has explored the sampling of suboptimal parses for prediction as alternatively-spliced 
isoforms (Cawley and Pachter 2003), these techniques require further investigation.

An alternative approach is to utilize classification techniques from the field of 
machine learning to predict individual exons, rather than predicting a global parse 
of the input sequence. The difference is that in a global parse the exons may not 
overlap and are not predicted independently of each other. A classification-based 
approach can be used to evaluate every possible open-reading frame to predict 
exons independently of each other. Predicted exons which happen to overlap may 
indicate alternative splicing. These approaches also require additional research, 
though they appear promising (e.g., Jaakkola and Haussler 1999).

Regarding the existence of protein families, it was stated earlier that current 
gene-finding approaches are aimed at finding the “average” gene. The success of 
profile HMMs (Durbin et al. 1998) trained on individual protein families (as 
opposed to general-purpose amino acid substitution matrices) for protein classifica-
tion tasks (Sonnhammer et al. 1997) suggests that a similar approach may be useful 
for gene finding – i.e., to employ separate models for each gene family. Taken further, 
such an approach would permit the traditionally separate tasks of structural and 
functional annotation to be combined into a single computational process.
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In addition to algorithmic improvements, there are also new sources of informa-
tion to be utilized. Genome-wide studies of histone composition or DNAse hyper-
sensitivity, for example, may be useful in determining the transcriptional activity of 
chromatin. The amount of ChIP-chip and ChIP-seq information is increasing, 
though these data have not yet found their way into gene-finding systems. While 
transcript information is utilized by a number of gene finders, there are likely to be 
new challenges involved in adapting these approaches to the data produced via 
massively parallel, short sequencing technologies.

5.7  Supplementary Information

Useful information about gene finding can be found at the following web site:
http://www.geneprediction.org

Detailed descriptions of the models we have discussed are provided in (Durbin 
et al. 1998; Majoros 2007a, b).
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6.1  Introduction

Gene annotation used to refer to the prediction and annotation of a coding transcript 
on a region of the genome, but as the complexity of the functional features on the 
genome increases, users require prediction of noncoding RNAs, alternatively 
spliced transcripts, pseudogenes, and conserved elements. Eight years after the 
initial draft sequence of the human genome was published, the exact number of 
coding genes present on this sequence is still unclear. Since new sequencing tech-
nologies have reduced the cost of sequencing and dramatically increased the 
speed, we can expect an enormous expansion in the amount of available genomic 
and transcript sequence data. To gain insight into the functional information con-
tained within these new sequences, the features within the sequence need to be 
accurately annotated.

Gene annotation is not only beneficial for its identification of gene features, but 
it can also help improve genome sequence quality. During manual annotation, 
discrepancies between transcripts and genomic sequence can be identified and subse-
quently studied further for validation. Some discrepancies can be attributed to SNPs 
(Single Nucleotide Polymorphisms), DIPs (Deletion Insertion Polymorphisms) 
or strain or haplotype differences, while others, ranging from small insertions or 
deletions to debilitating substitutions, missing exons and out-of-order exon arrange-
ments, indicate potential sequence or assembly errors. For low coverage genomic 
sequence (from whole genome shotgun sequencing for example), the value of 
annotation lies not only in the annotation itself but also in improving the genomic 
assembly. In this chapter we will discuss the current status of genome and gene 
annotation.

J. Harrow ()
Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1HH, UK 
e-mail: jla1@sanger.ac.uk

Chapter 6
Gene Annotation Methods

Laurens Wilming and Jennifer Harrow



122 L. Wilming and J. Harrow

BookID 151692_ChapID 6_Proof# 1 - 21/08/2009 BookID 151692_ChapID 6_Proof# 1 - 21/08/2009

6.2  Automated Gene Annotation: The First Step  
in Annotating Genomes

Since manual annotation is labor-intensive, time consuming, and therefore expen-
sive, it is only suitable for key reference genomes or relatively small regions of 
interest. As a consequence, automated annotation methods need to be employed for 
the vast majority of genomes. These automated methods can comprise fully de novo 
annotation, or include the mapping of known transcripts and protein sequences. 
Some automated gene-building programs, such as Ensembl, use a hybrid approach 
of ab initio gene predictions in combination with aligning known expressed 
sequences to build predicted transcripts supported by homologies to expressed 
genes (Hubbard et al. 2002; Flicek et al. 2008).

Gene-finding in vertebrate genome sequences is difficult due to the small 
proportion of sequence that actually codes for exons (generally less than 5%) and 
the complexity of alternative splicing. Two important aspects of a gene-finding 
program are the algorithm it employs and the type of information it uses. There are 
three types of information that algorithms can use for gene prediction: signals in the 
sequence such as splice sites, sequence content statistics such as codon usage, and 
sequence similarity to known genes/proteins. Ab initio predictors use only the first 
two, whereas hybrid tools such as Ensembl, incorporate similarity data to improve 
the quality of predictions. TWINSCAN (Korf et al. 2001), and the more recently 
developed NSCAN (Brown et al. 2005; Gross and Brent 2006) extend ab initio 
GENSCAN (Burge and Karlin 1997) predictions by including homology data from 
related genomes. For emerging model organisms there is also the new MAKER 
genome annotation pipeline (Cantarel et al. 2008): an easy to use automatic annotation 
system that uses gene predictions in combination with expressed sequence tag 
(EST) alignments to build a gene set.

Automated genome annotation systems are continually being improved and have 
provided a necessary service in producing a first pass annotation of draft genome 
sequences. They are essential for annotation of low coverage genomes (~2X) since 
problems experienced when predicting gene structures in draft genome assemblies 
(missing sequence, fragmentation, misassemblies, misplacements, small insertions/
deletions/substitutions) are exacerbated. In particular, many genes will be repre-
sented only partially (or not at all) in the assembly, and many others (particularly 
those with large genomic extent) will be found in fragments, distributed across 
more than one scaffold (Hubbard et al. 2007).

In 2006, the ENCODE genome annotation assessment project (EGASP) (Guigo 
and Reese 2005; Guigo et al. 2006; Reese and Guigo 2006) assessed the accuracy of 
computational methods for predicting protein-coding genes within the ENCODE 
pilot regions (which encompassed 1% of the human genome sequence) (Birney et al. 
2007). Eighteen groups contributed predictions from a range of programs including 
ab initio single genome programs (e.g., GENSCAN (Burge and Karlin 1997)), 
prediction methods that used expressed gene evidence (e.g., JIGSAW (Allen and 
Salzberg 2005)), and multigenome ab initio predictors (e.g., NSCAN (Brown et al. 
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2005; Gross and Brent 2006)). Predictions in a given region of the genome were 
assessed by comparison with a manually annotated reference gene set produced as 
part of the GENCODE project (Harrow et al. 2006) and only made public after the 
submission deadline. Results from the assessments suggested that the best automated 
annotation methods were able to predict at least one coding transcript correctly for 
over 70% of the loci. However, taking into account alternative splicing, the automated 
predictions only reached around 50% accuracy. Therefore, although accurate, 
improvements still need to be made if automatic gene prediction is to produce quality 
annotation approaching that from manual curators.

Genomes that are sequenced using the whole genome shotgun approach 
(Sundquist et al. 2007) will probably only have automated annotation. New algorithms 
such as GLEAN (Elsik et al. 2007), which automatically assesses the validity of 
gene predictions from different sources (such as Ensembl, RefSeq and Fgenesh) and 
takes a weighted average for a final consensus prediction, are excellent tools for this 
purpose. The GLEAN method of automated prediction assessment was used to create 
a consensus gene set for the honey bee genome and was found to be of equivalent quality 
to that generated by manual annotation (Elsik et al. 2007). For high-quality “finished” 
reference genomes, where the genomic sequence has been assembled from fully 
sequenced genomic clones (e.g., Bacterial Artificial Chromosomes (BACs)), manual 
annotation is a worthwhile investment. The human, mouse, Arabidopsis and 
Caenorhadbditis elegans genomes are examples of manually annotated genomes. 
Most of these genomes are also associated with model organism databases which 
serve as a hub for various types of genomic, experimental, and functional information, 
alongside literature curation. The only exception is for the human genome, where 
there is not a single database to view all information concerning Homo sapiens, and 
such data is distributed between databases.

6.3  Manual Annotation: The Genome Approach  
Versus the Transcriptome Approach

Manual gene annotation plays a significant role in annotating high quality finished 
genomes. However, there are two approaches to gene annotation: one transcriptome 
focused and one genome focused. NCBI’s RefSeq collection (www.ncbi.nlm.nih.
gov/RefSeq/) is a transcript centered resource of manually curated transcript 
sequences (Pruitt et al. 2007) and includes the entire biome with plant, bacterial, 
viral, vertebrate, and invertebrate sequences. The data contains predictions that are 
only partially supported by ESTs, cDNAs, or proteins. These have the prefix XM, 
while the curated transcripts have identifiers with the prefix NM. RefSeq is used 
internationally as a standard for gene annotation (Pruitt et al. 2007), and so when a 
new genome is being sequenced, researchers usually use RefSeq data to identify 
genes (and therefore genomic sequences) that are missing from their assembly or 
to identify genomic rearrangements within genes (Pruitt et al. 2007).
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The genome centric approach starts with genomes, onto which transcribed 
sequences are mapped to determine the structure of transcripts, coding sequences 
(CDSs), and genes. This is how the Havana group at the Wellcome Trust Sanger 
Institute produces its annotation of vertebrate sequences (www.sanger.ac.uk/HGP/
havana, vega.sanger.ac.uk). Currently only three vertebrate genomes – human, 
mouse, and zebrafish – are being fully sequenced and finished to a quality which 
merits manual annotation. The finished genomic sequence is analyzed using a 
modified Ensembl pipeline (Searle et al. 2004), so that alignments of cDNAs, ESTs, 
and proteins along with various ab initio predictions can be analyzed manually with the 
Otterlace annotation browser tool. The advantage of genomic annotation over 
transcriptome annotation is the improved prediction of alternatively spliced variants, 
as partial EST and protein evidence can be used, while cDNA annotation is limited 
to the availability of full-length transcripts. The genome based approach allows a far 
more comprehensive identification of pseudogenes (see “Pseudogene annotation” 
section below). The genome centric annotation approach is essential when annotating 
complex repetitive clusters such as histone or olfactory receptor genes. Lack of locus 
specific evidence for these structures means that evaluation on the transcript level 
would suggest a lower number of family members than would be found when 
examining their more complex duplicated arrangement on the genome. However, a 
disadvantage of the genome approach is that polymorphisms in the reference 
genome sequence can interfere with the annotation of coding transcripts, whereas for 
cDNA annotation there is usually a choice of haplotypic forms.

The CCDS (Consensus Coding Sequence) project (www.ncbi.nlm.nih.gov/
CCDS/CcdsBrowse.cgi), combines the two approaches and is a collaboration 
between the Wellcome Trust Genome Campus institutes (Wellcome Trust Sanger 
Institute (www.sanger.ac.uk), the European Bioinformatics Institute (www.ebi.ac.
uk)), the NCBI (RefSeq (www.ncbi.nlm.nih.gov/RefSeq/)), and the UCSC (Genome 
Bioinformatics Group genome.ucsc.edu)). Human and mouse RefSeq transcript 
models are mapped onto the genome and compared to genomic annotation from 
Ensembl and Vega. Where there is consensus on the prediction of the coding region, 
the transcript becomes a CCDS database entry. Cases of nonconsensus are discussed 
between the parties to attempt to reach a consensus, with the result that they are 
either accepted, modified and accepted, or withdrawn. The May 2008 release of the 
CCDS database contains over 20,000 human and 17,000 mouse CCDS transcripts, 
representing over 17,000 and 16,000 genes respectively. This resource provides 
researchers with a consistent reliable gene-set derived independently from a combination 
of manual and automated annotation.

An unacknowledged advantage of manual annotation is how it contributes to 
improved automated gene builds (such as Ensembl) because the results of manual 
annotation are submitted to the sequence databases and become part of the 
expressed sequences used to support automated gene builds. This is especially 
important for the annotation of genomes of species that are closely related to the 
manually annotated reference species, allowing the projection of the manual anno-
tation onto the unannotated genome.
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6.4  Pseudogene Annotation

A pseudogene is defined as a nonfunctional copy of a gene and as such pseudogenes 
are assumed to evolve neutrally. They are frequently considered “genomic fossils” 
and are often used as a calibration parameter for different models in molecular evolution 
(Zhang and Gerstein 2004). Pseudogenes commonly have frameshifts and/or 
in-frame stop codons in the coding region, rendering them nonfunctional. Pseudogenes 
are generated by two different mechanisms: through retrotransposition of transcribed 
genes back into the genome or through duplication of genomic DNA. Where the 
two types of pseudogenes differ is in their structure. Pseudogenes arising from 
retrotransposition are known as processed pseudogenes and are generated by insertion 
into the genome of double stranded sequence formed by reverse transcription of single 
stranded, processed (i.e., intron-less) mRNA (Vanin 1985). Processed pseudogenes 
lack introns and 5¢ promoter sequences and sometimes even part of the 5¢ end of 
the original gene. Often a genomic poly(A) tract or A-rich region is present at the 
3¢ end, marking the downstream insertion point. In contrast, unprocessed pseudogenes, 
arising from complete or partial gene duplication, have an exon structure similar to 
their parent gene. Duplication of DNA segments is essential for the development of 
complex genomes, yet exactly how this occurs is still under debate (Cooke et al. 
1997; Ganfornina and Sanchez 1999).

Pseudogene identification is a major problem in computational genomics and is 
critical for getting an accurate view of the genomic landscape of an organism. The 
prevalence of pseudogenes in mammalian genomes has been problematic for gene 
annotation, giving rise to gene structure artifacts in automated annotation, and to 
some extent manual annotation. Currently, there are no consensus computational 
schemes for detecting different types of pseudogenes. The correct categorization of 
an open reading frame as part of a functional gene or a pseudogene is hampered by 
the fact that some processed pseudogenes still have an intact CDS and may have 
maintained or (re)gained function (e.g., human testis specific PGK gene (McCarrey 
and Thomas 1987)). Also, some unprocessed pseudogenes have a CDS very similar 
to their expressed versions, with only a slightly truncated 3¢ end because of an 
in-frame stop codon close to the regular stop codon or a slightly extended or truncated 
3¢ end because of a frameshift close to the regular translation end. In each of these 
cases, automated annotation tools would consider these pseudogenes as expressed 
genes. Conversely, expressed pseudogenes that function as noncoding RNAs (for 
example Makorin1-p1 (Hirotsune et al. 2003)) may escape automatic annotation. 
Manual annotation allows judgment on a case-by-case basis and can also take other 
information, such as from publications, into account.

As part of the ENCODE pilot project, collaborators developed an approach for 
annotating pseudogenes (derived from protein-coding genes) that incorporated 
manual annotation from the GENCODE consortium alongside the union of pseudo-
genes predicted from four different automated methods (Zheng et al. 2007). This 
resulted in the identification of 201 consensus pseudogenes within the ENCODE 
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regions, two-thirds of which were created by retrotransposition. Interestingly, when 
pseudogene-specific RACE was performed on these 201 pseudogenes, 20% 
appeared to be transcribed in one or more cell lines. This result could indicate that 
a number of predicted pseudogenes could have a functional role within the cell.

6.5  Identifying Alternative Splicing

Alternative splicing of pre-mRNA is one way higher organisms have increased pro-
teome and transcriptome complexity from estimated gene numbers that are not that 
different from those of much simpler organisms such as C. elegans (Graveley 2001). 
Alternative splicing provides a versatile mechanism by which major developmental 
functions can be controlled through the expression of variant transcripts in a cell or 
tissue specific manner (Lopez 1998; Taneri et al. 2004; Yeo et al. 2004; Anderson 
et al. 2005). Alternative 5¢ exons enable the use of different promoters for different 
tissues (Anderson et al. 2005), while exon skipping, alternative exons, and alternative 
splice sites can change the mRNA, and therefore very likely the function of the resulting 
protein (Taneri et al. 2004). To illustrate the amount of variation alternative splicing 
can introduce: the Drosophila Down syndrome cell adhesion molecule (Dscam) gene, 
yielding different 24-exon transcripts from a selection of 115 exons, can in theory 
generate over 38,000 distinct mRNA transcripts (Schmucker et al. 2000).

Alternative splicing may not only contribute to proteome diversity, but may also 
play a yet unappreciated regulatory role in gene expression (Stamm et al. 2005). 
EST coverage seems to be an influencing factor in the detection of alternative 
splicing. After examining seven different eukaryotic organisms with sufficient EST 
and mRNA coverage, Brett et al. 2002 found that alternative splicing can be 
detected in a large number of organisms, including invertebrates. Similarly, Hide 
et al. 2001 observed a correlation between EST coverage and the number of identi-
fied alternative transcripts, when they analyzed exon-skipping events in human 
chromosome 22. Recent experiments by Kapranov et al. (2002), Bertone et al. 
(2004) and Schadt et al. (2004), probing genome tiling arrays for transcribed 
regions and comparing the results with annotated genes, highlight many potentially 
transcribed regions in introns, suggesting that a considerable number of potential 
alternative exons and splice variants remain undiscovered.

One of the contributions of manual annotation to genome analysis is the com-
prehensive annotation of splice variants. Manual annotation of 1% of the human 
genome by the GENCODE consortium identified an average of 5.7 variants transcripts 
per locus, almost half of which did not appear to have a CDS. Annotated splice 
variants included variants based on nonhuman evidence as transcripts from other 
species supply a wealth of information from different developmental stages not 
available for humans. Genome comparison studies between mouse and human have 
shown that gene structures are generally conserved (Batzoglou et al. 2000; Kan 
et al. 2002) and that at least some alternative splicing events are conserved as well 
(Yeo et al. 2004).
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New sequencing technologies such as Solexa, (Illumina), 454 (Roche), and 
SOLiD (Applied Biosystems) can generate gigabases of sequence in a single 
experiment, and this technology is beginning to be used to identify the transcrip-
tomes of different organisms using a method termed mRNA-Seq (Mortazavi 
et al. 2008). Currently, to obtain sequence from all genes requires extraordinary 
depth of coverage, in the range of 5 billion bases for, for example, the yeast 
Saccharomyces pombe, equivalent to 250x the genome size (Wilhelm et al. 2008). 
This expression data can be used to examine alternative splicing in different 
tissues; for example comparisons of mRNA-Seq transcriptomes from mouse brain 
and muscle tissue highlighted an exon that was spliced in a specific way only in 
muscle (Mortazavi et al. 2008). This type of data will have a major impact on 
improving the annotation of tissue specific splicing events in particular and splice 
variation in general.

6.6  Comparative Genome Annotation

Comparative analysis of genomic sequence between species at different evolutionary 
distances is a powerful method for identifying both conserved coding and noncoding 
sequences (regulatory regions or noncoding genes) and for the identification of 
species-specific genes [42–45]. When comparing multiple genomes or transcrip-
tomes, two classes of homologous genes are observed: orthologues, which were 
created after a speciation event and have similar functions in the now diverged 
species; and paralogues, which are the result of gene or chromosomal duplication 
events and typically demonstrate divergent functions. Completion of the mouse 
draft genome sequence provided a key informational tool for unraveling the contents 
of the human genome (Waterston et al. 2002). From initial comparative analysis, 
approximately 80% of mouse genes have a single identifiable orthologue in the 
human genome and less than 1% of mouse genes are without a detectable homologue 
in the human genome.

The choice of genomes for sequencing has now less to do with the utility of 
that species as a model organism than its placement on an evolutionary tree. 
Recently, 12 Drosophila species were sequenced and used to identify different 
“evolutionary signatures.” This experiment uncovered new protein-coding genes 
within Drosophila, corrected spurious annotation and helped identify new noncoding 
RNA genes (Stark et al. 2007). In addition, Siepel et al. (2007) used a combination 
of comparative tools to identify new protein-coding exons, which had not previously 
been annotated in the RefSeq gene set. In total, they were able to identify and 
confirm by RT-PCR 160 novel gene fragments. The UCSC browser now contains 
a 28-way vertebrate alignment based around the human genome reference assembly, 
which can be used to identify additional coding exons possibly missed in automatic 
annotation, as well as identify new areas of the genome that may have functional 
importance by highlighting elements conserved across various species, (see Fig. 1) 
(Miller et al. 2007).
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6.7  Tools for Visualization and Annotation

Researchers looking for annotation and visualization tools can choose between a 
number of freely available open source tools that run under Unix (Linux, Mac 
OSX) or Windows. Alternatively, there are web-based tools where users can produce 
and/or display annotation. One such web-based tool is Apollo, a highly customizable 
Java-based desktop application with a drag-and-drop transcript building interface 
that is being used to annotate the Drosophila genome (Lewis et al. 2002; Misra and 
Harris 2006; Klee et al. 2007). Apollo comes with a multiple sequence alignment 
viewer to view protein and nucleotide alignments in detail and a graphical exon 
editor that allows changing of exon boundaries by simply dragging them with a 
cursor (see Fig. 2a). Apollo is often used in conjunction with the GMOD (Generic 
Model Organism Database) system to provide manual annotation. GMOD is a 
general system that links various data sources and analysis modules and stores 
the resulting biological information (Stein et al. 2002; O’Connor et al. 2008). 
GBrowse (Stein et al. 2002; Donlin 2007) is a popular genome viewer developed 
by the GMOD consortium. Many organism databases use GMOD and/or GBrowse to 
make their data publicly available through the web. For example TAIR (Arabidopsis) 
(Swarbreck et al. 2008), Gramene (grasses) (Liang et al. 2008), WormBase (nematode 
worms) (Rogers et al. 2008), SGD (budding yeast) (Christie et al. 2004), FlyBase 
(fruit flies) (Wilson et al. 2008), RGD (rat) (Twigger et al. 2002; Twigger et al. 2007) 

Fig. 1 The 28 organism conservation track in the UCSC Genome Browser (human March 2006 
assembly) shown for a portion of the NRXN2 gene. Note the regions of extensive conservation 
outside annotated exons (arrow heads)

28 species conservation track
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Fig. 2a The Apollo annotation interface. Bottom left: main window with homology features 
(top), annotated or imported transcripts (centre) and textual information (bottom). Top right: multiple 
alignment viewer showing the alignment of homology features to the genomic sequence

and MGD (mouse) (Bult et al. 2008) – all use aspects of GMOD. The Havana group 
at the Wellcome Trust Sanger Institute uses a custom made annotation system 
called Otterlace, which was developed specifically for genomic annotation but has 
been used successfully for transcriptome annotation as well. The software suite 
runs in Unix (Linux, Mac OSX) environments as a desktop application supported 
by central mySQL databases that store analysis and annotation in Ensembl like 
schemas. The software includes a transcript editor which uses copy-and-paste tech-
niques for editing exon structures, and a graphical interface for viewing analysis 
and annotation. Like Apollo, Otterlace includes a multiple sequence alignment 
viewer in the package (see Fig. 2b).

For the annotation of small genomes such as those of pathogens, Artemis is 
widely used (see Fig. 2c) (Rutherford et al. 2000). Artemis is a Java application 
which runs on all platforms and has been used to annotate the genomes of organisms 
such as Streptomyces coelicolor (Bentley et al. 2002), Candida albicans (Braun 
et al. 2005) and Plasmodium falciparum (Hall et al. 2002). Where software packages 
like Otterlace, Apollo, and Artemis are used to both annotate and view annotation, 
the two processes can be separated. This allows researchers to produce annotation 
in their tool of choice, export it in a suitable format such as Gene Transfer Format 
(GTF) (mblab.wustl.edu/GTF22.html) or General Feature Format (GFF) (www.
sanger.ac.uk/Software/formats/GFF/) and then display it, publicly or privately, in 
common genome browsers such as Ensembl or the UCSC Genome Browser using 
the Distributed Annotation System (DAS) [67-(Dowell et al. 2001; Finn et al. 2007).

multiple alignment
viewer

main annotation
window and viewer

a
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Fig. 2b The Otterlace annotation interface. Top: the Zmap annotation viewer with homology 
features and annotated transcripts. Split panels allow simultaneous viewing of different sections. 
Bottom: the Blixem multiple alignment viewer showing the alignment of homology features to the 
genomic sequence

annotation viewer homology features
(ESTs, cDNAs)annotated transcripts

multiple alignment viewer

b
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Fig. 2c The Artemis annotation interface showing GC content, sequence features, annotated 
features (colored or shaded boxes), sequence details, and textual information (bottom)

6.8  Gene Ontology and Community Annotation

As more genomes are sequenced and annotated, the need has arisen to unify the 
description of gene products within the model organism databases in the form of an 
agreed ontology. Ontology is a structured vocabulary, a hierarchy of terms that are 
precisely defined and which relate to one another in a meaningful way. The Gene 
Ontology (GO) Consortium (Ashburner et al. 2000) was formed to develop shared, 
structured vocabularies for the annotation of molecular characteristics across vari-
ous organisms. These characteristics are divided into three categories and have 
precise definitions and relationships to one another. Terms are arranged in a 
directed acyclic graph allowing a term to appear in several hierarchies. Vocabulary 
terms are linked by “is a” and “part of” relationships, so that very general terms and 
very precise terms can both be represented.

Many generic databases, including Ensembl, Interpro, Entrez Gene, Mouse 
Genome Informatics (MGI) and UniProt, include GO terms in their annotation either 
manually or automatically. The assignment of GO terms/accession numbers to a 
gene product allows rapid comparison and cross-reference between these databases. 
Gene ontology is continually expanding and can represent many complex concepts, 
including biochemical pathways and phylogenetic associations (Thomas et al. 
2007). Biological ontologies can be designed for basically any biological process, 
phenomenon or application, including anatomy, cell cycle, and biomedicine.

Gene Ontology annotation has also been a prominent feature in maintaining 
consistency in the recent FANTOM project community annotation of mouse 
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cDNAs (Kawai et al. 2001). Community annotation was pioneered with the 
Drosophila genome annotation at Celera, where 40 scientists worked together over 
a two week period to complete a preliminary annotation of the Drosophila genome 
(Adams et al. 2000). Many community annotations have followed for, amongst 
others: human (several instances of H-invitational meetings) (Imanishi et al. 2004; 
Yamasaki et al. 2008); mouse (several instances of FANTOM meetings)(Kawai 
et al. 2001; Bono et al. 2002; Okazaki et al. 2002; Carninci et al. 2005; Maeda et al. 
2006); Xenopus tropicalis frog; the Bos taurus cow genome; the Sus scrofa pig 
genome. These so-called annotation jamborees involve researchers coming together 
in one place and over the course of several days or weeks annotating large sets of 
genes to a common standard. Often participants specialize in specific families of 
genes or in genes related to specific diseases.

Annotation jamborees are a useful option for genome sequencing and annotation 
projects. However, a disadvantage of jamborees, is that they are generally one-off 
events, concentrating all the effort in a small amount of time, and they lack an 
update mechanism. For continuous community annotation it is preferable to use the 
Distributed Annotation System (DAS) (Dowell et al. 2001; Prlic et al. 2007). DAS 
allows anyone to set up a server to present analysis or annotation. Annotation can 
include any type of feature that can be expressed in coordinates of the relevant 
coordinate space. Using DAS, annotation from different sources can be shown simul-
taneously in a single genome browser without the need to store the data centrally. 
In addition, some databases have begun to incorporate Wiki pages so that users can 
add additional comments to entries and update information. Huss et al. (2008) have 
set up a Gene Wiki for the scientific community to edit. Available at en.wikipedia.
org/wiki/Category:Gene_stubs, its content is based on Entrez gene data and its aim is 
to encourage small contributions from a large number of users. The disadvantage of 
this type of community annotation is that it is not peer-reviewed for quality control 
and not monitored except by the community in general, and therefore spurious informa-
tion could be added. An alternative project at en.citizendium.org has recruited editors 
to monitor and review contributions and also applies a login system. This approach 
leads to a more trusted model for community participation in annotation projects.

6.9  Conclusion

With the anticipated increase in genomic and transcribed sequences the majority of 
future gene annotation will be produced automatically. Manual annotation will only be 
used for selected reference genomes and problematic regions. As demonstrated with 
the CCDS project, a consensus gene set, merging manual and automated procedures 
will be the optimal way forward for gene annotation. Regular user feedback is essential 
for improving annotation, however, whether this is supplied via the Wiki community 
approach or direct contact with the database curators is to be determined.
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7.1  Introduction – Pattern Recognition and Discovery 
in cis-Regulatory Informatics

The first complete genome sequences of eukaryotes revealed that much of the 
genetic material did not code for protein sequences (Lander et al. 2001; Venter et al. 
2001). Although this noncoding DNA was once thought to be “junk” DNA, it is 
now appreciated that large portions of it are actively conserved over evolution 
(Waterston et al. 2002; Johnston and Stormo 2003), suggesting that these regions 
contain important functional elements.

A first hypothesis about the function of this noncoding DNA is that it is involved 
in the regulation of gene activity. One of the best-understood mechanisms of gene 
regulation is the modulation of transcriptional initiation by sequence specific DNA 
binding proteins (or transcription factors). These proteins recognize short sequences 
in noncoding DNA that fall into families or contain consensus patterns or motifs.

In general, we have little understanding of how the information in noncoding 
regulatory sequence specifies complex patterns of gene expression. In analogy to 
the genetic code that translates DNA sequence to amino acids in a protein, researchers 
have suggested the existence of an unknown “cis-regulatory code” that translates 
DNA sequence to patterns of gene expression (Levine and Davidson 2005).

To specify complex patterns of regulation, genes are often regulated by multiple 
transcription factors, and the binding sites for these factors are organized into 
discrete regulatory regions, often called “enhancers” or “cis-regulatory modules.” 
These regulatory regions are often found in the proximal 5¢ promoter regions, but 
they may also occur much further upstream, downstream, or in intronic regions.
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It is these regulatory regions that execute the cis-regulatory code, and systematic 
identification of these noncoding DNA regulatory regions and the binding sites 
within them is of great interest in postgenome era molecular biology; the sheer 
vastness of the noncoding DNA sequence to be analyzed implies that computational 
methods will have an important role to play.

7.1.1  Two Major Challenges

The biological questions regarding cis-regulatory sequences can be broken into two 
major parts. The first can be thought of as identifying the patterns or motifs associated 
with each transcription factor. Given this set of patterns, the next challenge is to iden-
tify the specific positions in the noncoding DNA where the transcription factors actu-
ally bind in vivo. This is directly analogous to the two steps of a statistical clustering 
problem; first to identify the clusters and second to assign each datapoint to a cluster. 
As we shall see, sophisticated statistical methods aim to solve these simultaneously. 
This distinction is important because the experimental approaches to attack these 
problems can be quite different so that historically they were distinct problems. Here 
we will use the terminology that “motifs” or “consensus sequences” refer to the rep-
resentations of specificity or patterns associated with transcription factors, whereas 
“instances,” “matches,” or “regulatory sequences” refer to the specific places in non-
coding DNA where transcription factors are predicted or known to bind.

7.1.2  Overview of Regulatory Informatics

This chapter will cover three reasonably well defined types of bioinformatic appli-
cations. The first are databases and repositories for organizing, storing, and distributing 
experimentally identified regulatory sequences and motifs; next are pattern 
matching site prediction methods that begin with known motifs or patterns and 
attempt to predict the regulatory sequences in noncoding DNA; and finally are 
de novo or ab initio motif-finding methods that attempt to discover the motifs (and 
perhaps matches to them simultaneously). In each section, we provide a table with 
some examples of software implementations. However, these tables are not 
intended to be comprehensive, but are rather representative of the work in the area. 
As regulatory bioinformatics is still rapidly developing, readers should refer to 
recent reviews to find the latest implementations.

7.2  Databases and Repositories for Regulatory  
Sequences and Motifs

The simplest function of online databases is to store binding sites that have 
been characterized through biochemical and genetic experiments (Heinemeyer 
et al. 1998). The technically difficult aspect of these applications is to extract the 
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experimental data from the primary biological literature. Usually this is per-
formed by experts who read large numbers of papers and enter the results into 
the databases. More recently, computational text mining approaches have also 
been applied to extract regulatory sequences and information from the literature 
(Aerts et al. 2008). Several databases of curated motifs are described in 
Table 7.1.

7.2.1  Mathematical/Computational Representations of Motifs

Given a set of experimentally characterized regulatory sequences that are known to 
be bound by a particular factor, a first task is to identify and summarize the specificity 
of the transcription factor in a motif or consensus. There are two popular strategies 
to do this.

Table 7.1 Databases for storing experimentally identified cis-regulatory sequences

Resource Types of data Tools Notes

Transfaca Classification of 
transcription factors, 
experimentally 
proven binding sites, 
counts matrices

Many Available with 
subscription

Jasparb Matrices Logos, reverse 
complements, 
and more

Freely available, plant 
and animal matrices 
only

SCPDc Transcription factors, 
characterized binding 
sites, counts matrices, 
consensus sequences

Pattern matching Freely available, 
Saccharomyces 
cerevisiae only

REDflyd/Drosophila 
DNase I 
Footprint 
Databasee

Transcription factor 
binding sites and 
regulatory regions 
(CRMs) z

Links to genome-
wide alignments

Freely available, 
Drosophila 
melanogaster only

ORegAnnof Regulatory regions, 
Transcription factor 
binding sites,  
includes evidence  
for each  
record

Freely available, open 
source data and web 
application, integrates 
information from 
multiple databases

PRODORICg Transcription factor 
binding sites, 
operons, matrices, 
promoter  
architecture

Composite patterns, 
Genome Browser, 
and more

Freely available, 
prokaryotes only

a (Wingender et al. 1996), b (Sandelin et al. 2004a), c (Zhu and Zhang 1999), d (Gallo et al. 2006), 
e (Bergman et al. 2005), f (Montgomery et al. 2006), g (Münch et al. 2003)
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Matrix representation: Here each position of the motif is treated as a multinomial 
distribution on the residues. This representation of motifs is used in probabilistic 
methods and implies an infinitely large, continuous space of motifs. Despite this, 
the matrix representation has several attractive features, discussed in more detail 
later on in the chapter:

 (i) The parameters of the multinomial at each position can be readily estimated 
using statistical inference methods.

 (ii) The multinomial distribution at each position can be used to obtain a mea-
sure of “information” contained in each position in the motif (Schneider 
et al. 1986).

(iii) These multinomials can be transformed into “log-odds” or weight matrices, 
which are a computationally convenient form to store classifiers (Stormo 2000).

(iv) Experimental and theoretical evidence suggests that this representation is 
related to the binding energy of the protein-DNA interactions (Berg and von 
Hippel 1987).

Consensus representation: Consensus representations of motifs are more familiar 
to most biologists and have also been important for computational approaches. 
A consensus representation of a motif may simply be the most frequent letter at 
each position in the motif. Alternatively, “degeneracy codes” or mismatches may 
be used to represent non-optimal matches. The main computational advantages of 
the consensus representation are:

 (i) The space of motifs is discrete, so computational strategies for matching and 
de novo motif finding are highly efficient, and

(ii) The space of motifs is finite, so computational strategies for de novo motif-
finding can aim to search exhaustively.

To illustrate the various representations of motifs, we consider a set of known binding 
sites (called GATA sites) from the SCPD database.

 > YIR032C GATAAG
 > YIR032C GGTAAG
 > YIR032C GATAAG
 > YJL110C GATAAT
 > YKR034W GATAGA
 > YKR034W GATAAC
 > YKR039W GATAAG
 > YKR039W GATAAC

The consensus representations for this motif might be GATAAG with one mismatch 
allowed or GRTARN where R represents A or G and N represents any base.

We next derive the maximum likelihood estimate (MLE) for the frequency matrix 
representation using this example. This example will introduce the notation and 
terminology that we will use later on in the chapter. We represent the sequence data 
at each position as a four-dimensional vector, where each dimension corresponds to 
one of the bases A, C, G, T.
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This is often referred to as a “counts” matrix and such matrices are provided by 
many databases.
The likelihood of the data is defined as the probability of the data given the model, i.e.,

=( ) ( | model)L X p X

where p(A|B) represents that probability of the random variable A conditioned on the 
random variable B. Under the multinomial model for each position, the likelihood of 
the counts matrix X is the product of the probability of each base, in our case

 
=

= ´ ´ ´ ´ ´ ´ ´ ´ ´ ´8 7 1 8 8 7 1 1 2 4 1
1 2 2 3 4 5 5 6 6 6 6

( ) ( | motif)

G A G T A A G A C G T

L X p X

f f f f f f f f f f f
 

where f are the parameters of the multinomial at each position in the motif. This can 
be written compactly as

 
= Î

=Õ Õ
1

( | motif) ib

w
X

ib
i b ACGT

p X f  

where i is the position in the motif, and b indexes the bases. To find maximum 
likelihood estimators (MLEs) of these parameters, we simply need to find the 
values of the parameters that maximize this function. The simplest strategy to do 
this is take derivatives with respect to the parameters and set them to zero. However, 
in this case, as in many probabilistic models, taking derivatives of the products 
is difficult. To get around this issue, we instead optimize the logarithm of the likeli-
hood, such that the products become sums. Because the logarithm is monotonic, 
any values of the parameters that maximize the logarithm of the likelihood will also 
maximize the likelihood. In addition, we note that we will not accept any values of 
the parameters as the MLEs: we want to enforce the constraint that the probabilities 
at each position must sum to one, =å 1ibb

f . Such constraints can be included using 
Lagrange multipliers. Putting 

all this together gives

 l
= Î

æ ö
= + -ç ÷è øå å å

1

log[ ( )] log 1
w

ib ib ib
i b ACGT b

L X X f f  

as the function we wish to maximize, where l is the Lagrange multiplier. We now 
set the derivatives with respect to each of the frequency parameters to zero. 
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For example, using the linearity of the derivative and that =
d 1

log( )
d

x
x x

, for the 
parameter at position j, for base c, we have

 l
¶

= - =
¶

log[ ( )] 0jc

jc jc

X
L X

f f
 

Solving this and substituting into the constraint gives 
l

= jc

jc

X
f  and l = å jbb

X , 
the total number of observations at position j.

Thus, we have the intuitive result that the MLE of the frequency for each base 
is just the number of times we observed that base (X

qc
) divided by the total number 

of observed bases at that position. It is important to note that in our example, our 
estimates of the frequency at position 1 are f

1 
= (0,0,1,0). This implies that based on 

our data we conclude that there is no probability of observing “A,” “C,” or “ T ” at this 
position. Given that we have only observed 8 examples of this motif, this seems a 
somewhat overconfident claim. Therefore, it is common practice to “soften” the 
MLEs by adding some “fake” or pseudo data to each position in the counts matrix. For 
example, if we use 1 as the psuedocount, our estimate of the frequencies at the first 
position becomes f

1
 = (1/12,1/12,9/12,1/12), and reflects our uncertainty about the 

estimates. These pseudocounts can be justified statistically using the concept of 
prior probabilities, which is discussed in detail elsewhere (Durbin et al. 1998).

7.3  Identifying Binding Sites Given a Known Motif

Given a matrix or consensus representation of a motif, we now consider the problem 
of identifying new examples of binding sites.

Given a consensus representation, it is possible to say for each possible sequence 
of length w, whether it is a match to the motif or not. For example, a consensus 
sequence with a mismatch allowed at any position will match 1+4w of the 4w 
possible sequences of length w. For our example of GATAAG with one mismatch, we 

have 
+ ´

= =
6

1 4 6 25
0.0061

40964
. This means that 0.6% of 6-mers will match this

motif. For the degeneracy code representation, the number of sequences that 
match is the product of the degeneracies at each position. For GRTARN, this is
´ ´ ´ ´ ´

= =
6

1 2 1 1 2 4 16
0.0039

40964
. Although this may seem to be a few (99.6% of

sequences do not match), in a random genome of 100MB, we expect ~390,000 
matches by chance! This is two orders of magnitude greater than the maximal 
reasonable expectation for the number of GATA sites in a genome. Although real 
genomes are not random, matches to motifs do occur frequently by chance, swamping 
the number of matches that are functionally bound in the cell. The so-called 
“Futility Theorem” (Wasserman and Sandelin 2004) conjectures that the large number 
of random matches relative to functional binding sites makes identification based on 
pattern matching futile.
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Using the matrix representation of the motif, for any sequence of length w, we 
can follow a number of explicit statistical classification strategies to decide whether 
a sequence is an example of the binding site. Here we use X to represent a single 
sequence of length w.

One commonly used test statistic to compare two models is the likelihood ratio 
(not to be confused with a likelihood ratio test). In our case, we compare the likeli-
hood that the sequence of interest, X, is drawn from our motif frequency matrix, to 
the likelihood that X was drawn from a background null distribution. There are 
many ways to construct such a background distribution; here we consider the 
simplest, namely, that the background is a single multinomial.

If the sequence we are considering is GATAAG, =

0 1 0 1 1 0

0 0 0 0 0 0

1 0 0 0 0 1

0 0 1 0 0 0

A

C
X

G

T

,

we can calculate the likelihood of X under the models as we did for the counts 
matrix above. In the case of the matrix model for the motif (f) and a background 
distribution (g), the likelihood ratio is simply

 = Î

= Î
= Î

æ ö
= = = ç ÷è ø

Õ Õ å å
Õ Õ

1

1
1

( | motif)
( ) log log log

( | )

ib

ib

w X w
ibi b ACGT ib

ibw X
i b ACGT bbi b ACGT

f fp X
S X X

p X bg gg
 

Thus, S(X) provides a quantitative measure of how similar a sequence is to the 
frequency matrix. When S(X) > 0, X is more similar to the motif model than the 
background model.

To identify new examples of the motif in a new sequence, a typical strategy is 
to compute the statistic, S, for each overlapping subsequence of length w in the 
sequence. For computational simplicity, this is often done using a “weight” matrix 

in which entries are given by 
æ ö

= ç ÷è ø
log ib

ib
b

f
M

g
, where as above, i indexes the position

in the motif, and b indexes the nucleotide bases. To calculate S, one simply adds up 
the entries in this matrix corresponding to the observed bases. In our notation, this 
can be written simply as the inner product

S(X) = M . X

For the example above, using g = (0,3,0,2,0,2,0,3) this is

 

- - -é ù
ê ú- - - é ùê ú ê úê ú- - - ê ú= =ê ú ê ú- - -ê ú ê úê ú- - - ë ûê ú
-ê úë û

1.28 0.875 1.32 1.28

0.799 0.875 0.182 1.28 0 1 0 1 1 0

1.28 0.875 0.875 0.916 0 0 0 0 0 0
( ) · 5.4

0.916 0.875 0.875 1.28 1 0 0 0 0 1

0.799 0.875 0.182 1.28 0 0 1 0 0 0

0.588 0.223 0.734 0.588

S GATAAG 85  
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the maximum possible likelihood ratio score for this matrix. Some examples of 
implementations of matrix matching are described in Table 7.2.

7.3.1  Choosing a Cutoff for the Likelihood Ratio

An important question in using such a classification framework is how high a value 
of S is needed before we can be confident that we have identified a novel example 
of the motif. Several approaches to this problem have been proposed. There is a 
finite set of possible scores to a matrix model, and the maximum and minimum 
score for each matrix are different. In order to standardize the scores when comparing 
between multiple matrix models, the likelihood ratio for a particular sequence is 
often transformed into normalized score that reflects how close it is to the maximum 
score. For example, the transformation

 
-

=
-

MIN

MAX MIN

( )
( )

S X S
S X

S S
 

standardizes the scores to fall between zero and one, which can be interpreted 
intuitively.

We next consider three statistically motivated approaches to standardizing the 
scores from matrices in order to choose a cutoff. The classical statistical treatment 
(Staden 1989) of this problem is to treat the background distribution as a null 
hypothesis and consider the P-value or probability of having observed the score S 
or more under the background distribution. In order to calculate P-values, we must 
add up the probabilities of all sequences X that have a score greater than S, which 
means enumerating ~4w sequences. However, because the positions in the motif are 
treated independently, these calculations can be done recursively in computational 
time ~4w. This allows us to calculate, for each value S, the P-value under the null 
hypothesis (Fig. 7.1).

It is important to note that the validity of these P-values depends on the accuracy 
of the null model or background distribution. For this reason, it is often preferred 
to use an “empirical” null distribution in which the P-value is computed simply by 
counting the number of times a score of S or more is achieved in a large sample of 
“null” sequences comprising genomic sequence not thought to contain real examples 
of the binding site.

Regardless of the method for obtaining these P-values, in a sequence of length 
l, we expect to test l − w subsequences, and therefore can apply a multiple testing 

Table 7.2 Tools for matrix matching

Tool Purpose Notes

Patsera Matching known matrices to sequences Calculates P-values
Delila-genomeb Matching known matrices to sequences Information theory-based scoring
a (Hertz and Stormo 1999), b (Gadiraju et al. 2003)
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correction to these P-values to control the expected false positives. For example, if 
we are to search a promoter of one KB of sequence, and we expect one match, we 
might choose the cutoff 0.05/1000 = 5×10 − 5, known as the Bonferoni correction. 
Alternatively, we can express the confidence as an E-value (or expect value, which 
is the P-value multiplied by the number of tests) or using a correction for false 
discovery rate (Benjamini and Hochberg 1995).

A second statistical approach to choosing a threshold for classification is to 
note that likelihood ratio statistics such as this have the attractive property that 
when S > 0, the likelihood of the sequence under the motif model is higher than 
that under the background model, and under the “maximum likelihood” (ML) rule 
for classification we should assign the data to the model that has the higher likelihood. 
However, this rule carries the implicit assumption that our prior expectation is that 
each subsequence is equally likely to be an example of the motif or the background 
model. In a real regulatory region, the unknown locations of binding sites might 
represent a small number of positions amongst thousands of basepairs of back-
ground sequences. This “prior” expectation can be incorporated in a maximum a

posteriori classification rule (MAP) by using p
p
-æ ö> ç ÷è ø

1
logS , where p is the prior 

probability of observing the motif.

Finally, using these priors, it is also possible to compute the posterior probability 
that a given position in the sequence is an example of the motif using Bayes’ 
theorem

 = =
- p+ +

p ( )

( | motif) (motif) 1
(motif | )

1( | motif) (motif) ( | ) ( ) 1 S X

p X p
p X

p X p p X bg p bg
e
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Fig. 7.1 Exact P-values for the likelihood ratio score
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This yields a number between 0 and 1 that is intuitively interpretable and can be 
expressed as a function of the likelihood ratio statistic S(X).

Classification based on the likelihood ratio affords greater control of the false 
positives, as it allows us to increase the cutoff as the search becomes large, thus 
reducing the number of spurious matches. However, even the best possible match 
to the matrix will still occur by chance in about 4w base-pairs. Thus, while the likeli-
hood ratio gives a quantitative measure of how close a putative sequence is to the 
matrix, it does not address the large number of expected matches in random 
sequence – matrix matching does not escape the Futility Theorem.

7.3.2  Relationship to Information Theory

Given this statistical model of motifs, it is possible to ask for each frequency 
matrix, how strong a classifier is it. In other words, given that a sequence is a true 
example of the motif, how easy is it to distinguish from the random background. To 
measure this quantitatively, we can calculate the average or expectation of S given 
than the sequences have come from the motif model. This average is over all pos-
sible sequences of length w. However, as with the P-value calculation above, we 
can use the independence of positions in the motif model to factor this sum

 
= Î

æ ö
= = =ç ÷è ø
å å å
all 1

[ ( ) | ] ( ) ( | motif) log I
w

pb

pb
X p b ACGT b

f
E S X motif S X p X f

g
 

where E[ ] represents the expectation. Interestingly, this formula can also be 
obtained using an information theoretic approach (Schneider et al. 1986). If base 2 
is used for the logarithms, I is known as the “information content” in the motif and 
gives a value in bits (Schneider et al. 1986). Several interesting bioinformatic 
results can be obtained from this information theoretic perspective. For example, in 
the case of the uniform background distribution, the probability of observing a 
match to the matrix with score  > 0 in random sequence is given by 2 − I. Furthermore, 
the information theoretic perspective yields an intuitive relationship between the 
presence of binding sites in noncoding sequence and the entropic force of random 
mutation. Indeed, some early “de novo” motif finding approaches (Stormo and 
Hartzell 1989) were motivated by the assumption that the motif in a set of binding 
sites would be the maximally informative motif, and this could be quantified by 
searching for the patterns with the most information.

The information content of a motif as defined above is also the Kullback–Leibler 
divergence (Kullback and Leible 1951) between the motif model and the back-
ground distribution, and can be shown to be related to the average binding energy 
of the transcription factor for its target binding sites (Berg and von Hippel 1987). 
The convergence of the statistical, information theoretic and biophysical treatments 
of this problem on the formula above is a great achievement in computational biology, 
and suggests that there are deep connections between the models that have motivated 



1477 Regulatory Motif Analysis

BookID 151692_ChapID 7_Proof# 1 - 21/08/2009

these analyses. As we shall see below, the likelihood ratio, S(X) will have an important 
role to play in de novo motif finding as well.

7.4  Second Generation Regulatory Sequence Prediction 
Methods: Combinations and Conservation of Motifs  
to Improve Classification Power

A simple calculation of the P-values or information content for an example motif 
indicates that in a large genome, high-scoring matches to the motif matrix are very 
likely to appear even under the background null model. This is the motivation of the 
so-called Futility Theorem: if bona fide regulatory elements are rare, searching for 
them with motifs as described above will yield many false positives and have little 
power to identify functional examples of binding sites. Two major approaches have 
been developed to improve predictive power, and we discuss each of these in turn.

7.4.1  Exploiting Binding Site Clustering

The first method is to search for combinations or clusters of transcription factor 
binding sites (Wasserman and Fickett 1998; Markstein and Levine 2002). Some 
transcription factors tend to have multiple binding sites in short regions, so as to 
increase the probability of binding to the DNA in that region. This results in what is 
sometimes called “homotypic clustering” of binding sites (Lifanov et al. 2003), i.e., 
an above average density of binding sites of the same factor at a locus. Moreover, 
transcriptional regulation is known to be combinatorial, i.e., multiple transcription 
factors often act in concert to regulate the activity of a target gene. Therefore, regulatory 
sequences may have binding sites for multiple transcription factors, a phenomenon 
called “heterotypic clustering.” From the perspective of pattern recognition, the 
presence of multiple binding sites improves the signal to noise ratio.

To take advantage of the additional signal, methods (Table 7.3) have been designed 
to search for regions of the genome that contain multiple closely related binding sites. 
A simple implementation of this idea is to begin with one or more motifs, predict sites 
matching each motif using the method described above, and count the number of sites 
in a sequence window of some fixed length (Berman et al. 2002; Halfon et al. 2002). 
One would then scan the entire genome for windows with the largest numbers of sites 
and the predicted binding sites in those windows would be reported.

This simple approach has been shown to empirically add statistical power to 
regulatory sequence prediction. However, one potential problem with this scheme is 
its use of ad hoc (and usually high) thresholds on matches to motifs when the matrix 
representation is used. There are biological examples of regulatory sequences that 
function by using several weak affinity binding sites rather than one or a few strong 
sites (Mannervik et al. 1999). Identifying weak sites would require very low thresholds 
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on S(X) in our computational procedure (Sect. 3), leading to a large number of site 
predictions, including several false ones. What is needed here is a method that con-
siders both the number and strengths of binding sites in a candidate regulatory 
sequence: it should accommodate the presence of weak binding sites, but more 
of these should be required to provide as much confidence as a smaller number of 
strong sites. Since the strength of binding sites cannot be captured by consensus 
string models, the following discussion will assume a matrix model of motifs.

One way to allow for the clustering of motifs of different strengths is to score 
every substring X in a sequence window using the score S(X) described above, 
and determine the sum of these scores. That is, the sequence window Y is scored by

=
= å 1

( ) ( )
Y

ii
T Y S Y  where Y

i
 is the substring at offset i in Y. This allows us to assess 

the extent of homotypic clustering in Y, while allowing for strong as well as weak 
sites, and without imposing any thresholds. This scheme could be extended to work 
with more than one motif by simply summing over the motifs. Notice however, that 
adding the different S(Y

i
) terms amounts to multiplying probabilities of events, 

which is questionable since the events (different Y
i
) are not independent. Another 

alternative is to use 
=

= å ( )

1
( ) iS Y

i

Y
T Y e . This in fact is more justified statistically, as

we see next. Consider a probabilistic process (Segal et al. 2003) that generates 
sequences of length L

Y
 = |Y| by:

(a) Choosing, uniformly at random a number i between 1 and (L
Y
 − w + 1),

(b) Sampling a site (of length w) from the motif,
(c) Planting this site starting at position i (and ending at position i + w − 1), and
(d) Sampling every other position (outside of i … i + w − 1) from the background 

frequency distribution.Denoting the random variable indicating the start posi-
tion of the planted site (step c) by i, we have the joint probability

 
Ï + -

=
- + Õ

{ ... 1)

1
( , ) ( | motif) ,

1 ji Y
j i i wY

p Y i p Y g
L w

 

where g
x
 is the background probability of base x. Summing this over all i to obtain 

p(Y), and contrasting it with the likelihood under the null model, we get the likeli-
hood ratio as

Table 7.3 Methods to search for clusters of binding sites

Tool Purpose Notes

MASTa Identifies matches to motif matrix Combines P-values for multiple motifs
cis-analystb Identifies clusters of matrix matches User defined sliding window and matrix 

cutoffs
Stubbc Identifies clusters of matrix matches Uses HMM; User defined sliding window
Cluster busterd Identifies clusters of matrix matches Uses HMM; window length automatically 

learned
a (Bailey and Gribskov 1998), b (Berman et al. 2002), c (Sinha et al. 2006), d (Frith et al. 2003)
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which equals (up to a constant factor) the score = å ( )( ) iS Y

i
T Y e suggested above.

A more comprehensive materialization of this idea is in the form of “Hidden 
Markov Model” (HMM) based methods. Such methods assume a “generative 
model” for regulatory sequences, and compute the likelihood of the sequence under 
the model. The generative model is a stochastic process with states corresponding 
to motifs for the different transcription factors that are expected to be involved in 
combinatorial regulation of the genes of interest (Fig. 7.2). The process visits the 
states probabilistically, and emits a sample of a motif whenever it visits the state 
corresponding to that motif (Fig. 7.2, red arrows). The emitted binding site is 
appended to the right end of the sequence generated thus far. A “background” state 
(Fig. 7.2, BKG) allows for these emitted binding sites to be interspersed with 
randomly chosen non-binding nucleotides. At any point, the process may transition 
to any state with some fixed probability called the “transition probability” of that 
state, which is a parameter of the model. (Fig. 7.2, p

1
, p

2
, p

3
, p

b
). Different imple-

mentations take different strategies to choosing values for these parameters. 
The sequence of states that the process visits is called a “path” of the HMM. 

Fig. 7.2 Hidden Markov Model for CRM discovery
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Any given sequence Y may be generated by many exponentially paths, and the joint 
probability p(Y, p) of the sequence Y and a particular path p can be computed 
efficiently. The likelihood of the sequence Y is then computed by summing over 

all possible paths, i.e., 
p

q = qpå( | ) ( , | )p Y p Y , where q denotes the parameters of

the HMM. This summation can be performed efficiently using the algorithmic tech-
nique of “dynamic programming.” The score of sequence Y is the log-ratio of this 
likelihood to the likelihood of Y being generated by a background model (that does 

not use the motifs), i.e., 
q
q

=
b

( | )
( ) log

( | )

p Y
T Y

p Y
 where q

b
 denotes the parameters of

the background model, and p(Y|q
b
) is the likelihood of this model.

7.4.2  Evolutionary Comparisons for Regulatory  
Sequence Prediction

A second major class of methods to improve the predictive power in the search for 
regulatory sequences is the incorporation of evolutionary information. The intuition 
here is that mutations in functional sequences will lead to a fitness defect, and indi-
viduals carrying them will be removed from the population by natural selection. 
Mutations in nonfunctional sequences will have no effect on fitness, and therefore 
may persist in the population and become fixed through genetic drift. Thus, over 
long evolutionary time, functional noncoding sequences will show few changes in 
their sequences, while nonfunctional sequences will evolve rapidly. This is the 
guiding principle of comparative genomics.

In order to apply comparative methods, the first step is to identify orthologous 
noncoding DNA sequences. There are many ways to accomplish this. In some cases 
simply searching closely related genomes for similar sequences can identify the 
orthologous noncoding regions. More sophisticated approaches include distance or 
tree-based methods to rule out paralogous regions, as well as considering the 
homology of nearby coding regions to ensure chromosomal synteny. Once orthologous 
noncoding sequences have been identified, these must be aligned, preferably using a 
DNA multiple aligner that performs a global alignment of the shorter sequence.

The technique of identifying evolutionarily conserved sequences in alignments 
has been called phylogenetic footprinting, to indicate the idea that functional con-
straint leaves a footprint of conservation in DNA sequences. Simple approaches to 
phylogenetic footprinting identify regions of alignments of noncoding regions above 
a certain percentage identity cutoff. Such comparative methods were first combined 
with matrix matching approaches by requiring that the matches to the matrix fall into 
“conserved” regions. These approaches have been demonstrated to greatly improve 
the power of motif matching methods by removing large numbers of false positives.

More elegant statistical approaches to phylogenetic footprinting employ explicit 
probabilistic models for the evolution of noncoding DNA. Based on the hypothesis 
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that functional sequences will evolve at a slower rate than surrounding regions, 
methods have been developed that explicitly compare the likelihood of each stretch 
of sequence under slow or fast evolutionary models. Because the sequences in the 
multiple alignments have evolved along an evolutionary tree, it is necessary to 
explicitly account for their phylogenetic relationships using an evolutionary model. 
This can be done by using a continuous-time Markov process to model the substitu-
tions between the DNA bases, and a phylogenetic tree relating the sequences, in 
which the bases in the ancestral sequences are treated as unobserved or hidden 
variables. To compute the likelihood of such a model it is necessary to sum over all 
possible values of (or marginalize) the hidden variables (Felsenstein 1981).

Like the multinomial models for single sequences described above, probabilistic 
evolutionary models treat each position in the sequence independently, although 
rather than single bases at each position, the data are now columns in the multiple 
alignment. For example, for a pair wise alignment we have a tree with three nodes, 
the two sequences, X and Y and the unobserved ancestral sequence A. The likelihood 
of the pair wise alignment can be written as

 
1

( , ) ( , | , )
l

i i
i

L X Y p X Y R T
=

= Õ  

where the joint probability of the sequences can be written in terms of the unob-
served ancestral residue as

 ( | , ) ( | , , ) ( ) ( | , , ) ( | , , ) ( )
i i

i i i i i i i i i i i
A ACGT A ACGT

p X Y R T p X Y A R T p A p X A R T p Y A R T p A
Î Î

= =å å  

where R represents the transition matrix of the continuous time Markov process, T 
represents the topology of the evolutionary tree (in this case the three nodes) and 
p(A) are prior probabilities on the ancestral bases, and are usually assigned to be 
equal to the equilibrium distribution of the continuous time Markov process. An 
important feature of this model is that the evolution along each lineage (that leading 
to X and that leading Y) is independent, conditioned on the state of the ancestor A. 
To identify conserved sequences, one can form a likelihood ratio at each position 
between a “background” evolutionary model, say R

b
, and a “conserved” evolutionary 

model where substitutions happen at a slower rate, R
c
.

 ( , | , )
( , )

( , | , )
i i c

i i
i i b

p X Y R T
U X Y

p X Y R T
=  

Extending this approach further, it is possible to posit a “hidden” state determining 
whether a piece of alignment is drawn from a conserved model or from the back-
ground model, and develop an HMM to identify conserved sequences. HMMs 
emitting columns of alignments rather than individual residues are often referred to 
as “phylo-HMMs” and are increasingly used in comparative genomics.

Finally, it is possible to combine probabilistic models for sequence evolution  
for the specificity and evolution of the transcription factor binding sites and the 
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background sequences. The critical step here is to assign the prior probabilities on 
the ancestral states to be the frequencies in the motif matrix. Classifiers based on 
these models can be constructed in much the same way as described above and have 
achieved much greater predictive power than approaches that match in single 
sequences.

Table 7.4 lists some of the implementations employing approaches utilizing 
comparative information.

7.5  De novo Motif-Finding

So far, we have assumed that the specificity of transcription factors was known, and 
the goal was to identify the regulatory regions or binding sites they controlled. 
However, in many cases, neither the sequence specificity, nor the binding sites of a 
transcription factor are known. Instead, the challenge is to infer the sequence speci-
ficity directly from a set of noncoding DNA sequences believed to contain binding 
sites. These methods rely on little biological information and are often referred to 
as “de novo” or “ab initio” because the computational method must identify the 
new motifs, starting from the beginning.

7.5.1  Statistical Overrepresentation of Consensus  
Sequence Motifs

The first approach to the ab initio discovery of transcription factor motifs assumes 
that the motifs are described by their consensus sequences (Sect. 2). There are a few 
commonly used variants of this motif model. In the simplest model, the motif is a 
string over the four letter alphabet {A, C, G, T}, and binding sites are required to 
be exact occurrences of the string (van Helden et al. 1998). In a second variant, the 

Table 7.4 Comparative methods to identify regulatory sequences

Tool Purpose Notes

ConSitea Identifies conserved  
matrix matches

Pairwise analysis only

VISTAb Identifies conserved regions,  
matrix matches

Popular graphical display format

Footprinter Packagec Identifies conserved regions Uses (i) binomial distribution and  
(ii) parsimony-based approaches  
to asses conservation in windows

eShadowd Identifies conserved regions Uses likelihood ratio tests
PhastConse Identifies conserved regions Uses phyloHMM
MONKEYf Identifies conserved matches  

to matrix models
Probabilistic model of binding site 

evolution, computes P-values
a (Sandelin et al. 2004b), b (Dubchak and Ryaboy, 2006), c (Blanchette and Tompa 2003), d (Ovcharenko 
et al. 2004), e (Siepel et al. 2005), f (Moses et al. 2004b)
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binding sites are allowed to be at most one mismatch (Hamming distance 1) away 
from the motif sequence (Tompa 1999). A third commonly used model uses 
“degenerate symbols” such as “R” (which stands for “purine,” i.e., “A” or “G”) and 
“Y” (for pyrimidine, i.e., “C” or “T”) in the motif alphabet, and binding sites have 
to be exact matches with any of the allowed nucleotides at the degenerate positions 
(Sinha and Tompa 2000). Typically, the motif is specified to be of a short ( < 10 bp), 
fixed length k. Each of the above motif models clearly defines a “search space” of 
all possible motifs; e.g., in the first variant, the search space includes all 4k strings 
of length k. It also lays out a prescription to count a motif’s occurrences in any 
given sequence. Ab initio motif discovery in this framework then amounts to find-
ing the one (or few) motif(s) in the search space that has the greatest statistical 
significance, as determined by their respective counts in the given set of sequences. 
We will next see a simple illustration of how such statistical significance may be 
determined.

Suppose we are given a DNA sequence S of length L
s
, and a motif m. Let N(S,m) 

denote the count of m in S. Next, consider a random sequence X, also of length L
s
, 

that is generated by sampling one character at a time, as per the probability distribu-
tion {p

a
, p

c
, p

g
, p

t
}. The count N(X,m) is therefore a random variable defined by the 

generative process (the “null model”), whose probability distribution will tell us 
about the statistical significance of m. Intuitively, if it is highly unlikely that a count 
of N(S,m) or greater is observed in a random sequence, then we should interpret the 
motif m as being statistically overrepresented in S. Let us define p

m
 as the probability 

that motif m occurs at a specific position in X. In the simplest motif model of exact 
matches, this is given by

 
1

i

k

m m
i

p
=

= pÕ  

Now, consider each of the positions j = 1 to j = L
s
–k + 1, where the motif m may 

occur in the random sequence X. The probability of occurrence of m at position j is 
given by p

m
, for all j. If we further assume that these events are independent, we 

have L
s
 − k + 1 independent and identically distributed (“i.i.d”) Bernoulli trials with 

parameter p
m
. Therefore, the number of occurrences of m in X follows a Binomial 

distribution with parameters L
s
 − k + 1 and p

m
. That is, the P-value of the observed 

count N(S,m) is given by

 1

( , )

1
(1 ) sL k ns n

m m
n N S m

L k
p p

n
- + -

³

- +æ ö
-ç ÷è øå  

This is an estimate of the statistical significance of the motif m in sequence S (van 
Helden et al. 1998). The smaller the value, the greater the significance.

In the above calculation, we made a crucial assumption that the events of motif 
m occurring at different positions in a sequence are statistically independent. This 
is obviously a flawed assumption, since a motif’s occurrence at a position j and 
the next position j + 1 (overlapping occurrences) are dependent variables: for a 
self-overlapping motif like “AAAAAA,” occurrence at a position j implies a high 
probability of occurrence at the very next position j + 1, while for a motif such as 



154 A. Moses and S. Sinha

BookID 151692_ChapID 7_Proof# 1 - 21/08/2009 BookID 151692_ChapID 7_Proof# 1 - 21/08/2009

“ACGTTG,” occurrence at j and j + 1 are mutually exclusive events. We therefore 
turn our attention to a slightly different approach to evaluating statistical signifi-
cance – through the use of “z-scores.” We shall see how the flawed independence 
assumption is avoided in this new approach.

We assume the same null model as above, i.e., the random sequence X is generated 
by L

s
 i.i.d. samples from the probability distribution {p

a
, p

c
, p

g
, p

t
}. Let X

mi
 be an 

indicator random variable for the occurrence of motif m at position i. That is, this 
variable takes the value “1” if m occurs at position i in X, and “0” otherwise. Let X

m
 

be the count of m in X. That is,

 
1

 where 1
L

m mi s
i

X X L L k
=

= = - +å  (7.1)

Note that the observed count N(S,m) is the value of this random variable X
m
 for the 

sequence S. Let m
m
 = E(X

m
) denote the expectation of this random variable, and s

m
 

denote its standard deviation, under the i.i.d null model. Then we define the z-score 
of the motif m as

 ( , )
( , ) m

m

N S m
z S m

m
s

-
=  

This is the number of standard deviations by which the observed count exceeds the 
expectation. A high value of this statistic indicates statistical significance. Our next 
task then is to compute the mean and standard deviation of X

m
.

The expectation follows directly from (7.1). We note that the expectation of a 
sum is the sum of the expectations (the principle of “linearity of expectation”); 
hence we have

 ( )( ) ( ) ( 1)m mi mi mi mE X E X E X p X Lp= = = = =å å å  

Here, the third equality comes from the fact that the expectation of an indicator 
(0/1) variable is simply the probability of it being 1. Also, p(X

mi
 = 1) is equal to p

m
, 

as seen above. The standard deviation computation is slightly more complicated, 
but similar in spirit. Recalling that the variance is given by 2 2 2( ) ( )m m mE X E Xs = - , 
we need only to calculate 2( )mE X , for which we have

( )
+ - - +

= + = +

+ - - +

= + = +

æ ö æ öæ ö
= = = + +ç ÷ ç ÷ç ÷è ø è ø è ø

æ ö æ öæ ö
= + +ç ÷ ç ÷ç ÷è ø è ø è ø

å å å å å å å

å å å å å

1 122 2

, 1

1 1
2

1

( ) 2 2

2 2

i k L k

m mi mi mj mi mi mj mi mj
i j i i j i i j i k

i k L k

mi mi mj mi mj
i i j i i j i k

E X E X E X X E X X X X X

E X E X X E X X

Note that the first term is simply ( ) ( )mi mi
E X E X=å  since X

mi
 is an indicator 

variable.
The second term is (twice of) the expected number of occurrences, in a sequence 

of length L, of two overlapping sites matching the motif. This may be computed by 
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enumerating all strings of length 2k − 1 or less that have two overlapping occur-
rences of m, and adding their expectations, computed in the same way as E(X

m
). 

This term makes the variance depend on the self-overlapping structure of motif m. 
It is easy to see that among two motifs with the same p

m
, and hence the same mean, 

if one has self-overlap and the other does not, the former will have the greater vari-
ance in its count. Finally, the third term amounts to (twice of)

 

1

2 1 1

1
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2

1
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Here, the third equality follows from the fact that in an i.i.d. generated sequence, 
nonoverlapping occurrences are independent events. Note that if the null model is 
not i.i.d., and instead follows a higher order Markov chain (as is often the case), this 
independence assumption falls through, and other techniques are required to efficiently 
compute the third term.

The above calculations have been performed under several simplifying assump-
tions. In practice, the null model is often taken to be a second or third order Markov 
chain to capture adjacent nucleotide correlations that are present in real genomic 
sequences. The motif model typically allows for mismatches, so that the random 
variable X

m
 must represent counts under that model. Another complication arises from 

the fact that motif finding is often performed on both strands of the given sequence(s). 
Counting occurrences of the motif on both strands leads to additional statistical 
dependencies that must be handled. It is possible to extend the above calculations to 
account for all these complications in an efficient manner (Sinha and Tompa 2000).

7.5.2  De novo Motif Finding for the Matrix Representation

The classical probabilistic formulation of the motif finding problem posits that a 
biological sequence is made up of short subsequences, each of which may be an 
instance of the motif or drawn from a random background distribution (Table 7.5). 
The first models used in motif-finding were designed to solve the following problem. 
Given a set of sequences each containing one example of an unknown motif at an 
unknown location, find both the motif and the locations. From this perspective 
motif-finding was related to multiple alignments, such that the unknown position 
of the binding site was the point at which the sequences could be placed into 
ungapped multiple alignments.

Here we treat a slightly more general, but intuitively simpler version of this 
problem, where there is no constraint on the input sequences or the number of 
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motifs in each input sequence. This implies a simple, two-component mixture 
model where each subsequence of length w is drawn from either the motif or 
background multinomials. In practice, modern de novo motif finders often 
provide several variations on the assumptions about the distribution of motifs in 
the input data.

If each subsequence is considered to be independent, the likelihood of the entire 
sequence under the mixture model can be written as the product of all the subse-
quences of length w,

 
1

( ) ( | motif) (motif) ( | ) ( )
l w

i i
i

L X p X p p X bg p bg
-

=

= +Õ  

where i indexes the position of the beginning of the subsequence relative to the 
input sequence X. Above, in the case of the multinomial model for a counts matrix, 
it is possible to maximize the likelihood directly and obtain the parameter 
estimates. However, it is not possible to obtain closed form solutions for the 
parameter estimates by directly differentiating the likelihoods of mixture models 
such as the one proposed above. Two major strategies have been employed for 
optimization, namely sampling approaches (here we consider Gibbs sampling) and 
Expectation-Maximization (EM), and we discuss each in turn.

7.5.2.1  Expectation-Maximization

The EM approach views the free parameters of the model as the unknown frequencies 
of each residue in the multinomial at each position in the motif. This means that for 

Table 7.5 De novo motif finding methods

Tool Purpose Notes

RSATa/YMFb Consensus string based 
moti f-finder

Word statistics with enumeration  
of motif space

MobyDickc Consensus string based  
motif-finder

Uses a segmentation algorithm  
to identify optimal “words”

MITRAd Exhaustive consensus 
with mismatch search

Uses suffix tree

Weedere Exhaustive search with 
statistical ranking

Best performing algorithm in a systematic 
comparison (Tompa et al. 2005)

Gibbs Motif samplerf Matrix-based de novo  
motif finder

Original Gibbs sampler

MEMEg Matrix-based de novo  
motif finder

Popular EM-based method, includes 
several models for the distribution  
of motifs in the input sequences

Consensush Matrix-based de novo  
motif finder

Information based method

NestedMICAi Matrix-based de novo  
motif finder

Nested sampling method; no need for 
initial “seeding” step

a(van Helden et al. 1998), b (Sinha and Tompa 2000), c (Bussemaker et al. 2000), d (Eskin and 
Pevzner 2002), e (Pavesi et al. 2004), f (Lawrence et al. 1993), g (Bailey and Elkan, 1994), h (Stormo 
and Hartzell 1989), i (Down and Hubbard 2005)
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a DNA motif of width w, there are 3w parameters, or a likelihood surface with 3w 
dimensions. The motif-finding problem is simply the problem of estimation of 
these parameters by maximizing the likelihood. However, because the positions of 
the motifs are unknown, the EM approach is to posit the existence of unobserved 
(or hidden) variables that specify at each position in the input sequence data, 
whether a particular position is an example of a binding site or not (Lawrence and 
Reilly 1990).

We represent these hidden variables as a vector at each position, Z
i
 = (1,0) if the 

w-mer starting at position i is a binding site, and Z
i
 = (0,1) if it is drawn from the 

background. To find parameter estimates, we assume that these hidden variables are 
observed, and then try to follow the maximization procedure above. Given the posi-
tions of the binding sites, we could write the “complete” likelihood:

 
1 motif ,

( ) [ ( | ) ( )] im

l w
z

c i
i m bg

L X p X m p m
-

= Î

=Õ Õ  

We therefore maximize this function as above. Taking logarithms yields,

 
1 motif
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We can now add Lagrange multipliers for the various constraints and differentiate with 
respect to the parameters as above. For example, for the frequency parameters we

include the constraint 1pbb
f =å , and obtain 0

1
0

l w i pb

i
pb

Z X

f

-

=
- l =å , which after 

rearranging and substituting into the constraint, yields
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We now recall that this derivation was done under the assumption that we actually 
knew the positions of the binding sites in the input, i.e., that Z

i
 were observed. This 

is where the expectation step of the EM algorithm arises: we simply replace the 
Z

i
 with their expectations, based on our current estimates of the parameters. The 

expectation of a variable that takes on only 1 or 0 is simply the probability of non-
zero outcome, so the expectations of these variables can be calculated using Bayes’ 
theorem as above.

 0 0

( )

1
[ ] (motif | )

1
1

i

i i i

S X

Z E Z p X

e

® = =
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+
p

p
 

Thus, the EM algorithm constitutes filling in these “posterior probabilities” of 
the unknown positions of the binding sites, recomputing the estimates of the param-
eters based on these, then recomputing the estimates of the hidden variables, etc., 
until convergence. This iterative strategy is guaranteed to increase the likelihood at 
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each step. Once the parameter estimates have stabilized, we can be confident that 
we have reached a local maximum in the likelihood. It is important to note, how-
ever, that this may not represent the global maximum in the likelihood. Furthermore 
we have not yet addressed the issue of where to obtain the initial estimates of the 
parameters to begin the EM procedure. In fact, these issues must be addressed in 
practice with heuristics based on intuition about the problem.

7.5.2.2  Gibbs Sampling

Sampling approaches posit a Markov chain whose equilibrium distribution is the 
posterior distribution of interest. This Markov chain starts with initial guess 
parameters, and then iteratively refines the guess. Once the chain has reached 
equilibrium, parameter estimates can be obtained by averaging over the states 
visited by the chain. Needless to say, the key to this procedure is how to define the 
transition probabilities in such chains; in other words, the rule for refining the 
guess. In general such approaches are called Markov-chain-Monte-Carlo or 
MCMC methods and have been considered elsewhere. Here we will focus on a 
particular type of MCMC algorithm that has been applied effectively to the 
de novo motif finding problem.

Gibbs Sampling is the procedure of sampling a new parameter estimate (or guess) 
according to the probability of the new guess conditioned on the current estimates 
of the remaining parameters. In our case the parameters are regarded as the unknown 
positions of the binding sites in the input data, and the estimates of the frequency 
matrix. For motif finding, therefore, at each iteration, one of the current binding site 
positions is selected at random to be replaced. The frequency matrix is recalculated 
leaving out the selected binding site and every available position in the input data is 
re-evaluated by computing the statistic S(X

i
) described above at each position.

While the derivation for the exact equations for the Gibbs Sampler is too com-
plicated to reproduce here, it can be shown (Liu et al. 1995) that the probability 
required for the Gibbs Sampler is given approximately by

 
( )

(new site at | )
( )

i
i

jj

S X
p i X

S X
=
å

 

Thus, a new binding site is then chosen by choosing randomly from the available 
positions with probability proportional to S. Interestingly, the new binding site does 
not necessarily improve the likelihood: the site at p might have a lower likelihood 
by chance than the one it was replacing. However, on average this procedure will 
tend to sample binding sites that are near the current motif. Critically, the “tighter” 
or more information contained in the motif, the more likely the sampling procedure 
is to sample “near” it in sequence space. Thus, although the Gibbs Sampler will 
explore the entire space, it will be strongly biased to sample near maxima in the 
likelihood; the higher these maxima, the stronger this bias.
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7.6  Second Generation Motif-Finding Methods

In addition to the computational difficulty of finding the local maxima in a high-
dimensional likelihood space, several lines of evidence suggested that there is not 
enough information in some motifs to identify them in large regions of noncoding 
DNA of the eukaryotic genomes that are becoming available. The motif-finding 
approaches described above are general; they do not take into account specific 
properties of the transcription factor binding site finding problem. Recently, new 
motif finding methodology has been developed that used similar computational 
techniques and models, but included additional data about sequence specific tran-
scription factor binding sites in the motif finding.

7.6.1  Associations with Functional Genomics Data

The first methods explicitly designed to identify motifs in noncoding DNA used 
additional information about which genes were likely to be regulated by a transcrip-
tion factor. The simplest of these cases is simply where motif finding is done on two 
sets of sequences, those likely to be regulated and those unlikely to be regulated. This 
information can be as simple as the functional classification of a gene. Searching for 
motifs that separate two sets of noncoding regions can be thought of as a statistical 
discrimination problem, and many statistical methods can be applied.

It is possible to increase the sophistication of such discriminative methods, 
such that the motifs are taken as explanatory variables for quantitative, possibly 
multivariate data. For example, genome-wide transcription factor binding data can 
provide a ranked list of genes that are most likely (and least likely) to be bound 
by a transcription factor. Motif-finding methods can exploit this information by 
searching for patterns that are statistically associated with these rankings. Similarly, 
genome-wide gene expression data can give information about which genes change 
expression in response to developmental changes or to the environment. If a tran-
scription factor leads to a change in expression of transcripts in a particular condi-
tion, the expression of all (or many) of the genes containing the motif are expected 
to change. Therefore, motifs can be identified based on whether they can explain 
the variance in genome-wide gene expression data using regression and other 
statistical methods.

7.6.2  Incorporating Comparative Information  
into de novo Motif Finding

Another important group of next generation de novo motif-finders are comparative 
or phylogenetic methods. With the availability of complete genome sequences for 
closely related organisms, including comparative sequence information in motif 
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finding was a natural extension. The first methods to use comparative information 
did so using heuristics to encapsulate the notion that motifs should be conserved in 
alignments of homologous sequences. Soon after, motif-finders that incorporated 
explicit probabilistic models of evolution into motif finding were developed.

7.6.3  Other Methods and Future Directions

Another interesting strategy for motif finding is to use prior information about the 
pattern of information content in real transcription factor binding sites. This essen-
tially attempts to reduce the number of nonbiological maxima in the likelihood 
function, by biasing the search away from regions of the motif space that are 
unlikely to represent real biological motifs (Table 7.6). In general, methods that 
identify additional biological features of motifs in eternal datasets, or in sequence 
data will be of continued interest in the short term.

Table 7.6 De novo motif-finders that incorporate additional information

Tool Purpose Notes

SeedSearcha Consensus-based discriminative 
approach

Hypergeometric statistics

DMEb Identifies motifs overrepresented  
in one set of sequences relative 
to a background set

Matrix-based, enumerative 
discriminative approach

DRIMc Identifies motifs in a ranked  
list of sequences

Consensus-based, enumerative 
hypergeometric statistics with 
corrections

REDUCEd Identifies motifs correlated with 
gene expression

Uses multiple regression

GMEPe Identifyies motifs associated with 
gene expression data

Uses z-scores

Footprinterf Identifies conserved motifs 
in orthologous noncoding 
sequences

Parsimony based approach

Kellis et al.g Identifies conserved motifs in 
genome-wide alignments

No popular implementation, computes 
conservation of “mini”-motifs, and 
combines these into larger motifs

EMnEMh/PhyMEi Identifies conserved motifs in 
orthologous noncoding sequences

Phylogenetic E–M based approach

PhyloGibbsj Identifies conserved motifs in 
orthologous noncoding sequence

Phylogenetic sampling based approach. 
Relaxes assumption of complete 
conservation

TFEMk Identifies motifs with particular 
information content profiles

Adds additional constraints to  
traditional E–M maximization

a (Barash et al. 2001), b (Smith et al. 2005), c (Eden et al. 2007), d (Bussemaker et al. 2001),  
e (Chiang et al. 2001), f  (Blanchette and Tompa 2003), g (Kellis et al. 2004), h (Moses et al. 2004a), 
i (Sinha et al. 2004), j (Siddharthan et al. 2005), k (Kechris et al. 2004)



1617 Regulatory Motif Analysis

BookID 151692_ChapID 7_Proof# 1 - 21/08/2009

As more diverse data become available, computation systems that combine 
diverse data types, as well as the pattern recognition methods described in this chapter 
will become increasingly powerful. Indeed, recent methods have attempted to con-
struct regulatory networks using model-based approaches to synthesize motif finding 
and analysis of functional genomics data (e.g., Segal et al. 2003). Computational 
methods will undoubtedly have an exciting role to play as we advance toward the 
goal of predicting gene expression from sequence (Segal et al. 2008).
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8.1  Introduction

The bulk of variation at the nucleotide level is often not visible at the phenotypic 
level. However, this variation can be exploited using molecular genetic marker 
systems. Molecular genetic markers represent one of the most powerful tools for 
genome analysis and permit the association of heritable traits with underlying 
genomic variation. Molecular marker technology has developed rapidly over the 
last decade, with the development of high-throughput genotyping methods and 
the availability of large amounts of sequence data for automated marker 
discovery. Two forms of sequence based marker, Simple Sequence Repeats 
(SSRs), also known as microsatellites, and Single Nucleotide Polymorphisms 
(SNPs) are the principal markers currently applied in modern genetic analysis. 
This are supplemented with anonymous marker systems such as Amplified 
Fragment Length Polymorphisms (AFLPs; Vos et al. 1995), and Diversity Array 
Technology (DArT; Jaccoud et al. 2001). The reducing cost of DNA sequencing 
has led to the availability of large sequence data sets that enable the mining of 
sequence based markers, such as SSRs and SNPs, which may then be applied 
to diversity analysis, genetic trait mapping, association studies, and marker 
assisted selection.

Molecular markers have many uses in genetics, such as the detection of alleles 
associated with heritable disease, paternity assessment, forensics and the inference 
of population structure and history (Brumfield et al. 2003; Collins et al. 2004). 
Modern plant and animal breeding is dependent on molecular markers for trait 
mapping, marker assisted selection and the rapid and precise analysis of germplasm. 
Molecular markers can be used to select parental genotypes in breeding programs, 
select for traits that are difficult to measure using phenotypic assays and eliminate 
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linkage drag in back-crossing. Furthermore, molecular markers are invaluable as a 
tool for genome mapping in all systems, offering the potential for generating very 
high density genetic maps (Rafalski 2002). Genetic linkage maps represent the 
order of known molecular genetic markers along a given chromosome for a given 
species, placing molecular genetic markers into linkage groups based on their 
co-segregation in a population, providing insight into genome structure and 
organisation. Markers can also be used for comparative mapping to identify 
similarities and differences between species. In comparative genomics, synteny is 
the preserved order of genes on chromosomes of related species which results from 
descent from a common ancestor. An understanding of syntenic relationships 
enables the transfer of information from one species to another and can assist in the 
reconstruction of ancestral genomes.

During the past two decades, several molecular marker technologies have been 
developed and applied for genome analysis. However, due to the relatively high 
cost associated with marker development, these methods have only been applied to 
a limited number of species, by a few researchers predominantly in developed 
countries. Even in these situations, the application of molecular markers has tended 
to focus on a small number of important diseases or high value traits. The increas-
ing application of association mapping highlights the requirement to be able to 
identify and screen large numbers of markers, rapidly and at low cost. Bioinformatics 
systems that improve marker identification help to broaden the uptake of markers 
to more diverse species and for a greater variety of traits. In this chapter we detail 
the automated methods for the discovery of SSRs and SNPs and provide an over-
view of the diverse applications of these markers, with specific emphasis on genetic 
mapping and data visualisation.

8.1.1  SNPs

SNPs are often considered as the ultimate form of molecular genetic marker, 
because a SNP represents a single nucleotide difference between two individuals at 
a defined location. SNPs are also the most abundant form of genetic polymorphism 
and may therefore provide a high density of markers near a locus of interest. There 
are three different categories of SNPs: transitions (C/T or G/A), transversions (C/G, 
A/T, C/A, or T/G) or small insertions/deletions (indels). SNPs are direct markers as 
the sequence information provides the exact nature of the allelic variants. Furthermore, 
this sequence variation can have a direct impact on the heritable pheno type. SNPs at 
any particular site could in principle be bi-, tri- or tetra-allelic, but in practice they 
are generally biallelic. This disadvantage, when compared with multiallelic mark-
ers such as SSRs, is compensated by the relative abundance of SNPs. SNPs are 
evolutionarily stable, not changing significantly from generation to generation and 
the low mutation rate of SNPs makes them excellent markers for studying complex 
genetic traits and as a tool for providing insight into the evolution of genomes 
(Syvanen 2001).
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SNPs are now the dominant marker used in biomedical applications due to the 
availability of the human genome sequence and knowledge of allelic variation derived 
from the HapMap project (Altshuler et al. 2005). The ability to screen large numbers 
of individuals for a range of SNP variants enables the prediction of susceptibility to 
a wide range of diseases and opens the door to the use of personalised medicine based 
on the patient’s genotype. There are already several companies that specialize in 
personal genotyping and they can predict susceptibility to a range of diseases. This 
ability will continue to increase as more and more associations are made between 
human genetic variation and heritable traits. SNPs are also used routinely in animal 
and crop breeding programs (Gupta et al. 2001), for genetic diversity analysis, culti-
var/breed identification, phylogenetic analysis, characterisation of genetic resources 
and association of genetic loci with valuable traits (Rafalski 2002). The high density 
of SNPs makes them valuable for genome mapping, and in particular they allow the 
generation of ultra-high density genetic maps and haplotyping systems for genes or 
regions of interest, and map-based positional cloning (Batley and Edwards 2007).

8.1.2  SSRs

SSRs, also known as microsatellites, are short stretches of DNA sequence occurring 
as tandem repeats of mono-, di-, tri-, tetra-, penta- and hexa-nucleotides. Perfect 
SSR repeats are without interruptions, imperfect repeats are interrupted by non-
repeat nucleotides, while compound repeats are cases where two or more SSRs are 
found adjacent to one another. Combinations of these are also found, for example 
imperfect compound repeats (Weber 1990). SSRs have been found in all prokary-
otic and eukaryotic genomes analysed to date and they are widely and ubiquitously 
distributed throughout eukaryotic genomes (Tóth et al. 2000; Katti et al. 2001). 
SSRs are one of the most powerful genetic markers in biology as they are highly 
polymorphic. The high level of polymorphism is due to mutation affecting the 
number of repeat units. SSRs provide several of advantages over some other 
molecular markers, namely that multiple SSR alleles may be detected at a single 
locus using a simple PCR based screen, very small quantities of DNA are required 
for screening, and analysis is amenable to automated allele detection and sizing 
(Schlötterer 2000). SSRs also demonstrate a high degree of transferability between 
species, as PCR primers designed to an SSR within one species frequently amplify 
a corresponding locus in related species. This transferability makes them suitable 
for genetic diversity and comparative genomic analysis. SSRs are applied to a wide 
range of applications, including genetic mapping, the molecular tagging of genes, 
genotype identification, analysis of genetic diversity, phenotype mapping and 
marker assisted selection (Tautz 1989; Powell et al. 1996).

Studies of the potential biological function and evolutionary relevance of SSRs 
provides an insight into genome structure and genomics (Subramanian et al. 2003). 
SSRs were initially considered to be evolutionally neutral (Awadalla and Ritland 
1997), however recent evidence suggests they may play an important role in 
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genome evolution and provide hotspots of recombination (Moxon and Wills 1999). 
Early suggestions that the majority of DNA was ‘junk’ or had no biological func-
tion are being challenged by the discovery of new functions for these sequences and 
various functional roles have now been attributed to SSRs. SSRs are believed to be 
involved in gene expression, regulation and function (Kashi et al. 1997; Gupta et al. 
1994) and SSRs in non-coding regions may also be of functional significance 
(Mortimer et al. 2005). SSRs have been found to bind nuclear proteins and there 
is direct evidence that SSRs can function as transcriptional activating elements 
(Li et al. 2002).

8.2  Computational Molecular Marker Discovery Methods

Traditionally the implementation of SNPs and SSRs has been limited by the initial 
cost of their development. The discovery of SSR loci previously required the 
construction of genomic DNA libraries enriched for SSR sequences, followed by 
DNA sequencing of the clones and analysis of the sequence for the presence of SSRs 
(Edwards et al. 1996). This was both time consuming and expensive due to the large 
amount of specific sequencing required. SNP discovery involves finding differences 
between two sequences and this has traditionally been performed through PCR 
amplification of genes/genomic regions of interest from multiple individuals selected 
to represent diversity in the species or population of interest, followed by either direct 
sequencing of these amplicons, or cloning and sequencing the amplified products. 
Sequences are then aligned and any polymorphisms identified. This approach is 
frequently prohibitively expensive and time consuming for the identification and 
validation of the large number of SNPs required for most applications.

In silico methods of SNP and SSR discovery are now routinely being adopted, 
providing cheap and efficient marker identification. Large quantities of sequence 
data have been generated internationally through cDNA or genome sequencing 
projects and these provide a valuable resource for the mining of molecular markers. 
This will be further accelerated with the application of new sequencing technology. 
Sequence data generation is undergoing a revolution with the release of ‘next gen-
eration’ technologies from Roche (454), Illumina (Solexa) and Applied Biosystems 
(SOLiD) (Table 8.1). These technologies offer the potential to rapidly re-sequence 
either whole eukaryotic genomes or representative samples of genomes. While the 
large volume of next generation sequencing data are generally produced at the 
expense of sequence quality, the over sampling of genome data enables the differ-
entiation between true SNPs and sequence error. In one of the first examples of this 
application, a total of 36,000 maize SNPs were identified in data from a single run 
of the Roche 454 GS20 DNA sequencer (Barbazuk et al. 2007). More recently, the 
complete genome of DNA structure pioneer, James D. Watson was re-sequenced 
using Roche 454 technology (Wheeler et al. 2008a), while an anonymous African 
male of the Yoruba people of Ibadan, who participated in the international HapMap 
project was completely sequenced using Illumina Solexa sequencing technology 



1698 Molecular Marker Discovery and Genetic Map Visualisation

BookID 151692_ChapID 8_Proof# 1 - 21/08/2009

(Bentley et al. 2008). Whole genome sequencing is the most robust method to 
identify the great variety of genetic diversity in a population and gain a greater 
understanding of the relationship between the inherited genome and observed heri-
table traits. The continued rapid advances in genome sequencing technology will 
lead to whole genome sequencing becoming the standard method for genetic poly-
morphism discovery. To date, there are over 1,700 prokaryote genome sequencing 
projects and over 340 eukaryote genome sequencing projects. These numbers are 
set to increase rapidly with the expansion of next generation sequencing technology 
and this data will be used for rapid, inexpensive molecular marker discovery. For a 
comprehensive list of the genome sequencing initiatives, see http://www.ncbi.nlm.
nih.gov/genomes/static/gpstat.html.

8.2.1  In Silico SNP Discovery

The dramatic increase in the number of DNA sequences submitted to databases 
makes the electronic mining of SNPs possible without the need for additional 
specific allele sequencing. The identification of sequence polymorphisms in assembled 
sequence data is relatively simple; however the challenge of in silico SNP discovery 
is not SNP identification, but rather the ability to distinguish real polymorphisms 
from the often more abundant sequencing errors. High throughput sequencing 
remains prone to inaccuracies, Sanger sequencing produces errors as frequent as one 
in every one hundred base pairs, whilst some of the next generation technologies are 
even less accurate with errors as frequent as one in every 25 bp. These errors impede 
the electronic filtering of sequence data to identify potentially biologically relevant 
polymorphisms and several sources of sequence error need to be addressed during 
in silico SNP identification. The most abundant error in Sanger sequencing is 
incorrect base calling, towards the end of the sequence as the quality of the raw data 
declines. These errors are usually identified by the relatively low quality scores for 
these nucleotides. Further errors are due to the intrinsically high error rate of the 
reverse transcription and PCR processes used for the generation of cDNA libraries, 
and these errors are not reflected by poor sequence quality scores. A number of 
methods used to identify SNPs in aligned sequence data rely on sequence trace file 
analysis to filter out sequence errors by their dubious trace quality (Kwok et al. 

Table 8.1 Comparison of current DNA sequencing technologies

Sequencing  
machine

ABI  
3730

Roche  
GSFLX

Illumina  
Solexa

AB  
SOLiD

Helicos  
HeliScope

Launched 2000 2007 2006 2007 2008
Read length (bp) 800–1,100 250–400 35–50 25–35 28
Reads per run 96 400 K 60 M 85 M 85 M
Throughput per run 0.1 MB 100 MB 3 GB 3 GB 2 GB
Cost per GB >$2,500 k $84 k $6 k $5.8 k ?
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1994, Marth et al. 1999, Garg et al. 1999). The major disadvantage to this approach 
is that the sequence trace files required are rarely available for large sequence 
datasets collated from a variety of sources. In cases where trace files are unavailable, two 
complementary approaches have been adopted to differentiate between sequence 
errors and true polymorphisms: (1) assessing redundancy of the polymorphism in an 
alignment, and (2) assessing co-segregation of SNPs to define a haplotype. These 
methods are employed in the following applications for in silico SNP identification 
(Table 8.2).

8.2.1.1  SNP Discovery from Trace files

Phred is the most widely adopted software used to call bases from Sanger chro-
matogram data (Ewing and Green 1998; Ewing et al. 1998). The primary benefit of 
this software is that it provides a statistical estimate of the accuracy of calling each 
base, and therefore provides a primary level of confidence that a sequence differ-
ence represents true genetic variation. There are several software packages that take 
advantage of this feature to estimate the confidence of sequence polymorphisms 
within alignments.

 PolyBayes

PolyBayes (Marth et al. 1999) uses a Bayesian-statistical model to find differences 
within assembled sequences based on the depth of coverage, the base quality values 
and the expected rate of polymorphic sites in the region. Base quality values are 
obtained by running the sequence trace files through the phred base-calling pro-
gram (Ewing and Green 1998; Ewing et al. 1998), and repeats can be removed from 
sequences using RepeatMasker (Mallon and Strivens 1998). The output is viewed 

Table 8.2 Applications for in silico SNP and SSR discovery

Tool URL Reference

PolyBayes http://bioinformatics.bc.edu/marthlab/PolyBayes Marth et al. (1999)
PolyPhred http://droog.mbt.washington.edu/ Nickerson et al. (1997)
SNPDetector http://lpg.nci.nih.gov/ Zhang et al. (2005)
NovoSNP http://www.molgen.ua.ac.be/bioinfo/novosnp/ Weckx et al. (2005)
AutoSNP http://acpfg.imb.uq.edu.au Barker et al. (2003)
MISA http://pgrc.ipk-gatersleben.de/misa/ Thiel et al. (2003)
SSRIT http://www.gramene.org/db/searches/ssrtool Temnykh et al. (2001)
RepeatFinder http://www.cbcb.umd.edu/software/RepeatFinder/ Volfovsky et al. (2001)
SPUTNIK http://espressosoftware.com/pages/sputnik.jsp Unpublished

http://cbi.labri.fr/outils/Pise/sputnik.html
TROLL http://wsmartins.net/webtroll/troll.html Castelo et al. (2002)
TRF http://tandem.bu.edu/trf/trf.html Benson (1999)
SSRPrimer http://hornbill.cspp.latrobe.edu.au Robinson et al. (2004);  

Jewell et al. (2006)http://acpfg.imb.uq.edu.au
SSRPoly http://acpfg.imb.uq.edu.au/ssrpoly.php Unpublished
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through the Consed alignment viewer (Gordon et al. 1998). Recent examples of 
studies using PolyBayes include SNP discovery for white spruce (Pavy et al. 2006) 
and bird species (Sironi et al. 2006).

PolyPhred

PolyPhred (Nickerson et al. 1997) compares sequence trace files from different 
individuals to identify heterozygous sites. The sequence trace files are used to 
identify SNPs and can identify positions in the sequence where double peaks 
occur that are half the height of the adjacent peaks within a window. The quality 
of a SNP is assigned based on the spacing between peaks; the relative size of 
called and uncalled peaks; and the dip between peaks. PolyPhred only analyses 
nucleotides that have a minimum quality as determined by Phred (Ewing and 
Green 1998; Ewing et al. 1998). It runs on Unix, and provides output that can be 
viewed in Consed (Gordon et al. 1998). Recent examples of the use of PolyPhred 
include studies in cattle (Lee et al. 2006) and humans that have had liver transplants 
(Wang et al. 2007).

SNPDetector

SNPDetector (Zhang et al. 2005) uses Phred (Ewing and Green 1998; Ewing et al. 
1998) to call bases and determine quality scores from trace files, and then aligns reads 
to a reference sequence using a Smith–Waterman algorithm. SNPs are identified 
where there is a sequence difference and the flanking sequence is of high quality. 
SNPDetector has been used to find SNPs in 454 data (Barbazuk et al. 2007) and has 
been included within a comprehensive SNP discovery pipeline (Matukumalli  
et al. 2006).

NovoSNP

NovoSNP (Weckx et al. 2005) requires both trace files and a reference sequence as 
input. The trace files are base-called using Phred (Ewing and Green 1998; Ewing 
et al. 1998) and quality clipped, then aligned to a reference sequence using BLAST 
(Altschul et al. 1990). A SNP confidence score is calculated for each predicted 
SNP. NovoSNP is written in Tcl with a graphical user interface written in Tk and 
runs on Linux and Windows. NovoSNP has been used in a study of genotype–
phenotype correlation for human disease (Dierick et al. 2008).

8.2.1.2  SNP Discovery using Redundancy Approaches

The frequency of occurrence of a polymorphism at a particular locus provides a 
measure of confidence in the SNP representing a true polymorphism, and is referred 
to as the SNP redundancy score. By examining SNPs that have a redundancy score 
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equal than or greater than two (two or more of the aligned sequences represent the 
polymorphism), the vast majority of sequencing errors are removed. Although 
some true genetic variation is also ignored due to its presence only once within an 
alignment, the redundancy within the data permits the rapid identification of large 
numbers of SNPs without the requirement of sequence trace files. However, while 
redundancy based methods for SNP discovery are highly efficient, the non-random 
nature of sequence error may lead to certain sequence errors being repeated 
between runs around locations of complex DNA structure. Therefore, errors at 
these loci would have a relatively high SNP redundancy score and appear as confi-
dent SNPs. In order to eliminate this source of error, an additional independent SNP 
confidence measure is required. This can be obtained by measuring the co-segregation 
of SNPs defining a haplotype. True SNPs that represent divergence between 
homologous genes co-segregate to define a conserved haplotype, whereas sequence 
errors do not co-segregate with a haplotype. Thus, a co-segregation score, based on 
whether a SNP position contributes to defining a haplotype is a further independent 
measure of SNP confidence. By using the SNP score and co-segregation score 
together, true SNPs may be identified with reasonable confidence. Three tools cur-
rently apply the methods of redundancy and haplotype co-segregation; autoSNP 
(Barker et al. 2003; Batley et al. 2003), SNPServer (Savage et al. 2005) and auto 
SNPdb (Duran et al. 2009).

AutoSNP

The autoSNP method (Barker et al. 2003) assembles sequences using CAP3 (Huang 
and Madan 1999) with the option of pre-clustering with either d2cluster (Burke et al. 
1999) or TGICL (Pertea et al. 2003). Redundancy is the principle means of 
differentiating between sequence errors and real SNPs. While this approach ignores 
potential SNPs that are poorly represented in the sequence data, it offers the 
advantage that trace files are not required and sequences may be used directly from 
GenBank. AutoSNP is therefore applicable to any species for which sequence data 
is available. A co-segregation score is calculated based on whether multiple SNPs 
define a haplotype, and this is used as a second, independent measure of confidence. 
AutoSNP is written in Perl and is run from the Linux command line with a FASTA 
file of sequences as input. The output is presented as linked HTML with the index 
page presenting a summary of the results. AutoSNP has been applied to several 
species including maize (Batley et al. 2003), peach (Lazzari et al. 2005) and cattle 
(Corva et al. 2007). The recently developed AutoSNPdb (Duran et al. 2009) 
combines the SNP discovery pipeline of autoSNP with a relational database, hosting 
information on the polymorphisms, cultivars and gene annotations, to enable 
efficient mining and interrogation of the data. Users may search for SNPs within 
genes with specific annotation or for SNPs between defined cultivars. AutoSNPdb 
can integrate both Sanger and Roche 454 pyrosequencing data enabling efficient 
SNP discovery from next generation sequencing technologies.
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SNPServer

SNPServer (Savage et al. 2005) is a real time implementation of the autoSNP method, 
accessed via a web server. A single FASTA sequence is pasted into the interface and 
similar sequences are retrieved from a nucleotide sequence database using BLAST 
(Altschul et al. 1990). The input sequence and matching sequences are assembled 
using CAP3, and SNPs are discovered using the autoSNP method. The results are 
presented as HTML. Alternatively, a list of FASTA sequences may be input for 
assembly or a preassembled ACE format file may be analysed. SNPServer has been 
used in studies including sea anemone (Sullivan et al. 2008) and human (Pumpernik 
et al. 2008). SNPServer has an advantage in being the only real time web based tool 
that allows users to rapidly identify novel SNPs in sequences of interest.

8.2.1.3  SNP Discovery from Short Read Next Generation Sequence Data

The increased production of next or second generation sequence data provides an 
additional source of valuable SNP information. While the relatively long reads 
produced by the Roche 454 sequencers can be analyzed by currently available SNP 
discovery systems, the high error rates and short reads produced by the AB SOLiD 
and Illumina Solexa GAII require novel approaches and high sequence redundancy 
for efficient SNP discovery.

Mosaik

Mosaik has been developed by Michael Strömberg in the laboratory of Gabor Marth 
and currently accepts reads of all lengths from short read Illumina data to legacy 
Sanger sequences. It is written in C++ and is available from http://bioinformatics. 
bc.edu/marthlab/Mosaik.

MAQ

Maq (Mapping and Assembly with Quality) builds an assembly by mapping short 
reads produced by the Illumina Solexa platform to reference sequences. It has been 
produced by Heng Li and is available from http://maq.sourceforge.net. Preliminary 
functions are being developed to also handle AB SOLiD data

8.2.2  In Silico SSR Discovery

The availability of large quantities of sequence data makes it economical and effi-
cient to use computational tools to mine this for SSRs. Flanking DNA sequence 
may then be used to design suitable forward and reverse PCR primers to assay the 
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SSR loci. Furthermore, when SSRs are derived from ESTs, they become gene specific 
and represent functional molecular markers. These features make EST–SSRs 
highly valuable markers for the construction and comparison of genetic maps and 
the association of markers with heritable traits. Several computational tools are 
available for the identification of SSRs in sequence data as well as for the design 
of PCR amplification primers. Due to redundancy in EST sequence data, and with 
datasets often being derived from several distinct individuals, it is now also possible 
to predict the polymorphism of SSRs in silico. A selection of SSR discovery tools 
are described below (Table 8.2).

8.2.2.1  MISA

The MIcroSAtellite (MISA) tool (http://pgrc.ipk-gatersleben.de/misa/) identifies 
perfect, compound and interrupted SSRs. It requires a set of sequences in FASTA 
format and a parameter file that defines unit size and minimum repeat number of 
each SSR. The output includes a file containing the table of repeats found, and a 
summary file. MISA can also design PCR amplification primers on either side of 
the SSR. The tool is written in Perl and is therefore platform independent, but it 
requires an installation of Primer3 for the primer search (Thiel et al. 2003). MISA 
has been applied for SSR identification in moss (von Stackelberg et al. 2006) and 
coffee (Aggarwal et al. 2007).

8.2.2.2  SSRIT

The tool SSRIT (Simple Sequence Repeat Identification Tool) (http://www.
gramene.org/db/searches/ssrtool) uses Perl regular expressions to find perfect SSR 
repeats within a sequence. It can detect repeats between 2 and 10 bases in length, 
but eliminates mononucleotide repeats. The output is a file of SSRs in tabular format. 
A web based version is available that will take a single sequence, and a stand  
alone version is also available for download. SSRIT has been applied to rice  
(Temnykh et al. 2001).

8.2.2.3  RepeatFinder

RepeatFinder (Volfovsky et al. 2001) (http://www.cbcb.umd.edu/software/
RepeatFinder/) finds SSRs in four steps. The first step is to find all exact repeats 
using RepeatMatch or REPuter. The second step merges repeats together into 
repeat classes, for example repeats that overlap. Step three merges all of the other 
repeats that match those already merged, into the same classes. Finally, step four 
matches all repeats and classes against each other in a non-exact manner using 
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BLAST. The input is a genome or set of sequences, and the output is a file contain-
ing the repeat classes and number of merged repeats found in each class. 
RepeatFinder finds perfect, imperfect and compound repeats, and was not designed 
specifically to find SSRs so can find repeats of any length. It runs on Unix or Linux 
and has been used to identify SSRs in peanut (Jayashree et al. 2005).

8.2.2.4  Sputnik

Sputnik is a commonly used SSR finder as it is fast, efficient and simple to use. It 
uses a recursive algorithm to search for repeats with length between 2 and 5, and 
finds perfect, compound and imperfect repeats. It requires sequences in FASTA 
format and uses a scoring system to call each SSR. The output is a file of SSRs in 
tabular format. Unix, Linux and windows versions of sputnik are available from 
http://espressosoftware.com/pages/sputnik.jsp and http://cbi.labri.fr/outils/Pise/
sputnik.html (PISE enabled version). Sputnik has been applied for SSR identifica-
tion in many species including Arabidopsis and barley (Cardle et al. 2000)

8.2.2.5  TROLL

The SSR identification tool Tandem Repeat Occurrence Locator (TROLL) (Castelo 
et al. 2002) (http://wsmartins.net/webtroll/troll.html) draws a keyword tree and 
matches it with a technique adapted from bibliographic searches, based on the  
Aho-Corasick algorithm. It has drawbacks in that it doesn’t handle very large 
sequences and cannot process large batches of sequences as the tree takes up large 
amounts of memory.

8.2.2.6  Tandem Repeats Finder

Tandem Repeats Finder (TRF) (Benson, 1999) (http://tandem.bu.edu/trf/trf.html) 
can find very large SSR repeats, up to a length of 2,000 bp. It uses a set of statistical 
tests for reporting SSRs, which are based on four distributions of the pattern length, 
the matching probability, the indel probability and the tuple size. TRF finds perfect, 
imperfect and compound SSRs, and is available for Linux. TRF has been used for 
SSR identification in Chinese shrimp (Gao and Kong 2005) and cowpea (Chen 
et al. 2007).

8.2.2.7  Compound Methods for SSR Discovery

The following computational SSR finders combine previous methods to produce 
extended output.
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SSRPrimer

SSRPrimer (Robinson et al. 2004; Jewell et al. 2006) combines Sputnik and the 
PCR primer design software Primer3 to find SSRs and associated amplification 
primers. The scripts take multiple sequences in FASTA format as input and pro-
duce lists of SSRs and associated PCR primers in tabular format. This web-based 
tool is also available as a stand alone version for very large datasets. SSRPrimer 
has been applied to a wide range of species including shrimp (Perez et al. 2005), 
citrus (Chen et al. 2006), mint (Lindqvist et al. 2006), strawberry (Keniry et al. 
2006), Brassica (Batley et al. 2007; Burgess et al. 2006; Hopkins et al. 2007; 
Ling et al. 2007), Sclerotinia (Winton et al. 2007) and Eragrostis curvula 
(Cervigni et al. 2008).

SSRPoly

SSRPoly (http://acpfg.imb.uq.edu.au/ssrpoly.php) is currently the only tool which 
is capable of identifying polymorphic SSRs from DNA sequence data. The input is 
a file of FASTA format sequences. SSRPoly includes a set of Perl scripts and 
MySQL tables that can be implemented on UNIX, Linux and Windows platforms.

8.3  Data Storage

Large-scale discovery projects are uncovering vast quantities of marker data. As the 
data size increases, the storage and logical organisation of the information becomes 
an important challenge. Marker databases vary between centralised repositories 
that integrate a variety of data for several species, to small specialised databases 
designed for very specific purposes. The larger repositories tend to lack detailed 
analytic tools, while the smaller systems may include further species specific data 
integration. dbSNP is becoming the default repository for SNP data, and there are 
a wide variety of additional marker databases specific to particular species. The 
most commonly used marker databases are detailed below (Table 8.3).

8.3.1  dbSNP

The Single Nucleotide Polymorphism database, dbSNP (http://www.ncbi.nlm.nih.
gov/projects/SNP/snp_summary.cgi), was developed by NCBI to provide a public-
domain repository for simple genetic polymorphisms (Smigielski et al. 2000; 
Sherry et al. 1999). Although dbSNP includes data on markers such as SSRs and 
insertion/deletion polymorphisms, SNPs are the primary data type, comprising 
97.8% of the database (Smigielski et al. 2000). Table 8.4 presents a summary of 
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species represented. Access is provided via a web interface and there are several 
ways to query the database. Users can search using a known SNP id or use BLAST 
to compare a known sequence with sequences in the database. Alternatively, dbSNP 
can be queried using Entrez or Locuslink. dbSNP currently hosts over 52 million 
refSNP clusters for 44 organisms. Of these clusters, around 16 million (30%) have 
been validated.

Table 8.3 Details of commonly used marker storage databases

Database URL Reference

dbSNP http://www.ncbi.nlm.nih.gov/
projects/SNP/snp_summary.cgi

Smigielski et al. (2000); 
Sherry et al. (1999)

HapMap http://www.hapmap.org/ Stein et al. (2002)
IBISS http://www.livestockgenomics.csiro.

au/ibiss/
Hawken et al. (2004)

MPD SNP Tools http://www.jax.org/phenome
Gramene http://www.gramene.org/ Jaiswal et al. (2006); Ware et al. 

(2002a, b)
GrainGenes http://www.graingenes.org/ Carollo et al. (2005); Matthews 

et al. (2003)
TAIR http://www.arabidopsis.org/ Weems et al. (2004); Rhee et al. 

(2003); Huala et al. (2001)
MaizeGDB http://www.maizegdb.org/ Lawrence et al. (2004)
AutoSNPdb http://acpfg.imb.uq.edu.au/ Duran et al. (2009)

Table 8.4 Species represented in dbSNP with greater then 1,000 submitted genetic polymorphisms

Species Submissions RefSNP clusters (validated)

Homo sapiens 55,949,131 14,708,752 (6,573,789)
Mus musculus 18,645,060 14,380,528 (6,447,366)
Gallus gallus 3,641,959  3,293,383 (3,280,002)
Oryza sativa 5,872,081  5,418,373 (22,057)
Canis familiaris 3,526,996  3,301,322 (217,525)
Pan troglodytes 1,544,900  1,543,208 (112654)
Bos taurus 2,233,086  2,223,033 (14,371)
Monodelphis domestica 1,196,103 1,194,131 (0)
Anopheles gambiae 1,368,906 1,131,534 (0)
Apis mellifera 1,118,192 1,117,049 (16)
Danio rerio 700,855 662,322 (3,091)
Felis catus 327,037 327,037 (0)
Plasmodium falciparum 185,071 185,071 (47)
Rattus norvegicus 47,711 43,628 (1,605)
Saccharum hybrid cultivar 42,853 42,853 (0)
Sus scrofa 8,472 8,427 (24)
Ovis aries 4,247 4,181 (66)
Bos indicus × Bos taurus 2,427 2,484 (42)
Caenorhabditis elegans 1,065 1,065 (0)
Pinus pinaster 1,439 32 (0)
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8.3.2  HapMap

The HapMap Consortium collates and catalogues information on human genetic 
polymorphisms (Gibbs et al. 2003). There are two primary methods to access the 
data: GBrowse (Stein et al. 2002) and Bio-Mart (Kasprzyk et al. 2004), and both 
methods are tailored to specific types of users. GBrowse is a genome browser and 
is a component of the GMOD project (http://www.gmod.org). Using the GBrowse 
feature of HapMap, users may browse a region of the genome or search with a 
specific SNP id (Fig. 8.1). Clicking the SNP location in the GBrowse viewer opens 
an information page, providing full details of the SNP locus. The HapMap project 
maintains over 3.1 million characterised human SNPs which have been genotyped 
in a geographically diverse selection of 270 individuals (Frazer et al. 2007).

8.3.3  IBISS

The Interactive Bovine in silico SNP Database (IBISS) has been created by the 
Commonwealth Scientific and Industrial Research Organisation of Australia 
(CSIRO). It is a collection of 523 448 Bovine SNPs identified from 324 031 ESTs 
using a custom analysis pipeline (Hawken et al. 2004). The database can be 
searched by keyword, accession id or by BLAST comparison with an entry 
sequence. Users can also browse for markers using a linked genome browser.

8.3.4  MPD SNP Tools

The Jackson Laboratory’s Mouse Phenome Database (www.jax.org/phenome) aims 
to facilitate the research of human health issues through mouse models. As well as 
a wealth of trait information on mice, MPD also hosts a collection of over 10 mil-
lion mouse SNPs (http://www.jax.org/phenome/snp.html).

8.3.5  Gramene

Gramene is an online comparative mapping database for rice and related grass spe-
cies (Jaiswal et al. 2006, Ware et al. 2002a, b). Gramene contains information on 
cereal genomic and EST sequences, genetic maps, relationships between maps, 
details of rice mutants, and molecular genetic markers. The database uses the 
sequenced rice genome as its reference and annotates this genome with various data 
types. As well as the genome browser, Gramene also incorporates a version of the 
comparative map viewer, CMap. This allows users to view genetic maps and com-
parative genetic mapping information and provides a link between markers on 
genetic maps and the sequenced genome information.
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8.3.6  GrainGenes

GrainGenes integrates genetic data for Triticeae and Avena (Carollo et al. 2005; 
Matthews et al. 2003). The database includes genetic markers, map locations, 
alleles and key references for barley, wheat, rye, oat and related wild species. 
Graingenes also provides access to genetic data using CMap.

Fig. 8.1 Examples of HapMap searches: (a). Chromosomal region search, showing the popula-
tion of Genotyped SNPs as a custom GBrowse track (bottom). (b). SNP id search, showing the 
specific genome location for the SNP
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8.3.7  TAIR

The Arabidopsis Information Resource (TAIR) (http://www.arabidopsis.org/) pro-
vides an extensive web-based resource for the model plant Arabidopsis thaliana 
(Weems et al. 2004; Rhee et al. 2003; Huala et al. 2001) Data includes gene, 
marker, genetic mapping, protein sequence, gene expression and community data 
within a relational database.

8.3.8  MaizeGDB

MaizeGDB (Lawrence et al. 2004) combines information from the original 
MaizeDB and ZmDB (Dong et al. 2003; Gai et al. 2000) repositories with sequence 
data from PlantGDB (Duvick et al. 2008; Dong et al. 2004, 2005). The system 
maintains information on maize genomic and gene sequences, genetic markers, 
literature references, as well as contact information for the maize research 
community.

8.3.9  AutoSNPdb

AutoSNPdb implements the autoSNP pipeline within a relational database to 
enable mining for SNP and indel polymorphisms (Duran et al. 2009). A web inter-
face enables searching and visualisation of the data, including the display of 
sequence alignments and SNPs (Fig. 8.2). All sequences are annotated by comparison 
with GenBank and UniRef90, as well as through comparison with reference 
genome sequences. The system allows researchers to query the results of SNP 
analysis to identify SNPs between specific groups of individuals or within genes of 
predicted function. AutoSNPdb is currently available for barley, rice and Brassica 
species and is available at: http://acpfg.imb.uq.edu.au/.

8.4  Data Visualisation

The effective visualisation of large amounts of data is as critical an issue as its stor-
age. Increasing volumes of data permit researchers to draw, with increasing confi-
dence, comparative links across the genome to phenome divide. Visualisation tools, 
combined with the ability to dynamically categorise data, allow the identification 
trends and relationships at varying tiers of resolution. Current visualisation tech-
niques for molecular markers broadly fall into two categories: graphical map viewers 
and genome browsers. Map viewers display markers as a representation of a genetic 
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linkage map. Genome browsers generally host a greater quantity of annotation data 
and may be linked to related genetic map viewers. As genome browsers are 
described in detail in chapter 3, details below only refer to map viewers.

8.4.1  Graphical Map Viewers

The NCBI map viewer (http://www.ncbi.nih.gov/mapview) uses sets of graphi-
cally-aligned maps to visualise molecular genetic markers, genome assemblies and 
other annotations (Wheeler et al. 2008b). It allows users to show multiple levels of 
annotation in tandem for a given chromosomal segment (Fig. 8.3). As well as 
allowing users to view the map graphically, NCBI also provides a function to down-
load raw mapping data in a tabular format.

CMap is a tool for viewing and comparing genetic and physical maps and has 
been applied successfully for the comparison of maps within and between related 
species (Jaiswal et al. 2006). CMap was originally developed for the Gramene 
project (http://www.gramene.org/CMap/) and has since been applied for the 
comparison of genetic maps of Brassica (Lim et al. 2007), sheep, cattle, pig and 
wallaby (Liao et al. 2007), honeybee, grasses (Jaiswal et al. 2006; Somers et al. 
2004), peanut (Jesubatham and Burow 2006), Rosaceae (Jung et al. 2008) and 
legumes (Gonzales et al. 2005). The database specification dictates that a given 
species may have one or more “map sets”, where a map set represents a collection 
of maps. The CMap database was designed with flexibility in mind, allowing the 
database to be used for a wide variety of mapping applications. For example, in 
genetic mapping studies, a map set is most likely to represent a particular 

Fig. 8.2 AutoSNPdb showing the overview of the SNPs in this assembly and the aligned 
sequences with the SNPs highlighted



182 C. Duran et al.

BookID 151692_ChapID 8_Proof# 1 - 21/08/2009 BookID 151692_ChapID 8_Proof# 1 - 21/08/2009

organism, where the contained maps will probably be the genetic linkage groups. 
To generate genetic linkage maps, software such as Joinmap (Van Ooijen and 
Voorrips 2001), MapMaker (Lander et al. 1987) or Map Manager QTX (Manly 
et al. 2001) are frequently used. Once the maps are generated, they are parsed into 
the CMap database using a perl script provided with the CMap software package. 
The comparative relationships, or correspondences, between maps are generated 
once the maps are added to the database, using a combination of automated tools 
and manual curation. The automated tools included with CMap create 
correspondences on the basis of common feature names. If maps are generated 
with a consistent marker naming strategy, this can reduce the manual curation 
required and provide a firm basis for further curation. Curation is performed by 
parsing a tab-delimited file with the correspondences using a custom perl module 
included in CMap.

As an extension to CMap; CMap3D allows researchers to compare multiple 
genetic maps in three-dimensional space (Fig. 8.4). CMap3D accesses data from 
CMap databases, with specifications defined by the Generic Model Organism 
Database (GMOD) (http://www.gmod.org/CMap). The viewer is a stand-alone client 
written in Processing (http://www.processing.org) and is available for Windows, 
OSX and Linux. Information from the CMap repository enables CMap3D to gener-
ate appropriate external web links for features of a given map. By clicking on a 
feature in the viewing space, the user will be taken to the relevant web page. 
Compatibility with current CMap databases has been preserved by taking a server/
client approach. The client is a user-side application that connects to servers hosting 
an existing CMap database known as a repository. The server is a web service that 
hosts a variety of scripts that communicate directly with a CMap MySQL database. 
The Cmap3D client first connects to a centralised repository listing server, which 

Fig. 8.3 The NCBI map viewer displaying the overall view for Arabidopsis thaliana chromosome 2
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provides the client with a list of available repositories and their details. The client 
then communicates directly with the repository server to request and retrieve the 
required data. Data transfer uses the HTTP protocol for data transfer, to minimise 
institution network security conflicts.

8.5  Concluding Remarks

Genetic markers have played a major role in our understanding of heritable traits. 
In the current genomics era, molecular genetic markers are bridging the divide 
between these traits and increasingly available genome sequence information. 
Conversely, the increasing quantity of genome sequence information is a valuable 
source of new genetic markers. Bioinformatics tools have been developed to mine 
sequence data for markers and present these in a biologist friendly manner. With 
the expansion of next generation sequencing technologies, there will be a rapid 
growth in associated marker information and the use of these markers for diverse 
applications from crop breeding to predicting human disease risks, impacting both 
food production and human health for future generations.

Molecular markers have many applications in plant breeding, and the ability to 
detect the presence of a gene (or genes) controlling a particular desired trait has 
given rise to marker-assisted selection (MAS). These new technologies make it 

Fig. 8.4 Screenshot of the engine view in CMap3D, showing the control panel to the left, and the 
viewing panel to the right. The icons above the toggles in the map controls section represent (from 
left to right) visibility, orientation and removal. This particular view is showing all features as 
visible with one of the ranged features highlighted
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possible to speed up the breeding process. For example, a desired trait may only be 
observed in the mature plant, but MAS allows researchers to screen for the trait at 
the much earlier growth stage. Further advantages of molecular markers are that 
they make it possible to select simultaneously for many different plant characteristics. 
They can also be used to identify individual plants with a defined resistance gene 
without exposing the plant to the pest or pathogen in question. In order to increase 
throughput and decrease costs, it is necessary to eliminate bottlenecks throughout 
the genotyping process, as well as minimise sources of variability and human error 
to ensure data quality and reproducibility. These new technologies may be the way 
forward for the discovery and application of molecular markers and will enable the 
application of markers for a broader range of traits in a greater diversity of species 
than currently possible.

SNPs are being used for the association of genes with susceptibility to complex 
human diseases. For example, a study by Martin et al. (2000) found evidence of 
association between SNP alleles around the APOE gene to Alzheimer disease was 
identified. By looking at the allelic variation for a set of genes known to be associ-
ated with a particular disease, researchers may be able to assess the probability of 
the illness manifesting in a given individual. A greater understanding of the genetic 
variation underlying human disease will revolutionise drug discovery, patient treat-
ment and lifestyle.
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9.1  Introduction

Life sciences in the twentieth century made major strides in unraveling several 
basic biological phenomena applicable to all living systems such as deciphering the 
genetic code and defining the central dogma (replication, transcription and translation), 
through observation and simple experimentation. However, biological research in 
the twenty-first century is primarily driven by high precision instrumentation for 
exploring the complexity of biological systems in greater detail. Very large datasets 
are generated from these instruments that require efficient computational tools for 
data mining and analysis. The definition of the term “high-throughput” has had to 
be redefined at regular intervals because of the exponential growth in the volume 
of data generated with each technological advance. For addressing the needs of 
modeling, simulation and visualization of large and diverse biological datasets from 
sequence, gene expression and proteomics datasets, “systems biology” (Hood 2003) 
approaches are being developed for construction of gene regulatory networks 
(Dojer et al. 2006; Imoto et al. 2002; Xiong 2006; Xiong et al. 2004) and for iden-
tification of key control nodes.

Among the various biomolecules present inside the cell, RNA plays a critical 
role in executing the inherited genetic instructions and for dynamically adapting to 
varying environmental conditions. The RNA component of the cell (transcriptome) 
is variable within different cell types in terms of both diversity and concentration 
of individual entities. Characterizing the transcriptome aids in gene identification, 
while monitoring the gene expression levels in different cell types at various time 
points, provides insight into the workings of the genome and biology of the organism 
as a whole.
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9.1.1  A Gene Atlas for Characterizing the Transcriptome

The construction of a gene atlas is an optimal method for fully exploring the tran-
scriptome, where gene expression is measured in diverse tissue types at distinct 
growth stages of an organism. This is because only small subsets of genes are 
expressed in each of the cell or tissue types. Gene expression is also temporal, since 
some genes are either switched on or off at different cell stages. A number of gene 
atlas projects have been implemented in plants and animals, including Arabidopsis 
(Meyers et al. 2004a, b; Peiffer et al. 2008; Weber et al. 2007), Human (Adams et al. 
1995; Camargo et al. 2001; Su et al. 2004), Mouse (Mortazavi et al. 2008; Su et al. 
2004), Pig (Gorodkin et al. 2007). In addition, we have developed a cattle gene atlas 
by deep sequencing of 100 distinct cattle tissues. (Manuscript in preparation).

9.2  Gene Expression by Sequencing

Advances in DNA-sequencing technology can be harnessed to explore transcriptomes 
in remarkable detail. Gene expression was initially performed by cloning and 
sequencing expressed sequence tags (ESTs) from cDNA libraries constructed from 
various tissue types (Adams et al. 1991; Boguski et al. 1993). EST sequencing 
coupled with whole genome sequence analysis helped identify 25,000–30,000 pro-
tein coding genes in humans (Boguski and Schuler 1995). Although EST sequencing 
provided a glimpse of gene expression in various tissues, in-depth sequencing of ESTs 
using Sanger sequencing remains cost prohibitive. EST sequencing remains a useful 
tool, but is relatively slow, provides only partial sequences that are sensitive to clon-
ing biases, and generally cannot identify mRNAs that are expressed at low levels.

Serial Analysis of Gene Expression (SAGE) (Velculescu et al. 1995), and its 
variant LongSAGE (Saha et al. 2002) have been applied as a cost effective approach 
for deep sequencing. In this method, a short nucleotide tag, is generated from two 
restriction digests, the tags are concatenated into a long sequence of 20–60 tags and 
analyzed in one Sanger sequencing reaction (Torres et al. 2008). This method has 
been successfully applied for several gene expression analyses (Blackshaw et al. 
2004; Hou et al. 2007). As expected, SAGE has been shown to be more sensitive 
in detecting low copy number transcripts as compared to EST sequencing (Sun 
et al. 2004) and also reproducible (Dinel et al. 2005).

9.3  Gene Expression by Hybridization

Global analysis of gene expression by RNA-hybridization on high-density arrays 
enable high-throughput profiling. Microarrays and whole genome tiling (WGT) 
arrays are the most common transcriptome analyses platforms. Microarrays  
(Su et al. 2004) are used for expression analysis of known genes whereas WGT 
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(Birney et al. 2007) arrays are used to capture the full complexity of the transcrip-
tome. WGT arrays however cannot capture the splice-junction information and are 
associated with high costs and complexities of data analysis. Arrays that are specifi-
cally designed for detecting alternative splicing events are still immature and 
unable to fully address the issues on completeness and specificity (Calarco et al. 
2007; Pan et al. 2004).

Microarrays rely on a continuous analog signal produced by hybridization 
between the templates on the arrays and the target transcripts in the sample 
(Velculescu and Kinzler 2007). Microarrays have played a very important role in the 
last decade in simultaneously monitoring the expression of thousands of molecules 
for large sample sizes at a reasonable cost. Large-scale application of microarrays as 
medical diagnostic kits for early and accurate detection of number of pathological 
diseases including cancer is being actively explored (Liu and Karuturi 2004).

Some limitations of the use of microarray technologies for gene expression 
analyses are

1. Content. Microarrays only allow measurement of expression of known genes 
that have been arrayed on the chip. Since, the knowledge of the numbers of 
expressed genes and their various splice isoforms is continuously expanding, it 
is difficult to create new arrays and analyze samples with new content.

2. Standardization. Microarray measurements are not easily comparable because 
of differences in array technologies, sample preparation methods, scanning 
equipment and even software. MIAME (minimum information about the 
microarray experiment) standards address this issue to some extent by requir-
ing several key details to be recorded for accurate reproduction. However, the 
reproducibility of results between different laboratories still remains a chal-
lenge and requires validation by an independent method such as RT-PCR.

3. Detection thresholds. Because of the background noise and limited dynamic 
range (ratio of the smallest to the largest fluorescent signal) in the scanning of 
microarrays, it is difficult to monitor lowly expressed genes.

4. Cross-species comparison. Although genes are known to be conserved across 
closely related species as compared to nongenic regions of the genome, it is not 
optimal to use arrays designed in one species for another. Also, in species having 
high genetic diversity, the microarray results may not be reliable.

5. Absolute vs. relative levels. Although there is a linear relationship between the 
concentration of each individual RNA species and signal intensity, the intensities 
vary between different RNA molecules. Hence, it is difficult to quantify differ-
ences in expression of different genes within a cell.

9.4  Insights from the ENCODE Project

The Encyclopedia of DNA coding Elements (ENCODE) project’s goal was to use 
high-throughput methods to identify and catalog the functional elements encoded 
in the human genome (Birney et al. 2007). The ENCODE regions comprise ~30 Mb 
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(1% of the human genome), encompassing 44 genomic regions. Approximately 
15 Mb reside in 14 regions for which there is already substantial biological knowl-
edge, whereas the other 15 Mb covers 30 regions chosen by a stratified random-
sampling method. High density whole genome tiling arrays were used to identify 
all transcriptionally active regions (TARs) and these were validated using RACE 
(Wu et al., 2008b). This study provided convincing evidence that the genome is 
pervasively transcribed, such that the majority of its bases can be found in primary 
transcripts, including nonprotein-coding transcripts, and that these extensively 
overlap one another. Because of the increased sensitivity in measuring rare tran-
scripts, several novel nonprotein-coding transcripts were identified, with many of 
these overlapping protein-coding loci and others located in regions of the genome 
previously thought to be transcriptionally silent. To fully capture the transcript 
diversity, deep sequencing was considered to be more attractive than hybridization 
based transcript detection methods. Sequencing the transcriptome can rapidly 
detect most genes at moderate sequencing depth, but identification of all genes can 
require very deep sequencing coverage.

9.5  Digital Gene Expression

Large-scale EST or SAGE based sequencing methods are called digital gene 
expression (DGE) measures as they provide direct transcript counts in proportion 
to the number of copies expressed in the cell. High-throughput DGE methods such 
as massively parallel signature sequencing (MPSS) or sequencing-by-synthesis 
(SBS) have been developed for simultaneously sequencing millions of expressed tags. 
The high sequencing error rate and short sequence length (~17 bases) had been a 
significant drawback in the initial phases of technology development (Meyers et al. 
2004b), and short tag sequences do not allow for unambiguous mapping of several 
tags to a unique transcript or genome location.

Meyers et al sequenced 2,304,362 tags from five diverse libraries of Arabidopsis 
thaliana using MPSS to identify a total of 48,572 distinct signatures expressed at 
significant levels. These signatures have been compared to the existing annotation 
of the A. thaliana genomic sequence to identify matches to 17,353 and 18,361 
genes with sense expression, and between 5,487 and 8,729 genes with antisense 
expression. An additional 6,691 MPSS signatures mapped to nonannotated regions 
of the genome are likely to represent novel gene content. Alternative polyadenyla-
tion was reported for more than 25% of A. thaliana genes transcribed in these 
libraries. The method was later applied for multiple species, including rice, grape 
and rice blast fungus (Iandolino et al. 2008; Nakano et al. 2006).

In our group, we sequenced 315 million tags from 100 distinct cattle tissues 
using the SBS method on the Solexa/Illumina Genome Analyzer. A total of 7.9 
million distinct tag types were observed in this data, with 5.6 million tags observed 
only once. These singletons constituted only 1.7% of the data and a proportion of 
them are likely to be sequencing errors. Around 6.5 million tags could be mapped 
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to the cattle genome, and could uniquely identify 61 % of all known RefSeq genes 
(17,350/28,510). From this analysis we identified 4,353 unique loci that demon-
strated ubiquitous expression among all the tissues analyzed.

The technology limitations of MPSS and SBS methods described above are now 
being addressed by simultaneously increasing the sequence length as well as quality. 
Currently, several DGE platforms are available such as Genome Analyzer (Illumina) 
(Morin et al. 2008), SOLiD sequencing (Applied Biosystems) (Cloonan et al. 
2008), 454 pyro-sequencing (Roche) (Weber et al. 2007) and polony sequencing 
(Kim et al. 2007). Recently, these methods have been demonstrated to be more 
accurate in comparison to traditional microarray methods (Marioni et al. 2008). 
Additionally, technology improvements for generating longer sequence reads cou-
pled with paired end sequencing or shotgun sequencing methods such as RNA-Seq 
(Fig. 9.1) (Mortazavi et al. 2008) or short quantitative random RNA libraries 
(SQRL) (Cloonan et al. 2008) is enabling detection of full length cDNA sequences 
as well as all splice variants.
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Fig. 9.1 Simplified representation of sample processing for next generation sequencing of digital 
gene expression. RNA-Seq methods use mechanical or chemical shearing to generate appropriate 
fragment sizes for sequencing, resulting in potentially full transcript coverage. The second method 
uses restriction cleavage to generate fragments that more closely represent one read per transcript 
from the sample
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Although there are several million EST sequences available at dbEST, the func-
tional complexity of even the human transcriptome is not yet fully elucidated. 
Sultan et al (2008) performed RNA-Seq on human embryonic kidney and a B cell 
line and found that 66% of the polyadenylated transcriptome mapped to known 
genes and 34% to unnannotated genomic regions. From the total tags sequenced 
50% mapped to unique genomic locations, 16–18% mapped to multiple regions of 
the genome, and 25% had no matches to the genome. From those that had unique 
matches to the genome, 80% corresponded to known exons. For the tags having no 
matches to the genome, they could attribute 14% to synthetically-computed alterna-
tive splice sites. The remaining tags are likely to be? sequencing errors or other 
unidentified alternative splice sites. The global survey of messenger RNA splicing 
events in their study revealed 94,241 splice junctions (4,096 of which were previously 
unidentified) and showed that exon skipping is the most prevalent form of alterna-
tive splicing. On the basis of known transcripts, they concluded that RNA-Seq can 
detect 25% more genes than microarrays.

Analysis of gene expression by sequencing has several advantages over micro-
array methods. For the development of a microarray gene expression assay, all 
gene sequences are required to be known prior to probe design. Microarray chip 
design also requires a large initial investment and long lead time. High-throughput 
DGE can be applied readily to any species lacking both the genome sequence and 
gene content. DGE methods can explore novel gene content, splice variants and 
rare transcripts. Hybridization techniques require the establishment of thresholds 
for signal-to-noise ratio and can potentially lose detection of some rare transcripts. 
In contrast, DGE measures have no background noise, except for the tags observed 
due to sequencing errors. DGE methods can also be applied to other classes of 
RNA transcripts such as snoRNAs (Bachellerie et al. 2002), miRNAs (Ambros 
2001), piRNA (Lau et al. 2006) and siRNAs (Hamilton and Baulcombe 1999). 
DGE methods provide absolute tag counts (tags per million) that allow reproduc-
ible comparison of transcripts within and across various samples. Finally, for 
microarray experiments, SNPs and closely related genes can cause signal interfer-
ence; whereas for DGE, sequencing errors and short tag lengths can create similar 
problems.

9.5.1  Choice of DGE Method: Tag Bias

9.5.1.1  Requirement for Specific Recognition Site

Some DGE methods such as MPSS and SBS require the presence of a specific 
restriction endonuclease recognition site within the transcript close to the poly(A) 
tail (Meyers et al. 2004b). Transcripts lacking the specific recognition site (or 
having lost the recognition site due to SNPs) are not represented in the DGE data 
(Silva et al. 2004).
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9.5.1.2  Sequencing Read Lengths

DGE methods such as 454 and LongSAGE, generate longer reads than SAGE or 
MPSS. Hene et al (2007) compared tag data generated from the same T cell-
derived RNA sample using a LongSAGE library of 503,431 tags and a “classic” 
MPSS library of 1,744,173 tags, and showed that LongSAGE had 6.3-fold more 
genome-matching tags than MPSS. An analysis of a set of 8,132 known genes 
detectable by both methods, and for which there is no ambiguity about tag match-
ing, shows that MPSS detects only half (54%) the number of transcripts identified 
by SAGE (3,617 vs. 1,955). Analysis of two additional MPSS libraries showed 
that each library sample had a different subset of transcripts, and that in combina-
tion, the three MPSS libraries (4,274,992 tags in total) detected only73% of the 
genes identified using SAGE. They concluded that MPSS libraries were less 
complex than LongSAGE libraries, revealing significant tag bias between the 
two methods.

9.5.1.3  GC Content of the Transcript

By comparing five gene expression profiling methods: Affymetrix GeneChip, 
LongSAGE, LongSAGELite, “Classic” MPSS and “Signature” MPSS, it was 
shown that these methods are sensitive to the GC content of the transcript (Siddiqui 
et al. 2006). The LongSAGE method had the least bias, Signature MPSS showed a 
strong bias to GC rich tags, and Affymetrix data showed different bias depending 
on the data processing method (MAS 5.0, RMA or GC-RMA), mostly impacting 
genes expressed at lower levels. It was observed that despite the larger sampling of 
the MPSS library, SAGE identified significantly more genes (60% more RefSeq 
genes in a single comparison (Siddiqui et al. 2006)).

9.5.1.4  Shotgun Sequencing Coupled with Long Read Lengths

Weber et al (2007) observed no tag bias in the transcripts from large-scale pyrose-
quencing (100–110 bp) of an Arabidopsis cDNA library. They performed two 
sequencing runs to generate 541,852 expressed sequence tags (ESTs) after quality 
control. Mapping of the ESTs to the Arabidopsis genome to The Arabidopsis 
Information Resource 7.0 cDNA models indicated detection of 17,449 transcribed 
gene loci. The second sequencing run only increased the number of genes identified 
by 10%, but increased the overall sequence coverage by 50%. Mapping of the ESTs 
to their predicted full-length transcripts indicated that shotgun sequencing of cDNA 
represented all transcripts regardless of transcript length or expression level. Over 
16,000 of the ESTs that were mapped to the genome were not represented in the 
dbEST database, and are likely novel transcripts.
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9.5.1.5  5¢ vs. 3¢ Transcript Sequencing

Most of the transcript abundance measurement methods, including the DGE methods, 
rely on 3¢ sequence. The cap analysis of gene expression (CAGE), method has been 
proposed for identification of 5¢ end-specific signature sequences (Shiraki et al. 
2003). In this technique, linkers are attached to the 5¢ ends of full-length enriched 
cDNAs to introduce a recognition site for the restriction endonuclease MmeI adja-
cent to the 5¢ ends. MmeI cleaves cDNAs 20 and 18 nucleotides away (3¢) from its 
recognition site, generating a two-base overhang. After amplification, the sequenc-
ing tags are concatenated for high-throughput sequencing. The application of 
CAGE has been found to be useful in determining the transcription start sites 
(TSSs) along with associated gene promoters (de Hoon and Hayashizaki 2008; 
Kawaji et al. 2006).

9.5.1.6  Availability of Whole Genome Sequence

When the genome sequence is not available, DGE methods that generate one tag 
per transcript such as SBS are useful for measuring expression changes between 
samples (Nakano et al. 2006). Shotgun transcript sequencing methods such as 
RNA-Seq have more utility when genome sequence is available, and can be used 
for measuring relative transcript abundance, full length cDNA assembly, and analysis 
of splice variants (Mortazavi et al. 2008).

9.5.1.7  Accounting for Heterogeneous Cell Sampling

Gene expression changes are measured by sampling a homogeneous cell popula-
tion. However, in complex metazoan systems it is often difficult to obtain unique 
cell types, hence, the gene expression measurement is often an average and is 
dependent on the composition of the sample. A computational deconvolution 
method that accounts for changes in the sizes of cell type-specific compartments 
can increase both the sensitivity and specificity of differential gene expression 
experiments performed on complex tissues (Wang et al. 2006).

9.5.2  Analysis of DGE Data

DGE data from next-generation sequencing platforms consists of a large number of 
sequence reads. These reads, also commonly referred to as tags or signatures, present 
a representative sampling of the active transcriptome. A typical dataset will consist of 
several million reads. Each signature in a DGE data set is analyzed for quality and is 
compared with all others to obtain cumulative counts of all distinct tags. The unique 
tags are then mapped to the genome or gene models. In DGE methods such as MPSS 
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and SBS, where only one tag is generated per transcript, the gene expression is 
enumerated as transcripts per million (TPM). For other transcript shotgun DGE 
methods such as RNA-Seq, gene expression is measured as transcripts per kilobase 
per million. Using these variables, it is possible to identify the differentially expressed 
genes within and across the samples (Reinartz et al. 2002) (Figure 9.2).

9.5.2.1  Normalization and Filtering of Tag Signatures

The first stage of processing in DGE is to reduce the set of distinct signatures to 
determine an “abundance” value. This consists primarily of counting signatures 
based on their unique sequence. Raw abundance counts from multiple sequencing 

Apply filters
• quality
• vector
• linker/adapter

Tag set

Map tags to best  'gene' match
• genome sequence(s)
• gene models
• ESTs
• related species
• novel genes / splice variants

Gene mapped tags

Normalize tag counts
• tag percentage (tags per million)
• tag concentration (tags per sequence length per million)

Transcriptome Biology

Compare tag abundances
• cluster analysis / ANOVA
• systems biology / regulatory networks / metabolic pathways
• phenotypic differences / eQTL / genetical genomics

DGE sequence data

Normalized gene/transcript counts

Fig. 9.2 General flow chart of DGE data analysis. DGE sequence reads are filtered to remove low 
quality sequences and clustered to identify unique reads. The resulting set of reads are mapped to 
a combination of genomic sequences and various known genic sequences to provide identification 
and, in the case of RNA-seq data, to group them into defined transcripts. Reads that do not map 
to known exonic regions are merged into existing gene models if in appropriate proximity, or used 
to construct novel gene models. Mapped read abundances are used to generate normalized values 
for their respective assigned genes either by percentage or by concentration depending on the 
experiment type. Normalized expression values are then available for use in a variety of analyses 
to further investigate the transcriptome of the sample being studied
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runs can be merged. Abundance values are determined by normalization to yield a 
relative percentage for each observed signature as transcripts per million (TPM):

signature 6
normalized

all signature

raw abundance
abundance 10 .

raw abundance
= ´å
å

The normalized value is largely independent of the total number of signatures in the 
library allowing comparison across libraries. In most cases normalization can be 
performed either before or after tag mapping. In the case of RNA-Seq experiments, 
normalization is refined during the mapping process. In this case, where each RNA 
transcript is represented by multiple unique reads, a more representative normaliza-
tion value is to use a read “concentration” such as reads per length of the full-length 
transcript per million total reads. This should account for the distribution of 
potential reads between long and short transcripts better than an observed read 
percentage value.

The set of distinct signatures can be filtered using two criteria: reliability and 
significance. These filters are designed to remove noisy sequences that may have 
resulted from erroneous processes or systematic errors such as adapters or vector 
sequences. The reliability filter removes signatures observed in only one of the 
sequencing runs across all libraries (e.g., inconsistent expression, sequencing 
errors), and some literature suggests filtering signatures that are below 2 tpm, as 
very low expression (Meyers et al. 2004a).

9.5.2.2  Database Resources for Mapping Signature Sequences

Signature sequences can be annotated by mapping to databases of known genes, 
annotated genome sequence, expressed sequence tags (EST), and protein sequences 
in both sense and antisense directions. For species lacking these resources, 
sequences from closely related species can be used for annotation because of the 
relatively high sequence conservation between genes. Gene annotation methods 
require classification of transcript signatures into mRNA, tRNA, rRNA, miRNA 
and snoRNAs. Accurate gene models can be constructed from signature sequence 
by discovery of splice junctions, promoters and transcription start sites.

9.5.2.3  Generic Software for Mapping Signature Sequences

For mapping signatures to genes there are several software packages already avail-
able such as BLAST (Altschul et al. 1990), BLAT (Kent 2002) and MUMMER 
(Delcher et al. 1999). However, for next-generation sequencing data, more efficient 
index-filtering algorithms such as ELAND (Illumina Inc), SeqMap (Jiang and 
Wong 2008) and MAQ (Li et al. 2008) have been developed. These programs can 
map tens of millions of short sequences to a genome of several billions of nucleotides 
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and can also handle multiple substitutions and insertions/deletions to account for 
sequencing errors and polymorphisms. Each of the software packages has distinct 
features. SeqMap can be run in parallel using multiple processors, while MAQ can 
process paired sequences. Although these programs can generate both ungapped 
and gapped alignments, gaps are not explicitly evaluated for splice junctions

9.5.2.4  Transcript Mapping Software with Spliced Alignments

The open source software QPALMA (De Bona et al. 2008) has been designed for 
accurate spliced alignments. QPALMA uses a training set of spliced reads for 
computing splice junctions. The software uses a large margin approach similar to 
support vector machines, to estimate its parameters for maximizing alignment 
accuracy. To facilitate mapping of massive amounts of sequencing data, this method 
is combined with a fast mapping pipeline based on enhanced suffix arrays.  
The QPALMA algorithm has been optimized and demonstrated using reads produced 
with the Illumina Genome Analyzer for the model plant A. thaliana.

9.5.2.5  Software Pipeline for DGE Data Analysis

The ERANGE software package (Mortazavi et al. 2008) developed by the Wold 
group performs analysis of DGE data from RNA-Seq experiments. ERANGE 
implements the following computational steps:

(a) Read mapping to the gene/genome by either direct assignment for unique 
matches or identify “best” site(s) for multireads.

(b) Detection of alternative splice sites
(c) Organization of reads that cluster together into candidate exons
(d) Calculation of the prevalence of transcripts for each known or new mRNA, 

based on normalized counts of unique reads, spliced reads, and multireads.
A list of additional software for DGE data analysis is given in Table 9.1. For more 
recent updates, the next generation sequencing community website: http://seqanswers.
com can be helpful.

Table 9.1 DGE processing software

Name URL Ref

MAQ http://sourceforge.net/projects/maq/ (Li et al. 2008)
SeqMap http://biogibbs.stanford.edu/~jiangh/SeqMap/ (Jiang and Wong 2008)
ELAND http://www.illumina.com/pages.ilmn?ID = 268
ERANGE http://woldlab.caltech.edu/rnaseq/ (Mortazavi et al. 2008)
QPALMA http://www.fml.mpg.de/raetsch/projects/

qpalma
(De Bona et al. 2008)

SimCluster http://xerad.systemsbiology.net/simcluster/ (Vencio et al. 2007)
MSAGE http://bioinf.wehi.edu.au/folders/msage/ (Robinson and Smyth 2007)
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9.5.2.6  Handling Unique and Redundant Matches

Sequence reads can be divided into two primary groups, unique reads and nonunique 
reads. Nonunique reads, although not identical, have high sequence similarity with 
other reads (e.g., a family of related sequences). A significant fraction of unique 
signatures can be mapped unambiguously to genomic sequence and known gene 
models or ESTs. Some signatures can be mapped to regions outside known exons, 
and these can either be merged into existing gene models or classified as novel 
genes. Similarly, nonunique reads that are usually the result of duplicated genes and 
segmental genome duplication can be mapped to a “best” match location based on 
abundance levels (Mortazavi et al. 2008). The remaining unassigned reads may be 
the result of sequencing errors or noncoding RNA such as tRNA, rRNA, miRNA 
and snoRNAs.

9.5.2.7  Examining Patterns of Gene Expression

The abundance of mapped signatures allows for investigation of expression patterns 
within and across the samples. Comparisons between individual samples can be 
made using some of the methods employed in the analyses of microarrays and 
SAGE data (Reimers and Carey 2006). One such method is the use of the correlation 
coefficient r between the logarithms of the gene expression vectors of all pairs of 
samples, using d = (1 − r) as a measure of the difference between the members of a 
pair (Jongeneel et al. 2005).

Hierarchical clustering can also be used to display the relationship between 
expression profiles. This can use the same distance measure as presented above, or 
alternatives such as Shannon entropy (Schug et al. 2005). The given expression levels 
of a gene in N tissues, defines the relative expression of a gene g in a tissue t as

 g,t
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,t g

N

w
p

w
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g,t

 is the expression level of the gene in the tissue.
The entropy (Shannon 1949) of a gene’s expression distribution is
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H
g
 has units of bits and ranges from zero for genes expressed in a single tissue 

to log
2
(N) for genes expressed uniformly in all tissues considered. The maximum 

value of H
g
 depends on the number of tissues considered, so this number is reported 

when appropriate. With the use of relative expression, the entropy of a gene is not 
sensitive to absolute expression levels.

Categorical tissue specificity can be defined as
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The quantity −log
2
(p

t|g
) also has units of bits and has a minimum of zero that 

occurs when a gene is expressed in a single tissue, and grows unboundedly as the 
relative expression level drops to zero. Thus Q

g|t
 is near its minimum of zero bits 

when a gene is relatively highly expressed in a small number of tissues, including 
the tissue of interest, and becomes higher as either the number of tissues expressing 
the gene becomes higher, or as the relative contribution of the tissue to the gene’s 
overall pattern becomes smaller. By itself, the term −log

2
(p

t|g
) is equivalent to p

t|g
. 

Adding the entropy term serves to favor genes that are not expressed highly in the 
tissue of interest, but are expressed only in a small number of other tissues. Such 
genes should be considered as categorically tissue-specific since their expression 
pattern is very restricted (Schug et al. 2005).

One software tool that can be used for clustering genes based on expression level 
is SimCluster (Vencio et al. 2007), which was specifically designed for the efficient 
clustering of large data sets – DGE data in particular. SimCluster performs calcula-
tions on the gene expression data in the simplex vector space in d dimensions 
(count of distinct tags) that is defined as

 { }1 | R , 1 1 .d
dS - += p p Î p ¢ =  

Here, d represents the number of distinct tags and 1 is a vec tor of 1’s. 
Simcluster’s method can be described as the use of a Bayesian inference step to 
determine the expected abundance simplex vectors from the observed counts. 
Where p = [p|x], the translations on the simplex space is defined as
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where ⋅ is the usual Hadamard product and the division is vector-evaluated. 
SimCluster uses an Aitchisonean distance metric that is defined as
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where I is the identity matrix, × is the Kronecker product, −d subscript is a notation 
for “excluding the dth element,” and elementary operations are vector-evaluated.

Several algorithms were implemented in Simcluster that include: k-means, 
k-medoids and self-organizing maps (SOM) for partition clustering, PCA for inferring 
the number of variability sources present, and common variants of agglomerative 
hierarchical clustering. Currently, the Simcluster package comprises Simtree, for 
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hierarchical clustering; Simpart, for partition clustering; Simpca for Principal 
Component Analysis (PCA); and several utilities such as TreeDraw, a program to 
draw hierarchical clustering dendrograms with customizable tree leaf colors.

Robinson and Smyth (Robinson and Smyth 2007) developed a statistical package 
(edgeR) that uses a negative binomial distribution for modeling the over-dispersion 
of DGE data and weighted maximum likelihood estimating the dispersion.

9.5.3  DGE Data Databases, Visualization and Presentation

Given the large volumes of data generated from these high-throughput sequencers, 
it is important to manage the data effectively as it can easily overwhelm the avail-
able resources. For example, most laboratories now find it cost-effective to prepare 
a new sequencing run than store terabytes of image data. Meyers et al. (2004a) 
proposed a database architecture along with web-enabled query and display inter-
face for DGE data. Human, Mouse and Cow gene atlas projects have used either 
custom browsers (Su et al. 2004) or present expression information as tracks in the 
UCSC Genome Browser (Kent et al. 2002) or Gbrowse (Stein et al. 2002) for data 
queries and graphical display. All DGE datasets can be deposited and queried from 
GEO (Barrett et al. 2007) database at NCBI. Genome and chromosome level views 
of mapped expression levels provide the additional benefit of aiding in the 
identification of transcriptionally active regions (TARs) along their sequence span. 
Large-scale gene expression datasets can be used as phenotypes in association 
studies for the identification of genomic regions termed expression QTL (eQTL) 
(Damerval et al. 1994; Stranger et al. 2007; Wu et al., 2008a).

9.6  Summary

Digital gene expression using next generation sequencing has several advantages 
over the traditional EST sequencing, SAGE or microarrays. Although advances in 
various sequencing technologies are enabling further reduction in the sequencing 
costs, algorithms and software for efficient data handling are still evolving and 
require significant improvements to meet current and future data analysis chal-
lenges. It is also important to consider the impact of bias introduced from each of 
the different sequencing platforms, while designing a DGE experiment. Currently, 
genome wide association studies (GWAS) in humans are largely conducted using 
high density SNP arrays or by sequencing candidate genes. Similar to the use of 
whole genome sequencing (1,000 genomes project) for GWAS, expression based 
association analyses (eQTL) will likely gain prominence in the near future. 
Significant reductions in the sequencing costs is also enabling large-scale transcriptome 
analysis in several plant and animal species that have been so far restricted to 
humans and few other model organisms.
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10.1  Introduction

The near exponential growth in protein sequence data is at the foundation of trans-
formations in biological research and related technological developments. The use 
of protein sequence data is widespread in fields including agronomy, biochemistry, 
ecology, etymology, evolution, genetics, genetic engineering, genomics, molecular 
phylogenetics and systematics, pharmacology, and toxicology. The remarkable 
increase in available protein sequences will most likely continue with the proliferation 
of genome sequencing projects, the latter enabled by ongoing improvements in 
DNA sequencing technology.1 Along with opportunities, protein sequence data 
bring scientifically challenging problems.

Proteins are the unbranched polymers formed by a sequence of amino acids 
forming the protein polymer chain. This sequence describes the order of the amino 
acids and consequently the covalent structure of the polypeptide chain. The vast 
majority of protein sequence data are represented by the sequence of amino acids. 
The complete covalent structure is the primary structure of the protein and may 
include covalent cross links between distinct polypeptide chains. Sequence and 
primary structure are used interchangeably for single chain structures without cross 
links (Cantor and Schimmel 1980). It is customary to represent each of the twenty 
standard amino acids as a single letter code in the literature and in digital collections. 
Many bioinformatics analyses conducted on proteins consider the sequence of 
single letter codes alone. This representation is useful since the amino acid sequence 
is fundamental to protein structure and function. Several secondary structure 
elements are also useful in characterizing proteins. Some secondary structures can 
persist independently of the overall protein conformation. Examples of such 
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elements include helices, sheets, and hyper-variable loops (Lesk 2001). Secondary 
elements come together to form the three-dimensional structure, also known as the 
tertiary structure.

Sanger and Thompson reported the first complete amino acid sequence for a 
protein in 1953 marking the beginning of protein sequence acquisition. Twelve 
years after Sanger and Thompson sequenced the insulin glycyl chain, the first 
edition of the Atlas of Protein Sequence and Structure was available on magnetic 
tape with 65 proteins (Dayhoff et al. 1965). In 1984, the Protein Information 
Resource (PIR) of the National Biomedical Research Foundation launched the first 
computerized protein sequence database, the PIR-International Protein Sequence 
Database (Barker et al. 1998). The UniProt Knowledgebase (UniProtKB) is now a 
central hub for the collection of functional information on protein sequences in the 
public domain (UniProt 2008a). The UniProt consortium includes the European 
Bioinformatics Institute, the Swiss Institute of Bioinformatics, and the Protein 
Information Resource (Leinonen et al. 2004). The primary database for manually 
curated protein sequences within UniProt is SwissProt (Boeckmann et al. 2005). 
Currently, the UniProt Knowledge Base contains approximately 1.8 billion amino 

Fig. 10.1 The rapid growth in the computationally annotated UniProt/TrEMBL protein sequence 
entries nearly tracks the exponential growth in GenBank sequences. The size, redundancy, and 
distribution of protein sequences can impede similarity searches. The UniProt Reference Clusters 
(UniRef) combines related protein sequences at three levels of sequence space resolution to 
increase the information obtained from homology searches. The smaller UniProt/Swiss-Prot 
consists of manually verified entries. It is difficult for manual curation to keep pace with 
computer-generated entries



211

BookID 151692_ChapID 10_Proof# 1 - 21/08/2009

10 Protein Sequence Databases

acids; these are available in a compressed file of sequences in FASTA format 
(Pearson and Lipman 1988) and through specialized interfaces.

Digital collections of protein sequence data are rendered useful through their 
annotations. Efforts to classify protein sequences are ongoing (Camon et al. 2004; 
The Gene Ontology Consortium 2000; Kunin et al. 2003; Ouzounis et al. 2003; 
Raes et al. 2007; Rost and Valencia 1996). The challenges include computational 
tractability (Apweiler 2001; Moeller et al. 1999; Wieser et al. 2004), assessing and 
correcting the quality of function predictors (Friedberg 2006), and facilitating 
discovery within the protein sequence collections (Suzek et al. 2007). Contemporary 
computer-assisted analysis of protein function relies on sequence similarity (Fitch 
1970; Pearson 1995; Altschul et al. 2005; Rost and Valencia 1996; Whisstock and 
Lesk 2003). The assessment of proteins through their sequence take into account 
metabolic pathways, protein secondary and quaternary structure, protein domains, 
and genome orientation.

At present, the majority of protein sequences in the public domain arise from 
computational predictions. The vast majority of these sequences are assessed for 
function through automated analysis with little to no human intervention. Protein 
sequences are routinely compared against large databases in these endeavors. 
The growth in sequence production over the past two decades has increased the 
demand for automated procedures to assess protein sequence similarity. In contrast to 
automated annotation, manual annotation of protein sequence data by human 
experts usually implies a critical review of experimental and computer-predicted 
assertions along with the literature and other lines of evidence. Current automated 
methods directed entirely by computer programs are less accurate in assessing 
protein function from sequence than expert manual curation. Nevertheless, the 
robust performance of automation addresses the wave of protein sequence data 
produced in genome and environmental studies.

10.2  Protein Classification Systems

The general aim of protein classification is to determine the role of proteins in 
biological processes. Protein classification based on structure, sequence, and func-
tion provides traction for organizing proteins in various ways. Ouzounis and 
colleagues argued that current classification methods based on similar sequence 
and structure (see following section) could benefit from unification into natural 
classification schemes that quantify physical relevance (Ouzounis et al. 2003).

The Gene Ontology Consortium provides the most widely used protein classifi-
cation system, the ontologies collectively referred to as GO (The Gene Ontology 
Consortium 2000). GO represents the classification of proteins in three ontologies, 
each with a controlled vocabulary with well-defined interrelationships between the 
terms. The three ontologies distinguish molecular function, cellular component, 
and biological process. The association of a protein to one or more GO categories 
reflects the potential for multiple functions, locations, and processes. Each of the 
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three ontologies takes the form of a directed acyclic graphic, where each node cor-
responds to a term that is more specialized than one or more parent nodes. UniProt 
and InterPro adapt and contribute to the GO terminology (Biswas et al. 2002), and 
both manual and automated methods utilize GO (Camon et al. 2004).

By the late 1950s, in a period when the number of known enzymes had increased 
to hundreds, the need for a systematic classification system was addressed. Toward 
this end, in 1956, The International Commission on Enzymes was established in 
consultation with the International Union of Pure and Applied Chemistry (IUPAC). 
The committee’s charter was “to consider the classification and nomenclature of 
enzymes and coenzymes, their units of activity, and standard methods of assay, 
together with the symbols used in the description of enzyme kinetics” (NC-IUBMB 
2008). The Enzyme Commission (EC) classification is oriented on the reactions 
catalyzed, not the enzymes. Whereas one goal of protein sequence database efforts 
is to map sequence and structure onto function, the EC classification system maps 
function onto proteins. EC numbers contain four fields in a four-level hierarchy. 
The first number specifies the enzyme class: oxidoreductases, transferases, hydro-
lases, lyases, isomerases, and ligases. The second and third numbers are context 
sensitive to the first number. To illustrate, for oxidoreductases, the second number 
describes the substrate and the third number describes the acceptor. The fourth 
number gives the specific enzymatic reaction catalyzed.

10.3  Analysis of Protein Sequences

The primary sequence-based analysis of proteins involves signatures, domains, and 
sequence similarity (Altschul et al. 1994; Durbin et al. 1998; Gribskov et al. 1987; 
Mulder 2007). In nearly all methods, sequence alignment is fundamental to the 
classification process. Many annotation systems begin by assigning proteins to 
families, groups of putative homologs (Gerlt and Babbitt 2001; Pontig 2001; 
Whisstock and Lesk 2003). Sequence and structural similarity with known proteins 
permit transfer of predicted function from characterized to unknown proteins. 
Current practice postulates that two proteins are homologous when sequence similarity 
is above a certain statistical threshold. Homology provides an evolutionary connection 
between proteins (Fitch 1970) which can be used as a basis to infer structural and 
functional similarities; such practice is with attendant caveats.

10.3.1  Alignment of Sequences

The use of local sequence alignment is a standard approach to find similarity 
between protein sequences. Alignment algorithms model insertion, deletion, and 
substitution events using a scoring system based on biologically relevant probability 
distributions (Altschul 1991). Statistical interpretation of alignments can answer 
the question whether similarities between sequences signify an evolutionary or 
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functional relationships, or simply arise by chance. A common practice is to orient 
an unknown protein using another protein of known function. Statistically signifi-
cant sequence similarity of unknown protein A with annotated protein B can pro-
vide useful functional hypotheses for A based on B. The strengths of such 
hypotheses depend in part on the quality of the annotations of B. The BLAST pro-
gram with rigorous statistical models is widely used for assessing protein-protein, 
protein-DNA, and DNA-DNA sequence similarity (Altschul et al. 1990; Altschul 
et al. 2005; Pearson 1995). Statistically significant alignments obtained from the 
BLAST search-and-align heuristic (Altschul et al. 1990) and other alignment meth-
ods (Pearson and Lipman 1988) can suggest an unknown protein’s function through 
annotated homologs.

Manual classification by experts kept pace with protein discovery until the 
1990s. Then, significant growth in key technological areas tipped the balance and 
manual curation fell significantly behind the mounting sequence collections 
(Fig. 10.1). Technological and intellectual advances in bioinformatics continue 
contemporaneously with the data surge. The quantitative assessment of sequence 
similarity is central among these advances. Early work in rigorous statistical models 
(Lipman and Pearson 1985; Karlin and Altschul 1990) together with the speed 
provided by the sequence-alignment program BLAST (Altschul et al. 1990) has 
had an extraordinary influence on creating, managing, and using protein-sequence 
data collections. Another pivotal development came in models to predict genes in 
genome sequence data (Burge and Karlin 1997; Koonin and Galperin 2002).

Although it is widely known that sequence does not necessarily determine func-
tion, it is a common practice to transfer function from one homolog to another. In 
an ideal world, one might assert that sequence implies structure and structure 
implies function, and therefore conclude that sequence implies function. However, 
this transitive relationship stands on shaky ground. The realization that divergent 
evolution can produce enzymes that catalyze different reactions (Gerlt and Babbitt 
2001) is one of many reasons for the frequent qualification that sequence similarity 
does not necessarily imply function (Pearson and Wood 2001). Evidence for 
orthologs improves the case for inferring protein function from sequence (Fitch 
1970; Mushegan 2007); however, the case is weaker for paralogs, as paralogs pro-
duced by a duplication event often diverge in function (Henikoff et al. 1997; 
Ganfornina and Sánchez 1999). The limitations attendant with sequence-based 
function inference (Whisstock and Lesk 2003) provide guidelines for its well-grounded 
use. Sangar and colleagues reported the encouraging result that, for proteins with 
greater than 50% sequence identity, the transfer of function between them will lead 
to an erroneous attribution in less than 6% of the cases (Sangar et al. 2007).

10.3.2  Domains and Motifs

Domains are compact units of structure found in various combinations in proteins. 
Crucial to the definition of these conserved units is that they are capable of independently 
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maintaining a characteristic structure apart from the bulk protein (Reddy and 
Bourne 2003). Motifs are short simple substructures identified within contiguous 
sequence. In contrast to the stand-alone character of domains, motifs usually 
depend on the overall protein context. The simple structure of motifs is straight-
forward to identify computationally (Durbin et al. 1998).Domains may appear as 
significant similarity in a local sequence alignment; this is true to a lesser extent for 
motifs. Pfam uses domains to group proteins (Bateman et al. 2002; Finn et al. 
2006). Similarly, PROSITES categorizes proteins by motif (Sigrist et al. 2002; de 
Castro et al. 2006). Since biochemical functionality tends to be sensitive to overall 
protein integrity, function does not necessarily follow from the presence of a domain; 
however, domains are an important aspect of protein function prediction. In contrast 
to biochemical-process specificity where overall protein structure and binding capa-
bilities are often essential, a single conserved domain can confer catalytic activity in 
a variety of contexts. It follows that, in divergent homologs, catalytic activity tends 
be better conserved than cellular and biochemical process functionality. Wilson and 
colleagues concluded that function was conserved relative to the EC classification 
system in pairs of single-domain proteins with ³ 40% identical sequence (Wilson 
et al. 2000).

10.3.3  Profiles, Families, and Multiple Sequence Alignments

Multiple sequence alignments are useful for identifying domains, motifs, and other 
features shared among a group of protein sequences. A multiple sequence alignment 
provides a basis for a profile spanning the length of a protein (Gribskov et al. 1987). 
Profile-based models are extremely useful for managing protein sequence data. 
Rapid search algorithms utilize profiles. An investigator armed with a query 
sequence can create a profile from protein sequence database with tools such as 
PSI-BLAST (Altschul et al. 1997). Curated profiles such as hidden Markov model 
representations of protein families (Eddy 1996; Durbin et al. 1998) provide a global 
strategy for organizing protein sequence data (Bateman et al. 2002). The PROSITE 
database of protein sequence patterns uses profiles in addition to motifs (Sigrist 
et al. 2002), the former similar to those reported by Gribskov and co-workers. 
Clustering methods unconcerned with specific protein features can be effective at 
meaningful groupings of protein sequences (Burke et al. 1999).

Methods to determine protein families vary. Pfam families use multiple sequence 
alignment, clustering, and statistical analysis of the sequence composition in 
protein domains and domain arrangement (Bateman et al. 2002). The structurally 
oriented SCOP database defines families consisting of proteins with 30% similarity, 
and proteins with lower sequence identity but with similar function and structure 
(Reddy and Bourne 2003). SCOP further delineates proteins into superfamilies; 
superfamilies form groups of distant homologs with potentially lower sequence 
identity than families, but sharing the same secondary structure in the same arrange-
ment (Reddy and Bourne 2003). Pfam uses a concept similar to superfamilies to 
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group families into clans. The clan relationship takes into account related structure 
and function and significant sequence similarity based on profile hidden Markov 
models (Finn et al. 2006). SwissProt semi-automatically curates families with 
expert interpretation of diverse evidence including the literature  
(Bairoch et al. 2004).

Gerlt and Babbit proposed a hierarchical classification of function for enzymes 
with the aim to incorporate structurally contextual definitions with chemistry-based 
relationships (Gerlt and Babbitt 2001). They observed that SCOP often groups 
enzymes by substrate specificity but may place diverged enzymes with similar 
active-site functional groups into separate superfamilies. In their classification, a 
family consists of homologous enzymes that catalyze the same reaction; a superfamily 
consists of homologous enzymes that catalyze similar reactions through different 
specificity or different overall reactions with common mechanistic attributes through 
conserved active-site residues; a suprafamily groups homologous enzymes that catalyze 
different reactions with different mechanistic attributes. One may envision 
evolutionary classes extended to include other physical and chemical traits.

10.4  Protein Sequence Databases

Protein sequence databases are numerous and growing. There has been considerable 
effort to integrate information associated with protein sequence data. Noteworthy 
developments include formation of the UniProt Consortium (UniProt Consortium 
2008) together with integrated annotation methods by InterPro (Mulder et al. 2007). 
In this section, we introduce some key resources.

10.4.1  The UniProt Consortium

The UniProt Consortium organizes principal protein-sequence repositories in the public 
domain (The UniProt Consortium 2007). Its databases consist of four components:

1. The UniProt Archive (UniParc) is oriented to provide a complete body of publically 
available protein sequence data without redundancy.

2. The central UniProt database of protein sequences is the UniProt Knowledgebase 
(UniProtKB) with highly curated and annotated sequences.

3. The UniProt Reference Clusters (UniRef) databases provide non-redundant 
views of sequences at varying levels of resolution.

4. The UniProt Metagenomic and Environmental Sequences (UniMES) database is a 
repository developed for high-throughput genome analysis for unclassified 
organisms.

The UniProtKB collection consists of the manually curated UniProt/Swiss-Prot and 
machine curated UniProt/TrEMBL. These sequence collections are available in 
compressed FASTA files.
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UniParc is the main sequence warehouse for UniProt, a comprehensive reposi-
tory aimed at maintaining all protein sequences at a single site. UniParc removes 
redundant sequences that are 100% identical and of the same length by merging 
them into single entries regardless of organism. The UniParc model intends 
sequences to be without annotation, from the viewpoint that annotation depends 
properly on biological context.

SwissProt is a manually curated, minimally redundant protein sequence database 
(Apweiler 2001; Boeckmann et al. 2005). This high-quality protein sequence data-
base includes experimental findings, in addition to computed annotations. Many 
consider SwissProt to be one of the gold standards in the field.

TrEMBL represents the Translated EMBL Nucleotide Sequence Data Library. 
Introduced in 1996, it is the machine-annotated counterpart to SwissProt (Boeckmann 
et al. 2003). The purpose of TrEMBL is to accommodate the growth in protein 
sequences output from genome sequencing projects awaiting manual curation 
(Schneider et al. 2005). The number of sequences in TrEMBL has followed 
increases in DDBJ/EMBL/GenBank sequences over the past eight years (Fig. 10.1). 
InterPro uses an automated rule-based system with inferences deduced from 
SWISS-PROT to annotate UniProt TrEMBL (Biswas et al. 2002).

UniRef facilitates effective use of the large collection of translated CDS in 
TrEMBL (The UniProt Consortium 2007). It combines redundant sequences from 
UniProtKB and UniParc databases into three reduced sets. Currently these sets are 
UniRef100, 90, and 50. A single UniRef100 entry collects identical sequences and 
subfragments. UniRef100 is similar in scope and content to the NCBI RefSeq protein 
sequence database. Both UniRef and NCBI RefSeq non-redundant databases derive 
their protein sequences from similar repositories including DDBJ, EMBL, GenBank 
CDS translations, UniProtKB, and PDB. As of October 2006, UniRef100 contained 
185,326 unique sequences from approximately 3.9 million proteins and protein 
fragments (Suzek et al. 2007). UniRef90 and UniRef50 loosen cluster criteria with 
90 and 50% identity levels, resulting in fewer clusters and reduced data. The data 
size reduction from the core protein sequences in UniRef100, UniRef90, and 
UniRef50 are approximately 10, 40, and 65%, respectively (The UniProt Consortium 
2007). Clusters are based on a similarity measure used by the Cd-hit program  
(Li and Godzik 2006).

UniMES was formed to accommodate sequences from organisms of unknown 
taxonomic origins; this is in contrast to UniProtKB, where entries are characterized 
with a known taxonomic source, making them unsuitable for the large-scale 
genomic analysis of uncharacterized microbes recovered from the recent the Global 
Ocean Sampling (GOS) expedition (Rusch et al. 2007) and other metagenomic 
sequencing projects.

10.4.2  NCBI and the Reference Sequence (RefSeq) Project

The National Center for Biotechnology Information (NCBI) GenBank (Benson 
et al. 2000) is an international collection that includes data from the European 
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Molecular Biology Laboratories (EMBL) and the DNA Databank of Japan (DDBJ). 
NCBI protein resources also include data from UniProt. Data include translations 
of genome coding sections and cDNA sequences in GenBank (Benson et al. 2006), 
sequences from the Protein Research Foundation (PRF), UniProt, and the Protein 
Data Bank (PDB). The NCBI DNA-centric view links protein and nucleotide 
sequences to various resources including the NCBI genome browser (Pruitt et al. 
2007) and the Entrez data retrieval system (Geer and Sayers 2003).

The NCBI Reference Sequence (RefSeq) database organizes protein sequence 
data in a genomic and taxonomical context with data from many hundreds of 
prokaryotes, eukaryotes, and viruses (Pruitt et al. 2007). The structure of RefSeq 
provides comprehensive annotated sequence data for species; a sequence is redundant 
in RefSeq if it matches some other sequence across 100% of its residues and is the 
same length. RefSeq is based on GenBank, but it is a distinct collection. NCBI uses 
both manual and automatic curation methods in RefSeq. At the time of writing, 
RefSeq contained approximately 5,120,043 protein sequences consisting of 
181,848 reviewed, 87,245 validated, 2,776,342 provisional, 1,002,087 predicted, 
534,070 modeled, and 554 inferred. Curated sequences have the status levels 
validated and reviewed with reviewed sequences at the highest level; other status 
levels are not curated (RefSeq 2008).

NCBI also maintains species-specific sequence collections for the sequence 
alignment interface (Benson et al. 2007). These collections are sub-categorized as 
non-redundant (nr), RefSeq, SwissProt, patented, Protein Data Bank, and environ-
mental samples. NCBI provides BLAST formatted instances of the nr collection 
where sequences with 100% duplicate sequences represented once. RefSeq protein 
sequences and other NCBI sequence collections are available for FTP download.

10.4.3  The Protein Data Bank

The Protein Data Bank (PDB) is a principal data repository for protein and DNA 
three-dimensional structures. Crystallographers established the PBD in the 1970s as 
a grassroot effort for a central repository of X-ray crystallography data (Berman et al. 
2000, 2007). The historical underpinnings of the PDB continue to include the 
Research Collaboratory for Structural Bioinformatics (RCSB) PDB through to the 
Worldwide Protein Data Bank (wwPDB 2008; Berman et al. 2007; Henrick et al. 
2008). Although the primary role of the PDB is to provide structural data, a component 
of the structure description is the protein sequence. In the PDB format, records for 
atoms are contained within a hierarchical structure that supplies the atom names and 
coordinates grouped by amino acid (or nucleic acids for DNA). In addition to the 
Cartesian coordinates, the PDB facilitates information about the entry’s chemistry,  
origin, and other details (Berman et al. 2007). The number of structures (sequences 
with atomic coordinates) in the PDB number reached 50,000 on April 8, 2008 (RCSB 
PDB 2008). The majority of these structures result from X-ray crystallography; an 
increasing number result from NMR spectroscopy, with a small number of structures 
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solved using electron microscopy (RCSB PDB 2008). Many of the structures are derived 
from biological contexts subject to post-translational modifications, whereas others may 
use recombinant expression techniques. The consumer of these data can determine the 
conditions of the source data from the annotations and the related literature.

10.4.4  Other Protein Sequence Databases

PROSITE archives a large collection of biologically meaningful signatures (motifs) 
expressed through regular-expression like patterns for short motif detection. Probabilistic 
profiles extend regular expressions in order to detect large domains (Finn et al. 2006); 
profiles are more adaptive to variation in sequence than the regular expressed based 
patterns. Signatures/patterns are determined manually from sequence alignment.

Pfam represents protein families using HMMs (Durbin et al. 1998). It maintains 
a hierarchical representation of protein sequence space based on families and clans 
(Finn et al. 2006). Pfam 22.0 contains 9,318 families, each represented by multiple-
sequence alignments and hidden Markov models (HMMs). Pfam HMM profiles are 
available for downloading, and interactive web services provide access to Pfam 
alignments, domain analyses, and sequence similarity search engines. Simple client 
codes provided by Pfam allow for programmatic access.

The Protein Research Foundation (PRF) maintains the online Peptide/Protein 
Sequence Database (PRF/SEQDB) which includes amino acid sequences of 
peptides and proteins reported in the literature. The PRF website indicates that 
PRF/SEQDB contains some protein sequences not included in EMBL, GenBank, 
and SwissProt due to the literature based component (PRF 2008). PIR has developed 
the Super Family Classification System (PIRSF). The primary level for curation in 
the PIRSF model is based on the homeomorphic family, that is, proteins which are 
homologous and homeomorphic. These characteristics relate proteins evolved from 
a common ancestor and those sharing full-length sequence and domain similarity. 
The National Biomedical Research Foundation PIR established PIR in 1984 as a 
resource for the identification and interpretation of protein sequence data. Through 
its history, PIR has provided protein sequence databases and analysis tools to the 
scientific community. In 2002, it merged with the European Bioinformatics Institute 
and the Swiss Institute of Bioinformatics to form UniProt.

Data collections organized among specific organism-related groups (Benson 
et al. 2007; Gribskov et al. 2001; Pruitt et al. 2007) can facilitate interpretation of 
analyses. Organism clades variably group protein families (Finn et al. 2006; 
Schneider et al. 2005) using functional information (PlantsP 2008; The UniProt 
Consortium 2007; Ware et al. 2002). Organism clades may be biological kingdoms 
(Archae, Animalia, Eubacteria, Fungi, Protista, and Plantae), cellular structures 
(prokaryote and eukaryote), viral types, species, and others. Biochemical classifica-
tions include globular, membrane, and fibrous proteins (The UniProt Consortium 
2007). The genomic resource for grasses, Gramene, contains a protein section 
searchable by PROSITE patterns and Pfam HMM profiles (Liang et al. 2008).
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10.5  Current Trends

It can be computationally impractical to perform queries and similarity searches 
across unfiltered, comprehensive protein-sequence collections of the size of UniProt 
TrEMBL (Fig. 10.1). One problem centers on redundant sequences in the data 
collection. Since the expectation for an alignment score is proportional to the size 
of the database (Pearson 1995), removal of redundant or over-represented sequences 
can improve the interpretation of results. The orientation of some databases pivots 
on non-redundancy. UniProt/SwissProt (Boeckmann et al. 2005) is an important 
non-redundant protein database, whereas NCBI RefSeq (Pruitt et al. 2007) provides 
complementary DNA-centric views.

Protein families play a fundamental role in organizing collections. The general 
aim is to group homologs with attention toward distinguishing orthologs and paralogs 
(Mushegan 2007). Similarity methods used to classify sequences are numerous. 
These involve sequence alignment (Altschul et al. 1990), pattern finding (de Castro 
et al. 2006), clustering (Burke et al. 1999; Myers 1999), and machine learning 
(Yosef et al. 2008). Some clustering methods provide levels of views of cluster 
resolution with varying biological and computational motivation (Finn et al. 2006; 
Wu et al. 2006). The non-redundant UniProt/UniRef clusters sequences at several 
resolutions (Suzek et al. 2007). On average, the reach of protein similarity searches 
extends with a relaxation of clustering criteria. Computational requirements depend 
on the resolution of clustering and other representations.

The integration of classification methods among various protein sequence 
collections can improve annotation quality. For example, structure-based databases 
such as CATH (Orengo et al. 1999) and SCOP (Andreeva et al. 2004) assist primarily 
sequence-oriented annotation processes (Biswas et al. 2002; Mulder et al., 2007). 
InterPro integrates numerous approaches to strengthen protein-sequence classifi-
cation. These include PROSITE patterns, Pfam hidden Markov model representa-
tions of protein domains, and structural classifications based on SCOP and CATH 
superfamilies (Biswas et al. 2002). The Protein Information Resource (PIR) has 
developed iProClass for functional characterization with integrated associative pro-
cessing, which takes into account protein families, domains, and structure (Wu 
et al. 2004). It is becoming increasingly important to detect inconsistencies that 
occur through integrated methods (Biswas et al. 2002; Koonin and Galperin 2002; 
Wieser et al. 2004; Natale et al. 2005).

References

Altschul SF (1991) Amino acid substitution matrices from an information theoretic prospective.  
J Mol Biol 219:555–565

Altschul SF, Gish W et al (1990) Basic local alignment search tool. J Mol Biol 
215(3):403–410



220 T. Clark

BookID 151692_ChapID 10_Proof# 1 - 21/08/2009 BookID 151692_ChapID 10_Proof# 1 - 21/08/2009

Altschul SA, Boguski MS, Gish W, Wootton JC (1994) Issues in searching molecular sequence 
databases. Nat Genet 6:119–129

Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new gen-
eration of protein database search programs. Nucleic Acids Res 25(17):3389–3402

Altschul SF, Wootton JC, Getz M et al (2005) Protein database searches using compositionally 
adjusted substitution matrices. FEBS J 272(20):5101–5109

Andreeva A, Howorth D, Brenner SE et al (2004) SCOP database in 2004: refinements integrate 
structure and sequence family data. Nucleic Acids Res 32:D226–D229

Apweiler R (2001) Functional information in Swiss-Prot: the basis for large-scale characterisation 
of protein sequences. Brief Bioinform 2:9–18

Bairoch A, Boeckmann B, Ferro S, Gasteiger E (2004) Swiss-Port: Juggling between evolution 
and stability. Briefings in Bioinformatics 5(1):39–55

Balaji S, Sujatha SN et al (2001) PALI-a database of alignments and phylogeny of homologous 
protein structures. Nucleic Acids Res 29:61–65

Barker WC, Garavelli JS, Haft DH et al (1998) The PIR-International protein sequence database. 
Nucleic Acids Res 26:27–32

Bateman A, Birney E, Cerruti L et al (2002) The Pfam protein families database. Nucleic Acids 
Res 30:276–280

Benson DA, Karsch-Mizarchi I, Lipman DJ, et al (2000) GenBank. Nucleic Acids Res 
28(1):15–18

Benson DA, Karsch-Mizarchi I, Lipman DJ, et al (2007) GenBank. Nucleic Acids Res 
36:D25–D30

Benson DA, Karsch-Mizarchi I, Karsch-Mizrachi I et al (2006) GenBank. Nucleic Acids Res 
35:D21–D25

Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 
28:235–242

Berman HM, Henrick K, Nakamura H et al (2007) The Worldwide Protein Data Bank (wwPDB): 
Ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35:D301–D303

Biswas M, O’Rourke JF, Camon E et al (2002) Applications of InterPro in protein annotation and 
genome analysis. Brief Bioinform 3(3):285–295

Boeckmann B, Bairoch A, Apweiler R et al (2003) The Swiss-Prot protein knowledgebase and its 
supplement TrEMBL. Nucleic Acids Res 31:365–370

Boeckmann B, Blatter MC, Farniglietti L et al (2005) Protein variety and functional diversity: 
Swiss-Prot annotation in its biological context. CR Biol 328:882–899

Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol 
Biol 268:78–94

Burke J, Davison D, Hide W (1999) d2_cluster: A validated method for clustering EST and full-
length cDNA sequences. Genome Res 9:1135–1142

Camon E, Magrane M, Barrell D et al (2004) The Gene Ontology Annotation (GOA  
database: sharing knowledge in UniProt with gene ontology. Nucleic Acids Res 
32:D262–D266

Cantor CR, Schimmel PR (1980) Biophysical chemistry, Part I: The conformation of biological 
macromolecules. WH Freeman, San Francisco and Oxford

Dayhoff MO, Eck RV Chang M et al (1965) Atlas of protein sequence and structure, Vol 1. 
National Biomedical Research Foundation, Silver Spring, MD

de Castro E, Sigrist CJA, Gattiker A et al (2006) ScanProsite: detection of PROSITE signature 
matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids 
Res 34:W362–W365

Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis. Cambridge 
University Press, Cambridge UK

Eddy SR (1996) Hidden Markov models. Curr Opin in Struct Biol 6:361–365
Finn RD, Mistry J, Schuster-Bockler B et al (2006) Pfam: clans, web tools and services. Nucleic 

Acids Res 34:D247–D251



221

BookID 151692_ChapID 10_Proof# 1 - 21/08/2009

10 Protein Sequence Databases

Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Zool 19:99–113
Friedberg I (2006) Automated protein function prediction–the genomic challenge. Brief Bioinform 

7(3):225–242
Ganfornina MD, Sánchez D (1999) Generation of evolutionary novelty by functional shift. 

BioEssays 21:432–439
Geer RC, Sayers EW (2003) Entrez: Making use of its power. Briefings in Bioinformatics 

4(2):179–184
Gerlt JA, Babbitt PC (2001) Divergent evolution of enzymatic function: Mechanistically and 

functionally distinct suprafamilies. Annu Rev Biochem 70:209–246
Gribskov M, McLachlan AD, Eisenberg D (1987) Profile analysis: Detection of distantly related 

proteins. Proc Natl Acad Sci USA 84:4355–4358
Gribskov M, Fana F, Harper J et al (2001) PlantsP: a functional genomics database for plant phos-

phorylation. Nucleic Acids Res 29:111–113
Henikoff S, Greene SA, Piertrokovski S et al (1997) Gene families: The taxonomy of protein para-

logs and chimeras. Science 278(5338):609–614
Henrick K, Feng Z, Bluhm WF (2008) Remediation of the protein data bank archive. Nucleic 

Acids Res 36:D426–D433
Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of molecular 

sequence features by using general scoring schemes. Proc Natl Acad Sci USA 
87:2264–2268

Koonin EV and Galperin MY (2002) Principles and methods of sequence analysis. In: Sequence– 
Evolution – Function, 1st edition. Kluwer, Waltham, MA

Kunin V, Cases I, Anton J et al (2003) Myriads of protein families, and still counting. Genome 
Biol 4:401

Leinonen R, Diez FG, Binns D et al (2004) UniProt Archive. Bioinformatics 20:3236–3237
Lesk AM (2001) Introduction to protein architecture. Oxford University Press, Oxford
Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein 

or nucleotide sequences. Bioinformatics 22(13):1658–1659
Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 

227:1435–1441
Moeller S, Leser U, Fleischmann W, Apweiler R (1999) EDITtoTrEMBL: a distributed approach 

to high-quality automated protein sequence annotation. Bioinformatics 15:219–227
Moore GE (1965) Cramming more components onto integrated circuits. Electron Mag 38:8
Mulder NJ (2007) Protein family databases. Encyclopedia of life sciences Wiley, New York.
Mulder NJ, Apweiler R, Attwood TK et al (2003) The InterPro Database brings increased cover-

age and new features. Nucleic Acids Res 31(1):315–318
Mulder NJ, Apweiler R, Attwood TK et al (2007) New developments in the InterPro database. 

Nucleic Acids Res 35:D224–228
Mushegan AR (2007) Foundations of comparative genomics. Academic, Burlington, MA
Myers G (1999) A fast bit-vector algorithm for approximate string matching based on dynamic 

programming. J ACM 46:395–415
Natale DA, Vinakaya CR, Wu CH (2005) Large-scale, classification-driven, rule-based functional 

annotation of proteins. Encyclopedia Genet, Genomics, Proteomics Bioinform: . 
doi:10.1002/047001153X.g403314

NC-IUBMB (2008) Enzyme Nomenclature. http://www.chem.qmul.ac.uk/iubmb/enzyme/. 
Accessed 30 Apr 2008

Orengo CA, Peral FMG, Bray JE et al (1999) Assigigning genomic sequences to CATH. Nucleic 
Acids Res 28(1):277–282

Ouzounis CA, Coulson RMR, Enright AH et al (2003) Classification schemes for protein structure 
and function. Nat Rev Genet 4:508–519

Pearson WR (1995) Comparison of methods for searching protein sequence databases. Prot Sci 
4:1145–1160



222 T. Clark

BookID 151692_ChapID 10_Proof# 1 - 21/08/2009 BookID 151692_ChapID 10_Proof# 1 - 21/08/2009

Pearson WR, Lipman DJ (1988) Improved tools for biological sequence analysis. Proc Natl Acad 
Sci USA 85:2444–2448

Pearson WR, Wood TC (2001) Statistical significance of biological sequence comparison. In: 
Bourne BE, Weissig H (eds) Handbook of statistical genetics. Wiley, West Sussex, 
England

PlantsP (2008) Functional genomics of plant phosphorylation. http://plantsp.genomics.purdue.
edu/. Accessed 1 March 2008

Pontig CP (2001) Issues in predicting protein function from sequence. Brief Bioinform 
2(1):19–29

PRF (2008) Protein Research Foundation. http://www.prf.or.jp/en/dbi.shtml/. Accessed 26 
Oct 2008

Pruitt KD, Tatusova T, Maglott DR et al (2007) NCBI Reference Sequence (RefSeq): a curated 
non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 
35:D61–D65

Raes J, Harrington ED, Singh AH et al (2007) Protein function space: viewing the limits or limited 
by our view. Curr Opin Struct Biol 17:362–369

Reddy BVB, Bourne PE (2003) Protein structure evolution and the SCOP database. In: Bourne 
BE, Weissig H (eds) Structural bioinformatics, 1st edn. Wiley-Liss, Hoboken, NJ

RefSeq (2008) The National Center for Biotechnology Information: Reference Sequence data-
base. http://www.ncbi.nlm.nih.gov/RefSeq/key.html#status/. Accessed 26 Feb 2008

Rost B, Valencia A (1996) Pitfalls of protein sequence analysis. Curr Opin Biotechnol 
7:457–461

Rusch DB, Halpern AL, Sutton G et al (2007) The Sorcerer II Global Ocean Sampling expedition: 
Northwest Atlantic through Eastern tropical Pacific. PLoS Biol 5:398–431

Sangar V, Blankenberg DJ, Altman N et al (2007) Quantitative sequence-function relationship in 
proteins based on gene ontology. BMC Bioinform 8:294

Schneider M, Bairoch A, Wu CH et al (2005) Plant protein annotation in the UniProt 
Knowledgebase. Plant Physiol 138:59–66

Sigrist CJ, Cerutti L, Hulo N et al (2002) PROSITE: A documented database using patterns and 
profiles as motif descriptors. Brief Bioinform 3:265–274

Suzek BE, Huang H, McGarvey P et al (2007) UniRef: comprehensive and non-redundant UniProt 
reference clusters. Bioinformatics 23:1282–1288

The Gene Ontology Consortium (2000) Gene Ontology: tool for the unification of biology. Nat 
Genet 25:25–29

The UniProt Consortium (2007) The Universal Protein Resource (UniProt). Nucleic Acids Res 
35:D193–D197

The UniProt Consortium (2008a) The Universal Protein Resource (UniProt). Nucleic Acids Res 
35:D190–D195

The UniProt Consortium (2008b) The Universal Protein Resource (UniProt). Nucleic Acids Res 
36:D190–D195

UniProt (2008) http://www.uniprot.org/. Accessed 30 Apr 2008
Ware D, Jaiswal P, Ni J et al (2002) Gramene: a resource for comparative grass genomics. Nucleic 

Acids Res 30:103–105
Whisstock JC, Lesk AM (2003) Prediction of protein function from protein sequence and struc-

ture. Q Rev of Biophys 36:307–340
Wieser D, Kretschmann E, Apweiler R (2004) Filtering erroneous protein annotation. 

Bioinformatics 20(1):i342–i347
Wilson CA, Kreychman J, Gerstein M (2000) Assessing annotation transfer for genomics: 

Quantifying the relations between protein sequence, structure and function through traditional 
and probabilistic scores. J Mol Biol 297:233–249

Wu CH, Nikolskaya A, Huang H et al (2004) PIRSF: family classification system at the Protein 
Information Resource. Nucleic Acids Res 32:D112–D114



223

BookID 151692_ChapID 10_Proof# 1 - 21/08/2009

10 Protein Sequence Databases

Wu CH, Apweiler R, Bairoch A et al. (2006) The Universal Protein Resource (UniProt): an 
expanding universe of protein information. Nucleic Acids Res 34:D187–D191

wwPDB (2008) Worldwide Protein Data. http://www.wwpdb.org/. Accessed 8 Sept 2008
Yosef N, Sharan R, Noble WS (2008) Improved network-based identification of protein orthologs. 

Bioinformatics 24(16):i200–i206



225

BookID 151692_ChapID 11_Proof# 1 - 21/08/2009

11.1  Introduction

Owing to significant efforts in genome sequencing over nearly three decades 
(McPherson et al. 2001; Venter et al. 2001), gene sequences from many organisms 
have been deduced. Over 100 million nucleotide sequences from over 300 thousand 
different organisms have been deposited in the major DNA databases, DDBJ/
EMBL/GenBank (Benson et al. 2003; Miyazaki et al. 2003; Kulikova et al. 2004), 
totaling almost 200 billion nucleotide bases (about the number of stars in the Milky 
Way). Over 5 million of these nucleotide sequences have been translated into amino 
acid sequences and deposited in the UniProtKB database (Release 12.8) (Bairoch 
et al. 2005). The protein sequences in UniParc triple this number. However, the 
protein sequences themselves are usually insufficient for determining protein func-
tion as the biological function of proteins is intrinsically linked to three dimensional 
protein structure (Skolnick et al. 2000).

The most accurate structural characterization of proteins is provided by X-ray 
crystallography and NMR spectroscopy. Owing to the technical difficulties and 
labor intensiveness of these methods, the number of protein structures solved by 
experimental methods lags far behind the accumulation of protein sequences. By 
the end of 2007, there were 44,272 protein structures deposited in the Protein Data 
Bank (PDB) (www.rcsb.org) (Berman et al. 2000) − accounting for just one percent 
of sequences in the UniProtKB database (http://www.ebi.ac.uk/swissprot). 
Moreover, the gap between the number of protein sequences and the number of 
structures has been increasing as indicated in Fig. 11.1.

One of the major efforts in protein structure determination in recent years is the 
structural genomics (SG) project initiated at the end of last century (Sali 1998; Terwilliger 
et al. 1998; Burley et al. 1999; Smaglik 2000; Stevens et al. 2001). The SG project aims 
to obtain 3D models of all proteins by an optimized combination of experimental 
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structure determination and comparative model (CM) building (Pieper et al. 2006). 
One of the key aspects of the SG project is the selection of key target proteins for 
structure determination, so that the majority of sequences can be within a CM dis-
tance to solved structures. Using a sequence identity of 30% with 80% alignment 
coverage as the CM distance cutoff, Vitkup et al. (2001) estimated that at least 
16,000 new structures need to be determined by experiments to ensure that the CM 
represents 90% of protein domain families. Without optimal coordination of target 
selection, as many as 50,000 structure determinations may be required.

Currently, 36% of Pfam families (Bateman et al. 2004) contain at least one 
member with the solved structure, allowing comparative modeling of other family 
members. According to Chandonia and Brenner (Chandonia and Brenner 2006), 
the SG project solved 1,887 protein structures between 2000 and 2005, 294 of 
which are the first solved structures in their respective Pfam families. During 2004, 
around half of the PDB structures with new Pfam family annotations were because 
of the efforts of the SG centers (Chandonia and Brenner 2006). Determination of 
these new Pfam structures has dramatically extended the range of computer-based 
predictions using Comparative Model (CM) techniques (Sali 1998; Pieper et al. 
2006). For example, based on 53 newly solved proteins from SG projects, Sali and 
coworkers (Pieper et al. 2004) built reliable models for domains in 24,113 sequences 
from the UniProtKB database with their CM tool MODELLER (Sali and Blundell 
1993). These models have been deposited in a comprehensive CM model database, 
MODBase (http://salilab.org/modbase). In February 2008, MODBase contained 

Fig. 11.1 Determination of amino acid sequences (left-hand scale) is outpacing that of 3D struc-
tures (right-hand scale) by a factor of 100. Data are taken from PDB (Berman et al. 2000) and 
UniProtKB (Bairoch et al. 2005)
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around 4.3 million models or fold assignments for domains from 1.34 million 
sequences. In this study, the structure assignments were based on an all-against-all 
search of the amino acid sequences in UniProtKB using the solved protein struc-
tures in PDB (Berman et al. 2000). Structural genomics can also benefit from 
improvements in high-resolution structure prediction algorithms. Vitkup et al. 
(2001) estimated that “a 10% decrease in the threshold needed for accurate model-
ing, from 30 to 20% sequence identity, would reduce the number of experimental 
structures required by more than a factor of two”.

There are two critical problems in the field of protein structure prediction. The 
first problem is related to the template-based modeling: How to identify the most 
suitable templates from known protein structures in the PDB library? Furthermore, 
following template structure identification, how can the template structures be 
refined to better approximate the native structure? The second major problem is 
related to free modeling for the target sequences without appropriate templates: 
How can a correct topology for the target proteins be constructed from scratch? 
Progress made in these areas has been assessed in recent CASP7 experiments 
(Moult et al. 2007) under the categories of template based modeling (TBM) and 
free modeling (FM), respectively.

In the following sections, current protein structure prediction methods will be 
reviewed for both template-based modeling and free modeling. The basic ideas and 
advances of these directions will be discussed in detail.

11.2  Template-Based Predictions

For a given target sequence, template-based prediction methods build 3D structures 
based on a set of solved 3D protein structures, termed the template library. The 
canonical procedure of template-based modeling consists of four steps: (1) finding 
known structures (templates) related to the sequence to be modeled (target); (2) 
aligning the target sequence on the template structures; (3) building the structural 
framework by copying the aligned regions, or by satisfying spatial restraints from 
templates; (4) constructing the unaligned loop regions and adding side-chain atoms. 
The first two steps are usually performed as a single procedure because the correct 
selection of templates relies on their accurate alignment with the target. Similarly, 
the last two steps are also performed simultaneously since the atoms of the core and 
loop regions interact closely.

Historically, template-based methods can be categorized into two types: (1) 
comparative modeling (CM) and (2) threading. CM builds models based on evolu-
tionary information between target and template sequences, while threading is 
designed to match target sequences directly onto 3D structures of templates with 
the goal to detect target-template pairs even without evolutionary relationships. The 
schematic overview of CM and threading is depicted in the upper part of Fig. 11.2. 
In recent years, as a general trend in the field, the borders between CM and threading 
are becoming increasingly blurred since both comparative modeling and threading 
methods rely on evolutionary relationships, e.g. both use sequence profile-based 
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alignments (Marti-Renom et al. 2000; Skolnick et al. 2004; Zhou and Zhou 2005; 
Wu and Zhang 2008). In this chapter, we put them in the same category of template-
based modeling without explicitly distinguishing them unless necessary.

Fig. 11.2 Schematic overview of the methodologies employed in template-based and free 
modeling
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11.2.1  Completeness of the PDB Template Library

The existence of similar structures to the target in the PDB is a precondition for 
successful template-based modeling. An important concern is thus the completeness 
of the current PDB structure library. Figure 11.3 shows a distribution of the best 
templates found by the structural alignment (Zhang and Skolnick 2005b) for 1,413 
representative single-domain proteins between 80 and 200 residues.

Remarkably, even excluding the homologous templates of sequence identity, 
>20%, all the proteins have at least one structural analog in the PDB with a Ca root-
mean-squared deviation (RMSD) to the target <6 Å covering >70% of regions. 
The average RMSD and coverage are 2.96 Å and 86% respectively. Zhang and 
Skolnick (2005a,b) recently showed that high quality full-length models can be 
built for all the single-domain proteins with an average RMSD of 2.25 Å when 
using the best possible templates in the PDB. These data demonstrate that the struc-
tural universe of the current PDB library is likely to be complete for solving the 
protein structure for at least single-domain proteins. However, most of the target-
template pairs have only around 15% sequence identity, which are difficult to 

Fig. 11.3 Structural superposition results of 1,413 representative single-domain proteins on their 
structural analogs in the PDB library. The structural analogs are found using a sequence-independent 
structural-alignment tool, TM-align (Zhang and Skolnick 2005b), and ranked by a TM-score 
(a structural similarity measure balancing RMSD and coverage) (Zhang and Skolnick 2004b). All 
structural analogs with a sequence identity >20% to the target are excluded. If the analog with the 
highest TM-score has a coverage below 70%, the first structural analog with the coverage >70% 
is presented. As a result, all the structural analogs have a root-mean-squared deviation (RMSD) 
<6 Å; 80% have a RMSD <4 Å with >75% of regions covered
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recover by current threading approaches. In fact, after excluding templates with a 
sequence identity >30%, current threading techniques could only assign templates 
with correct topologies (average RMSD  ~ 4 Å) to 2/3 of the proteins (Skolnick et al. 
2004). Here, the role of structural genomics is to bridge the target-template gap for 
the remaining 1/3 proteins as well as improve the alignment accuracy of the 2/3 
proteins by providing evolutionarily closer template proteins.

11.2.2  Template Structure Identification Using Threading Programs

Since its first application in the early 1990s (Bowie et al. 1991; Jones et al. 1992), 
threading has become one of the most active areas in proteins structure prediction. 
Numerous algorithms have been developed during the previous 15 years for the 
purpose of identifying structure templates from the PDB. Threading techniques 
include sequence profile–profile alignments (Ginalski et al. 2003; Skolnick et al. 
2004; Jaroszewski et al. 2005; Zhou and Zhou 2005), structural profile alignments 
(Shi et al. 2001), hidden Markov models (HMM) (Karplus et al. 1998; Soding 
2005), and machine learning (Jones 1999; Cheng and Baldi 2006) among others.

The sequence profile–profile alignment (PPA) is probably the most often-used and 
robust threading approach. Instead of matching the single sequences of target and 
template, PPA aligns a target multiple sequence alignment (MSA) with a template 
MSA. The alignment score in the PPA is usually calculated as a product of the amino-acid 
frequency at each position of the target MSA with the log-odds of the matching amino-
acid in the template MSA, though there are also alternative methods for calculating the 
profile–profile alignment scores (Sadreyev and Grishin 2003). Profile–profile align-
ment based methods demonstrated advantages in several recent blind tests (Fischer 
et al. 2003; Rychlewski and Fischer 2005; Battey et al. 2007). In LiveBench-8 
(Rychlewski and Fischer 2005), for example, the top four servers (BASD/MASP/
MBAS, SFST/STMP, FFAS03, and ORF2/ORFS) are all based on sequence profile–
profile alignment. In CAFASP (Fischer et al. 2003) and the recent CASP Server 
Section (Battey et al. 2007), several sequence profile based methods were ranked at the 
top of single threading servers. Wu and Zhang (2008) recently showed that the accu-
racy of the sequence profile–profile alignments can be further improved by about 
5–6% by incorporating a variety of additional structural information.

In CASP7, HHsearch (Soding 2005), a HMM–HMM alignment method, was 
distinguished as the best single threading server. The principles of the HMM–HMM 
alignments and the profile–profile alignments are similar in that both attempt 
pair-wise alignments of the target MSA with the template MSA. Instead of 
representing the MSAs by sequence profiles, HHsearch uses profile HMMs which 
can generate the sequences with certain probabilities determined by the product of 
the amino acid emission and insertion/deletion probabilities. HHsearch aligns the 
target and template HMMs by maximizing the probability that two models co-emit 
the same amino acid sequence. In this way, amino acid frequencies and insertions/
deletions of both HMMs are matched in an optimum way (Soding 2005).
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11.2.3  Consensus of Various Threading Programs: Meta-Servers

Although average performance differs among threading algorithms, there is no 
single threading program which outperforms all others on every target. This natu-
rally leads to the popularity of the meta-server (Fischer 2003; Wu and Zhang 2007), 
which collects and combines results from a set of existing threading programs. 
There are two ways to generate predictions in meta-servers. One is to build a hybrid 
model by cutting and pasting the selected structure fragments from the templates 
identified by threading programs (Fischer 2003). The combined model has on 
average larger coverage and better topology than any single template. One defect is 
that the hybrid models often have non-physical local clashes. The second approach 
is to select the best models based on a variety of scoring functions or machine-
learning techniques. This approach has emerged as a new research area called 
Model Quality Assessment Programs (MQAP) (Fischer 2006). Despite consider-
able efforts in developing various MQAP scores, the most robust score turns out to 
be the one based on the structure consensus, i.e. the best models are those simulta-
neously hit by different threading algorithms. The idea behind the consensus 
approach is simple: there are more ways for a threading program to select a wrong 
template than a right one. Therefore, the chance for multiple threading programs 
working collectively to make a commonly wrong selection is lower than the chance 
to make a commonly correct selection.

The meta-server predictors have dominated the server predictions in previous 
experiments (e.g. CAFASP4, Livebench8, and CASP6). However, in the recent 
CASP7 experiment (Battey et al. 2007) Zhang-Server (an automated server based 
on profile–profile threading and I-TASSER structure refinement (Wu et al. 2007; 
Zhang 2007)) clearly outperforms others (including the meta-servers which 
included it as an input (Wallner and Elofsson 2007)). A list of the top ten automated 
servers in the CASP7 experiment is shown in Table 11.1. This data, highlights the 
challenge of the MQAP methods in correctly ranking and selecting the best models; 
while the success of the composite threading plus refinement servers (as Zhang-
Server, ROBETTA, and MetaTasser) demonstrates the advantage of the structure 
refinement in the TBM prediction, which is discussed in the next section.

11.2.4  Template Structure Assembly/Refinement

The goal of protein structure assembly/refinement is to draw the templates closer 
to the native structure. This has proven to be a non-trivial task. Until only a few 
years ago, most of the TBM procedures either kept the templates unchanged or 
drove the templates away from the native structures.

Early efforts on template structure refinement have relied on molecular dynamics 
(MD) based atomic-level simulations; these attempt to refine low-resolution models 
using classic MD programs such as AMBER and CHARMM. However, with the 
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exception of some isolated instances, this approach has not achieved systematic 
improvements.

Encouraging template refinements have been achieved by combining the knowledge- 
and physics-based potentials with spatial restraints from templates (Zhang and 
Skolnick 2005a; Misura et al. 2006; Chen and Brooks 2007). Misura et al. (2006) first 
built low-resolution models with ROSETTA (Simons et al. 1997) using a fragment 
library enriched by the query-template alignment. The Cb-contact restraints are used 
to guide the assembly procedure, and the low-resolution models are then refined by a 
physics-based atomic potential. As a result, in 22 out of 39 test cases, the ten lowest-
energy models were found closer to the native structure than the template.

A more comprehensive test of the template refinement procedure, based on 
TASSER simulation combined with consensus spatial restraints from multiple 
templates, was reported by Zhang and Skolnick (2004a,b, 2005a,b). For 1,489 test 
cases, TASSER reduced the RMSD of the templates in the majority of cases, with 
an average RMSD reduction from 6.7 Å to 4.4 Å over the threading-aligned regions. 
Even starting from the best templates identified by the structural alignment, 
TASSER refines the models from 2.5 Å to 1.88 Å in the aligned regions. Here, 
TASSER built the structures based on a reduced model (specified by Ca and side-
chain center of mass) with a purely knowledge-based force field. One of the major 
contributions to these refinements is the use of multiple threading templates, where 
the consensus restraint is more accurate than that from the individual template. 

Table 11.1 Top 10 servers in CASP7 as ranked by the accumulative GDT-TS score. Multiple servers 
from the same lab are represented by the highest rank one

Servers # of targets GDT-TS Server type and URL address

Zhang-Server 124 76.04 Threading, refinement and free modeling http://
zhang.bioinformatics.ku.edu/I-TASSER

HHpred2 124 71.94 HMM–HMM alignment (single threading server) 
http://toolkit.tuebingen.mpg.de/hhpred

Pmodeller6 124 71.69 Meta threading server http://pcons.net
CIRCLE 124 71.09 Meta threading server http://www.pharm.

kitasato-u.ac.jp/fams/fams.html
ROBETTA 123 70.87 Threading, refinement and free modeling http://

robetta.org/submit.jsp
MetaTasser 124 70.77 Threading, refinement and free modeling http://

cssb.biology.gatech.edu/skolnick/webservice/
MetaTASSER

RAPTOR-ACE 124 69.70 Meta threading server http://ttic.uchicago.
edu/~jinbo/RAPTOR_form.htm

SP3 124 69.38 Profile–profile alignment (single threading server) 
http://sparks.informatics.iupui.edu/hzhou/
anonymous-fold-sp3.html

beautshot 124 69.26 Meta threading server http://inub.cse.buffalo.edu/
form.html

UNI-EID-expm 121 69.13 Profile–profile alignment (single threading server) 
(not available)
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In addition, the composite knowledge-based energy terms have been extensively 
optimized using large-scale structure decoys (Zhang et al. 2003) which helps coor-
dinate the complicated correlations of different interaction terms.

The recent CASP7 experiment assessed the progress of threading template 
refinements. The assessment team compared the predicted models with the best 
possible structural template (or “virtual predictor group”) and commented that 
“The best group in this respect (24, Zhang) managed to achieve a higher GDT-TS 
score than the virtual group in more than half the assessment units and a higher 
GDT-HA score in approximately one-third of cases.” (Kopp et al. 2007) This com-
parison may not entirely reflect the template refinement ability of the algorithms 
because the predictors actually start from threading templates rather than the best 
structural alignments; the latter requests the information of the native structures, 
which were not available when the predictions were made. On the other hand, a 
global GDT score comparison may favor the full-length model because the 
template alignment has a shorter length than the model. In a direct comparison of 
the RMSD over the same aligned regions, we found that the first I-TASSER model 
is closer to the native than the best initial template in 86 out of 105 TBM cases, 
while the other 13 (6) cases are worse than (or equal to) the template. The average 
RMSD is 4.9 Å and 3.8 Å for the templates and models, respectively, over the same 
aligned regions (Zhang 2007).

11.3  Free Modeling

When structural analogs do not exist in the PDB library or could not be detected 
by threading (which is more often the case as demonstrated by the data shown in 
Fig. 11.3), the structure prediction has to be generated from scratch. This type of 
prediction has been termed ab initio or de novo modeling, a term that may be 
easily understood as modeling “from first principle”. Since CASP7, it is termed 
free modeling, which more appropriately reflects the status of the field, since the 
most efficient methods in this category still consider hybrid approaches including 
both knowledge-based and physics-based potentials. Evolutionary information is 
often used in generating sparse spatial restraints or identifying local structural 
building blocks.

11.3.1  Physics-Based Free Modeling

Compared to template-based approaches, the purely physics-based ab initio 
methods – all-atom potential functions, like AMBER (Weiner et al. 1984), CHARMM 
(Brooks et al. 1983) and OPLS (Jorgensen and Tirado-Rives 1988), combined with 
molecular dynamics (MD) conformational sampling – have been less successful in 
protein structure prediction. Significant efforts have been made on the purely 
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physics-based protein folding. The first widely recognized milestone of successful 
ab initio protein folding is the 1997 work of Duan and Kollman, who folded the 
villin headpiece (a 36-mer). This work used MD simulations in explicit solvent for 
2 months on parallel supercomputers with models up to 4.5 Å (Duan and Kollman 
1998). With the help of the worldwide-distributed computers, this small protein was 
recently folded by Pande and coworkers (Zagrovic et al. 2002) to 1.7 Å with a total 
simulation time of 300 ms or approximately 1,000 CPU years. Despite this 
remarkable effort, physics-based folding is far from routine for general protein 
structure prediction of normal size proteins, mainly because of the prohibitive 
computing demand.

Another niche for physics-based simulation is protein-structure refinement. This 
approach starts from low-resolution structures with the goal to draw the initial 
models closer to the native structure. Because the starting models are usually not 
far away from the native, the conformational change is relatively small and the 
simulation time is much less than in ab initio folding. One of the earliest MD-based 
protein structure refinements was for the GCN4 leucine zipper (a 33 residue dimer) 
(Nilges and Brunger 1991; Vieth et al. 1994). In that work, a low resolution coiled-
coil dimer structure (2 ~ 3 Å) was first assembled using Monte Carlo simulation. 
With the help of the helical dihedral-angle restraints, Skolnick and coworkers 
(Vieth et al. 1994) refined the GCN4 structure with a backbone RMSD below 1 Å 
using CHARMM (Brooks et al. 1983) with the TIP3P water model (Jorgensen et al. 
1983). Using AMBER 5.0 (Case et al. 1997) and the same explicit water model 
(Jorgensen et al. 1983), Lee et al. (2001) attempted to refine 360 low-resolution 
models generated using ROSETTA (Simons et al. 1997) for 12 small proteins (<75 
residues), but concluded that there was no systematic structure improvement (Lee 
et al. 2001). Later, Fan and Mark (2004) tried to refine 60 ROSETTA models for 
11 small proteins (<85 residues) using GROMACS 3.0 (Lindahl et al. 2001) with 
explicit water (Berendsen et al. 1981) and reported that 11/60 models had 10% 
RMSD reduction and 18/60 had increased RMSD after refinement. Recently, Chen 
and Brooks (2007) used CHARMM22 (MacKerell et al. 1998) to refine five CASP6 
CM targets with lengths in the 70–144 residue range. In four cases, considerable 
refinements with up to 1 Å RMSD reduction were achieved. One of the major 
differences of this work is that an implicit solvent force field based on the general-
ized Born (GB) approximation (Im et al. 2003) was exploited, which significantly 
speeds up the MD simulations, while the spatial restraints extracted from the initial 
models are used to guide the refinement procedure (Chen and Brooks 2007). 
A particularly noteworthy observation was recently made by Summa and Levitt 
(Summa and Levitt 2007) who exploited different molecular mechanics (MM) 
potentials (AMBER99 (Wang et al. 2000; Sorin and Pande 2005), OPLS-AA 
(Kaminski et al. 2001), GROMOS96 (van Gunsteren et al. 1996), and ENCAD 
(Levitt et al. 1995)) on the refinement of 75 proteins by in vacuo energy minimization. 
The authors found that a knowledge-based atomic contact potential outperforms all 
the traditional MM potentials in moving almost all the test proteins closer to the 
native state, while all the MM potentials, except for AMBER99, essentially drive 
the decoys away from the native. The vacuum simulation without solvation may 
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be part of the reason for the failure of the MM potentials. But this observation 
demonstrates the potential of combining knowledge-based potentials with physics-
based force field in protein structure refinement.

Another use of the physics-based potential is in the discrimination of the native/
near-native structures from structure decoys. For example, Lazaridis and Karplus (1999) 
exploited CHARMM19 (Neria et al. 1996) and EEF1 (Lazaridis and Karplus 
1999) solvation potential to discriminate the native structure from the decoys gen-
erated by threading the native sequences on other protein structures. They found the 
energy of the native states is lower than that of the decoys in most cases. Later, 
Dominy and Brooks (2002), and Feig and Brooks (2002) used CHARMM plus GB, 
Felts et al. (2002) used OPLS plus GB, Lee and Duan (2004) used AMBER plus 
GB, and Hsieh and Luo (2004) used AMBER plus Poisson–Boltzmann solvation 
potential on the Park–Levitt decoy set (Park and Levitt 1996), Baker decoy set (Tsai 
et al. 2003), Skolnick decoy set (Kihara et al. 2001; Zhang et al. 2003), and CASP 
decoys set (Moult et al. 2001). Similar results were obtained by all the authors, i.e. 
the native structure can be distinguished from non-native decoys by the physics-
based potentials. Recently, however, Wroblewska and Skolnick (2007) showed that 
the AMBER plus GB potential can only discriminate the native structure from 
roughly minimized TASSER decoys (Zhang and Skolnick 2004a). After a 2-ns MD 
simulation, none of the native structures have lower energy than decoys, and the 
energy-RMSD correlation was close to zero. This result partially explains the 
widely-reported discrepancy between the decoy-discrimination ability of the 
physics-based potentials and less-successful folding/refinement results (Wroblewska 
and Skolnick 2007).

In contrast, fast Monte Carlo simulations on the physics-based potentials have 
enjoyed considerable success in both protein structure prediction and refinement. 
For example, Scheraga and coworkers (Liwo et al. 1999) successfully built models 
of 4.2 Å for a fragment of 61 residues based on the MC optimization of a physics-
based united-residue force field (Liwo et al. 1993) combined with the atomic 
ECEPP potential (Nemethy et al. 1992). Using ASTRO-FOLD (Klepeis and 
Floudas 2003) on the ECEPP optimization, Floudas and coworkers (Klepeis et al. 
2005) constructed a model of 5.2 Å for a four-helical bundle protein of 102 residues. 
In the recent development of ROSSETA (Bradley et al. 2005; Das et al. 2007), the 
authors also cooperated the physics-based atomic potential in the final stage of 
Monte Carlo structure refinement, which is discussed in the next section.

11.3.2  Knowledge-Based Free Modeling

Probably the most well-known approach for efficient free-modeling was pioneered 
by Bowie and Eisenberg, who assembled new tertiary structures using small fragments 
(mainly 9-mers) cut from other PDB proteins (Bowie and Eisenberg 1994). Based 
on this idea, Baker and coworkers later developed ROSETTA (Simons et al. 1997), 
which works extremely well for free modeling in the CASP experiments, and 
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popularized the fragment assembly approach in the field. In new developments with 
ROSETTA (Das et al. 2007), the authors first assemble structures in a reduced 
knowledge-based model with conformations specified by the heavy backbone 
atoms and Cb. In the second stage, Monte Carlo simulations with an all-atom 
physics-based potential are performed to refine the details of the low-resolution 
models. An exciting achievement was demonstrated in CASP6 by generating a 
model for a small hard target T0281 (70 residues) that is 1.6 Å away from the 
crystal structure. In CASP7, the atomic ROSETTA built a model for T0283 (112 
residues) with RMSD  = 1.8 Å over 92 residues (see Fig. 11.4). Despite significant 
success, the computer cost of the procedure (~150 CPU days for a small protein 
<100 residues) is still too expensive for routine use.

Another successful free modeling approach, called TASSER by Zhang and 
Skolnick (2004a,b), constructs 3D models based on a purely knowledge-based 
approach. Continuous fragments with various sizes are excised from threading 
alignments and used to reassemble protein structures in an on-and-off lattice 
system. A newer version of I-TASSER was recently developed by Wu et al. (2007), 
which refines the TASSER cluster centroids by iterative Monte Carlo simulations. 
Although the procedure uses structural fragments and spatial restraints from threading 

Fig. 11.4 Representative examples of free modeling in CASP7 generated by two different 
approaches. T0283 (left panel) is a TBM target (from Bacillus halodurans) of 112 residues; but 
the model is generated by all-atom ROSETTA (a hybrid knowledge- and physics-based approach) 
(Das et al. 2007) based on free modeling, which gives a TM-score 0.74 and a RMSD 1.8 Å over 
the first 92 residues (the overall RMSD is 13.8 Å mainly because of the misorientation of 
C-terminal). T0382 (right panel) is a FM/TBM target (from Rhodopseudomonas palustris 
CGA009) of 123 residues; the model is generated by I-TASSER (a purely knowledge-based 
approach) (Zhang 2007) with a TM-score 0.66 and a RMSD 3.6 Å. Blue and red represent the 
model and the crystal structure representatively
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templates, it often constructs models of correct topology even when the topologies 
of individual templates are incorrect. In CASP7 (Zhang 2007), among 19 FM and 
FM/TBM targets, I-TASSER builds correct topology (~3–5 Å) for 7 cases with 
sequences up to 155 residues long. In the right panel of Fig. 11.4, we show an 
example of T0382 (123 residues), where all initial templates have incorrect topologies 
(>9 Å); but the final model by I-TASSER is 3.6 Å away from the X-ray structure. 
Recently, Helles made a comparative study of 18 different ab initio prediction 
algorithms in the literature and concluded that I-TASSER is currently the best 
method in the balance of modeling accuracy and CPU cost (Helles 2008). However, 
as indicated by the fact that no high-resolution model has been predicted in the 
CASP7 New Fold category (Jauch et al. 2007), I-TASSER modeling has a resolution 
limit by the inherent reduced potential. One of the on-going efforts is to extend the 
reduced I-TASSER modeling to the atomic representation with the goal to improve 
the modeling accuracy in the atomic-level (Zhang 2007).

11.4  Conclusion

Since a detailed physicochemical description of protein folding principles does not 
yet exist, the most accurate structure predictions are generated based on evolution-
ary relationships between the target and solved structures in the PDB library. 
For the proteins with close templates, full-length models can be constructed by 
copying the template framework. Recent studies show that using the best possible 
template structures in PDB, the state-of-the-art modeling algorithms could build 
high-quality full-length models for almost all single-domain proteins with an aver-
age RMSD  ~ 2.3 Å. This suggests that the current PDB structure universe is essen-
tially complete for solving protein structure prediction problem (Zhang and 
Skolnick 2005a). However, most of the target-template pairs are evolutionarily too 
distant to be detected with current threading approaches.

The development of efficient threading algorithms to detect weakly/distant 
structure templates has been a central theme in the field and may persist as a 
principal direction; the gap between threading and the best structural alignment is 
obvious and tempting. However, progress in reducing this gap progresses slowly. 
As mentioned above, there is no single threading method that outperforms all others 
on every target. Consequently, meta-servers and MQAP have been used to generate 
predictions by collecting and selecting models from a set of different threading 
programs. In contrast, the template structure refinement has enjoyed promising 
progress. In the recent CASP7 experiment (Battey et al. 2007), automated threading 
plus structure refinement servers outperform the threading and MQAP based meta-
servers by a noticeable margin. Nevertheless, template refinement mainly occurs at 
the topology level. The demand for atomic-level models, which can generate 
models of real use for new drug screening and biochemical function inference, is 
keener than ever as more template structures become available through the structure 
genomics and traditional structural biology.
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Free modeling is the ‘Holy Grail’ of protein structure prediction because its suc-
cess would mark the eventual solution to a problem manifested at genome scales. 
Although a purely physics-based ab initio simulation has the advantage in revealing 
the pathway of protein folding, the best current free-modeling results come from those 
which combine both knowledge-based and physics-based approaches. While there 
are consistent successes in building correct topologies (3 ~ 6 Å) for small proteins, 
the more exciting high-resolution free modeling (<2 Å) is much rarer and computa-
tionally more expensive. There is evidence that the current atomic potentials 
have the lowest energy near the native state, and the bottleneck of high-resolution 
folding seems to be insufficient conformational sampling (Bradley et al. 2005). 
However, a golf-hole-like energy landscape without middle range funnel is far from 
the one taken in nature and this can be a deeper reason for failures in conforma-
tional searches. Thus, the bottleneck for free modeling comes from the lack of both 
funnel-like force fields and efficient space searching methods, especially for pro-
teins of larger sizes.
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12.1  Introduction

The use of advanced high throughput technology applied to proteomics results in 
the production of large volumes of information rich data. This data requires consid-
erable knowledge management to allow biologists and bioinformaticians to access 
and understand the information in the context of their experiments. As the volume 
of data increases, the results from these high throughput experiments will provide 
the foundations for advancing proteome biology.

In this chapter, we consider the challenges of information integration in pro-
teomics from the perspective of researchers using information technology as an 
integral part of their discovery process. We firstly describe the information about 
proteins that is collected from high throughput experimentation and how this is 
managed. We then describe how protein ontologies can be used to classify this 
information. Finally we discuss some of the uses of protein classification systems 
and the biological challenges in proteomics which they help to resolve.

12.2  Why Are Proteins Important?

Proteins play a variety of roles in cellular processes including structural functions 
(viral coat proteins, molecules of the cytoskeleton, epidermal keratin); catalytic 
reactions (the enzymes); transport and storage (hemoglobin, myoglobin, ferritin); 
regulation (e.g., Hormones and transcription factors); as well as complex recognition 
roles such as the immune system or cell–cell recognition and signaling. Proteins 
can organize themselves in three dimensions and the system that produces them can 
create heritable structural variations, conferring the ability to evolve. The amino acid 
sequences of proteins predominantly dictate their three-dimensional structures. 
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Although known structural data is not as complete as sequence data, detailed 
atomic structures are now available for over 55,000 proteins and these structures 
reveal the great variety of spatial patterns and functional domains. An oxy T state 
hemoglobin protein structure (Paoli et al. 1996) is shown in the Fig. 12.1 below:

Research into proteins provides a number of scientific challenges:

•	 Interpretation of mechanisms of function of individual proteins: The catalytic 
activity of an enzyme can be explained in terms of physical-organic chemistry 
on the basis of interactions of residues of the protein.

•	 The Protein Folding Problem: Under physiological conditions of solvent 
and temperature, most proteins fold spontaneously to an active native state. 
The mechanism and kinetics of folding remain poorly understood and is the 
focus of intensive research.

•	 Prediction of Protein Structures: A majority of proteins, or their amino acid 
sequence dictates their three-dimensional structure. However, predicting the 
structure of a protein from the amino acid sequence remains a challenge. This 
problem is addressed by Wu and Zhang in this volume.

•	 Patterns of Molecular Evolution: There are several families of protein structures 
for which we know dozens or even hundreds of amino acid sequences, and at least 
20 structures; for example, the globins, the cytochromes c, and serine protease. 

Fig. 12.1 Oxy T state haemoglobin (PDB ID: 1GZX)
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For these proteins, it has been possible to analyze the mechanism of evolution, in 
that we can observe the structural and functional roles of the sets of residues that 
are strongly conserved and those that vary relatively freely, and we can describe 
the structural consequences of changes in the amino acid sequence.

•	 Protein Engineering: Using the techniques of genetic engineering, it is possible 
to design and test modifications of known proteins and to design novel proteins. 
Potential applications include: (1) modifications to probe the mechanisms of 
protein function such as the method of “alanine scanning,” (2) attempts to 
enhance thermostability by optimizing the choice of amino acids, (3) clinical 
applications, such as the transfer of the active site from a rat antibody to human 
antibody framework, and (4) modifying antibodies to give them catalytic ability.

•	 Drug Design: There are many proteins specific to pathogens that could poten-
tially be deactivated by drugs. With the known structure of HIV-1 Protease 
(Yamazaki et al. 1996), it may be possible to design molecules that will bind 
tightly and specifically to an essential site on these molecules, to interfere with 
their function (Fig. 12.2).

Now that the structures of many proteins have been determined, questions of struc-
ture, function and evolution can be addressed by examining and comparing the 
positions of individual atoms. The primary events in the generation of biological 
diversity are the mutation, insertion and deletion of nucleotides of genomic DNA. 
If a gene produces a functional protein product, a mutant gene may produce an 
alternative protein of equivalent function; a protein that carries out the same func-
tion but at an altered rate; a protein with an altered function; or a protein that does 
not function at all. Examination of homologous genes and proteins in different 
species has shown that evolutionary variation and divergence occur at the molecular 
level and that proteins from related species often have similar but not identical 
amino acid sequences and studies have established relationships between diver-
gence of sequence and divergence of structure.

Fig. 12.2 HIV-1 Protease-DMP323 complex in solution (PDB ID: 1BVE)
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In the last half of the twentieth century, a highly focused, hypothesis-driven 
approach known as reductionist molecular biology gave scientists the tools to iden-
tify and characterize molecules and cells, the fundamental building blocks of living 
systems. However, there is an increasing awareness of the ability to undertake a 
systems biology approach to study complex biological problems. Systems analysis 
demands not just knowledge of parts – genes, proteins, and other macromolecular 
entities – but also knowledge of the connection of these molecular parts and how 
they work together. In other words, the pendulum of bioscience is now swinging 
away from the reductionist approach and towards the synthetic approach character-
istic of systems biology and of an integrated biology capable of quantitative and/or 
detailed qualitative predictions. A synthetic or integrated view of biology will 
depend critically on information integration from a variety of data sources. Over the 
past two decades, research in evolutionary biology has come to depend on sequence 
comparisons at the gene and protein levels, and in the future it will depend more and 
more on tracking not just DNA sequences but on how entire genomes evolve over 
time (Pennisi 1998).

The connections and interactions among areas of genomics, gene expression 
profiles, proteomics, and systems biology depend on the integration of experimental 
procedures with databases and applications of computational algorithms and analysis 
tools. As the degree of complexity of the biological processes under study increases, 
our understanding at each level depends in a significant way on the levels beneath it. 
At every step, the computational analyses of data are an integral part of the 
discovery process. As we choose complex systems for study, experimentally generated 
data must be combined with data maintained within databases and computationally 
derived models or simulations for best interpretation. Modeling and simulation of 
protein–protein interactions, protein pathways, genetic regulatory networks, 
biochemical and cellular processes, and physiological states are in their infancy and 
need more experimental observations to fill in missing quantitative details. In these 
interactions, the boundaries between experimentally generated data and computa-
tionally generated data are blurred. Thus, accelerating progress now requires 
multidisciplinary teams to integrate their approaches. An information infrastructure, 
coupled with continued advances in experimental methods, will facilitate a greater 
understanding of biology.

12.3  Capturing Information about Proteins

The advent of high-throughput technologies has led to an ever-increasing rate of 
data acquisition and exponential growth of data volume. However, the most striking 
feature of data in life science is not its volume but its diversity and variability.

Mass spectrometry (MS) has increasingly become the method of choice for 
analysis of complex protein samples. MS-based proteomics is a discipline made 
possible by the availability of protein sequence databases and technical and conceptual 
advances in many areas, most notably the discovery and development of protein 
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ionization methods, as recognized by the 2002 Nobel prize in chemistry to John B. 
Fenn, Koichi Tanaka and Kurt Wüthrich awarded“for the development of methods 
for identification and structure analyses of biological macromolecules.” Electrospray 
ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are the 
two techniques most commonly used to volatize and ionize proteins or peptides for 
mass spectrometric analysis (Fenn et al. 1989; Karas and Hillenkamp 1988; Pandey 
and Mann 2000). ESI ionizes the analytes out of a solution and is therefore readily 
coupled to liquid-based separation tools. MALDI sublimates and ionizes the sam-
ples out of a dry, crystalline matrix via laser pulses.

The results of these experiments are a list of peptides which are compared to 
known proteins. Because protein identification relies on matches with sequence 
databases, high-throughput proteomics is currently restricted largely to those species 
for which comprehensive sequence databases are available. MS-based proteomics 
has established itself as an indispensable technology to interpret the information 
encoded in genomes. So far, protein analysis (primary sequence, post-translational 
modifications (PTMs) or protein–protein interactions) by MS has been most 
successful when applied to small sets of proteins isolated in specific functional 
contexts. The systematic analysis of the much larger number of proteins expressed 
in a cell, an explicit goal of proteomics, is now rapidly advancing, due mainly to 
the development of new experimental approaches.

12.4  Ontologies for Proteins

There are a number of publicly available databases that host knowledge about pro-
teins. The development of individual databases has generated a large variety of 
formats in their implementations. There is consensus that a common language for 
protein information should be valuable, but this goal has proved difficult to achieve. 
Attempts to unify data formats have included the application of a Backus–Naur 
based syntax (George et al. 1987), the development of an object-oriented database 
definition language (George et al. 1993) and the use of Abstract Syntax Notation 1 
(Ohkawa et al. 1995; Ostell 1990). None of these approaches have achieved the 
hoped for degree of acceptance. Underlying questions of intercommunication 
between databases of different structure and format is the need for common seman-
tic standards and controlled vocabulary in annotations (Pongor 1998; Rawlings 
1998).(Please check the meaning of the sentence.) The technical problems of stan-
dardization may be addressed more easily in the context of a more general logical 
structure. As noted by Hafner (Hafner and Fridman 1996), general biological data 
resources are databases rather than knowledge bases: they describe miscellaneous 
objects according to the database schema, but no representation of general concepts 
or their relationships is given. Schulze-Kremer addressed this problem by develop-
ing ontologies for knowledge sharing in molecular biology (Schulze-Kremer 1998). 
The term ontology is originally a philosophical term referred to as “the object of 
existence.” The computer science community borrowed the term ontology to refer 
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to a “specification of conceptualization” for knowledge sharing in artificial intelli-
gence (Gruber 1993). Ontologies provide a conceptual framework for a structured 
representation of the meaning, through a common vocabulary, in a given domain 
– in this case, biological or medical – that can be used by either humans or auto-
mated software agents in the domain. This shared vocabulary usually includes 
concepts, relationships between concepts, definitions of these concepts and also the 
possibility of defining ontology rules and axioms, in order to define a mechanism 
to control the objects that can be introduced in the ontology and to apply logical 
inference. Ontologies in biomedicine have emerged because of the need for a com-
mon language for effective communication across diverse sources of biological 
data and knowledge. In this section, we review a selection of ontologies used in the 
biomedical domain that relate to genes and the proteins that they encode.

12.4.1  The Gene Ontology

In 1998, efforts to develop the Gene Ontology began, leading ontological development 
in the genetic area (Ashburner et al. 2001; Lewis 2004). The Gene Ontology is a 
collaborative effort to create a controlled vocabulary describing genes and proteins, 
addressing the need for consistent descriptions of gene products in different databases. 
The GO collaborators are developing three structured, controlled vocabularies 
(ontologies) that describe gene products in terms of their associated biological 
processes, cellular components and molecular functions in a species-independent 
manner. The GO consortium was initially a collaboration among the Mouse Genome 
Database (Blake et al. 1998), FlyBase (Ashburner 1993), and the Saccharomyces 
Genome database (Schuler et al. 1996) efforts. GO is now a part of the Unified 
Medical Language System (UMLS), and the GO consortium is a member of the 
Open Biological Ontologies consortium discussed later in this section. One of the 
important uses of GO is the prediction of gene function based on patterns of annotation. 
For example, if annotations for two attributes tend to occur together in the database, 
then the gene holding one attribute is likely to have the other attribute as well (King 
et al. 2003). In this way, functional predictions can be made by applying prior 
knowledge to infer the function of the new entity (either a gene or a protein).

GO consists of three distinct ontologies, each of which serves as an organizing 
principle for describing gene products. The intention is that each gene product 
should be annotated by classifying it within each ontology (Fraser and Marcotte 
2004). The three GO ontologies are:

1. Molecular Function: This ontology describes the biochemical activity of the 
gene product. For example, a gene product could be a transcription factor or 
DNA helicase.

2. Biological Process: This ontology describes the biological goal to which a gene 
product contributes. For example, mitosis or purine metabolism. An ordered 
assembly of molecular functions accomplishes such a process.
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3. Cellular Component: This ontology describes the location in a cell in which the 
biological activity of the gene product is performed. Examples include the 
nucleus, telomere, or an origin recognition complex.

GO is the result of an effort to model concepts used to describe genes and gene 
products. The central unit of description in GO is a concept. Each concept consists 
of a unique identifier and one or more strings (referred to as terms) that provide a 
controlled vocabulary for unambiguous and consistent naming. Concepts exist in a 
hierarchy of IsA and part of?? relations in a directed acyclic graph (DAG) that 
locates all concepts in the knowledge model with respect to their relationships with 
other concepts.

GO is now clearly defined and is a model for numerous other biological 
ontology projects that aim similarly to achieve structured, standardized vocabularies 
for describing biological systems. There are many measures demonstrating the 
success of GO. The characteristics of GO that led to its success include: community 
involvement, clear goals, limited scope, simple, intuitive structure, continuous 
evolution, active curation, and early use. Within the genome community it has 
become the accepted standard for functional annotation.

12.4.2  The MGED Ontology

The MGED Ontology (MO) was developed by the Microarray Gene Expression 
Data (MGED) Society. MO provides terms for annotating all aspects of a gene 
expression or a microarray experiment from the design of the experiment and array 
layout, to preparation of the biological sample and protocols used to hybridize the 
RNA and analyze the data (Whetzel et al. 2006). MO is a species-neutral ontology 
that focuses on commonalities among experiments rather than differences between 
them. MO is primarily an ontology used to annotate microarray experiments; how-
ever, it contains concepts that are universal to other types of functional genomics 
experiments. The major component of the ontology involves biological descriptors 
relating to samples or their processing. MO version 1.2 contains 229 classes, 110 
properties and 658 instances.

12.4.3  The Protein Ontology 

We built the Protein Ontology (PO) (Sidhu et al. 2005a, b, 2007) to integrate protein 
data formats and provide a structured and unified vocabulary to represent protein 
synthesis concepts. PO provides an integration of heterogeneous protein and 
biological data sources, and converts the enormous amounts of data collected by 
geneticists and molecular biologists into information that biologists can use to more 
easily understand the mapping of relationships inside protein molecules, the interaction 
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between two protein molecules, and interactions between proteins and other 
macromolecules at cellular level. The PO consists of concepts (or classes), which 
are data descriptors for proteomics data and the relationships among these 
concepts. PO has:

1. A hierarchical classification of concepts represented as classes, from general to 
specific

2. A list of properties related to each concept, for each class
3. A set of relationships between classes to link concepts in ontology in more complicated 

ways than implied by the hierarchy, to promote reuse of concepts in the ontology; and
4. A set of algebraic operators for querying protein ontology instances. In this sec-

tion, we will briefly discuss various concepts and relationships that make up the 
Protein Ontology

12.4.4  Generic Concepts of Protein Ontology

There are seven concepts of PO, called generic concepts that are used to define 
complex PO concepts: {Residues, Chains, Atoms, Family, Atomic Bind, Bind, and 
Site Group}, and these generic concepts are reused in defining complex PO 
concepts. Details and properties of residues in a protein sequence are defined by 
instances of the residues concept. Instances of chains of residues are defined in the 
chains concept. All the three dimensional structure data of protein atoms are repre-
sented as instances of the atoms concept. Defining chains, residues and atoms as 
individual concepts has the advantage that any special properties or changes affecting 
a particular chain, residue or atom can be added easily. The family concept repre-
sents the protein super family and family details of proteins. Data about binding 
atoms in chemical bonds such as hydrogen bond, residue links, and salt bridges are 
entered into the ontology as an instance of the atomic bind concept. Similarly, data 
about binding residues in chemical bonds such as disulphide bonds and cis peptide 
bonds are entered into the ontology as an instance of the bind concept. When defining 
the generic concepts of atomic bind and bind in PO we again reuse the generic 
concepts of chain, residue, and atom. All data related to site groups of the active 
binding sites of proteins are defined as instances of the site group concept. In PO, 
notions classification, reasoning, and consistency are applied by defining new 
concepts from the defined generic concepts. The concepts derived from generic 
concepts are placed precisely into a class hierarchy of the PO to completely represent 
information defining a protein complex.

12.4.5  Derived Concepts of Protein Ontology

The PO provides a description of protein data that can be used to describe proteins 
in any organism using derived concepts formed from the generic concepts.
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12.4.5.1  Derived Concepts for Protein Entry Details

The PO describes the protein complex entry, and the molecules contained in a 
protein complex are described using the entry concept and its sub-concepts of 
description, molecule and reference. Molecule reuses the generic concepts of chain 
to represent the linkage of molecules in the protein complex to the chain of 
residue sequences.

12.4.5.2  Derived Concepts for Protein Sequence and Structure Details

Protein sequence and structure data are described using structure concept in PO 
with the sub-concepts atom sequence and unit cell. Atom sequence represents pro-
tein sequence and structure and is made of the generic concepts of chain, residue 
and atom. Protein crystallography data is described using the unit cell concept.

12.4.5.3  Derived Concepts for Structural Folds and Domains in Proteins

Protein structural folds and domains are defined in PO using the derived concept of 
structural domains. The family and super family of the organism in which protein 
is present are represented in structural domains by reference to the generic concept 
of family. Structural folds in proteins are represented by the sub-concepts of helices, 
sheets and other folds. Each definition of structural fold and domains also reuses 
the generic concepts of chain and residue for describing the secondary structure of 
proteins. Helix, which is a sub-concept of helices, identifies a helix?. Helix has a 
sub-concept helix structure that gives the detailed composition of the helix. In this 
way, PO distinguishes concepts for the identification and the structure of secondary 
structures in a protein. Other secondary structures of proteins such as sheets and 
turns (or loops) are represented in a similar way. Sheets have a sub-concept sheet 
that identifies a sheet?. Sheet has a sub-concept strands that describes the detailed 
structure of a sheet. Similarly, turns in protein structures are repeated in PO using 
the other folds concept. Turn is a sub-concept of other folds that identifies a turn; 
and turn structure describes its structure. Turns in protein structure are categorized 
as other folds in the protein ontology as they are less frequent than helices and 
sheets in protein structure.

12.4.5.4  Derived Concepts for Functional Domains in Proteins

PO is the first functional domain classification model for proteins defined using the 
derived concept of functional domains. In a similar way to structural domains, the 
family and super family of the organism in which protein is present, are represented 
in functional domains by reference to the generic concept of family. Functional 
domains describe the cellular and organic?sm source of a protein using the source 
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cell sub-concept, the biological functionality of protein using the biological function 
sub-concept, and describes active binding sites in proteins using the active binding 
sites sub-concept. Active binding sites are represented in the PO as a collection of 
various site groups, defined using site group generic concept.

12.4.5.5  Derived Concepts for Chemical Bonds in Proteins

Various chemical bonds used to bind various substructures in a complex protein 
structure are defined using chemical bonds concept in PO. Chemical bonds are 
defined by their respective sub-concepts and are: disulphide bond, cis peptide, 
hydrogen bond, residue link, and salt bridge. They are defined using the generic 
concepts of bind and atomic bind. Chemical bonds that have binding residues 
(disulphide bond, cis peptide) reuse the generic concept of bind. Similarly the 
chemical bonds that have binding atoms (hydrogen bond, residue link, and salt 
bridge) reuse the generic concept of atomic bind.

12.4.5.6  Derived Concepts for Constraints affecting the Protein Structural 
Conformation

Various constraints that affect the final protein structural conformation are defined using 
the constraints concept of PO. The constraints described in PO at the moment are: 
monogenetic and polygenetic defects present in genes that are present in molecules 
making proteins, and these are described using the genetic defects sub-concept, hydro-
phobic properties of proteins are described using the hydrophobicity sub-concept, and 
modification in residue sequences due to changes in chemical environment and muta-
tions are described using the modified residue sub-concept.

12.4.6  Relationships Protein Ontology

Semantics in protein data is normally not interpreted by annotating systems, since 
they are not aware of the specific structural, chemical and cellular interactions of 
protein complexes. A PO framework provides a specific set of rules to cover these 
application specific semantics. The rules only use the relationships whose seman-
tics are predefined in PO to establish correspondence among terms. The set of 
relationships with predefined semantics is: {SubClassOf, PartOf, AttributeOf, 
InstanceOf, and ValueOf}. The PO conceptual modeling encourages the use of 
strictly typed relations with precisely defined semantics. Some of these relation-
ships (such as SubClassOf, InstanceOf) are somewhat similar to those used in the 
resource description framework (RDF) schema (W3C-RDFSchema 2004), but the 
set of relationships that have defined semantics in our conceptual PO model is too 
small to maintain the simplicity of the model. The following is a brief description 
of the set of pre-defined semantic relationships in our common PO conceptual 
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model: the SubClassOf relationship is used to indicate that one concept is a special-
ization of another concept; the AttributeOf relationship indicates that a concept is 
an attribute of another concept; the PartOf relationship indicates that a concept is a 
part of another concept; the InstanceOf relationship indicates that an object is an 
instance of the concept; and the ValueOf relationship is used to indicate the value 
of an attribute of an object. By themselves, the relationships described above do not 
impose order among the children of the node, rather, we defined a special relationship 
called sequence(s) in PO to describe and impose order in complex concepts defining 
structure, structural folds and domains and chemical bonds of proteins.

12.4.7  Protein Ontology as a Structured Hierarchy

The PO consists of a hierarchical classification of concepts, discussed above, 
represented as classes, from general to specific. The concepts derived from generic 
concepts are placed precisely into the class hierarchy of Protein Ontology, as 
depicted in Fig. 12.3 below. Further details on PO are available on the website 
(http://www.proteinontology.org.au/).

12.5  Advantages of a Consistent Protein Ontology

12.5.1  Annotation and Retrieval

Research into biological systems use different organisms chosen specifically because 
they are amenable to advancing these investigations. For instance, the rat is a good 
model for the study of human heart disease. For each of these model systems, there 
is a database employing curators who collect and store the body of biological 
knowledge of that organism. However, querying heterogeneous, independent 
databases in order to draw these inferences is difficult: The different database 
projects may use different terms to refer to the same concept and the same terms to 
refer to different concepts. Furthermore, typically,these terms are not formally 
linked with each other in any way. The PO provides a structured vocabulary that can 
be used to describe proteins, and can be shared between various protein data sources. 
This facilitates querying protein data that share biologically meaningful attributes, 
whether from separate databases or within the same database through??. Atoms of a 
protein structure described in protein data bank (PDB) format are converted to an 
instance of the atom concept stored in PO instance store (Fig. 12.4) represented 
using the web ontology language (OWL). As the OWL representation used in PO is 
an abbreviated extensible markup language (XML) notation, it can easily be trans-
formed to the corresponding RDF and XML formats using the available converters. 
The PO instance store currently consists of various species of proteins from bacteria 
and plant to human proteins in OWL format. Such a generic representation using PO 
shows the strength of the PO format representation.
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12.5.2  Data Mining

We compared efficiency of some of the standard hierarchical and tree mining algo-
rithms on the human prion protein data (Tan et al. 2006; Hadzic et al. 2006) 
extracted from PO Instance Store in XML format (Sidhu et al. 2004a, b). We com-
pared our MB3-Miner (MB3) algorithm with X3-Miner (X3), VTreeMiner (VTM) 
and PatternMatcher (PM) for mining embedded subtrees, and our IMB3-Miner 
(IMB3) with FREQT (FT) for mining induced subtrees. Figure 12.5 shows the time 
performance of different algorithms. Our original MB3 has the best time perfor-
mance for this data.

Also, as can be seen in Fig. 12.6 with the prion dataset of PO, the number of 
frequent candidate subtrees generated, is identical for all the major data mining 
algorithms. This demonstrates that the conceptual framework of PO provides a 
powerful hierarchical classification of protein data, which provides consistency and 
accuracy in observations of various data analysis methodologies.

Fig. 12.3 Class hierarchy of protein ontology

Fig. 12.4 Instance of the atom concept from the protein ontology instance store
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12.5.3  Advanced Reasxoning

PO also provides a specific set of rules to cover application specific semantics over 
the PO framework (Sidhu et al. 2006). The rules only use the relationships whose 
semantics are predefined to establish a correspondence among terms in PO. These 
rules help in defining semantic query algebra for PO to efficiently reason and query 

Fig. 12.5 Time performance for the human prion proteins data in PO

Fig. 12.6 Frequent candidate subtrees generated by all algorithms
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the underlying PO instance store. Let us consider that a user requires all the infor-
mation available in the PO with regards to protein families and protein structure. 
In this case, all the information highlighted in Fig. 12.7 is displayed. The UNION 
operator is used for this purpose (Family ∪ Structure).

12.6  Conclusion

High throughput technologies can produce a large amount of information about all the 
proteins in a particular biological system and we will increasingly require computational 
approaches to mine this data. In this chapter, we addressed this issue by providing 
definitions of all the major biological concepts of protein synthesis and the relationships 
between them using a protein ontology. This ontology provides a unified structured 
vocabulary both for annotating data types and for annotating data and will enable 
informatics agents to use the data in more intelligent ways.
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13.1  Introduction

The aim of applied plant biology has always been to understand how and why 
plants grow the way they do. In most cases, the target of research is to find cor-
relations and dependencies between distinct factors of the biological system. 
Biologists often seek better measuring technologies to facilitate their research. 
To compensate for the invariably limited possibilities, they often developed 
tedious but nevertheless very successful methods of gaining and increasing 
knowledge about plants. Thus over long periods of time they produce exemplary 
results. These steps gradually create a more comprehensive model of how plants 
actually work and still form a broad basis of the majority of research. 
Nevertheless, it remains possible to gain deeper insights into “biological varia-
tion” and see how the newly discovered principles could be applied to a broad 
set of plants under differing conditions (light, soil, water, nutrients, plant genes, 
epigenetic plant history etc.).

Due to the restricted elementary knowledge on “how plants work,” breeders 
devoted to plant improvement perform their tasks on a very empirical basis – in 
some cases more closely related to artisan craftsmanship than to research. Looking 
back on some thousand years of successful breeding, this approach has been 
immensely successful.
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13.2  The Technological Approach to Plant  
High-Throughput Phenotyping

13.2.1  Biological Demands for Modern Plant Phenotyping

A technology is now available to assist in the generation of high-throughput plant 
phenotype data. To be successfully applied, this technology requires the ability to 
gather large amounts of information for each plant (high-content) from large numbers 
of plants (high-throughput) over long periods of time with reasonable time resolution 
(nondestructively), and the ability to transform these raw data into qualitative and 
quantitative results.

While looking for important basic aspects of development, represented by 
large amounts of detailed measurements, all this information needs to be seen 
in the comprehensive context of complete plant development in an integrated 
approach. This is important, as the aim of breeding and long-term research is 
in the end directed at complex plant traits such as yield, drought tolerance, or 
disease resistance.

13.2.2  Technological Basis of High-Throughput Phenotyping

A set of key technologies is required to fulfil the above goals.

1. High-resolution images, digitally stored to document the growth process and 
reactions to time-dependent stress factors. In this context “images” includes any 
kind of spatially resolved measurement in the full range of wavelengths techni-
cally available, including visible light (VIS), near-infrared (NIR), infrared (IR), 
X-rays or other imaging methods such as magnetic resonance imaging (MRI) or 
terahertz scanning.

2. Automation technology to allow the transport of plants under high-throughput 
conditions through multisensor detection systems, permitting the screening of 
thousands of plants per day.

3. Image processing algorithms to enable the extraction of hundreds of parameters 
from a set of images.

4. Molecular biology, genomics, proteomics, and metabolomics technologies.

These points describe the context in which automatized and image-based plant 
phenotyping is applied. The following sections detail this approach, with applications 
describing principles.

It is particularly important for data analysis experts to get a clear idea about 
phenotyping data production, as the character of the data largely determines the 
best methods of analysis.
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13.2.3  The Role of Bioinformatics in High-Throughput 
Screening Experiments

The task of designing and physically performing high-throughput screening experi-
ments is hugely important in reaching the final aim of biologically significant data 
interpretation. This requires good co-operation between people trained in biology, 
agriculture, applied mathematics, and information technology. Efficient teamwork 
requires two general features:

1. Everyone involved needs a clear insight in what the others do, to develop a 
certain understanding about how others organize their part in the project.

2. Each part of the workflow needs to be assigned to one or the other group or be 
developed in close co-operation at the borders of the different areas of expertise.

Following the general scheme of research based on division of labour, the biological 
branch provides everything from seeds to soil and plants, and defines the growth 
conditions according to the specific aims of the tests. If things work out well, the 
statisticians are asked at this point to set values for control and replicate numbers 
and make the schemes, for example, for appropriate randomized block designs. 
The plant experts define which parameters are measured to produce the raw data. 
After measurement they transfer these data to the mathematically skilled people from 
the statistics or information technology department. The decision about how to trans-
form raw data before use should be taken after careful consideration. The following 
sections highlight some important aspects of data production, handling, and 
transformation before statisticians can start their analysis.

13.3  Technical Data Acquisition Under High-Throughput 
Phenotyping Conditions

13.3.1  Some Practical Implications of Larger Plant Numbers

High-throughput phenotyping may mean analysing up to several thousand units per 
day. In this context one unit could be equivalent to a single plant in a pot, a tray 
with up to 20 smaller plants such as Arabidopsis, or a multiwell plate with up to 96 
wells per plate. While such numbers do not look impressive at first glance, measuring 
1,000 pots of maize, each weighing 3 kg, would mean moving 3 tons of material 
each day. In many cases, each pot has to be imaged at least three times in each 
imaging unit (one top image and two side images by turning the pot through 90°), 
and up to four imaging units representing different wavelength ranges (VIS, NIR, 
fluorescence imaging, IR) may be aligned. This adds up to around 12,000 images 
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each day or roughly one image every 2 seconds, requiring a daily disk storage 
capacity of around 10–20 GB. Should only 100 parameters be extracted from each 
image, 1,200,000 data points would need to be processed each day.

This brief example clearly demonstrates how closely high-throughput imaging 
and high-content analysis resemble industrial conveyor processes rather than 
conventional biological experiments. It becomes evident that many concepts and 
approaches used for small-scale tests will need a critical revision before the upscaling 
of experiments.

Here are some of the consequences and challenges resulting from this analysis:

1. A comprehensive documentation of results will only ever be possible by controling 
as many parameters as possible. In cases where full control is not possible (e. g., 
with growth conditions), these factors should be included in data transformation 
protocols as is done by growth rate calculation and subsequent normalization 
based on control plants.

2. The dataflow needs to be highly structured and designed to avoid any wrong 
assignment of data and samples.

3. The number of data points is too large to be handled manually by general spread-
sheet programs such as Excel. Advanced data analysis methods are important 
right from the first analysis of raw data to validating results.

13.3.2  How High-Throughput Influences the Value  
and Character of Each Data Point

Traditionally, researchers measure a small number of biological objects to characterize 
them, and it makes sense to invest effort to measure parameters that are well 
defined. Generally, a small number of parameters are measured for each plant, and 
each value should be as significant as possible. For automated high-throughput 
measurements, biological relevance of the measurement parameters is still important, 
but the larger number of replicates and values for each plant and the repeated 
measurement of each plant over time make a difference to the analysis. Each data 
point in a series of time-related measurements is statistically backed by its neigh-
bouring values. Variation between plants within a treatment group is limited if the 
same plants are measured in the course of time, thus reducing standard deviations, 
particularly if the dynamics of parameter change are properly considered (e. g., 
measuring growth rate instead of final biomass).

But even for very sensitive measurements, such as water content in leaves mea-
sured by near-infrared imaging, or leaf temperature measured by infrared cameras, 
values gain greater statistical relevance if large numbers of plants are measured. In 
this way, even difficult parameters such as leaf temperature may yield significant 
results. Again appropriate biological data transformation, such as deviation of single 
plant values from the moving average, enables appropriate measurements where 
traditional studies often fail. In addition, another important feature of image analysis 
is that a large set of different data extraction methods can be applied to each image.
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13.3.3  The Character of Complex Plant Imaging Parameters – What 
Shall Be Measured and How Do Parameters Correlate?

When upscaling experiments from low-to high-throughput and high-content analysis, 
changes in the measurement protocol often become necessary. This can be illustrated 
by “biomass” measurements. Biomass is a very abstract parameter intuitively 
correlated to weight. Nevertheless, it is important to comprehend that there is no 
absolute definition of biomass, and this parameter is generally defined in a very 
pragmatic manner. As long as plant numbers are not large, and plants are small 
enough, dry weight can be used, while large numbers and big plants often allow 
only for fresh weight measurement. In cases where nondestructive measurement is 
required, plant height is used as a substitute for biomass. Depending on the organ-
ism’s cell number, optical density, light scattering or the number of leaves may also 
be used to describe increasing biomass. All these parameters increase as long as the 
plant grows, but the simple quantitative correlation between them is limited, espe-
cially if various stressors are applied or different plant lines are used.

From this perspective, image-based biomass measurement is just an additional 
measurement protocol to actually determine growth or biomass. A correlation 
between the manual biomass or growth parameter and image-based measurements 
is often searched for. There are several reasons why such simple correlations fail 
to work and sometimes even diminish the informational output:

1. There is no scientific rationale for any two parameters based on totally different mea-
surement principles to lead to the same result. Weight measurements integrate leaf 
thickness as well as leaf area, but plant imaging cannot measure leaf thickness.

2. Even a correlation determined in a validation experiment with control plants can 
be hugely misleading, as the calibration factor may depend on the specific 
variety, treatment or environment. For example, plants may change their water 
content significantly without changing their outer shape. Thus a calibration 
factor between image-based parameters and fresh weight made with well-watered 
plants will fail with plants which have a different watering regime. Even more 
important in this respect are comparisons between different plant lines. If one 
cultivar has thicker leaves than another, the calibration factor between projected 
leaf area and fresh weight will not correspond between cultivars.

This may sound like a drawback of image-based parameters, but having this highly 
differentiated dataset and using multiparameter approaches for statistical analysis 
can provide far more information than highly aggregated single value biomass 
results. While scientists need much more statistical competence to extract data from 
multiparameter approaches, describing the morphology can answer functional 
questions of plant growth much better and produce more significant relations to 
functional genetic data.

Another important point in evaluating measurement parameters is the precise 
definition of what is measured. For example, any image of a plant shows its leaves. 
This parameter is generally referred to as leaf area, but what is measured is the 
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two-dimensional projection of leaf area in a certain direction. Combining projec-
tions from different perspectives (e. g., top and two side images with a 90° turn) can 
lead to a reproducible and comparable image-based bio volume representing bio-
mass, but will never describe the “true” leaf area. The orientation of the leaves is 
structurally ignored and hidden leaves are not quantified at all. This again is a 
drawback of image-based parameters, however, true leaf area is only measurable 
through destructive methods, as all leaves need to be flattened and scanned. Even 
then, wrinkles, folding, and distortion make true leaf area measurement almost 
impossible, even if the leaves are not looked upon as fractals. A true leaf value 
represents only one value, and ignores information that image processing provides 
for shape parameters, including leaf orientation, shadowing, and compactness of a 
plant. With this in mind, the parameter “absolute leaf area” measured destructively 
can lose its importance when compared to a large set of image-based areas and 
calculated bio volumes combined with morphological parameters.

The complex process described above shows the importance of advanced data 
analysis and the relevance of well-developed and adapted bioinformatics approaches 
for the transformation of raw data to biologically significant parameters, with the 
subsequent interpretation of the results. The following section will focus on these 
different kinds of data transformation.

13.4  Biologically Relevant Data Transformation

The raw data of any image-based high-throughput phenotyping system are the 
images. Any image analysis, extracting colors, area length values or shapes out of the 
images is a major step of data transformation. This process reduces the information 
from several megabytes of image data to some hundred data points amounting to a 
few kilobytes. Image processing of biological objects and its technical details are not 
discussed here, because this is a separate, broad field considered elsewhere (Sonka 
et al. 2008, Gonzalez and Woods 2008, Davies 2005, Russ 1999). The main focus of 
this section is on the results of image processing, and their subsequent processing.

13.4.1  Calculation of Dynamic, Time-Dependent Parameters 
from Multiple Datasets of One Plant – Growth Rate  
Data Transformation

It is important to keep in mind that any use of data implies specific models and 
assumptions, even if these implications or hypotheses are not always obvious and 
data are taken “as measured.” The following example regarding growth rate 
transformations is one case where data transformation is of high importance.

In many classical approaches, growth measurement is performed by measuring 
a maximum size-value for the plant at the end of the test (size may mean fresh 



26513 High-Throughput Plant Phenotyping – Data Acquisition, Transformation

BookID 151692_ChapID 13_Proof# 1 - 21/08/2009

weight, dry weight, height etc.). This method is taken from a field trial perspective, 
where all plants grow till they reach their final size and are then harvested and 
evaluated at the end of the season. This kind of field approach is a “yield” approach. 
By contrast, many screening designs do not let the plant grow to its final size. Thus 
time becomes a parameter, and absolute “size” must be substituted by “growth 
speed.” Additionally, it can often be observed in greenhouse experiments that stan-
dard deviations of measured biomass increase during the test duration (Fig. 13.1).

The graphs show a model derived from “Arabidopsis” growth patterns. The 
longer the plants grow, the bigger the differences between lines become. An additional 
phenomenon is that the reproduction of a test at a later time shows a relatively similar 
ranking of growth intensities, but large deviations of absolute values between the 
two experiments. In numerous cases, particularly with fast growing plants, differ-
ences between lines are large at times of high average growth of all plants, but 
lower, for example, in wintertime when the artificial light cannot replace decreasing 
sunlight completely or annual rhythms of plants play a role. This can have a major 
influence on comparisons within large screenings where different lines need to be 
cultivated over long periods with different seasonal conditions. In cases where the 
greenhouse experts provide data to the statisticians, the statisticians have only a 
limited chance of understanding the reasons for these deviations.

Plants finally need to be compared either by significance testing or by a percentage 
value relative to a control. The comparison based on %-values relative to a control 
will be considered here in detail, especially with respect to how inappropriate (non)
transformation can lead to mathematical artefacts.

Fig. 13.1 Model growth curves (dotted lines) of either single plants or mean values of different 
breeding lines or cultivars. The full line represents the mean value including the increasing 
standard deviation
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Comparison of biomass values on a percentage scale seems very neutral and 
unbiased, but includes one important hypothesis: As the comparison is performed on 
a linear scale, the parameter to be compared with must also act as on a linear scale 
to avoid misinterpretation. As a result it is important to always determine if growth 
in the respective example is linear or not. Just by measuring the growth parameters 
nondestructively, for example by image processing of a leaf area over the whole 
growth period, it becomes evident that over long periods plants show a pattern that 
is closer to exponential than to linear (Nyholm 1985, Nyholm 1990). Illustrating the 
data of Fig. 13.1, a logarithmic scale clearly shows that growth is near to exponential 
(Fig. 13.2), resulting in linear growth curves after log transformation.

Following data transformation, the results are much easier to interpret. In addition, 
standard deviations caused by different biomass at the beginning of the measure-
ments remain nearly constant over time. Deviations from this scheme occur in 
practice if maximum size is approached, stressors or nutrients are limiting the 
growth, or the rate of development changes, but in all cases the basis for comparison or 
control is generally the non-limited plant showing near to exponential growth. Thus 
applying logarithmic growth rates is always appropriate, as long as the control 
group shows such a logarithmic growth pattern. Additionally, normalizing all experi-
ments to the growth rate of the control plant in the respective experiment allows 
compensation for mathematical artefacts that may inhibit comparisons between 
screens under seasonally differing environmental conditions (Eberius et al. 2002). 

Fig. 13.2 Model growth curves (dotted lines) of either single plants or mean values of different 
breeding lines or cultivars. Logarithmic presentation of the biomass values allows the slope of the 
growth curves to display the exponential growth rate and shows only small differences between 
the curves. The full line represents the mean value including the increasing standard deviation
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Nevertheless, there may be some growth parameters whose behavior differs from 
others, for example, leaf area may grow exponentially while leaf length or plant 
height may not. To provide appropriate measurement parameters, relevant biologi-
cal knowledge is essential. By using appropriate data models and data transforma-
tion, the interpretational quality of results can be greatly enhanced. In the case of 
growth rates, phenomena such as the one described above, with high standard 
deviations between replicates, can be massively reduced.

13.4.2  Transforming Raw Phenotype Data Resulting from Image 
Analysis into Biologically Relevant Parameters

There are generally two approaches to the use of raw data resulting from basic 
image analysis.

The first approach simply employs the raw data to perform a statistical analysis. 
While this approach may appear rather unbiased and seems to minimize any preset 
hypothesis, it could be difficult to provide a biological interpretation of results. 
Apart from statistical correlation, the biologist or breeder works on a qualitative 
level, where a certain measurement parameter must represent facts of biological rel-
evance in order to define breeding or screening targets. The second approach first 
transforms the raw data into biologically relevant values that allow for a better 
interpretation of results and a better understanding of the correlations observed. 
This approach involves significantly more work at the image processing level and 
with the transformation of raw data. More importantly, it requires a deeper under-
standing of the biological or breeding aims of the study. Two examples of data 
transformation are explained below.

13.4.2.1  Static Shape Phenotyping – Leaf Angle

To extract biologically relevant information, it is important to understand how 
biologists or plant breeders look at plants and why they assess specific parameters. 
When starting a corn screening experiment, one of the biologist’s requirements may 
be to measure “leaf angle.” But from an image analysis perspective, it is usually 
difficult to find the algorithmic rules of how to measure leaf angle, considering 
greenhouse corn plants and their generally bent leaves (Fig. 13.3).

The term leaf angle is poorly defined, even in specialist literature. It is impor-
tant to know why experienced breeders are interested in this measurement. When 
it is made clear that smaller angles between leaves and stem allow higher plant 
densities by reducing leaf interference and shading between neighboring plants, 
the agricultural traits on which this parameter is based become obvious. Breeders 
traditionally chose this trait for practical reasons as they rarely view plants from 
the top. Thus, image-based screening of width to height ratios, as well as leaf area 
ratios (side and top) could show a comparable result fulfilling the screening aims. 



268 M. Eberius and J. Lima-Guerra

BookID 151692_ChapID 13_Proof# 1 - 21/08/2009 BookID 151692_ChapID 13_Proof# 1 - 21/08/2009

Another option may be the integration of leaf orientations based on skeleton 
measurement (Fig. 13.4).

This example shows how distinct imaging parameters that back each other up 
could form a stable representation of an important agronomic trait. The discussion 
about why plants in greenhouses grow differently from those in the field could be 
an incentive to think about how greenhouse experiments could be made more 
relevant. This may also result in further automation (LemnaTec 2008).

13.4.2.2  Dynamic Shape Phenotyping – Leaf Rolling

In drought stress experiments of corn plants, it is important to be able to understand 
and quantify the relationship between water deficiency and plant response. The physi-
ological responses include closing the stomata and leaf rolling to minimize the 
surface area. If leaves close their stomata they stop evaporating water and heat up, 
and leaf temperature can be imaged in the infrared spectrum. Leaf rolling is a 
visible parameter assessable by image analysis. Despite the easy visibility of this 
trait in the field, the lower magnification and resolution of images from three 
perspectives (top, broad side, small side) makes leaf rolling difficult to see. Rolling 
may be more or less severe and a quantitative measurement rather than the semi-
quantitative measurement in the field would be preferable. In the case of corn 
plants, detailed analysis of data has shown that no single value from one image 
provides stable correlations with visual assessment. Looking for changes between 
images, for example, projected leaf area from the top shows that rolled leaves have 

Fig. 13.3 Broad side projected leaf area images of a greenhouse grown corn plant (left) and a 
field grown corn plant (right). The field grown plant has long, almost straight leaves showing 
a distinct angle between stem and leaf. The greenhouse plant has bent leaves due to the lower 
growing density
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a smaller area value, but this kind of assessment requires high frequency measure-
ments (several times a day), which are impractical to carry out if thousands of 
plants need to be imaged on a daily basis. An assessment of data revealed that the 
ratio between projected top and broad side area of corn plants shows the best rep-
resentation of leaf rolling. Due to the structure of corn leaves which fold slightly 
along the centre-line and simultaneously start rolling from the edges, the projected 
area on the broad side image remains almost constant (Fig. 13.5). This is a good 
normalization measurement to allow comparison of different plants and growth 
stages for leaf rolling, while only requiring two images from one point in time.

This example shows that attributing meaning to a certain ratio of image analysis 
parameters can help with the understanding of data and minimize the need for 
parameter validation. The meaning of image parameters is plant specific due to 
different morphology. For each plant species, different parameters and ratios need 
to be identified.

13.4.3  How High-Content Documentation of Images and Data Can 
Change the Way Biological Experiments Are Carried Out

In previous sections, the focus was on performing one experiment and interpreting 
it immediately afterwards. However, comprehensive digitization of large screenings 
using image-based phenotyping can produce a perspective for further use of the raw 
data beyond the immediate evaluation of results. The data could be used to model 
real experiments in silico. Multisensor imaging and image storage allows for 
conservation not only of the plants, but also of the raw data. As a result, it may be 

Fig. 13.4 Broad side projected leaf area image of a greenhouse grown corn plant. Image processing 
can provide skeleton lines of the leaves, which can be used to calculate integrated leaf orientation 
values or distributions up to characteristic points of the leaf
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possible to begin an experiment with a data mining process of existing data. Once 
a comprehensive data archive has been developed, biological research can start to 
go in silico.

13.4.4  Statistical Knowledge and Tools

High-content data analysis requires a solid biological background to fully under-
stand the experiment. In addition, good skills in statistical analysis adapted to the 
specific needs of biological screening procedures are required. Biologists are expected 
to gain basic knowledge of the tools needed to prepare the data, at least to a degree 
where they can hand them over to more specialized statisticians and bioinformati-
cians and communicate with them on an appropriate level. The following sections 
deal with some basic data handling approaches which have proved to be successful 
for the interpretation of high-content data from screening experiments. This includes 
the change of perspective from a biological to a mathematical focus without losing 
sight of the common aim, which is important when dealing with complex questions.

Fig. 13.5 Top and side images of one corn plant before leaf rolling (top row), with rolled leaves 
(intermediate row) and after recovery (lower row) showing that the top area changes while the side 
area stays nearly constant
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13.5  The Data Mining Perspective

While the first part of this chapter mainly dealt with the biological and breeding 
perspective, the second part will highlight the issues from the viewpoint of data mining.

13.5.1  Data Mining: Fundamental Approaches

Data mining is a broad term. It covers a range of techniques being used in a variety 
of industries. New plant phenomics technologies and developments in the fields of 
automation and image processing are generating large amounts of data. This in turn 
is creating a requirement for novel data mining applications.

13.5.2  Successful Data Mining with High-Content,  
High-Throughput Data

This section will not deal with the statistical theories underlying data modelling 
techniques since this is a topic already well covered by a number of other books. 
Instead it focuses on the fundamental techniques to handle multiple variables 
that can be applied to biology, with specific applications for image processing. 
The success of any data mining or modelling project requires a sound understanding 
of the methodologies, knowledge of the data, its applications, and overall project 
objectives. The goal of this section is to provide readers with a basic understanding of 
the skills and processes needed for the successful use of data models. The examples 
chosen will use the statistical software SAS® and R®.

13.5.2.1  Objective 1: Define Goals

The goals must be clearly defined. This initial step is the most fundamental because 
it will influence all other steps. Once the goal is defined, the data that increases the 
likelihood of achieving the goal needs to be selected, and all other steps will follow, 
cascading down from the initial goal. Analysts need to understand these goals, and 
communication and comprehension skills are the key to success.

13.5.2.2  Objective 2: Select the Data

The objective here is to select from all available data or generate new data in order to 
meet the goals defined in step 1. With the increased growth of data and the possibility 
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to re-analyze it there come the need to efficiently store the wealth of information. 
The primary term for this is data warehousing, but it is also referred to as a data 
mart, central repository, meta data, etc. A well-designed data warehouse provides 
efficient access to multiple sources of data. Selecting the best data for model devel-
opment requires a thorough understanding of the goals set up in step 1. Although 
the tools are important, the quality of the data used is the decisive basis of all inter-
pretation of information. Quality may refer to reproducibility and accuracy as well 
as data transformation. For example, if leaf area values are used directly, the data 
quality will be worse than after transformation to growth rates, as demonstrated 
above. Data remain the limiting factor of statistics, and high-throughput phenotyp-
ing is helping to overcome this.

13.5.2.3  Objective 3: Prepare the Data

The saying “garbage in, garbage out” highlights the importance of this step. Users 
should understand how data is classified. A fixed format can be easier to read and 
understand. The disadvantage of the fixed format is that it uses space for blank 
fields. Therefore, if many fields have values missing, data storage can be uneco-
nomical (Scripts 13.1 and 13.2).

It is important to understand the source and format of the data. Once the data has 
been loaded into the appropriate statistical environment, in this case SAS®, there 
are several routines that enable users to quantify the data properties. The frequency 
procedures of SAS® can visualize missing data patterns, and the univariate proce-
dures can perform outlier detection. The proper handling of missing data and outliers 
will require further interaction between statisticians and experimenters. Here, the 
option to look directly at the images to find reasons for outliers is often far more 
efficient than a numerical procedure that handles outliers merely on a statistical basis. 

Script 13.1 SAS® example of fixed format
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All potentially suitable data is then integrated into the final dataset ready to be 
imported into the statistical software. There are several methods to compute basic 
statistical calculations that can be incorporated into the hardware generating the 
data. For example, Keygene N. V. has developed a tool with R® (R®-Project 2008; 
Bioconductor 2008) to automate parts of their phenotype analysis. Phenopipe is  
a standardized approach to statistically analyze phenotypic data. Datasets are 
restricted to certain constraints and consist of observation matrices from different 
individuals under different aspects, such as location. The tool is not fully automatic, 
but will ask for input through a simple user interface. Phenopipe is currently con-
strained to five statistical models, considered the most frequently used by Keygene 
for the analysis of agronomical trials, and it has a built-in decision making function 
to connect data with the appropriate statistical model. Table 13.1 shows a decision 
tree for the models, always assuming multiple lines (genotypes).

All models are based on the plot average; therefore it is assumed that only one 
line is present in each plot. Once again, the extent of the importance of detailed 
knowledge of the data character to decide if averaging is appropriate becomes evident. 
Averages make only sense for homogeneously distributed data which is not the case 
for biomass data from plants having an exponential growth pattern, and such data 
need to be logarithmically transformed in advance. The functionality of Phenopipe 
enables its users to investigate data structure and test statistical hypotheses. Its 
statistical analysis is based on plot averages with a decision making function to 
guide the data to the correspondent model. The statistical analysis includes an 
analysis of variance, outlier detection, model goodness of fit, corrected means, and 
least significant differences. All functionality is implemented in R® and pipelined 
to the user via a web-based interface. R® is becoming the most frequently used tool 
for the dissemination of new methods in statistical computing. Phenopipe automati-
cally performs a check for data structure, outliers, correlation analysis and analysis 
of variance, and any statistical procedure available in the CRAN and Bioconductor 
can be incorporated into Phenopipe.

Script 13.2 SAS® example of variable format (SAS®. 2004)
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13.5.2.4  Objective 4: Select and Transform the Variables

In various real situations, for example with the LemnaTec image analysis software 
system, hundreds of variables are computed. One of the basic aims is to find image-based 
variables (phenotypes) that discriminate between two genotypes. The main problem of 
this relatively simple approach is that if it is performed in multivariate space, the number 
of potential combinations can increase rapidly as the number of variables increases. 
Once the data is considered correct and missing values have been handled, the next step 
is to look for opportunities to derive new variables. In this situation knowledge of the 
data is critical. Combining variables by summation or division can improve predictive 
power. Ratios between variables are also useful for certain types of prediction as 
demonstrated above for leaf rolling, and this is a general approach transferred from 
engineering, related to the Pi-theorem (because a “circle” always has a very specific 
ratio between circumference and diameter; Hart (Hart 1995; Kline 1986).

A basic approach is suggested for researchers dealing with large numbers of 
variables intended for modelling. Performing an in-depth analysis on each variable 
is not a time-efficient approach as many of the variables are correlated with each 
other. If some that have predictive power are eliminated, others will usually be able 
to fill the predictive gap. For cases such as these there is a handy trick: Use a depen-
dent variable y and 3,000 independent x-variables, then do a few simple truncations 
with “if and then statements” in SAS® to create some binary variables. For example, 
if y is greater than the average value of all y-variables, then Yind = 1 else Yind = 0 
or if greater than one standard deviation. One advantage of this strategy is that it 
can accommodate nonlinear effects and also enable researchers to truncate the truly 
relevant distribution sections of y. A robust procedure to use under these circum-
stances is logistic regression, which is used as a fitness function of some machine 
learning processes. This is implemented in SAS® in a procedure called PROC 
LOGISTIC, and can be used for diverse statistical scenarios in many areas, for 
example animal sciences and epidemiology. The procedure can be easily imple-
mented with the code shown in Script 13.3.

The Ods-html will request that all output be created in html-format, so that it can 
easily be opened in Excel®© for further processing. The step wise selection option 

Table 13.1 Decision tree for models assuming multiple genotypic lines

In case of multiple environments (more sites)

Multiple blocks – model 
1.1

(more blocks)

Single block (one block)
 Replication of lines (plots) – model 1.2 (more plots per line)
 Single line observation – model 1.3 (one plot line)
Single environment (one site)
Multiple blocks – model 1.4 (more blocks)
Single block (one block)
 Replication of lines (plots) – model 1.5 (more plots per line)
 Single line observation (one plot per line: no 

analysis)
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will cause each variable to be considered one at a time. With the c2 probability value 
for their significance, these probabilities can be further processed in SAS® to do 
family-wise multiple testing corrections as well as false discovery testing. However, 
for an inexperienced user, filtering the variables with a very stringent p-value for 
the c2 test (p < 0.0001) could be a more conservative and safer option.

For more detail, an example is given here where the number of variables has 
been reduced to 100 independent variables with one dependent variable, such as 
manual dry weight measurement. In this case, it is time-consuming to measure 
the dependent variable, and requires the destruction of the sample. The 100 
independent variables are digital phenotypes based on image analysis. An analytical 
model should be created so that pictures can be taken, and the time-consuming dry 
weight measurement predicted instead of measured. Assuming that the data has 
been gathered, the task now is to reduce this set to the most predictive set  
of variables.

For this step, the cluster procedure of SAS® called PROC VARCLUS (PROC 
VARCLUS 2008) is used. This procedure segregates the independent variables 
into disjoint or hierarchical clusters. Associated with each cluster is a linear 
combination of the variables in the cluster. This is an iterative procedure that reas-
signs the independent variables to different clusters. Each iteration computes a 
cluster and each variable is assigned to the cluster with which it has the highest 
squared correlation. The second phase is a search algorithm where each variable 
is tested to see if assigning it to a different cluster increases the coefficient of 
determination (Rsq) of the cluster model. If a variable is reassigned during the 
search phase, the Rsq of the new cluster model is recomputed before restarting the 
whole procedure. This iterative process is repeated until a convergence level is 
achieved. A helpful guide through this procedure can be found in the help section 
of SAS®. SAS® is stable and reliable and therefore an excellent choice, especially 
for less experienced users. It is useful to insert the data as a correlation matrix so 
that the correlation procedures of SAS® (PROC CORR) can be applied. The final 
result is a group of clusters where the most correlated variables cluster together and 
clusters are made in a way that variables in different clusters are as uncorrelated as 
possible. From each cluster, the variables with the highest Rsq with their own 
cluster are used. Therefore the number of variables that are equal to the number 
of clusters can be reduced. The pitfall of this approach is that the process requires 
interpretation of the clusters by researchers, but it can still be highly efficient in a 
multidisciplinary environment. Another option is to truncate the variables and use 
the logistic regression again (Script 13.4).

Script 13.3 Logistic regression (SAS 1995, Stokes et al. 2000, Hosmer and Lemeshow 1989)
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With maxstep = 2, one will look for the two best forms of the independent variables 
x that influence y. Different strategies can be used by changing the maxstep option.

The final step can be taken once a small group of variables is available. 
Nonlinear forms of these variables need to be looked for and their influence on the 
y-variable assessed. Script 13.5 produces 22 forms of the variable x. Logistic 
regression can be used again after truncation to look for the ideal mathematical 
form of the x-variables. A similar step can be created to compute multiplicative 
variables determining potential conditional associations, for example, interactions. This 
fine-tuning of the model can be very powerful, but should be done with care to avoid 
over-parameterization.

13.5.2.5  Objective 5: Implementation

This final step is designed to avoid model over-fitting. It is recommended that the 
original data should be cross-validated in two steps: (1) recreate several thousands 

Script 13.4 Model building one

Script 13.5 Functional modelling
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of copies of the original data with replacement sampling. This should be continued 
until 1/3 of the data is recreated. The predictive power of the model and its impor-
tance are measured in the newly formed cross-validated datasets. (2) Rebuild the 
model with a random sample of half the data and use it to predict the other half. 
These two strategies in combination and with different variants should provide a 
final evaluation of the model.

13.6  Conclusion

This example of a data mining application to image-based biological data and data 
from other sources (such as genetic data or chemical measurements) shows how 
intense the co-operation between high statistical expertize and biological knowledge 
needs to be, at each step of the development of a full pipeline from plant seed to 
final result. Biological systems are extremely complex and not all correlations can 
be either verified or falsified, due to a limited knowledge of other interactions. As 
a result, the use of appropriate biological and mathematical models is the best way 
to extract and analyze data efficiently. Nevertheless, an open mind for the unex-
pected should be a constant aim of any screening program that seeks to deliver new 
results and information. Only the detailed knowledge of many different researchers 
can help to understand the various aspects of plant development required to breed 
plants for our future needs.
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14.1  Introduction

Many terms used in systems biology and bioinformatics are loosely defined and may 
be interpreted differently depending upon the individual. The introductory section will 
detail our working definition of a phenome and phenomics and describe some ways in 
which microbial phenomics may differ from phenomic studies in other organisms.

14.1.1  Phenomics

A promise of the genomic age is the ability to connect phenotype and genotype. 
Accurate and quantitative descriptions of an organism’s phenotype are crucial to 
delivering on this promise and are the realm of phenomics. Strictly speaking, 
“phenomics” refers to the study of all the phenotypes of an organism that are 
heritable and a result of the genetic code. The “phenome” itself is the fully observed 
heritable traits and phenotypes of an organism. This broad definition includes gene 
expression, protein translation, and even epigenetic regulation. Transcriptomics, 
proteomics, metabolomics, fluxomics, and many other “omic” data types refer to 
quantitative measurement of biochemical and cellular processes, “phenomics” 
refers to organismal phenotypes and traits: macro-scale phenotyes such as growth 
rate, temperature or pH tolerance, substrate consumption, production of valuable 
byproducts, and pathogenicity to name a few. In this chapter we discuss the study 
of phenomics of microorganisms in this same context, covering benefits and 
challenges unique to working with microorganisms, as well as experimental 
and analytical techniques that a researcher is most likely to encounter as part of 
this field.
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14.1.2  Microbial Phenomics

Microorganisms are used as model organisms for studying a wide range of basic 
biological questions. Many microorganisms are considered as some of the simplest 
self-sustaining organisms, and for many, an entire microorganism is a single cell. 
The unicellular nature of many microorganisms facilitates studying the connection 
between genotype and phenotype. In the microbial context, it is theoretically 
possible to directly correlate the genotype of an organism to its phenotype. The fact 
that a single cell is a single organism is one of the largest benefits of studying 
phenomics using microorganisms. The following sections give details about additional 
benefits to studying phenomics in microbes.

14.1.2.1  Facility of Growth

Microorganisms have long been favored for the study of fundamental biological 
concepts due to their ease of culture and resilience, and many of these advantages 
carry over to the study of phenomics. The ability of microorganisms to grow (and 
grow well) in many environments makes them easier and cheaper to work with 
by permitting the use of inexpensive media formulations. Many microorganisms 
also survive freezing and thawing, thus making experimentation more flexible 
and reproducible. Additionally, many species can be cultivated in liquid suspension 
at a relatively high density. The benefits of these growth attributes are twofold 
and very significant. First, cell culture can be reduced to liquid handling, greatly 
facilitating automation and increasing throughput. Second, high density growth 
means that a relatively large quantity of biomass is present in a given volume, 
greatly improving experimental measurability. Their versatility also permits 
researchers to precisely and consistently vary culture conditions such as carbon 
source, temperature, and oxygen supply to determine an organism’s ability to 
respond to changes in its environment. This ease of cultivation makes it relatively 
straightforward to grow microorganisms in standardized high-throughput 
platforms such as 96- or 384- well plates. Colorimetric or fluorometric assays are 
then especially easy to perform with several replicates for each condition being 
tested. In addition to being easy to please, microorganisms typically proliferate 
very quickly when compared to animal cell lines (not to mention live animals or 
plants). Doubling times of roughly 6 h are common and some organisms such as 
viruses and bacteria rapidly grow with a doubling time well under an hour. 
Compare this to the weeks or months taken to propagate plants or breed mice or 
years taken to follow health statistics for humans. Clearly microorganisms 
provide a very good platform for studying the fundamental connections between 
genetics and phenotype. This connection is even more direct in prokaryotes 
because epigenetic regulation is less complex in these organisms. Table 14.1 
summarizes the benefits offered by microorganisms for the study of phenomics 
(Elena and Lenski 2003).
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14.1.2.2  Quantitative Phenotypes

The rapid and reproducible growth characteristics of microorganisms allow 
researchers to very reliably quantify phenotypes to a very fine degree, and it is of 
course crucial that this data is managed properly. Experimental design should 
include sufficient biological replicates (independently established experiments) 
to generate reliable and significant results. Growth rate, biomass yield, or pro-
ductivity of a given metabolite are most valuable to researchers studying micro-
organisms, especially in industry where a typical goal is to improve the 
performance of an organism in a bioprocess. By repeat sampling across multiple 
times and across different genotypes, it is possible to find correlations in genetic 
changes at the nucleic acid level (DNA mutation or change in mRNA transcript 
level) to a corresponding change in performance/phenotype. Due to the over-
whelming complexity of biological systems, this type of information will be 
crucial in piecing together and refining models which could eventually predict 
phenotype from the genetic level. In contrast to these quantitative, continuous 
variables, a few phenomic characteristics such as morphology and pathogenicity 
are discrete in nature (i.e. true/false, bacillus/coccus, etc.) and it can be useful to 
collect data on the proportions of a population that have a certain defined charac-
teristic. This type of study can be experimentally difficult, although advances in 
technologies such as flow cytometry and antibody or other labeling methods have 
made this more feasible. Still, when possible, it is often advisable to design 
experiments to minimize or eliminate variations within a sample so that the entire 
sample can be counted discretely.

Table 14.1 Benefits of using microorganisms for the study of phenomics

Characteristic of microorganism Benefits for studying phenomics

Ease of culture / resilience Easy to control culture conditions with precise, consistent 
variations

Simpler, cheaper media formulations
Conducive to high throughput experiments for more 

conditions tested and more repetitions
Usually culturable in suspension, allowing simpler assays 

for certain characteristics and higher cell densities
High growth densities enhances measurability and therefore 

improves reliability of quantitative data
Survive freezing and thawing well

Short life-cycle Very quick to grow, reducing time required for experiments 
and stock culture maintenance

Less complex transcriptional 
regulation

More direct connection between genetic and phenomics 
characteristics

Relatively small genomes Abundant sequence information available for many species
Easier and less expensive to sequence
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14.1.3  Microbial physiology

Phenomics is concerned with carefully establishing the latter half of the genotype–
phenotype relationship. To complete the genotype–phenotype picture, two additional 
areas of information are required: genomics (the starting point) and intermediate 
components (the mechanisms).

14.1.3.1  Microbial Metabolism

In the context of studying the phenome of an organism, it is often important to 
consider the mechanisms that an organism utilizes to produce the observed phenotype. 
With the genome as the starting point, the three levels of mechanisms used to bring 
about a phenotype that we are most concerned with are mRNA transcripts, proteins, 
and pathways (reactions), shown in Fig. 14.1. The biochemical conversions that 
occur as part of metabolism dictate much of an organism’s phenotype and thus 
represent a connecting mechanistic link between genotype and phenotype.

Metabolic networks typically are composed of thousands of biochemical reac-
tions. Each of these reactions can be connected to many other reactions due to 
shared metabolites (substrates) that are facilitated by catalysts (enzymes). Enzymes 
are expressed proteins and are encoded as genes in an organism’s genome. The 
knowledge that links metabolic reactions to enzymes is inferred from mapping 
genetic mutations in strains which have lost the ability to complete a particular 
metabolic step – early work that led to the 1958 Nobel Prize in Physiology or 
Medicine. Without the connection of enzymes to metabolic reactions it is much 
more difficult to directly link changes in genotype and phenotype.

It is painstaking and infeasible to determine the metabolic network of all organ-
isms, but work done in a key set of model organisms, notably microbes like the 

C

RNA

Protein

DNA
A + B

Pathway

Fig. 14.1 General schematic depicting the central dogma of molecular biology. Genetic infor-
mation from DNA (genotype) is propagated through intracellular components of RNA and 
proteins to allow biochemical conversions. Collectively, these molecular events give rise to 
integrated cellular function.
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bacterium Escherichia coli and baker’s yeast Saccharomyces cerevisiae, has 
enabled detailed determination of genes encoding proteins involved in most essen-
tial cellular metabolic reactions. Much of what is known has been compiled into 
centralized online databases such as the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (Kanehisa and Goto 2000; Kanehisa et al. 2006; Kanehisa et al. 
2008), Biocyc (Karp et al. 2005), or the National Microbial Pathogen Database 
Resource (McNeil et al. 2007).

A second challenge associated with studying metabolic networks as a connection 
between genotype and phenotype is the complexity of these networks. With thou-
sands of metabolites participating in thousands of reactions, it is difficult to 
intuitively determine the overall effects of discrete parameters (chemical concentra-
tions, genetic changes, temperature changes, etc.). In this respect, the problem is 
one of developing or implementing appropriate analytical tools that can extract the 
relative signal from the noisy background. To date, some of the most effective 
approaches have used computational modeling to solve this problem.

14.1.3.2  Microbial Transcriptional Regulation

Biological networks of biochemical reactions are large, complex, and ultimately 
dictate organism function. In a sense, the collection of reactions outline all of the 
capabilities of an organism, however, these reactions occur at different, often 
precisely orchestrated intervals and conditions. Many organisms function with 
internal control mechanisms that inhibit or foster production of specific mRNA 
transcripts that can influence protein production and reaction activity. The collection 
of control mechanisms are referred to as the transcriptional regulatory network. 
Regulatory mechanisms play a critical role in determining an organism’s specific 
phenotype by effectively shutting down or activating specific pathways. While 
metabolic networks are generally understood reasonably well, transcriptional regu-
latory networks are still being elucidated in many organisms. Eventually, information 
about transcriptional regulation will likely be as well-characterized as metabolic 
networks and become aggregated and available through online databases such as 
RegulonDB (Huerta et al. 1998; Salgado et al. 2001).

14.2  Experimental Methods for Microbial Phenomics

Phenomics is not only concerned with studying the array of phenotypes expressed 
by an organism, but attempts to do so in a quantitative manner. Historically, estab-
lishing precise and accurate quantitative measurements for various physiological 
functions has been challenging. Fortunately, advances in sensor technology 
and automation have continued to improve measurements enabling phenomics. 
We outline here several common assays, typical analytical approaches, and currently 
available technologies.
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14.2.1  Microbial Growth

Growth rate is, for perhaps obvious reasons, one of the most often measured charac-
teristics of microorganisms. Often growth rate itself is the variable of interest, 
especially when studying adaptation to specific environments and the regulation of 
anabolism. At other times, it is necessary to measure growth rate in the process of 
monitoring other characteristics such as biomass yield, and specific productivity. There 
are a number of ways to measure microbial growth and a thorough investigation of 
them is beyond the scope of this chapter. The most common situation is to study micro-
organism growth rate in liquid suspension using optical density (OD). Because OD 
varies linearly with cell concentration at low densities, it is straight forward to calibrate 
these measurements with either diluted plate counts or dry weight of biomass. Optical 
density measurements are commonly used because these measurements are very ame-
nable to automation. There are a number of high throughput plate readers (e.g. 
VersaMax™ by Molecular Devices, Sunnyvale, CA and Bioscreen C™ by Growth 
Curves, Ltd., Piscataway, NJ) with a spectrophotometric or turbidometric function. 
These systems essentially are multiplexed, miniature incubator-shaker-plate readers, 
thus measurements often can be correlated directly to measurements that are 
conducted by hand. The throughput of these types of growth rate measurements is only 
limited by the number of wells on a multiwell plate (Fig. 14.2).

In addition to growth rate, it is often of interest to determine simply whether an 
organism can or cannot grow on a given substrate. This discrete information can be 
collected for a wide range of medium variations and can be a valuable tool for 
identifying organisms or determining the specific effects of individual gene dele-
tions. To assist this, Biolog, Inc. (Hayward, CA) manufactures premade multiwell 
plates that test for metabolic activity on a very large range of carbon sources. An 
organism’s characteristic “metabolic fingerprint” (essentially its phenome as evalu-
ated by this system) can be used to quickly identify or characterize it. The same 
company also produces Phenotype Microarrays™, in the same 96-well format, that 
are designed to fingerprint phenotypic responses to carbon, nitrogen, and other 
metabolic sources, pH, or chemical sensitivities. These types of plates can be used 
to compare a cell line with or without gene deletions under a broad range of envi-
ronmental chemical stimuli to determine ge ne function (Bochner et al. 2001).

14.2.2  Oxygen Consumption

Oxygen consumption rate (OCR) is often of interest because, when compared with 
growth rate, it will affect the redox reactions of a cell and can give an indication of 
the efficiency with which a cell is operating. Oxygen consumption is inherently 
difficult to measure directly. First of all, working with any gas is more difficult than 
liquids or solids. It is particularly difficult to measure oxygen consumption as the 
quantities of oxygen dissolved in liquid media are low and thus any measurement 
requires a high level of sensitivity to detect changes due to consumption by an 
organism. Respirometers which can measure oxygen uptake rate as well as production 
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rates of off-gases such as CO
2
 are available at many different scales and using many 

different measurement techniques. However, most respirometers are used in large-
scale industrial and waste treatment applications, so they are not especially well 
suited for small-scale laboratory work where many different strains would need to 
be tested. Designing devices for a small-scale laboratory application is difficult 
again because the sensors must be extremely precise. Instech Laboratories 
(Plymouth Meeting, PA) offers one solution which uses fiber optic sensors with 
fluorescent dyes to sense OCR in samples as small as 170mL. These devices are 
some of the most reliable sensors available, but they are also expensive and have 
relatively low throughput. BD Biosciences (San Jose, CA) produces an Oxygen 
Biosensor System™ (OBS) in 96- or 384- well format in which a fluorescent dye 
responds in an inversely proportional manner to dissolved oxygen concentration.  
A sensor embedded in the bottom of each well increases in fluorescence as 
available oxygen decreases. By controlling oxygen partial pressure at the surface 
and formulating the medium so that oxygen is not the limiting substrate, OCR can 
be estimated for a number of cell types or over a range of environments. High-
throughput measurements of OCR using fluorescent markers can be read in a flourimetric 
plate reader such as the SPECTRAMax™ by Molecular Devices, Sunnyvale, CA 
or the VICTOR3™ by PerkinElmer, Waltham, MA (formerly Wallac). Due to 
limitations in our ability to control oxygen partial pressure at the surface of each 
well, this approach cannot achieve the same precision as some respirometers, but the 
huge improvement in throughput can in some cases outweigh these drawbacks.

14.2.3  Substrate consumption

In many cases it is necessary to directly determine the rate at which an organism 
can utilize a particular substrate other than oxygen. It should be noted that this data 
is distinguishable from the “metabolic fingerprint” information discussed above. 
In the “metabolic fingerprint” case, the actual substrate consumption was not detected; 
instead, general metabolic activity was used as a signal that a particular substrate 
was able to support growth. However, when measuring substrate consumption, 
quantitative information is being measured about how much substrate is being 
consumed to produce a given amount of byproduct or to support a given number of 
cells. Many of these questions are commonly studied in conjunction with metabo-
lomics, often setting the boundary conditions for understanding the intermediate 
metabolic reactions. In some cases, however, this information in itself can be of 
interest, especially to researchers interested in bioremediation of toxic substances 
or the production of chemical compounds. With huge improvements over the past 
few decades in high performance liquid chromatography (HPLC) – and auto-
injectors for these systems – experimentation for these variables has become much 
less labor intensive. Hundreds of samples can be collected over a range of time 
points, and relative quantities of metabolites of interest can be readily detected, 
providing valuable information about the consumption of individual substrates. 
As technologies improve, more researchers are moving towards detecting chemical 
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compounds using different mass spectrometry (MS) systems (gas chromatography-
MS, liquid chromatography-MS, gel electrophoresis-MS). While there is improved 
sensitivity with MS detection and quantitation, other factors such as ease of sample 
preparation and overall cost still favor HPLC.

14.2.4  Motility/Adhesion

Motility and adhesion are other phenotypes that hold interest for researchers with 
relevance to process designs in industry or infectious capacity and pathogenicity in 
medicine. Both of these characteristics depend on spatial measurements, and so 
automation for high-throughput assays can be difficult. A standard method for 
measuring cell motility is to inoculate a set amount of cells into semi-solid agar and 
to allow the cells to migrate over a period of time. Typically these assays employ a 
semi-solid agar called Chemical-Gradient Motility Agar (CGMA) that eliminates 
convective currents but still allows microbes to move through them. The degree of 
motility can be measured quantitatively by measuring the spread of cells (Fig. 14.2). 

Fig. 14.2 Sample results from a motility assay using semi-solid agar. Cells are initially inoculated 
into the semi-solid agar and the initial boundary of the inoculum is marked (black circle). Cells are 
incubated for a set amount of time (e.g. 12 h) and the motility of the cells is evaluated by measuring 
the spread of the population (diameter measured by the white line). In these results, cells with low 
motility (a) are shown in comparison to cells with moderate motility (b) or high motility (c)
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A chemical gradient can also be applied across the agar in order to test for chemotaxis, 
which is an organism’s ability to move in response to chemical signals. Chemotactic 
movement is mediated by cell-surface receptors, and it can be in response to 
positive (e.g. glucose) or negative (e.g. antibiotics) signals, and these assays can 
clearly be very useful in determining the genetic causes and regulations for this 
type of phenotype.

Current advances in phenomics are broadly connected to developments in micros-
copy and microfluidics. From the microscopy perspective, studying cell motility is 
challenging as the problem requires the cells to be (1) kept alive on a microscope 
stage, (2) analyzed and tracked over time, and (3) maintained in the field of view and 
in focus. Several different microscopy solutions such as the Cellomics system 
(Thermo Scientific, Pittsburgh, PA) and a variety of others are being developed to 
address these issues. Coupled with microscopy advances is the use of microfluidic 
devices that can be used to create controlled chemical environments (and gradients) 
for the microenvironment surrounding cells. A well-designed microfluidic device not 
only generates a defined chemical environment, but it can also help alleviate some of 
the microscopy-related problems.

14.2.5  Fluorescence

While not typically considered to be a macroscopic phenotype analogous to those 
mentioned in the previous sections, whole-cell fluorescence measurements are 
broadly used for a number of different purposes. Most applications use a fluores-
cent protein, such as green fluorescent protein (GFP), as a means of labeling a 
protein of interest. Thus, these studies typically involve the generation of GFP-
fusion proteins that can then be analyzed by either fluorescence microscopy or by 
a flow cytometer. For phenomic studies, flow cytometry is a very useful experimental 
tool as it can generate large amounts of quantitative data on individual cells. Typical 
parameters measured by a flow cytometry experiment would be forward scatter 
(related to cell volume/size), side scatter (related to the composition of cells), and 
total fluorescence of the labeled protein.

14.3  Analytical Tools for Microbial Phenomics

The current age of genome biology has produced a vast array of biological data 
(starting with whole genome sequences). This abundance of available data allows 
researchers to study biological problems from a different perspective than was 
previously possible, however, it has come with its own challenges. The sheer 
volume of data now almost precludes any careful item-by-item analysis. If a spe-
cific scientific question is not carefully formulated or appropriate analytical tools 
are not available, the analysis and interpretation of any of these large data sets 
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(an organism’s phenome included) would be a daunting, almost impossible task. 
The following section describes some of the analytical tools available to the study 
of phenomics.

14.3.1  Statistics

Microbial phenomics has the capability to produce huge volumes of quantitative 
and qualitative data. Therefore, statistical analysis must play a prominent role in the 
planning of experiments, as well as the evaluation of their results. Experiments 
must be planned with sufficient replicates to provide reliable conclusions, typically 
with three biological replicates per sample usually being a good guideline. Sample 
size also should depend on the expected precision of the measurements being taken. 
In cases where instrumentation is adequate and very high precision can be expected, 
smaller sample sizes (i.e., fewer replicates) are possible while still providing statis-
tically significant results. In contrast, when high precision is not available or when 
variations between sample populations are very small, more replicates should be 
planned in order to obtain statistically significant results.

The analysis of experimental data using statistics typically involves the same 
methodology as other scientific disciplines, although there are some additional 
measures as a result of the volume of data that is typically being managed. When 
growth rates are being measured, for example, linear regression can be applied to 
the logarithmic transform of the exponential growth phase, and the resulting slope 
is then recorded for each individual sample. This growth rate, having the units (1 / 
time) can then be analyzed as a separate variable, either with further linear regres-
sion if being studied as a response to another variable (e.g. substrate or inhibitor 
concentration) or with analysis of variance if discrete sample groups are being 
tested. Figure 14.3 shows a schematic of such an analysis in which ten different 
cell lines are allowed to evolve on the same substrate for a period of up to 50 days. 
The growth rates of the evolved strains are compared to those of the original strains. 
Every sample is repeated in duplicate with several blanks to detect variation within 
the 96-well plate. The growth curves recorded from this are clearly different 
(Fig. 14.3b), but it is more valuable to quantify that difference. To accomplish this, 
the growth curves are transformed onto a logarithmic scale. A straight line on a log 
scale plot represents ideal exponential growth, and the slope is equivalent to the 
exponential growth rate. A simple linear regression of the linear portion of each 
curve can therefore provide the exponential growth rate for each sample group. 
Each growth rate can then be treated as a continuous statistic and analyzed using 
classical statistical methods. In this case, a box plot clearly indicates that each 
sample group is different and that the growth rate has increased as the organism has 
evolved, and, in fact, analysis of variance confirms this observation. This analysis 
is not unlike traditional analysis of scientific data; however, it is important to point 
out that the format of the experiment (in 96-well plates) lends itself nicely to auto-
mation, allowing researchers to answer more questions more reliably in less time.
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14.3.2  Modeling

Phenomics is most useful when viewed in the context of the entire cellular system, 
that is, in conjunction with genomics, gene expression, protein transcription, and 

E
vo

lu
tio

n 
tim

e 
(d

ay
s)

Cell linesa

b c

d

1 2 3 4 5 6 7 8 9 10

50

25

1
blanks

Cell line 1: Growth curves after period of 
evolution

Time (hours)

O
D

 (
A

60
0)

Cell line 1: Logarithmic growth curves

0.01

0.1

1

Time (hours)

O
D

 (
A

60
0)

4.0

6.7

9.3

0:00
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

4:48 9:36 14:24 19:12 24:00 28:48

0:00 4:48 9:36 14:24 19:12 24:00 28:48

12.0

1 25 50

Logarithmic growth rates of evolved strains

Evolution time (days)

Lo
ga

rit
hm

ic
 g

ro
w

th
 r

at
e 

(h
r^

-1
)

Fig. 14.3 Schematic of typical statistical analysis of phenomics data. In this experiment, ten dif-
ferent cell lines were allowed to evolve on the same substrate for 25 or 50 days. Two replicates of 
each sample group were grown in a 96-well plate (a) and optical density (OD) was measured over 
the course of 24 h to capture the growth curves of each sample. The resulting graphs of OD over 
time for cell line 1 (b) was transposed onto a logarithmic scale (c), and the linear portion of each 
curve was fitted using linear regression. The slope of each line was recorded as the exponential 
growth rate for that sample. The growth rates are seen to vary with evolution time in a box plot 
(d). Analysis of variance (not shown) confirms that each sample group is statistically, significantly 
different from every other group from the same cell line
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metabolism, as well as with the regulation of all of these processes. It can be said 
that a primary goal of bioinformatics and systems biology is the feat of linking all 
of these internal mechanisms with observed cellular phenotypes (the complete 
picture of linking genotype to phenotype). With this perspective, a number of compu-
tational modeling techniques have been developed in an attempt to understand the 
complex interactions between genetic, proteomic, metabolic, and phenomic data. 
At the metabolic level, very robust analytical techniques such as biochemical sys-
tems theory (Savageau et al., 1987a, b), metabolic control analysis (Cascante et al. 
2002), inverse flux analysis (Delgado and Liao 1997), flux balance analysis (Varma 
and Palsson 1994; Edwards et al. 2002), and extreme pathway analysis (Schilling 
et al. 2000) have been developed. Many of these analytical techniques require 
detailed information about reaction kinetics and enzyme activities, and so the 
implementation of these theories to genome-scale systems is difficult, and to this 
point has not been done for any method relying on detailed enzyme kinetic infor-
mation. Flux balance analysis (FBA) and extreme pathway analysis (ExPA), in 
contrast, require information about which reactions are available to an organism, 
independent of kinetics, and therefore have been successfully applied to genome-
scale metabolic networks (Edwards et al. 2001; Schilling and Palsson 2000). As an 
example of the use of modeling to predict metabolic traits, FBA will be briefly 
discussed below, but the reader is encouraged to examine the methodologies 
employed by the other analytical techniques.

Metabolic flux balance analysis is based on the construction of a comprehensive 
tabulation of the all biochemical reactions that are available to a cell by means of 
its unique collection of enzymes, as dictated by the organism’s genome. The stoi-
chiometries of these reactions constrain the phenotype of a cell, based on mass 
balances around the entire network. Such an analysis creates a solution space within 
which a cell could conceivably operate, but it is limited in the ability to supply 
deterministic information about how the cell will actually behave. Linear optimiza-
tion, therefore, should be applied to detect the boundaries of the resulting solution 
space. To this end, an objective function that will yield some valuable information 
can be selected to be maximized or minimized. For example, one objective that 
is commonly used is a biomass function (associated with growth rate), which is a 
combination of the fluxes (including energy production) required for the anabolism 
of new biomass. When the metabolic network is optimized for maximum biomass, 
the result is a numerical prediction of the best possible growth rate that an organism 
could achieve with its given set of genes in a specified growth environment. Studies 
have shown that organisms will actually experimentally adapt/evolve towards this 
maximum value over several generations. A subtle consequence of this phenome-
non is that FBA can avoid the need to account for regulatory effects, since adaptive 
evolution will effectively modify these controls as needed to reach the maximum 
possible growth rate.

Another extension of this methodology is that since the presence of an available 
metabolic reaction does not depend on the activity of an enzyme or the degree to 
which it is expressed, a direct link can be made between a gene that encodes an 
enzyme and the reaction which it catalyzes. This assumes, of course, that the organism 
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in question is able to express the gene, and the resulting protein can be translated 
and assembled, and can function normally in the given microenvironment. This is not a 
trivial assumption as any genetic engineer can explain; however, it allows us to 
make an important step in the efforts to design engineered organisms. Deletions or 
additions of specific genes can be simulated in silico, allowing researchers to make 
better decisions about which genes to target for a given engineering goal. 
Sophisticated computational algorithms (Burgard et al. 2003; Pharkya et al. 2004) 
can be used to automate this process by searching possible deletions for the com-
binations at which the highest production of a desired metabolic byproduct coin-
cides with the maximum growth rate. In this way, improved production is coupled 
to improved growth rate, thereby utilizing the mechanisms already present for 
adaptive evolution (Fong et al. 2005; Hua et al. 2006). This type of simulation 
represents one facet of connecting genotype to phenotype through computational 
analysis as modifications are suggested at the genetic level and consequences are 
predicted at the phenotypic level.
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15.1  Introduction

Fuelled by the fruits of the genome sequencing projects that are defining the com-
plete sets of genes, transcripts, and proteins within an organism and the advent of 
highly multiplex technologies capable of measuring thousands to millions of 
biomolecules per sample in one assay, functional genomics studies are enabling 
new approaches for studying biological systems. A single experiment can generate 
very large amounts of raw data as well as summaries in the form of lists of 
sequences, genes, proteins, metabolites, SNPs, etc. which have been identified by 
various analytical tests. Managing, reporting, and integrating the results from these 
experiments present challenges to researchers and bioinformaticians in this rela-
tively young field because the standards and conventions developed for single-gene 
or single-protein studies do not accommodate the needs of functional genomics 
studies (Boguski 1999).

Functional genomics technologies and their applications are evolving rapidly, and 
there is widespread awareness of the need for, and value of, standards in the life sciences 
community. Not only do the widely-adopted standards help scientists and data analysts 
utilize the ever-growing mountain of functional genomics data sets better, they also are 
essential for the application of functional genomics approaches in healthcare environ-
ments. This chapter provides an introduction to the major functional genomics stan-
dards initiatives in the domains of genomics, transcriptomics, proteomics, and 
metabolomics, thereby providing a summary of goals, example applications, and refer-
ences for further information. It also covers the application of standards in healthcare 
settings, where functional genomics technologies are having an increasing impact. New 
standards and organizations may come along in the future that will augment or 
 supersede the ones described here. Interested readers are invited to further explore the 
s tandards mentioned in this chapter (as well as others not mentioned) and keep up  
with the latest developments by visiting the website http://biostandards.info.
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15.1.1  Goals and Motivations for Standards in the Life Sciences

The use of standards within a scientific domain have the potential to provide a 
uniformity and consistency to the data generated by different researchers, organi-
zations, and technologies thereby facilitating more effective re-use, integration, 
and mining of that data by other researchers and third-party software applica-
tions, and enabling easier collaboration between different groups. Standards-
compliant data sets have increased value for scientists who must interpret and 
build on earlier efforts and for software tools that have been designed to process 
data that conforms to those standards. Standard laboratory procedures and refer-
ence materials enable the creation of guidelines, systems benchmarks, and labo-
ratory protocols for quality assessment and cross-platform comparisons of 
experimental results that are needed in order to deploy a technology within 
research, industrial, or clinical environments. The value of standards in the life 
sciences for improving the utility of data from high-throughput post-genomic 
experiments has been widely discussed for some time (Brazma 2001; Stoeckert 
et al. 2002; Brooksbank and Quackenbush 2006; Rogers and Cambrosio 2007; 
Warrington 2008).

To understand how conclusions from a study were obtained, not only do the 
underlying data need to be available but also the details of how the data were gener-
ated need to be adequately described (i.e., samples, procedural methods, and data 
analysis). Depositing data in public repositories is necessary but not sufficient for 
this purpose. Reporting on “minimum information” standards are needed to ensure 
that submitted data are sufficient for clear interpretation and querying by other sci-
entists. Standard data formats greatly reduce the amount of effort required to share 
and make use of data produced by different investigators. Standards for the terminol-
ogy used to describe the study and how the data were generated enable not only 
improved understanding of a given set of experimental results but also improved 
ability to compare studies produced by different scientists and organizations. 
Standard physical reference materials as well as standard methods for data collection 
and analysis can also facilitate such comparisons as well as aid the development of 
reusable data quality metrics.

A major goal of any effort to set standards is to take into account its usability. A 
standard that is not widely used is not really a standard and the successful adoption 
of a standard by end-user scientists requires a reasonable cost-benefit ratio. The 
cost of developing and learning how to use the standard or generating standards-
conforming data has to be outweighed by gains in the ability to publish experimental 
results, the ability to use other published results to advance one’s own work, and 
the higher visibility of standards-compliant publications (Piwowar et al. 2008). 
Thus, a major focus of standards initiatives is minimizing usability barriers, typically 
done by educational outreach via workshops and tutorials as well as fostering the 
development of software tools that help scientists utilize the standard in their inves-
tigations. There must also be a means for incorporating feedback from the target 
community both at the initiation of standard development and for the standard to 
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maintain a good fit to user needs that can change over time. Brazma et al. (2006) 
discuss additional factors that contribute to the success of standards in systems 
biology and functional genomics.

15.1.2  History of Standards for Functional Genomics

The motivation for standards for functional genomics initially came from the parallel 
needs of the scientific journals, which wanted standards for data publication, and 
the needs of researchers, who recognized the value of comparing the large and 
complex data sets characteristic of functional genomics experiments. Such data 
sets, often with thousands of data points, required new data formats and publication 
guidelines. Workers using DNA microarrays for genome-wide gene expression 
analysis were the first to respond to these needs. In 2001, the MGED Society 
published the MIAME standard (Brazma et al. 2001), a guideline for the minimum 
information required to describe a DNA microarray experiment, specifying the 
information required to describe an experiment so that another researcher in the 
same discipline could either reproduce it or analyze the data de novo.

Adoption of the MIAME guidelines was expedited when a number of journals 
and funding agencies required compliance with the standard as a pre-condition for 
publication. In parallel with MIAME, a data modeling and exchange standard 
called MAGE, and a controlled vocabulary called the MGED Ontology (Whetzel 
et al. 2006b), were created. These standards facilitated the creation and growth of 
a number of interoperable databases and public data repositories and also led to the 
establishment of open-source software projects for DNA microarray data analysis. 
Resources such as the EBI’s ArrayExpress (Parkinson et al. 2009) and the NCBI’s 
Gene Expression Omnibus (GEO) (Barrett et al. 2007) and others were advertised 
as “MIAME-supportive” with some capable of importing data submitted in the 
XML-based MAGE-ML format (Spellman et al. 2002).

Minimum information guidelines akin to MIAME then arose within other 
functional genomics communities, for example the MIAPE guidelines for proteomics 
studies (Taylor et al. 2007) and the MIGs guidelines for genomic and metagenomic 
studies (Field et al. 2008). More recent initiatives have been directed towards 
technology-independent standards for reporting, modeling, and exchange that better 
support work spanning multiple “omics” technologies or domains and harmonization 
of related standards. These projects have, of necessity, required extensive collaboration 
across disciplines. The resulting standards have gained in sophistication, benefiting 
from insights in using and implementing earlier standards, the use of formalisms 
imposed by the need to make the data computationally tractable and logically 
coherent, and the need to engage multiple academic communities.

Increasingly, the drive for standards in functional genomics is shifting from the 
academic communities to include the biomedical and healthcare communities as 
well. As application of functional genomics technologies and data expands into the 
clinical and diagnostic arena, organizations such as the U.S. Food and Drug 
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Administration and technology manufacturers are becoming more involved in a 
range of standards efforts, for example the MAQC consortium brings together rep-
resentatives of many such organizations (Shi et al. 2006). Quality control/assurance 
projects and reference standards that support comparability of data across different 
manufacturer platforms are of particular interest as functional genomics technolo-
gies mature and start to play an expanded role in healthcare settings.

15.2  Classification of Standards for Functional Genomics

Functional genomics standards are typically scoped to a specific aspect of a func-
tional genomics investigation. Generally speaking, a given standard will cover 
either the description of a completed experiment, or will target some aspect of 
performing the experiment or analyzing results. Standards are further stratified to 
handle more specific needs, such as reporting data for publication, providing data 
exchange formats, or defining standard terminologies. Such scoping reflects a prag-
matic decoupling that permits different standards groups to develop complementary 
specifications concurrently and allows different initiatives to attract individuals 
with relevant expertise or interest in the target area (Brazma et al. 2006).

As a result of this arrangement, a standard or standardization effort within functional 
genomics can be generally characterized by its domain and scope. The domain 
reflects the type of experimental data (transcriptomics, proteomics, metabolomics, 
etc.) while the scope defines the area of applicability of the standard or the meth-
odology being standardized (experiment reporting, data exchange, etc.). Tables 15.1 
and 15.2 list the different domains and scopes, , that characterize existing functional 

Table 15.1 Domains of functional genomics standards. The domain indicates the 
type of experimental data that the standard is designed to handle

Domain Description

Genomics Genome sequence assembly, genetic 
variations, metagenomics, DNA 
modifications

Transcriptomics Gene expression (transcription), alternative 
splicing, promoter activity

Proteomics Protein levels, protein–protein interactions, 
post-translational modifications

Metabolomics Metabolite profiling, pathway flux, pathway 
perturbation analysis

Healthcare and 
Toxicogenomicsa

Clinical, diagnostic, or toxicological 
applications

Harmonization and 
Multiomicsa

Cross-domain compatibility, interoperability

aHealthcare, toxicological, and harmonization standards may be applicable to one 
or more other domain areas. These domains impose additional requirements on top 
of the needs of the pure “omics” domains
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genomics standardizations efforts respectively. Fig. 15.1 illustrates the areas where 
standards of different scope are applied within the general life cycle of a typical 
functional genomics experiment.

The remainder of this section describes the different scopes of functional 
genomics standards, listing the major standards initiatives and organizations relevant 
to each scope. The next section then surveys the standards by domain, providing 
more in-depth description of the relevant standards, example applications, and 
references for further information.

15.2.1  Experiment Description Standards

Experiment description standards, also referred to generally as “data standards,” are 
concerned with the development of guidelines, conventions, and methodologies for 
representing and communicating the raw and processed data generated by experi-
ments as well as the metadata for describing how an experiment was carried out, 
including a description of all reagents, specimens, samples, equipment, protocols, 
controls, data transformations, software algorithms, and any other factors needed to 
accurately communicate, interpret, reproduce, or analyze the experimental results.

Functional genomics studies and the data they generate are complex. The diversity 
of application areas, experimental designs, and technology platforms creates a 
challenging landscape of data for any descriptive standardization effort. Even 
within a given domain and technology type, it is not practical for a single specification 
to encompass all aspects of describing an experiment. Certain aspects of an experiment 
?? are more effectively handled separately; for example, a description of the essential 
elements to be reported for an experiment is independent of the specific data 
format in which that information should be encoded for import or export by 
software applications.

Table 15.2 Scope of functional genomics standards. Scope defines the area of applicability or 
methodology to which the standard pertains. Scope-General: Standards can be generally parti-
tioned based on whether they are to be used for describing or executing an experiment. Scope-
Specific: The scope can be further narrowed to cover more specific aspects of the general scope. 
Abbreviations: CV controlled vocabulary; QA/QC quality control/quality assurance

Scope – General Scope – Specific Description

Experiment description Reporting (minimum 
information)

Documentation for publication or 
data deposition

Data exchange and 
modeling

Communication between organizations 
and tools

Terminology Ontologies and CV’s to describe 
experiments or data

Experiment execution Physical standards Reference materials, spike-in controls
Data analysis and 

quality metrics
Analyze, compare, QA/QC 

experimental results
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In recognition of this, experiment description standardization efforts within the 
functional genomics community are further scoped into more specialized areas that 
address distinct data handling requirements encountered during different aspects of 
or types of data encountered in a functional genomics study

Reporting•	
Data exchange and modeling•	
Terminology•	

These different areas play complementary roles and together, provide a complete 
package for describing a functional genomics experiment within a given domain 
or technology platform. For example, a data exchange/modeling standard will 
typically have elements to satisfy the needs of a reporting standard with a 
set of allowable values for those elements to be provided by an associated 
standard terminology.

Fig. 15.1 Application of standards during a functional genomics experiment lifecycle. Multiple 
standards, each with a different, complementary scope, are employed at different stages of a func-
tional genomics experiment. Reporting standards and physical standards inform both the design 
and execution of the experiment. During analysis of the results, analytical and quality metrics 
standards provide guidance and standard terminologies can also assist in the analysis. When it is 
time to publish results, reporting standards recommend what should be included to ensure accurate 
interpretation and replication by third parties. Data exchange and modeling standards describe 
data structures and formats useful for sharing and computationally processing the data. 
Terminology standards provide common language for annotating the experimental data in a way 
that fosters more effective comparison and querying between experiments, investigators, and 
organizations. A standards-compliant published experiment facilitates interpretation, analysis, 
integration, and comparison of the results by other researchers and software tools, and this can 
lead to new hypotheses to be tested by further experiments
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15.2.1.1  Reporting Standards: Minimum Information Guidelines

A reporting standard is specifies the information required to unambiguously com-
municate experimental designs, treatments and analyses, to contextualize the data 
generated and underpin the conclusions drawn. Such standards are also known as 
data content or minimum information standards because they usually have an acro-
nym beginning with “MI” standing for “minimum information” (e.g., MIAME). 
The motivation behind reporting standards is to enable an experiment to be inde-
pendently reproduced and interpreted by other scientists. It provides guidance to 
investigators when preparing to report or publish their investigation or archive their 
data in a repository of experimental results. When an experiment is submitted to a 
journal for publication, compliance with a reporting standard can be valuable to 
reviewers, aiding them in their assessment of whether an experiment has been 
adequately described and thus worthy of approval for publication.

A reporting specification does not normally mandate a particular format in 
which to capture/transport information; but simply delineates the data and metadata 
that their originating community considers appropriate to sufficiently describe how 
a particular investigation was carried out. Although a reporting standard does not 
have a specific data formatting requirement, the expectation is that the data should 
be provided using a technology-appropriate standard format where feasible. Data 
repositories may impose such a requirement as a condition for data submission.

Functional genomics experiments, in addition to their novelty, can be quite com-
plex in their execution, analysis, and reporting. These minimal information guidelines 
help in this regard by providing a consistent framework for scientists think about and 
report essential aspects of their experiments, with the ultimate aim of ensuring the 
usefulness of the results to future scientists who want to understand or reproduce the 
study. Such guidelines also help by easing compliance with a related data exchange 
standard, which is often designed to support the requirements of a reporting standard 
(discussed below). Depending on the nature of a particular investigation, information 
in addition to what is specified by a reporting standard may be provided as desired by 
the authors of the study or as deemed necessary by reviewers of the study.

Table 15.3 lists the major reporting standards for different functional genomics 
domains. The MIBBI project (discussed later in this chapter) catalogues these 
and many other reporting standards and provides a useful introduction (Taylor 
et al. 2008).

Publishers and reporting standards compliance

For some publishers, compliance with a reporting standard is increasingly 
becoming an important criterion for accepting or rejecting a submitted functional 
genomics manuscript (DeFrancesco 2002). The journals Nature, Cell, and The 
Lancet lead the way in the enforcement of compliance for DNA microarray experi-
ments by requiring submitted manuscripts to demonstrate compliance with the 
MIAME guidelines as a condition of publication. Now, many journals that publish 
such experiments have generally adopted this policy.
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15.2.1.2  Data Exchange and Modeling Standards

A data exchange standard defines an encoding format for use in sharing data between 
researchers and organizations, and for exchanging data between software programs 
or information storage systems. A data exchange standard delineates what data types 
can be encoded and the particular way they should be encoded (e.g., tab-delimited 
columns, XML, binary, etc.) but does not specify what the document should contain 
in order to be considered complete. There is an expectation that the content will be 
constructed in accordance with a community-approved reporting standard and the 
data exchange standard itself is typically designed so that users can construct docu-
ments that are compliant with a particular reporting standard (e.g., MAGE-ML and 
MAGE-TAB contain placeholders that are designed to hold the data needed for the 
production of MIAME-compliant documents).

A data exchange standard is often designed to work in conjunction with a data 
modeling standard, which defines the attributes and behaviors of key entities and 
concepts (objects) that occur within a functional genomics data set. The model is 
intended to capture the exchange format-encoded data for the purpose of storage or 
downstream data mining by software applications. The data model itself is designed 
to be independent of any particular software implementation (database schema, XML 
file, etc.) or programming language (Java, C++, Perl, etc.). The implementation 

Table 15.3 Existing reporting standards for functional genomics. Acronyms and definitions of 
the major reporting standards efforts are shown, indicating their target domain and the maintaining 
organization, which are as follows: MGED MGED Society, http://mged.org. GSC Genomic 
Standards Consortium, http://gensc.org. HUPO-PSI Human Proteome Organization Proteomics 
Standards Initiative, http://www.psidev.info. MSI Metabolomics Standards Initiative, http://
msi-workgroups.sourceforge.net

Acronym Full name Domain Organization

CIMR Core Information for 
Metabolomics Reporting

Metabolomics MSI

MIAME Minimum Information about a 
Microarray Experiment

Transcriptomics MGED

MIAPE Minimum Information about a 
Proteomics Experiment

Proteomics HUPO-PSI

MIGS-
MIMS

Minimum Information about a 
Genome/Metagenomic Sequence/
Sample

Genomics GSC

MINSEQE Minimum Information about a 
high-throughput Nucleotide 
Sequencing Experiment

Genomics, 
Transcriptomics

MGED

MIMIx Minimum Information about a 
Molecular Interaction eXperiment

Proteomics HUPO-PSI

MISFISHIE Minimum Information Specification 
For In Situ Hybridization 
and Immunohistochemistry 
Experiments

Transcriptomics MGED

MIBBI Minimum Information for Biological 
and Biomedical Investigations

Multiomics Multiple 
organizations
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decisions are thus left to the application programmer, to be made using the most 
appropriate technology(s) for the target user base. This separation of the model (or 
“platform-independent model”) and the implementation (or “platform-specific 
implementation”) was first defined by the Object Management Group’s Model 
Driven Architecture (http://www.omg.org/mda) and offers a design methodology 
that holds promise for building software systems that are more interoperable and 
adaptable to technological change. Such extensibility has been recognized as an 
essential feature of data models for functional genomics experiments (Table 15.4) 
(Jones and Paton 2005).

15.2.1.3  Terminology Standards

A terminology standard defines of a standard vocabulary describing the entities and 
concepts along with their properties and relationships within an application area or 

Table 15.4 A sampling of data exchange and modeling standards for functional genomics. 
Acronyms and names of some of the major data exchange standards efforts are shown, indicating 
their target domain and the maintaining organization, which are as described in the legend to 
Table 15.3 with the following additions: RSBI Reporting Structure for Biological Investigations, 
http://www.mged.org/Workgroups/rsbi. FuGE Functional Genomics Experiment, http://fuge.
sourceforge.net. GEN2PHEN Genotype to phenotype databases, http://www.gen2phen.org. 
CDISC Clinical Data Interchange Standards Consortium, http://www.cdisc.org. Additional 
proteomics exchange standards are described on the HUPO-PSI website, http://www.psidev.info

Acronym

Full Name Domain OrganizationData format Object model

FuGE-ML FuGE-OM Functional Genomics 
Experiment Markup 
Language/Object 
Model

Multiomics FuGE

ISA-TAB – Investigation Study 
Assay – Tabular

Multiomics RSBI

MAGE-ML MAGE-OM MicroArray and Gene 
Expression Markup 
Language

Transcriptomics MGED

MAGE-TAB – MicroArray and Gene 
Expression Tabular 
Format

MIF (PSI-MI 
XML)

– Molecular Interactions 
Format

Proteomics HUPO-PSI

mzML – Mass Spectrometry 
Data Markup 
Language

Proteomics HUPO-PSI

PML PAGE-OM Polymorphism Markup 
Language/Phenotype 
and Genotype Object 
Model

Genomics GEN2PHEN

– SDTM Study Data Tabulation 
Model

Healthcare CDISC
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type of investigation. A terminology standard provides terms (controlled vocabular-
ies) for documenting (annotating) a particular investigation for publication, including 
procedures, materials, and results of an experiment. More extensive terminologies, 
such as the Gene Ontology (Ashburner and Lewis 2002), provide a means of cap-
turing biological knowledge, accumulated over many experiments by different 
organizations. The primary goal of a terminology standard is to promote consistent 
use of standard terms within a community and thereby facilitate knowledge integra-
tion by enabling better querying and data mining within and across data repositories 
as well as across domain

Use of standard terminologies by scientists working in different functional 
genomics domains can enable interrelation of experimental results from diverse 
data sets. For example, annotating results with standard terminologies could help 
correlate the expression profile of a particular gene, assayed in a transcriptomic 
experiment, to its protein modification state, assayed in a separate proteomic experiment. 
Using a suitably annotated metabolomics experiment, the gene/protein results 
could then be linked to the activity of the pathway(s) in which they operate, or to a 
disease state documented in a patient’s sample record.

Consistent use of standard vocabularies such as GO has enabled data integration 
by permitting relational database-type queries over diverse data sets that are 
annotated using terms from such well-adopted terminologies. Numerous tools that 
do this are listed at the Gene Ontology site http://www.geneontology.org/GO.
tools.microarray.shtml.

There are many publicly available terminologies in the life sciences. Key to their 
success is adoption by scientists, bioinformaticians, and software developers for use 
in the annotation of functional genomics data. However, the proliferation of ontolo-
gies which are not interoperable can be a barrier to integration (Smith et al. 2007). 
The OBO Foundry targets this area and is delineating best practices underlying the 
construction of terminologies, maximizing their internal integrity, extensibility, and 
re-use. This is discussed in more detail in the “Standards Harmonization” section of 
this chapter.

Table 15.5 some of the ontologies or controlled vocabularies relevant to func-
tional genomics. For a more comprehensive list of ontologies, see the OBO Foundry 
website (http://www.obofoundry.org/).

15.2.2  Experiment Execution Standards

15.2.2.1  Physical Standards

The scope of a physical standard pertains to the development of standard reagents 
for use as spike-in controls in assays. A physical standard serves as a stable reference 
point that can facilitate the quantitation of experimental results and the comparison 
of results between different runs, investigators, organizations, or technology 
platforms. Physical standards are essential for quality metrics purposes and are 
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especially important within applications of functional genomics technologies in 
regulated environments such as clinical or diagnostic settings.

Within the early days of DNA microarray-based gene expression experiments, 
results from different investigators, laboratories, or array technology were notori-
ously hard to compare despite the use of reporting and data exchange standards 
(Salit 2006). The advent of physical standards and the improved metrology prom-
ises to increase the degree of cross-platform and cross-investigator comparability 
of functional genomics experimental results. Such improvements are necessary for 
the adoption of functional genomics technologies in clinical and diagnostic applica-
tions within the regulated healthcare industry (Table 15.6).

15.2.2.2  Data Analysis and Quality Metrics

The scope of a data analysis or quality metrics standard is the delineation of best 
practices for algorithmic and statistical approaches to processing experimental 
results as well as methods to assess and assure data quality. Methodologies for data 
analysis cover the following areas:

Table 15.5 Terminology standards. Acronyms and names of some of the major terminology 
standards in use with functional genomics data are shown, indicating their target domain and the 
maintaining organization, which are as described in the legends to Tables 15.3 and 15.4 with the 
following additions: GOC Gene Ontology Consortium, http://geneontology.org/GO.consortiumlist.
shtml. NCI National Cancer Institute, www.cancer.gov. NCBO National Center for Biomedical 
Ontology, http://bioontology.org. OBI Ontology Biomedical Investigations, http://purl.obofoundry.
org/obo/obi

Acronym Full name Domain Organization

EVS Enterprise Vocabulary 
Services

Healthcare NCI

GO Gene Ontology Multiomics GOC
MO MGED Ontology Transcriptomics MGED
OBI Ontologies for Biomedical 

Investigators
Multiomics OBI

OBO Open Biomedical Ontologies Multiomics NCBO
PSI-MI Proteomics Standards 

Initiative Molecular 
Interactions ontology

Proteomics HUPO-PSI

sepCV Sample processing and 
separations controlled 
vocabulary

Proteomics HUPO-PSI

SO Sequence Ontology Multiomics GOC
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Data transformation (normalization) protocols•	
Background or noise correction•	
Clustering•	
Hypothesis testing•	
Statistical data modeling•	

Analysis procedures have historically been developed in a tool-specific manner 
by commercial vendors, and users of these tools rely on the manufacturer for 
guidance. Yet, efforts to define more general guidelines and protocols for data 
analysis best practices are emerging. Driving some of these efforts is the need for 
consistent approaches to measure data quality, which is critical for determining 
one’s confidence in the results from any given experiment and for judging the 
comparability of results obtained under different conditions (days, laboratories, 
equipment operators, manufacturing batches, etc.). Data quality metrics rely on 
data analysis standards as well as the application of physical standards. Collecting 
or assessing data quality using quality metrics is facilitated by having data con-
forming to widely adopted reporting standards and available in common data 
exchange formats. A number of data analysis and quality metrics efforts are listed 
in Table 15.7.

15.3  Survey of Functional Genomics Standards by Domain

Here we review some of the more prominent standards and initiatives within the 
main functional genomics domains: genomics, transcriptomics, proteomics, 
and metabolomics. Of these, transcriptomics is the most mature in terms of 
standards development and community adoption, though proteomics is a close 
second.

Table 15.7 Data analysis and quality metrics projects. BioConductor’s arrayQualityMetrics: 
http://bioconductor.org/packages/2.3/bioc/html/arrayQualityMetrics.html (Gentleman et al. 2004). 
CAMDA is managed by a local organizing committee at different annual venues: http://camda.
bioinfo.cipf.es. EMERALD’s NTO: http://www.microarray-quality.org/ontology_work.html. 
MAQC is described in Sect. 15.3.2.6 of this chapter

Acronym Full name Domain Organization

arrayQualityMetrics Quality assessment software 
package

Transcriptomics BioConductor

CAMDA Critical Assessment of 
Microarray Data Analysis

Transcriptomics n/a

MAQC Microarray Quality Control 
Project

Transcriptomics FDA

NTO Normalization and 
Transformation Ontology

Transcriptomics EMERALD
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15.3.1  Genomic Standards

This section describes the standards and organizations related to technologies that 
collect, assemble, or analyze genomic sequences. Genomics standards pertain to 
the following technologies or types of investigations:

Genome and metagenomic sequencing•	
Genotyping and polymorphisms•	

15.3.1.1  MIGS/MIMS

Minimum Information About a Genome Sequence/ Minimum Information about a 
Metagenomic Sequence/Sample: MIGS/MIMS

Home: http://gensc.org

MIGS/MIMS is a reporting standard for describing metadata about a genomic 
or metagenomic sequence, such as the complete assembly of a bacterial or eukary-
otic genome (Field et al. 2008). MIMS is an extension of MIGS to support the 
needs of metagenomics experiments in which environmental samples are being 
analyzed by DNA sequencing for the purpose of organism identification. The 
MIMS extension specifies additional parameters about the environment from which 
a sample is taken for sequencing. These standards go beyond the information that 
is traditionally captured in genome annotations and aim to facilitate such things as 
comparative genomics and data mining from sequence data repositories which 
contain information from many organisms, contributed by different laboratories 
using a variety of technologies.

The Genomic Contextual Data Markup Language (GCDML) (Kottmann et al. 
2008) is an XML markup language that implements the MIGS/MIMS standard and 
also allows capture of richer sets of contextual data describing genomic and meta-
genomic studies. 

15.3.1.2  PaGE-OM and PML

Phenotype And Genotype Experiment Object Model (PaGE-OM) and the 
Polymorphism Markup Language (PML).

PaGE-OM Home: http://www.pageom.org
PML Home: http://www.openpml.org

PML was approved as a XML-based data format for exchange of genetic 
polymorphism data (e.g., SNPs) in June 2005. It was designed to facilitate data exchange 
among different data repositories and researchers that produce or consume this data. 
PAGE-OM is a platform independent model for representing genotypic, phenotypic 
data and the correlations between them. PAGE-OM is an updated, broader version 
of the PML standard and provides a richer object model and incorporates 
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phenotypic information. It was approved as a standard by the OMG in March 2008. 
Further refinements of the PaGE-OM object model, harmonization with object 
models from other domains, and generation of exchange formats are underway at 
the time of writing.

15.3.2  Transcriptomic Standards

This section describes the organizations and standards related to technologies that 
measure transcription, gene expression or its regulation on a genomic scale.

Transcriptomics standards pertain to the following technologies or types of 
investigations:

Gene expression via DNA microarrays or ultra high-throughput sequencing•	
Genome tiling arrays to measure gene expression or promoter binding (ChIP-•	
chip, ChIP-seq)
In-situ hybridization studies of gene expression•	

15.3.2.1  MIAME

Minimum Information About a Microarray Experiment (MIAME).
Home: http://www.mged.org/Workgroups/MIAME/miame.html
The goal of MIAME is to permit the unambiguous interpretation, reproduction, 

and verification of the results of a microarray experiment. MIAME was the original 
reporting standard which inspired similar “minimum information” guidelines in 
other functional genomics domains (Brazma et al. 2006).

MIAME defines the following six elements as essential for achieving these 
goals:

1. The raw data for each hybridization.
2. The final processed data for the set of hybridizations in the experiment.
3. The essential sample annotation, including experimental factors and their 

values.
4. The experiment design including sample data relationships.
5. Sufficient annotation of the array design.
6. Essential experimental and data processing protocols.

 Example Application of MIAME

The MIAME standard has proven useful for microarray data repositories which 
have used it both as a guideline to data submitters and as a basis for judging the 
completeness of data submissions. The ArrayExpress database, for example, provides 
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a service to publishers of microarray studies wherein ArrayExpress curators assess 
a dataset on the basis of how well it satisfies the MIAME requirements (Brazma 
et al. 2006). A publisher can then choose whether to accept or reject a manuscript 
on the basis of the assessment.

ArrayExpress judges the following aspects of a report to be the most critical toward 
MIAME compliance:

1. Sufficient information about the array design (e.g., reporter sequences for oli-
gonucleotide arrays or database accession numbers for cDNA arrays).

2. Raw data as obtained from the image analysis software (e.g., CEL files for 
Affymetrix technology, or GPR files for GenPix).

3. Processed data for the set of hybridizations.
4. Essential sample annotation, including experimental factors (variables) and their 

values (e.g., the compound and dose in a dose response experiment).
5. Essential experimental and data-processing protocols.

15.3.2.2  MINSEQE

Minimum Information about a high-throughput Nucleotide SEQuencing Experiment 
(MINSEQE)

Home: http://www.mged.org/minseqe/

MINSEQE provides a reporting guideline akin to MIAME that is applicable to 
high-throughput nucleotide sequencing experiments used to assay biological state. 
It does not pertain to traditional sequencing projects, where the aim is to assemble 
a chromosomal sequence or resequence a given genomic region, but rather to appli-
cations of sequencing in areas such as transcriptomics where high-throughput 
sequencing is being used to compare the populations of sequences between samples 
derived from different biological states, for example, sequencing cDNAs to assess 
differential gene expression. Here, sequencing provides a means to assay the 
sequence composition of different biological samples, analogous to the way that 
DNA microarrays have traditionally been used.

15.3.2.3  MAGE

MicroArray Gene Expression (MAGE).

Home: http://www.mged.org/Workgroups/MAGE/mage.html

The MAGE project aims to provide a standard for the representation of micro-
array gene expression data to facilitate the creation of software tools for exchang-
ing microarray information between different users and data repositories. The 
MAGE family of standards does not have direct support for capturing the results 
of higher-level analysis (e.g., clustering of expression data from a microarray 
experiment).
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It include the following sub-projects:

MAGE-OM – MAGE Object Model•	
MAGE-ML – MAGE Markup Language•	
MAGEstk – MAGE Software Toolkit•	
MAGE-TAB – MAGE Tabular Format•	

MAGE-OM is a platform independent model for representing gene expression 
microarray data. MAGE-OM has been implemented by MAGE-ML (an XML-
based format) as well as MAGE-TAB (tab-delimited values format). Both formats 
can be used for annotating and communicating data from microarray gene expres-
sion experiments in a MIAME-compliant fashion. MAGE-TAB evolved out of a 
need to create a simpler version of MAGE-ML that would be easier to use and thus 
be more accessible to a wider cross section of the microarray-based gene expres-
sion community, which has struggled with the often large, structured XML-based 
MAGE-ML documents. A limitation of MAGE-TAB is that only single values are 
permitted for certain data slots that may in practice be multi-valued. Data that can-
not be adequately represented by MAGE-TAB can be described using MAGE-ML, 
which is quite flexible.

MAGEstk is a collection of Open Source packages that implement the MAGE 
Object Model in various programming languages (Spellman et al. 2002). The tool-
kit is meant for bioinformatics users that develop their own applications and need 
to integrate functionality for managing an instance of a MAGE-OM. The toolkit 
facilitates easy reading and writing of MAGE-ML to and from the MAGE-OM, and 
all MAGE-objects have methods to maintain and update the MAGE-OM at all lev-
els. What MAGE-stk doesn’t implement is the glue between a software application 
and the standard way of representing DNA microarray data in MAGE-OM as a 
MAGE-ML file.

15.3.2.4  MAGE-TAB

MAGE-TAB is a simple tab delimited format that is used to represent gene expression 
and other high throughput data such as high throughput sequencing; it is the main 
submission format for ArrayExpress and is supported by the BioConductor package 
ArrayExpress. There are also converters available to MAGE-TAB from GEO soft 
format, from MAGE-ML to MAGE-TAB and an open source template generation 
system (Rayner et al. 2009). A complete list of applications using MAGE-TAB is 
maintained by the MGED community www.mged.org/mage-tab.

15.3.2.5  MO

MGED Ontology (MO).

Home: http://mged.sourceforge.net/ontologies/index.php
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The MGED Ontology (MO) provides standard terms for describing the different 
components of a microarray experiment (Whetzel et al. 2006b). MO is complementary 
to the other MGED standards, MIAME and MAGE, which specify what information 
should be provided and how that information should be structured respectively. 
The specification of the terminology used for labeling that information has been left 
to MO. MO is an ontology with defined classes, instances and relations. A primary 
motivation of MO was to provide terms where ever needed in the MAGE Object Model 
leading to MO being organized along the same lines as the MAGE-OM packages. A 
feature of MO is that it provides pointers to other resources as appropriate to describe 
sample or biomaterial characteristics and treatment compounds used in the experiment 
(e.g., NCBI Taxonomy, ChEBI) rather than import, map, or duplicate those terms.

A major revision of MO (currently at version 1.3.1.1 released in February 2007) 
was planned to address structural issues. Effort has been placed instead in incorporating 
MO into the Ontology for Biomedical Investigations (OBI).

 Example Applications of MO

The primary usage of MO has been for the annotation of microarray experiments. MO 
terms can be found incorporated in a number of microarray databases (e.g., ArrayExpress 
(Parkinson et al. 2009), RAD (Manduchi et al. 2004), caArray (caarray.nci.nih.gov/). 
SMD (Gollub et al. 2003), maxD (www.bioinf.manchester.ac.uk/microarray/maxd/), 
MiMiR (Navarange et al. 2005)) enabling retrieval of studies consistently across these 
different sites. MO terms have also been used as part of column headers for MAGE-
TAB (Rayner et al. 2006), a tab-delimited form of MAGE.

Example terms from MO v.1.3.1.1

BioMaterialPackage (MO_182): Description of the source of the nucleic acid •	
used to generate labeled material for the microarray experiment. (an abstract 
class taken from MAGE to organize MO).
BioMaterialCharacteristics (MO_5): Properties of the biomaterial before •	
treated in any manner for the purposes of the experiment. (a subclass of 
BioMaterialPackage).
CellType (MO_135): CellType, the type of cell used in the experiment if non •	
mixed, if mixed the TargetedCellType should be used, example of instances, 
epithelial, glial etc. (a subclass of BioMaterialCharacteristics, uses property 
has_database to point to CellTypeDatabase).
CellTypeDatabase (MO_141): Database of cell type information. (a subclass •	
of Database).
eVOC (MO_684): Ontology of human terms that describe the sample source of •	
human cDNA and SAGE libraries. (An instance of CellTypeDatabase).

15.3.2.6  MAQC

MicroArray Quality Control (MAQC) Project.
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Home: http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/

The MAQC project aims to develop best practices for executing microarray 
experiments and analyzing results in a manner that maximizes consistency between 
different vendor platforms. The effort is spearheaded by the FDA and has participants 
spanning the microarray industry. The work of the MAQC project is providing guid-
ance to develop quality measures and procedures that will facilitate the reliable use of 
microarray technology within clinical practice and regulatory decision-making, and 
thereby help realize the promises of personalized medicine (Allison 2008).

The project consists of two phases:

1. MAQC-I demonstrated the technical performance of microarray platforms in the 
identification of differentially expressed genes (Shi et al. 2006).

2. MAQC-II is aimed at reaching consensus on best practices for developing and 
validating predictive models based on microarray data. This phase of the project 
includes genotyping data as well as expression data, which was the focus of 
MAQC-I. MAQC-II is currently in progress with results expected in early 2009 
(http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc).

15.3.2.7  ERCC

External RNA Control Consortium (ERCC).

Home:  http://www.cstl.nist.gov/biotech/Cell&TissueMeasurements/Gene 
Expression/ERCC.htm

The ERCC aims to create well-characterized and tested RNA spike-in controls for 
gene expression assays. They have worked with NIST to create certified reference 
materials useful for evaluating sample and system performance, to facilitate standard-
ized data comparisons among commercial and custom microarray gene expression 
platforms as well as by an alternative expression profiling method such as qRT-PCR.

The ERCC originated in 2003 and has grown to include more than 90 organizations 
spanning a cross-section of industry and academic groups from around the world. 
The controls developed by this group were based on contributions from member 
organizations and have undergone rigorous evaluation to ensure efficacy across 
different expression platforms.

15.3.3  Proteomic Standards

This section describes the standards and organizations related to technologies that 
measure protein-related phenomena on a genomic scale.

15.3.3.1  HUPO-PSI

Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI).
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Home: http://www.psidev.info/

The largest standards organization in this domain is the HUPO-PSI, which has an 
official process for drafting, reviewing, and accepting proteomics-related standards 
(Orchard and Hermjakob 2008). As with other standardization efforts, the PSI cre-
ates and promotes both minimum information standards, which define what meta-
data about a study should be provided as well as data exchange standards, which 
provide the standardized, computer-readable format for conveying the information.

The standards promoted by the PSI are organized by the working group, which 
define standards in the proteomics domains such as the following technologies or 
types of investigations:

Gel electrophoresis•	
Mass spectrometry•	
Proteomics Informatics•	
Molecular interactions•	
Protein modifications•	
Sample processing•	

 Example Applications of Proteomic Standards

HUPO-PSI standards have been used to drive the design of proteomics databases, 
such as the Proteomics IDEntification (PRIDE) database (Jones et al. 2008) and 
Jones et al. 2008 software tools such as the Trans Proteomic Pipelines for processing 
mass spectrometry data (Keller et al. 2005). Consistent application of standard termi-
nologies for the annotation of experiment metadata in the PRIDE database has 
recently enabled a re-analysis of high-throughput proteomics experiments, which 
would have otherwise not been possible without such  annotations (Klie et al. 2008).

15.3.3.2  MIAPE

Minimum Information About a Proteomics Experiment (MIAPE).

Home: http://www.psidev.info/index.php?q=node/91

MIAPE is a reporting standard analogous to MIAME for proteomics experi-
ments. The primary MIAPE publication (Taylor et al. 2007) describes the precepts 
of the MIAPE specifications, and then each sub-domain (e.g., sample processing, 
column chromatography, mass spectrometry, etc.) has a separate MIAPE module, 
which specifies the information needed for each component of the study being 
described.

15.3.3.3  Proteomics Experiment Data Exchange Formats

Several data formats to encode data related to proteomics experiments have 
emerged since 2003 (Jones et al. 2008). Some early XML-based formats originating 
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from the Institute for Systems Biology such as mzXML (Pedrioli et al. 2004) and 
pepXML/protXML (Keller et al. 2005) were widely adopted and became de-facto 
standards. More recently, the PSI has built up on these formats to develop mzML 
(Deutsch 2008) for mass spectrometer output, GelML for gel electrophoresis, and 
AnalysisXML for the bioinformatic analysis results from such data, and others. See 
Deutsch et al. (2008) for a review of some of these formats. Accompanying these 
formats are controlled vocabularies, validators, example instance documents, and 
in some cases software libraries to enable adoption of these standards.

15.3.3.4  Molecular Interactions

Molecular Interactions (PSI-MI) Working Group Standards

Home: http://www.psidev.info/index.php?q=node/277

The PSI’s Molecular Interactions (MI) Working Group has defined several 
standards to enable better sharing of molecular interaction information. MIMIx 
(Orchard et al. 2007) is the minimum information standard that defines what infor-
mation must annotate a list of molecular interactions. The PSI-MI XML (or MIF) 
standard is an XML-based data exchange format for sharing data from molecular 
interactions experiments. The format relies heavily on a controlled vocabulary 
(PSI-MI CV) that insures that terms to describe and annotate interactions are used 
consistently. In addition to the XML format, a simpler tab-delimited data exchange 
format MITAB2.5 is available that supports a subset of the PSI-MI XML function-
ality and can be read using widely available spreadsheet software (Kerrien et al. 
2007).

15.3.4  Metabolomic Standards

This section describes the standards and organizations related to the study of 
metabolomics, which studies low molecular weight metabolites profiles on a com-
prehensive, genomic scale within a biological sample. Metabolomic standards 
initiatives are not as mature as those in the transcriptomic and proteomic domains, 
though there is a growing community interest in this area. (Note that no distinction 
is made in this text between metabolomics vs. metabonomics, using “metabolom-
ics” to refer to both types of investigations, in so far as a distinction exists. For 
further information, see http://en.wikipedia.org/wiki/Metabolomics).

Metabolomic standards pertain to the following technologies or types of 
investigations:

Metabolic profiling of all compounds in a specific pathway•	
Biochemical network modeling•	
Biochemical network perturbation analysis (environmental, genetic)•	
Network flux analysis•	
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The metabolomics research community is engaged in the development of a variety 
of standards, coordinated by the Metabolomics Standards Initiative (Fiehn et al. 
2007a; Sansone et al. 2007b). Under development are reporting “minimum infor-
mation” standards (Fiehn et al. 2006, 2007b; Goodacre et al. 2007), data exchange 
formats (Hardy and Taylor 2007), data models (Jenkins et al. 2004, 2005; Spasić  
et al. 2006), and standard ontologies (Sansone et al. 2007a). A number of specific 
experiment description-related projects for metabolomics are described below.

15.3.4.1  CIMR

Core Information for Metabolomics Reporting (CIMR).

Home: http://msi-workgroups.sourceforge.net/

CIMR is being developed as a minimal information guideline for reporting 
metabolomics experiments. It is expected to cover all metabolomics application 
areas and analysis technologies. The MSI is also involved in collaborative efforts to 
develop ontologies and data exchange formats for metabolomics experiments.

15.3.4.2  MeMo

Metabolic Modelling (MeMo).

Home: http://dbkgroup.org/memo/

MeMo defines a data model and XML-based data exchange format for metabo-
lomic studies in yeast (Spasić  et al. 2006).

15.3.4.3  ArMet

Architecture for Metabolomics (ArMet).

Home: http://www.armet.org

ArMet defines a data model for plant metabolomics experiments and also 
provides guidance for data collection (Jenkins et al. 2004, 2005).

15.3.5  Healthcare Standards

The health care community has a long history of using standards to drive data 
exchange and submission to regulatory agencies. Within this setting, it is vital to 
ensure that data from assays pass quality assessments and can be transferred without 
loss of meaning and in a format that can be easily used by common tools. The drive 
to translate functional genomics approaches from a research to a clinical setting has 
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provided strong motivation for the development of physical standards and guidelines 
for their use in this setting in particular. Functional genomics technologies hold 
much promise to improve our understanding of the molecular basis of diseases and 
develop improved diagnostics and therapeutics tailored to individual patients 
(Kumar 2007; Biomed Central Genome Medicine Journal announcement 2008; 
Warrington 2008).

Looking forward, the health care community is now engaged in numerous 
efforts to define important standards for clinical, diagnostic, and toxicological 
applications of data from high-throughput genomics technologies. The types and 
amount of data from a clinical trial or toxico-genomics study are quite extensive, 
incorporating data from multiple Omics domains. Standards development for 
electronic submission of this data is on-going with best practices yet to emerge. 
While it is likely that high-throughput data will be summarized prior to transmission, 
it is anticipated that the raw files should be available for analysis if requested by 
regulators and other scientists.

Standards-related activities pertaining to the use of functional genomics technolo-
gies within a health care setting can be roughly divided into three main focus areas: 
experiment description standards, reference materials, and laboratory procedures.

15.3.5.1  Healthcare Experiment Description Standards

Orthogonal to the experiment description standards efforts in the basic research and 
technical communities, clinicians and biologists have identified the need to describe 
the characteristics of an organism or specimen under study in a way that is under-
standable to scientists and clinicians. Under development within these biomedical 
communities are reporting standards to codify the data that should be captured and 
the data exchange format that must be used to permit re-use of the data by others. 
As with the other minimum information standards, the goal is to create a common 
way to describe characteristics of the objects of a study, and identify and include 
the essential characteristics when publishing the study. Parallel work is underway 
in the arena of toxico-genomics (Fostel 2008; Taylor et al. 2008). Additionally, 
standard terminologies in the form of thesauri or controlled vocabularies and 
systematic annotation methods are also under development.

It is envisioned that clinically relevant standards will be used in conjunction with 
the experiment description standards being developed by the basic research 
communities that study the same biological objects and organisms. For example, 
ISA-TAB (described below) is intended to complement existing biomedical 
formats such as the Study Data Tabulation Model (SDTM), a U.S. Food and Drug 
Administration-endorsed data model created by CDISC to organize, structure, and 
format both clinical and nonclinical (toxicological) data submissions to regulatory 
authorities (http://www.cdisc.org/models/sds/v3.1/index.html). It is inevitable that some 
information will be duplicated between the two frameworks, but this is not generally 
seen as a major problem. Links between related components of ISA-TAB and SDTM 
could be created using properties of the subject source, for example (Table 15.8).
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15.3.5.2  Reference Materials

Developing industry-respected standard reference materials, such as a reagent for 
use as a positive or negative control in an assay, is essential for any work in a 
clinical or diagnostic setting. Reference materials are physical standards (see 
above) that provide an objective way to evaluate the performance of laboratory 
equipment, protocols, and sample integrity, and the lack of suitable reference 
materials and guidelines for their use has been a major factor slowing the adoption 
of functional genomics technologies such as DNA microarrays within clinical and 
diagnostic settings (Warrington 2008).

The ERCC (described above) and the LGC (http://www.lgc.co.uk) are the key 
organizations working on development of standard reference materials, currently 
targeting transcriptomic experiments.

15.3.5.3  Laboratory Procedures

Standard protocols providing guidance in the application of reference materials, 
experiment design, and data analysis best practices are essential for performing high-
throughput functional genomics procedures in clinical or diagnostic applications.

The Clinical Laboratory Standards Institute (CLSI, http://www.clsi.org/) is an 
organization that provides an infrastructure for ratifying and publishing guidelines 
for clinical laboratories. Working with organizations such as the ERCC (described 
above), they have produced a number of documents applicable to the use of multiplex, 
whole-genome technologies such as gene expression and genotyping within a clinical 
or diagnostic setting (Table 15.9).

15.4  Standards Harmonization

The field of functional genomics is not suffering from lack of interest in standards 
development, as the number of different standards reviewed in this chapter attests. 
Such a complex landscape can have adverse effects on data sharing, integration, and 
systems interoperability – the very things that the standards are intended to help 

Table 15.9 CLSI documents most relevant to functional genomic technologies

Document Description Status

MM12-A Diagnostic Nucleic Acid Microarrays Approved guideline
MM14-A Proficiency Testing (External Quality Assessment) 

for Molecular Methods
Approved guideline

MM15-A Use of External RNA Controls in Gene Expression 
Assays

Approved guideline

MM17-A Verification and Validation of Multiplex Nucleic 
Acid Assays

Approved guideline
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(Quackenbush 2006). To address this, there are a number of projects in the research 
and biomedical communities engaged in so called “harmonization” activities, 
which focus on integrating standards with related or complementary scope and aim 
to enhance interoperability in the reporting and analysis of data generated by dif-
ferent technologies or within different functional genomics domains (Nature Cell 
Biology Editorial 2008).

Some standards facilitate harmonization by having a sufficiently general-pur-
pose design, so they can accommodate data from experiments in different domains. 
Such “multiomics” standards typically have a mechanism that allows them to be 
extended as needed in order to incorporate aspects specific to a particular applica-
tion area. The use of these domain- and technology-neutral frameworks is antici-
pated to improve the interoperability of data analysis tools that need to handle data 
from different types of functional genomics experiments as well as to reduce wheel 
reinvention by different standards groups with similar needs. Harmonization and 
multiomics projects are collaborative efforts, involving participants from different 
domain-specific standards developing organizations with shared interests. Indeed, 
the success of these efforts depends on continued broad-based community involve-
ment (Table 15.10).

15.4.1  FuGE

Functional Genomics Experiment (FuGE).

Home: http://fuge.sourceforge.net/

Table 15.10 Existing functional genomics standards harmonization projects and initiatives. P3G 
covers harmonization between genomic biobanks and longitudinal population genomic studies 
including technical, social, and ethical issues: http://www.p3gconsortium.org. The other projects 
noted in this table are described further in this chapter

Acronym Full name Scope Organization

FuGE-ML Functional Genomics 
Experiment Markup 
Language/Object Model

Data exchange 
and modeling

FuGE
FuGE-OM

ISA-TAB Investigation Study Assay 
Tabular Format

Data exchange RSBI, GSC, MSI, 
HUPO-PSI

HITSP Healthcare Information 
Technology Standards Panel

(various) ANSI

MIBBI Minimum Information for 
Biological and Biomedical 
Investigations

Reporting MIBBI

OBI Ontologies for Biomedical 
Investigations

Terminology OBI

OBO Open Biomedical Ontologies Terminology NCBO
P3G Public Population Project in 

Genomics
(various) International 

Consortium
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The FuGE project aims to build generic components that capture common facets 
of different functional genomics domains (Jones et al. 2007). Its contributors come 
from different standards efforts, primarily MGED and HUPO-PSI, reflecting the 
desire to build components that provide properties and functionalities that are com-
mon across different functional genomics technologies and application areas.

The vision of this effort is that, using FuGE-based components, a software 
developer will be better able to create and modify tools for handling functional 
genomics data, without having to reinvent the wheel for common tasks in poten-
tially incompatible ways. Further, tools based on such shared componentry are 
expected to be more interoperable.

FuGE has the following sub-projects which include the FuGE Object Model 
(FuGE-OM) and the FuGE Markup Language (FuGE-ML)—a data exchange for-
mat. Technology-specific aspects can be added by extending the generic FuGE 
components, and building on the common functionalities. For example, a microar-
ray-specific framework equivalent to MAGE could be derived by extending FuGE, 
deriving microarray-specific objects from the FUGE object model. Guidelines have 
emerged for using and extending FUGE data model, and FUGE-supportive soft-
ware tools have been developed (Jones et al. 2009).

15.4.2  HITSP

The Healthcare Information Technology Standards Panel (HITSP) is a public–private 
sector partnership of standards developers, healthcare providers, government 
representatives, consumers, and vendors in the healthcare industry. It is adminis-
tered by the American National Standards Institute (ANSI, http://www.ansi.org) to 
harmonize healthcare-related standards and improve interoperability of healthcare 
software systems. It produces recommendations and reports contributing to the 
development of a Nationwide Health Information Network for the United States 
(NHIN, http://www.hhs.gov/healthit/healthnetwork/background).

The HITSP is driven by use cases issued by the American Health Information 
Community (AHIC, http://www.hhs.gov/healthit/community/background). A num-
ber of use cases have been defined on a range of topics, such as personalized health-
care, newborn screening, and consumer adverse event reporting (http://www.hhs.
gov/healthit/usecases).

15.4.3  ISA-TAB

Investigation Study Assay Tabular format (ISA-TAB)

Home: http://isatab.sourceforge.net

The ISA-TAB format is a general purpose framework with which to communicate 
both data and metadata from experiments involving a combination of functional tech-
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nologies (Sansone et al. 2008). ISA-TAB therefore has a broader applicability and 
more extended structure compared to a domain-specific data exchange format such 
as MAGE-TAB. An example where ISA-TAB might be applied would be an experi-
ment looking at changes both in (1) the metabolite profile of urine, and (2) gene 
expression in the liver in subjects treated with a compound inducing liver damage, 
using both mass spectrometry and DNA microarray technologies, respectively.

The general motivation for this work stems from the needs of the BioInvestigation 
Index project at EBI (http://www.ebi.ac.uk/bioinvindex) to create a common struc-
tured representation of the metadata required to interpret an experiment for the pur-
pose of combined submission to experimental data repositories such as ArrayExpress, 
PRIDE, and an upcoming metabolomics repository. Additional motivation comes 
from a group of collaborative systems, part of the MGED’s RSBI group (Sansone 
et al. 2006), either committed to pipelining omics-based experimental data into EBI 
public repositories or willing to exchange data among themselves, or to enable their 
users to import data from public repositories into their local systems.

15.4.3.1  Relating ISA-TAB to Other Formats and Requirements

ISA-TAB has a number of additional features that make it a more general frame-
work that can comfortably accommodate multi-domain experimental designs. 
ISA-TAB builds on the MAGE-TAB paradigm, and shares its motivation for the use 
of tab-delimited text files i.e., they can easily be created, viewed and edited by 
researchers, using spreadsheet software such as Microsoft Excel. ISA-TAB also 
employs MAGE-TAB syntax as far as possible, to ensure backward compatibility 
with existing MAGE-TAB files. It was also important to align the concepts in 
ISA-TAB with some of the objects in the FuGE model. The ISA-TAB format could 
be seen as competing with XML-based formats such as the FuGE-ML. However, 
ISA-TAB addresses the immediate need for a framework to communicate multiomics 
experiments, whereas all existing FuGE-based modules are still under development. 
When these become available, ISA-TAB could continue serving those with minimal 
bioinformatics support, as well as finding utility as a user-friendly presentation 
layer for XML-based formats (via an XSL transformation); i.e., in the manner of 
the HTML rendering of MAGE-ML documents.

Initial work has been carried out to evaluate the feasibility of rendering 
FuGE-ML files (and FuGE-based extensions, such as GelML and Flow-ML) in the 
ISA-TAB format. Examples are available at the ISA-TAB website under the document 
section, along with a report detailing the issues faced during these transformations. 
When finalized, the XSL templates will also be released, along with Xpath expressions 
and a table mapping FuGE objects and ISA-TAB labels. Additional ISA-TAB-formatted 
examples are available, including a MIGS/MIMS-compliant dataset (see http://
isatab.sourceforge.net/examples.html).

The decision on how to regulate the use of the ISA-TAB (marking certain fields 
mandatory, or enforcing the use of controlled terminology) is a matter for those 
who will implement the format in their system. Although certain fields would 
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benefit from the use of controlled terminology, ISA-TAB files with all fields left 
empty are syntactically valid, as are those where all fields are filled with free text 
values rather than controlled vocabulary or ontology terms.

15.4.4  MIBBI

Minimal Information for Biological and Biomedical Investigations (MIBBI)

Home: http://mibbi.org (developers: http://mibbi.sourceforge.net )

Experiments in different functional genomics domains typically share some report-
ing requirements (for example, specifying the source of a biological specimen). The 
MIBBI project aims to work collaboratively with different groups to harmonize and 
modularize their minimum information checklists (e.g., MIAME, MIGS/MIMS, etc.) 
refactoring the common requirements, to make it possible to use these checklists in 
combination (Taylor et al. 2008). Additionally, the MIBBI project provides a compre-
hensive web portal providing registration of and access to different minimum informa-
tion checklists for different types of functional genomics (and other) experiments.

15.4.5  OBI

Ontology for Biomedical Investigations (OBI).

Home: http://purl.obofoundry.org/obo/obi

From the OBI home page: The Ontology for Biomedical Investigations (OBI) 
project is developing an integrated ontology for the description of biological and 
medical experiments and investigations. This includes a set of “universal” terms 
that are applicable across various biological and technological domains, and 
domain-specific terms relevant only to a given domain. This ontology will support 
the consistent annotation of biomedical investigations, regardless of the particular 
field of study. The ontology will model the design of an investigation, the proto-
cols and instrumentation used, the material used, the data generated and the type 
of analysis performed on it. This project was formerly called the Functional 
Genomics Investigation Ontology (FuGO) project (Whetzel et al. 2006a).

OBI is a collaborative effort of many communities representing particular 
research domains and technological platforms (http://obi-ontology.org/page/
Consortium). OBI is meant to serve very practical needs rather than be an academic 
exercise. Thus it is very much driven by use cases and validation questions.  
An example OBI use case is provided in Fig. 15.2.

The OBI user community provides valuable feedback about the utility of OBI 
and acts as a source of terms and use cases. As a member of the OBO Foundry 
(described below), OBI has made a commitment to be interoperable with other 
biomedical ontologies. Each term in OBI has a set of annotation properties, some 
of which are mandatory (minimal metadata defined at http://obi-ontology.org/page/
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OBI_Minimal_metadata). These include the term preferred name, definition 
source, editor, and curation status.

15.4.6  OBO Consortium and the NCBO

Open Biomedical Ontologies (OBO) Consortium and the National Center for 
Biomedical Ontology (NCBO).

OBO Foundry: http://www.obofoundry.org•	
NCBO: http://bioontology.org•	

Entities:
mouse
portion of blood
glucose meter, an instrument used to measure glucose concentration
collection tubes
syringe

Processes:
implementation of a study design
analyte-measuring assay
material separation 

Roles and Relations:

Entity Role Realized by implementation of
Mouse Study subject role study design (describing how and when 

mouse will be handled)

Urine Subject specimen role study design (describig how and when urine
is to be collected)

Urine Evaluant role process specifying it as an input to an assay 
designed to measure some quality of the 
evaluant (in this case the assay of measuring 
glucose concentration in mouse urine)

Glucose Analyte role assay (in this case an assay designed to 
measure glucose in mouse urine)

Standard curve reagent Reference role

entities with role "assay participant" include urine, reagents used to measure (if any), device 
used to measure, tubes used to collect, prepare and assay the urine, the standard curve 
reagents, specified outputs.

concentration datum is_an Information Content entity.
concentration datum has_units mg/dL
concentration datum is_about (mouse has_quality urine glucose)
concentration datum has_magnitude 100

Fig. 15.2 An OBI use case of measuring the concentration of glucose in the blood from a 
particular mouse that is the subject in a study (additional details of this example are available at 
http://obi.svn.sourceforge.net/viewvc/obi/trunk/docs/developer/images/assay.pdf)
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The OBO Consortium, a voluntary, collaborative effort among different OBO 
developers, has developed the OBO Foundry as a way to avoid the proliferation of 
incompatible ontologies in the biomedical domain (Smith et al. 2007). The OBO 
Foundry provides validation and assessment of ontologies to ensure interoperability. 
It also defines principles and best practices for ontology construction such as the 
Basic Formal Ontology, which serves as a root-level ontology from which other 
domain-specific ontologies can be built, and the relations ontology, which defines 
a common set of relationship types (Smith et al. 2005). Incorporation of such 
elements within OBO is intended to facilitate interoperability between ontologies 
(i.e., for one OBO Foundry ontology to be able to import components of other 
ontologies without conflict) and the construction of “accurate representations of 
biological reality.”

The NCBO supports the OBO Consortium by providing tools and resources 
to help manage the ontologies and to help the scientific community access, 
query, visualize, and use them to annotate experimental data (Rubin et al. 
2006). The NCBO’s BioPortal website provides searches across multiple ontol-
ogies and contains a large library of these ontologies spanning many species 
and many scales, from molecules to whole organism. The ontology content 
comes from the model organism communities, biology, chemistry, anatomy, 
radiology, and medicine.

Together, the OBO Consortium and the NCBO are helping to construct a consis-
tent arsenal of ontologies to promote their application in annotating functional 
genomics and other biological experiments. This is the sort of community-based 
ontology building that holds much potential to help the life science community 
convert the complex and daunting functional genomics data sets into new discover-
ies that expand our knowledge and improve human health.

15.5  Conclusion

A key motivation behind functional genomics standards is to foster data sharing, 
re-use, and integration with the ultimate goal of producing new biological 
insights (within basic research environments) and better medical treatments 
(within healthcare environments). Widely adopted minimum information guide-
lines for publication and formats for data exchange are leading to more reporting 
of results and submission of experimental data into public repositories, and more 
effective data mining of large functional genomics data sets. Standards harmo-
nization efforts are in progress to improve data integration and interoperability 
of software within both basic research setting as well as within healthcare 
environments. Standard reference materials and protocols for their use are also 
under active development and hold much promise for improving data quality, 
systems benchmarking, and facilitating the use of functional genomics technologies 
within clinical and diagnostic settings.
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15.5.1  Challenges for Functional Genomics Standards  
in Basic Research

A major challenge facing functional genomics standards is proving their value to a 
significant fraction of the user base and facilitating widespread adoption. Given the 
relative youth of the field of functional genomics and standardization efforts, the 
main selling point to use a standard is that it will benefit future scientists and appli-
cation/database developers, with limited added value for the users who are being 
asked to comply with the standard at publication time. Regardless of how well 
designed the standard is, if complying with it is perceived as being difficult or 
complicated, widespread adoption is unlikely to occur. Some degree of enforce-
ment of compliance by publishers and data repositories will most likely be required 
to inculcate the standard and build a critical mass within the targeted scientific 
community that then sustains its adoption. Significant progress has been achieved 
here: for DNA microarray gene expression studies, for example, most journals now 
require MIAME compliance and there is a broad recognition of the value of this 
standard within the target community.

Here are some of the “pressure points” any standard will experience from its 
community of intended users:

Domain experts who want to ensure comprehensiveness of the standard•	
End-user scientists who want the standard to be easy to comply with•	
Software developers who want tools for encoding and decoding standards-•	
compliant data
Standards architects who want to ensure formal correctness of the standard•	

Satisfying all of these interests is not an easy task. One complication is that the 
various interested groups may not be equally involved in the development 
of the standard. Balancing these different priorities and groups is the task of the 
group responsible for maintaining a standard. This is an ongoing process that 
must remain responsive to user feedback. The MAGE-TAB data exchange for-
mat in the DNA microarray community provides a case in point: it was created 
largely in response to users that found MAGE-ML difficult to work with.

15.5.2  Challenges for Functional Genomics Standards  
in Healthcare Settings

The handling of clinical data adds additional challenges on top of the intrinsic 
complexities of functional genomics data. Investigators must respect certain regulations 
imposed by regulatory authorities. For example, the Health Insurance Portability 
Accountability Act (HIPAA) mandates the de-identification of patient data to protect an 
individual’s privacy. Standards and information systems used by the healthcare commu-
nity therefore must be formulated to deal with such regulations (e.g., Bland et al. 2007). 
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While the use of open standards poses risks to the release of protected health 
information, the removal of detailed patient metadata about samples can present 
barriers to research (Ferris et al. 2002; Meslin 2006). Enabling effective research 
while maintaining patient privacy remains an on-going issue (Joe White, personal 
communication).

15.5.3  Current and Future Directions

High-throughput functional genomics experiments, with their large and complex 
data sets, have posed many challenges to the creation and adoption of standards, but 
in recent years, the standards initiatives in this field have risen to the challenge and 
continue to engage their respective communities to improve the effectiveness of the 
standards to user and market needs.

Functional genomics communities have recognized that standards-compliant 
software tools can go a long way towards enhancing the adoption and usefulness of 
a standard by enabling ease-of-use. For data exchange standards, such tools can 
“hide the technical complexities of the standard and facilitate manipulation of the 
standard format in an easy way” (Brazma et al. 2006). Some tools can themselves 
become part of standard practice when they are widely used throughout a community. 
Efforts are underway within organizations such as MGED and HUPO PSI to 
enhance the usefulness of tools for end user scientists working with standard data 
formats, in order to ease the process of data submission, annotation, and analysis.

The widespread adoption of some of the more mature functional genomics 
standards by large numbers of life science researchers, data analysts, software 
developers and journals has had a number of benefits. It has promoted data sharing 
and reanalysis, facilitated publication, and spawned a number of data repositories 
to store data from functional genomics experiments. A higher citation rate and 
other benefits have been detected for researchers who share their data (Piwowar 
et al. 2008; Piwowar and Chapman 2008). Estimates of total volume of high-
throughput data available in the public domain are complex to calculate, but a list 
of databases maintained by the NAR journal (http://www3.oup.co.uk/nar/
database/a/) contain more than 1,000 databases in areas ranging from nucleic acid 
sequence data to experimental archives and specialist data integration resources  
(Galperin and Cochrane 2009). The volume will undoubtedly rise asmore public 
databases appear every year and as technologies change so that deep sequencing of 
genomes and transcriptomes becomes more cost effective.

Consistent annotation of this growing volume of functional genomics data using 
interoperable ontologies and controlled vocabularies will play an important role in 
enabling collaborations and re-use of the data by other third parties. More advanced 
forms of knowledge integration that rely on standard terminologies are beginning 
to be explored using semantic web approaches (Sagotsky et al. 2008; Stein 2008)

While adherence to standards by public data repositories is expected to facilitate 
data querying and re-use, even in the absence of strict standards-compliant requirements 
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on data submission, useful data mining can be performed from large bodies of raw 
data originating from the same technology platform (Day et al. 2007). Approaches 
such as this may help researchers better utilize the limited levels of consistently 
annotated data in the public domain.

It was recently noted that only a fraction of data generated is deposited in public 
data repositories (Ochsner et al. 2008). Improvements in this area can be anticipated 
through the proliferation of better tools for bench scientists that make it easier for 
them to submit their data in a consistent, standards-compliant manner. The full value 
of functional genomics research will only be realized once scientists in the labora-
tory and the clinic are able to share and integrate large amounts of functional genomics 
data as easily as they can now do with primary biological sequence data.
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16.1  Introduction

Published research is the foundation for all future research. Therefore, access to 
published research is a requirement for effectively engaging in scientific research. 
Scientists and policy-makers came to this realization several centuries ago and 
created the first scientific journals in 1665: the Journal de Sçavans, initiated by the 
French parliament member, Denis de Sallo1; and the Philosophical Transactions of 
the Royal Society of London, published by the Royal Society of London (Eisenstein 
1979). These publications provided a common forum to help scientists disseminate 
observations and present theories to a much broader audience than was previously 
possible and thus established our current paradigm of scientific communication.

Only about 20 articles were published each month in the early Transactions 
covering all realms of science, which made it relatively easy for seventeenth century 
scientists to keep up with their particular interests. For example, articles in the first 
issue of the Philosophical Transactions2 relating to the life sciences included 
Robert Boyle’s description of a “Very Odd Monstrous Calf” “…whose Tongue was, 
Cerberus-like, triple, to each side of his Mouth one, and one in the midst…” (Boyle 
1665) and an anonymous report of a man with “Milk Found in Veins, Instead of 
Blood” (1665). Today, thousands of articles have since been published on each of 
the probable culprits causing the trifurcated tongue and milky blood, craniofacial 
midline anomalies (Vandenhaute et al. 2000) and hyperlipidemia (Yuan et al. 
2007), making it impossible for a scientist to read and recall all reported data 
concerning either topic. Current estimates suggest that about 65,000 articles are 
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described here since it is not specific to the sciences
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now published per month and, overall, literature in the life sciences has swelled to 
a corpus of nearly 20 million articles from tens of thousands of scientific journals.3 
The need to make more intelligent use of this body of work is crucial to the progress 
of research.

Literature databases reach well beyond the printed periodical by employing 
cyber infrastructure to index, store, and serve scientific literature to an international 
community of scientists, clinicians, and interested non-scientists. These databases 
archive the legacies and current knowledge of innumerable research topics and 
enable a tracing of a topic’s origin, impact, and associated data. Most databases also 
enhance their content with additional information, such as extracted metadata 
(performed by computers and/or humans) and links to relevant resources in order 
to assist readers and researchers in their quest for knowledge and new hypotheses. 
Of particular interest in the face of this overwhelming mass of data is the use of 
automated text-mining methods, discussed in the following chapter, for inferring 
biological relationships and extracting specific details from natural language in 
order to collapse plain article text into highly specific, information-rich quanta.

16.2  Publishing Models and Access to Literature

Any discussion of scientific literature in the twenty-first century must include men-
tion of the current publishing models. The legal concept of copyright did not exist 
for the Philosophical Transactions during the first 45 years of publication (Feather 
1980), but today few scientific articles are published without judicious regard to the 
copyright owner and the applicable licensing terms. Traditionally, in what is con-
sidered to be the closed access model, publishers hold the copyright for articles 
published in their journals and charge a usage fee for print or electronic access. 
However, in the last decade, open access literature has been established as a viable, 
and increasingly more popular, publishing model.

Open access was formally defined in the mid-2000s in the Budapest,4 Bethesda,5 and 
Berlin6 public statements, collectively known as the BBB definition of open access. 
Essentially, they state that open access content must be available on the internet and free 
with regards to access and cost. There is room for interpretation regarding commercial 
and non-commercial use and whether derivative works are permitted. The practical 
definition of open access has changed over the years such that not all open access 
literature is truly open (MacCallum 2007) so licenses must be carefully reviewed. 

3 The Journal de Sçavans suffered the same fate as some its readers during the French Revolution, 
but the Philosophical Transactions now enjoys the standing of the oldest extant scientific journal.
4 http://www.soros.org/openaccess/
5 http://www.earlham.edu/~peters/fos/bethesda.htm
6 http://oa.mpg.de/openaccess-berlin/berlindeclaration.html



33316 Literature Databases

BookID 151692_ChapID 16_Proof# 1 - 21/08/2009

For the average consumer of scientific literature the subtleties are probably 
unimportant, but for scientists who aim to use literature in a manner beyond that of 
reading for information, these subtleties can be crucial. RoMEO (http://www.
sherpa.ac.uk/romeo/) is a useful resource for exploring copyright and usage policies 
for individual publishers and journals.

The concept of open access has been a controversial one, engendering much 
debate among policy-makers, publishers, and researchers. However, recent 
mandates from the US National Institutes of Health and a number of European 
funding agencies lend strong support to the open access publishing model, at least 
as it pertains to publicly-funded research. The NIH mandate, for example, requires that 
published NIH-funded research is to become open access within a year of publication. 
In response, many publishers are now offering the option to publish an article 
as open access. The Directory of Open Access Journals, http://www.doaj.org, 
provides a complete listing of journals that publish under open access licenses to 
assist authors in finding these publishers.

16.3  Literature Databases

Numerous databases archiving scientific literature exist and they differ based on the 
needs of the communities they serve. The primary reason most databases exist is to 
provide a searchable interface to article citations and abstracts in a given field. 
Bioinformaticians, however, have needs beyond those of the average literature 
database user. Access to large amounts of data via non-browser-based and batch 
download processes is desirable. Access to the full text of articles, especially in a 
machine-readable format, is also of interest. In addition, many bioinformaticians 
are interested in article metadata – very specific information that has been extracted 
from the article content. While the following is by no means a complete list, the 
databases that are likely of most use to bioinformaticians based on these criteria are 
described here.

16.3.1  PubMed: http://www.ncbi.nlm.nih.gov/pubmed/

PubMed was developed by the National Center for Biotechnology Information 
(NCBI) at the National Library of Medicine (NLM) and is located at the U.S. 
National Institutes of Health (NIH) (Benson et al. 1990; McEntyre and Lipman 
2001). It currently holds data for over 18 million articles from more than 34,000 
journals dating back to the 1950s. It would be difficult to argue that PubMed is not 
the most popular source for literature data in the life sciences. This resource is freely 
accessible and indexes the majority of life sciences articles. Most PubMed records 
are enhanced with human-curated metadata, contain additional links to other 
resources, and are easily obtained via programmatic access and a web interface.
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PubMed archives and indexes the abstracts of articles and provides links from 
each article to a number of related resources. These can include molecular biology 
data deposited in GenBank and links to other literature sources such as publishers 
and the companion database, PubMed Central (PMC) (described later in this chapter), 
which contains the full text of many of the articles in PubMed. Recent statistics 
suggest that an impressive number of PubMed users-one third-belong to the gen-
eral public while the rest are scientific researchers or clinical personnel (McEntyre 
and Lipman 2001), thus underscoring the ubiquity and value of this resource 
because it reaches such a broad range of users.

One of the most valuable features offered by PubMed is the inclusion of metadata 
from MEDLINE, a freely accessible database of biomedical articles also created by 
the NLM. Articles indexed in MEDLINE are assigned terms from NLM’s 
controlled vocabulary, the Medical Subject Headings (MeSH®), a hierarchical 
vocabulary of biomedical words and phrases. Table 16.1 shows a typical MEDLINE 
record from PubMed. Expert curators read each article and manually assign MeSH 
terms that best capture the content of that article. Assigned terms are then used for 
searching and indexing purposes. Because these terms are hierarchical, the 
ascendant-descendant relationship of terms can be used in various ways. PubMed, 
for example, takes advantage of this relationship during database searches by 
expanding a user-specified MeSH search term into all descendant terms. MeSH 
terms are annotated in the MEDLINE record of the article as English words or 
phrases, but these can be translated into tree numbers which define that term’s posi-
tion in the hierarchy; the entire MeSH vocabulary is available for download and all 
terms and tree numbers are defined and described therein.7 Table 16.2 shows a typi-
cal MeSH term from the hierarchy with supporting data. There are also translations 
of MeSH terms into several other languages making these data particularly acces-
sible to non-English-speaking bioinformaticians.

The most common types of PubMed searches appear to be a plain term (e.g., 
diabetes; hansen) or a term with a specific field identifier such as author (e.g., hansen 
d[au]) and PubMed ID (e.g., 18185982[pmid]) (see PubMed Help pages for a full 
description of field identifiers) (Herskovic et al. 2007). Indeed, it is rarely necessary in 
the course of research to build extremely sophisticated search queries, in part due to the 
specificity of scientific terminology and the extensive indexing of articles based on 
MeSH terms, author names, and words from the title and text of the paper. When a 
complex query is deemed necessary, PubMed allows this query to be saved for future 
re-use (obviating the need to recreate the logic and syntax anew) and saved queries can 
be automatically searched and results emailed according to a user-defined schedule.  
It can take a little practice to become fluent with the interface (PubMed helpfully supplies 
useful and extensive tutorials) but, once even a few skills are mastered, searches become 
powerful and direct. Alternately, the Related Articles section is helpful when approach-
ing an unfamiliar topic for which the appropriate keywords are not necessarily 
obvious.

7http://www.nlm.nih.gov/mesh/filelist.html
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Table 16.1 The first table below details the main tags used to describe a journal article in 
MEDLINE

Name Description Tag

PubMed Unique 
Identifier

Unique number assigned to each PubMed citation PMID

Owner Organization acronym that supplied citation data OWN
Volume Volume number of the journal VI
Issue The number of the issue, part, or supplement of the journal 

in which the article was published
IP

Publication Date The date the article was published DP
Title The title of the article TI
Pagination The full pagination of the article PG
Abstract English language abstract taken directly from the published 

article
AB

Affiliation Institutional affiliation and address of the first author AD
Full Author Name Full Author Names FAU
Author Authors AU
Secondary Source 

Identifier
Identifies secondary source databanks and accession 

numbers of molecular sequences discussed in articles, 
e.g., GenBank, GEO, PubChem, ClinicalTrials.gov, 
ISRCTN. The field is composed of the source followed 
by a slash followed by an accession number and can be 
searched with one or both components

SI

Full Journal Title Full journal title from NLM’s cataloging data JT
NLM Unique ID Unique journal ID in NLM’s catalog of books, journals, and 

audiovisuals
JID

EC/RN Number Number assigned by the Enzyme Commission to designate 
a particular enzyme or by the Chemical Abstracts 
Service for Registry Numbers

RN

Subset Journal or citation subset values representing specialized 
topics

SB

MeSH Terms NLM’s Medical Subject Headings (MeSH) controlled 
vocabulary; major MeSH terms are one of the main 
topics discussed in the article and these are denoted by 
an asterisk on the MeSH term or MeSH/Subheading 
combination

MH

PubMed Central 
unique identifier

Unique number assigned to this article in PubMed Central PMC

Entrez Date The date the citation was added to PubMed EDAT
MeSH Date The date MeSH terms were added to the citation. The MeSH 

date is the same as the Entrez date until MeSH are added
MHDA

Article Identifier Article ID values supplied by the publisher may include the 
pii (controlled publisher identifier) or doi (digital object 
identifier)

AID

(continued)
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Table 16.1 (continued)

Tag Content

PMID 17997600
VI 3
IP 11
DP 2007 Nov
TI A point mutation in a herpesvirus polymerase determines neuropathogenicity.
AB Infection with equid herpesvirus type 1...
AD Department of Microbiology and Immunology, Cornell University, Ithaca,  

New York, United States of America.
FAU Goodman, Laura B
AU Goodman LB
FAU Loregian, Arianna
SI GENBANK/AY665713
SI PDB/2GV9
SI SWISSPROT/P28858
SI SWISSPROT/Q6S6P1
GR 2T32AI007618-06A1/AI/United States NIAID
PT Journal Article
PT Research Support, N.I.H., Extramural
PT Research Support, Non-U.S. Gov’t
PL United States
TA PLoS Pathog
JT PLoS pathogens
RN 0 (Antiviral Agents)
RN 38966-21-1 (Aphidicolin)
RN EC 2.7.7.7 (DNA-Directed DNA Polymerase)
SB IM
MH Amino Acid Sequence
MH Animals
MH Antiviral Agents/pharmacology
MH Aphidicolin/pharmacology
MH Blotting, Western
MH CD4-Positive T-Lymphocytes/virology
MH Chromosomes, Artificial, Bacterial
MH DNA-Directed DNA Polymerase/chemistry/drug effects/*genetics
MH Female
MH Genotype
MH Herpesviridae Infections/pathology/*veterinary
MH Herpesvirus 1, Equid/*enzymology/*genetics/*pathogenicity
MH Horse Diseases/enzymology/*genetics
MH Horses
MH Mice
MH Mice, Inbred BALB C
MH Molecular Sequence Data
MH Point Mutation
MH Reverse Transcriptase Polymerase Chain Reaction
MH Structure-Activity Relationship

(continued)
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PubMed offers much functionality beyond the scope of its digital archive. Links 
to offsite resources are plentiful (if occasionally difficult to find). When applicable, 
links to the full text version of the article are clearly presented as icons in the 
AbstractPlus view (default view) of a citation; these may include links to freely 
available full text in PMC and a link supplied by the publisher which resolves to 
the full text if the user or user’s institution has a license for that content. The 
LinkOut feature, currently buried within the “Links” link to the right of the full text 
icons or as an option in the drop-down “Display” menu, can provide a path to addi-
tional information such as databases associated with the article content. To date, 
there are over 250 external resource links that are not related to publisher websites 
so it is worthwhile exploring the LinkOut list on articles of particular interest.

PubMed can be accessed via a web interface with sophisticated searching tools 
and data persistence features and via programmatic access in order to retrieve large 
sets of articles or to automate article retrieval via a separate web resource. PubMed 
offers E-utilities which provide programmatic access through either SOAP or 
HTTP protocols (see Fig. 16.1 for some examples). The data formats that are likely 
to be of particular interest in this context are the XML (eXtensible Markup 
Language) and MEDLINE records for each article. NCBI provides excellent help 
for the E-utilities on their help web pages.

16.3.2  PubMed Central: http://www.pubmedcentral.gov/

PMC was founded in 2000 as an outgrowth of the open access movement. It is a 
digital archive which houses full text, open access literature in the life sciences. 
Developed and managed by NCBI, PMC benefits from strong integration with 
PubMed. Although the majority of PMC articles are also indexed in PubMed, it is 

Table 16.1 (continued)

Tag Content

PMC PMC2065875
EDAT 11/14/07 9:00
MHDA 2/1/08 9:00
PHST 2007/06/11 [received]
PHST 2007/09/17 [accepted]
AID 07-PLPA-RA-0352 [pii]
AID 10.1371/journal.ppat.0030160 [doi]
SO PLoS Pathog. 2007 Nov;3(11):e160

Details of all tags can be found at: http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=helppubmed.
section.pubmedhelp.Search_Field_Descrip. The second table shows part of the MEDLINE record 
from PubMed for the article “A point mutation in a herpesvirus polymerase determines neuro-
pathogenicity”, PLoS Pathog. 2007 Nov;3(11):e160. Many bioinformaticians will be particularly 
interested in the SI, RN, and MH fields because these contain metadata describing the science in 
the paper. It is worth noting that the Secondary Source Identifiers are not included for all articles; 
many IDs may be mentioned in the article text but are not listed in the MEDLINE record.
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Table 16.2 Typical MeSH term

MeSH Tag Name MeSH Tag Content

RECORD TYPE RECTYPE D
MESH HEADING MH Mammals
ALLOWABLE TOPICAL 

QUALIFIERS
AQ AB AH BL CF CL EM GD GE 

IM IN ME MI PH PS PX SU 
UR VI

ENTRY TERM, PRINT ENTRY Mammal
MESH TREE NUMBER MN B01.150.900.649
MESH HEADING THESAURUS 

ID
MH_TH NLM (1966)

SEMANTIC TYPE ST T015
ANNOTATION AN avoid: too general: prefer specifics
PRE-EXPLOSION PX Mammals
GRATEFUL MED NOTE GM very general; consider specific 

mammals or + for all
MESH SCOPE NOTE MS Warm-blooded vertebrate 

animals belonging to the 
class Mammalia, including all 
that possess hair and suckle 
their young. It includes three 
major groups: placentals 
and marsupials, which are 
viviparous, and monotremes, 
which are oviparous. (Dorland, 
28th ed.)

ONLINE NOTE OL pre-explosion
BACKFILE POSTINGS MED *419

MED 2089
M90 *557
M90 1745
M85 *566
M85 1194
M80 *420
M80 933
M75 *381
M75 982
M66 *578
M66 1812
M94 *580
M94 2965

MAJOR REVISION DATE MR 20040728
DATE OF ENTRY DA 19990101
DESCRIPTOR CLASS DC 1
UNIQUE IDENTIFIER UI D008322

Medical Subject Headings listed in the MEDLINE record (MH tag) describe the content of the 
article. These terms are part of a hierarchical controlled vocabulary. When MeSH terms are used 
as search term on the PubMed website, they are automatically expanded to include all child terms. 
However, if MEDLINE records are being used independently of PubMed, a user must translate 
MeSH terms into MeSH tree numbers (MN tag) to be able to navigate through the hierarchy. 
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not strictly a subset of PubMed; there are many records that are unique to PMC. All 
content in this archive is accessible in electronic format with no restrictions. As 
mentioned previously, not all open access licenses grant the same freedom of re-use 
of an article so it is recommended that users read the copyright statement for each 
article if re-use is intended. However, nearly all full text articles with scientific 
content in PMC can be used in excerpted form.

Parameter 
Description

Database Record Identifier Retrieval Mode Retrieval 
Type

Parameter db id retmode rettype
Options pubmed (PubMed ID) xml uilist

abstract 

html uilist
abstract 
citation 
medline

text uilist
abstract 
citation 
medline

asn.1

pmc (PubMed Central ID) xml uilist
abstract
citation
medline
full

html uilist

text uilist

Fig. 16.1 Using EFetch to retrieve information from PubMed and PMC. The NCBI E-utilities 
have several tools for accessing content in any of their supported databases. For retrieving litera-
ture data, the tool EFetch support the majority of queries. EFetch accepts PubMed IDs and PMC 
IDs and retrieves the corresponding records, which can then be parsed or archived as necessary. 
The PubMed IDs and PMC IDs, if not known, can be searched for using ESearch (not detailed 
here). EFetch supports a number of parameters, detailed below, which can be appended to the Base 
URL: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?

Table 16.2 (continued) For example, a researcher may be interested in all articles related to mammals. 
The article example shown in Table 16.1a relates to mammals (the mouse, in particular), but a 
machine cannot make this translation without knowledge of the vocabulary hierarchy. The entire 
MeSH tree is downloadable from the National Library of Medicine as both XML and ASCII files 
and the relationships between terms can be inferred from this tree. The ASCII MeSH tree record 
for “Mammals” is shown below. The term “Mice” from the MEDLINE record of PLoS Pathog. 
2007 Nov;3(11):e160 can be translated to the tree number B01.150.900.649.865.635.505.500. 
This number can then be related to the term “Mammals” (B01.150.900.649) via the MeSH tree 
numbering system. The MeSH tree can also be used to translate terms into descriptions and 
synonyms.
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In a display of remarkable foresight, the NLM developed a document type 
definition (DTD) to which all PMC articles conform8; full text articles are avail-
able as downloadable, machine-readable XML files. It is interesting to note that 
no other major literature database provides full text XML content, even in other 
disciplines which are more computationally-oriented; bioinformaticians are the 
fortunate beneficiaries of this development. While the freedom allowed by open 
access is helpful to a reader and consumer of scientific literature, the far more 
impressive benefit is the availability of a large corpus of parsable literature data 
for use by text miners. Many text-mining efforts use PubMed abstracts but are 
limited by the inherent incompleteness of the information. Text-mining full text 
articles promises a greater yield of information although there are a number of 
other associated challenges. Not all publishers use the DTD in the same way so, 
in spite of the attempt to standardize article mark-up, there are occasionally 
inconsistencies and missing data.

Full text XML files are downloadable via FTP as individual files or as a large 
archive of all of PMC’s holdings. PMC content can also be accessed via NCBI’s 
E-utilities. If using the E-utilities, it is important to note that PMC unique identi-
fiers are different from PubMed unique identifiers for any given article although 
they are both digits starting in the 10,000s. Specifying the correct database in the 
query string is necessary. For many PMC articles, MeSH terms are available via the 
MEDLINE record.

Recently, a UK version of PMC was implemented, UK PMC (UKPMC, http://
ukpmc.ac.uk/), which is based on the US version. It is run in partnership by the 
British Library, the University of Manchester, and the European Bioinformatics 
Institute (EBI), the latter of which aims to manage integration of the literature con-
tent with EBI databases.9

16.3.2.1  PubMed Central Open Archives Service

In addition the NCBI’s E-utilities, PMC data can be accessed via PubMed 
Central Open Archives (PMC-OAI). This service provides access to the meta-
data of all items in the PMC archive and to the full text of a subset of these 
items via the base URL http://www.pubmedcentral.nih.gov/oai/oai.cgi; full text 
articles cannot be retrieved via E-utilities. Help on using this service is avail-
able on PMC’s website. PMC-OAI is an implementation of the Open Archives 
Initiative Protocol for Metadata Harvesting, a standard for retrieving metadata 
from digital archives.10

 8  http://dtd.nlm.nih.gov/publishing/
 9  http://www.bl.uk/news/2007/pressrelease20070105.html
10 http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm
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16.3.3  HighWire Press: http://highwire.stanford.edu/

HighWire Press, a division of the Stanford University Libraries, hosts nearly 5 million 
full text articles dating back to 1812 covering many science and social science topics. 
Almost half are freely available making it the largest free, full text archive available. 
Many of these articles are already available via PMC, a publisher’s website, or 
other content providers; HighWire Press provides a convenient, unified interface 
for searching for this content, although programmatic access is not available. RSS 
feeds and email alerts are available.

16.3.4  DRIVER Project: http://www.driver-community.eu/

The “Digital Repository Infrastructure Vision for European Research” (DRIVER) 
project was initiated by an international consortium with the specific purpose of 
building infrastructure to manage and serve scientific information to European countries 
(Weenink et al, 2008). Although the project is funded by the European Commission, 
the project is not geographically exclusive; any willing institution can participate 
and several countries, such as India and China, are now involved. Much like the 
directives that launched the creation of PMC and PMC UK, DRIVER aims to make 
scientific information freely available via an open, standardized, Internet-based 
interface. The archived information includes articles, reports, data, and any other 
type of digital media that can be served over the Internet. The overall aim is to 
provide a unified interface through which a user can search or browse content, 
while allowing the information to be remotely hosted by many institutions rather 
than archiving the information in a single institution.

The content available through the DRIVER interface is too abundant to describe 
in detail due to the number and variety of source institutions, but there is a great 
deal of content that cannot be found in other databases and would be relevant to a 
bioinformatician. As such, the DRIVER repositories are an excellent complement 
to PubMed and PMC. As the initiative is fairly new, but has strong support, the 
content can only be expected to grow. The interface is freely available for use and 
users can create a personal profile which with to store search types of interest. 
For managers or curators of digital repositories, it is worthwhile considering 
becoming a DRIVER participant in order to gain a broader audience.

16.3.5  Web of Science®: http://isiknowledge.com

The Web of Science indexes a large number of articles – nearly one million, from 
about 8,700 journals – and has a powerful search interface. The corpus extends to 
the nineteenth century, covers the sciences and the arts, and includes access to some 
full text articles. The Web of Science is the resource of choice for statistics about 
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the lives of articles after they are published. Scientists’ impact on their field is a 
frequently-used criterion when evaluating prospective employees, principal inves-
tigators, and collaborators. One measure for evaluating impact is to track how often 
an author’s papers are cited in subsequent publications, the idea being that 
frequently-cited articles indicate a greater contribution. Indeed, even in the first 
issues of the Journal de Sçavans and the Philosophical Transactions of the Royal 
Society of London the journals cited each other, referring to articles of particular 
merit or interest. Tracking citations and generating a quantitative measure of an 
author’s merit is nearly becoming a science in its own right and the Web of Science 
provides data for calculating this measure by showing the number of times an 
article has been cited by other articles. (Whether this measure is useful or 
accurately reflects the impact of an article or author is a separate debate.) The Web 
of Science can similarly be used to trace the influences that led to the publication 
of an article or chart the course of an author’s career; a user can navigate through 
cited references of a list of articles. These data are available as XML via web 
services. The Web of Science is a subscription-based service but is available at many 
major institutions.

16.3.6  arXiv: http://www.arxiv.org

Pioneered by Paul Ginsparg of Cornell University, arXiv (think of the X as the 
Greek letter chi) is a digital repository and pre-print server with over half a million 
open access articles in physics, mathematics, computer science, quantitative biology, 
and statistics. arXiv is maintained by Cornell University and offers unrestricted 
access to its content. This resource is popular with the more quantitative branches 
of science and is virtually unheard of in the life sciences. It is an excellent resource 
for open access literature; articles are available in full text in formats including 
PDF, Postscript, DVI, and TeX. Generally, article pre-prints are deposited in arXiv 
and notes are added with citation information if/when the article is officially pub-
lished in a journal. arXiv is affirming its position as an essential literature database 
by keeping pace with current evolving data standards; submissions are accepted in 
the newly minted .docx/OOXML format.

16.3.7  CiteSeer: http://citeseer.ist.psu.edu

CiteSeer archives articles primarily in computer and information sciences and is a 
crucial resource in these fields (again, it is a resource virtually unknown in the life 
sciences). Originally developed at the NEC Research Institute, it is now hosted at 
Pennsylvania State University’s College of Information Sciences and Technology. 
CiteSeer archives full-text articles as Postscript and PDF files and is available with-
out restriction.
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In addition to providing the traditional search interface, CiteSeer makes exten-
sive use of the citations listed in articles. In fact, CiteSeer was the first digital 
archive to provide automated citation indexing and linking using the method of 
autonomous citation indexing (ACI). CiteSeer finds articles in electronic format on 
the Internet, converts them to text, indexes the full text of these articles (including 
citations), automatically extracts citation data, and establishes relationships 
between citations and articles. Using these relationships and the access to full 
article text, CiteSeer can show the context of a citation in a selected article in order 
to show the information the authors referred to. CiteSeer also provides links to other 
resources including computer science-related digital libraries whenever possible. 
CiteSeer also automatically extracts metadata from all indexed articles and these 
data can be downloaded as XML from one large archive. The full source code of 
the database is available for download (for non-commercial use only). Like PMC, 
CiteSeer supports OAI-PMH version 2.0.

16.3.8  Other Resources

Identifying, relating, and labeling specific key concepts and terms in an electronic 
article text is the first step towards integrating article content into the semantic web 
(Berners-Lee et al. 2001; Berners-Lee et al. 2006), the next revolution in scientific 
publishing. Some publishers and researchers are joining this revolution and are 
beginning to develop electronic article text with semantic enrichment. The Royal 
Society of Chemistry (RSC) has developed the award-winning Project Prospect11 
which delivers articles enhanced with semantic information. Using existing ontolo-
gies and mark-up standards, RSC editors use both automated and manual methods 
to identify and label chemical compounds and related information in articles from 
all RSC-published journals. Enhanced articles are available on the publisher’s web-
site and as XML via RSS feeds.

The BioLit project12 similarly delivers semantically enhanced full text article 
content, including markup of bio-ontological terms and biological database identi-
fiers for all research articles in PMC; all mark-up is automatically generated, not 
human-curated (Fink et al. 2008). GoPubMed also uses ontology terms (from the 
Gene Ontology (Ashburner et al. 2000)) extracted from PubMed abstracts in order 
to generate a list of literature search results with higher relevance than an equivalent 
search of PubMed (Doms and Schroeder 2005). Search results are categorized by 
ontology terms to allow quick navigation through the returned abstracts.

Recognizing the need for programmatic access to, and use of, closed literature, 
Nature Publishing Group has developed the Open Text Mining Initiative (OTMI),13 
allowing content providers to translate article text into a machine-readable, but 

11 http://www.rsc.org/Publishing/Journals/ProjectProspect/
12 http://biolit.ucsd.edu
13 http://opentextmining.org/
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non-human-readable, format in order to facilitate indexing and text-mining with-
out giving away the full material. Articles translated into OTMI files will not 
necessarily be available for enhanced views of the full text, like those offered by 
the RSC and BioLit projects, but any enhanced or extracted data can be used for 
other purposes.

Finally, another resource that is an excellent complement to the described litera-
ture databases and resources is SciVee14 (Fink and Bourne 2007). SciVee is an 
online science video community tool aimed at improving scientific communication 
via new media. With the development of cyber infrastructure, scientists have the 
opportunity to take advantage of media beyond that of static images and text in 
order to share their results and experiences. SciVee allows authors to upload a video 
associated with a published paper in which they describe the content of the paper. 
If the paper is open access, authors can link their video directly to the text of the 
paper in order to highlight specific points or figures. Use of video in this way gives 
the author the opportunity to describe aspects of the research that do not generally 
get included in articles or to provide more extensive explanations of difficult points. 
Video can bring the paper to life in a way that is not possible with the traditional 
article format. SciVee accepts videos from any published paper, including from the 
databases described here. It is well-integrated with PubMed and PMC and is listed 
in the PubMed LinkOut feature for applicable papers.

16.4  Conclusion

Retrieving literature data, especially full text articles, is frequently only the first 
step in the process of extracting literature-derived information. More sophisticated 
tools are frequently necessary to identify relevant sections of the text and transform 
that information into knowledge. The following chapter describes some existing 
literature-mining tools that can be employed in this task.
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17.1  Introduction

The complexity and wide range of current biomedical research is reflected in the 
number and scope of biomedical publications. Due to this abundance scientists are 
often no longer capable of keeping up with publications in their specific areas of 
research, let alone finding, reading, and analyzing potentially related scientific 
publications. Real advances in research, however, can be achieved only if a 
researcher can obtain an overview of the state of a given research question in a 
timely manner. This chapter presents methods to help researchers access the con-
tent of the biomedical literature. Information Retrieval (IR) identifies, in a large 
document database, the documents that are most relevant to a search topic pro-
vided by a user. Natural Language Processing (NLP) affords finer-grained access 
to more precise information contained in texts, which opens up a range of data 
analysis and knowledge synthesis functionalities. Powerful tools have been 
designed to exploit these techniques for the benefit of biomedical researchers, 
extracting millions of facts from the published literature and assisting Literature-
Based Discovery.

This chapter is organized as follows. It first describes the current capacities of 
IR from the Medline® bibliographic database. A short introduction to the main 
concepts of Natural Language Processing follows. Tasks which build on Natural 
Language Processing are then presented: Information Extraction and its derivatives 
and Literature-Based Discovery. A review of some existing applications closes the 
chapter. The references cited in the text are supplemented by a list of textbooks and 
Web resources.
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17.2  Information Retrieval from the Biomedical Literature

Automated IR systems were developed to reduce the information overload by 
retrieving documents related to a user’s request and thus reducing the number of 
publications to read and analyze. Biomedical researchers were among the first sci-
entists to benefit from the availability of such systems. Medline, a database of life 
sciences and biomedical bibliographic information maintained by the U.S. National 
Library of Medicine, became available online in the 1970s (Dee 2007). In 1997, 
searching over 17 million documents in Medline using the Internet and PubMed® 
services became free.

17.2.1  PubMed Search

PubMed is a Boolean search engine that indexes titles of scientific publications, 
their abstracts and metadata separately (Miles 1992). These indices allow users to 
specify which fields of the Medline bibliographic citations should be searched. 
PubMed draws on the Medical Subject Headings (MeSH), the controlled vocabu-
lary used in manual indexing of Medline. PubMed automatically recognizes and 
translates controlled vocabulary terms, and expands identified MeSH headings. The 
automatic term mapping process matches query terms not tagged by a user against 
the entries in the following tables/indexes:

MeSH Translation Table (contains MeSH terms, entry terms for MeSH terms, •	
MeSH Subheadings, Publication Types, Pharmacologic action terms, Terms 
derived from the UMLS (Unified Medical Language Systems (Lindberg et al. 
1993)) that have equivalent synonyms or lexical variants in English, Supplementary 
concept (substance) names and their synonyms
Journals Translation Table (contains Full journal title, Medline abbreviation, ISSN)•	
Full Author translation table, Author index, the Full Investigator (Collaborator) •	
translation table and an Investigator (Collaborator) index

When a match is found for a term or phrase in a translation table, the mapping 
process is complete and does not continue on to the next translation table. If a 
match is found in the MeSH Translation Table, the term will be searched as MeSH 
(that includes the MeSH term and any specific terms indented under that term in 
the MeSH hierarchy), and as a Text Word.

Owing to PubMed origins and the intent to serve a wide variety of users, ranging 
from general public to highly-specialized biomedical researchers and clinicians, 
PubMed searches produce best results when built by experienced medical librarians 
with intimate knowledge of Medline structure and indexing, knowledge of the 
MeSH structure, and knowledge of PubMed tags and Boolean operators. For 
example, to answer the question: What genes are induced by LPS in diabetic mice? 
an expert PubMed user constructed the following query:
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(lipopolysaccharides OR lps) AND diabetes mellitus[mh] AND mice[mh] AND (gene OR 
genes OR ge[sh]) AND (free full text[sb]).

The query was then automatically translated in PubMed to:

((“lipopolysaccharides”[MeSH Terms] OR lipopolysaccharides[Text Word]) OR lps[All 
Fields]) AND “diabetes mellitus”[MeSH Terms] AND “mice”[MeSH Terms] AND 
(((“genes”[TIAB] NOT Medline[SB]) OR “genes”[MeSH Terms] OR gene[Text Word]) 
OR (“genes”[MeSH Terms] OR genes[Text Word]) OR “genetics”[Subheading]) AND 
“loattrfree full text”[sb] (Demner-Fushman et al. 2007)

The expert’s query illustrates her knowledge of the domain terminology (expan-
sion of LPS to lipopolysaccharides) as well as her knowledge of Medline and 
PubMed: the expert requests looking up lipopolysaccharides in all PubMed 
indices, equates diabetic with diabetes mellitus and requests only the MeSH 
index look-up for this term (to avoid spurious matches in publications which do not 
focus on the disease but mention it in the abstract). This command is encoded 
using the [mh] tag.

17.2.2  Specialized Biomedical Literature Retrieval Systems

Clearly, not all users posses the knowledge of the expert librarian, or have access 
to services provided by such experts. This understanding led to search for IR algo-
rithms capable of taking over the burden of query formulation and gave rise to 
quite a few specialized biomedical literature retrieval systems. One of the first 
systems, SAPHIRE (Hersh and Greenes 1990), allowed natural language to be 
used for query input through finding medical concepts in its text and converting 
them to canonical form. The observation that query terms are often conceptually 
related to terms in a document, but do not occur in the document text, motivated 
development of Essie (Ide et al. 2007), a phrase-based search engine with term 
and concept query expansion and probabilistic relevancy ranking. An approach 
alternative to development of a specialized search engine is to modify existing 
open source software. For example, MedSearch (Hliaoutakis et al. 2006) supports 
semantic retrieval of Medline citations using an open source search engine 
Lucene1 as a base. The approach of modifying general purpose search engines or 
using them “as is” was demonstrated to be effective in several large-scale evalua-
tions of biomedical text retrieval in the Genomics track within the Text Retrieval 
Conference evaluations (Hersh et al. 2007). Yet another approach, implemented in 
the eTBLAST system (Lewis et al. 2006), is based on the notion that it is much 
easier for a user to provide a relevant sample document than to employ the best 
search terms.

1 http://lucene.apache.org/
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17.2.3  Clustering Search Results

Despite the differences in the expected queries and the internal processing of the 
queries, the commonality of the above search engines is in presenting a ranked list 
of documents as a result of searching one data source. Searching over multiple data-
bases offers the potential for greater query power. In this model, a user is presented 
with a single query interface, which connects to federated knowledge sources. An 
example of such integrated text-based search and retrieval system is Entrez 2. 
Realizing that even the best ranked list does not provide an overview of available 
information many developers focus on the organization of search results. Clustering 
and categorization were proposed to assist the exploration of search results. 
Figure 17.1 presents clusters generated for the LPS in diabetic mice query using 
HubMed (Eaton 2006), an alternative search interface to the Medline based on the 
PubMed web services API

 
3 and Vivisimo 4. The idea behind clustering is to organize 

publications into groups by their similarity, for example, the number of words in common. 

Fig. 17.1 Clustering of Medline search results in HubMed and Vivisimo

2 http://www.ncbi.nlm.nih.gov/sites/entrez?db = pubmed
3http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
4 http://vivisimo.com/
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The clusters will not be very useful in exploration of the information landscape 
without a concise representation of their contents. One of the widely used techniques 
is to describe cluster content using most frequently occurring key words. As these 
labels are not always meaningful (e.g., Augmented, Peritoneal or Tolerance in 
Fig. 17.1), dynamic categorization of search results is used to ensure the labels are 
valid biomedical domain concepts (Pratt et al. 1999).

The above techniques exhaust the possibilities of presenting available informa-
tion without applying Natural Language Processing and using domain knowledge. 
Techniques and tools used to assist with information analysis and synthesis are 
presented in the next sections of the chapter.

17.3  A Brief Introduction to Natural Language Processing

For a computer program a text is simply a long string of characters. The goal of 
natural language processing is to design methods and programs that make the most 
of information conveyed by texts, ideally as well as humans do, seeing words and 

Fig. 17.1 (continued)



352 P. Zweigenbaum and D. Demner-Fushman

BookID 151692_ChapID 17_Proof# 1 - 21/08/2009 BookID 151692_ChapID 17_Proof# 1 - 21/08/2009

sentences and meaning in character strings. This section introduces the main 
concepts of natural language processing, with a focus on processing English 
biomedical texts. It is necessarily too dense and cursory; the interested reader is 
referred to handbooks on natural language processing for more detail (e.g., Mitkov 
2003; Jurafsky and Martin 2000; Jackson and Moulinier 2002).

17.3.1  Lexical Level Processing

The character is the smallest unit in a (written) text. Early computer programs could 
only handle characters in the ascii character set, which is suitable for writing English 
but nearly no other language. More modern character sets include iso-latin-1, which 
contains letters with diacritics used in Western European languages (such as the 
cedilla in Behçet), and Unicode (e.g., the utf-8 encoding), which includes virtually all 
writing systems in use in the world today (The Unicode Standard 2007). A major 
advantage of Unicode is its ability to handle different writing systems in the same 
text, e.g., both Behçet’s syndrome (with cedilla) and TNF-a or NF-kB protein (with 
Greek alpha and kappa). For instance, Medline uses the Unicode utf-8 encoding.

Sequences of characters delimited by spaces and various punctuation marks 
make up the elementary tokens of a text. The basic linguistic unit in an English text 
is the word. Whereas most tokens are words by themselves, some words are composed 
of several tokens (e.g., three tokens in tug of war or two in TNF-a). Words can vary 
in form through inflection (e.g., to mark plural as in study/studies or tense as in 
investigate/investigated). A list of known words can be compiled into a lexicon, 
together with their properties, e.g., part-of-speech (noun, verb, adjective, etc.) and 
morphosyntactic features (number, tense, etc.). A lexicon may additionally relate 
inflected forms (studies) to base forms (study), also called lemmas.

Tokenization is the process of breaking up a text into tokens. Tokenization gener-
ally simply relies on character properties (alphabetic, numeric, space, punctuation, 
etc.) to identify token boundaries. Word segmentation identifies word boundaries in 
a string or stream of tokens. It may need a lexicon to detect multi-token words. 
Lemmatization is the process of finding the base form (lemma) of an inflected form, 
generally to use it as a normalized form of the word. It may rely on a lexicon, but 
can sometimes resort to simple heuristics (e.g., replace final -ies with -y).

Some words are made up of smaller units called morphemes. For instance, 
immunosuppressive is composed of three morphemes: immune, suppress and the 
adjectival suffix -ive. The addition of a prefix or suffix to a base word builds derived 
words, whereas the combination of modern words (or Greek and Latin roots) builds 
compound words (or neoclassical compounds). Normalizing a derived word to its 
base may be convenient in many instances (e.g., from intraperitoneal to peritoneum). 
Stemming is an approximate, robust method to perform this task (Porter 1980). 
Stemmers generally only deal with suffixes, not with prefixes. A morphological 
analyzer may go further and decompose a derived or compound word into all its 
components (Namer and Baud 2007).
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17.3.2  Terms and Concepts

Let us step aside for a second from this enumeration of linguistic units and consider 
the domain in which we want to represent information. This information may 
pertain to the concepts of the domain (diseases, genes, therapies, etc.) and their 
relations. Terms are the way concepts are expressed in a language. A term may 
consist of one or several words (necrosis, tumor, macrophage; synovial fluid, 
inhibitory potential, myocardial infarction, aminoacyl-tRNA synthetase multienzyme 
complex). A list of known terms may be compiled into a terminology, together with 
their concept identifiers, synonyms, broader and narrower terms. Given a terminol-
ogy, automatic term recognition (ATR), or controlled indexing, is the process of 
identifying its terms in a text, possibly under variant forms (e.g., myocardial infarc-
tion, cardiac infarction, infarction of heart) (Jacquemin 2001; Aronson 2001). 
Relevant information may also pertain to individual entities in the domain, such as 
a given hospital, organization, person, or location. Reference to such entities in a 
text typically uses proper names (Lhassa, Pasteur, etc.) and more generally what is 
called named entities in the natural language processing literature (Saint Jude 
Children’s Research Hospital, Dr. Singh, etc.). In a specialized domain, the distinction 
between terms and named entities may be somewhat blurred: does ICAM-1 refer to 
a unique entity or to a concept? It looks like a named entity but has the function of 
a term (intercellular adhesion molecule-1). We return to named entities and their 
recognition in texts below in Sect. 17.4. The concepts and relations of a domain 
may be organized in a formal representation called an ontology (Bodenreider 2008) 
which allows programs to draw inferences, including computing whether a concept 
is more specific or more general than another concept.

17.3.3  Syntactic Level Processing

Words are assembled into phrases and sentences which are structured by the syntax 
of the language. Syntax rules the form of terms, most of which are noun phrases 
(or NPs); for instance, malignant neoplasm of myocardium follows the general 
rules for English NP formation (adjective malignant modifies noun neoplasm, 
which has a complement introduced by preposition of). Syntactic structure is often 
represented as a tree where a sentence is recursively broken into smaller constitu-
ents (clauses, verb phrases, noun phrases, prepositional phrases, etc.: constituent 
structure) or as a tree where words are linked to their dependents through syntactic 
relations (dependency structure). It is often difficult for a program to determine the 
correct syntactic structure of a sentence because of the presence of ambiguity: a 
given word form may be assigned multiple parts-of-speech (e.g., controls may be a 
verb or a noun) and a given sequence of words may often be assigned multiple 
syntactic structures. For instance, consider the reasoning necessary to decide that 
and TNF-a release is coordinated with elevated levels of TNF-a rather than with 
disease in sentence (1):
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(1) Tumor necrosis factor alpha (TNF-a) is believed to play a significant role in the 
pathogenesis of dengue virus (DV) infection, with elevated levels of TNF-a in 
the sera of DV-infected patients paralleling the severity of disease and TNF-a 
release being coincident with the peak of DV production from infected monocyte-
derived macrophages (MDM) in vitro.

As a first step to compute the syntactic structure of a sentence, part-of-speech 
tagging is the task which aims to determine the correct part-of-speech of each word, 
in context, in a sentence. Most POS-taggers apply machine-learning methods (e.g., 
Hidden Markov Models) which are trained on human-annotated texts. A number of 
taggers are freely available, some of which have been specifically tuned for 
biomedical text (Smith et al. 2004).

Two classes of methods can be used to determine syntactic constituents and 
relations. Shallow, partial parsing methods perform a local analysis of sentence 
fragments (often called chunks), often based on regular grammars. Such grammars 
describe the (non-recursive) patterns which define these structures. They have limited 
expressiveness but are sufficient to identify many noun phrases and related 
constructs, and can be applied very efficiently to texts to locate these structures. 
They can be described with rules, regular expressions, or finite-state automata. 
Fuller parsing methods rely on more complete and expressive grammars, from 
context-free grammars to the more powerful unification grammars such as HPSG 
(head-driven phrase-structure grammar), which have a higher complexity but for 
which efficient algorithms have been designed (Miyao et al. 2006). Semantic grammars 
consist of syntactic rules which directly include semantic constraints, and are 
particularly suited to the analysis of sublanguages (Friedman et al. 2001).

17.3.4  Semantics and Discourse

Syntactic structure includes the grammatical relations (subject, object, etc.) between 
verbs (more generally, predicates) and their arguments (noun phrases, verb phrases, 
etc.). Thematic relations (or semantic roles) express the meaning that an argument 
plays with respect to the action or state described by its predicate: agent, patient, 
instrument, locative, temporal, manner, cause, etc. They provide a more precise 
representation of the information content of a sentence (who does what to whom 
etc.), which is particularly suitable for relation extraction (see below Sect. 17.4). 
Semantic role labeling is the task which aims to recognize the semantic role of each 
argument (Carreras and Màrquez 2005).

Discourse is the next linguistic level; it is made of several sentences. Discourse 
structure represents the links between the events described in these sentences. 
Several expressions referring to the same given entity or event may be encountered 
in a discourse (coreferences). Anaphora resolution is the identification of the link 
between an expression (pronoun, noun phrase) and the antecedent with which it 
corefers in the same discourse (see e.g., Branco et al. 2005). An example of coreference 
is shown below in the section, Question-answering and summarization.
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17.3.5  Data Driven Analysis

NLP methods, as artificial intelligence methods, typically break into two components: 
an algorithm, e.g., a parser, and a knowledge base, e.g., a grammar, which is 
crucial for the algorithm to perform its task. The knowledge base can be written 
by hand, relying on expert knowledge: this was the case for most NLP systems 
until the mid-nineties. It can also be learned from annotated data (even sometimes 
from un-annotated data), using machine-learning methods. When enough training 
data is available, machine-learning methods often meet or outperform expert-
based methods. This is the case for part-of-speech tagging, which can be viewed 
as a categorization problem, where a supervised learning method is trained on a 
corpus where each word has been hand-tagged with its correct part-of-speech 
(Smith et al. 2004). A language model encodes the probabilities of encountering 
a sequence of tokens in a language. High-level grammatical formalisms can also 
be the support of machine-learning methods, as in the Enju parser (Miyao et al. 
2006) where a probabilistic HPSG grammar is learned and then used to parse 
Medline abstracts. The proper assignment of predicate-argument relations 
(Surdeanu et al. 2003) or of semantic roles (Carreras and Màrquez 2005) based 
on a syntactic tree may be learned from a corpus where semantic roles have been 
manually annotated.

17.4  Information Extraction

Texts such as news articles or scientific papers are meant to convey information or 
knowledge to a reader. Information Extraction is the natural language processing 
task which consists in recovering predefined, interesting pieces of information from 
a collection of texts, typically to fill a database. This can be broken down into two 
main subtasks: recognizing entities of interest, named entity recognition (NER) and 
recognizing the relations described between these entities (relation extraction: who 
does what). A third, intermediate subtask (entity normalization) consists in resolving 
the found entities to unique identifiers (identifiers in a database or concepts in an 
ontology). These three subtasks can be compared to a typical curation pipeline for 
model organism databases (Morgan and Hirschman 2007).

To determine whether current text mining approaches are successful and practical 
in predicting interactions and accomplishing tasks needed for a successful predic-
tion pipeline (entity recognition and normalization, etc.), the Second Critical 
Assessment for Information Extraction in Biology challenge (BioCreAtIvE) 
was held in 2006–2007 (Hirschman 2007). The best systems combined machine 
learning with manually derived rules to find articles for curation, find relevant 
genes and proteins, and identify specific interactions. The next challenge in accom-
plishing the above tasks is a system that will be easy and intuitive to use “out of the 
box” (Hirschman 2007).
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17.4.1  Named Entity Recognition

Entities and relations depend on the domain and the focus of the task at hand. 
Information Extraction was first introduced in the context of the MUC series of 
DARPA-sponsored challenges (Grishman and Sundheim 1996), where entities and 
relations of interest have ranged from those in terrorist events (who was the perpe-
trator, human target, etc.) to those in joint ventures (which companies created which 
new company to produce what) as reported in newswire or newspaper articles. 
Interesting entities in these domains occurred in the texts as proper names (names 
of persons, organizations, locations, etc.), numeric expressions (quantities, monetary 
amounts) and dates. Because of the importance of proper names in these domains, 
they have been called named entities.

Interesting entities in the biomedical domain include genes, proteins, diseases, 
drugs, body parts, etc. Although many of these are expressed by terms (polyostotic 
fibrous dysplasia) rather than proper names (McCune-Albright), the term named 
entity is also applied to them. NER is the task which consists in spotting all occurrences 
of such entities in a text (Ananiadou et al. 2004). A related task was introduced 
above: ATR aims at detecting all occurrences of the terms of a terminology in a 
text. In the remainder of the paper, we use the term NER indifferently for both these 
tasks. Below is an example passage where human annotators marked the boundaries 
of named entities within square brackets and additionally tagged them with a 
semantic type (shown within angle brackets after the entity).

A MOST INTRIGUING EXAMPLE of [gain-of-function mutations]<mutation event>in 
[G protein a-subunits]<protein>causing [human]<organism>[disease]<disease>is the 
case of [McCune-Albright syndrome]<disease>([MAS]<disease>). [MAS]<disease>is a 
sporadic [disease]<disease>typified by [precocious puberty]<disease>, [monoostotic 5 
[fibrous dysplasia]]<disease>or [polyostotic fibrous dysplasia]<disease>, [café au lait 
pigmentation]<disease>, and several [endocrinopathies]<disease>.

NER can be based on a dictionary of all known entities. The problem with this 
approach, however, is that dictionaries are seldom complete because of the existence 
of variants and new names. A given entity name may be written in different ways: 
TNF-a, TNF-alpha, TNF alpha, Tumor necrosis factor alpha, Tumour necrosis 
factor alpha illustrate an abbreviation (TNF), a Greek letter and its full spelling, 
and US/GB variant spellings. For instance, the Metamap system (Aronson 2001) 
recognizes occurrences of the biomedical terms of the UMLS Metathesaurus, 
directly and under variant forms: upper/lower case, plural, noun/adjective, word order, 
punctuation, etc. The Metathesaurus covers a very large part of medical entities 
(body parts, diseases, procedures, drugs) but its coverage of biological entities (cell 
components, genes, proteins, etc.) is less developed. As an example of state-of-the-art 
NER, the above-mentioned sentence, run through Metamap, is tagged as follows:

5 The complete term here is monoostotic fibrous dysplasia, and was obtained through the analysis 
of adjective coordination in a noun phrase.



35717 Advanced Literature-Mining Tools

BookID 151692_ChapID 17_Proof# 1 - 21/08/2009

A MOST INTRIGUING EXAMPLE of gain-of-[function]<Physiologic Function> 
[mutations]<Genetic Function>in [G protein alpha-subunits]<Amino Acid, Peptide, or 
Protein,Enzyme>causing [human]<human>[disease]<Disease or Syndrome>is the case of 
[McCune-Albright syndrome]<Disease or Syndrome>([MAS] 6<=McCune-Albright 
syndrome:<Disease or Syndrome>>). [MAS]<=McCune-Albright syndrome:<Disease or 
Syndrome>>is a sporadic [disease]<Disease or Syndrome>typified by [precocious 
puberty]<Disease or Syndrome>, monoostotic or [polyostotic fibrous dysplasia]<Disease 
or Syndrome>, cafe [au]<Gene or Genome>lait [pigmentation]<Physiologic Function>, 
and several [endocrinopathies]<Disease or Syndrome>.

Moreover, new names are coined as new entities (e.g., genes, proteins, diseases, 
drugs) are discovered or created. Such names are understood in the text in which 
they occur, either because they are explicitly introduced (a new gene called XYZ) 
or marked by typical words (IGL gene, mitotic inhibitor), or because of the rela-
tions they have with other entities (XYZ binds to UVW). Methods must therefore be 
designed to cope with new terms or new variants dynamically. A study of entity 
occurrences may help unveil patterns such as those just cited. Alternatively, 
machine learning methods may be called upon to select the combinations of clues 
which best detect named entities. Hidden Markov Models (HMMs) and Conditional 
Random Fields (CRFs) are two methods which are suited to learn from sequential 
data: here, sequences of words and their features. The choice of features (e.g., capi-
talization, presence of numbers, presence of marker words, etc.) seems to be more 
important than the algorithm though (Yeh et al. 2005). Methods have also been 
proposed to constitute lists of entity names by observing the contexts in which they 
occur: words which occur in similar contexts tend to have similar meanings (Firth 
1957; Habert and Zweigenbaum 2002). The context of occurrence of a word is 
represented by its neighboring words or by its syntactic relations with the rest of 
the sentence. Similarity between context profiles is then used by clustering methods 
to build sets of words with similar meanings: genes, proteins, etc. (Sandler et al. 
2006). Table 17.1 shows two clusters built this way.

The BioCreAtIvE II Gene Mention (GM) task (Wilbur et al. 2007) evaluated the 
NER systems of 21 teams on the task of deciding which substrings of a set of 

Table 17.1 Clusters of words with similar meanings

Cluster 1 Cluster 2

Mouse, rat, rabbit, hamster, dog, cat, monkey, 
lean, GSH-Px, rhesus, cynomolgus, virgin, 
F344, hind, calf, lamb, horse, pig, sheep, 
goat, cattle, swine, chicken, quail, pigeon, 
heron, goose, chick, frog, zebrafish, rerio, 
Xenopus, owl, trout, salmon, lamprey, 
muskox, ovine, bovine, equine, PEDF, 
Yankasa, Charolais, bull, spermatozoa, 
Lewis, Fischer, secretor, Duffy, TN

junB, UCP2, decorin, Myogenin, AR, GR, 
PFK-A, TH, uPA, rhis4, GnRH-R, ZK7, 
c-mos, SPT10, FUT1, LHR, HO-1, 
tyrosinase, psaL, IRF-1, HAC1, SOCS-3, 
T24-ras, schizonts, CYP1A1, matrilysin, 
VCAM1, FGF-2, ULK2, AZS, CLA-1, 
PAI-2, PRLR, proenkephalin, PGHS-2, 
HFHZ, 5-HT2C-R, c-fms, ICK2, ASN1, 
ASN2, mHIF-1

6 MetaMap 2008 expands the abbreviation within the span of submitted text
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20,000 sentences were mentions of genes. The highest F-measure obtained by a 
system was 0.872. Most of the top-scoring systems used POS-tagging, several used 
stemming, abbreviations or chunking; all top-scoring systems used machine-learning 
methods, including Conditional Random Fields and Support Vector Machines.

17.4.2  Entity Normalization

Entity normalization (sometimes called term identification) consists of relating the 
mention of an entity in text to a unique identifier in a reference database. For instance, 
the BioCreAtIvE II Gene Normalization (GN) task (Morgan and Hirschman 2007) 
required identifying the EntrezGene identifier for each human gene or protein 
mentioned in a set of 262 Medline abstracts (a total of 785 gene identifiers). The 
highest F-measure obtained by a system in this task was 0.810, the highest recall was 
0.875, and the highest precision 0.841. This task can indeed build on the results of 
an NER system, augmented by a step where candidate gene mentions are matched 
against a lexicon containing gene symbols, names and synonyms, or aliases.

Entity normalization should also normalize protein names across multiple 
species. This was done for instance by (Wang 2007), who tagged the species of 
each protein using a combination of machine learning and rule-based disambiguation, 
improving their system’s entity normalization F-measure by 10 points compared to 
a baseline system.

17.4.3  Relation Extraction

Two entities found in the same sentence often take part in a joint event. For 
instance, in the following sentence, there is a (negative) exclusion relation between 
CRP measurement and deep vein thrombosis:

A normal serum CRP measurement does not exclude deep vein thrombosis.
Identifying such relations can rely on an analysis of the sentence. Full syntactic 

analysis (Miyao et al. 2006) or syntactico-semantic analysis (Lussier et al. 2006) 
may be called upon. As the verb exclude has the subject CRP measurement and the 
object deep vein thrombosis, the predicate-argument structure exclude(CRP, throm-
bosis) can be found in this sentence (Miyao et al. 2006). Local parsing may often 
be sufficient: patterns are built to check whether the expression between the two 
entities (here, does not exclude) expresses a relation. Such patterns may be designed 
by hand (Miyao et al. 2006), checking for typical relation markers (e.g., influence, 
effect, affect, role, response; mediate, regulate, regulation; induce, activate, activa-
tion, etc. See Table 17.2) and more precise regular expressions. They can also be 
learned from an annotated corpus where entity boundaries have been previously 
identified and each such expression has been tagged by the relation that links the 
two entities (Haddow and Matthews 2007). Machine learning methods can then be 



35917 Advanced Literature-Mining Tools

BookID 151692_ChapID 17_Proof# 1 - 21/08/2009

trained on such a tagged corpus to learn which combinations of cues are the most 
effective in detecting relations.

17.4.4  Annotated Corpora

Semantic role labeling can help further improve relation extraction. Based on 
an extract of the GENIA corpus where the predicate-argument structures of 30 
frequently used biomedical verbs predicates were annotated, Tsai et al. (2006) 
trained a role labeling system. Their system was much more effective at extracting 
arguments in the biomedical text than a general-purpose (newswire-oriented) 
semantic role labeling system, and obtained a global F-measure of 87%.

Annotated corpora are therefore a key element to develop information extraction 
systems. This is essential for machine-learning methods, which need annotated 
corpora for training. This is also important in general to provide a common basis for 
the comparative evaluation of information extraction systems, whatever their 
methods. The BioCreAtIvE II challenge protein–protein interaction task (PPI) 
organizers Krallinger et al. (2007) prepared a corpus where each full-text article was 
associated with manually-derived protein–protein interaction pairs. The systems had 
to produce, for each article, a ranked list of protein–protein interaction pairs, where each 
protein must be uniquely identified by a UniProt accession number or ID. The corpus 
was divided into training and test sub-corpora of 740 and 358 articles. The highest 
F-measure (averaged over the articles) obtained by a system was 0.2885, the highest 
averaged precision and recall were 0.3893 and 0.3073. The top-performing systems used 
not only machine learning methods but also general-language and domain-specific 
resources. It must be noted that different corpora generally have different properties, 
e.g., contain a varying number of occurrences of protein–protein interactions. Airola 
et al. (2008) underscore that in general, F-measure cannot be used to draw comparisons 
meaningfully across different corpora.

Table 17.2 Sentences containing relation markers

Sentence Example relations

Nicotinic acetylcholine receptors (AChRs) mediate rapid 
excitatory synaptic transmission throughout the 
peripheral and central nervous systems

Mediates (AChRs, rapid excitatory 
synaptic transmission)

Quercetin but not luteolin suppresses the induction of 
lethal shock upon infection

Suppresses (quercetin, lethal shock)

High levels of the intracellular signalling molecule cyclic 
diguanylate (c-di-GMP) suppress motility and activate 
exopolysaccharide (EPS) production

Suppresses (c-di-GMP, motility) 
activate(c-di-GMP, EPS 
production)

Negative regulators of PGC-1alpha such as RIP140 and 
160MBP suppress mitochondrial biogenesis

Suppresses (RIP140, mitochondrial 
biogenesis)

Suppresses (160MBP, 
mitochondrial biogenesis)
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17.4.5  Relation Extraction Challenges

Achieving perfect accuracy is a tall order for an NLP tool. The assertion let-7 is a 
master temporal regulator is relatively straightforward to analyze: the entities 
(let-7 and regulator) and their potential roles (encoded as semantic types in an 
ontology such as UMLS) could be recognized, for example, by a lexicon-based 
NER tool such as MetaMap; and the IS_A relation between the entities is explicitly 
stated and could be extracted by a number of statistical or knowledge-based rela-
tions extraction systems. More sophisticated processing is required to automatically 
“understand,” extract facts, and make inferences given more complicated text. 
Table 3 lists some manually derived relations potentially of interest to a biomedical 
researcher, which might be asserted and inferred given a passage of complex text.

The first challenge encountered by a NLP system in the text in Table 17.3 is to 
characterize the semantic relation that holds between let-7 and miRNA in the 
noun–noun compound (Nakov and Hearst 2006). Similarly, Ras guanosine triphos-
phatases and tumor cell lines need to be identified as multi-word terms, the former 
needs to be correctly associated with the Ras oncogene family. The location_of and 
part_of relations need to be identified for the latter term. Extraction of interactions 
between biological entities (let-7 NEGATIVELY_REGULATES Ras GTPases) is a 
complex task that builds upon recognition of named entities, determination of the 
entities participating in an interaction, and determination of a relation type between 
the interacting entities.

The above-described techniques are necessary to obtain precise information 
from each sentence in a corpus. The sentence-level information may then be aggre-
gated and filtered depending on the purpose of the information extraction process. 
Information may also be sought at the level of a whole corpus, e.g., to know 
whether there exists a relationship between two entities, for example, if somewhere 
in the corpus it is asserted that bone injuries are one of the neurofibromatosis type 
1 (NF1) lesions and it is asserted elsewhere that statins accelerate bone healing, a 
treat relation might be inferred between statins and Nf1-related bone fractures. In 
that case, a global analysis may be sufficient, and the mere, repeated co-occurrence 
of the two entities in the same sentence or even in the same abstract may be enough 
to assert this relationship.

Methods for extracting drug–gene relations based on co-occurrence of  
drug and gene names in a sentence have been developed in pharmacogenomics 

Table 17.3 A clause and relations of potential interest to biomedical researcher

The let-7 miRNA negatively regulates the 
oncogenic family of Ras guanosine 
triphosphatases in both Caenorhabditis  
elegans and human tumor cell lines

IS_A (let-7, miRNA)
NEGATIVELY_REGULATES(let-7,Ras GTPases)
PART_OF (Ras GTPases, Ras oncogene family)
LOCATION_OF (tumor cell, Ras GTPases)
PART_OF (tumor cell, Caenorhabditis elegans)
PART_OF (tumor cell, human)
CAUSES (Ras gene, tumors)
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(Rindflesch et al. 2000; Chang and Altman 2004). Wren and Garner (2004) establish 
a network of gene names associated with Gene Ontology (GO) categories by their 
co-occurrence within Medline records using fuzzy set theory. A graph-bigram 
traversal algorithm was proposed to identify and extracts point mutation associations 
from biomedical literature (Lee et al. 2007).

The global co-occurrence analysis method will be developed further in Section 
Literature-based discovery.

17.5  Building on Information Extraction

Natural Language Processing described above provides the foundation for more 
sophisticated text mining: deriving information from text through finding assertions 
and associations among entities, and inferencing, which ultimately serves as foun-
dation for summarization, question answering, prediction, and discovery as well as 
automatic merging of knowledge derived from textual information with informa-
tion extracted from knowledge bases.

17.5.1  Assisted Database Curation

One of the goals of finding assertions such as let-7 is a master temporal regulator 
is to then extract these facts for insertion into databases increasingly used by 
researchers. For example, the above fact is used as a part of Gene Reference Into 
Function (GeneRIF) in the Entrez Gene database. GeneRIFs are added to the data-
base to facilitate access to publications describing experiments that clarify gene 
functions. Such entries are mostly added to databases manually by database cura-
tors or suggested by volunteers. Manual database curation involves the following 
steps: (1) finding articles of interest; (2) finding and extracting facts (relations, 
events, associations, etc.) relevant to the database focus; and (3) converting 
extracted information into predefined standardized form. Text mining tools, 
although not currently ready to carry out the curation task on their own, are useful 
in assisting curators with information extraction (Rebholz-Schuhmann et al. 2005). 
A recent evaluation of such assistance in extracting protein–protein interactions 
found that a maximum speed-up of 1/3 in curation time can be expected if the tools 
are perfectly accurate (Alex et al. 2008).

As finding and predicting entity interactions is important in understanding the 
biological processes, many tools are dedicated to providing assistance with this 
task. Because of the complexity of the task and a need for high quality, these tools 
are specific to entity types, relation types, and organisms, and often developed for 
a specific database. For example, rather than modifying publicly available tools 
such as Textpresso (described in Section Applications) that focuses on Caenorhabditis 
elegans literature (Müller et al. 2004), or MedMiner developed for exploration of 
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literature on gene–drug and gene–gene relationships (Tanabe et al. 1999), special 
tools are developed to assist FlyBase curation (Karamanis et al. 2007), or establish 
knowledge about the relationships among drugs, diseases and genes (Chang and 
Altman 2004; Ahlers et al. 2007).

17.5.2  Question-Answering and Summarization

Finding and extracting sentences containing interactions is an important and hard 
problem, but not the end-goal of text mining. Ideally, depending on the nature of 
researchers’ questions and their background knowledge, a system would generate 
answers to the questions or summarize all extracted facts in personalized digests. 
First steps towards answering questions in the genomics domain were undertaken 
by a fairly large number of researchers within the Genomics track of the Text 
REtrieval Conference evaluations. Questions were collected in interviews with 
biomedical researchers. The evaluation participants had to extract passages of text 
from full text scientific publications to answer these questions. The track evaluators 
then manually extracted exact answers and their supporting statements from the 
passages submitted by participating systems (Hersh et al. 2007). As most systems 
relied on a typical two-stage question-answering process (finding relevant 
passages using an IR system and then looking for answers in these passages), the 
evaluation did not demonstrate any benefits of processing beyond passage retrieval. 
The collection of questions and answers generated in the process of Genomics 
track evaluations provides an opportunity to further research and develop 
biological question-answering systems, which ultimately will generate answers 
to a variety of biological questions.

In addition to recognition and extraction techniques described above, answer 
generation will require tools that reliably perform the following tasks:

•	 Duplicate or similarity detection. For example, given the following two state-
ments: miR-214 induces cell survival and cisplatin resistance by targeting PTEN 
and PTEN was shown to be a target of miR-214, a tool capable of identifying the 
redundancy of the second statement will present the first one as an answer.

•	 Controversy detection. A slight modification of the above second statement to 
PTEN was shown to be NOT a target of miR-214 would create a controversy that 
needs to be detected. Subsequently, both statements need to be presented to a 
researcher.

•	 Negation detection. Recognizing the above controversy requires negation detec-
tion along with other factors. General purpose negation detection tools (Mutalik 
et al. 2001), as well as tools developed specifically for the biomedical domain 
(Chapman et al. 2001) are extensively used in clinical text processing. Feasibility 
and complexity of detecting uncertainty and negation of protein–protein interac-
tion were recently analyzed in a small scale study (Sanchez-Graillet and Poesio 
2007). Further studies in this area will be facilitated by the BioScope corpus, 



36317 Advanced Literature-Mining Tools

BookID 151692_ChapID 17_Proof# 1 - 21/08/2009

which consists of medical and biological texts annotated for negation, speculation, 
and their linguistic scope (Szarvas et al. 2008).

•	 Anaphora resolution (resolving what a pronoun or a noun phrase refers to). For 
example, it is impossible to know which proteins are discussed in the following 
sentence: We show that human microRNA miR369-3 directs association of these 
proteins with the AREs to activate translation. without relating these proteins to 
the entities recognized as proteins in the preceding sentence in the publication: 
Upon cell cycle arrest, the ARE in tumor necrosis factor-alpha (TNFalpha) 
mRNA is transformed into a translation activation signal, recruiting Argonaute 
(AGO) and fragile X mental retardation-related protein 1 (FXR1), factors asso-
ciated with micro-ribonucleoproteins (microRNPs). A tool capable of resolving 
this reference will assist answering a question about miR369-3 role in translation 
activation given the document from which the above sentences were extracted.

The above techniques are needed not only to answer questions, but also to synthe-
size summaries. Summarization is a long-standing and active area of research in 
NLP. Free and commercial tools that generate single or multi-document summaries 
are available to generate indicative (suggesting the contents of a document) or 
informative (describing the essence of the document) summaries of retrieval 
results. A current more ambitious goal in this research area is to move from generic, 
all-purpose summaries to generation of topic-oriented summaries for specific users 
with complex information needs.

The ultimate goal of text mining tools is to go beyond questions answering and 
summarization and help researchers predict gene and protein functions, localiza-
tion, and interactions, as well as discover interactions between proteins and drugs. 
This is the topic of the next section.

17.6  Literature-Based Discovery

Information extraction collects basic facts 7 from texts: relations between entities of 
interest, such as mediates (ERbeta, ODD protection). Analyzing large repositories 
of scientific texts such as Medline can therefore help assemble large collections of 
potentially relevant facts. Literature-based discovery aims to build on such collec-
tions of basic facts to discover hidden, indirect connections which may constitute 
new knowledge.

Foundational research in this area was performed by Swanson (1986) who, by 
exploring the published literature, suggested that fish oil may be beneficial to 
patients with Raynaud’s disease. The linking clues were an effect of fish oil on 
blood viscosity, blood platelet aggregation, and certain vasoreactive characteristics, 
three conditions which are affected in patients with this disease. Since then, a series 

7 Although these may actually be hypotheses, observations, results, etc., we refer to them uniformly 
as “facts.”
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of methods and systems have been proposed by Swanson and others to automate a 
large part of this process (Srinivasan and Libbus 2004; Swanson et al. 2006; 
Smalheiser et al. 2006; Hristovski et al. 2006; Jelier et al. 2008).

The general schema of Swanson’s method considers a disease C (e.g., Raynaud’s 
disease). It is known on the one hand, according to the literature on disease C, that 
this disease has a characteristic B (e.g., increased blood viscosity); and the litera-
ture on a substance A (e.g., fish oil), on the other hand, records that A affects 
characteristic B. In such a situation, substance A may be a candidate to treat 
disease C. This is generally implemented through one of the following two search 
strategies. In closed discovery, the researcher tests the hypothesis that C and A are 
connected, and Bs must be discovered which link A and C. In open discovery, only 
disease C is given, and B characteristics, then A substances, must be generated. 
See Fig. 17.6 in the section on Applications for an illustration.

Literature-based discovery must address two issues: how to obtain basic facts 
from the considered literatures and how to connect these facts. The easiest medium 
to access the biomedical literature is the Medline bibliographic database. Most 
Medline records contain MeSH keywords and free-text title and abstract; full-text 
articles are a promising avenue for further research, but not all of them are freely 
available. Each MeSH keyword which indexes an article in Medline encodes an 
important topic covered in the article. The literature for an input term C can be 
obtained through a PubMed search for C. The MeSH keywords found in the 
retrieved records are therefore associated with the C literature and make up the set 
of candidate B terms: a basic fact here is an association between the initial C search 
term and a B MeSH keyword which indexes some of the retrieved articles (Srinivasan 
and Libbus 2004). As there may exist numerous B terms, they must be filtered to 
select the strongest associations. The number of occurrences of each association 
(and derived formulas, such as the term frequency–inverse document frequency (tf.
idf) used in IR) and the semantic type of the B MeSH keywords (e.g., enzyme, gene, 
etc., as found in the UMLS semantic network) are typical filtering criteria (Srinivasan 
and Libbus 2004). In the case of a closed-discovery strategy, the same process is 
applied to A terms, leading to a second set of candidate B terms, and the intersection 
of the two sets of B terms is computed. In the case of an open-discovery strategy, 
candidate B terms constitute new search terms from which associated literatures and 
attached indexing MeSH terms A are obtained. In the latter situation, additional fil-
tering needs to be performed on the A terms, again taking into account their semantic 
types and combined frequency of occurrence in the B literatures.

Instead of using MeSH terms, Swanson and Smalheiser Swanson et al. (2006), 
Smalheiser et al. (2006) use words and phrases found in article titles to obtain B 
terms. Words which occur frequently in article titles must be removed to prevent 
irrelevant links from being collected; a list of such words (stoplist) of a few hundred 
to a few thousand words was used in their experiments.

More precise basic facts may be obtained by calling on NLP techniques as 
presented in the section on Information Extraction above. NER helps detecting 
biomedical entities in the input titles and abstracts (Jelier et al. 2007; Pospisil et al. 
2006). Relation extraction based on full parsing identifies labeled relations between 
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these entities (Rzhetsky et al. 2006; Hristovski et al. 2006). Relation extraction 
based on co-occurrence based methods is a simpler, less computationally demand-
ing approach, which can nevertheless yield interesting results (Jelier et al. 2007). In 
the above-mentioned A–B–C scheme, these more precise relations help to label the 
A–B and B–C links and provide further filtering.

Another way to uncover implicit knowledge is to build larger networks of 
elementary relations extracted from the literature. Each elementary link in such 
a network is obtained by relation extraction as seen above. Paths of more than 
one link represent indirect relations between biomedical entities (Palakal et al. 
2007). The chronological ordering of links may also be important: Rzhetsky 
et al. (2006) study the patterns of chronologically ordered chains of statements 
about published molecular interaction. Their model enables them to make  
several observations, e.g., that “scientists are often strongly affected by prior 
publications in interpreting their own experimental data, while weighting their 
own private results [...] at least 10-fold as high as a single result published by 
somebody else.”

More information can be found in the review article (Weeber et al. 2005) and in 
the recent book (Bruza and Weeber 2008).

17.7  Applications

The research activities and specialized tools described above allowed for imple-
mentation of quite a number of applications actively used by biologists and bioin-
formatics researchers. This section presents several of the publicly available text 
mining tools. As some of the enhanced search engines, NER and relation extraction 
tools were presented previously, only a few online applications that combine these 
capabilities are discussed here.

17.7.1  Sentence and Entity Extraction Tools

A step beyond presenting a list of articles ranked by relevancy to the query is 
to present a ranked list of relevant sentences. Textpresso, an information 
extracting and processing package for biological literature associated with 
WarmBase, provides access to over 80,000 publications covering various 
model organisms. Figure 17.2 presents the structured query and the results of 
a search for C. elegans genes involved in axon guidance. The top sentence 
extracted by the system lists genes (linked to WarmBase entries) reported as 
acting in axonogenesis.

Textpresso’s collection of the full text of scientific articles is split into individual 
sentences, on which Textpresso performs semantic searches enabled by an ontology 
populated with terms categorized into 33 classes describing biological processes, 
concepts (e.g., gene), and relations (e.g., regulation) (Müller et al. 2005).
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EbiMed, 8 an EMBL-EBI service, allows searching a local copy of Medline. It 
then searches retrieval results for sentences containing biomedical terminology and 
generates a table that displays proteins, GO annotations, drugs, and species 
extracted from sentences in retrieved abstracts (see Fig. 17.3). The extracted sen-
tences and terms are linked to corresponding entries in biomedical databases 
(Rebholz-Schuhmann et al. 2007).

17.7.2  Relation Extraction and Entity Linking Tools

A step beyond sentence and terminology extraction and linking to databases is 
to identify and extract associations between entities (such as protein–protein 
interactions). The iHOP system,9 representative of the interactions detection systems, 

Fig. 17.2 Textpresso retrieval results for C. elegans genes involved in axon guidance

8 EbiMed – http://www.ebi.ac.uk/Rebholz-srv/ebimed/index.jsp
9iHOP – http://www.ihop-net.org/
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is gene/protein-centric: it organizes relevant sentences extracted from literature 
search results using gene/protein names (Hoffmann and Valencia 2004). Starting 
with a search for a gene or protein of interest, for example, unc-129, a user will 
see search results in the form of sentences containing gene names, one of which 
is the gene that served as a query. In addition to information about the gene, 
search results provide an opportunity to navigate to information about all other 
genes and biomedical terms identified in the page and linked to external 
resources, and build an interaction network of genes/proteins that co-occur in 
sentences (see Fig. 17.4).

Fig. 17.3 EBIMed search results for axon guidance genes in C. elegans
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Chilibot (chip literature robot)10 specializes in identification of relationships 
between genes, proteins, or arbitrary keywords in PubMed search results (Chen and 
Sharp 2004). Upon submission of two terms or two lists of terms of interest, 
Chilibot generates a network map that encodes the relations between the submitted 
terms. Figure 17.5 presents search results for unc-129, unc-130 and axon guidance,  
C. elegans.

Only abstract co-occurrence relations were identified between these terms, how-
ever, the system is capable of identifying four other relation categories (stimulatory, 

Fig. 17.4 iHop search results

10Chilibot – http://www.chilibot.net/
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Fig. 17.5 Chilibot search results: Initial graph, external links, and analysis of Medline abstracts
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inhibitory, neutral, and parallel) based on manually derived rules for each relation-
ship type. Clicking on the symbol in the interactive network map brings up infor-
mation about the term, a synopsis of search results for the term, its synonyms, and 
suggestions to generate hypotheses about the term’s relationships with other search 
terms. Clicking on the circles in the map brings up sentences describing the identi-
fied relationships.

17.7.3  Literature Based Discovery Assistance

Hypotheses generation is the ultimate goal of text mining tools. As described in 
the section on Literature-Based Discovery, the first literature based discovery  
was assisted by the ARROWSMITH11 application (Smalheiser et al. 2006).  

Fig. 17.5 (continued)

11 ARROWSMITH – http://arrowsmith.psych.uic.edu/cgi-bin/arrowsmith_uic/start.cgi
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Figure 17.6 demonstrates the steps in the ARROWSMITH process: selection of two 
sets of publications (“literature A” and “literature C”); an intersection of the litera-
ture and extraction of the potentially interesting terms performed by the tool which 
results in the B-list displayed ranked by relevance; and restriction of terms to certain 
semantic categories per user’s selection.

Another interactive literature-based biomedical discovery support system, 
BITOLA,12 assists with both open and closed discovery types (Hristovski et al. 2005).

12BITOLA – http://www.mf.uni-lj.si/bitola/

Fig. 17.6 ARROWSMITH search results
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Fig. 17.7 Arizona Network Visualizer relation exploration results

17.7.4  Visualization Tools

The form of presentation of text mining results is very important in assisting a 
scientist’s analysis of information. Visualization as a means to lessen the cognitive 
load and provide an overview of available information is increasingly used in 
specialized text mining tools. These tools have to address the following issues: 
visualization type (e.g., graph, treemap, star tree, hyperbolic tree, etc.); layout 
(aesthetically pleasing and meaningful arrangements of the elements); visual cues 
(color coding, shapes, etc.); navigation; and interactivity.

In addition to visualization capabilities in the above tools, Arizona Network 
Visualizer presents a framework for pathway-related knowledge integration and 
visualization. This demo application allows searching within the results of five 
broad PubMed searches, then selection of the extracted relations to present visually, 
and further interaction with the table and graph (Fig. 17.7).

Semantic MEDLINE13 is another visual exploratory demonstration of the results of 
relations and entity extraction from 35 PubMed searches. Figure 17.8 presents the 
results of visualization of pharmacogenomics relations identified by this application 
in the literature retrieved in a PubMed search for metabolic syndrome.

13Semantic MEDLINE – http://skr3.nlm.nih.gov/SemMedDemo/
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Fig. 17.7 (continued)
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Due to complexity of the underlying process, some of the applications described 
in this section seem fairly slow compared to online search engines and interactive 
web-portals from which a user expects almost instantaneous response. Some of the 
biomedical text mining tools speed-up processing by restricting the searches to 
local collections in which entities are identified and linked off-line, and relations 
are pre-computed to achieve real-time online interactions. Others seem better opti-
mized, yet others provide information about the current active step in the pipeline 
to let a user know the system is processing the request.

In general, the maturity of the tools engaged in the text mining pipelines paved 
the way for implementation of the sophisticated applications presented in this 
section and provided for many future improvements in terms of the scope of litera-
ture and knowledge bases coverage, data visualization, linking, and multi-media 

Fig. 17.8 Semantic MEDLINE summarization and visualization results
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navigation possibilities, as well as complex question answering and focused 
personalized summarization.

This brief introduction to BioNLP aims to provide an overview of natural language 
processing methods currently applied to biomedical sub-language. The textbooks and 
other lists at the end of the chapter provide links to in-depth information about NLP 
methods, available resources and the growing dynamic set of tools and applications.

17.8  Appendix

17.9  Lists of Tools and Services

State of the art NLP tools:
http://aclweb.org/aclwiki/index.php?title=State_of_the_art
Resource list compiled by Kevin Bretonell Cohen
http://compbio.uchsc.edu/corpora/bcresources.html
Resource list compiled by Robert Futrelle:
http://www.bionlp.org/
BioCreAtIvE bio-NLP tools:
http://biocreative.sourceforge.net/bionlp_tools_links.html
NLP and Text Mining Research list at NaCTeM:
http://www.nactem.ac.uk/research.php?view=4
Arrowsmith:
http://arrowsmith.psych.uic.edu/arrowsmith_uic/tools.html
The Open Directory Project:
http://www.dmoz.org/Science/Biology/Bioinformatics/Software/
The National Centers for Biomedical Computing (NCBC) funded under the NIH 
Roadmap for Bioinformatics and Computational Biology:

http://www.ncbcs.org/

17.10  Gene and Protein Name Resources

Entrez Gene:
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
FlyBase:
http://flybase.org/
HUGO Gene:
http://www.genenames.org/index.html
Model organisms:
http://www.nih.gov/science/models/
Mouse Genome Informatics:
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http://www.informatics.jax.org/
Saccharomyces genome database:
http://www.yeastgenome.org/gene_list.shtml
The Worldwide Protein Data Bank:
http://www.wwpdb.org/
UniProt:
http://www.ebi.ac.uk/uniprot/

17.11  Biomedical Terminologies

The national center for biomedical ontology:
http://bioontology.org/
The open biomedical ontologies:
http://www.obofoundry.org/
Resources for Biomedical Terminology and Ontology:
http://www.ldc.upenn.edu/mamandel/itre/term.html#Dictionaries
Unified Medical Language System
http://www.nlm.nih.gov/research/umls/
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18.1  Introduction

Owing to the recent advances in technology and to the growth in the number and 
size of projects tasked with collecting and assembling biological and genomic 
information, a highly heterogeneous collection of databases have become avail-
able to the community in the last two decades. As a consequence of rapid and 
distributed progress throughout the field, bioinformatics databases are provided 
in a variety of formats and specifications. This chapter discusses the most fre-
quently encountered data formats in bioinformatics and the tools used to access 
these data.

18.2  Fundamentals of Data Storage

In computer applications, information is stored in streams of bytes in the computer’s 
memory – be that volatile or permanent storage. Beyond the practicalities of a stor-
age location, accessing information requires control over two aspects. The first 
aspect is how the information is encoded into the stream of bytes, otherwise known 
as the format of the data. The second aspect is which applications can be used to 
perform the encoding (writing) and decoding (reading) of the data.

The two aspects are in fact closely intertwined. It is of no use to chose a complex 
and full-featured storage format unless a set of applications are readily available 
that can be used to access the data in the chosen format. Similarly, a simple and 
compact storage format that may be accessed by the most basic of tools becomes a 
limiting factor if more advanced operations cannot be performed.
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This tension is the crux of bioinformatics databases today. Throughout the 
wealth of projects dealing with collecting and publishing bioinformatics data, a 
number of formats have been established. Most widely used are flat-file formats, 
XML or relational databases.

18.3  Flat-File Formats in Bioinformatics

18.3.1  Overview of the Flat-File Format

Flat-file format is just another name for what is commonly understood as plain text 
files. Flat-file databases are formed from files that contain plain text; this text is 
usually formed using characters within the ASCII character set, although excep-
tions where the text contains characters from the extended ASCII or Unicode char-
acter set may also be considered flat files.

Data stored in flat-file format are usually structured as a collection of data 
entries, where an entry is a description of a specific entity of the data. For instance, 
in the Unified Protein Resource database, also known as UNIPROT (Uniprot 2008), 
an entry contains data about an individual protein sequence; it contains, among 
others, a list of identifiers, a description and a list of sequence features. In flat-file 
databases an entry is represented as a sequence of text lines, each line adhering to 
a well-defined format.

Entries in a flat-file database are typically listed sequentially in one or more text 
files. There is no established rule: in some databases all entries are stored in a single 
text file; in others each entry is stored in its own file. For larger databases a middle-
ground approach of combining entries into several large text files is required to 
avoid limitations of computer file systems and associated tools.

18.3.2  Advantages of Flat-File Formats

The main advantage of the flat-file format is its universality. The majority of com-
puting machines will have readily available software capable of reading, displaying 
and searching text files. Writing custom applications that perform simple manipula-
tion of text files is also relatively straightforward and does not require expert 
knowledge of any particular technology.

The flat-file format can thus be considered machine-independent, even though 
its origins can be traced to standards in UNIX operating systems, which are com-
monly used in data warehouses. The flat-file format is also less prone to conversion 
problems when transported from one machine to another, e.g., via FTP or even 
email, although this aspect has become less important today.

There is also, arguably, an advantage in the amount of space required for storing 
data in flat files. It is possible to define efficient formatting of the text that leads the 
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space taken by a flat-file representation to be equal, if not smaller than the space 
required for other representations, including relational databases and especially 
XML formats. Compactness of the format becomes a significant problem when 
data are transferred across the Internet, where transfer speeds become a major 
bottleneck in data processing.

Following from its universality, the flat-file format is also suitable for processing 
through a wide number of tools. The fundamental design philosophy behind most 
UNIX command-line tools is line-based processing of text files. These tools are 
thus extensively used for efficiently processing bioinformatics flat-file data. 
Similarly, an extensive range of analysis tools such as BLAST (Altschul et al. 1990) 
and CLUSTALW (Higgins and Sharp 1988) are designed to access data in flat-file 
format and benefit from its performance.

18.3.3 Flat-File Formats: A Worked-out Example

The example in Table 18.1 presents a cut-out of the CYC_HUMAN (human cyto-
chrome C) flat-file entry from the UNIPROT database. The format of the entry is 
defined as a series of lines of text finishing with the “//” sequence on a separate line.

Each line begins with a two-character field identifier. These identifiers are 
used to distinguish between different parts of the entry and their meaning. In this 
example, the ID field identifier indicates that the specific line contains a 
sequence of characters that uniquely identifies the entry – in this case CYC_
HUMAN. There is additional information on the first line that specifies the 
status of the entry and the length of the protein sequence defined by the number 
of amino acid residues.

The following lines provide additional information content for the entry. For 
example, the AC line lists previous accession numbers – these are unique identifiers 
by which the entry may have been referred to in the past or in other databases. The 
OS line indicates the organism species, which is the source of the sequence. In some 
cases, information may span over multiple lines: for instance, the CC lines contain 
multi-line comments. The sequence of lines may be repeated a number of times. For 
instance, each literature reference is encoded as a sequence of RN, RP, RX, RA, RT 
and RL lines, indicating the number, position, comment, cross-reference, authors, 
title and location of the reference respectively. Such repeating groups are sometimes 
referred to as subentries and may be considered in isolation from the main entry.

In some cases, an individual line (identified by a specific field descriptor) may 
also contain multiple fields of information and employs a set of specific tags to 
distinguish between these. For instance, the FT line defines a sequence feature; 
these features are described in terms of a feature key, a sequence range and further 
comments. Similarly, groups of CC lines use a special construction at the beginning 
of a comment block.

A human-readable specification of the format of entries in a particular flat-file 
database distribution is usually provided by the data publishers. Such specification  
should include detailed descriptions of both the structure and the semantic of the 
data contained in each line in the flat file.
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Table 18.1 Example flat-file text entry from UNIPROT (for brevity we use ellipsis 

within square brackets as placeholders for similar content)
ID   CYC_HUMAN               Reviewed;         105 AA. 
AC   P99999; A4D166; P00001; Q6NUR2; Q6NX69; Q96BV4; 
DT   21-JUL-1986, integrated into UniProtKB/Swiss-Prot. 
DT   23-JAN-2007, sequence version 2. 
DT   04-DEC-2007, entry version 56. 
DE   Cytochrome c. 
GN   Name=CYCS; Synonyms=CYC; 
OS   Homo sapiens (Human). 
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 
OC   Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; 
OC   Catarrhini; Hominidae; Homo. 
OX   NCBI_TaxID=9606; 
RN   [1] 
RP   NUCLEOTIDE SEQUENCE [GENOMIC DNA]. 
RX   MEDLINE=89071748; PubMed=2849112; 
RA   Evans M.J., Scarpulla R.C.; 
RT   "The human somatic cytochrome c gene: two classes of processed 
RT   pseudogenes demarcate a period of rapid molecular evolution."; 
RL   Proc. Natl. Acad. Sci. U.S.A. 85:9625-9629(1988). 
[……………]
CC   -!- FUNCTION: Electron carrier protein. The oxidized form of the 
CC       cytochrome c heme group can accept an electron from the heme group 
CC       of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c 
CC       then transfers this electron to the cytochrome oxidase complex, 
CC       the final protein carrier in the mitochondrial electron-transport 
CC       chain. 
[……………]
CC   ----------------------------------------------------------------------- 
CC   Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms 
CC   Distributed under the Creative Commons Attribution-NoDerivs License 
CC   ----------------------------------------------------------------------- 
DR   EMBL; M22877; AAA35732.1; -; Genomic_DNA. 
DR   EMBL; AL713681; CAD28485.1; -; mRNA. 
DR   EMBL; BT006946; AAP35592.1; -; mRNA. 
DR   EMBL; AC007487; AAQ96844.1; -; Genomic_DNA. 
DR   EMBL; CH236948; EAL24239.1; -; Genomic_DNA. 
DR   EMBL; BC005299; AAH05299.1; -; mRNA. 
DR   EMBL; BC008475; AAH08475.1; -; mRNA. 
[…………]
DR   PIR; A31764; CCHU. 
DR   RefSeq; NP_061820.1; -. 
DR   UniGene; Hs.437060; -. 
DR   UniGene; Hs.617193; -. 
DR   PDB; 1J3S; NMR; -; A=1-105. 
DR   IntAct; P99999; -. 
DR   PeptideAtlas; P99999; -. 
DR   Ensembl; ENSG00000172115; Homo sapiens. 
DR   GeneID; 54205; -. 
[……………………]
PE   1: Evidence at protein level; 
KW   3D-structure; Acetylation; Apoptosis; Direct protein sequencing; 
KW   Electron transport; Heme; Iron; Metal-binding; Mitochondrion; 

KW   Polymorphism; Respiratory chain; Transport. 
FT   INIT_MET      1      1       Removed. 
FT   CHAIN         2    105       Cytochrome c. 
FT                                /FTId=PRO_0000108218. 
FT   METAL        19     19       Iron (heme axial ligand). 
[…………………]
SQ   SEQUENCE   105 AA;  11749 MW;  8EE9689E0102506B CRC64; 
     MGDVEKGKKI FIMKCSQCHT VEKGGKHKTG PNLHGLFGRK TGQAPGYSYT AANKNKGIIW 
     GEDTLMEYLE NPKKYIPGTK MIFVGIKKKE ERADLIAYLK KATNE 
//
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18.3.4  Parsing and Indexing Flat-File Data

Parsing is a computing technique that can be used to identify and to extract specific 
parts or syntactic components from a given text (Grune and Jacobs 1990). In practi-
cal terms, parsing is implemented as a computer algorithm that follows a set of 
rules (usually called syntax or grammar) to identify parts of interest in a given input 
text. Parsing matches an input text with the set of rules: if the match fails, the text 
is rejected; if the match tallies, the text is usually broken down into parts.

A simple and widely used parsing technique is based on regular expressions 
(Aho et al. 1986; Appel 1998; Grune and Jacobs 1990). A regular expression 
reflects the formal notion of finite state automata (Aho et al. 1986); informally they 
are finite rules describing a sequence of texts through a combination of:

A specific sequence of characters•	
A repetition of such sequences or•	
An alternative of two or more sequences•	

A regular-expression-based parser matches the input text according to a regular 
expression. If a match is made, for each individual component of the regular 
expression the matching text is extracted.

Regular expressions are a popular concept that is accessible in most of 
today’s programming languages. This follows naturally as regular expressions 
are relatively simple and easy to understand. In bioinformatics regular expres-
sions gain even more relevance as parsers based on regular expressions are an 
efficient and practical solution for parsing flat-file data. Most flat-file formats 
use a field identifier at the beginning of the line similar to that in the UNIPROT 
format illustrated above. Such formats can be easily split into fields using a 
regular-expression matcher. UNIX shell commands or scripting languages as 
Perl (Wall et al. 2000) with built-in regular-expression support can be used to 
parse flat files and extract data.

Table 18.2 presents a small parser written in Perl. The example parses a flat file 
in UNIPROT format (see Table 18.1). The program reads the input line by line in 
the $line variable. Using Perl’s regular-expression matching constructs, the pro-
gram distinguishes between the ID line, AC lines and the SQ line, and prints out the 
first accession number (also known as primary accession) and the length of the 
corresponding protein sequence. The second part of the table illustrates a sample 
output of the program. To parse the entire data in a flat file more complex parsers 
have to be written, taking performance and memory usage considerations into 
account. See for instance BioPerl (Stajich et al 2002, http://www.bioperl.org), a 
wide collection of Perl bioinformatics tools.

A more complex but more powerful parsing technique is based on the notion of 
context-free grammars (Aho et al. 1986; Altschul et al. 1990). Context-free gram-
mars describe text as a set of potentially mutually dependent composition rules. 
For instance, a context-free grammar can be used to describe a language of trees. 
The grammar will define a tree as a combination of two branches and a joining 
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trunk. A branch can be then defined as a leaf or another tree. Such definitions create 
potentially infinite structures, but they are useful as they can express more complex 
languages than regular expressions can (Grune and Jacobs 1990).

There are not many instances of bioinformatics flat-file databases where context-
free grammars become necessary. Context-free grammars, however, may arguably 
be considered to provide a more practical method for defining and structuring a 
parser compared with regular expressions. Regular expressions tend to quickly 
grow in size and complexity when the text to be parsed becomes more complex; 
context-free grammars may provide a more compact and readable definition of the 
structure of the text to be parsed.

Parsers based on context-free grammars are, on the other hand, more difficult to 
implement. Fortunately, a number of open-source tools can be used either to parse 

Table 18.2 Simple parsing session using regular expressions in Perl

Sample Perl parser: 

my $newEntry = 1; 
while(<STDIN>) { 
   my($line) = $_; 
   chomp($line); 
   if($line =~ /^ID/) { 
       # matched ID line 
       $newEntry=1; 
   } 
   if($line =~ /^AC\s*(\w+)/) { 
       # matched AC line 
       if ($newEntry==1) { 
           # print only when at first line 
           print "Primary accession " . $1; 
       } 
       $newEntry=0; 
   } 
   if($line =~ /^SQ\s*\w*\s*(\w*)/) { 
       # match SQ line 
       print "  sequence length: " . $1 . "\n"; 
   } 
   # ignore other lines 
}

Sample output: 

> perl example.pl < uniprot.dat 
Primary accession Q4U9M9  sequence length: 893 
Primary accession P15711  sequence length: 924 
Primary accession Q43495  sequence length: 102 
Primary accession P18646  sequence length: 75 
Primary accession P13813  sequence length: 296 

……… 
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with context-free grammar definitions or to compile context-free grammar defini-
tions into efficient parsers. A popular choice is the open-source GNU Bison (http://
www.gnu.org/software/bison/), versions of which are available in almost any pro-
gramming language.

18.3.5  Practical Aspects of Flat-File Formats

Despite the fact that basic tools for processing text files are readily available, the 
sheer size and complexity of the data stored in flat-file formats demand the devel-
opment of specialized software for accessing and retrieving data in this format. 
Most well-known flat-file bioinformatics databases have grown to be amazingly 
complex and simple text processing tools are no longer able to extract the informa-
tion in all its complexity.

While the flat-file format solves the problem of transport and conversion across 
heterogeneous platforms, retrieving information from flat files remains a complex 
task. Some of the current flat-file databases, for instance, EMBL or GENBANK, 
have grown to hundreds of gigabytes of text and more than one hundred million 
entries at the date this chapter has been written. The set of basic text-processing 
tools available on most systems are not designed to cope with such sizes. Since 
more than a decade ago it has been unfeasible to search, locate and retrieve infor-
mation stored in such flat-file databanks by using basic text-processing tools; for this 
purpose dedicated parsing and indexing tools have been developed.

18.3.6  Bioinformatics Flat-File Data Integration

A number of specialized software solutions have emerged to provide a search and 
retrieval service across flat-file databases. A pioneering system is Sequence 
Retrieval System (SRS). SRS is discussed in more detail in another section below. 
At present a number of commercial products provide bioinformatics flat-file data-
processing features; at the same time a wide range of open-source tools developed 
in the academic community are available.

When specialized data integration software are not available, a dedicated flat-file 
data parser may be used to import the data into a data management system. Such 
systems are usually Relational Database Management Systems (RDBMS) that pro-
vide search and indexing facilities via SQL queries. There is a certain amount of 
flexibility in this approach, as the users control the import process and define which 
parts of the data are imported in the RDBMS and used later on. However, the 
import process may end up requiring a significant amount of time and resources; 
further effort has to be spent optimizing and tuning an RDBMS system to provide 
acceptable performance when operating on the largest of the bioinformatics databases 
currently available.
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Over a period of time, bioinformatics data not only grow in terms of sheer size, 
but the data also frequently change format. As projects merge and changes in pro-
cedures are implemented, the precise details of a flat-file format for a specific 
database may change as well. Often such changes involve addition of new fields of 
information: new delimited lines in the format of an entry or additions of new refer-
ences to other databases. Occasionally, the entire structure and semantic of the 
fields may change.

When such changes occur, all related flat-file parsers and associated programs 
have to be updated accordingly. The maintenance of dedicated parsers for each of 
the bioinformatics databases becomes a significant overhead over time. For these 
reasons other formats such as XML are increasingly adopted; we discuss these in 
the next sections.

18.3.7  Sequence Formats

A large number of bioinformatics databases contain explicit descriptions of proteins 
or nucleic acids in the form of a sequence. For instance, nucleic acids are described 
by the sequence of the constituent bases. In text form each base is represented via 
a single-letter code following a standard established by the International Union of 
Biochemistry and Molecular Biology (IUPAC 1984). The same holds for protein 
sequences, which are described as the sequence of amino acid building blocks of 
the protein.

While the alphabet of sequences has been standardized, the actual formatting of 
the sequence in text files differs from database to database and in between indi-
vidual software applications. The format of a sequence is important, as the sequence 
is often extracted by users and reused across multiple applications, for analyses, 
display and publication. It has become customary for a number of software tools to 
automatically distinguish and accept sequences in different formats.

Sequence formats differ mostly in the layout and formatting of lines of sequence 
codes, while some formats also provide a description or meta-information line or 
set of lines. Table 18.3 shows examples of a sequence formatted in some of the 
common sequence formats.

18.3.8  Constructed Sequences

It is not just the annotations in a sequence database which make reference to infor-
mation in other entries or databases. Some sequence databases may contain entries 
that do not list the actual content of a sequence, but instead give a list of instructions 
on how to construct the sequence from data in other entries in the database.

As an example, the EMBL nucleotide sequence database contains CON (con-
structed) sequence entries. These entries represent chromosomes, genomes or other 
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Table 18.3 The UNIPROT/P32234 protein sequence under four different sequence formats

FASTA format: 

>uniprot|P32234|128UP_DROME GTP-binding protein 128up. 
MSTILEKISAIESEMARTQKNKATSAHLGLLKAKLAKLRRELISPKGGGGGTGEAGFEVA
KTGDARVGFVGFPSVGKSTLLSNLAGVYSEVAAYEFTTLTTVPGCIKYKGAKIQLLDLPG
IIEGAKDGKGRGRQVIAVARTCNLIFMVLDCLKPLGHKKLLEHELEGFGIRLNKKPPNIY
YKRKDKGGINLNSMVPQSELDTDLVKTILSEYKIHNADITLRYDATSDDLIDVIEGNRIY
IPCIYLLNKIDQISIEELDVIYKIPHCVPISAHHHWNFDDLLELMWEYLRLQRIYTKPKG
QLPDYNSPVVLHNERTSIEDFCNKLHRSIAKEFKYALVWGSSVKHQPQKVGIEHVLNDED
VVQIVKKV

Swissprot format: 

SQ   Sequence   368 AA; 
     MSTILEKISA IESEMARTQK NKATSAHLGL LKAKLAKLRR ELISPKGGGG GTGEAGFEVA 
     KTGDARVGFV GFPSVGKSTL LSNLAGVYSE VAAYEFTTLT TVPGCIKYKG AKIQLLDLPG 
     IIEGAKDGKG RGRQVIAVAR TCNLIFMVLD CLKPLGHKKL LEHELEGFGI RLNKKPPNIY 
     YKRKDKGGIN LNSMVPQSEL DTDLVKTILS EYKIHNADIT LRYDATSDDL IDVIEGNRIY 
     IPCIYLLNKI DQISIEELDV IYKIPHCVPI SAHHHWNFDD LLELMWEYLR LQRIYTKPKG 
     QLPDYNSPVV LHNERTSIED FCNKLHRSIA KEFKYALVWG SSVKHQPQKV GIEHVLNDED 
     VVQIVKKV 
//

GCG format: 

128UP_DROME  Length: 368  Check: 6459  .. 

       1  MSTILEKISA IESEMARTQK NKATSAHLGL LKAKLAKLRR ELISPKGGGG GTGEAGFEVA 
      61  KTGDARVGFV GFPSVGKSTL LSNLAGVYSE VAAYEFTTLT TVPGCIKYKG AKIQLLDLPG 
     121  IIEGAKDGKG RGRQVIAVAR TCNLIFMVLD CLKPLGHKKL LEHELEGFGI RLNKKPPNIY 
     181  YKRKDKGGIN LNSMVPQSEL DTDLVKTILS EYKIHNADIT LRYDATSDDL IDVIEGNRIY 
     241  IPCIYLLNKI DQISIEELDV IYKIPHCVPI SAHHHWNFDD LLELMWEYLR LQRIYTKPKG 
     301  QLPDYNSPVV LHNERTSIED FCNKLHRSIA KEFKYALVWG SSVKHQPQKV GIEHVLNDED 
     361  VVQIVKKV 

Pretty-print format: 

1         11        21        31        41        51
MSTILEKISAIESEMARTQKNKATSAHLGLLKAKLAKLRRELISPKGGGGGTGEAGFEVA
61        71        81        91        101       111
KTGDARVGFVGFPSVGKSTLLSNLAGVYSEVAAYEFTTLTTVPGCIKYKGAKIQLLDLPG
121       131       141       151       161       171
IIEGAKDGKGRGRQVIAVARTCNLIFMVLDCLKPLGHKKLLEHELEGFGIRLNKKPPNIY
181       191       201       211       221       231
YKRKDKGGINLNSMVPQSELDTDLVKTILSEYKIHNADITLRYDATSDDLIDVIEGNRIY
241       251       261       271       281       291
IPCIYLLNKIDQISIEELDVIYKIPHCVPISAHHHWNFDDLLELMWEYLRLQRIYTKPKG
301       311       321       331       341       351
QLPDYNSPVVLHNERTSIEDFCNKLHRSIAKEFKYALVWGSSVKHQPQKVGIEHVLNDED
361
VVQIVKKV
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long sequences constructed from sequences defined in other entries in the database. 
Such format makes it difficult to retrieve the consequence, as a specific algorithm 
is required to assemble the entire sequence from the referenced sequences.

18.4  The XML Format in Bioinformatics

XML (the eXtensible Markup Language) is a language for structuring data in text 
files. The World Wide Web consortium (http://www.w3c.com), the body which cre-
ates Internet standard recommendations, has defined the XML recommendation 
(XML 2006) as a generic platform-independent format for structured documents. 
In the last decade, the XML format has become ubiquitous in computing applica-
tion as the language of choice for exchanging data between computer systems and 
applications.

An XML document represents a nested tree of information. Each node in the tree 
can contain data, a list of sub-nodes and a list of attributes, and an XML document must 
start with a root node. An XML document has a textual representation where the con-
tent of each node and its sub-nodes is delimited by a pair of mutually enclosing tags.

18.4.1 XML Format: A Worked-out Example

A cut-down example of an XML document taken from the MEDLINE database is 
provided in Table 18.4. The document contains data about a publication from a life 
sciences journal. The root node of the document is given by the MedlineCitation 
tag. The children of the nodes are delimited with tags, for instance, an identifier tag 
(PMID), several date tags indicating creation, update and revision date, tags identi-
fying the publication journal details, the title, abstract, authors, etc. It can be 
observed how the data are structured around a disciplined use of tags: for instance, 
all the journal data are contained inside tags within the main journal tags.

18.4.2  Document Type Definition (DTD)

An XML document is structured according to a Document Type Definition (DTD) 
(XML 2006). A DTD defines a class of XML documents that satisfy a set of struc-
tural rules. Such rules may indicate, for instance, what types of, and how many, sub-
nodes a certain type of node may have. A DTD is associated with an XML document 
via a Document Type Declaration, and such declaration indicates that the XML docu-
ment adheres to the class of documents with the structure defined in the DTD. A DTD 
is itself specified via XML, and may be included directly in the type declaration of 
the XML document, or, more conveniently, stored and referenced as a separate file.
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Table 18.4 Example XML entry from MEDLINE (for brevity we use ellipsis within square 

brackets as placeholders for similar content)
<MedlineCitation Owner="NLM" Status="MEDLINE"> 
<PMID>10697468</PMID>
[… … … …] 
<Article PubModel="Print"> 
<Journal>
<ISSN IssnType="Print">0099-2399</ISSN> 
<JournalIssue CitedMedium="Print"> 
<Volume>1</Volume>
<Issue>6</Issue>
<PubDate>
<Year>1975</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of endodontics</Title> 
</Journal>
<ArticleTitle>Methodology and criteria in the evaluation of dental im-
plants.</ArticleTitle>
<Abstract>
<AbstractText>This study was designed to develop an inexpensive, reproduci-
ble method for studying the reaction of the tissues of the oral cavity to 
the endosseous implant. Thirty-six guinea pigs, three materials (Teflon, Vi-
tallium, and Titanium 6Al-4V), two observation periods (two and 12 weeks), 
and two implant designs (one with exposure to the oral cavity and one with-
out exposure to the oral cavity) were used. The inflammatory response was 
significantly greater in the exposed implants than in the unexposed im-
plants. In the implants that were exposed 12 weeks, there was a strong in-
terrelationship between severe inflammation, bacteria, and epithelial in-
vagination. These factors are significant causes for failures of 
implants.</AbstractText>
</Abstract>
<Affiliation>CAMM Research Institute, Wayne, NJ, USA.</Affiliation> 
<AuthorList CompleteYN="Y"> 
<Author ValidYN="Y"> 
<LastName>Neuman</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y"> 
<LastName>Spangberg</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
[… … … …] 
</Article>
[… … … …] 
</MedlineCitation>
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A DTD for the document in Table 18.4 is presented in Table 18.5. We can follow 
the structure of the XML document in Table 18.4 by reading the DTD: a citation is 
formed from an ID and an article; in turn an article contains journal information, an 
optional abstract and an optional author list. The journal is defined by its ISSN 
number, issue and title, while the author list contains a sequence of authors identi-
fied by name, surname, etc. The DTD also specifies how tags may have attribute 
values and what those values may be.

18.4.3  Advantages of the XML Format

Designed to become an international standard, XML has the major benefit of being 
a de facto lingua franca for computer applications. Almost every application pro-
gramming environment in use today provides tools and libraries for reading and 
storing data in XML format.

Table 18.5 Document type definition (DTD) for the XML document in Table 18.4

<!ELEMENT MedlineCitation (PMID, Article)> 
<!ELEMENT Article (Journal, ArticleTitle, Abstract?, AuthorList?)> 
<!ELEMENT Journal (ISSN, JournalIssue, Title)> 
<!ELEMENT JournalIssue (Volume?, Issue?, PubDate)> 
<!ELEMENT Abstract (AbstractText)> 
<!ELEMENT Author (LastName, ForeName, Initials?)> 
<!ELEMENT AuthorList (Author+)> 
<!ELEMENT PubDate (Year, Month, Day)> 

<!ELEMENT AbstractText (#PCDATA)> 
<!ELEMENT ArticleTitle (#PCDATA)> 
<!ELEMENT Day (#PCDATA)> 
<!ELEMENT ForeName (#PCDATA)> 
<!ELEMENT Issue (#PCDATA)> 
<!ELEMENT ISSN (#PCDATA)> 
<!ELEMENT Initials (#PCDATA)> 
<!ELEMENT LastName (#PCDATA)> 
<!ELEMENT Month (#PCDATA)> 
<!ELEMENT PMID (#PCDATA)> 
<!ELEMENT Title (#PCDATA)> 
<!ELEMENT Volume (#PCDATA)> 
<!ELEMENT Year (#PCDATA)> 

<!ATTLIST MedlineCitation 
 Owner (NLM | NASA | NOTNLM) "NLM" 
 Status (Completed | In-Process) #REQUIRED> 
<!ATTLIST AuthorList CompleteYN (Y | N) "Y"> 
<!ATTLIST Article PubModel (Print | Electronic) #REQUIRED > 
<!ATTLIST JournalIssue CitedMedium (Internet | Print) #REQUIRED> 
<!ATTLIST Author ValidYN (Y | N) "Y"> 
<!ATTLIST ISSN 
   IssnType  (Electronic | Print | Undetermined) #REQUIRED 
>
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18.4.4  Document Object Model (DOM)

The conceptual representation of an XML document is the Document Object Model 
(http://www.w3c.org/DOM/), a software model of the tree-like data contained in an 
XML document. The process of translating an XML document into a DOM object 
is standardized and well understood. Numerous implementations exist, varying in 
complexity, performance and standards support.

Similar to XML, DOM is universal, and software applications working with 
DOM objects are essentially processing XML data. Some of the most common 
software tools, for instance Internet Browsers, provide seamless XML integration 
and DOM-level programming support. Similarly, a whole range of document man-
agement systems, search and indexing engines are able to index, search and retrieve 
information from XML files in a DOM-compliant format.

18.4.5  Practical Aspects of Using XML

The most controversial feature of XML is, possibly, its verbosity. Most critics of 
XML point to the relatively poor ratio between the size of a typical XML document 
and the quantity of information contained within the document: XML documents 
tend to demand a good deal of disk space but contain a relatively smaller amount 
of information compared with other storage formats. The main reason for this low 
ratio is understood to be the use of long tag names and the amount of repetitions of 
these tags; similarly, the use of closing tags is considered redundant, but is required 
as part of the XML standard.

These drawbacks can be alleviated by using compression techniques; this, how-
ever, introduces another level of complexity and can break the universality of the 
format. XML was intended to be (at least partially) readable by humans as well, and 
therefore the redundancy provided by the liberal use of tags is helping in that 
respect. In bioinformatics, where data grow at a rapid pace and are often down-
loaded over the internet via restricted bandwidths, the size of an XML document 
may become a significant slowdown factor in obtaining the data rapidly. Similarly, 
already high storage requirements for bioinformatics databases become even higher 
when using the XML format.

Another potential drawback is that most software tools designed to process 
data in XML format expect the entire data to be contained in one XML document 
with a root element. This assumption creates significant problems when loading 
data from bioinformatics databases, which may contain tens or hundreds of giga-
bytes of data. In such cases specialized tools must be used to load only parts of 
an XML document. Alternatively, data are structured into a collection of XML 
documents, each adhering to the same format; even in this case specialized tools 
operating outside of the XML standards must be used to aggregate the data into 
a unified repository.
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18.4.6  XML Formats in Bioinformatics

XML is widely used in bioinformatics as a data format. Although not specifically 
containing biological or genomic sequence data, a common source of information 
distributed in XML format are the MEDLINE and MeSH databases from the 
United Stated National Library of Medicine (http://www.nlm.nih.gov/).

Today, the MEDLINE database contains over 16 million literature references, com-
plete with abstracts. The database is widely used as a preliminary source of information 
on studies and scientific discoveries in medical, biological, genetics and biochemistry 
research. Many of the existing curated genomic and proteomic sequence databases 
contain direct references to the entries in MEDLINE that identify relevant publications. 
MEDLINE is distributed as a set of XML files together with the associated DTDs via 
the U.S. National Library of Medicine’s website. The associated Medical Subject 
Heading (MeSH) database (see http://www.nlm.nih.gov/mesh/) contains a hierarchical 
structure of terms; MeSH terms are used to index the text in MEDLINE records, and, 
in turn, can be used to search text articles with variable degrees of specificity.

XML is also commonly used as a communication language between software 
applications. Most frequently encountered is the SOAP protocol which uses XML 
as a format for transported data in web service-based applications. Tools for workflow 
management systems are just another example of a growing number of bioinfor-
matics applications using the XML format.

18.4.7  Other XML Concepts

The W3C consortium has also developed a number of standards dealing with con-
cepts used for accessing and operating with XML documents. XPath (XPath 1999) 
is a language used to access/identify parts of an XML documents; it is closely 
related to the notion of paths in a tree. XQuery (XQuery 2007) is a language used 
to search XML documents. Relying on these, the XSLT standard (XSLT 1999) 
provides a flexible and powerful means of defining XML document transforma-
tions. The use of XSLT definitions for XML documents that result in HTML code 
displaying information in web browsers has become increasingly common in web-
enabled software applications.

18.5  Relational Databases

Relational databases are a form of structuring data according to a well-defined 
relational model.

Informally, the basic building block of a relational database is the table: a set of 
rows, each row containing the same number of columns, where each column 
adheres to a well-defined type of values. Formally (Codd 1983), the relational 
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model organizes data in relations, defined as a set of n-tuples of elements, each 
element in the n-tuple belonging to a distinctive set.

Often a table will contain a designated column that holds a unique identifier (ID) 
for each row. Such a column is not mandatory, and it is not uncommon to obtain 
unique IDs by combining values contained in more than one column in a table. Tables 
may have attached indices to improve the performance of locating individual rows.

A relational database may contain a number of tables which are often connected 
via relationships and constraints. These are means to ensure consistency of the data 
under consideration. For instance, in a database of genes where genes are associated 
with organisms, an integrity constraint may demand that any genomic sequence 
must be connected with an organism in the database. Such a constraint will prevent 
the user from entering a sequence into the system without indicating to which 
organism it belongs (where such an organism must already exist in the database).

18.5.1  Relational Database Modeling

The relational database model is designed to allow definition of complex relation-
ships and connections between the data, to ensure that the data closely reflect the 
structure of the domain it records. The process of translating data within a specific 
domain into a relational database is called database modeling. Database modeling 
is a fairly complex process involving a number of trade-offs. The first step in data-
base modeling is the definition of tables and the formats of individual columns. 
More complex steps involve the definition of relationships and the normalization of 
the data. Normalization seeks to remove redundancies in the database, namely 
instances where data are being duplicated, either in a single table or across several 
tables. While formally there are several well-defined levels of normalization, each 
more complete than the other, in practice the goal of normalization is to find the 
right trade-off between redundancy and performance. The optimal result is highly 
dependent of the database system being used, and the frequency or most-common-
type of access that the database will be subject to.

The result of a database modeling effort is a database schema: this is a signature 
of the tables and relationships contained in the database. A concrete database 
schema defines the exact tables in the database with details for each individual 
column. It also defines the relationships and constraints that are established between 
columns and tables in the database.

18.5.2  Relational Databases: A Worked-out Example

For an example of a relational database we consider a relational model of the data 
contained in the XML example in the previous section. The database contains a list 
of citation records; a visual illustration of the schema is displayed in Fig. 18.1.
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The data are structured in five tables, each table having a primary key identifier. 
The citation table contains data about a publication – the publication date, the title, 
abstract and a link to a journal issue record, which, in turn, contains data that iden-
tify the publication volume. The link is established via a many-to-one relationship 
(highlighted in Fig. 18.1) which can associate one or more publications to a journal 
issue. In turn, a journal issue is associated with a particular journal entity. In a 
slightly different approach, authors are associated with publications via a join table. 
This table lists associations between individual publications and author records; this 
way an author can be associated with more than one publication, and one publication 
associated with more than one author.

We visualize a sample of data from the five tables in Fig. 18.2. Three different 
citations are listed from three different issues of three journals, respectively. Two citations 
share an author (“L. Spangberg”), and this is captured by the authors join table.

Data can be extracted from the relational database using SQL queries. An example 
SQL query is provided in Fig. 18.3. The query selects the author name, publication 
title and journal name for each publication of L. Spangberg.

18.5.3  Relational Database Management Systems

Systems that implement the relational database model are known as RDBMS. 
There are several well-established software products, both commercial and open-
source, that provide different levels of functionality. The standard today is in 

Fig. 18.1 Example schema for a simple citations database
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database servers, stand-alone software suites that serve data requests to clients over 
common network protocols; these store the data allowing users to add, delete or 
search for data in various ways via a well-defined and well-understood SQL 
language. Fortunately, due to the substantial effort invested in the development of 
relational database systems, these provide significant performance and functionality 
benefits. The major products (Oracle, MySQL, Microsoft SQL Server) have become 
ubiquitous; almost any computing department will be using a form of relational 
database system.

Fig. 18.2 A snapshot of data in the citation database

Fig. 18.3 An SQL query against the citation database and its result
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18.5.4  Advantages of Using Relational Databases  
in Bioinformatics

The major relational database systems are well known for their stability and 
reliability. The soundness of the model behind relational databases coupled with 
system reliability and well-proven record in the software industry makes an 
RDBMS a favourite with systems developers. In addition, any of today’s major 
RDBMS will provide functionality for clustering and distributing data across 
multiple machines to cope with the increasing volume of bioinformatics data. 
Not least, the ability to update and add data in the system is a major improvement 
compared with systems that rely on static flat files on the disc.

18.5.5  Practical Aspects of Relational Database Systems

Any of today’s RDBMS is a complex system requiring expert knowledge in con-
figuration and deployment. Management and maintenance of large databases, espe-
cially some of the largest sequence databases, raises certain difficulties. Commercial 
systems may require expensive licenses to provide satisfactory performance with 
large volumes of data. Similarly, the formatting and modeling of data always leads 
to trade-off decisions: for instance, a decision on a particular length of a text field 
may have to be revised as more verbose data are added. It is not uncommon for 
restrictions on the maximum length of text fields or allowable number of binary 
fields to be reached with bioinformatics data.

The maintenance of a bioinformatics database within an RDBMS requires dedi-
cated resources; when data format changes, tables may need to be recreated and 
indices need to be rebuilt. Depending on size, complexity and availability of hard-
ware such operations can take significant amounts of time, during which systems 
may be partially unavailable. Coupled with the fast update cycle of some public 
databases, often maintenance of databases ends up taking a significant proportion 
of the available time of the total system. These problems amplify when building a 
system that contains a number of relational databases from disparate sources, when 
further translations and relationships must be custom-built.

These problems are not unique to today’s RDBMSs. Indeed these problems are 
common to all systems that deal with large amounts of heterogeneous data that 
constantly change format and volume. The RDBMS is simply a tool in building 
such a system, while other dedicated data integration systems may have specific 
features that allows them to deal with the specific features of the bioinformatics 
domain.

Distribution-wise, relational databases are highly dependent on a particular 
implementation system. Due to licensing costs, relational database dumps are 
rarely distributed in other formats than the ones supported by open-source, freely 
available implementations, for instance, the MySQL Community Server.
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18.5.6  Examples of Bioinformatics Relational Databases

Often the data provider takes the entire effort of data modelling and management 
on themselves. Several projects publish bioinformatics data in relational form or 
directly by providing database servers access via the Internet where data can be 
retrieved directly.

The Ensembl database (Hubbard et al. 2007) maintained jointly by the European 
Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute is a public 
database of annotated genome data covering a range of eukaryotic organisms, 
mostly concentrated on vertebrate genomes. The data are directly accessible via a 
MySQL server, although due to the complexities and the large number of schemas 
involved the Ensembl developers recommend access via a dedicated Perl API.

The Gene Ontology database (Gene Ontology 2000) is also distributed as a 
MySQL relational database; the database contains a database of genomic terminol-
ogy structured into an ontological structure: a structure that defines a network of 
relationships between terms based on specific criteria. The gene ontology database 
is structured based on cellular component, biological process and molecular func-
tion criteria, and relationships identify, for instance, “is part of” or “is a” types of 
connections between terms. The Gene Ontology database contains direct informa-
tion associating gene products with their functions and data existing in other public 
databases identifying, for instance, concrete sequences.

18.6  Bioinformatics Data Integration Systems

18.6.1  SRS

SRS is a generic bioinformatics data integration software system. Developed 
initially in the early 1990s as an academic project at the European Molecular 
Biology Laboratory (EMBL), the system has evolved into a commercial product 
and is currently sold under license as a stand-alone software product.

SRS uses proprietary parsing techniques largely based on context-free grammars 
to parse and index flat-file data. A similar system combined with DOM-based 
processing rules is used to parse and index XML-formatted data. A relational data-
base connector can be used to integrate data stored in relational database systems. 
SRS provides a unique common interface for accessing heterogeneous data sources 
and bypass complexities related to the actual format and storage mechanism for the 
data. SRS can exploit textual references between different databases and pull 
together data from disparate sources into a unified view.

SRS is designed from the ground up with extensibility and flexibility in mind, 
in order to cope with the ever-changing list of databases and formats in the bioin-
formatics world. SRS relies on a mix of database configuration via meta-definitions 
and hand-crafted parsers to integrate a wide range of database distributions. These 
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meta-definitions are regularly updated and are also available for extension and 
modification to all users.

A number of similar commercial systems have been developed that replicate the 
basic functionality of SRS.

18.6.2  Entrez

The Entrez system is a website hosted by the National Center for Biotechnology 
Integration (NCBI) of the United States National Library of Medicine. The system 
provides a web-based interface to searching across a whole range of databases, 
from genomic sequence databases to literature references or taxonomical struc-
tures. The system is widely used in the academic community, especially in the 
United States.

18.6.3  Other Systems

A high level of fragmentation can be observed in the bioinformatics universe. 
Numerous software solutions have been built around specific databases and 
research projects. In terms of data analysis applications, the EMBOSS suite (Rice 
et al. 2000) is notable in building a comprehensive package that integrates a number 
of data formats and applications. The EMBL hosts a number of search and visual-
ization interfaces for a whole range of bioinformatics data.

Recent trends focus towards semantic integration of bioinformatics databases. 
The goal of these projects is to provide a comprehensive integration of data using 
web services and semantic descriptions, establishing a common point of access 
towards disparate data sources. Building on ontological concepts and using 
Semantic Web (http://www.w3c.org/2001/sw) technologies as RDF and OWL 
(OWL 1999), projects as BioMoby (Wilkinson et al. 2002, http://www.biomoby.
org) are on the forefront of bioinformatics data integration.
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19.1  Introduction

Programming and software engineering are not new disciplines. Although software 
engineering has under gone shifts in philosophy, the fundamental mechanism used 
for defining the logic within a system is still the same as it was decades ago. 
Advances in languages and constructs have made the development of software 
easier and have reduced development time. Each successive generation of program-
ming languages has obtained this simplification by introducing further abstractions 
away from the complexities of generating machine specific instructions required to 
actually run an executable within or across operating systems. These advances are 
still occurring today, and we are now able to develop more complex programs more 
rapidly than at any time in the past.

This rapid progression has empowered the scientific developer, as modern 
experimental driven biological science requires the rapid development of algo-
rithms and systems. Biology, in all its forms, is fundamentally an observational and 
experimental science. Whether it be ecology, neuroscience, clinical studies, or 
molecular biology, the high volumes of semantically rich large biological data sets 
require a high level of software development. This means that the software must be 
developed to a high standard and in a minimal amount of time. Therefore, to meet 
the demands of developing software to support research, the scientific developer 
must know about the latest tools and techniques. This chapter introduces some of 
these tools and techniques, in particular those that will help in the development of 
data intensive applications.

This chapter will introduce the facets of software engineering that are most 
relevant to the life sciences. The first section gives a background to programming and 
introduces different types of language that it is important to be familiar with. The 
second section describes the issues that must be considered when building applica-
tions for research driven usage. The third section introduces the relevant standards 
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and tools that are of use to life science software developers. The final sections 
specifically describe how to build systems to work with large volumes of heteroge-
neous scientific information.

19.2  Types of Programming Language

Even over the last decade, coding languages has evolved considerably. While the 
historic categorical view of programming languages (see Fig. 19.1) still exists, 
there is a blurring between these categories. Traditionally, languages were divided 
into three categories: procedural (e.g., pascal/modula 3), functional (e.g., lisp/
scheme) and logical (e.g., prolog/eclipse). Because of the dominance of procedural 
programming, even within the life sciences, there is a tendency to also consider the 
style or method of programming rather than the basic underlining formalism: for 
example, typed or untyped, complied or interpreted, managed or unmanaged, client 
or server, web or desktop, application or service, and static or dynamic.
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Fig. 19.1 Historically programming languages were categorized into three, occasionally overlap-
ping, categories. These categories broadly defined both the mode through which the software was 
constructed and how the software modeled both data and process. The categorizations were: func-
tional based, which provide a framework for defining and evaluating functions; logical based, 
which allowed for the definition of logical rules which were typically executed in a non determin-
istic way; and procedural based, where all commands and sequences of operations were formally 
described
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In common usage within the life sciences, there exist a plethora of different types 
of languages. Each of these languages has unique advantages and disadvantages 
within science, and each type of language generally has its own niche. Unfortunately, 
the choice of language used for a specific task generally reflects the training of a 
particular scientist or developer, rather than the most suitable “tool for the job.” It is, 
therefore, important that someone working in the field have a good working knowl-
edge of the major types of languages being used, these are compiled procedural 
languages (e.g., Java and C#); dynamic interpreted languages (e.g., Perl and Ruby); 
and mathematical function scripting environments (e.g., Matlab and R).

It is important to note that languages are still evolving, as can be seen through 
advances related to: dynamic querying, for example, the use of LINQ in .NET, or 
QL in EJB 2.0; aspects providing a means for both code injection to support migra-
tion of components and detachable “plain old java objects” (POJOs); and domain 
specific enhancements. New types of languages are also becoming available, which 
could well have direct implications in the biological sciences as they allow for a 
richer modeling of complex behavioral systems (e.g., using p-calculus).

The following sections introduce the types of languages that are most prevalent 
in bioinformatics. Further information about the use of these languages in explicit 
areas is given in the domain standards section.

19.2.1  Compiled Languages

In bioinformatics the de facto standard for a compiled language is generally con-
sidered to be Java. Most people have an understanding of how compilation of 
programming languages works: a front end compiler performs checking (semantic and 
syntactic) and graph construction; and the back-end compiler takes this information 
to generate a specific optimized version of the program. Compilers are generally 
multi-pass and, where needed, can be just-in-time. The code that is generated can 
be for a specific hardware or, as is more common in bioinformatics for a virtual 
machine. It is this compiled behavior that gives both the advantages and disadvan-
tages of using these languages.

Because of their mainstream nature, the evolution of compiled procedural lan-
guages can be correlated with changes in requirements (see Table 19.1). The 
requirements have driven the evolution of these languages, and conversely advances 
in computer science have enabled new requirements to be met. The actual method-
ology through which data can be modeled in compiled procedural languages has 
evolved significantly, and as we now see in frameworks such as .NET 3 or Java 6 
formalized aspects are now used to simplify the development of complex coding.

Illustrative and simplified examples of how evolution of software development 
processes and practices have co-occurred with changes in requirements. In the 
1980s, most software engineering methodologies and associated technologies 
were geared toward ensuring that the code was maintainable, the use of abstract 
data types to model generic collections and the software structure based Object 
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Modeling Technique (OMT) were common methodologies. With advances in the 
hardware, the requirements were for easier to develop systems, and later, the need 
(particularly in the scientific domain) was for the ability to model semantically rich 
heterogeneous data types. With the advent of distributed computing, there was a 
need to support data integration “as is,” which required more powerful technolo-
gies. More recently, there has been a requirement for the rapid development of 
applications, which has meant that new methods and technologies have become 
available, which make it possible to write high quality code which can model and 
integrate semantically rich data with a substantial reduction in development time. 
The evolution of design methodologies has been from the use of Abstract Data 
Types (ADT) in the 1980s to model generic collections; to the introduction of 
object oriented programming ideas; OO programming evolved into component 
based programming, most noticeably in the use of graphical user interface compo-
nents/widgets; frameworks then became popular as they provided this life cycle 
management for a wide range of object, and led to the current use of Aspect 
Oriented Programming. Software process and modeling have also evolved: OMT 
was naturally superseded by the complete Unified Modeling Language (UML); 
processes such as the rational unified process (RUP) became popular with organiza-
tions, although problems with lack of understanding or poor adoption lead to the 
impetus for the development of more “practical” agile processes (XP, SCRUM); 
more recently (in the life sciences and elsewhere), there has been a growth in the 
use of model driven design (MDD/MDA) which focuses on the automatic genera-
tion of code from a well defined (typically UML) model. Similarly, communication 
technologies have evolved from the powerful but difficult to use sockets, through to 
the easier to develop remote procedure calls; different CORBA versions introduced 
pass-by-value and other possible enhancements (e.g., component facets); difficul-
ties with CORBA gave rise to the simpler to use Web Service architectures, which 
are now common place in the life sciences. The application server evolution (EJB 
standard) is briefly discussed in a later section.

Modern compiled procedural programming languages do offer a number of 
features that are essential for developing code in the fast moving area of scientific 
programming, they are dynamic in nature through language extensions such as 
LINQ and the use of dynamic scripting through systems such as Groovy (see below 
for information about the merging of dynamic behavior with compiled languages); 
a high degree of “separation of concerns” through dependency injection, so that 

Table 19.1 Evolution of software methodologies and technologies

Requirements

Methodology Technology

Design Process Comms Server

Code maintenance ADT OMT Sockets
Ease of use Objects UML RPCs X/Open DTS
Semantic richness Components RUP Brokers EJB 1.1
Data integration Frameworks Agile P(M)BV EJB 2.0
Rapid development Aspects MDA SOAP EJB 3.0
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each coded item generally performs one function and dependencies between the 
code and other components are injected at run time; and the use of patterns 
(and aspects) to prompt the development of high quality code through both reuse and 
easy to understand design. However, it can also be argued that some of the recent 
developments in software engineering are less suitable for research science, for 
example, “factory software” mechanisms which assume everything can be constructed 
using generic/reusable workflows, or MDA which assumes you can accurately 
describe the domain you are working in. The developments that are less useful are 
those that rely on the understanding that information and flow can be well modeled, 
which is not always the case in a research led environment.

A large number of tools are available to aid in the development of applications 
using these languages. With the large number of libraries, conventions, standards, 
and patterns available, it is imperative that an integrated development environment 
(IDE) is used. These environments also enable the convenient use of a number of 
powerful tools, including profiling, remote debugging, multi-threaded code tracing, 
and variable/stack watching. To date, the most suitable (free) IDE is Eclipse (www.
eclipse.org) which offers support for the major computing technologies that will be 
used by a scientific developer.

19.2.2  Dynamic Interpreted Languages

Although it is possible to compile some dynamic interpreted languages, and to interpret 
some “compileable” languages, the distinction between the two is a useful one. It is 
arguable that compiled languages are most suitable for the development of libraries 
and enterprise applications, while dynamic languages are best used to provide small 
utility applications and to glue components together. This is obviously an over 
simplification; however, generally this is how different types of tools are used within 
the life sciences. The three most popular dynamic languages are introduced below:

•	 Perl is the most popular interpreted computer language in bioinformatics and has 
been used in a number of large scale scientific projects (e.g., Ensembl). It is a 
flexible and powerful tool, which allows for the rapid development of reasonably 
sophisticated applications. With Perl’s powerful scripting and parsing function-
ality, it is a good language for both “one line text processing” as well as two tier 
(see below) database applications. One of the advantages of Perl, over the other 
interpreted languages, is that its large following has built a generous repository of 
standardized modules which is readily available to developers. Because of space 
considerations, it is not possible to present the relevant features and functional-
ity of Perl for the development of research applications. However, for informa-
tion about Perl and related modules, the developer can do no better than explore 
the Comprehensive Perl Archive Network CPAN (www.cpan.org).

•	 Ruby is a language that has been in existence since 1993 but has recently seen 
growth in its audience due to the usage of its web application framework called 
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Rails (www.rubyonrails.org). Ruby is a modern object-oriented language, and 
due to its history, it has a number of advantages over other languages (e.g., 
dynamic class extension). While Ruby may be considered a “better” language 
than Perl, it does not have the same following as Perl, and so for traditional 
bioinformatics is unlikely to gain widespread adoption within the community. 
However, we can expect to see a rise in Ruby usage with the adoption of 
Rails for the rapid development of powerful database centric web applications. 
As Rails uses a series of conventions to make the development of web application 
faster (views communicate with controllers which update models), it is relatively 
easy for a new developer to adopt and use this technology. The best place to start 
working with Ruby is www.ruby-lang.org.

•	 Python is more similar to Ruby than Perl and is another powerful dynamic 
object-oriented programming language. Because of the simple and unambiguous 
syntax Python has been used extensively as a teaching tool. Python’s popularity 
is also due to its ability to integrate well with other languages. The main 
python web site (http://www.python.org) contains more information about this 
language.

There exist numerous other examples of dynamic languages, although these are less 
important in the biological sciences. All dynamic languages share the advantages 
of being easy to use; highly suitable for prototype work; and flexible to allow for 
dynamic extensible typing. The disadvantage of these languages is that they are 
generally not suitable for large scale infrastructure or data intensive projects.

It is important to note that the distinction between dynamic and compiled 
languages is constantly narrowing. Using a script to orchestrate lower level services 
(or components) is becoming more common place. This means that dynamic 
languages are often used to provide the dynamic behavior that is often missing in 
compiler based applications. Compiled languages can also have dynamic behavior 
overlaid upon them (e.g., Groovy http://groovy.codehaus.org, JSR-274 http://www.
beanshell.org), and dynamic languages can be compiled (e.g., via JRuby http://
jruby.codehaus.org).

19.2.3  Mathematical Function Environments

Within a life science organization, there typically exist different groups who are 
collectively termed “bioinformaticians.” Some of these concentrate on the develop-
ment of models of biological systems or undertake bespoke biological analyses. 
Typically, the preferred tool for such work is a mathematical or statistical functional 
framework such as Matlab or R. Other tools exist (e.g., S, Mathematica), but these 
are less prevalent in bioinformatics.

•	 Matlab. Matlab is a commercial mathematical functional scripting tool develop-
ment by MathWorks (www.mathworks.com) and was originally widely used by 
the electrical engineering community. Since its inception, Matlab has grown as 
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a commonly used tool across many scientific domains. For the life sciences, a 
number of useful “toolboxes” are provided, including one specifically for bioin-
formatics, as well as a statistical and simulation toolbox. Matlab is a commercial 
product, which has implications for many research organizations.

•	 R. R is a statistical analysis environment, which was based on S, commercial 
statistical package developed by AT&T Bell Laboratories. R is a freeware open 
source community built and maintained project (www.r-project.org). It has a rich 
functionality and is useful for many types of analysis. As it is not a commercial 
product, the level of support and documentation can cause problems for 
people learning to use the application (although the tutorials are generally kept 
up to date). R has good bioinformatics support through the bioconductor project 
(www.bioconductor.org), particularly in the area of genomics and microarray 
analysis, and a number of packages are available which can be used to support 
such tasks.

These functional environments offer powerful tools that provide frameworks in 
which analyses can be undertaken, queried, and dynamically manipulated. When 
undertaking a modeling or statistical analysis task, these are generally the tools of 
choice. The problem with these tools is that they tend to be untyped closed environ-
ments, and so integrating them with other tools is difficult. There is little problem 
with integrating a method locally that is to be run within one of these tools, as they 
both provide a means to marshal data to typed languages. However, this process is 
not automatic and does required the use of either standardized Java Marshalling 
classes (with the Matlab Java Compiler), or the use of a special (e.g., S4) extension 
to define the type marshalling. There are problems in using these tools in an enter-
prise environment, as both the tools are currently designed to work as non thread 
safe client based environments.

19.3  Scientific Programming

In the ideal world, software would be fully specified, well documented, componen-
tized, unit tested, reliable, and robust. However, the harsh reality of working within 
research science frequently means that the competing requirement to deliver a 
timely solution often takes precedence. Thus, the developer must have a good 
understanding of the best practices that will enable them to rapidly develop well 
engineered solutions.

With any software project, there is always a chance that a project will fail. This 
can be avoided by understanding the reasons that are often cited for lack of project 
success (Booch 1996):

•	 Identify the risks that are involved. It is always a good idea to work out the risks 
involved in any project, and then to try and establish ways of minimizing them. 
Most technical risks (e.g., unknown technology, scalability, and performance 
issues) can be alleviated through early prototyping.
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•	 Do not get “blinded” by technology. The appropriate choice of technology is 
important in any project, but it cannot be the sole focus of the project. If the 
design and end results of a piece of software becomes too focused on a specific 
underlying technology, then the project may ultimately fail. It is always a good 
idea to question why specific technologies are being used, and also to ensure that 
designs are not (too) restricted by your specific implementation choices.

•	 Focus on what has to be built. It is all too common in the software industry for 
the “wrong thing” to be built. This is largely due to the lack of communication 
and is probably the biggest cause of software project failure. Within science, this 
is a huge problem, as usually there only exists a loose idea of what is desired in 
the first place. The best way to avoid this issue is to ensure that release cycles 
are short, and that as many people as possible get to see the evolving iterations 
of the software. Such short iterations will allow you to more easily identify 
which features are appropriate.

The above points are all practical points that should always be followed in any 
software engineering project. Generally, within research, it is also a good idea to: 
first, develop a prototype to both minimize (technical) risks and to demonstrate to 
other scientists what you are planning on building; when actually developing the 
system, always consider the practicalities and cost of building on top of a legacy 
system versus undertaking a complete rewrite; and try to work toward short itera-
tions, or even the adoption of automated building procedures. An important point 
is that you should never be afraid of a rewrite, as it generally will improve the qual-
ity and functionality of the system, and continually adding new features to an old 
and inappropriate codebase is a poor way to write software.

With scientific software, the following should also be considered:

•	 A flexible software design is essential. With science, it is highly probable that 
requirements will change within a matter of months, so a flexible and configu-
rable design should generally always be adopted. Flexibility, and mutability to 
change, is an old requirement, and the same ideas about standardizing layers 
from over 30 years ago are still reflected in current software designs (see 
Figs. 19.2 and 19.3). A layered design means standardizing on components and 
interfaces to make maintenance of the code easier, this can be aided by adopting 
a software project system (e.g., Maven) and a suitable application platform (e.g., 
OSGi for client applications, or Spring for server based applications).

•	 Do not over model “scientific information.” Because of the uncertainties and 
complexities of research, over specification can be a problem if the resulting 
software is supposed to be useful to a collection of scientists. While design is 
essential in a software project, over design and formalization of scientific infor-
mation can cause problems as the resulting software could well have a certain 
model of a biological system (typically expressed as an object or data model) 
which may be either too simplistic or too complex for other users of the system. 
While any design is generally better than none, the reader should be aware of the 
common pitfalls when using a formal design process in a research environment. 
The problem with any full and unified software design endeavor is that there is 
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no such thing as the quintessential scientist, as the only commonality that really 
exists between researchers is that they are all different. These differences arise 
as each investigator and investigation studies the unknown, which means that 
the rationalization, which is typically needed for the design of expedient soft-
ware utilities, is missing.

•	 Ensure the system is inclusive. It is rare that any software will work in isolation, 
both the people using the software and the enterprise in which it runs are equally 
important. Although the advent of TCP (and UDP)/IP in the 1970s was heralded 
as the solution to interoperability, many factors (including social and develop-
mental reasons) meant that this was not the case. Interoperability, and associated 
integration issues, is still a problem today. To help solve this problem over the 
last decade, in distributed computing, there has been a shift in philosophy from 
thinking in terms of the transportation of object graphs toward the retrieval of 
related documents. The distinction between documents and objects is subtle, 
albeit important: objects are for programs, whilst documents are for people. 
An object is by its very essence a “black box” which contains domain and platform 
specific information. Objects must be explicitly translated between languages, 
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Fig. 19.2 The ANSI-SPARC three layer database architecture was proposed in 1975 and is still 
used in modern RDBMS. The three proposed layers were a physical schema which defined how 
the data are actually stored (inode information), a conceptual schema which represented how 
information was related and indexed, and an external schema which represented how information 
was presented. The architecture was designed to provide immunity to change: the physical schema 
defined how the actual information was stored, and could be changed without effecting how 
external applications interacted with the data; and the external schema could be changed to define 
richer APIs, without having to change the underlying storage mechanism
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and must be serialized (marshaled/externalised) for transmission through an 
object protocol (e.g., CORBA, RMI, DCOM, .NET Remoting). Documents are 
open and readable, and so lend themselves more easily toward the social aspects 
of a distributed system. With a document centric approach, the interactions are 
more natural and flexible: the document can be saved and retrieved from a file 
system using standard desktop tools; the information can be retrieved through 
numerous media, for example, through a web page or from an email received 
from a colleague; and documents can be directly browsed and their contents 
edited. This flexibility in delivery and interpretation means that there are 
multiple ways for documents to be integrated.

•	 Beware the “not invented here” mentality. The risk with any research lead 
computing project is that novelty can get confused with innovation. By focusing 
on innovating through using and extending existing solutions, the best use of the 
available computing technologies can be made. When building systems, it is 
essential to reuse the best tools from other application areas as this ensures a 
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Fig. 19.3 Design of a system within an application server typically involves three layers: 
an infrastructure layer which stores the data; a domain layer which is populated with vertical 
object models; and an application layer which models how an application can interact with the 
domain objects. The application server provides both resource management and service based 
functionality for each of these layers. In EJB terms we have: the infrastructure layer corresponding 
to a database, typically with O-R mappings through hibernate; the domain layer corresponding to 
entity beans, which basically function as an object cache; and the application layer corresponding 
to sessions beans or Web Services (with stateless session bean mappings)
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high return on investment. Continually developing completely new solutions is 
a waste of resources and funding and typically leads to a substandard and non 
maintained solution. By carefully considering a problem, with a good current 
knowledge of computer science, it is rare that a system will have to be built 
completely de-novo. Bespoke applications are required in the life sciences, but 
these can generally be built upon third party solutions or technologies. Project 
management systems, such as Maven, can help simplify this process and should 
always be considered if working with third party components or if working in a 
geographically distributed team. Basically always be wary of “reinventing the 
wheel,” as this can lead to substandard and costly code. That stated, you should 
also be careful with choice of technology, as a poor decision early on will also 
lead to problems. There are a large number of technical and domain specific 
technologies which are available for use. These solutions range from class 
libraries which offer useful precanned solutions to full enterprise wide integra-
tion system. These standards are considered in the following section.

19.4  Programming Standards

Appropriate use of standards and standardizations are important as, if correctly 
used, they can save years of programming time and result in high quality maintain-
able code. The problem is that there are a large number of standards to choose from. 
These standards range in functionality and include: interface standards which 
define the method level interface that a specific implementation should expose or 
use; classification standards, typically defined as an ontology or a taxonomy, which 
represent structured knowledge and are typically used as the basis of controlled 
vocabularies; and reference implementations and class libraries which provide fully 
functional implementations with standardized (and stable) interfaces.

Standards can be categorized into one of two flavors:

•	 Technology (horizontal) based: these deal with fundamental computing 
issues which span more than one domain (vertical). Examples of these include 
communication, database, portlet, transactions, messaging, security, concurrency, 
and application standards. There are a number of bodies which provide these 
standards and reference implementations. Currently, the main bodies/processes 
that are relevant include the OMG, JSR, W3C, and OASIS. The most relevant 
of these are discussed below.

•	 Domain (vertical) based: these are standards that deal with a specific area 
(scientific or otherwise) and cover nearly every relevant domain (e.g., from anat-
omy to zoology). These standards tend to evolve from community, rather than 
company, based efforts. The appropriate use of these standards is harder to judge 
as they tend to be less regulated (and so their thoroughness, usefulness, and life 
span can be difficult for the non domain expert to gauge). There are a large number 
of these standards, and the main community based efforts are discussed below.
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19.4.1  Technology (Horizontal) Standards

Computer science and software engineering are continually evolving fields. This 
evolution is pushed by changes in the demand for new types of usage for software 
and pulled by technical advances which open up new avenues for improvement. 
This continual change makes the development of solutions difficult; as today’s 
“stunningly fabulous” technology is tomorrow’s legacy system. The use of tech-
nology based standards can help alleviate this problem, as they ensure that the 
mechanism through which the underlying code is accessed is well understood, 
meaning that the developers in the future will easily be able to understand how the 
code works. As most standards come with reference implementation, their adop-
tion can also save time and result in better, more maintainable applications.

Within the Java community, a number of well known open-source collections of 
projects are available which generally provide high quality code (e.g., apache, 
codehaus), as well as sites for other more specific projects. Where appropriate, this 
chapter gives recommendations to these projects, more information can be 
found in the enterprise application development section. For commercial resellers, it 
is worth noting that the non aligned LGPL and Apache licenses are commonly used, 
which enable flexible (Apache being the more flexible) redistribution of the code.

19.4.2  Domain (Vertical) Standards

A number of domain specific standards bodies exist, these include formal bodies 
(e.g., W3C, OMG) as well as academic bodies. The general standards bodies do 
have groups specifically dedicated to the life sciences, some of which are more 
active than others (e.g., HSCL from W3C (www.w3.org/2001/sw/hcls) and LSR 
from OMG (www.omg.org/lsr).

Standards in the life sciences cover an enormous area, they range from standards 
dedicated toward patient records, standards for defining clinical information and 
trials, through to pure scientific standards for specific domains (see Fig. 19.4). 
When working with high throughput experiment information, the following 
standards may be of interest to the bioinformatics developer:

•	 Proteomics standards. The Proteomics Standard Initiative (www.psidev.info) 
works with different groups to define a number of standards in a number of 
experiment areas (e.g., mass spectrometry, protein modifications). These standards 
are fairly well adopted within certain areas (e.g., use of mzData to define spectra 
information from MS), although the work is still progressing (e.g., unifying 
mzData and mzXML into mzML).

•	 Microarray. The MGED working group (www.mged.org) has a comprehensive 
set of standards for describing microarray experiment and results. As with other 
standards, this is still evolving and is largely working to simplify the use of the 
standard (e.g., through both MAGE-TAB and MIAMI 2).
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•	 Microscopic imaging standards. These largely mean the Open Microcopy 
Environment (OME www.openmicroscopy.org), which has defined a set of 
XML based standards for microscopy equipment (the type and setting informa-
tion), information about data capture (which dimensions are measured, e.g., 
wavelength and position), and information about individual experiments (anno-
tations and experimenter information). The OME go further than the standards 
and also provide communication specifications and file formats (e.g., OME-
TIFF where meta information in OME-XML is inserted into the TIFF header), 
and provide two working implementations (an older Perl based solution, and a 
new Java rewrite).

•	 Interaction standards. BioPAX provides a standard for defining (and therefore 
sharing) metabolic pathway and interaction information. This information is 
available from Pathway Commons (www.pathwaycommons.org). This is still an 
active area of research, and the biopathways consortium (www.biopathways.org) 
is still working on standardization. There also exist standards for (generally) 
kinetics based models (e.g., SBML, CellML).

A number of ontology based descriptions also exist which can be used as both the 
basis for complex mappings and to construct a controlled vocabulary. These range 
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Fig. 19.4 Overview of standards in different areas of the life sciences. Standards exist throughout 
the life sciences: in healthcare, there are standards for electronic patient records (EPR); in the 
clinical arena there are standards for defining and running clinical trials; and in R & D there are 
standards for numerous different research experimental areas. Standards also exist for specifying 
these standards, and for providing high level integration mechanisms across different domains
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in complexity from high level ontologies that describe largely abstract “experiment” 
concepts (e.g., OBI obi.sourceforge.net) through to detailed information about 
numerous domains (see obofoundry.org for more information).

As well as standards, there also exist a number of domain specific “class librar-
ies” and “data access protocols.” These can be of use when building an application 
in a specific area, typically their main usage is in genomics:

•	 Class Libraries. The most mature and active class library is BioPerl (Stajich 
et al. 2002; www.bioperl.org), although there do exist others including Biojava 
(Holland et al. Bioinformatics 2008), Bioruby, and Biopython. Most of these 
exist under the umbrella of the “open bioinformatics foundation” (www.open-
bio.org). The BioPerl bioinformatics community has developed a large number 
of modules, largely in the area of genomics. These offer a wide range of 
sequence file parsers (e.g., swissprot, fasta, embl, genbank), and analysis tools 
(e.g., alignment operations, or data retrieval operations), which can be used to 
support common bioinformatics related tasks.

•	 Data Access Protocols. There exist a number of standards for accessing informa-
tion from biological data sources. These range from those that provide an 
abstraction away from persistence information stores for specific data types 
(e.g., BioSQL www.biosql.org), to standardized data retrieval mechanisms from 
remote sites using http encoding (e.g., www.biodas.org), to systems for describ-
ing the “semantics” of specific Web Services (e.g., BioMoby (Wilkinson and 
Links 2002)).

19.5  Enterprise Application Development

As the biological sciences have advanced, so have their computational needs. With 
automated technologies able to reach terabytes a day throughput rates, there is a 
strong requirement to organize and analyze the data efficiently. Ready access to 
up–to-date information, and algorithms, requires a different mode of development 
than most computational biologists are trained for. To work with biological data, 
applications have to know how to access distributed data sources and know how 
they can function within a distributed environment. This requirement for data inten-
sive architectures requires moving away from single machine based applications 
toward the development of federated infrastructure based solutions (see Fig. 19.5).

There are three issues which will be discussed in developing such applications:

•	 Developing a distributed server. There are a number of “server containers” 
which can be used to develop an application which is to be used in a distributed 
environment. These server containers have the advantage that they can both cut 
development time and can provide useful functionality that would otherwise be 
expensive to build. These containers generally allow the developer to concentrate 
on just defining the “business logic” of their application, rather than the 
complexities of more general server based operations (e.g., clustering, transactions, 
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object-relational mappings, concurrency, security, communications). The correct 
choice of container depends upon the type of data, and the operations that are to 
be applied to the data. These issues are discussed in the “server frameworks” 
section.

•	 Providing a service. Once your “business logic” has been deployed within a 
container and is running as a server, it is important to ensure that it can be 
accessed by people and processes within your organization. Each of the servers 
can be viewed as an individual service, with some service offering “cross-
cutting” functionality which can be used by other services. The term “service 
orientated architecture” (SOA) has been used to describe such a collection of 
servers within an enterprise, and has become strongly associated with the 
usage of Web Service and related standards. Web Services offer a simple 
mechanism to promote interoperability, which is the key within most life 
science enterprises.

•	 Orchestrating multiple services. Although SOAs offer flexible bottom-up 
functionality, to be useful they must be orchestrated together. Such orchestra-
tion often requires the implementation of top-down logic over the bottom-up 
services. These issues are discussed in the “orchestrating services” section.

The history of enterprise architectures within life sciences, including those used in 
both commercial entities and academic institutions, is discussed in the following 
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Fig. 19.5 Distributed systems can be classified by the number of tiers that exist with the logical 
representation of the application. Two tier applications have a client and server component, with 
the client component making direct calls on the server (data storage) component. Three tier appli-
cations typically use an application server which provides a level of abstraction away from the 
underlying data store. N-tier applications are full distributed systems where components can be 
discovered (typically through a registry or directory system) and methods invoked
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section. The following three sections discuss the three main issues in developing 
distributed data intensive applications, by describing server frameworks, service 
oriented architectures (SOAs), and methods for orchestrating services.

19.5.1  History of Enterprise Systems within the Life Sciences

Life science research enterprise data integration and process management systems 
have evolved over the last 15 years, effectively since the creation of open interoper-
able object based communications (e.g., CORBA). This evolution has been from 
single database based solutions to open, distributed, interoperable data management 
solutions. This has been driven by demands for rapid development, high levels of 
interoperability and increases in data volume and complexity.

The development of data management systems to support the life sciences has 
undergone a number of fundamental changes in the last decade. As in other areas, 
the history of enterprise systems in the life sciences is, in essence, one of a cultural 
change from the development of proprietary solutions, designed from the top-down, 
toward more flexible bottom-up architectures informed by open standards solutions 
(see Fig. 19.6). This change has been driven a number of factors including user 
requirements, where users have demanded more of systems in terms of flexibility 
and extensibility. This evolution of data integration and management technologies 
can be categorized into three stages:
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Fig. 19.6 Evolution of enterprise architectures has occurred within the life sciences. Limitations 
in the flexibility of data repositories based solutions helped shape the development of integration 
frameworks. Integration frameworks suffered from complexity and interoperability problems, and 
so document based solutions are now becoming the normal model
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•	 Data Centric. Initially, data repositories were developed and integrated using 
either external indexing services or data warehouse mechanisms. The data 
repositories rely on a variety of technologies, including index based (e.g., SRS 
(Etzold et al. 1998), DBMS (e.g., Ensembl Birney 2004), and federated database 
approaches (e.g., DiscoveryLink Haas et al. 2001). The development, of these 
data centric solutions, was driven by the availability and standardization (e.g., 
OleDB, ODBC) of relational database management systems and the requirement 
for a federated approach to data warehouse solutions. The lack of object interop-
erability of such data repositories gave an impetus for the development of object 
based top-down standards.

•	 Object Centric. With these approaches, standards bodies (e.g., LSR (http://www.
omg.org/lsr), I3C, caBIO project (Covitz et al. Bioinformatics 2003; http://
cabio.nci.nih.gov/)) decided on interoperable object standards. It was anticipated 
that these standards would be taken up by the life science industry. There has 
been some success with such standards, but as they had to capture all areas of a 
domain their complexity limited their broad-scale adoption. This object level 
standardization was largely driven by the maturation of object based protocols 
(e.g., CORBA with pass-by-value or DCOM) and associated object services 
(e.g., distributed registries, traders) which used interface definitions (e.g., IDL, 
MIDL) to formalize the static distributed interfaces. Such standards, either 
proprietary or open, were mainly implemented using integration frameworks built 
using application servers. They were introduced into a large number of pharma-
ceutical companies (e.g., Alliance from Synomics, GKP from Secant, Discovery 
Center from Netgenics). These integration frameworks suffered as their rigidly 
typed systems were difficult to extend and could not keep pace with evolving 
research requirements and new experimental technologies. Processing pipelines 
were also integrated within these tools. The requirements for the orchestration 
of analysis tools led to the growth in the number of in-house tools designed 
specifically for rapid development and deployment characteristics, rather than 
interoperability or complexity (e.g., SOAPLab (Senger et al. 2003); GenePattern 
(Reich et al. 2006); SBEAMS (Marzolf et al. 2006)). The integration frame-
works were built upon the maturing application server products which were 
principally Java based (e.g., EJB 2+).

•	 Document Centric. Document based solutions (typically Web Service based) 
became popular as they provided a means to develop solutions that could: keep 
pace with the rapid advances in research; were scalable, robust, and easy to 
develop; and were interoperable. These are now widely used as a basis for inte-
gration (e.g., MRC’s CancerGrid, NCI’s caGRID). The advantages of these 
approaches are based on their lightweight specifications and ease of implemen-
tation. Such advantages can be seen in adoptions of related standards (e.g., 
DAS). Newer programming methods and frameworks simplified the develop-
ment of these document centric (Web Service) systems. By using these frame-
works (e.g., EJB 3.0, .NET framework), complex behaviour between Web 
Service can now be developed relatively simply. One of the challenges associ-
ated with Web Service architectures is their lack of semantics. In response, 
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ontology-based solutions were developed (S-BioMoby, Sophia from Biowisdom), 
although these largely depended on slowly evolving globally accepted ontolo-
gies. Designs using distributed runtime type checking and type mapping are now 
emerging (http://informatics.mayo.edu/LexGrid), as these provide for a means 
of integration and robustness that place fewer restrictions on developers. A num-
ber of eScience solutions were also associated with similar architectures, 
although the majority of these have converged with the mainstream Semantic 
Web (e.g., myGRID (Goble 2005)). A number of tools to support these service 
oriented solutions have been developed, including graphical tools (e.g., Taverna 
(Oinn et al. 2004)), schedulers (e.g., GridFlow (Cao et al. 2003)), and script 
translation tools (GridAnt (Amin et al. 2004)). The semantic web based solutions 
are being driven by both the convergence of standards for document based enterprise 
computing (e.g., WS-*), and the development of knowledge representations and 
query standards (e.g., OWL and RDF based querying solutions).

There is a natural progression with these systems, as they generally follow the tradi-
tional approaches to software designs that are prevalent at the time (e.g., MDA).

19.6  Architectures for Enterprise Systems

The majority of “off the shelf” scientific information integration systems are generally 
targeted toward the end results of research, rather than aiding in the progression of 
scientific understanding. The reason is that there is a dichotomy that exists between 
scientific understanding and scientific elucidation: understanding requires the 
presentation of a formalization of ideas while the elucidation requires the application 
of intuition and reasoning to extract meaning from a data quandary. Therefore, to 
support elucidation, we must also focus on understanding the evolving mechanisms 
through which science is undertaken and the flexibility required for scientific 
reasoning. This means that it is important to accept that unstructured “bottom-up” 
development is often required (see Figs. 19.7 and 19.8), and that scientists are 
often required to work in this manner if they have to carry out their research 
effectively. Architectural decisions are, therefore, typically driven by the need for 
functionality and rapid development rather than shared data models and unit tests. 
The traditional top-down approach to design is rarely used, with a bottom-up 
approach being prevalent and arguably preferred (Quackenbush et al. 2006). In the 
top-down approach, models are defined a priori, and the designer uses them as the 
“lingua franca.” By contrast, in the bottom-up approach, models and designs arise 
out of ad-hoc development and are user driven.

In the future, we can expect the majority of all scientific software design to be 
less, not more, structured. This lack of structured design is part of a growing general 
trend, as the predicted rise in the number of people developing software and 
the simultaneous lowering of their design skills (Scaffidi et al. 2005) is being driven 
by a number of factors. These factors include the simplification of the development 
process and the development of new design tools. Aspect oriented programming, 
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and related ideas, is a simplifying development by providing a means to provide 
slices through typical software structure. These new techniques require less formal 
design, as they enable the incremental development of complex programs from 
simpler ones (Batory 2004) and are making enterprise integration more dynamic 
(Vambenepe et al. 2005). This trend is exasperated, when developing for research, 
as within the scientific community there exists a rich and varied user base, which 
is complex both in terms of software experience (typically including lab scientists 
using macro languages, statisticians and computational biologists using script 
based tools, and software engineers developing enterprise solutions) and the pleth-
ora of computing languages that are used.
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It is not unheard of for developers, within a research environment, to integrate a 
new process or piece of equipment without knowing exactly how it is to be used. 
This means that flexibility, both in terms of design and ways of representing infor-
mation are important. As discussed above, scientific enterprises can operate better 
through a bottom-up service oriented, rather than top-down application oriented, 
architecture. To achieve this flexibility, it is possible to combine a bottom-up 
approach with a top-down architecture with the aim of providing a system that is 
interoperable, so that clients and servers can be written in the scientists’ language 
of choice; flexible, so that new analysis tools and data services can easily be inte-
grated within the platform; and non intrusive, so that architectural decisions do not 
impinge on the scientists developing and using services. The use of loosely coupled 
service oriented systems, with no enforced data type semantics, has led to growing 
support for such “middle-out” development within the biological scientific com-
munity. With “middle-out” systems, top-down models are present but are not tightly 
bound to the individual data stores. There are a number of patterns for providing such 
middle-out solutions:

•	 Ontology defined registry of services. A central registry service can be used to 
store information about a set of individual services. This means that the formal 
top-down descriptions are detached from the underlying bottom-up services. 
Typically these descriptions are standardized through the use of an ontology and 
describe the analysis methods and the data that the registered services provide. 
This “separation of concerns” means that the services can be written easily and 
the definitions can be updated independently of the individual services. Such 
approaches do have limitations in terms of complexity of data/algorithms that 
can be described and do require good coordination to function. A number of 
specifications which follow this pattern have been proposed, the most prominent 
being BioMoby.

•	 Unifying identity based services. A strong unifying identity system can be used 
to link low level bottom-up services into a structured top-down infrastructure. 
The identity system must allow for the integration of a number of independent 
identity schemes and should, therefore, be hierarchical or namespace based 
(e.g., PURLs). With a unified identity scheme each item can be referenced, 
and so structure can be imposed through the use of additional services (e.g., 
relationship services to provide information about links between items); the 
use of a project system (e.g., to store information about collections of items 
and annotations); or through the association of meta data as structured infor-
mation (e.g., LSIDs).

•	 Semantic Web. The Web 3.0 does provide for a means to develop middle-out 
solutions with each developer defining his or her services using an ontology. The 
problem then becomes one of how to map between the different ontologies, 
which can be done through the use of a higher level domain specific ontologies 
(e.g., OBI) or mapping ontologies. The semantic web offers a range of technolo-
gies which are useful (OWL for definitions and SPARQL for access/querying), 
although this work is still ongoing. The advantage of this approach is that data 
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and semantics can be served out using the same mechanism, although alternatives 
are available which are simpler (e.g., microformats).

These middle out solutions have limitations, as they attempt to overlay structure on 
ad-hoc and unstructured services. Generally, middle-out solutions sacrifice richness 
of functionality to provide flexible systems. Typically with such architectures, 
hybrid solutions are the most suitable (e.g., Semantic Web based services with a 
strong unified identity system for categorizing experiment data).

19.6.1  Server Frameworks

There are numerous types of “server frameworks” which can be used to simplify 
the development of robust server based functionality. Typically a server provides 
for: operations that should be shared among a number of clients; operations that are 
too computationally expensive to execute on client machines; serving out shared 
data; a means for data integration; or a central point to access the latest version of 
a curated data set or a specific algorithm.

A number of different types of server frameworks exist, the main two are

•	 Application Servers. Application servers are largely designed for integrating and 
distributing slowly evolving data sources. As such, they have flourished in certain 
areas of the life sciences and are mainly used in commercial companies. 
Historically, they had a reasonably high development cost, although since about 
2005 this is no longer the case. The purpose of application servers is to simplify 
the development of distributed systems, managed the life cycle of applications 
objects (server components), and also to provide performance and resource 
management.

•	 Content Management Systems. Content managements systems focus on the 
generic qualities of data and information and generally do not necessitate a 
detailed understanding of the actual data semantics. The purpose of a content 
management system is, as the name suggested, the management of content (or 
data). They typically provide versioning, locking, and searching functionality 
and are ideal for unstructured or continually evolving data.

19.6.1.1  Application Servers

As stated above, application servers (see Fig. 19.9) are designed to make the devel-
opment of robust distributed applications easier. They provide mechanisms for 
controlling resources associated with applications, and also provide key functional-
ity that would be time consuming (and wasteful) for individual developers to have 
to write themselves (e.g., security, messaging, leasing, concurrency). Broadly 
speaking, within the life sciences, three types of application server exist:
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•	 Enterprise Java Bean Container Application Server. An Enterprise Java Bean 
(EJB) is a server side component that lives inside an EJB Container. The devel-
oper writes an EJB according to a specification which defines both how the bean 
will be managed and how the bean can access core services which provide useful 
functionality. The container controls the life cycle of the bean, facilitates access 
to core services, and manages server-based resources. The services that are 
available through a EJB Container provide: security management, including 
method level and ACL; transaction management; including 2 phase/distributed 
commits; life cycle management, including pooling of bean instances and swap-
ping beans in/out (persisting) of memory for resource management; naming/
directory management, typically through JNDI; persistence management; using 
ORM tools such as hibernate; remote access management, so that the bean can 
be accessed via RMI-IIOP/CORBA and Web Services; and a number of utility 
services (e.g., mailing, clustering, caching, monitoring, etc.). There are different 
types of EJBs, and each has a different purpose: an entity bean which serves as 
a data cache from an underlying data store, this is used for transformation and 
data integration logic; a session bean which is typically used to hold application 
logic which communicates with information stored within entity beans; a state-
less session bean which typically represent simple stateless logic and generally 
act as end points for high level services; and a message bean which are used to 
pass messages between the other beans. The EJB standard has existed for some 
time and has undergone a number of revisions: the EJB 1.0 standard (1998) 
specified that a valid container should support bean component life cycles; the 
EJB 1.1 standard (1999) expanded the previous specification to mandate that 
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entity beans with fully managed persistence (Container Managed Persistence) 
would be required for compatibility; the over simplicity and static nature of EJB 
1 lead to the definition of the EJB 2.0 standard (2001), which defined local 
relationships to increase efficiency, introduced message beans to aid intra-
container communication and EJB QL (query language for entity beans) to 
facilitate rapid application development; EJB 2.1 (2003) improved upon the 
standard by introducing timers and automatic stateless Web Service mappings; 
the EJB 3.0 standard (2006) represented a major change as the complexities of 
developing EJBs were inhibitive for most projects, so a simplified process of 
building EJBs was outlined (through the use of detachment, dependency injec-
tion, and aspects). Using EJBs is now reasonably simple, although the set up of 
a separate container (including all the security and configuration issues) is still 
an overhead. While JBOSS (www.jboss.org) is the EJB container of choice, 
other free solutions are available and should be considered depending upon 
licensing conditions (e.g., glassfish).

•	 Framework application servers. The common choice for this type of simplified 
application server is the Spring Framework (www.springframework.net). 
Although EJBs represent a powerful technology it is recommended that initially 
developers look at Spring, as its lightweight nature and easy to learn program-
ming model will ease the development of application server based applications. 
Spring has not had such a protracted history as EJBs, mainly as it could learn 
from the problem with adoption of EJBs. Spring was released in 2002, with a 
major iteration in 2004. Since then, it has had a healthy increase in usage and 
has always relied heavily on inversion of control (dependency injection), to help 
support separation of concerns and provide flexible and portable code. The 
popularity of Spring is largely due to its usage of aspects to simplify coding. 
Aspects can be defined through annotations, property files, or separate XML 
configuration documents. The core of the platform allows for the development 
of POJOs, which are created and configured (including code injection) from the 
main Application Context, dependencies are then injected at run/compile/instan-
tiation time through the use of setters or constructors. A number of core frame-
works make developing applications using Spring relatively easy. The main 
frameworks that are of most apparent used by developers in the life sciences are 
the framework(s) for accessing data, these consist of a data management frame-
work for accessing data sources and a remote access framework for accessing 
information from application servers (e.g., EJB) and via high level protocols 
(SOAP, http); and framework(s) for publishing data, Spring supports MVC to 
make the development easier, additionally the remote access framework can also 
be used to provide access to information although SOAP (typically via Apache 
axis). Although Spring’s over reliance on aspects can add another level of confu-
sion (particularly when debugging code), these disadvantages are offset by their 
easy usage and the encouragement to adopt good coding practices.

•	 Light weight application servers. A number of light weight application servers 
exist, which provide limited or specific functionality. The most popular of these 
is Tomcat from Apache. While it is a light weight application server, in terms of 
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services it provides, it is still a powerful product due to the technologies it supports 
(and in fact largely developed). These technologies include servlets, soap, jsp, 
axis, and portlets. It is a sign of application server maturity that it is possible to 
integrate other application servers with Tomcat. It is also worth noting that other 
application servers exist (including those that are embedded inside of operating 
systems and large enterprise database management systems).

In nearly all instances, where an application server is desired, it is recommended 
that you first consider the use of Spring. Spring can also be used to enhance other 
projects as it easily integrates with other systems.

19.6.1.2  Content Management Systems

Content management systems (see Fig. 19.10) have evolved considerably, from static 
views on versionable document stores to dynamic structured service oriented data 
systems. A content management system provides useful functionality when dealing 
with data files and documents and serves a useful purpose in experimental sciences 
where it can be used to: share experiment data in a convenient manner (from 
WebDAV to more sophisticated bespoke browsing systems); provide a means to version 
and lock data files; allow for a means to track provenance of data; allows for different 
methods for searching and annotating the data files; and provide for a means to separate 
out data organization issues from the underlying storage mechanism.
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Fig. 19.10 Content management systems are designed to handle generic data items. They are 
suitable for dealing with raw and processed experiment data files, which can also be versioned and 
annotated. With these systems, a series of higher level organizational data structures can be over-
laid to make navigation (and searching) easier
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In the past, the proprietary nature of content management systems meant that 
there was little adoption within the research community. However, over the last few 
years, there has been a resurgence in interest in them from other disciplines, which 
has meant that there now exist a number of freeware solutions which can be used.

Content management systems serve a different purpose to application servers, 
but can be used to serve out similar types of information using the same protocols 
(e.g., SOAP or similar). These systems are principally useful when unstructured 
experiment information is being used. Alternatively, application servers should be 
used where: there exists reasonably stable information which can be structured in a 
DBMS or similar; business logic is required to operate closely on the data; or inte-
gration logic or data transformation is required.

There are three types of content management systems which can be considered:

•	 Java Content Repository (JCR) based solutions. The definition of a content 
repository is that it is a system that can be structured to form a content manage-
ment system. A standardized definition exists for content repositories, and the 
most suitable implementation is Jackrabbit from Apache (jackrabbit.apache.
org). A JCR implementation offers a range of services, which are categorized by 
levels: level one provides read functionality (e.g., basic querying and structured 
content); level two provides simple write functionality (security and history); 
and some groups refer to a level three which provides advanced features (trans-
actional control and structured searching). A JCR implementation allows for the 
definition of an organizational structure (as interlinked nodes of different types) 
to which properties (annotations and data items) can be added. Standardized 
services are provided for versioning and transactional behavior, as well as more 
advanced services for both unstructured (e.g., lucene based information retrieval) 
and structured querying (e.g., SQL or xpath based searching).

•	 SPARQL (SPARQL Protocol and RDF Query Language) based solutions. 
SPARQL is designed to allow for the querying and retrieval of documents across 
multiple unstructured data stores. It is designed to be a unifying communications 
and interface standard (and in this way shares similarities with Z39.50). The power 
of the system is the distributed RDF documents (or other data stores) remain 
unchanged, but queries can be run across them – and so it fits well with a 
“bottom-up” approach. If considering a SPARQL system then the reader should 
carefully consider the implementation that is to be used (especially in regard to 
both performance and licensing issues). Such a unified approach to accessing 
information is required to make the semantic web (Web 3.0) a reality, and there 
do already exist some implementations. The open source version of the Virtuoso 
Universal Server (www.openlinksw.com) from OpenLink is a comprehensive 
solution, although this is released under the GNU license which may cause 
problems for certain institutions.

•	 Code Repository based solutions. It should not be forgotten that simpler solu-
tions do exist for basic concurrency control and versioning. These are generally 
used for simple document or code management and a plethora of tools are avail-
able that work with these standardized solutions. The two most popular solutions 
are CVS and Subversion, which will be readily available on any linux distro.
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In nearly all instances, where a content management system is desired, it is 
recommended that you first consider the use of Jackrabbit.

19.6.2  Service Oriented Architectures

SOAs are becoming more prevalent within most enterprises. These are architectures 
that involve the definition and registration of individual services that offer specific 
functionality. These can be considered bottom-up architectures, although the corner-
stone of any such architecture is going to be a formalized registry framework with a 
service based taxonomy which allows for the dynamic discovery of services. The 
loosely coupled ad-hoc nature of these architectures makes them highly suitable to 
use in research. However, for a SOA to work with a research enterprise, there does 
need to be a high degree of “political will” to change modes of working to ensure 
adoption. Basically, due to their nonintrusive nature, people must be made aware of 
their existence and made aware of the benefits of using a formalized architecture.

Most SOAs are built around the concepts of Web Services and associated 
standards. Web Services are a suite of protocols that standardize the invocation of 
remote applications using common high level communication protocols. The naming 
of this set of technologies as “Web Services” is largely due to their main usage 
being through the passing of messages via http. The mechanisms through which 
Web Service operate is simple: a message is received and a reply is sent, the struc-
ture and format of the message differs depending upon the type of Web Service that 
is being used.

The attraction of Web Services in the biological sciences is primarily due to:

•	 Simplicity. These are relatively easy to build and have a short learning curve. 
A large number of tools are available which hide the complexities, of extracting 
message based information and marshalling (serializing) to languages specific 
types, from the application developer. The advent of AOP has also simplified the 
development and deployment process (see Table 19.2).

•	 Interoperability. As messages are encoded into a XML document based interme-
diate format, these services have a high degree of interoperability. With care, 
Web Services can relatively easily interoperate between the major programming 
languages being used in bioinformatics. This interoperability comes at a cost in 
terms of the level of complexity that Web Services can offer, although this rarely 
becomes an issue.

•	 Reliability. Web Services are generally implemented in a stateless manner and 
use high level protocols for communications, which means they rarely go wrong. 
Their simplicity is their strength, they are reliable and will stay up with little 
(if any) administration overhead. Additionally, they are relatively easy to debug, 
especially compared to binary communication mechanisms.

Although all Web Services operate in the same manner, the high level protocol is 
used to send a message to a specific endpoint, there do exist three main types:
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•	 SOAP. Historically SOAP was an acronym for Simple Object Access Protocol, 
but as it has evolved this definition is becoming less meaningful. SOAP is a 
means to encapsulate requests for information to an application and to receive 
their response (see Fig. 19.11). SOAP has been around for about a decade, but its 
aim to produce a light weight interoperable protocol had problems due to incom-
patible implementations and multiple methods for structuring information. Most 
of the problems arose as there were different ways of defining the target for a call 
(e.g., RPC methods which tightly coupled the call to a specific method, or docu-
ment methods which provided a “loosely” coupled mechanism) and the way in 
which data were structured within the message (e.g., encoded using external 
complex language specific types, or literal where all data items were defined). 
The WS profiles provide the required standardization, and SOAP implementa-
tions are now interoperable (although problems still exist). SOAP achieves this 
high level of interoperability due to the fact that the interface for a specific service 
offers is formally defined in a WSDL (Web Service Description Language) docu-
ment. This WSDL document can be automatically downloaded, and tools can use 
it to generate convenience classes for specific languages, so that no XML parsing 
code needs to be written by the developer. When writing a WSDL, the use of 

Table 19.2 Using annotations to define POJOs for Web Service endpoint
@WebService
@SOAPBinding(style = SOAPBinding.Style.DOCUMENT,use= 

SOAPBinding.Use.LITERAL)
@Stateless
Public class HelloWorldService implements HelloWorld { 
    @WebMethod 

public String getString () { 
return "Hello World";

    } 
}

   Java snippet showing how annotations can be used to specify a SOAP Web 
Service within any standardized Java Application Server (e.g. Spring, JBOSS). 
The annotations state that this POJO should be mapped to a Web Service, and the 
encoding will be document/literal. The HelloWorld method is to exposed through 
this Web Service. The annotations also specify that this POJO is a Stateless EJB, 
and so if this class exists within JBOSS then this POJO will be instantiated as a 
stateless bean and this will be mapped to the Web Service instance. 

[WebService]
[WebServiceBinding(ConformsTo=WsiProfiles.BasicProfile1_1)]
public class HelloWorldService:WebService
{
    [WebMethod]

public string HelloWorld() { 
return "Hello World";

    }  
}

   C# snippet showing how annotations can be used to specify a SOAP Web 
Service within IIS. The annotations specify that this class will provide the 
implementation of the Web Service, and the encoding should follow the WSDL 
1.1 basic profile. The HelloWorld method is exposed through this Web Service. 
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profiles with literal/document “styles” ensures a high level of interoperability. 
Associated with SOAP are a large number of standards which provide useful 
additional functionality, these are the WS-* standards. More information about 
these standards can be found at OASIS (www.oasis-open.org). The most impor-
tant one of these, to the life science developer, is the WS-RF (resource frame-
works) which allow for a means to provide stateful web services.

•	 REST. Representational State Transfer (REST) has gained popularity, as it 
retains some of the power of SOAP but is considerably easier to implement. The 
idea is to use preexisting technologies as the basis for the protocol (e.g., “the 
web is the platform”). There exists some confusion about what represents a 
Restful service, rather than just an HTTP encoded request for an XML docu-
ment. True REST is based upon the verb/noun/type based calls, where you apply 
an operation (verb e.g., POST, GET, PUT and DELETE) to a URI (noun) with 
a certain view (type).

Fig. 19.11 The protocol for transporting messages using SOAP is described as a stack, with 
different levels of information being available at each level of the stack. When a method is 
invoked by a client it is first encoded as XML, which includes information about the types and 
values of the arguments, as well as the remote method information; second a header is added 
which contains extra information which is required, with the adoption of WS-* standards the 
complexity of this header will increase over time; third the envelop is added which contains 
encoding information relevant to the encapsulated document; and last information related to the 
transport protocol is added (e.g., http or SMTP headers). The response message is returned and 
must be decoded using the reverse of the encoding stack: the transport protocol information must 
be used to extract the SOAP envelope; envelope information is used to decode the header and the 
body; the header information is used for specific targeting and other operations; and the body is 
then decoded and the results returned to the calling method

GET http 1.1
concent_type...

Protocol specific
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use header to target 

body

Deserialise message to 
language specific types

Create envelope with 
encoding and include 
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encoding…<message
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•	 Definition based extension. A number of extensions and new “Web Service like” 
protocols have been developed by the life science community. The majority of 
these were defined due to deficiencies in the broader community standards. 
These standards largely define how data are served out from web services and 
how they are described, and thus, serve to improve integration (e.g., BioMoby, 
caDSR within caGRID/caBIG).

Generally a REST based service should be considered first, however if complex 
functionality (e.g. stateful calls, true interoperability, distributed transactions) is 
required then it is recommended that Web Services are constructed using SOAP. 
The advantages of SOAP are the plethora of tools that are available, due mainly to 
the high level of standardization (and commercial backing). Most SOAP tools will 
automatically generate REST based interfaces as well.

When developing SOAP interfaces you should be aware of:
The disadvantage of SOAP is that it is largely static and difficult to implement.

•	 Debugging issues. The parsing of SOAP messages typically occurs in a chain, 
with specific information being added or removed between elements of the 
chain. This means that actual complexity involved in debugging differs enor-
mously depending on the programming environment that is used. The use of 
proxy tools (e.g., ProxyTrace from www.pocketsoap.com) can also aid in debug-
ging, as the actual message documents can be captured and examined. 
Additionally, there are frameworks available that can be used for testing SOAP 
services (e.g., SOAPUI from www.soapui.org).

•	 Different implementations exist for different languages. For JAVA, Apache 
offers Axis, and a wide range of implementations for a number of the different 
WS-* standards. Alternatively, the Globus Alliance (www.globus.org) also 
offers implementations. Unfortunately, when working with Perl, the simplest 
(and best) way is to directly access the document messages using XPATH.

•	 Interface definitions. When building an interface for a service two mechanisms 
are available: class driven, where the WSDL is automatically generated from an 
underlying implementation; or interface driven, where the WSDL is created by 
the developer and the language specific stubs are generated by a tool. To promote 
interoperability, it is always better to start with a WSDL, and generate the language 
specific bindings (e.g., top-down).

19.6.3  Orchestrating Services

Control and data flow across distributed services typically require a system of 
message passing through the use of a high level control systems (see Fig. 19.12), 
for example, an enterprise bus or similar. An enterprise bus is a powerful architec-
ture that allows for the high level orchestration of distributed services. These 
typically operate in an asynchronous message based manner, as a message queue 
or scheduling system is required for their operation. Asynchronous messaging has 
shown itself to be a stable and versatile method for developing enterprise systems, 
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because it has a high tolerance for failure and can behave in a failsafe manner 
(so jobs and state are not lost during a serious error).

Typically, within an enterprise bus, a workflow is established and then executed. 
This workflow is of the form “execute service A, extract information and pass to 
service B.” Depending on how they are coordinated, these workflows can differ 
enormously in complexity.

If such distributed coordination or distributed processing is required, then two 
architectures are worth considering:

Channel based solutions, for example, Mule ESB. Mule is a comprehensive •	
enterprise service bus, which will handle the message passing between distrib-
uted services. Mule functions as both a middleware (object broker) and a message 
system. Mule is simple to use, and orchestration between UMOs (Universal 
Message Objects, which are simply services) is defined through configuration 
files. The UMOs are the only code that the developer needs to provide, and as 
mule adopts a “separation of concerns”/POJO policy the UMOs are concerned 
solely with the business logic rather than parsing or transportation code. The 
UMOs can themselves be Web Services. Mule provides standardized compo-
nents for working with different protocols, these are categorized as: message 
receivers (and connectors) which understand how to receive communications 
from different communication protocols, for example, http; routers which target 
and filter specific messages/events to and from specific UMOs; and transformers 
which understand specific formats (e.g., SOAP envelopes) and can transform 
them into alternative representations require by UMOs. Mule is an established 
technology and should be considered for any distributed processing project as it 
is easy to use; robust; removes most of the “grunt” work of working with differ-
ent protocols; reasonably easy to reconfigure; and used by a large number of 
groups and has a stable development team. More information can be found on 
the Mule web site (www.mulesource.org).

•	 BPEL based solutions. Web Services do have a high level orchestration lan-
guage, called the Business Process Orchestration Language (BPEL). This 
defines a number of high level primitives for controlling: invocation of methods, 
requesting/receiving data from services; flow control across a number of 
machines; as well as a series of basic control structures (see Fig. 19.13).

There are also some specialized life science high level orchestration tools that have 
been developed, examples include those from both commercial and academic 
groups (e.g., Taverna).

Enterprise buses have their natural place but can be overkill if all that is needed 
is a simple batch file style of operation. In a large number of cases, bioinformatics 
“workflows” can be best executed as a toolset, where each tool is executed in a 
serial fashion with the output of one tool being piped into the next tool in the chain. 
Toolsets are notoriously prone to failure and difficult to debug; however, they are 
simple to build. If a toolset is required, then there exist a number of toolset builders 
and execution environments which will be of use. One such toolset environment is 
GenePattern (www.broad.mit.edu/cancer/software/genepattern).
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19.7  Conclusion

This chapter gives an introduction to programming, and programming languages, 
for the life sciences. This chapter can only serve as a guide, as the only real way of 
learning the required skills is to actually undertake software projects.

Fig. 19.13 BPEL allows for the high level orchestration of Web Services. BPEL can be visually 
specified using a variety of systems. The above example uses the Eclipse plugin, and specifies 
orchestration of a set of service to perform image analysis
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Within the life sciences, we have been seeing a steady increase in the volumes 
and complexity of the data being generated by experiments. High-throughput experi-
mentation (e.g., using high throughput sequencing, imaging or proteomics) with 
output measured in terms of “CD a minute” are already exasperating this trend. This 
trend is placing further demands on the teams of software engineers working within 
the life science arena. The demand for rapid development of high quality code is 
being driven by: the growth in both magnitude and complexity of data; the constant 
introduction of new automated experiment technologies; and the growing require-
ments for integration and interoperability from fields such as systems biology.

Fortunately, modern programming languages are now approaching a level of 
sophistication where we can rapidly develop reliable distributed interoperable 
applications. Such rapid development can be achieved through a good understand-
ing of how technologies can be adapted and reused, allowing the programmer to 
concentrate their efforts mainly on the development of the business logic of the 
software. Therefore, to build well architected and maintainable software, knowl-
edge of both the life sciences and current computing technologies are required. 
Armed with this knowledge you will be able to meet the challenges of building 
systems to support biological research.

Acknowledgments This work was supported by Grant Number P50GMO76547 from the 
National Institute of General Medical Sciences. The content is solely the responsibility of the 
author and does not necessarily represent the official views of the NIGMS or the NIH.

Glossary

ADT Abstract data types pre-date the adoption of object-oriented programming. 
They provided a means to reuse storage and retrieval structures, and are similar to 
“generics” (e.g., lists, tables, queues).

AOP Aspect Oriented Programming is used to easily apply cross-cutting functionality 
(e.g. logging) to programs. A programmer typically defines a method as having a 
particular aspect, and a separate framework will be responsible for ensuring that the 
correct behavior occurs (e.g., when, how and where the code injection occurs). This 
cross-cutting can be injected into method calls at a variety of times in an objects 
life cycle.

BPEL The business process execution language is a specification designed to support 
the high level orchestration of web services. The heart of the BPEL specification is 
the scripting language which defines how services and data produced by them are 
linked together. This specification is rich enough to allow for most workflows 
and defines both how method invocations and data are linked and the how web 
services should be coordinated (e.g., concurrency, choices, sequential operations). 
The specification also defines extensions to the WSDL which can be used to specify 
links between services.
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CORBA The Common Object Request Broker Architecture supports interoperability 
between distributed processes (applications). Central to the architecture is an ORB 
(object request broker) which both marshals data and controls compartmentalization 
(to allow for invocation on specific remote threads etc.) of the different processes. 
The specification was defined by the OMG, and ORBS are available for most 
platforms.

DCOM Provides for a means to make distributed calls between COM (Component 
Object Model) objects. Thread compartmentalization and marshalling (using low 
level XML interchange) are handled automatically. For application developers, this 
has largely been superseded by .NET Remoting.EJB. Enterprise Java Beans provides 
a means for writing application servers in Java. A container manages a number 
of enterprise beans and provides access to common functionality and imposes 
control over the beans (e.g., life cycle, resource management, transactions and security). 
The EJB specification has evolved considerably since its first release and is now a 
feature rich framework which can be used to easily develop complex server side 
functionality.

I3C The I3C was a short lived commercially led organization established to 
standardize aspects of life science informatics. The organization was led by Oracle, 
Sun and IBM. The I3C did promote the use of LSIDs, which have been adopted by 
the OMG.

IDL The Interface Definition Language formalizes the remote interfaces that can 
be accessed through CORBA. IDL has evolved considerably, with the advent of 
pass-by-value and components (facets). A WSDL serves the same type of purpose 
for Web Services.

IIOP The Internet Inter-Orb Protocol is the means through which Object Request 
Brokers (ORBS) communicate. This allows for discovery, life cycle and compart-
mentalization of object requests.

JCR The Java Content Repository is a specific Java Standard (JSR-170) for defining 
the interface to a content repository. A content repository is a flexible system that 
is typically customized for a specific usage, when customized, it is referred to as a 
Content Management System (CMS).

JNDI The Java Naming and Directory Interface are the specification for the directory 
and naming system using within Java. The underlying system can use a variety of 
systems (e.g., RMI Registry) and provides a means to discovery and query 
resources.

JSR Java Specification Requests is the process through which community 
standards are achieved for Java. The requests are diverse and have led to a number 
of useful reference implementations.

LINQ This is a .NET project that extends the platform to allow for general 
resource querying from within code. Resources that are queried can then be 
accessed as objects within the framework.
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LSID The Life Science Identifier standard provides a concentrate definition and 
implementation of a URN. The LSID specification outlines how the URN is 
resolved to two locations (the data and the metadata) through the use of “an authority.” 
In this way, the authority acts as a registry. The documents that are retrieved are 
returned as objects and an associated RDF data file which encodes the metadata. 
The standard also encompasses many aspects of using URNS and includes specifi-
cations for associated services (e.g., assignment).

LSR The Life Science Research group of the OMG defines standard in the “vertical” 
life science domain. The body has defined and adopted a number of standards. These 
standards cover a wide range of areas (including the “sequence” and “literature”).

Maven Maven is a build and artifact management tool available from Apache. Its 
primary use is for Java.

MDA A Model Driven Architecture is one where the model underlying the system 
is defined in a language independent way, and the corresponding services/classes 
are automatically pushed out from that model. Typically, the model is defined in 
UML, and then XMI is used to automatically generate stubs/skeletons which can 
be used to provide implementations of the model.

MIDL The Microsoft Interface Definition Language serves a similar purpose to 
IDL but is generally based on specifying the remote procedure call interface which 
is used between COM components.

MVC Model view controller pattern is commonly used in both web application 
frameworks and GUI frameworks. Commands are managed by the controller, 
which directs changes to an underlying model, and (multiple) views provide repre-
sentations of the model.

OASIS The Organization for the Advancement of Structured Information Standards 
is a standard body made up of members from a large number of organizations. They 
have been particular effective in driving forward standards for Web Service 
extensions.

ODBC/OLEDB The Open Database Base Connectivity is a definition of the inter-
face presented by a DBMS. The ODBC specification is well established and 
bridges with other technologies (including JDBC). The OLEDB is an extension to 
the ODBC offer richer functionality.

OMG The Object Management Group is an open not for profit standardization 
body. The OMG have produced a number of horizontal (e.g., Trader service, Naming 
service, Event Service) and vertical (see LSR) standards for use with CORBA.

OMT The Object Modeling Technique is a predecessor to UML and provides a 
formal representation of the design of software.

ORM Object Relation Mapping provides a means to map object onto relational 
databases, and to map relational databases into objects. A number of ORM solu-
tions are available with hibernate being the most prevalent.
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OSGi OSGi is a standards organization which provides a framework for building 
applications. The framework provides for both a means for components within an 
application to be discovered, and also an updating mechanism.

OWL The Web Ontology Language is an RDF description of an underlying data 
resource. The ontology describes the data items produced through a web service as 
well as the relationships between them.

P(M)BV Pass (or Marshall) By Value in distributed systems allows for objects to 
be moved between nodes, rather than using remote references.

POJO A Plain Old Java Object is one that uses “separation of concerns,” so that 
only business logic (and not, for example, server logic) is implemented. Any 
required dependencies and services are injected after the code has been written.

PURL A Persistence URL is one that points to a resolution service, which ensures 
that the underlying resource can always be located with the PURL.

QL In the EJB 2.0 standard, a query language was introduced, this was originally 
to standardizes the “finder” logic in the now obsolete EJB Homes.

RDBMS A relational database management system is the environment in which 
relational database instances exists. A RDBMS provides a unified framework 
which can be used to control the physical (tablespaces), conceptual (logical sche-
mas), and external (views) of databases.

REST Representational State Transfer (REST) can be considered an alternative to 
SOAP, although it is considerably easier to implement. REST uses pre-existing 
technologies as the basis for the protocol (e.g., “the web is the platform”). There 
exists some confusion about what represents a Restful service, rather than just an 
HTTP encoded request for an XML document. True REST is based upon the verb/
noun/type based calls, where you apply an operation (verb e.g., POST, GET, PUT 
and DELETE) to a URI (noun) with a certain view (type).

RMI Remote Method Innovation is a Java-to-Java solution for communication 
between distributed Java threads/applications. RMI uses a number of abstraction 
layers (remote reference layer/RRL and transport layer), this has a number of 
advantages including the fact that different underlying protocols can be used to 
actually provide the communication (e.g., IIOP). Marshalling is done through 
serialization, leasing is available, and distributed GC is supported. RMI is a conve-
nient, but not interoperable, protocol.

RUP The rational unified process was a software development process that was 
popularized through the release of Rational Rose and associated tools. It centered 
on UML and provided a means to gather use cases, match them to features, and 
track feature development and defects. Its popularity has decreased significantly 
over the last decade.

SOA A Service Oriented Architecture is one which consists of loosely coupled 
federated services. There is typically little linkage between these services, and they 
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are generally discovered dynamically using a registry system or similar. SOAs have 
grown in popularity within many enterprises, as they provide a practical and con-
venient for disparate groups to share information/processes.

SOAP SOAP is a protocol for making requests on remote services to return struc-
tured data. It is designed to use any high level protocol that supports the sending of 
information and is primarily used with http. Much like CORBA, interoperability is 
the big draw of SOAP, and (unlike CORBA) SOAP has the advantage of being 
simple to develop and test. The original stateless nature of SOAP limited its usage; 
however, with the advent of WS-RF (and other standards) SOAP is maturing into a 
general purpose object protocol.

SPARQL The SPARQL Protocol and RDF Query Language are designed to allow 
for the querying and retrieval of documents across multiple unstructured data 
stores. The power of the system is the distributed RDF documents (or other data 
stores) remain unchanged, but queries can be run across them – and so it fits well 
with a “bottom-up” approach. Such a unified approach to accessing information is 
required to make the semantic web (Web 3.0) a reality, and there do already exist 
some implementations.

UML The Unified Modeling Language formalizes visual representations for most 
aspects of software design. This formalization encompasses uses cases, class structure, 
state transitions, sequence of method calls, and deployment scenarios.

URN A Uniform Resource Name is a type of URI (Uniform Resource Identifier). 
It is the logical counterpart to a URL, in that it provides the name of a resource 
rather than the exact location of a resource. A number of URN implementations are 
available, including LSIDs.

WS-* The WS-* are a series of specifications for adding functionality to SOAP. 
These extensions provide new functionality such as security, messaging, binary 
object attachment and state. These extensions generally involve the addition of 
information to the SOAP message (within the envelope). State information can be 
maintained between SOAP calls through the use of resource frameworks (e.g., 
WS-RF).

WSDL The Web Service Description Language provides a means to specify the 
interface exposed by a SOAP Web Service. The WSDL document can be auto-
matically retrieved, and tools can be use to generate convenience classes for 
specific languages, so that no XML parsing code needs to be written by the 
developer. When writing a WSDL a number of standards (e.g., WS-I) are avail-
able to ensure interoperability, typically though the use of profiles with literal/
document “styles.”

XP Extreme Programming was largely a reaction to the “over specification” that 
was proposed though the RUP. XP advocated a number of approaches that were 
designed to ensure more responsive (Agile) well written code could be 
developed.
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Ab initio motif-finding method. See De novo 

motif-finding method
Abstract data types (ADT), 406
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gene prediction, 115
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Annotation method. See Gene annotation 

method
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Application server
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Automated annotation method, 122–123
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Autonomous citation indexing (ACI), 343

B
BioLit project, 343, 344
BLAST algorithm

BLOSUM62, 17
data access, flat-file format, 383
data storage, 178
expression-based method, 112
pairwise sequence alignment  

algorithm, 19
protein sequence, 213, 217
sequence similarity search tools, 9

SNP discovery, 171, 173
SSR discovery, 175
standalone annotation browser, 40, 46,  
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BLAST-like alignment tool (BLAT)

pairwise sequence alignment algorithm, 
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web-based genome browser, 40, 51
Block substitution matrix (BLOSUM),  

16, 21, 24
Business process orchestration language 
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C
Cap analysis of gene expression (CAGE), 198
CAP3 assembly algorithm, 25, 29, 30,  

172, 173
CASP7, HHsearch, 230
Chain-termination method, 2
Class libraries, 413, 416
CLUSTAL algorithm, 21, 35, 383
Coding sequence (CDS) database

features, 8
gene annotation, 124, 125
gene-finding method, 99, 101
protein sequence database, 216

Community annotation, 49, 131–132
Comparative model (CM), 226–227, 
Conditional random fields (CRFs), 106–108, 

357
Content management system

code repository based solution, 427–428
java content repository (JCR) based 

solutions, 427
purpose, 426–427
SPARQL based solutions, 427

Core information for metabolomics reporting 
(CIMR), 314

Index



442 Index

BookID <BID>_ChapID <CID>_Proof# 1 - 21/08/2009 BookID <BID>_ChapID <CID>_Proof# 1 - 21/08/2009

Covariance models (CM)
CMFINDER program, 79–81
HMMer software, 81
INFERNAL software, 79
and SCFG, 75–76
tRNAscan program, 79

D
Data access protocol, 416
Data and databases

data storage, 381–382
flat-file format

advantages, 382–383
constructed sequences, 388–390
data indexing, 385–387
data integration, 387–388
entry, CYC_HUMAN, 383–384
parsing, 385–387
practical aspects, 387
sequence formats, 388
text files, 382

integration system
Entrez system and semantic integration, 

400
sequence retrieval system (SRS), 

399–400
relational database

advantages, 398
building block, 394–395
example, 395–397
modeling, 395
MySQL server, 399
practical aspects, 398
relational database management 

systems (RDBMS), 396–397
repositories

consensus representation, 140
databases, curated motifs, 139
matrix representation, 140
maximum likelihood estimate (MLE), 

140–142
XML format

advantages, 392
bioinformatics, 394
document object model (DOM), 393
document type definition (DTD), 

390–392
example, 390, 391
practical aspects, 393
W3C consortium, 394

Data exchange and modeling standard, 298, 
300–301

Data indexing, 385–387

Data visualisation
genome browsers, 180–181
graphical map viewers

CMap database, 181–182
CMap3D viewer, 182–183
NCBI map viewer, 181, 182

De novo motif-finding method
matrix representation

expectation-maximization (EM) 
method, 156–158

Gibbs sampling method, 158
models, 155–156

second generation method
comparative methods, 159–160
functional genomics data, 159
phylogenetic methods, 159–160
prior information, transcription factor 

binding sites, 160–161
statistical representation, consensus 

sequence motifs
flawed independence assumption, 

153–154
higher order Markov chain, 155
motif models, 152–153
self-overlapping structure, 154–155
z-score, 154

De novo ncRNA prediction
comparative approaches

fixed sequence alignment, 86–87
simultaneous align and fold, 88

genome specific approaches, 84–85
MFE stability, 85–86

Digital gene expression (DGE)
advantages, 204
data analysis

expression patterns, 202–204
flow chart, 198–199
mapping signature sequences, 200–201
normalization and filtering, tag 

signatures, 199–200
software pipeline, 201
transcript mapping software, spliced 

alignments, 201
unique and redundant matches, 202
visualization and presentation, 204

method
GC content, transcript, 197
heterogeneous cell sampling, 198
requirement, specific recognition  

site, 196
sequencing read lengths, 197
shotgun sequencing, long read  

lengths, 197
5′ vs. 3′ transcript sequencing, 198
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whole genome sequence availability, 
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MPSS and SBS method, 194–195
RNA-Seq method, 195–196
vs. hybridization techniques, 196

Digital repository infrastructure vision for 
European research (DRIVER) 
project, 341

Distributed annotation system (DAS)
Ensembl browser, 44
GBrowse, 48
gene annotation, 129, 132
integrated genome browser (IGB), 50

DNA sequence database
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database maintenance, 7
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expressed sequence tags (ESTs), 2
genome sequencing, 2
properties, 3
pyrosequencing, 2
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Document object model (DOM), 393, 399
Document type definition (DTD), 340, 

390–392
Domain (vertical) standards, 414–416
Drosophila Down syndrome cell adhesion 
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E
Edena algorithm, 31–32
EMBL. See European Molecular Biology 

Laboratory
EMBOSS system, 400
ENCODE genome annotation assessment 

project (EGASP), 122

Encyclopedia of DNA coding elements 
(ENCODE) project, 42, 46, 122, 
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ENSEMBL genome browser
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distributed annotation system (DAS), 44
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eTBLAST system, 349
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alternative splicing, mRNA, 126
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manual gene annotation, 123–124

eXtensible Markup Language (XML) 
database. See XML database

External RNA control consortium (ERCC), 
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Flat-file database
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constructed sequences, 388–390
data indexing, 385–387
data integration, 387–388
entry, CYC_HUMAN, 383–384
parsing, 385–387
practical aspects, 387
sequence formats, 388
text files, 382

Flux balance analysis (FBA), 290
Functional genomics experiment (FuGE), 

318–319
Functional genomics standard
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application of, 298
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experiment description standard
data exchange and modeling standard, 

300–301
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experiment execution standard
data analysis/quality metrics, 303–305
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Functional genomics standard (cont.)
healthcare standard

challenges for, 324–325
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(ArMet), 314
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transcriptomic standard
ERCC, 311
MAGE, 308–309
MAGE-TAB, 309–310
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Gene annotation method

alternative splicing, 126–127
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EGASP, 122
GLEAN assessment, 123

community annotation, 131–132
comparative genome annotation, 127–128
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manual annotation
automated gene builds, 124
consensus coding sequence (CCDS) 
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NCBI RefSeq database, 123
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approach, 124
pseudogene annotation

gene identification, 125–126
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duplication, 125
transcript and genomic sequence 

identification, 121
visualisation and annotation tool

Apollo annotation interface, 128–129
Artemis annotation interface,  

129, 131
Otterlace annotation interface,  

129, 130
Gene expression analysis

digital gene expression (DGE)
advantages, 204
data analysis flow chart, 198–199
expression patterns, 202–204
GC content, transcript, 197
heterogeneous cell sampling, 198
mapping signature sequences, 200–201
MPSS and SBS method, 194–195
normalization and filtering, tag 

signatures, 199–200
requirement, specific recognition  

site, 196
RNA-Seq method, 195–196
sequencing read lengths, 197
shotgun sequencing, long read  

lengths, 197
software pipeline, data analysis, 201
transcript mapping software, spliced 

alignments, 201
unique and redundant matches, 202
visualization and presentation, 204
vs. hybridization techniques, 196
5′ vs. 3′ transcript sequencing, 198
whole genome sequence availability, 

198
Encyclopedia of DNA coding Elements 

(ENCODE) project, 193–194
gene atlas, 192
hybridization

microarrays technology, 193
whole genome tiling (WGT) arrays, 

192–193
sequencing, 192
system biology, 191
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Gene Ontology (GO)
annotation, 131
consortium, 211
co-occurrence analysis, 361
proteins, 248–249
relational database, 399

Gene prediction method
ab initio method, 101
accuracy vs. training set size, 113
alternative splicing, 115
ambiguity codes, 115
bootstrapping, 114
ChIP-chip and ChIP-seq information, 116
dynamic programming, 114
eukaryotic gene structure, 99, 100
expression-based method, 112
gene, protein family, 115
multiple-genome method

amino-acid similarity, orthologous 
genes, 109–110

DNA sequence conservation, 108
intron insertion, 110–111
phylogenetic HMM, 109

parameter estimation, 101
parameter mismatching, 113
single-genome method

conditional random field (CRF), 
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generalized hidden Markov model 
(GHMM), 105–106

position-specific weight matrices 
(PWMs), 102–103

shortest path algorithm, 104
syntax rules, 100–101

Generic model organism database (GMOD) 
system, 128–129

Genetic marker. See Molecular marker
Genome browser

JavaScript and AJAX, 59
selection, 57–59
standalone browser and editor

Apollo, 49
Artemis, 50
IGB, 50
NCBI WorkBench, 51

web-based browser
Ensembl, 42–45
generic genome browser (GBrowse), 

46–49
NCBI map viewer, 45–46
synteny browsers, 51–57
UCSC, 40–42

Genome-wide association studies  
(GWAS), 204

H
Healthcare Information Technology Standards 

Panel (HITSP), 319
Hidden Markov models (HMMs), 74–75,  

230, 357
Human proteome organization (HUPO) 

proteomics standards initiative 
(PSI), 311–312

I
In silico simple sequence repeats (SSR). See 

Simple sequence repeats discovery
In silico single nucleotide polymorphisms 

(SNP). See Single nucleotide 
polymorphisms (SNP) discovery

Integrated development environment (IDE), 
407

Integrated genome browser (IGB), 50
Interaction standards, 415
Interactive bovine in silico SNP database 

(IBISS), 178
International Nucleotide Sequence Database 

Collaboration (INSDC), 4
International Union of Pure and Applied 

Chemistry (IUPAC), 212
Investigation study assay tabular format 

(ISA-TAB), 319–321

J
Java content repository (JCR), 427

L
Lemmatization, 352
Literature databases

arXiv, 342
CiteSeer, 342–343
DRIVER project, 341
HighWire Press, 341
open text mining initiative (OTMI), 

343–344
published research, 331–332
publishing models, 332–333
PubMed

archiving and indexing, 333–334
LinkOut feature, 337
MEDLINE record, 334–337
MeSH vocabulary, 334, 338–339

PubMed Central (PMC)
full text XML files, 337, 339–340
PubMed central open archives 

(PMC-OAI) service, 340
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Literature databases (cont.)
Royal Society of Chemistry  

(RSC)-published journals, 343
SciVee, 344
Web of Science®, 341–342

Literature-mining tools
applications

literature based discovery assistance, 
370–371

relation extraction and entity linking 
tools, 366–370

sentence and entity extraction tools, 
365–366

visualization tools, 372–375
biomedical terminology, 376
gene and protein name resources, 375–376
information extraction

annotated corpora, 359
assisted database curation, 361–362
entity normalization, 358
named entity recognition (NER), 

356–358
question-answering process, 362–363
relation extraction, 358–361
subtasks, 355
summarization system, 362–363

information retrieval (IR)
clustering search results, 350–351
PubMed search, 348–349
specialized biomedical literature 

retrieval system, 349
literature-based discovery, 363–365
natural language processing (NLP)

data driven analysis, 355
lexical level processing, 352
semantics and discourse, 354
syntactic level processing, 353–354
terms and concepts, 353

services, 375

M
Manual annotation, 123–124
Mapping and assembly with quality (Maq) 

software, 173
Marker storage databases

autoSNPdb, 180, 181
dbSNP, 176–177
GrainGenes, 179
Gramene, 178–179
HapMap, 178
IBISS, 178
MaizeGDB, 180
MPD SNP tools, 178
TAIR, 180

Massively parallel signature sequencing 
(MPSS), 194–195

Matlab tool, 408–409
Maximal segment pair (MSP), 19
Medical subject headings (MeSH), 334, 

338–339, 348
MeSH. See Medical subject headings
Metabolic modelling (MeMo), 314
MIAME. See Minimum information about the 

microarray experiment
MicroArray gene expression (MAGE), 

308–309
Microarray gene expression data (MGED) 

ontology (MO), 249, 309–310
MicroArray quality control (MAQC) project, 

310–311
Microarrays™, 284
Microarray standards, 414
Microbial phenomics

analytical tools
modeling, 290–291
statistics, 288–289

experimental methods
fluoresence, 287
growth rate, 284
motility and adhesion, 286–287
oxygen consumption rate (OCR), 

284–286
substrate consumption, 286

growth facilities, 280
physiology

central dogma, molecular biology, 282
metabolism, 282–283
transcriptional regulation, 283

quantitative phenotypes, 281
study benefits, 281

MicroRNAs (miRNAs), 79
Microsatellites. See Simple sequence repeats 

(SSR) discovery
MIcroSAtellite (MISA) tool, 174
Microscopic imaging standards, 415
Middle-out systems, 422
Minimal information for biological and 

biomedical investigations  
(MIBBI), 321

Minimum folding energy (MFE)
complex structures, 73
dynamic programming algorithm, 73
RNA secondary structure, 71

Minimum information about a high-
throughput nucleotide sequencing 
experiment (MINSEQE), 308

Minimum information about a microarray 
experiment (MIAME),  
193, 307–308
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Minimum information about a proteomics 
experiment (MIAPE), 312

Minimum information (MI) standards
functional genomics, 300
publishers and reporting standards 

compliance, 299
Model organism databases (MOD), 8–9,  

57, 59
Model Quality Assessment Programs 

(MQAP), 231
Molecular interactions (PSI-MI), 313
Molecular marker

computational methods
DNA sequencing technologies, 

168–169
in silico SNP discovery, 169–173
in silico SSR discovery, 174–176

data storage
autoSNPdb, 180, 181
dbSNP, 176–177
GrainGenes, 179
Gramene, 178–179
HapMap, 178
IBISS, 178
MaizeGDB, 180
MPD SNP tools, 178
TAIR, 180

data visualisation
CMap database, 181–182
CMap3D viewer, 182–183
genome browsers, 180–181
NCBI map viewer, 181, 182

genome analysis, 165–166
marker-assisted selection (MAS),  

183–184
risk prediction, human disease, 183, 184
simple sequence repeats (SSRs), 167–168
single nucleotide polymorphisms (SNPs), 

166–167
Morphological analyzer, 352
Mosaik system, 173
MPSS. See Massively parallel signature 

sequencing
Multiple-genome prediction method

amino-acid similarity, orthologous genes, 
109–110

DNA sequence conservation, 108
intron insertion, 110–111
phylogenetic HMM, 109

Multiple sequence alignment (MSA), 230
Multiple sequence alignment algorithms

CLUSTAL algorithms, 21
MUSCLE, 21–22
T-coffee, 22

MUSCLE algorithm, 21–22

N
Named entity recognition (NER), 356–358
National Center for Biomedical Ontology 

(NCBO), 322–323
National Center for Biotechnology 

Information (NCBI), 216–217, 333
National Center for Biotechnology Integration 

(NCBI), 400, 
National Library of Medicine (NLM), 333
Natural language processing (NLP)

data driven analysis, 355
lexical level processing, 352
semantics and discourse, 354
syntactic level processing, 353–354
terms and concepts, 353

NCBI genome workbench, 51
Needleman Wunsch algorithm, 15, 17–18, 20
NLP. See Natural language processing
Non-coding RNA (ncRNA) prediction

characterization and prediction algorithm
comparative approach, 86–88
genome specific approach, 84–85
MFE stability, 85–86
not well characterized families, 81–84
well characterized families, 79–81

comparative approach, 88–90
definition, 65
extensive post-transcriptional processing, 71
fixed sequence alignment, 86–87
function, 65
gene prediction method

hidden markov model (HMM), 74–75
minimum folding energy (MFE), 72–74
programs, 73–74
SCFG and CM, 75–76
structural alignment, multiple 

sequences, 76–78
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